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A B S T R A C T

Generative Artificial Intelligence has become part of our everyday
lives. Nowadays, it is difficult to not get in contact with generative
technologies - be it in the form of writing assistants, image generation
tools, or even personal assistants. However, Generative AI is not yet
leveraged to its full potential. There are lots of directions that can ben-
efit from such systems, but many of them are still under-researched.
Generative Adversarial Networks (GANs) in particular have techni-
cally matured over the last years, while systems and approaches that
use those models are still in their infancy. In this thesis, five topic ar-
eas are identified that can be substantially enhanced by GANs. Those
areas are Robustness of AI Systems, Explainability of AI Systems, Expres-
siveness of AI Systems, Feedback Synthesis and Interaction with AI.

The thesis then introduces concepts, technical approaches and user
studies that investigate how GANs can be used in those areas. Ap-
proaches for using GANs to augment datasets are introduced to im-
prove the robustness of AI systems. It is proposed how GANs can
be used to synthesize realistic visual explanations that make use of
the principles of counterfactual reasoning in order to foster explain-
ability of AI systems. It is presented how GANs can be used to make
AI more expressive by synthesizing continuously conditioned images
without the need for continuously labeled training data. Approaches
are introduced that provide personalized visual and textual feedback
for a job interview training system. Finally, it is shown how GANs
can be used build interactive systems that can counteract stress. As
such, the contributions of this thesis aim to showcase the potential of
GANs in a wide range of research fields.
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Z U S A M M E N FA S S U N G

Generative Künstliche Intelligenz ist mittlerweile ein fester Bestand-
teil unseres Alltags. Heutzutage ist es schwierig, nicht mit generati-
ven Technologien in Kontakt zu kommen – sei es in Form von Schrei-
bassistenten, Werkzeugen zur Bildgenerierung oder sogar persönli-
chen Assistenten. Dennoch wird das Potenzial solcher Technologien
noch längst nicht vollständig ausgeschöpft. Es gibt viele Möglichkei-
ten, wie diverse Forschungsfelder von solchen Systemen profitieren
könnten, aber vieles davon ist noch kaum erforscht.

Insbesondere Generative Adversarial Networks (GANs) haben sich in
den letzten Jahren technisch stark weiterentwickelt, während Systeme
und Ansätze, die diese Modelle nutzen, noch in den Kinderschuhen
stecken. In dieser Arbeit werden fünf Themenbereiche identifiziert,
die durch den Einsatz von GANs erheblich vorangebracht werden
können. Diese Bereiche sind: Robustheit von KI-Systemen, Erklär-
barkeit von KI-Systemen, Expressivität von KI-Systemen, Feedback-
Generierung und Interaktivität in KI-Systemen.

Die Arbeit stellt Konzepte, technische Ansätze und Nutzerstudien
vor, die untersuchen, wie GANs in diesen Bereichen eingesetzt wer-
den können. Ansätze zur Nutzung von GANs zur Erweiterung von
Datensätzen werden eingeführt, um die Robustheit von KI-Systemen
zu verbessern. Es wird vorgeschlagen, wie GANs genutzt werden
können, um realistische visuelle Erklärungen zu erzeugen, die auf
den Prinzipien kontrafaktischen Denkens basieren, um die Erklärbar-
keit von KI-Systemen zu fördern. Es wird gezeigt, wie GANs verwen-
det werden können, um KI-Systeme ausdrucksfähiger zu machen, in-
dem kontinuierlich konditionierte Bilder generiert werden, ohne auf
kontinuierlich annotierte Trainingsdaten angewiesen zu sein. Es wer-
den Ansätze vorgestellt, die personalisiertes textuelles und visuelles
Feedback für ein Bewerbungsgesprächs-Trainingssystem bereitstellen.
Schließlich wird gezeigt, wie GANs genutzt werden können, um in-
teraktive Anwendungen zur Stressbewältigung zu entwickeln.

Die Beiträge dieser Arbeit zielen darauf ab, das Potenzial von
GANs in einer breiten Palette von Forschungsfeldern aufzuzeigen.
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E D I T O R I A L R E M A R K S

academic voice

The author has employed the academic “we” rather than the first-
person singular throughout this work. This stylistic choice reflects
the interdisciplinary collaboration and collective research approach
that underpins this work.

utilization of digital tools

Digital tools, such as GPT models (GPT-3.5, GPT-4, GPT-4o, GPT-4o
mini), DeepL Write, and Grammarly, have been used for language
refinement and stylistic improvement to enhance clarity, coherence,
and overall quality.
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B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 motivation

One trait that makes humans a unique species is the ability to be cre-
ative. As such, humans have learned to create beautiful things over
the course of thousands and thousands of years. Over time, human
culture developed, giving birth to art, architecture, literature, and mu-
sic. The creative mind sets human cognition apart from lower forms
of intelligence - humans do not function as mere reactive, impulsive
beings, but have the gift of thinking up new things, of crafting things
and objects that have never been seen or heard before.

This circumstance was arguably one of the most common objec-
tions to the term Intelligence in Artificial Intelligence (AI) for a very
long period of time - how could AI ever be compared to the hu-
man way of thinking, if those algorithms are not at all capable of
creating new things? In fact, the entire spectrum of different AI algo-
rithms has focused almost exclusively on discriminative tasks for a
long time, e.g., classifying objects, determining an optimized way of
doing something, or solving a regression problem.

However, a sudden paradigm shift occurred when the break-
through of generative models was launched by Goodfellow et al.
(2014). With them introducing their concept of Generative Adversar-
ial Networks (GANs), a simple but effective approach came to light,
which would change the whole AI research landscape. From then on,
AI systems were capable of being creative, resulting in a completely
new hype about Generative AI, that, due to continuous new inno-
vations (e.g., rather recent developments such as Diffusion Models or
Large Language Models), continues to this day.

Using Deep Learning (DL) for Generative AI has opened up a
whole lot of new possibilities, and ways of using corresponding sys-
tems are being explored continuously.

However, the whole field of DL-based generative AI is still rela-
tively new. Although the fast and steady progression of algorithms
and approaches, application scenarios and use-cases that make use
of Generative AI are still in their infancy. Respective applications are

3



4 introduction

often one-sided, although from a technical point of view, certain ap-
proaches (in particular GANs) have matured over the last years and
are ready to be used to solve actual problems.

Showing these directions, i.e., showcasing how Generative AI can
be utilized in a variety of problem domains, is what this thesis is all
about.

1.2 research objectives

DL-based Generative AI should not be seen as “the next step” that
supersedes everything that has been done before, but rather as an
entirely new direction that exists in parallel with “discriminative” AI.
From this perspective, interesting symbioses of the two fields emerge
- Generative AI and non-Generative AI can complement each other,
leading to a diverse set of new possibilities. Similarly to how hu-
man creativity completes the human logical-thinking being, Gener-
ative AI can enrich non-generative AI systems in various meaningful
ways. For example, using the generative capabilities of such systems
to synthesize training data might directly improve the robustness of
discriminative models. Also, generative AI can be used to synthesize
visual explanations that give insights into how a non-generative AI
makes a decision. Additionally, as generating content on the fly also
allows AI systems to dynamically react to a user, it has potential to
enhance the interaction between a user and AI systems.

In the remainder of this work, we will focus on Generative Adver-
sarial Networks (GANs), as this subfield of generative AI is already
established in the field, and mature and efficient architectures exist.

Overall, by demonstrating how GANs can be used to address such
diverse scenarios, we try to answer the question:

How can Generative Adversarial Networks be used to im-
prove, to explain, and to interact with Artificial Intelli-
gence?

Specifically, we identified five particular problem domains that can
benefit from the use of GANs:

• Robustness of AI Systems

• Explainability of AI Systems

• Expressiveness of AI Systems

• Feedback Synthesis

• Interaction with AI

In this work, we will provide exemplary concepts, ideas, and frame-
works to each of the five areas as follows.
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1.2.1 Robustness

To achieve robustness of an AI system, several factors need to be
addressed. These factors encompass both technical and non-technical
considerations – from problem modelling to deployment of the actual
system. However, especially in the context of Machine Learning, one
of the key factors to the functionality of a system is the data on which
the underlying algorithm was trained. Often, the development of an
AI system fails simply because not enough training data is available
to approximate a robust model. A common strategy is therefore to
artificially inflate a training data set, which is also known as Data
Augmentation. Conventional data augmentation usually implements
diverse transformations on the initial data set, thereby creating new
instances that preserve the fundamental features of the input while
introducing authentic variations.

Traditional data augmentation, although proven effective in numer-
ous scenarios, comes with constraints and potential drawbacks.

One notable limitation is variability. Traditional augmentation tech-
niques often rely on rudimentary transformations, such as rotation,
flipping, and scaling for the image domain, or phase shifting and
noise injection for the audio domain. While these transformations in-
duce variability to the data to some extent, their scope may fall short
of delivering the full spectrum of potential variations encountered in
real-world data.

Additionally, applying data augmentation in non-optimal ways can
support overfitting. This occurs when the model becomes overly at-
tuned to the augmented data, reducing its adaptability to real-world
instances that deviate from the augmented samples.

Generative AI, especially GANs, can help here. As those architec-
tures are modelling the context of data instances in a much more com-
plex way than traditional data augmentation techniques, they can be
used to synthesize a more diverse, comprehensive set of augmented
training data.

However, major challenges remain when using GANs for Data Aug-
mentation. Probably the most critical issue is that - as GANs model
the distribution of an original dataset they are trained on - they are
still not capable of augmenting datasets with data that falls com-
pletely out of the original distribution. Therefore, they only work well
if the original data already spans a distribution that contains the ma-
jority of the problem domain. This is not necessarily a problem when
working with large datasets. There, data augmentation often is ap-
plied to only “fill certain holes” in the data distribution - the broader
scope of the underlying data distribution is mostly already defined, as
long as a critical mass of training samples exist. For smaller datasets,
this is more of a problem. Here, training data might not be even close
to covering the boundaries of the data distribution - and as such, a
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generative model trained on that data might still not fully cover that
distribution. Therefore, ways have to be found how to use GANs to
break out of that original training data distribution - especially for
small datasets. As such, in this thesis, we will try to answer the ques-
tion:

RQ1: How can we use GANs to augment small datasets without
being stuck in the original dataset distribution?

1.2.2 Explainability

Artificial intelligence becomes increasingly integrated into diverse as-
pects of our daily lives. It is important to comprehend the decisions
undertaken by AI models, as this understanding is foundational for
building trust, accountability, and ensuring ethical development of
these systems. A critical point here is transparency. Many state-of-
the-art AI models, particularly those belonging to the category of
Deep Learning, function as “black boxes”. As such, they pose diffi-
culties for users to grasp the rationale behind their predictions or
decisions. Explainability serves as a tool to unravel these black boxes,
offering stakeholders, including end-users, insights into the reason-
ing behind specific decisions. This transparency is particularly im-
portant in domains where the AI’s decisions carry serious real-world
consequences, such as healthcare, finance, and criminal justice.

Furthermore, explainability plays a crucial role in enhancing ac-
countability. As AI systems influence decisions affecting individuals
or communities, mechanisms for attributing responsibility become
essential. Explainable AI enables stakeholders to trace the decision-
making process, identify potential biases, and ensure alignment with
ethical standards and regulatory requirements. This accountability is
crucial not only for legal and regulatory compliance but also for es-
tablishing a sense of responsibility among AI developers and organi-
zations deploying these systems.

Beyond transparency and accountability, explainability contributes
significantly to user acceptance. Users are more likely to trust and
adopt AI systems when they can comprehend the decision-making
process leading to conclusions. Whether in applications like au-
tonomous vehicles or medical diagnostics, user trust in AI decisions
is important. Explainability fosters this trust by demystifying the AI’s
decision-making process, reducing uncertainty, and providing users
the ability to validate and understand the system’s outputs.

Moreover, explainability proves invaluable in identifying and miti-
gating bias within AI models. If AI systems base decisions on biased
training data, they risk discriminating underprivileged individuals.
By offering explanations for model decisions, stakeholders can detect
and counteract bias in such models.
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Common techniques in explainable artificial intelligence (XAI) are
often based on feature attribution, a methodology aimed at revealing
the importance of specific features in a model’s decision-making pro-
cess. While these approaches have gained popularity for shedding
light on which features contribute significantly to predictions, they
have limitations. Feature attribution techniques predominantly show
the relevance of specific features, but mostly fall short in communi-
cating the reason for that relevance. In essence, they provide a what
rather than a why perspective, leaving a critical gap in our understand-
ing of the models. XAI algorithms that are based on the paradigm of
Counterfactual Reasoning (i.e., Factual Explanations like Counterfactual
Explanations or Semifcatual Explanations), on the other hand, can en-
hance XAI by offering insights into why specific features are relevant.
As such, they provide a more comprehensive understanding of the
model’s inner workings.

However, a major challenge in the field of factual explanations, es-
pecially in the image domain, is that it is hard to generate realistic
factual explanations. Further, current research mainly almost exclu-
sively focuses on carrying out information about important features.
The fact that knowledge about features that are explicitly irrelevant
to an AI system also highly contributes to the model understanding
gets mostly neglected. As such, in this thesis, we will try to answer
the questions:

RQ2: How can we use GANs to generate realistic counterfac-
tual explanations for image classifiers?

and

RQ3: How can we use GANs to build explanation systems that
communicate information about irrelevant features?

1.2.3 Expressiveness

In many cases, we want to generate data with a high degree of expres-
siveness. This means that we want to be able to steer certain character-
istics of the data in a detailed and continuous way. However, respec-
tive models mostly rely on datasets that contain information about
the features that we want to control during inference. For instance,
when we want to control a specific feature in a continuous way, we
need to train a model with the help of a dataset that includes such
continuous annotations for that feature. Often, those datasets are not
available, but only datasets with coarser annotations - like categorical
labels - exist.
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A specific example is the synthesis of emotional face images. It re-
mains a challenge to train adequate, application-specific GAN mod-
els that allow for a continuous depiction of emotional faces (i.e., faces
that can show arbitrary valence and arousal values), as this would
commonly imply the need for continuously labeled datasets (i.e., an-
notated regarding valence and arousal), which are time- and resource-
intensive to build. On the other hand, discretely labeled datasets, i.e.,
datasets of face images that are annotated with discrete emotions (like
happiness, sadness or anger), are widely available. Further, the latter are
also much easier to build for specific applications, as discrete labeling
can be done faster than continuous labeling. Therefore, in this thesis,
we will use the synthesis of emotional faces as examplary use-case to
answer the question:

RQ4: How can we use GANs to synthesize continuously condi-
tioned images by using only discretely labeled training data?

1.2.4 Feedback Synthesis

Using generative AI, we can design systems and applications that
empower users and foster self-esteem. One particular class of appli-
cations that address these objectives are coaching and teaching sys-
tems. Here, AI systems can provide constructive feedback and en-
couragement to users. Systems that recognize and leverage individual
strengths can contribute to a positive sense of self-worth. By synthe-
sizing personalized feedback based on users’ unique abilities, AI can
help individuals to appreciate their strengths, while individual weak-
nesses can be pointed out in order to improve on them. Job interview
training systems are an excellent example of how AI can support
self-esteem. These systems create a safe environment for individuals
to practice and refine their interview skills, providing constructive
feedback and reducing anxiety associated with real interviews. By us-
ing such systems, individuals can gain confidence and get prepared
for real-world interviews - which might positively impact their self-
esteem and self-worth.

However, it remains a challenge to build job interview training sys-
tems that give personalized, but still realistic and comprehensive feed-
back, as most existing approaches focus on specific features that the
interviewee showed, while ignoring the feature context, i.e., the inter-
relation between the various contributing features. As such, in this
thesis, we will try to answer the question:

RQ5: How can we use GANs to enhance an AI based job inter-
view training system in order to give personalized, realistic and
comprehensible feedback?
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1.2.5 Interaction with GANs

While discriminative AI is mostly use to solve well-defined tasks like
classification or regression problems, generative AI can create entirely
new data - we even could get the impression that generative AI is
able to be creative. As such, it is conceivable that we want to directly
participate in such creative processes - we want to interact with the
AI. GANs in particular are a promising class of generative models
to enable such interactions, as they - once trained - are capable of
synthesizing data in real-time. In this thesis, we give a specific exam-
ple how an interaction with GANs can be made possible. Specifically,
we aim to build an interactive system that is able to counteract stress.
There already exist a variety of methods and techniques to hinder and
prevent stress. One of those methods is the consumption of content
inducing an Autonomous Sensory Meridian Response (ASMR). ASMR
refers to a physical relaxing feeling that is induced by certain audi-
tory, visual, or tactile stimuli. In recent years, ASMR became particu-
larly popular through platforms like YouTube, where many content
creators produce videos that are specifically designed to trigger the
state of ASMR. In literature, ASMR is described as a flow-like men-
tal state (Barratt and Davis, 2015). Up to this point, ASMR is limited
to being a passive experience - users only passively consume ASMR
content. Although the highly related state of flow usually requires
some sort of activity (Csikszentmihalyi, 2000), it has never been re-
searched if some sort of active component can also enhance the stress-
hindering relaxation capabilities of ASMR. GANs have been proven
capable of synthesizing high-quality sound, and also are fast enough
for being parametrized and used in real-time applications. As such,
GANs can be used to realize both active real-time parametrization and
passive sound synthesis components - and as such, to build an interac-
tive ASMR system.

However, employing ASMR in an interactive setting remains a ma-
jor challenge, as the topic is rarely researched and adequate interac-
tion techniques are not yet known. As such, in this thesis, we will try
to answer the question:

RQ6: How can we use GANs to build an interactive ASMR
experience?

1.3 structure of the thesis

This thesis is outlined as follows:

Part 1, i.e., the remainder of the part that you are currently reading,
will give an introduction into the theoretical and technical concepts
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that this thesis is built upon. Mainly, this will cover the ideas behind
the broad palette of GAN architectures that were used to implement
the concepts of this work.

Part 2 presents two technical approaches on how GANs can be used
to artificially increase the amount of training data for specific problem
domains - as such, contributing to the robustness of AI systems.

Part 3 presents a technical approach on how to generate highly
realistic counterfactual explanations for image classifiers. Further, it
introduces the novel concept of Alterfactual Explanations, an explana-
tion mechanism that tries to communicate irrelevant features of an AI.
Also, an implementation to generate such Alterfactual Explanations
by using GANs is presented.

Part 4 presents a technical approach on how to use GANs for af-
fective face interpolation without the need for continuously labeled
training data.

Part 5 presents two technical approaches on how to use GANs for
creating personalized feedback in a job interview training setting. The
first approach aims to generate verbal feedback, while the second
one aims to synthesize highly realistic images that visualize how the
trainee could have behaved better.

Part 6 introduces an interactive GAN-based application to support
well-being. Therefore, we employ an application for an interactive
ASMR experience.

Part 7 summarizes the contributions of this thesis and gives a brief
outlook into future work.



2
G E N E R AT I V E A D V E R S A R I A L N E T W O R K S

2.1 discriminative versus generative models

Figure 1: The discriminative and the generative detective (i.e., the former
forger), representing discriminative and generative models.

To get a basic understanding of what a generative model is, we
have to compare it to its natural counterpart: a discriminative model.
Here, we want to start with an analogy. Think of a scenario where
an art museum is dealing with a problem: an art forger is creating
fake paintings which are sold as genuine masterpieces to the mu-
seum. To solve this problem, the museum director hires a detective
with a solid education in the art business. This detective represents
the discriminative approach. The discriminative detective’s job is to
quickly and accurately identify whether a painting is real or fake. For
each painting, he looks for specific details - those that he learned are
relevant for the decision of if the painting is real or fake. These de-
tails could be unusual brushstrokes, inconsistencies in color, or even
minor mistakes in signature placement. These are called the features.
Based on the features he observes, the discriminative detective makes
a decision: is the painting real, or was it faked by the art forger? The
detective’s goal is to estimate the boundary between real works and
forgeries as clearly as possible. In mathematical terms, he learns a

11
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function that directly reflects the probability that a painting is fake
given the features that he had observed. This can be expressed as:

P(Fake|Features) = f(Features) (1)

Here, f(Features) is the discriminative model. It focuses solely on
making the best classification decision based on the features. In the
realm of Machine Learning (ML), we are not (necessarily) looking at
detectives, but at technical models that are able to solve problems on a
computational level. Here, we can implement such a concept through
a variety of technical approaches, for example through mechanisms
from the field of Supervised Learning. As such, the function f would be
refined by looking at lots of examples of real and fake paintings. The
strategy is adjusted to minimize mistakes, ensuring a fake is rarely
misclassified as real (and vice versa).

Let’s get to the generative approach. As the art museum still has
huge trouble with the art forgeries, the museum director has a dif-
ferent idea. He hires a former art forger (i.e., the generative detective)
- as such, that former art forger is not just interested in identifying
fakes. The art forger isn’t just looking at a finished painting. Rather,
he thinks about how the painting was made - how the artist chose
their colors, applied their brushstrokes, and composed the scene. The
forger is trying to model the entire process of creating a painting,
whether it’s a real painting or a forgery. The forger develops two mod-
els in his mind. The genuine painting model (i.e., how a real artist might
have created the painting) and the fake painting model (i.e., how a
forger might try to replicate this process, and what small errors or dif-
ferences might sneak in). Mathematically, the hired former art forger,
when helping to identify forgeries, calculates the probability of seeing
a particular painting given that it’s a real piece P(Features|Real) and
the probability of seeing it given that it’s a fake P(Features|Fake).
He then can combine these probabilities with his understanding of
how often real and fake paintings appear - the prior probability. Using
Bayes’ theorem, he can calculate:

P(Fake|Features) =
P(Features|Fake) ∗ P(Fake)

P(Features)
(2)

This calculation gives him the likelihood that a painting is fake after
considering both the process of creation and the features observed.

However, additionally to being able to identify fake paintings, the
former art forger could use this deep understanding to create forgeries by
himself - at least, if he were still in business.

In simple terms, the discriminative detective wants to classify the
painting as real or fake only based on the features he observes. He
does not worry about the process of how the painting was made, just
about the end result. Discriminative Models work similar - they focus
on assessing an observation, and not necessarily on a deeper under-
standing of how the observation came about. The generative detective,
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Figure 2: A schematic overview of the Vanilla GAN architecture.

however, is interested in the whole process - the story behind the
painting’s creation. He understands the techniques and methods used
to produce both real and fake paintings, and uses this understanding
to either make judgments, or create forgeries. The same goes for Gen-
erative Models - they try to model a deep understanding of how data
comes about, i.e., they try to model the whole Data Distribution.

2.2 the idea of gans

Now that we have seen the key differences between discrimina-
tive and generative approaches, let’s try to understand how both
paradigms are combined in the idea of Generative Adversarial Net-
works.

In our little forgery tale, the generative and the discriminative de-
tective are again on their way to investigate a high-profile case of
potential forgery. Unfortunately, they suffer a terrible car accident
- which leaves them both with amnesia and erases the majority of
their memories and skills. The generative detective, whom we simply
will call the Generator from now on, and the discriminative detective,
(from now on, simply the Discriminator), must now start from scratch.
They have to relearn everything about their respective skills. However,
they still both want to approach their tasks in their distinctive man-
ner: the Generator aims to learn the process of faking art, while the
Discriminator wants to assess if an existing painting is real or fake
based on observations. This time, there’s a new twist: during their
detective work, they’ve become friends. As such, instead of learning
their goals independently, they join forces and rebuild their expertise
through a process of mutual learning - through adversarial interaction.

The Generator begins its work from zero, producing rudimentary
paintings that are little more than abstract blobs of color. These early
efforts are far from convincing and are more akin to random experi-
ments than good forgeries. The Discriminator is equally bad. With no
memory of his former training, he has lost his eye for detail and his
ability to spot forgeries. His initial attempts at evaluating paintings
are as unskilled as the Generator’s attempts to create them.
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Despite their difficulties, the Generator and Discriminator are com-
mitted to regaining their lost abilities. They begin to learn from each
other in an adversarial game:

• round 1 . The Generator creates a painting that is more of a
chaotic collection of shapes and colors than a recognizable piece
of art. The Discriminator tries to judge whether the Generator’s
creation is real or fake. Also, he looks at real paintings and tries
to assess their validity - but, as inexperienced as he is, he can
only make random guesses.

• round 2 . The Generator, eager to improve, takes the Discrim-
inator’s feedback (even though it’s not very accurate) and at-
tempts to create a slightly more structured painting. The Dis-
criminator, having a first impression of the domain now, begins
to recognize very basic patterns and features that might indicate
a fake.

• ongoing rounds . As they continue to interact, both the Gen-
erator and the Discriminator gradually regain their lost skills.
The Generator’s paintings become more sophisticated with each
round, while the Discriminator sharpens his ability to spot flaws
and inconsistencies. Over time, this adversarial process leads
both of them to a level of skill that matches their pre-accident
expertise.

This scenario, where both the Generator and Discriminator start
from nothing and improve together, mirrors how GANs work. Now,
let’s look at the maths behind the approach.

the generator’s objective . The Generator G starts by creat-
ing random samples G(z) from noise z. These early outputs are not
convincing, but with feedback from the Discriminator D, the Gener-
ator learns to produce more realistic images. The Generator’s goal is
to create samples G(z) that make the Discriminator believe they are
real, i.e., D(G(z)) ≈ 1. As such, the Generator’s objective is:

min
G

V(G) = Ez∼pz(z)[log(1−D(G(z)))] (3)

Ex∼p refers to the
expected value (or

average) over the
distribution p. It

indicates averaging
over all possible

values of x, where
each x is drawn
according to the

probability
distribution p.

the discriminator’s objective . The Discriminator attempts
to distinguish between real and fake data. Initially, it struggles, but
as it sees more examples, it improves its ability to classify real versus
fake data correctly. The Discriminator aims to maximize the probabil-
ity of correctly identifying real data D(x) ≈ 1 and rejecting fake data
D(G(z)) ≈ 0. We can formulate it as:
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max
D

V(D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4)

the adversarial minmax game . Both the Generator and the
Discriminator engage in a minmax game. The Generator seeks to
minimize the Discriminator’s ability to distinguish between real and
fake paintings, while the Discriminator aims to maximize its accuracy
in identifying real versus fake paintings. As such, they both compete
against each other, hence the term adversarial. The whole interaction
can be mathematically formulated as follows:

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

(5)
Here, V(D,G) is the value function that both the Generator and

the Discriminator are optimizing. There exists a multitude of differ-
ent approaches based on GANs. However, this value function, used
as Adversarial Loss, forms the basis of all of these methods. Figure 2

depicts a schematic overview of the GAN paradigm.

2.3 vanilla-gan

The basic concept of GANs - where a Generator creates data and a
Discriminator evaluates it - provides a powerful framework for pro-
ducing realistic synthetic data. To carry this concept over into the field
of modern machine learning, particularly deep learning, we use neu-
ral networks to implement both the Generator and Discriminator. The
original and most basic form of a GAN, introduced by Goodfellow et
al. (2014), uses fully connected neural networks for both the Gener-
ator and Discriminator. In their original paper, they did not define
one single architectural specification, they only set the rough scope
of using Multilayer Perceptrons, i.e., simple fully connected neural net-
works. They presented the GAN idea more as a framework than a spe-
cific model architecture - as such, the original GAN idea is applicable
to all kinds of architectures. More importantly, what they did define
in detail is the exact approach of training the model. In a real-world
implementation, deploying GANs requires a methodical, step-by-step
computational strategy. Attempting to fully optimize the Discrimina-
tor within each training cycle is not only computationally expensive
but also increases the risk of overfitting, especially when working
with limited datasets. To circumvent this, the training process alter-
nates between multiple optimization steps for the Discriminator and
a single optimization step for the Generator. This alternating proce-
dure ensures that the Discriminator remains nearly optimal, provided
that the Generator’s updates occur gradually. The training algorithm
presented by Goodfellow et al. (2014) is presented in Algorithm 1.
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Algorithm 1 Basic GAN training loop as presented by Goodfellow
et al. (2014).

1: for number of training iterations do
2: for k steps do
3: • Sample minibatch of m noise samples {z1, ..., zm} from noise

prior pg(z).
4: • Sample minibatch of m examples {x1, ..., xm} from data generat-

ing distribution pdata(x).
5: • Update the Discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
xi
)
+ log

(
1−D

(
G
(
zi
)))]

.

6: end for
7: • Sample minibatch of m noise samples {z1, ..., zm} from noise

prior pg(z).
8: • Update the Generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(
1−D

(
G
(
zi
)))

.

9: end for

2.4 problems with the vanilla gan framework

While the basic principles of the GAN framework have laid a solid
foundation for generative modeling, the initial Vanilla GAN approach
encountered several challenges and limitations. Understanding the
most critical problems with the original idea is necessary for a good
understanding of the idea itself. As such, in this section, we will intro-
duce the three most common challenges that arose with Goodfellow’s
work: Mode Collapse, Vanishing Gradients and Non-Convergence.

2.4.1 Mode Collapse

Let’s go back to our story about the two detectives, who recently
lost the majority of their memory in the tragical accident and are
now trying to re-learn their skills in a GAN-like manner. As their
training continues, the generative detective (Generator), who initially
struggled to produce anything even resembling a real painting, has
made a breakthrough. One day, after many rounds of trial and error,
the Generator realizes that painting vague, minimalist landscapes —
a few hills, a sunset, and some clouds — reliably gets approval from
the discriminative detective (Discriminator). As such, the Generator
starts focusing only on this one style. Over and over, he paints only
these familiar landscapes. Perhaps he adds a slight variation, like a
few more clouds or a brighter hue in the sky, but he never moves far
away from this approach. The Generator, once open to creativity, has
collapsed into this one safe formula. As such, the cooperation between
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the two detectives begins to suffer. Without diversity in the artworks,
the Generator fails to grow, and the Discriminator cannot get better
because he is not confronted with new material.

In GANs, this is known as Mode Collapse. The Generator, instead of
capturing the full diversity of real data, finds a safe spot – a subset of
data that can repeatedly fool the Discriminator without needing to
learn the range of features in the dataset. As a result, the Generator
produces outputs that lack variety, generating only a limited subset
of the data distribution, which limits the GAN’s overall performance.

Mode Collapse can be mathematically understood by examining
how the Generator’s distribution pg(x) becomes overly focused on
specific areas of the data distribution pdata, rather than converging
to the full distribution. Mode Collapse is linked to the optimization
dynamics. Instead of achieving global minima, the Generator finds
local minima by generating a limited set of outputs. Because the Dis-
criminator’s success is localized, this local minimum doesn’t penalize
the Generator strongly enough for failing to capture the full distribu-
tion.

2.4.2 Vanishing Gradients

Back to our story: After weeks of learning, the discriminative detec-
tive’s skills have reached an impressive level. Now, he can instantly
spot the Generator’s forgeries. No matter what the Generator pro-
duces, the Discriminator instantly declares it fake. However, his judg-
ment is unhelpful, leaving the Generator frustrated. Without any spe-
cific feedback, the Generator can’t tell what’s working and what’s
not – it only knows that every attempt is vehemently rejected. The
situation becomes a deadlock. The Generator, despite its best efforts,
receives almost no constructive feedback, as the Discriminator’s judg-
ments offer no insight into what a more realistic painting might look
like. Without constructive feedback, the generative detective feels lost.

In GANs, this problem is known as Vanishing Gradients, where the
Discriminator’s overly confident predictions lead to near-zero gradi-
ents, starving the Generator of the information needed to improve. As
the Discriminator reaches nearly optimal performance, it approaches
certainty (probability values close to 0 or 1), which in turn causes
the Generator’s gradient updates to diminish, which in turn leads to
stalled training.

Vanishing Gradients are mathematically tied to the structure of the
GAN’s gradient updates, especially when D achieves near-perfect ac-
curacy. The Generator seeks to minimize:

Ez∼pz [log(1−D(G(z)))]

For each z, the Generator’s gradient is proportional to ∇θ log(1 −
D(G(z))).
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When D(G(z)) is close to 0 (a near-certain “fake” judgment), the
gradient ∇θ log(1−D(G(z))) approaches zero. This is because:

∂

∂θ
log(1−D(G(z))) → 0 as D(G(z)) → 0.

Consequently, the Generator stops receiving meaningful updates,
making training stall.

2.4.3 Non-Convergence

One day, the generative detective decides to experiment more. He
starts doing drastic changes very frequently, shifting its style from
minimalist landscapes to hyper-detailed cityscapes to abstract art.
The Discriminator recognizes that the styles change frequently, and
also starts to frequently change its evaluation criteria more often. As
they both jump from one approach to another without consistency,
their interactions become chaotic. Each day, the Generator tries a com-
pletely new style, and each day the Discriminator uses a different
metric to assess the painting’s realism. This instability grows until
they’re no longer progressing. Both are stuck in a constant loop of
trying to outdo one another without learning, unable to find a steady
rhythm. The situation turns into an unpredictable, endless back-and-
forth, with no convergence in sight.

In GANs, this Non-Convergence happens when the Generator and
Discriminator fail to reach equilibrium. The loss objectives may shift
in an uncoordinated way, causing both networks to oscillate in a man-
ner that prevents stable training and convergence. This instability
can prevent both the Generator and Discriminator from learning ef-
fectively. Often – but not always – Non-Convergence is a result of
mismatching learning rates η of the Discriminator and the Genera-
tor. When ηD ≫ ηG (Discriminator’s learning rate much larger than
Generator’s learning rate), D can adapt too quickly, causing the Gen-
erator’s updates to be ineffective as the Discriminator shifts unpre-
dictably. Vice versa, when ηG ≫ ηD, the Generator may produce
overly aggressive changes, causing D to be unable to adapt, leading
to oscillations or a collapse in training.

2.5 common modifications to the gan training process

Fortunately, by the time, a variety of modifications have been intro-
duced that address the aforementioned issues. The most important
modifications will be explained in the following sections.
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2.5.1 WGAN

One of the key advancements in tackling these issues came through
the introduction of the Wasserstein GANs (WGAN), which make use
of the Wasserstein Distance. The Wasserstein Distance (also known
as Earth Mover’s Distance) offers a more stable way of measuring
how far apart two distributions are compared to the Jensen-Shannon
Divergence (JS Divergence) used in the original GAN framework.
This more advanced distance measure provides the foundation for The term "Earth

Mover’s Distance"
comes from a
different analogy:
imagine two piles of
soil representing
different probability
distributions. The
Wasserstein
Distance quantifies
the minimum
amount of work (or
cost) needed to
transform one pile
into the other by
"moving soil."

WGAN, as introduced by Arjovsky, Chintala, and Bottou (2017).
For the very last time, let’s return to our detectives, which are still

trying to improve themselves in their adversarial setting. In their ef-
fort, the Generator still produces a painting that it hopes will fool the
Discriminator. However, instead of simply declaring the painting as
real or fake (as he did before), the Discriminator now evaluates how
much work would be required to transform the Generator’s painting
into a real painting - the discriminative detective now assesses how
far the colors and brushstrokes of the generated artwork are from
being an original. The Discriminator imagines a palette of paints laid
out to create a painting. If the Generator’s painting is off, the Discrim-
inator provides feedback based on how many paint strokes of a certain
paint need to be added or adjusted to achieve the ideal artwork. This
more nuanced evaluation gives the Generator continuous feedback,
much like an artist receiving specific suggestions on how to refine
their work. This is analogously to measuring the Wasserstein Distance.
To see why the Wasserstein Distance is more effective than the JS Di-
vergence used in Vanilla GANs, let’s look at the maths. In a Vanilla
GAN, the objective is based on minimizing the JS Divergence between
the real data distribution pdata(x) and the Generator’s distribution
pg(x). This approach can struggle when there is little overlap between
the two distributions as that leads to the aforementioned problem of
vanishing gradients. In this scenario, the Generator receives vague
feedback, much like an artist who is told their work is “not good
enough” without knowing how to improve. The Wasserstein Distance,
however, measures the minimum “cost” of transforming one distribu-
tion into another. As such, it quantifies the effort required to turn the
Generator’s painting into a real-looking piece. Mathematically, it can
be expressed as:

W(pg,pdata) = inf
γ∈Π(pg,pdata)

E(x,y)∼γ [∥x− y∥]

In this equation, Π(pg,pdata) represents all possible ways to pair
points from the generated artwork with points from the real data
distribution. The Wasserstein Distance finds the optimal pairing that
minimizes the amount of “paint” that needs to be moved to transform
the Generator’s work into something that closely resembles an origi-
nal. As such, in a GAN using the Wasserstein Distance (i.e., WGAN),
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the role of the Discriminator shifts slightly. As instead of simply clas-
sifying data as “real” or “fake,” it assigns a score based on the real-
ism of the Generator’s forgeries, the Discriminator becomes a Critic.
The Critic’s job is to estimate the Wasserstein Distance between the
real artworks pdata and the faked ones pg. As a consequence, the
WGAN training loop differs, too. The ultimate objective of the Critic
is to provide a useful estimate of the Wasserstein distance. However,
the Critic does not compute this distance directly as a single value
- instead, it learns a function that approximates how far apart these
two distributions are apart. The Critic’s training involves maximizing
the difference between its scores for real samples and its scores for
generated samples. The training objective can be expressed as:

LD = −Ex∼pdata
[D(x)] + Ez∼pz [D(G(z))]

In this expression, the Critic is effectively trying to maximize the
score difference. In other words, the Critic’s training maximizes the
scores it assigns to real samples while minimizing the scores for gen-
erated samples. This process leads to a better approximation of the
Wasserstein distance between the two distributions over time.

In WGANs, ensuring that the Critic properly estimates the Wasser-
stein Distance necessitates certain constraints, primarily Lipschitz con-
tinuity. A function is said to be Lipschitz continuous if there exists a
constant L such that for any two inputs x and y:

|f(x) − f(y)| ⩽ L∥x− y∥

Especially, when L = 1, the function is specifically 1-Lipschitz con-
tinuous, which means that the change in the function’s output is re-
stricted to be no greater than the distance between inputs. This prop-
erty ensures that the function does not change too rapidly, which is
crucial for the stability of the training process. In the context of the
Critic in WGANs, Lipschitz continuity ensures that small changes
in the input (i.e., minor changes in the generated or real artworks)
lead to bounded changes in the output score. To enforce this Lip-
schitz constraint, the original WGAN proposed a simple yet effec-
tive method: weight clipping. This involves limiting the weights of the
Critic network to lie within a predefined range, typically [-0.01, 0.01].
By constraining the weights, the function represented by the Critic
becomes more stable and is less likely to exhibit rapid fluctuations,
which would lead to significant changes in the output score for small
input variations.

2.5.2 WGAN-GP

The primary function of weight clipping in WGAN is to restrict the
weights of the Critic network to a specific range, ensuring that the
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network adheres to the Lipschitz constraint. However, with overly
constrained weights, the Critic may be unable to accurately learn com-
plex decision boundaries or capture the nuances in data distributions.
As a result, this can reduce the quality of the feedback it provides to
the Generator, hindering the GAN’s overall ability to generate high-
quality synthetic data.

To address these limitations, the Wasserstein GAN with Gradient
Penalty (WGAN-GP) was proposed as an alternative to weight clip-
ping. Instead of enforcing the Lipschitz condition by constraining
weights, WGAN-GP incorporates a gradient penalty in the Critic’s loss
function, which has shown to improve both training stability and per-
formance.

The gradient penalty in WGAN-GP encourages the gradients of the
Critic’s output with respect to its input to have a norm of 1. This is
achieved by modifying the Critic’s loss function to include a penalty
term that calculates the deviation of the gradient norm from 1. In
other words, WGAN-GP aims to keep the gradient norm close to 1

at all points, enforcing the Lipschitz constraint without directly con-
straining the network’s weights. The modified loss function for the
Critic in WGAN-GP is given by:

LCritic = Ex̃∼Pg
[D(x̃)] − Ex∼Pr

[D(x)] + λLGP

where Pg and Pr denote the generated and real data distributions,
respectively, and λ is a hyperparameter that controls the contribution
of the gradient penalty term. The gradient penalty term, LGP, is cal-
culated as follows:

LGP = Ex̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
where x̂ represents a set of points sampled uniformly along straight

lines between pairs of real and generated samples. By sampling from
these interpolations, the penalty encourages smooth transitions be-
tween real and generated data regions, ensuring that the Critic main-
tains the Lipschitz condition.

The gradient penalty approach provides a softer and more con-
tinuous enforcement of the Lipschitz condition compared to weight
clipping. This results in a more stable training process, reducing in-
stances of mode collapse and other training instabilities commonly
seen in traditional GANs.

In practice, the gradient penalty coefficient λ plays a crucial role
in the performance of WGAN-GP. While larger values of λ enforce
the Lipschitz constraint more strictly, they may also slow down con-
vergence. On the other hand, smaller values of λ may lead to insuf-
ficient regularization, resulting in instability. Empirically, λ = 10 is
commonly used and has been shown to perform well across a range
of applications (Gulrajani et al., 2017).
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2.5.3 Spectral Normalization

While WGAN-GP addresses the limitations of weight clipping by in-
troducing a gradient penalty, another alternative to enforcing the Lip-
schitz constraint in WGANs is Spectral Normalization. This method
offers a simpler, computationally efficient way to control the Lips-
chitz continuity of the Critic while preserving its expressive power
by enforcing the 1-Lipschitz continuity condition across the network.
As already stated, in the context of WGANs, the Critic function D

is required to be 1-Lipschitz continuous to provide valid Wasserstein
distance estimates. While the gradient penalty, that was explained in
the section before, helps maintain a stable Lipschitz constraint, it also
involves additional gradient computations on interpolated samples,
adding computational overhead.

Spectral Normalization offers a more efficient approach, enforcing
the Lipschitz constraint by controlling the spectral norm of each layer’s
weight matrix. This spectral norm, the largest singular value of the
weight matrix, bounds the layer’s output change with respect to its
input. By normalizing each layer’s weights by their spectral norm,
Spectral Normalization ensures that the Critic adheres to 1-Lipschitz
continuity, allowing smooth gradient flow without constraining the
individual weights directly.

In the following, we will explain how Spectral Normalization
works. For any layer in the Critic network, let W be the weight
matrix. The spectral norm σ(W) represents the maximum stretching
factor the matrix applies to any vector, computed as the largest sin-
gular value of W. Spectral normalization approximates this largest
singular value using power iteration, an efficient iterative method for
singular value estimation. There, first a random initial vector v0 that
will be iteratively refined is defined. This vector represents an arbi-
trary input direction for which we want to find how much the matrix
W can stretch it:

v0 ∼ N(0, I)

Normalize v0:
v0 =

v0
∥v0∥2

Then, for each iteration k, the following steps are performed:

1. Multiply the current vector by the weight matrix W:

wk = Wvk

2. Normalize the result to prevent the vector from growing too
large:

vk+1 =
wk

∥wk∥2
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After several iterations, the normalized vector vk converges to-
wards the direction of the eigenvector associated with the largest
singular value (spectral norm) of W:

σ(W) ≈
wT

kvk

∥vk∥2
The weight matrix W is then normalized by its estimated spectral

norm:

Ŵ =
W

σ(W)

This normalized weight matrix Ŵ ensures that the Lipschitz con-
stant for each layer remains close to 1, enforcing 1-Lipschitz conti-
nuity throughout the Critic network. During training, the Critic uses
the normalized weight matrix Ŵ, preserving the 1-Lipschitz condi-
tion across all layers. This enables the network to provide stable and
reliable gradients to the Generator without the expressiveness limita-
tions imposed by weight clipping.

Spectral Normalization has become widely adopted across differ-
ent types of GANs due to its balance of efficiency and effectiveness. It
is particularly useful in applications where computational resources
are limited, or when training GANs with large Critic networks that
would suffer from weight clipping constraints.

2.6 evaluation metrics for gans

As the applications of GANs continued to expand, the demand for
robust evaluation metrics to assess their performance has become
increasingly critical. Unlike traditional discriminative models, where
evaluation is often straightforward using well-established metrics
such as accuracy, precision, recall, F1 score, or area under the ROC
curve (AUC), the evaluation of generative models presents unique
challenges. Discriminative models are typically designed to classify
or predict outcomes based on input data, allowing for clear and
quantifiable performance assessments. For instance, accuracy mea-
sures the proportion of correct predictions, while precision and recall
evaluate the relevance of positive predictions and the model’s ability
to identify all relevant instances, respectively. In contrast, evaluating
GANs is inherently more complex due to the nature of their outputs,
which are new data instances that can vary significantly in quality,
fidelity, and realism - there is no simple True or False. This complex-
ity arises from several factors: the generated data must be assessed
against a target distribution, and evaluation must encompass not
only the quality of individual instances but also the overall diversity
of the generated samples. Fortunately, several commonly employed
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metrics exist for assessing GANs, and these will be explored in the
subsequent sections.

2.6.1 Inception Score

Introduced by Salimans et al. (2016), the Inception Score (IS) has be-
come a standard tool in the evaluation of generative models. It is
designed to measure two essential properties of a set of generated
images: their quality and diversity. Quality refers to how realistic and
coherent the images appear, while diversity assesses whether the gen-
erated images cover a broad range of different visual classes. The
score relies on a pretrained classifier — commonly the Inception v3

model (Szegedy et al., 2016), trained on the ImageNet dataset (Deng
et al., 2009) — as a proxy for evaluating these two dimensions.

In order to do so, the IS calculates the Kullback-Leibler (KL) diver-
gence between two separate distributions: (i) the conditional distribu-
tion p(y|x), which represents the probabilities (e.g., the proxy clas-
sifier outputs) of different labels for a given image x, and (ii) the
marginal distribution p(y) , which represents the overall distribution
of classifier-assigned labels across all generated images. Here, an im-
age of high quality should result in a conditional distribution p(y|x)

that majorly revolves around a single class. Such a peak would im-
ply that the classifier is confident in assigning the synthesized image
to a specific category - and certainly, if an image is of high quality,
then the proxy classifier should have an easy time recognizing what
is depicted in the image.

On the other hand, diversity in the image set ensures that the
marginal distribution p(y) is spread out across multiple classes. The
KL-divergence measures how much information the conditional dis-
tribution p(y|x) contributes to the marginal distribution p(y). By
averaging the KL-divergence across all images in the dataset, IS pro-
vides a single numerical score that models both quality and diversity.

Mathematically, the Inception Score is defined as:

IS = exp
(
Ex∼p(x) [DKL(p(y|x)||p(y))]

)
,

where DKL(p(y|x)||p(y)) is the KL-divergence, and Ex∼p(x) denotes
the expectation over all generated images x. The exponential ensures
that the score remains positive and interpretable. A high score indi-
cates that the model generates high-quality, diverse images, while a
low score suggests issues with image quality or diversity.

The computation of IS involves several steps. First, the generative
model is used to produce a large set of images. The typical recom-
mendation is to generate at least 50,000 images to ensure stable re-
sults (Salimans et al., 2016). Each image is then passed through the
Inception v3 model, which outputs a probability distribution over
the ImageNet classes. These distributions are used to calculate both
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p(y|x) for individual images and p(y), the overall marginal distribu-
tion. The KL-divergence is computed for each image, and the average
KL-divergence is exponentiated to yield the final score.

The Inception Score has become a widely used metric in the eval-
uation of GANs due to its intuitive interpretation and computational
efficiency. By using a pretrained classifier, it avoids the need for hu-
man labeling or manual evaluation, providing a quick and scalable
method for assessing image quality. Additionally, because the Incep-
tion Score reflects both quality and diversity, it aligns well with the
goals of most image-generation tasks. However, the metric is not with-
out limitations. One major drawback is its reliance on the Inception
v3 model, which was trained on the ImageNet dataset. This creates
a bias toward datasets that share similar class distributions or visual
characteristics with ImageNet. For instance, if the generated images
fall outside the domain of ImageNet classes, the score may be mis-
leading. If the GAN was trained on producing data of a completely
different domain, another proxy model has to be trained - which, be-
sides inducing a lot of effort - makes it hard to set the numerical IS
results in context due to a lack of comparability.

Another limitation is its insensitivity to mode collapse. The Incep-
tion Score does not explicitly penalize such behavior, as it does not
directly analyze the diversity within each class (only across different
classes). Furthermore, IS assumes that the pretrained classifier serves
as a proxy for human perception, which may not always hold true,
particularly for tasks involving subjective or aesthetic judgment.

Despite these limitations, the Inception Score has seen widespread
adoption and remains one of the most cited evaluation metrics in
generative modeling research.

2.6.2 Fréchet Inception Distance

Introduced by Heusel et al. (2017), the Fréchet Inception Distance
(FID) has become one of the most reliable and frequently used metrics
for assessing the quality and diversity of generated images. Unlike
the IS, which focuses on the conditional distribution of class probabili-
ties, FID measures the similarity between the distributions of real and
generated images in the feature space of a pretrained classifier. This
approach provides a more direct and robust comparison of the statis-
tical properties of real and generated data. The FID is grounded in
the assumption that real and generated images can be represented as
multivariate Gaussian distributions in a feature space. Typically, the
feature space is defined by the activations of the penultimate layer of
the Inception v3 network, again pretrained on the ImageNet dataset.
The FID measures the Fréchet distance (also known as the Wasserstein-
2 distance) between these two Gaussian distributions. Specifically, it
quantifies how similar the means and covariances of the real and gen-
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erated data distributions are, providing an assessment of both quality
and diversity.

Mathematically, the FID is defined as:

FID = ∥µr − µg∥22 + Tr
(
Σr + Σg − 2

√
ΣrΣg

)
,

where:

• µr and Σr are the mean and covariance of the real data distribu-
tion in the feature space.

• µg and Σg are the mean and covariance of the generated data
distribution in the feature space.

• ∥µr − µg∥22 is the squared Euclidean distance between the
means of the two distributions.

• Tr(·) denotes the trace of a matrix, summing its diagonal ele-
ments.

The term involving the square root of the covariance matrices ac-
counts for the interaction between the distributions and captures how
the shapes of the two distributions align. Lower FID values indicate
that the generated images are closer to the real images in the feature
space, implying higher quality and diversity.

To compute the FID, several steps are followed. First, a set of real
images and a corresponding set of generated images are passed
through the Inception v3 model to extract their feature representa-
tions from the penultimate layer. The means and covariances of the
feature representations are calculated for both datasets. These statis-
tics are then used to compute the FID using the formula above. Like
the Inception Score, the FID typically requires a large number of
images - typically at least 10,000 samples — to produce stable and
meaningful results. One of the key advantages of the FID over the
Inception Score is its ability to detect mode collapse. By comparing the
distributions of real and generated data, FID can identify discrepan-
cies in diversity, even if the individual generated images are realistic.
Additionally, FID is not restricted to datasets that align with the
class distributions of ImageNet, as it does not rely on class labels or
predictions. Instead, it uses the Inception model purely as a feature
extractor, making it more versatile and applicable to a wide range of
generative tasks - at least in the image domain.

However, FID is not without its limitations. Its reliance on the In-
ception v3 model means that it may not accurately capture percep-
tual quality for domains significantly different from ImageNet. For
instance, datasets with highly abstract or artistic content may not
align well with the feature space of the Inception network, potentially
leading to misleading FID values. Furthermore, FID assumes that the
feature distributions are Gaussian, an assumption that may not hold



2.6 evaluation metrics for gans 27

true in practice for complex datasets. This can result in inaccuracies
when the real or generated data distributions deviate significantly
from Gaussianity. Another limitation is the sensitivity of FID to the
number of samples used for its computation - insufficient samples
can lead to unstable estimates of the means and covariances - and as
(in contrast to the IS) it also involves using real data, it can only be
applied if a sufficiently large dataset is available at all.

Despite these limitations, the FID has become a gold standard met-
ric in GAN research due to its robustness and interpretability. Vari-
ants of FID have been proposed to address its limitations, such as
sensitivity to sample size and Gaussian assumptions (Jayasumana et
al., 2024). Also, extensions to the FID exist that additionally account
for conditional information in the synthesis process (Soloveitchik et
al., 2021).

2.6.3 Manual Evaluation

Despite the widespread use of quantitative metrics like IS and FID,
manual evaluation remains essential in many contexts, particularly
when perceptual quality and subjective attributes such as artistic style
or realism are important. Metrics like IS and FID, while useful, of-
ten fail to fully capture fine-grained details, semantic coherence, or
aesthetic preferences. Therefore, manual evaluation is still used ex-
tensively. There, human evaluators judge the quality of the generated
content - but can also assess other metrics. E.g., this is not only cru-
cial for evaluating the quality, but also for evaluating semantic con-
sistency in conditional GANs, ensuring that generated images align
with specific input conditions. To achieve manual evaluation in a
structured way, various methodologies exist. One common approach
is A/B testing, where evaluators compare pairs of images generated
by different models and select the one they find more realistic or
task-appropriate. The easiest form of A/B testing is to let evaluators
identify whether an image is real or fake. Another popular method
is the Mean Opinion Score (MOS). Here, evaluators rate images on a
Likert scale based on criteria like realism or quality. However, man-
ual evaluation is not only useful for assessing the quality or consis-
tency of generated data. Also, it can be used to assess a variety of
different characteristics that are specific to certain use-cases or scenar-
ios. Here, user studies are often the measure of choice. For example,
when evaluating explanation systems that are based on generative AI,
we could use such user studies to evaluate if generated explanations
are actually helping users to understand an AI system. In this thesis,
we mostly use generative systems for specific purposes that go be-
yond generating high-quality data. As such, we mostly use this form
of evaluation - we conduct user studies to evaluate if our systems
actually do what we want them to do.
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2.7 advanced gan architectures

While Vanilla GANs introduced an effective framework for genera-
tive modeling, they exhibit limitations when applied to more complex
tasks, particularly in handling high-dimensional data like large, de-
tailed images. The basic architecture lacks scalability and struggles to
produce realistic results at higher resolutions. Additionally, without
advanced mechanisms for feature extraction, such as convolutional
layers, the generated outputs often fail to capture fine details and tex-
tures, resulting in lower-quality and less convincing outputs. Because
of that, more complex architectures have been proposed in the past.
In the following sections, we will briefly introduce the most impor-
tant architectural milestones.

2.7.1 Deep Convolutional GANs

One of the first extensions that were made to Goodfellow’s original
GANs was the addition of convolutional layers to the architecture. By
doing so, more complex feature maps could be learned, enabling to
understand and handle more complex datasets. However, as we want
to generate data, convolutional layers (e.g., dimensionality reduction)
is not enough - at some point we also need to increase our dimen-
sions again in order to produce the desired outputs. Deep Convolu-
tional GANs (DCGANs), an architecture introduced by Radford, Metz,
and Chintala (2015), do that by including transposed convolutional lay-
ers. Transposed convolution, also referred to as deconvolution, is a
fundamental operation that enables DCGANs the generation of high-
resolution outputs from lower-dimensional inputs. Despite the term
deconvolution, this operation does not reverse the mathematical pro-
cess of convolution. Instead, it performs a learnable upsampling. Its
primary role is to progressively increase the spatial dimensions of
feature maps in the generator, transforming a low-dimensional noise
vector into a high-resolution image.

To understand transposed convolution, it is helpful to compare it
to standard convolution. In standard convolution, the spatial dimen-
sions of the input are often reduced through the application of a ker-
nel that slides across the feature map. For an input of size Hin ×Win,
the output size after applying a kernel of size k× k, with stride s and
padding p, is given by:

Hout =
Hin − k+ 2p

s
+ 1, (6)

and similarly for the width Wout. Transposed convolution, in con-
trast, increases the spatial dimensions of the input. It introduces gaps
(zero-padding) between the elements of the input feature map and
then applies a kernel, filling the expanded grid with new values based
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Figure 3: Transposed convolution with a stride of 2.
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Figure 4: A schematic overview of the DCGAN generator. The numbers refer to the dimensions of the
feature maps.

on learnable weights. The output size of a transposed convolution is
calculated as:

Hout = s(Hin − 1) + k− 2p, (7)

and similarly for the width, where s is the stride, k is the kernel
size, and p is the padding.

Mathematically, transposed convolution can be represented as a
matrix operation. Convolution is a linear transformation, expressed
as y = Wx, where W is the convolutional kernel and x is the in-
put feature vector. Transposed convolution applies the transpose of
this matrix, W⊤, to map the lower-dimensional y back to the higher-
dimensional space of x:

x ′ = W⊤y. (8)

However, it is important to note that transposed convolution does
not invert convolution in the sense of reconstructing the original in-
put x. Instead, it creates a new learned representation with higher
resolution, guided by the structure of W⊤. Figure 3 illustrates the
process of transposed convolution.

DCGANs extend the Vanilla GAN framework by incorporating con-
volutional and such transposed convolutional layers. By replacing
fully connected layers with convolutional and transposed convolu-
tional layers, DCGANs allow for the generation of high-quality im-
ages with improved stability and scalability.

The generator in DCGAN (see Figure 4) takes as input a noise
vector z ∼ N(0, 1) or z ∼ U(−1, 1), sampled from a latent space.
This vector is first transformed into a dense feature map via a fully
connected layer and reshaped into a low-resolution tensor, such as
4 × 4 × nfeatures, where nfeatures represents the depth of the feature
map. The generator progressively upsamples this tensor using trans-
posed convolutional layers. Each transposed convolution layer ap-
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Figure 5: A schematic overview of the DCGAN discriminator. The numbers refer to the dimensions of
the feature maps.

plies a learnable filter W to the input feature map X, defined mathe-
matically as:

Yi,j =
∑
m,n

Xm,n ·W(i−m),(j−n), (9)

where Y represents the upsampled feature map, and (i, j) and
(m,n) are spatial indices. These operations increase the spatial reso-
lution at each layer. Batch normalization is defined as:

BN(X) =
X − µ√
σ2 + ϵ

, (10)

where µ and σ2 are the mean and variance of the mini-batch. It
is applied after each transposed convolution to stabilize training by
normalizing feature maps. Rectified Linear Unit (ReLU) activation
ReLU(x) = max(0, x) is used for all layers except the output layer,
which employs the tanh activation tanh(x) = ex−e−x

ex+e−x to scale outputs
to the range [−1, 1], aligning with the normalized range of the training
images.

The discriminator in DCGAN (see Figure 5) is a standard convolu-
tional neural network that takes an image as input and classifies it
as real or fake. The discriminator uses strided convolutions for down-
sampling, replacing traditional pooling layers, which allows the net-
work to learn its own spatial hierarchy. Leaky Rectified Linear Unit
(Leaky ReLU) activation is applied to all layers, defined as:

LeakyReLU(x) =

x, x ⩾ 0,

αx, x < 0,
(11)

where α is a small positive slope for negative values (e.g., 0.2).
Batch normalization is also used to stabilize feature maps, and the
final layer employs a sigmoid activation σ(x) = 1

1+e−x to output a
probability score indicating the likelihood that the input image is real.
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Figure 6: A schematic overview of ProGAN.

The loss functions in DCGAN are derived from the original GAN
formulation - the discriminator still aims to maximize its ability to
distinguish real images x ∼ pdata from generated images x̂ = G(z),
while the generator minimizes the discriminator’s ability to distin-
guish them.

Note that - similarly to Vanilla GANs - there is not one single DC-
GAN architecture. DCGAN rather refers to the concept of using the
mechanisms of convolution and transposed convolution. In this the-
sis, that concept was used in nearly all of the introduced technical
approaches - even if the term DCGAN is not explicitly mentioned.

2.7.2 Progressive Growing of GANs

Progressive Growing of GANs (ProGAN) is an advanced generative
adversarial network architecture introduced by Karras, Aila, et al.
(2017). Conventional GANs - like Goodfellow’s Vanilla GAN, and also
DCGANs - attempt to train the generator and discriminator at the tar-
get resolution from the beginning. Contrary to that, ProGAN starts to
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learn low resolution images first. Then, during training, it gradually
increases the resolution by adding layers to both the generator and
discriminator. Therefore, at the beginning of the training, the model
learns to capture the overall structures of the data - in later stages,
the learned details become finer and finer.

The architecture of ProGAN (see Figure 6) starts with a minimal
network that generates images at a low resolution, such as 4×4 pixels.
New convolutional layers are then gradually added during training
- to both the generator and discriminator. Those newly added layers
incrementally increase the resolution of the generated images to 8× 8,
16× 16, and so on, until the desired resolution is reached.

At each resolution stage, the generator uses transposed convolu-
tions to upsample the feature maps, while the discriminator applies
strided convolutions to downsample the input. At each stage in the
process, the outputs of the newly added layers are blended with
the existing network outputs. In order to avoid abrupt changes (that
could lead to mode collapse), this happens over a transition period
(i.e., ProGAN uses a fade-in mechanism). That transition period can
be formalized as follows:

Xoutput = α · Xnew + (1−α) · Xold.

Here, α ∈ [0, 1] is used to weight the influence of new new versus old
resolution stages.

Generally, the training in ProGAN follows the standard GAN objec-
tive. The training at each resolution proceeds until the generator and
discriminator reach a stable adversarial balance. After that balance is
achieved, the next resolution stage starts.

2.8 controlling a gan’s output

The concepts explained in the previous sections are the foundation of
GANs. Using them allows the synthesis of new data that never has
been seen before. However, these methods largely focus on improving
the quality and diversity of the generated outputs in a non-controlled
way. Once the networks are trained, the user has no possibility to steer
certain characteristics of the generated content. In their basic form,
GANs generate samples from a latent space, where a noise vector z is
randomly sampled from a predefined distribution, such as N(0, 1) or
U(−1, 1). While this complete randomness ensures that the results are
diverse, it also leads to the outputs being completely unpredictable.
Therefore, traditional GANs are unsuitable for applications where
specific attributes of the output need to be controlled. To address this,
mechanisms are required to steer the output of GANs toward desired
attributes or features. The most important ones will be explained in
the following sections.
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2.8.1 Disentanglement and Latent Space Manipulation

While GANs are powerful in generating realistic samples, the relation-
ship between the dimensions of z and the attributes of x (e.g., think
of characteristics like age or gender when generating face images)
is typically entangled, meaning changes in z can affect multiple at-
tributes simultaneously. To address this, various works have focused
on disentangling the latent space to enable interpretable and control-
lable generation (X. Chen et al., 2016; Y. Shen, C. Yang, et al., 2020;
Härkönen et al., 2020).

Disentanglement in the context of GANs refers to the alignment of
specific latent dimensions or directions with distinct attributes in the
generated data. This enables precise control over the output by ma-
nipulating the latent space.

For instance, in InfoGAN (X. Chen et al., 2016), mutual information
is used to encourage interpretable latent representations by maximiz-
ing the shared information between a subset of latent variables (c)
and the generated data (x). To make this optimization tractable, a
mutual information term I(c; x) is approximated using a variational
lower bound, which introduces an auxiliary distribution Q(c|x) to es-
timate the posterior P(c|x). This encourages the generator to encode
meaningful and interpretable information about c in the generated
output G(z). By maximizing mutual information between c and the
generated data, the model ensures that c controls specific, disentan-
gled features in the output. For example, c1 might influence age, while
c2 might control gender in a generative model for facial images.

Another approach to disentanglement involves identifying inter-
pretable directions in the latent space post hoc using techniques like
Principal Component Analysis (PCA) or linear regression. For exam-
ple, GANSpace (Härkönen et al., 2020) applies PCA to the intermedi-
ate feature spaces of pre-trained GANs, discovering directions that
control interpretable attributes such as age or pose in face images.

Latent space manipulation is further refined in works like Interface-
GAN (Y. Shen, C. Yang, et al., 2020), which identifies hyperplanes
in the latent space corresponding to binary attributes (e.g., smiling vs.
not smiling). By training linear classifiers on latent vectors paired with
attribute labels, directions vk in the latent space can be determined
for specific attributes. Manipulation is achieved by moving the latent
vector z along these directions:

z ′ = z+αvk,

where α controls the magnitude of change in the attribute.
The disentanglement and control of latent spaces can be evaluated

using metrics like disentanglement scores (Eastwood and Williams,
2018), which measure how well individual latent variables indepen-
dently control distinct attributes.



2.8 controlling a gan’s output 35

Figure 7: A schematic overview of the Conditional GAN architecture.

2.8.2 Conditional GAN

Conditional GANs (cGANs) are an extension of GANs that incorpo-
rate additional information (i.e., the condition), to guide the generation
process. Introduced by Mirza and Osindero (2014), cGANs allows the
generator and discriminator to condition their operations on an addi-
tional variable y. The primary objective of cGANs is to generate data
that aligns with the given condition, enabling targeted and controlled
synthesis.

In a cGAN, the generator G(z|y) takes as input both the noise vec-
tor z ∼ pz and the condition y, and maps these to the data space. Si-
multaneously, the discriminator D(x|y) evaluates the likelihood that
a given sample x is real, considering the condition y. The cGAN ob-
jective function modifies the standard GAN loss to incorporate this
conditioning, becoming:

min
G

max
D

Ex∼pdata [logD(x|y)] + Ez∼pz [log(1−D(G(z|y)|y))].

This formulation enforces that the generated data G(z|y) is not only
realistic but also aligned with the given condition y. The condition y

can be integrated into the cGAN architecture in several ways. One
straightforward method, as proposed in the original cGAN paper
(Mirza and Osindero, 2014), is to concatenate y with the input noise z

for the generator and with the input data x for the discriminator. For
the generator, this means using an augmented input z ′ = [z,y]. Sim-
ilarly, for the discriminator, x ′ = [x,y], ensuring that the condition y

is explicitly included. A schematic overview of the Conditional GAN
architecture is shown in Figure 7.

If y is high-dimensional or categorical, it can be embedded into
a lower-dimensional vector space ey = Embedding(y) before being
concatenated, as demonstrated in text-to-image synthesis models like
those by Reed et al. (2016).

Also, more sophisticated methods have been developed to incor-
porate y into the input space. For example, in the Auxiliary Classifier
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GAN (ACGAN) proposed by Odena, Olah, and Shlens (2017), the dis-
criminator is equipped with an auxiliary classifier C(x) to predict the
condition y. This introduces a classification loss in addition to the
standard adversarial loss. Here, the classification loss encourages the
generator to produce outputs that are consistent with the given con-
dition y, as verified by the discriminator’s auxiliary classifier.

2.8.3 StyleGAN

StyleGAN completely rethought the standard GAN architecture. It in-
troduced a style-based generator that separates the latent space from
the image synthesis process. This approach enables control over the
generation process by disentangling features such as pose, texture,
and color (Karras, Laine, and Aila, 2018). Therefore, it is closely re-
lated to the concepts already introduced in Section 2.8.1. The key
difference to the Vanilla GAN architecture is the handling of the la-
tent vector z. That latent vector is not directly mapped to the output.
Instead, StyleGAN transforms z into an intermediate latent vector w

using a mapping network:

w = f(z), z ∼ N(0, I).

The vector w resides in a disentangled latent space W, which allows
the manipulation of features (Karras, Laine, and Aila, 2018).

To incorporate w into the generation process, StyleGAN uses Adap-
tive Instance Normalization (AdaIN) (X. Huang and Belongie, 2017).
AdaIN normalizes each feature map xi and re-scales it based on w:

AdaIN(xi,y) = ys,i ·
xi − µ(xi)

σ(xi)
+ yb,i,

where: - xi: The i-th feature map in the generator. - µ(xi) and σ(xi):
The mean and standard deviation of the feature map xi, respectively.
- ys,i and yb,i: Learnable affine transformations derived from w, rep-
resenting the scale and bias for each feature map.

This ensures that w can steer attributes (e.g., color or texture) with-
out messing with the underlying spatial structure (X. Huang and Be-
longie, 2017; Karras, Laine, and Aila, 2018). For example, early layers
in the generator affect global attributes such as pose and shape, while
later layers influence fine details like skin texture or hair strands.

To further improve the disentanglement, StyleGAN introduces style
mixing regularization. Here, two different latent codes w1 and w2 are
randomly applied to different layers of the generator during training:

wmixed = [w1, . . . ,wk,w2, . . . ,wL],

where L is the total number of layers, and k is a randomly chosen split
point (Karras, Laine, and Aila, 2018). Doing so prevents the generator
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Figure 8: A schematic overview of StyleGAN. Image content adapted from (Karras, Laine, and Aila,
2018).
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from relying on correlations between styles at different layers - which
in turn makes sure that each layer independently contributes to the
image.

Another mechanism that is incorporated by StyleGAN is the so-
called noise injection. Noise Injection introduces random variations to
the feature maps at each layer by adding Gaussian noise N to the fea-
ture maps. This stochastic element enables the generation of unique
details, such as individual freckles, hair strands, or background pat-
terns, while the style vector w determines the overall appearance.

A schematic overview of the StyleGAN architecture is shown in
Figure 8.

2.8.3.1 StyleGAN2

StyleGAN achieved very good results in image synthesis. However,
there were also limitations here - for example, spatial misalignments
caused by AdaIN led to artifacts in the generated images. These prob-
lems were addressed in StyleGAN2. StyleGAN2 improved the origi-
nal architecture by replacing AdaIN with demodulation, a mechanism
that normalizes convolutional weights instead of feature maps. By
ensuring consistent feature sizes during convolution, demodulation
prevents distortions (Karras, Laine, Aittala, et al., 2020). The modula-
tion mechanism can be formulated as follows:

ŵi,j =
wi,j√∑
kw

2
k,j + ϵ

,

where wi,j represents the weights applied to the j-th feature map.
This change resolved the artifact issues caused by AdaIN and ensured
that features at different spatial resolutions remained aligned (Karras,
Laine, Aittala, et al., 2020).

Additionally, StyleGAN2 introduced path length regularization, a
mechanism to ensure smooth transitions in the latent space. It does
so by penalizing abrupt changes in the output when small changes
are made to w. Therefore, the generator is encouraged to maintain
consistent mappings between the latent space and the data space (Kar-
ras, Laine, Aittala, et al., 2020). Also, additional noise was integrated
into the synthesis process - instead of injecting noise only directly
into the feature maps, StyleGAN2 additionally incorporates noise in
a way that enhances fine details without disrupting the overall struc-
ture, which results in higher-quality images (Karras, Laine, Aittala,
et al., 2020).

2.8.3.2 StyleGAN-ADA

When training GANs, a big challenge is the dependency on large data
sets. With small datasets, the discriminator can become over-adapted
as it learns too easily to distinguish real from generated samples.
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StyleGAN-ADA (Adaptive Discriminator Augmentation) addresses
this problem by dynamically augmenting the inputs to the discrimi-
nator during training (Karras, Aittala, Hellsten, et al., 2020).

Enhancements, such as flips, rotations and color variations, are ap-
plied to both real and generated images before they are passed to the
discriminator. These augmentations ensure that the discriminator fo-
cuses on meaningful features rather than adapting too closely to the
training patterns.

By dynamically adjusting the augmentation probability, StyleGAN-
ADA enables robust training even with small datasets (Karras, Aittala,
Hellsten, et al., 2020).

2.8.3.3 StyleGAN3

The focus of StyleGAN3, the newest generation of StyleGAN, is to
resolve aliasing artifacts and improve geometric consistency in the
generated images. Those aliasing artifacts occur when high-frequency
components are improperly sampled, which in turn leads to distor-
tions in features like edges or textures. To prevent this, StyleGAN3

introduced the so-called alias-free architecture. This means that it uses
band-limited filters and modified convolutional layers. Through that
technique, feature alignment is maintained across resolutions (Karras,
Aittala, Laine, et al., 2021).

Additionally, StyleGAN3 puts focus on equivariance. Here, equiv-
ariance refers to the desire that transformations applied in the input
space (e.g., a rotation) should be reflected in the output image with-
out introducing distortions. Through these mechanisms, StyleGAN3

is particularly suited for tasks requiring geometric precision.

2.9 style transfer networks

Until now, we have focused on techniques that enable GANs to gen-
erate entirely new data - such as realistic images - by sampling from
a latent space. These methods aim to generate new data, but there are
many situations where the task at hand is not to generate something
new, but rather to modify existing data. In particular, we often want
to change the style or visual appearance of an image while preserv-
ing its underlying structure or content. This is where Style Transfer
Networks come into play.

Style transfer addresses the problem of altering an image’s style in
a way that it resembles the style of another image - or the style of a
whole set of images. For example, consider taking a photograph and
rendering it in the painting style of a specific artist, like van Gogh
or Monet. The content of the photograph - the layout, shapes, and
objects - remains intact, but the appearance (e.g., colors, textures or
brushstrokes) is transformed to match the desired style.
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Figure 9: A schematic, simplified overview of an encoder-decoder versus U-Net.

Traditional style transfer techniques rely on optimization-based ap-
proaches that are computationally expensive, requiring multiple iter-
ations to blend content and style (Gatys, 2015; C. Li and Wand, 2016;
Luan et al., 2017). These methods, while effective, are unsuitable for
real-time or large-scale applications. Style Transfer Networks, partic-
ularly those based on GANs, ease this process by learning to apply
style transformations in a single forward pass, making the process
both faster and more flexible.

In the following sections, we will introduce some specific GAN-
based approaches to Style Transfer that turned out to be the most
influential in that particular research field.

2.9.1 Pix2Pix

One of those approaches was presented by Isola et al. (2017). Their
framework, which they called Pix2Pix, is based on cGANs. In con-
trast to the cGANs that we explained previously, where the genera-
tion process is conditioned on categorical labels or low-dimensional
auxiliary information, Pix2Pix conditions the synthesis process on in-
put images (see Figure 10). This formulation allows for the learning
of complex mappings between two image domains, such as convert-
ing grayscale images to color, translating sketches to photorealistic
renderings, or generating realistic images from segmentation maps.

The generator in Pix2Pix employs a U-Net architecture (Ron-
neberger, P. Fischer, and Brox, 2015), an architecture similar to an
encoder-decoder structure, but with skip connections that link each
layer in the encoder to its corresponding layer in the decoder (see
Figure 9). The encoder progressively down-samples the input image
to extract hierarchical features, while the decoder up-samples these
features to reconstruct the output image. The skip connections ensure
that high-resolution details from the input image are preserved and
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Figure 10: A schematic illustration of the Pix2Pix architecture’s generator (top) and discriminator (bot-
tom) training process (see (Isola et al., 2017)).

directly incorporated into the output, reducing the loss of spatial
information inherent in the down-sampling process.

The discriminator in Pix2Pix, referred to as PatchGAN, evaluates
the realism of a generated image not globally but at the scale of local
patches (e.g., 70× 70 pixels). This approach allows the discriminator
to focus on fine-grained details, such as textures and local patterns,
while maintaining computational efficiency. The PatchGAN discrim-
inator predicts whether each patch in the image is real or generated.
By doing so, it enforces local consistency in the generated output.

The training objective of Pix2Pix combines two loss functions: the
standard adversarial loss and a pixel-wise reconstruction loss. Here,
the reconstruction loss, formulated as an L1 loss, ensures that the
generated image G(x, z) closely matches the ground truth image y:

LL1
(G) = Ex,y,z[∥y−G(x, z)∥1]

The total objective function combines these two terms with a
weighting factor λ, balancing realism and fidelity:

G∗ = arg min
G

max
D

LGAN(G,D) + λLL1
(G)

During training, the discriminator D is still optimized to distin-
guish between real image pairs (x,y) and generated pairs (x,G(x, z)),
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Figure 11: A very simplified schematic overview of the CycleGAN architecture.

while the generator G is optimized to minimize the combined ad-
versarial and reconstruction losses. Importantly, Pix2Pix is limited to
tasks where paired input-output image datasets are available, as it
relies on the explicit alignment between the domains to learn the
mapping.

2.9.2 CycleGAN

In many real-world scenarios, obtaining paired datasets for super-
vised image-to-image translation tasks is either impractical or impos-
sible. For example, consider the task of transforming images of horses
to images of zebras - real data pairs are simply not available here, as
there has never been a real horse magically turning into a zebra. As
such, a method is needed that can handle the task of unpaired Image-
to-Image translation. This means, that instead of learning the relation
between two styles (or domains) by looking at specific pairs of data,
such a method should learn that relation by looking at whole datasets,
where each dataset contains only data of one domain. CycleGAN, in-
troduced by Zhu et al. (2017), does this by introducing the concept
of cycle consistency that ensures structural coherence between original
and translated images.

CycleGAN consists of two generators, G : X → Y and F : Y → X, and
two discriminators, DX and DY . The generator G is trained to map
images from domain X to domain Y such that the generated images
G(x) are indistinguishable from real images in domain Y, as judged
by the discriminator DY . Similarly, F is trained to map images from
domain Y to domain X, with the discriminator DX ensuring that F(y)
resembles real images in domain X. The adversarial loss for G and DY
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ensures that G(x) is indistinguishable from real Y, and is, similarly to
the original GAN adversarial loss, expressed as:

LGAN(G,DY ,X, Y) = Ey∼pdata(y)[logDY(y)]

+ Ex∼pdata(x)[log(1−DY(G(x)))].

Analogously, the adversarial loss for F and DX is defined as:

LGAN(F,DX, Y,X) = Ex∼pdata(x)[logDX(x)]

+ Ey∼pdata(y)[log(1−DX(F(y)))].

Since paired data is not available, CycleGAN introduces the cycle
consistency loss to ensure that the learned mappings are meaningful
and reversible. The idea is that if an image x ∈ X is transformed
to domain Y using G(x) and then mapped back to domain X using
F(G(x)), the resulting image should closely match the original x. This
is expressed as:

Lcycle(G, F) = Ex∼pdata(x)[∥F(G(x)) − x∥1]
+ Ey∼pdata(y)[∥G(F(y)) − y∥1].

This loss enforces that F(G(x)) ≈ x and G(F(y)) ≈ y. By minimizing
this loss, the model avoids generating arbitrary mappings that would
discard critical information about the input images.

To further stabilize training and ensure that the transformations do
not alter images unnecessarily, the identity loss is introduced. The
identity loss ensures that if an image already belongs to the target
domain, applying the generator should leave it unchanged. For ex-
ample, if x ∈ X is input to F (which maps Y → X), the output F(x)

should be close to x. This loss is defined as:

Lidentity(G, F) = Ey∼pdata(y)[∥G(y)−y∥1]+Ex∼pdata(x)[∥F(x)−x∥1].

The total objective of CycleGAN is a weighted combination of the
adversarial loss, cycle consistency loss, and identity loss. As such, the
full objective is:

L(G, F,DX,DY) = LGAN(G,DY ,X, Y) +LGAN(F,DX, Y,X)

+ λcycleLcycle(G, F) + λidentityLidentity(G, F),

where λcycle and λidentity control the relative importance of the
cycle consistency and identity losses. During training, the generators
G and F are optimized to minimize the combined loss, while the dis-
criminators DX and DY are trained to maximize their ability to distin-
guish real images from generated ones. Figure 11 shows an overview
of the CycleGAN architecture.
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Figure 12: A schematic overview of the StarGAN training process. (1) Additionally to classyfing real vs
fake, the discriminator learns a domain classification. (2) The generator generates an image
based on an input image and a target domain label. (3) That generated image, together
with the original domain (i.e., the domain that the input image stemmed from) gets fed
into the generator to produce a reconstructed version of the input. (4) Additionally to that
reconstruction loss, the generator tries to generate images that the discriminator thinks are
real and belong to the desired target class. Image content adapted from (Y. Choi et al., 2018).

2.9.3 StarGAN

Although CycleGAN has demonstrated its applicability in various
scenarios, it is inherently limited to tasks involving two domains, re-
quiring separate models for every pair of domains. For tasks involv-
ing multiple domains, the approach becomes computationally inef-
ficient and challenging to scale. Therefore, StarGAN was introduced
by Y. Choi et al. (2018) as a framework for unified and scalable multi-
domain image-to-image translation. StarGAN extends the CycleGAN
architecture by allowing translation across multiple domains with a
single model, rather than training separate models for each domain
pair. StarGAN achieves this by conditioning the generator and dis-
criminator on domain labels, enabling the model to generalize across
all domains. The key idea is to incorporate domain-specific informa-
tion into the translation process while ensuring that the transforma-
tions are consistent and reversible across domains.

StarGAN operates with a single generator G, which maps an input
image x from domain dx to an output image in a target domain dy,
and a single discriminator D, which classifies whether an image is
real or fake and predicts its domain label. By conditioning both the
generator and discriminator on domain labels, StarGAN generalizes
the translation process to support multiple domains efficiently. For
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example, G(x,dy) generates an image from domain dx that resembles
images in domain dy.

The adversarial loss ensures that the generator produces realistic
images indistinguishable from real images in the target domain. The
discriminator D classifies images as real or fake while also predicting
their domain labels. The adversarial loss is defined as:

Ladv = Ex∼pdata(x)[logDreal(x)]

+ Ex∼pdata(x),dy∼p(dy)[log(1−Dreal(G(x,dy)))].

Here, Dreal(x) is the discriminator’s probability of x being real.
The discriminator also predicts the domain labels of real and gener-

ated images. This is captured by the domain classification loss, which
ensures that: (i) the discriminator correctly predicts the domain labels
of real images, and (ii) the generator produces images whose domain
labels match the target domain.

The domain classification loss for real images is:

Lreal
cls = Ex∼pdata(x)[− logDcls(dx|x)],

where Dcls(dx|x) is the discriminator’s predicted probability of do-
main dx given real image x.

For generated images, the domain classification loss is:

Lfake
cls = Ex∼pdata(x),dy∼p(dy)[− logDcls(dy|G(x,dy))].

This term ensures that the generator G(x,dy) generates images clas-
sified by D as belonging to the target domain dy.

To ensure the transformations are reversible and retain content,
StarGAN employs a reconstruction loss similar to CycleGAN’s cycle
consistency loss. If an image is transformed from its original domain
dx to a target domain dy and back, the reconstructed image should
resemble the original. This is expressed as:

Lreconstruction = Ex∼pdata(x),dy∼p(dy)[∥G(G(x,dy),dx) − x∥1].

The full objective combines the adversarial, domain classification,
and reconstruction losses. The overall loss is:

L = Ladv+λrealcls Lreal
cls +λfakecls Lfake

cls +λreconstructionLreconstruction,

where λrealcls , λfakecls , and λreconstruction are weights balancing the
importance of the respective loss components.

Figure 12 depicts the StarGAN training process.

2.9.4 StyleGAN Projection

In Section 2.8.3, StyleGAN was introduced as a State-of-the-Art
method for generating new image data. However, StyleGAN also
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includes a projection mechanism that allows for style conversion.
Conceptually, that mechanism differs substantially from frameworks
like Pix2Pix, CycleGAN, and StarGAN. While those models focus
on learning direct mappings between domains, either with paired
data (Pix2Pix) or unpaired data (CycleGAN, StarGAN), StyleGAN
projection utilizes a pre-trained StyleGAN generator - and embeds
images into its latent space for manipulation. Unlike those other
domain-to-domain translation frameworks, which are designed to
transform images directly from one style or domain to another, Style-
GAN projection works by finding an image’s latent representation
within the generator’s latent space, allowing for fine-grained style
modifications. The method for using StyleGAN projection for im-
age editing, as explained below, was introduced by Abdal, Qin, and
Wonka (2019). This process involves finding a latent code w such that
the generated image G(w) closely reconstructs the input image I (i.e.,
the image that should be altered). Projection (i.e., finding the latent
code of the input image) involves optimizing the latent code w such
that:

w∗ = arg min
w

L(I,G(w)),

where L is a loss function designed to measure the similarity be-
tween I and G(w).

The loss function typically consists of two components. The first
component, the so-called Pixel-wise Loss, measures the direct pixel-
by-pixel difference between the input image and the reconstructed
image:

Lpixel = ∥I−G(w)∥2.

The second component, the Perceptual Loss, accounts for percep-
tual differences that the pixel-wise loss may overlook. Features are
extracted from a pre-trained network ϕ (e.g., VGG (Simonyan and
Zisserman, 2014)) and compared between the input and the recon-
struction:

Lperceptual = ∥ϕ(I) −ϕ(G(w))∥2.

The combined loss function is:

L = λpixelLpixel + λperceptualLperceptual,

where λpixel and λperceptual are weighting factors that balance the con-
tributions of each loss term .

The optimization process minimizes L iteratively, often using gra-
dient descent-based methods like Adam. The result is a latent code
w∗ that closely reconstructs the input image.

Once the input image is projected into the latent space, style con-
version becomes a matter of manipulating the latent code w∗. Style-
GAN’s disentangled latent space allows specific edits to attributes
such as texture, color, or structure while preserving the underlying
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Figure 13: Advantages and disadvantages of VAEs, Diffusion Models and GANs.

content of the image. The edited latent code w ′ produces the altered
image:

I ′ = G(w ′).

2.10 choosing the right model

In the preceding sections, we have layed the theoretical foundation
for understanding the state-of-the-art in current GAN research - and
thus, the remainder of this thesis. However, if it comes to choosing
the right model for a specific task at hand, many factors have to be
considered. Those considerations do not even start with the decision
of a specific GAN model - first and foremost, it isn’t even trivial to
choose a GAN model at all. The main “competitiors” of GANs are
arguably Variational Autoencoders (VAE) (Kingma, 2013) and Diffusion
Models (Ho, A. Jain, and Abbeel, 2020). Although explaining both
of them in detail would go beyond the scope of this work, we do
not want to leave the decision between GANs, VAEs and Diffusion
Models undiscussed. Very generally speaking, there are three main
requirements to a generative model:

• It should yield results of high quality (Quality).

• When trained, results should be produced in a reasonable time
(Efficiency).

• The model should be trainable in a stable way (Stability).

Without going into too much detail, we would like to emphasize
that none of the three popular generative approaches sufficiently ful-
fills all of these three requirements at the same time (see Figure 13).
While Diffusion Models can be trained in a very stable way and pro-
duce results that are of very high quality, it takes quite a long time
to produce those outputs. VAEs - once the quite stable training has
completed - are quite fast, but the outcomes tend to be blurry (in the
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image domain) or noisy (in the audio domain). GANs, on the other
hand, produce results of high quality, and they (again, once trained)
do that in a very fast way. However, as discussed in the preceding
sections, they have many difficulties (e.g., mode collapse) that make
the training rather unstable. Although mechanisms exist that counter
those drawbacks to a certain degree, they still are not completely re-
solved.

As such, for a specific task, a decision must be made as to which
requirement is most likely to be neglected: GANs are mostly appro-
priate for tasks where data of high quality is to be produced fast.

After deciding for a category of models - in this thesis, we fo-
cus exclusively on GANs - the specific architecture has to be chosen.
Here, again, it depends on the specific use-case. For the main parts of
this work’s implementations, we used fairly “simple” architectures as
GAN backbone models. More sophisticated architectures (e.g., Style-
GANs (Karras, Laine, and Aila, 2018) or Progressive Growing GANs
(Karras, Aila, et al., 2017)) - due to their complexity - require longer
training and (possibly) more hyperparameter tuning. As such, it is
rather difficult to train them appropriately with limited resources
- and for this thesis, most models were trained with such limited
resources. For instance, we mostly used consumer-level GPUs (e.g.,
Nvidia GTX 1060 Ti, Nvidia RTX 2070, Nvidia Titan X, etc.) for train-
ing. Also, the more complex the architecture, the more difficult it be-
comes to correctly assess which parts of the results can be attributed
to the newly introduced concepts, and which parts result from spe-
cific model configuration choices. Therefore, it should be noted, that
the results of this work mostly are to be seen as proof of concept of
the introduced ideas. In a productive environment - with better hard-
ware and more resources available - all the technical contributions of
this work could easily be applied to state-of-the-art architectures to
yield even better quality.
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R O B U S T N E S S

The key requirement for everything that we want to use
AI for is trivial: The underlying AI model should work
in a robust way. While this statement might be obvious,
achieving that goal is difficult. There are a lot of factors that
contribute to the robustness of DL-based AI approaches,
be it model architectures, hyperparameters, hardware re-
sources, and many others. However, when we talk specif-
ically about AI systems that use mechanisms of Deep
Learning, one of the most critical factors is the available
training data. When we want to train such a model for a
specific use-case, we often need a huge amount of data -
and almost as often, we don’t have that data. A common
approach to dealing with that is Data Augmentation. That
term refers to all kinds of techniques that augment exist-
ing datasets with new data in order to get a bigger training
dataset that makes the training more robust and cover a
larger portion of the problem domain distribution. There
are a lot of established techniques for data augmentation.
Many of them heavily contribute to making the training
process more robust. However, as they often are based
on simple data transformations, they lack in actually ex-
panding the portion of the training domain that is covered
by the training dataset, i.e., they do not generate training
data that holds new information for the task at hand. Here,
generative AI can help - and in the following chapter we
will show how. Therefore, we will first introduce the basic
concepts that are commonly used to augment data. Here,
we will confine ourselves to image and audio data, as
our research mainly revolved around those two domains.
Then, we will propose two approaches on how GANs
can be used to artificially increase datasets and evaluate
if they are able to overcome the limitations of traditional
data augmentation techniques.





3
T R A D I T I O N A L D ATA A U G M E N TAT I O N

3.1 image domain

In the image domain, traditional data augmentation mostly refers to
simple transformation algorithms. Note that those algorithms primar-
ily aim to enhance a dataset in a way that it enables the training of
more robust models. Robustness, in this context, means that a model
is able to maintain its performance even if the real-world data (i.e., the
data that the model sees during inference) deviates from the training
data. Deviations might be different orientations of objects, different
illuminations, or other factors that slightly change in comparison to
the information contained in the training data. In the following, we
will go through the most popular techniques. Of course, there are
many more - as such, for a more comprehensive overview on data
augmentation techniques for the image domain, we refer to the sur-
vey by Shorten and Khoshgoftaar (2019).

3.1.1 Flipping

Figure 14: Horizontal and vertical flipping.

Flipping an image simply refers to mirroring it. It can be performed
either horizontally or vertically. Horizontal flipping comes in handy
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for tasks like object segmentation or recognition. For example, imag-
ine an image of an urban scenery - cars, houses, trees, etc. - if such
a scenery is flipped horizontally, it still might make sense. As such,
adding those images to the dataset can extend the robustness of mod-
els trained on respective datasets. Vertical flipping, on the other hand,
is used more rarely. If you think of the urban scenery again, you can
probably imagine why vertical flipping might not produce the most
plausible images. In Figure 14, the process of flipping is depicted.

3.1.2 Rotation

Figure 15: Rotation.

Often, objects in a computer vision task can have multiple orienta-
tions. For example, when analyzing an image of a human face with
respect to certain traits like emotions, it should be irrelevant for a
trained model whether the head is straigt or slightly tilted. In order to
get robust against such rotations, we can simply add rotated versions
of the existing training data to the training dataset (see Figure 15).

3.1.3 Cropping

Figure 16: Cropping with subsequent upscaling.

A common technique for data augmentation is Cropping. Here, a
sub-image is extracted from the original image. That sub-image is
usually drawn from the exact center of the original image (i.e., center
cropping), or from a random position (i.e., random cropping). Every
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pixel that is not part of that sub-image gets "thrown away". Often,
after cropping, the image gets re-scaled (i.e., upscaled) to the origi-
nal size (see Figure 16). It might appear counter-intuitive that drop-
ping pixels is actually a means of data augmentation, as deletion and
augmentation usually reflect contradictory concepts. However, when
adding cropped data to a dataset, a machine learning model, for that
instances, is forced to extract all relevant data from just that tiny ex-
cerpt. As such, the model becomes more robust. It learns to cope with
data that does not contain all information - as it is often the case for
real-world data.

3.1.4 Color Jittering

Figure 17: Color jittering. Specifically, contrast was increased and saturation
decreased.

One important consideration in most computer vision tasks is illu-
mination. Although not changing the overall spatial structure, illumi-
nation has a big impact on the pixel value distribution of an image.
In order to become robust against those deviations, a training dataset
should be augmented with images where various illumination set-
tings are simulated. Here, techniques of Color Jittering come into play.
Color jittering refers to a whole category of algorithms that all alter
certain color characteristics of an image. For example, color jiterring
can include changing the brightness, contrast, hue or saturation of
an image. Augmenting images with these techniques comes close to
having multiple illumination setups in a dataset (see Figure 17).

3.1.5 Noise Injection

In real-world applications, data might be imperfect. As such, data
augmentation also strives for introducing imperfect data to the train-
ing dataset, so that the model learns to cope with flaws. A simple
but efficient method is to add noise to an image. This can be done
through various heuristics. Probably the most popular one is to sim-
ply add gaussian noise (see Figure 18). However, other techniques
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Figure 18: Noise injection with Gaussian Noise.

exist that are frequently used to simulate very specific imperfections.
For example, Salt and Pepper can be used to mimic defects in cam-
era sensors. In order to do so, some pixels are randomly replaced by
either white (=salt) or black (= pepper) pixels.

3.2 audio domain

When training machine learning models for the audio domain, data
augmentation is also frequently used. Similarly to the image domain,
traditional data augmentation here mostly makes use of rather sim-
ple techniques, which we will explain in the following. Note that
the following compilation is not complete - there are a lots of dif-
ferent techniques for audio data augmentation which are partially
very complex, and it would be impossible to cover all of them here.
For a more complete overview on existing techniques, we would like
to refer to Abayomi-Alli et al. (2022). Also, audio data augmentation
techniques have to be applied with care - not all methods can be used
for every use-case. Similarly to the image domain, where, for instance,
vertically flipping images might produce data that is impossible to
observe in reality, applying the wrong audio data augmentation tech-
niques can also result in samples that are not contributing to the task.

3.2.1 Slice and Shuffle

Slicing is a technique that addresses similar problems as Cropping
does for the image domain. Basically, it is the same approach of cut-
ting out a subset of a sample - just not in the 2D space (as for images),
but in the 1D audio space. Determining the size of the single slices,
however, can become less trivial: the slices can be created with a fixed
size, but they can also be chosen in a more sophisticated way. For ex-
ample, when working with speech, using a fixed size for cropping
would completely destroy the semantics of the spoken content. As
such, here, it might make sense to use single words or utterances as
slices. Often, in a subsequent step, those slices get shuffled - as such,
the audio sequence is rearranged. By doing so, temporal variations
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in the data sample are introduced, which again contributes to the
robustness of trained models.

3.2.2 Pitch Shift

Often, in the audio domain, we deal with problems that are invariant
to pitch. A simple example would be speech recognition - a specific
word, no matter if spoken by someone with a very high voice or
very low voice, should always be recognized as the same word. To
introduce pitch invariance into a dataset, increasing or decreasing
the shift of data points is a popular technique for data augmentation.
The pitch in an audio signal is reflected by the frequency. Just altering
the frequency, however, would not only change the pitch, but also the
length of the audio signal. As such, altering a pitch typically involves
a resampling and/or time stretching step in order to maintain the
sample length. However, there are also scenarios where augmenting
the data with varying pitch might not make sense. For example, think
of the training of a classifier that should learn to differentiate between
male and female voices. Here, the pitch is inherently important for the
classifier’s decision, as female voices (on average) have a higher pitch
than male voices (Oliveira, Gama, and Magalhães, 2021).

3.2.3 Phase Inversion

Audio signals can be thought of as a combination of multiple sinusoid
signals, which add up to new waveforms. What we actually hear is
the oscillation of those waveforms, as that oscillations are directly
carried over to the eardrum. The sinusoids that form the sound are
characterized not only by their amplitude and frequency, but also by
the phase. An inversed phase, i.e., mirroring the sample points on the
x axis, does not change the sound for us humans, as our eardrum only
processes the absolute differences in amplitude changes. Contrary,
for a machine learning model that relies on raw data, that makes a
difference, as that model basically just "sees" the raw values. As such,
augmenting datasets with phase inversion is commonly used.

3.2.4 Reverb

Reverb is a more complex technique for audio data augmentation.
The reasoning behind using it is that in the real world, depending on
the specific physical environment, sound is reflected in various man-
ners. However, mostly we want to be invariant against the environ-
ment of the sound source. As such, reverb is used for data augmenta-
tion in order to enable the simulation of different environments.
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3.2.5 Scaling & Warping

Scaling and Warping are two closely related concepts. They both can
be performed on either the magnitude or the frequency of audio
signals. While scaling refers to uniformly adjusting the amplitude
or frequency of a signal, warping adjusts those characteristics non-
uniformly. For example, time warping (i.e., non-uniformly changing
the signal frequency) might include warping only certain slices of an
audio signal with a subsequent speed adjustment of the whole sam-
ple. Magnitude sampling can include multiplicating a whole sample
with a cubic spline curve.

3.2.6 Noise Injection

Analogously to the image domain, noise injection can be used to arti-
ficially decrease a sample’s quality. In the audio domain, noise injec-
tion is mostly done by adding gaussian noise to a sample to simulate
data imperfections that might occur in real-world data.

3.3 data augmentation with gans

Contrary to traditional data augmentation, more recent approaches
do not follow the idea of altering existing data - they try to generate
completely new data. This means, they try to sample from a specific
data distribution instead of modifying data that already was avail-
able. Further, as described in Chapter 2, GANs seem to be a perfect
fit for generating new data. As such, it is not surprising that with the
advent of GANs, many researchers have tried to use them for data
augmentation (A. Mumuni and F. Mumuni, 2022; Frid-Adar et al.,
2018; Mariani et al., 2018). The basic idea of most works that exist in
that area is to train a GAN on the same dataset that will later be used
for training the machine learning model to solve a specific task (for
example, a classification or segmentation network). However, before
training that final model, the dataset is augmented by many more
sample points that are generated by the GAN. Although this might
sound very promising, there is one big drawback: Although new data
is generated, that data still stems from the same distribution as the
data that we had in the first place - as this is exactly what the GAN
was trained for. As such, in order to hold new information, we have
to trust in the GAN to be able to model other information that the
classification or segmentation model learns later on - and generally,
there is no reason to assume so. This leads to a distribution problem
- although we are capable of augmenting a dataset with new data,
we are not necessarily enhancing it with new information, because
we are still stuck in the same distribution. Because of that, we need
to find workarounds that allow us to use GANs while escaping the
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initial data distribution - enabling to generate actual new informa-
tion for a dataset. In the following chapters, we will introduce two
concepts (one for a classification problem in the audio domain, and
one for a segmentation problem in the image domain) that we de-
veloped. Those two approaches address exactly the aforementioned
distribution problem: we want to find ways to use GANs for data
augmentation that introduce new information to a dataset.





4
D ATA A U G M E N TAT I O N W I T H L AT E N T V E C T O R
E V O L U T I O N

Large parts of this chapter have already been published in the follow-
ing publication:

Mertes, S., Baird, A., Schiller, D., Schuller, B. W., & André,
E. (2020). An evolutionary-based generative approach for au-
dio data augmentation. In 2020 IEEE 22nd International Work-
shop on Multimedia Signal Processing (MMSP). (Mertes. et
al., 2020)

In this chapter, we introduce a novel two-step approach to address
the aforementioned problem of GANs not being able to generate new
information when using them for data augmentation. In the first step,
we utilize a GAN framework to create highly realistic audio data. In
the second step, we then apply an evolutionary algorithm to search
the input-space of the generative model for vectors that result in sam-
ples that have specific predefined characteristics. These characteristics
represent information that is lacking in the original source data of
the respective classes. The concrete feature values that shall be exhib-
ited by the new data are determined by analyzing samples that were
previously classified wrong. This way, the GAN is employed to only
generate training samples that are useful for a specific classification
task.

To evaluate our system, we tackle the problem of soundscape clas-
sification. Thus, we are building a system that is able to create new
audio samples of soundscapes in a controlled way to improve the
training of a Support Vector Machine (SVM) whose task is to differ-
entiate between different soundscapes.

4.1 related work

Multiple variants of GANs have been used previously to generate
highly realistic audio data (Donahue, McAuley, and Puckette, 2018;
Engel et al., 2019; Chandna et al., 2019). Further modifications, such
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as conditional GANs, enable the generation of audio data that ex-
hibits specific characteristics (e.g., (C. Y. Lee et al., 2018)). However,
these systems require labeled training data for each desired target
characteristic of the generated data. In return, this means that the
network needs to be trained from scratch each time a change in the
target properties of the data is required. Artificial data that was gen-
erated by GANs has been used for data augmentation predominantly
in the field of image processing (e.g., (Bowles et al., 2018; Mariani et
al., 2018)), but there is also recent work that makes use of GAN-based
data augmentation for acoustic scene classification (Madhu and Ku-
maraswamy, 2019; J. H. Yang, N. K. Kim, and H. K. Kim, 2018; Mun et
al., 2017) as well as emotional speech (Rizos et al., 2020; Baird, Amiri-
parian, and Schuller, 2019). Most of these approaches are not able
to generate the augmented data in a controlled manner, but rather
use the GANs to produce random new samples to enhance existing
datasets. As could be shown in the respective publications, such GAN
based augmentation techniques are a promising approach. However,
existing experiments in the audio domain did only operate on rather
big datasets and therefore leave open the question of whether uncon-
trolled data augmentation with GANs can also be applied to rather
small datasets.
A recent approach to address the controllability of GANs relies on
the application of evolutionary algorithms to search through the so-
lution space of GANs and find appropriate samples that match the
required characteristics, i.e., predefined feature values that shall be
exhibited. Thus, the randomness of the generated samples can be
overcome. This so called Latent Variable Evolution (LVE) has been suc-
cessfully employed for tasks like fingerprint-based biometric systems
(Bontrager et al., 2018), the creation of video games (Volz et al., 2018;
Giacomello, Lanzi, and Loiacono, 2019; Schrum et al., 2020) or facial
composite generation (Zaltron, Zurlo, and Risi, 2019). The ability to
generate samples in a targeted way makes LVE a promising approach
to enhance datasets with data that is actually meaningful for the re-
spective classification task. To the best of our knowledge, there is no
prior work that uses the principles of LVE for either raw audio or
even the task of data augmentation.

4.2 approach

Our proposed approach deals with the problem of augmenting raw
audio datasets in a controlled manner, using generative adversarial
networks in two steps. To this end, we generate artificial data samples
which exhibit characteristics that are underrepresented in the original
dataset. In the first step, we train a WaveGAN architecture to produce
new samples of a certain class using random noise vectors as input.
In the second step, we use an evolutionary algorithm to search the
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Figure 19: Overview of our approach. (1) A WaveGAN model is trained on our dataset. (2) An evolu-
tionary algorithm is used to find appropriate noise vectors to create new audio samples that
exhibit predefined characteristics. (3) Those new audio samples are collected and taken as
augmented data to enhance the existing dataset.

input space of the WaveGAN for vectors that result in samples that
show the desired feature values. An overview of the system is shown
in Fig. 19. This section describes both the used WaveGAN architecture
as well as the evolutionary algorithm.

4.2.1 WaveGAN

The WaveGAN architecture was first introduced by Donahue, McAuley,
and Puckette (2018). The authors showed that WaveGAN is capable
of generating realistic sounding audio data for tasks that are related
to nature soundscapes, such as bird sounds. Its main concepts follow
the basic idea of DCGANs. As described in Chapter 2, DCGANs are
a modification to the initial GANs which enable the modelling of
data with even higher complexity by including convolutional layers
to both the generator and the discriminator network (Radford, Metz,
and Chintala, 2015). As DCGAN was developed for image generation,
multiple parts of it are slightly modified by WaveGAN to enable the
handling of audio data. For example, the two-dimensional up- and
downsampling filters are replaced by its one-dimensional equivalent
(i.e., kernels of size n times n become kernels with size n ∗ n). For
details, please refer to the original work about WaveGAN (Donahue,
McAuley, and Puckette, 2018) and its official repository1.

1 https://github.com/chrisdonahue/wavegan
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It is worth mentioning that our further approach is independent from
the chosen GAN architecture. As a result, the underlying GAN archi-
tecture can be replaced for any other model, depending on the scope
of the respective application.

4.2.2 Evolutionary Algorithm

After training a WaveGAN model on a specific domain, that model is
able to transform random noise vectors to audio samples that follow
the distribution of the training dataset. Thus, new audio samples can
be generated that never had been heard before but sound as if they
originated from the learned domain. To find audio samples that show
certain feature characteristics that we want to control, we follow the
idea of Latent Variable Evolution to search through the solution space
of the trained WaveGAN model. First, we initialize a starting popula-
tion of random noise vectors and feed them to the trained WaveGAN.
Subsequently, we evaluate the resulting audio data by using a prede-
fined fitness function that measures how appropriate the samples are
with respect to the feature values that we want to have, i.e., feature
values that add information to our training dataset for the classifica-
tion stage, as is described in more detail in section 4.3. The noise vec-
tors that performed best are then slightly mutated and recombined,
whilst the other noise vectors are being discarded. The new noise vec-
tors that originate by the mutation of the best prior noise vectors can
then be fed to the trained WaveGAN again. This process is repeated
until audio samples are found that show the desired feature value.
The procedure is described more formally in the following.
Let x be the output of the generator, denoted as x = G(z), where the
function G represents the transformation learned by the generator
that takes a latent space vector z as input. Further, we define a mea-
surement function f(x) that calculates the value of the feature that we
want to control. Thus, f(G(z)) corresponds to the feature value that
is achieved by feeding z to the generator. We denote the value that
we want the feature to be as t and call this the target value. Thus, a
perfect noise vector z for target value t would fulfill f(G(z)) = t.
As described above, we chose the best noise vectors to be mutated
and recombined further by a fitness function. We can find such a fit-
ness function fitness(z) easily by constructing the reciprocal of the
distance between the shown feature value and the target value:

fitness(z) =
1

|f(G(z)) − t|

We use this fitness function to train an Evolutionary Algorithm. The
term Evolutionary Algorithms denotes a class of optimization meth-
ods that are inspired by the evolution of natural living beings. In gen-
eral, they work by iteratively generating a new set of data samples (in-
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Figure 20: Illustration of the Augmentation Process. (1) The SVM is trained on the training partition
of the original data using Deep Spectrum (DS) features. (2) The trained SVM is used to
predict samples from the development partition. (3) The misclassified samples are analyzed
regarding six standard spectral features extracted with the Librosa library. The mean and
standard deviation per class and feature is calculated. (4) Augmentation samples are gen-
erated by the use of the Evolutionary Algorithm and the WaveGAN, using the calculated
feature range as target values. (5) The final SVM is trained on the augmented data and the
train and development partitions of the original data.

dividuals) - a so-called population - and choosing the best out of these
samples (selection) regarding a predefined fitness function, and alter
those samples in various ways to get a new population that is (hoped
to be) better than the previous one (Mutation and Recombination). Evo-
lution Strategies (ES) are a group of evolutionary algorithms that are
mainly used for multidimensional, continuous problems (Beyer and
Schwefel, 2002). This property makes them an ideal fit to operate on
the latent vector that is used as input for the GAN. Specifically, we
chose a (µ/p+ λ)-ES. This means, that the best µ individuals of the
parent population generate λ new individuals, whereas the parent
individuals are also included into the following generation of indi-
viduals. p represents the group size of the recombination, i.e., p indi-
viduals of the parent population are responsible for the creation of a
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new individual simultaneously. For our evaluation, we chose the fol-
lowing - empirically determined - parameters: µ = 50, p = 2, λ = 150.

Thus, we used a population size of µ + λ = 200. We configured
our algorithm to create 50 new individuals by recombination and 100

new individuals by mutation, as this led to the best results in our ex-
periments.
We chose Uniform Crossover as recombination method. This means,
that for the generation of a new individual out of two parent individu-
als, there is a stochastic decision process for every element of the new
vector to determine if the element is taken from either the one or the
other parent. To formalize this, let z1 and z2 be the n-dimensional par-
ent latent vectors with z1 = (z11, z12, ..., z1n)T and z2 = (z21, z22, ..., z2n)T .
Also, let o = (o1,o2, ...,on)T be the offspring individual that shall be
derived from z1 and z2. Then, for every i ∈ {1, 2, ...,n}, it is randomly
decided if either oi = z1i or oi = z2i .
For the mutation operations, we made use of a Gaussian mutation
operator. Given a parent vector z3 = (z31, z32, ..., z3n)T that shall be mu-
tated to an offspring mo = (mo1,mo2, ...,mon)

T , mo is determined
as follows:

∀i∈{1,...,n} : moi = z3i +N(0,σ2)

Here, N(0,σ2) is the mutation value that is randomly sampled from
a Gaussian Distribution, where the variance σ2 is chosen according
to the 1/5 Success Rule (Beyer and Schwefel, 2002).

4.3 experiments

To test the validity of our approach, we chose to evaluate it on the
task of soundscape classification. Due to the complex nature of sound-
scapes, which consist of a large variety of individual sounds, this task
is very challenging.

To assess the impact of our data augmentation approach on the per-
formance of a soundscape classification system, we perform multiple
experiments in which we augment existing datasets with respect to
specific, underrepresented characteristics, from which we expect that
they contribute to improve the performance of a classification model.
The following section describes our experimental setup as well as the
methodology that we applied.

4.3.1 Methodology

As described in the previous section, our approach is able to gen-
erate new audio samples that exhibit predefined characteristics. We
use this method to augment data in a controlled way to improve an
SVM based soundscape classifier that predicts if a sample belongs
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to either of the two classes mechanical or nature. To this end, we
train the classification system on three different datasets and com-
pare the results. The first dataset (dataset_orig) contains only orig-
inal data, while the second (dataset_aug) was enhanced with data
that was randomly generated by feeding arbitrary noise vectors to
a WaveGAN that was trained on the original data.2 For the third
dataset (dataset_aug_ctrl), we applied our approach to the same train-
ing procedure that was used for dataset_aug. All of the three datasets
were partitioned into train, development and test, where the devel-
opment and test partitions remain the same, and the train partition
of dataset_orig was enhanced with different augmentation data for
dataset_aug and dataset_aug_ctrl. We did not use traditional data aug-
mentation techniques for any of the datasets, as we wanted to focus
on the advantages of targeted augmented data over random GAN-
based augmented data. The three datasets are discussed in detail in
the following sections. The complete augmentation process for our
experiments is depicted in Figure 20.

4.3.2 Original Dataset

For evaluation purposes, we chose to perform our experiments on
a subset of the Emotional Soundscapes database (Fan, Thorogood,
and Pasquier, 2017). The dataset contains audio files of certain sound-
scapes which are sorted by environment. We decided to consider only
the two classes of mechanical and natural environments, as the samples
of these classes, despite their fundamental differences, generally have
a very noisy appearance, which makes them often hard to distinguish
even for humans. For example, it can be very hard to differentiate be-
tween a waterfall and the background noise of a room full of different
kinds of machines, since both sounds are similar in terms of their low
frequency range and regular noisiness. The nature class has many
samples that contain large parts of silence. As these samples would
complicate the feature extraction as well as the WaveGAN training,
we removed them from the dataset, resulting in an increase in mean
RMS energy level of the nature class from 2.18 ∗ 10−2 to 2.64 ∗ 10−2.
We split all audio files into samples of 1 second length as our Wave-
GAN architecture produces outputs of a fixed size. Our final first
dataset contains 600 samples (10 minutes) for the mechanical class
and 300 samples (5 minutes) for the nature class. As mentioned above,
the dataset was split into train, development and test partitions. The
train partition for this dataset contains 420 samples (7 minutes) for
mechanical and 210 samples (3.5 minutes) for natural. The develop-
ment partition contains 60 samples (1 minute) for mechanical and 30

samples (0.5 minutes) for natural, while the test partition contains

2 Example output of the trained WaveGAN can be found at
https://tinyurl.com/y83rhjbb
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Table 1: Spectral Librosa features and respective mean and standard devia-
tion values that were used for the evolutionary algorithm.

Wrongly classified Wrongly classified

as mechanical as nature

Feature name Mean Std. Deviation Mean Std. Deviation

Spectral Centroid 1555.69 484.31 2828.69 143.44

RMS 0.08 0.11 0.01 5.91*10
−3

Spectral Bandwidth 1828.53 323.13 2169.40 89.97

Spectral Contrast 21.65 0.76 21.10 0.21

Spectral Flatness 0.002 2.15*10
−2

0.005 2.76*10
−3

Spectral Rolloff 3512.36 1321.68 5469.17 351.83

120 samples (2 minutes) for mechanical and 60 samples (1 minute)
for natural. Data augmentation, as described below, is only applied
to the train partition.

4.3.3 Untargeted Augmentation

For our second dataset (dataset_aug), we train WaveGAN models as
described in section 4.2.1 for both the mechanical as well as the nat-
ural class. As training sets for the WaveGAN, we take the respective
classes of both the train and development partitions of our original
dataset dataset_orig. The WaveGAN models were trained for 200,000

iterations before we used them to generate random new data of both
classes. 420 data samples (7 minutes) are generated per class. Our
complete training set contains both the original data as well as the
randomly generated samples.

4.3.4 Targeted Augmentation

The third dataset (dataset_aug_ctrl) contains the original data from
dataset_orig as well as audio samples that were generated in a tar-
geted way by the use of our approach. As described in section 4.2.2,
we make use of an evolutionary algorithm to find the samples that
show the feature values that we want to have. Our assumption is the
following: if a classifier is not able to classify certain samples in a cor-
rect way, then it might lack training data that shows similar feature
values as the ones that were classified wrongly. We therefore aim to
generate new training data that exhibits feature characteristics of the
previously wrong classified data. To find appropriate target values
for the evolutionary algorithm, we analyze the samples of the devel-
opment set that were classified wrongly by the use of the SVM that
was trained only on dataset_orig. Specifically, we look at six standard
spectral features (Spectral Centroid, RMS, Spectral Bandwidth, Spectral
Contrast, Spectral Flatness and Spectral Rolloff ). It is noteworthy that
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this feature set is only used to select the specific audio samples, but
not for the classification itself. To this end, we rely on the Deep Spec-
trum feature set described in section 4.3.5.

We calculate the mean m and standard deviation s of these fea-
tures over all misclassified samples of one class, as shown in Table 1.
Based on those values, we determine a range [m− s,m+ s] for each
feature and class that we want to generate new data for. We decided
to generate five samples of audio for each of the six features per class,
resulting in 30 augmented audio samples per class. As can be noted,
we generated much less augmented data for this experiment than we
did for dataset_aug. By doing so, we want to verify our assumption
that small amounts of targeted augmented data are adding more in-
formation to the classification task than comparably high amounts of
untargeted augmentation data. To get the five target values that we
need for our evolutionary algorithm, we tried to cover the range that
we found by analyzing the false classified samples. Let mi,c be the
mean and si,c the standard deviation of the feature i for class c. We
calculated our target values t1i,c, t2i,c, ...t5i,c for the respective feature
and class as follows:

• t1i,c = mi,c − si,c

• t2i,c = mi,c − 0.5 ∗ si,c

• t3i,c = mi,c

• t4i,c = mi,c + 0.5 ∗ si,c

• t5i,c = mi,c + si,c

With these target values, we are able to cover a big range of the
feature values that were missing in the initially wrong classified data
samples. We trained the evolutionary algorithm with the respective
target function for each of the 30 samples per class, resulting in 60

runs of the evolutionary algorithm. The feature values of all individu-
als were calculated with the Librosa (McFee et al., 2015) library during
training. Every training run was stopped after 100 iterations.

4.3.5 Deep Spectrum Features

As the nature of soundscapes is complex, we chose a spectrogram
based approach for extracting features that are used as input for the
classification stage. We assume that this would inherently capture
a larger portion of temporal information as compared to other con-
ventional acoustic features. To this end, we extracted a 4 096 dimen-
sional feature set of deep data representations using the Deep Spec-
trum toolkit (Amiriparian et al., 2017)3. Deep Spectrum has shown

3 https://github.com/DeepSpectrum/DeepSpectrum
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success for similar audio tasks (Baird, Amiriparian, and Schuller,
2019), and extracts features from the audio data using pretrained
convolutional neural networks. For this study, we extracted spectro-
grams using the default Deep Spectrum settings including a VGG16

pretrained network, extracting one feature vector per audio sample.

4.3.6 Support Vector Machine

For all machine learning experiments, we used a Support Vector Ma-
chine with a linear kernel. During the development phase, we trained
a series of SVM models, optimizing the complexity parameters (C ∈
10−4, 10−3, 10−2, 10−1, 1) and evaluating their performance on the
development partitions. We then re-trained the model with the con-
catenated train and development partitions and evaluated the perfor-
mance on the test partition. This whole procedure was done for each
of the three datasets. As a measure of accuracy we report Unweighted
Average Recall (UAR), as we wanted to take class imbalance into ac-
count.

4.4 results

Figure 21: Confusion matrices for test partition of the SVMs that were trained on the different datasets.
(1) Trained on original data only. (2) Trained on original data and randomly generated data.
(3) Trained on original data and targeted augmented data, our approach. (4) Trained on
targeted augmented data only.

After we trained the SVM on the three datasets, we evaluated all
models on the test partition. In this section, we report our results
for each dataset. As mentioned above, we report the UAR that each
of our SVM models achieved with the respective optimal complex-
ity parameter. As the task is to perform a binary classification, the
chance level is represented by a UAR of 50.0. Our baseline model
that was trained on the original data (dataset_orig) achieves an accu-
racy of 75.8% UAR. Dataset_aug, that contains randomly generated
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samples among the original data, results in a UAR of 71.2%. As can
be seen, this value is remarkably below the first model. This leads
to the deduction that the data that was generated by feeding random
noise vectors to the GAN does not add meaningful information to the
SVM during the training process, even making the training set worse.
This shows the need for the generation in a controlled way, as ap-
plied in dataset_aug_ctrl. The model that was trained on the targeted
augmented data achieves a UAR of 78.8%, thus outperforming both
the classifiers that were trained on dataset_orig and dataset_aug. To
evaluate this effect further, we trained a fourth model only on the tar-
geted augmented data without the original data. This model achieves
a UAR of 74.2%, thus being slightly below the baseline model. This
is reasonable since the target values for the Evolutionary Algorithm
were derived by analyzing the false classified samples from the clas-
sifier that was trained on dataset_orig, thus trying to specifically add
information for value ranges that are not yet modelled in that dataset,
but not claiming to be able to model the whole possible range of the
features of the original data. The corresponding confusion matrices
for each model are shown in Fig. 21.

4.5 discussion

When comparing the results of dataset_orig (that only contains the
original audio samples) with dataset_aug (that adds randomly gen-
erated data to the training process), it can be seen that the perfor-
mance of the trained SVM model considerably drops. This shows,
that there is in fact a need for augmentation in a somewhat targeted
way, although recent works could also achieve performance boosts
while working with a random generation process (Madhu and Ku-
maraswamy, 2019). It is conceivable that the random generation in
our problem domain is not sufficient due to the fact that our orig-
inal dataset is very small compared to the datasets that were used
in those previous works. However, the results that could be achieved
with dataset_aug_ctrl outperform both the models from dataset_orig
and dataset_aug. As dataset_aug_ctrl makes use of our controlled gen-
eration process, it is capable of adding augmentation data that is
actually helping the classification task. Although the solution space
that was learned by the WaveGAN has to be rather small - as we
used only small amounts of data to train it - the Evolutionary Algo-
rithm was able to find meaningful samples in that space. It is note-
worthy that even considerably less training samples were generated
for dataset_aug_ctrl than for dataset_aug. This shows that even small
amounts of targeted augmentation data are better for the classifica-
tion task than high amounts of randomly generated data.
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4.6 conclusion

In this chapter, we presented a new approach for augmenting train-
ing data for an audio classification problem in a targeted way. There-
fore, we combined a GAN model - trained on the original training
data - with an evolutionary algorithm. That evolutionary algorithm
was used to steer the GAN into generating samples that actually are
helping a task at hand. As the mutation strategy of our evolution-
ary algorithm was not restricted to stick to the latent distribution
that the GAN was trained with, we successfully enabled the synthe-
sis of new samples that actually hold information that the GAN did
not synthesize when used without the evolutionary algorithm. There-
fore, we showed that our approach has substantial advantages for
our problem domain when comparing it to adversarial augmentation
techniques that rely on a random class-wise augmentation.

We can summarize that in our chosen problem domain, the ap-
proach works reasonably well and shows potential to improve a
broad range of classification problems that are existent in the current
research community.



5
D ATA A U G M E N TAT I O N T H R O U G H L A B E L
A U G M E N TAT I O N

Large parts of this chapter have already been published in the follow-
ing publications:

Mertes, S., Margraf, A., Kommer, C., Geinitz, S., & André, E.
(2020). Data augmentation for semantic segmentation in the
context of carbon fiber defect detection using adversarial learn-
ing. (Mertes, Margraf, Kommer, et al., 2020)

Mertes, S., Margraf, A., Geinitz, S., & André, E. (2023).
Alternative data augmentation for industrial monitoring us-
ing adversarial learning. In International Conference on Deep
Learning Theory and Applications - Revised and Selected Pa-
pers. (Mertes, Margraf, Geinitz, et al., 2023)

In the last chapter, we focused on augmenting data for a classifica-
tion problem in the audio domain. In this following chapter, another
GAN-based data augmentation technique will be introduced. How-
ever, this time, we will address a segmentation problem in the image
domain. Specifically, we will tackle a scenario that is important for the
producing industry: AI-based visual inspection and defect detection.
Visual inspection includes a wide repertoire of methodologies in in-
dustrial quality control. With the increasing level of automation and
digitalisation in the manufacturing industry, automatic sensing tech-
nology has drawn much attention in the field through its potential to
make time-intensive manual inspection of production processes ob-
solete. The field of online process monitoring primarily deals with
imaging technology to detect changes, faults or potential anomalies
in continuous production environments. Here, intelligent image pro-
cessing is a key feature of monitoring systems.

In recent years, machine learning algorithms have progressively
overtaken more traditional methods that were based on predefined
filters (Cavigelli, Hager, and Benini, 2017; McCann, Jin, and Unser,
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2017). In particular, Convolutional Neural Networks (CNNs) have be-
come the state-of-the-art in online process monitoring. If large train-
ing datasets are available, they are flexible across domains and there-
fore can be applied to very different kinds of applications (Simonyan
and Zisserman, 2014; K. He et al., 2016).

However, highly specialized industries are often confronted with
incomplete or insufficient data. With increasing effort spent on data
collection and preparation - tasks that require time and skilled person-
nel - deep learning models become inefficient, expensive and there-
fore unattractive. As such, online process monitoring, and industrial
defect detection in particular, serves as perfect real-world scenario to
study how GANs can help to augment such scarce datasets.

Specifically, in this chapter, we consider semantic segmentation of
carbon fiber textiles with unique surface structures and heteroge-
neous anomalies. In practice, such anomalies need to be detected so
that respective textiles can be removed from the remaining produc-
tion process.

In contrast to image classification problems, where a class is as-
signed to a whole image, semantic segmentation refers to assigning a
class to every single pixel of the image. As such, the labels (i.e., the
ground-truths or label masks) are of much higher dimension than
they are for classification tasks. In the simplest form - where only
two classes exist - such a label has the form of a binary image. In the
case of carbon fiber defect defection as we address here, a pixel that
holds a 0 would indicate that this pixel does not belong to an area
with a defect - while a 1 would indicate a defect area. Fig. 22 shows
examples of defect images with corresponding label images.

To augment a dataset that contains such data, not only new image
samples have to be generated for specific classes (like it is the case
for augmenting data for classification tasks), but new pairs of images
and label masks have to be created. Although this might seem diffi-
cult at first glance, it also offers a new possibility: Instead of using
augmentation techniques to synthesize new image samples directly,
we can synthesize label masks and subsequently transform them to
real-looking image samples. Doing so has two advantages: First, the
label mask space is not as complex as the image data space, which
eases creating artificial ones. Second, and even more important: By
augmenting the label space and successively transforming the labels
to image data, the label synthesis mechanism does not have to be
dependent on the distribution of the real image data. As such, it is
promising to use that kind of Label Augmentation (with downstream
style transformations to achieve image samples) in order to enhance
the dataset with samples that are not bound to the original data distribu-
tion.

In this chapter, for the generation of such new labels, we propose
two distinct concepts: the first approach is based on a handcrafted



data augmentation through label augmentation 73

Figure 22: Examples of real image data pairs labeled by experts. The misaligned fibers are visible on
top of the fiber carpet.

mathematical model precisely tailored to the application. Handcraft-
ing such problem-specific models requires good domain understand-
ing and further effort to model an algorithm and tune it to adjust to
the given problem. The resulting function is transparent and human-
readable which allows for better debugging and testing.

The second one uses a WGAN model trained on the original bi-
nary labels in order to allow the generation of synthetic labels. That
proposed WGAN-based approach requires less manual effort than
the former approach and automates a considerable part of the overall
process.

In both cases, binary label images are generated and used for fur-
ther processing, i.e., for generating image/label pairs by using an
image-to-image translation system. That image-to-image translation
again leverages a GAN-based architecture.

All in all, we present a novel approach to augment image data for
semantic segmentation tasks by applying image-to-image translation
on label masks that were created with either a domain-specific math-
ematical model or an approach entirely based on generative models.
As such, our methods allow for artificially creating label and image
pairs that are actually new and serve as training samples for seman-
tic segmentation models. We test both approaches based on images
containing carbon fiber surface defects and discuss the results.
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5.1 related work

5.1.1 Industrial Defect Detection

Several publications address industrial monitoring applications:
Masci et al. (2012) used CNNs for classification of steel defects,
and Soukup and Huber-Mörk (2014) used CNNs for photometric
stereoscopic images. A region proposal network for real-time object
detection was presented by Ren et al. (2015), while Ferguson et al.
(2018) used CNNs and transfer learning to detect X-ray image de-
fects. Furthermore, the use of CNNs for industrial surface anomaly
inspection was explored by Staar, Lütjen, and Freitag (2019).

GANs have also already been used for anomaly detection in indus-
trial use-cases. For instance, Schlegl et al. (2017) published a work
in which GANs for marker detection were used for unsupervised
anomaly detection. A survey exploring GANs for anomaly detection
was presented by Di Mattia et al. (2019).

The identification of anomalies of carbon fibers in particular, e.g.,
the misalignment of textile surfaces, has also been discussed in var-
ious publications - ranging from studying appropriate hardware se-
tups for monitoring the analyzed fibers (Geinitz, Margraf, et al., 2016;
Geinitz, Wedel, and Margraf, 2016), over examining sophisticated fea-
ture modalities like thermography (K. Liu et al., 2022), to filter-based
detection pipelines (Margraf et al., 2017; Margraf. et al., 2020; H. Wang
et al., 2024) and DL-based methods (Szarski and Chauhan, 2022).

All these works show that the producing industry has a huge de-
mand for automated mechanisms for defect detection. As such, to
evaluate our novel approach for data augmentation, we chose a spe-
cific use-case from that field - and try to augment data for defect
detection in carbon fibers.

5.1.2 GAN-based Data Augmentation for Industrial Use-Cases

As already introduced in Section 3.3, GAN-based data augmentation
has been applied to various use-cases. This holds also true for indus-
trial domains. There, GANs have been used to augment data in a
variety of scenarios - also mostly in the context of defect detection
for quality assessment - e.g., in the coffee industry (Y.-C. Chou et al.,
2019), lifestyle industry (Rožanec et al., 2023), for machine fault di-
agnosis (Shao, P. Wang, and Yan, 2019; Ortego et al., 2020), surface
defect detection (S. Jain et al., 2022) or wear prediction (Yuechi Jiang,
Drescher, and Yuan, 2023). However, the problems mentioned in Sec-
tion 3.3 remain: Using GANs to (more or less) randomly add new
data to a dataset might have flaws, as it is not guaranteed that the
data actually holds information that hasn’t been already included in
the initial dataset.
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5.1.3 Domain Adaptation with GANs

A concept that is conceptually related to our approach is the so-called
Domain Adaptation. Domain adaptation aims to adjust a model trained
on a source domain so that it performs effectively on a target domain
with a different data distribution. The objective is to reduce the perfor-
mance disparity caused by domain shifts while utilizing knowledge
from the source domain. Often, domain adaptation is approached
with GANs. In particular - similar to this work - style conversion
models can be used there. This has been shown for tasks like object
detection (M. Zhang et al., 2022; Menke, Wenzel, and Schwung, 2022),
object classification (Bejiga and Melgani, 2018), activity recognition
(Sanabria, Zambonelli, and Ye, 2021), and semantic segmentation (S.
Scherer et al., 2021; J. Choi, T. Kim, and C. Kim, 2019), but also for
domain-specific scenarios like generating digital twins (Ulhas, Kan-
napiran, and Berman, 2024). However, in contrast to our work, do-
main adaptation aims to convert data that follows one specific distri-
bution to data that follows another distribution, where both distribu-
tions have the same syntactic meaning (for example, both distributions
might represent images). In our approach, the source distribution is
artificially created label data, and our target domain is the actual data
(in our specific case, images of carbon fibers).

5.2 approach

The following sections explain the concepts that are introduced in
this chapter. The main idea of our approach is that we are enhancing
datasets with augmented data by artificially modeling label images,
and after that convert those into real image data. By doing so, we
get image/annotation pairs that are needed for the training of neural
networks for semantic segmentation tasks. To create new label data,
we propose two different methods. The first method is an algorithm
specifically designed for our particular application at hand, i.e., de-
fect detection in carbon fiber structures. It is based on a randomized
label generator that uses a stochastically parametrized function to
build segmentation masks. The second method is a more generic one.
It uses a WGAN that is trained on raw segmentation masks. After
training, the WGAN is capable of generating new label images that
appear similar to the original labels. By applying this concept, we get
rid of the engineering overhead that is necessary when using the first
method. While the randomized label generator that is used by the
first method has to be defined and optimized specifically for every
new segmentation task, the WGAN should be able to learn the label
structure of new tasks by itself.
The labels that are produced by either of the two methods are fed into
a pix2pix network that was trained on an image-to-image conversion
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Figure 23: Training of a pix2pix network to perform image-to-image translation between labels and
defect images (Step 1).

task, i.e., the network was trained to convert label mask images to real
images that fit to the respective labels, thus resulting in image/label
pairs that can be used to enlarge training datasets.
All in all, our approach can be seen as a three-folded system: first,
we train a pix2pix network on an image-to-image translation task, so
that it learns to perform a translation from labels of defect images to
their corresponding image data. Second, one of the aforementioned
methods is used to generate synthetic label data. At last, the syn-
thetic label data is fed into the trained pix2pix network, resulting in
new training pairs for further machine learning tasks. The following
sections explain these steps in more detail.

5.2.1 Label-to-Image Model

In order to convert label masks to corresponding images, we trained a
pix2pix model. For the training, a dataset of existing real defect images
and manually labeled annotation masks was used. The basic scheme
of the training process is depicted in Fig. 23. We used the pix2pix
network architecture (Isola et al., 2017) as described in Section 2.9.1.
We adapted the size of the input layer to fit the dimensions of our
dataset. Other than that, we did not make any modifications to the
originally proposed architecture.
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5.2.2 Synthetic Label Generation

The idea of our approach is to feed new synthetic label data into
the pix2pix network in order to obtain new pairs of defect images
and label masks. As mentioned above, two different methods were
applied for the stage of synthesizing new label data.

5.2.2.1 Mathematical Modelling of Defects

The first method is based on the observation that in many application
scenarios, label masks have a common structure. The approach is il-
lustrated in Fig. 24. The idea behind this first approach to generate
fake label masks is to find a mathematical description of those struc-
tures for a specific use-case. In the application scenario that serves
as an example for evaluation in this chapter - the mentioned defect
detection on carbon fiber structures - label masks usually appear as
mostly straight or curved lines. Those structures can be seen as a
combination of multiple graphs with different rotations and varying
thickness of the plots. Thus, the mathematical description of a single
defect label could be approximated through a handcrafted function.
By adding a stochastic factor to such a function, we can plot different
graphs that can be considered as new, artificial label masks. For our
specific task, we conducted several experiments that showed that the
following function f(x) can be used to cover a huge part of carbon
fiber defect structures. We denote f(x) as:

f(x) = a1 · sin(a2 ·x)+a3 · sin(x)+a4 ·cos(a5 ·x)+a6 ·x+a7 ·x2

where the parameters an are chosen randomly within certain defined
intervals. For our specific experiments, we found appropriate inter-
vals by visual expection of carbon fiber defect images. By using those
intervals (listed in Table 2), we ensure to cover a wide range of differ-
ent defect structures. To that end, a sine function was tuned with a
rather big amplitude to model the global structure of a defect, which is
typically shaped in curves. For the structure on a more local level, we
used another sine with a much smaller amplitude interval. Aperiodic
curvings were modeled by the use of polynomic functions. We ran-
domly set the variables and plotted the resulting graph for every fake
label for x ∈ [0,w] where w represents the width of the sample im-
ages. After creating those plots, they were rotated randomly. At last,
we took a random subset of those graphs, randomized the thickness
of the resulting lines, and overlapped those graphs to create images
of labels with a realistic fiber-like appearance.

It has to be noted that this method is very specific to the given task
at hand. A lot of engineering time and effort has to be spent to find
sufficient mathematical models for different use-cases. However, simi-
lar approaches for defect-modeling have been successfully applied to
similiar problems in previous work (Haselmann and Gruber, 2017).
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Figure 24: Heuristic to generate fake labels using the label generator
(Step 2).
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Table 2: Parameters for the fake label generator.

Parameter Lower bound Upper bound

a1 15 30

a2 0.02 0.03

a3 1 50

a4 -0.5 0.5

a5 -0.5 0.5

a6 -0.5 0.5

a7 0.005 0.0095

Figure 25: Architecture of both the generator and critic of the used WGAN network.

5.2.2.2 Generative Modelling of Defects

The fact that the approach of mathematically modeling label mask
structures is coupled to a lot of engineering overhead led to the in-
vestigation of a more generic approach, which is described in this
section.
The basic idea of this method is to use the capability of GANs to
transform random noise vectors into data that looks similar to data
of a given training set. While the pix2pix network that was described
earlier in this work performs a transformation between different im-
age domains, more traditional GANs are designed to generate com-
pletely new data. This property was used for data augmentation tasks
in the past, not only in the image domain (Bowles et al., 2018), but
also for audio classification tasks (Mertes. et al., 2020). However, in-
stead of generating new image data of carbon fiber defect images,
our approach uses such a rather traditional GAN to create new label
segmentation masks, which then can be transformed to defect image
data by feeding it to our pix2pix network, as will be described in
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Figure 26: The generation and preparation of training data for U-Net using a trained pix2pix model
and the fake label generator to create fake training pairs (Step 3).

the next section. To generate artificial label mask images, we made
use of a convolutional GAN that operates on the Wasserstein-Loss as
introduced by Arjovsky, Chintala, and Bottou (2017). The network ar-
chitecture of both the generator and the critic is illustrated in Fig. 25.
As a training dataset, we used real label masks. More specifically, the
same label masks were used that were already part of the training
pairs of the pix2pix network. Details regarding the training configura-
tion can be found in Section 5.3.5.

5.2.3 Finalizing the Training Data

In the last step, the generated label data was used to create new cor-
responding image data. Thus, the label data that was produced by
either mathematical modelling or by the WGAN was used as input
to the trained pix2pix model. As such, the resulting data pairs of la-
bel/image data can be used to train further networks for the actual
segmentation task. The whole system is shown in Fig. 26. For our
experiments, we chose a U-Net architecture to perform this segmen-
tation task. It has to be emphasized that the selection of this specific
network was done for the purpose of evaluating and comparing our
augmentation approaches, and that we don’t claim that architecture
to be the best choice for the respective task. However, U-Net could
achieve promising results in related fields like biomedical image seg-
mentation (Ronneberger, P. Fischer, and Brox, 2015).
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Figure 27: Samples of synthetic labels generated through handcrafted modeling (top row) and corre-
sponding pix2pix outputs (bottom row) imitating misaligned fibers.

Figure 28: Samples of synthetic labels generated by WGAN (top row) and corresponding outputs (bot-
tom row) using the same pix2pix model as for Fig. 27.
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5.3 experiments

5.3.1 Dataset Specifics

Our system was evaluated in the context of an industrial application
scenario. More precisely, the domain of carbon fiber defect monitor-
ing was chosen for testing and evaluating of the proposed approaches.
In images of fiber structures without recognizable defects, the single
fibers are aligned in parallel and form a carpet of straight lines. Dur-
ing the production process, mechanical stress caused by spools in
the transportation system can lead to damage of the fiber material,
which usually can be recognized as misaligned fibers. The shape of
those cracked fibers, as well as their position and size, vary heavily.
Thus, there is no template for single defects. Given the different im-
ages of defective fiber material, a huge variety of defect structures
can be observed. In this specific use case, we aim for the identifica-
tion of defects on a carbon fiber carpet. To achieve this goal, a U-Net
architecture is trained to perform a binary segmentation of pixels that
contain defects. The environment and the design of the monitoring
system that was used to acquire the image data for our experiments
has been described in earlier publications (Geinitz, Wedel, and Mar-
graf, 2016; Geinitz, Margraf, et al., 2016; Margraf et al., 2017).

5.3.2 Experimental Setup

For a meaningful evaluation, we ran several experiments to compare
the two variants of our approach with conventional data augmenta-
tion methods. Thus, parts of our datasets that are described below
were augmented with traditional data augmentation techniques. The
following simple image transformations were applied to those artifi-
cially extended datasets:

• Randomised crop of squares of different size

• Horizontal and vertical flip

• Rotation

• Elastic transformation

• Grid distortion

We arranged the image data in six different sets and performed mul-
tiple trainings of a U-Net architecture. Then, we used the resulting
models to make predictions on a test set. To ensure comparability,
the same test set was used for every training set. Every training pair
for the U-Net architecture consists of a real or fake defect image and
a real or fake binary label image:
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dataset 1 contains 300 pairs of real defect data and corresponding
binary label images. Thus, only original data without data aug-
mentation was taken.

dataset 2 contains the same 300 pairs of defect data and corre-
sponding labels as dataset 1. Additionally, conventional data
augmentation was applied as described above. For each image,
some of those aforementioned transformation operations were
performed with a predefined probability.

dataset 3 contains 3000 pairs of defect data and corresponding la-
bels. 2700 of the 3000 data pairs were generated by applying
the pix2pix based data augmentation approach on dataset 1. For
the creation of synthetic labels, our mathematical model was
applied. Furthermore, the 300 original data pairs from dataset 1
were taken.

dataset 4 contains the same 3000 pairs of defect data and corre-
sponding labels as dataset 3. Additionally, the same conventional
stochastic data augmentation as for dataset 2 was applied, i.e.,
each image was transformed with a predefined probability dur-
ing training. Thus, dataset 4 combines common data augmenta-
tion with our approach.

dataset 5 contains 3000 pairs of defect data and corresponding la-
bels. In this dataset, 2700 of the 3000 pairs were generated by the
pix2pix network. This time, however, the input data for image-to-
image-translation was not generated from a handcrafted func-
tion, but by training a WGAN model on image pairs of real
sample data. The resulting model was then used to create new
binary labels. The remaining 300 image pairs were taken from
dataset 1 as performed in the previous datasets.

dataset 6 contains the same 3000 pairs of defect data and corre-
sponding labels as dataset 5. Hereby, though, we altered the
training of the U-Net by adding traditional data augmentation
as for dataset 4 and dataset 2. In this dataset, 2700 of the 3000

pairs were generated by the pix2xpix network. This was per-
formed to examine how regular data augmentation will change
the result on top of WGAN based label generation and image-
to-image translation.

Each of the datasets was used to train a separate U-Net model for
semantic segmentation. For testing and evaluation, a single, distinct
dataset was used, containing real defect data and annotations that
were provided by domain experts.
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5.3.3 Pix2Pix Configuration

The configuration of the pix2pix model is given in Tab. 3. We stopped
the training after 3200 epochs, as we could not observe any further
improvement of the generated images by that time. Fig. 27 shows a
selection of pairs of labels and images generated through application
of the pix2pix model, where the labels where created by mathemati-
cal modeling. Fig. 28 shows label/image pairs where the labels were
generated by our WGAN approach.

Table 3: Pix2Pix Configuration

Parameter Value

Learning rate 0.0005

Batch Size 1

Epochs 3200

Loss Function Mean Squared/Absolute Error

5.3.4 U-Net Configuration

The U-Net architecture was trained individually for every dataset. As
described above, dataset 2, 4 and 6 were augmented with traditional
data augmentation, i.e., conventional image transforms.

A stochastic component was added to the image transformations,
i.e., all operations were performed with a given probability.

The randomized crop was given the probability p = 0.25 and a
window size interval of [400, 512] pixels. Furthermore, the probabili-
ties for flipping, rotation, elastic transform and grid distortion were
set to p = 0.5.

The U-Net model itself was slightly adapted to fit the dataset. The
default size of the training images was 512x512, yet the default U-
Net setting only accepts images of size 28x28. A ResNet-18 model is
used as encoder by the U-Net. The architecture was adapted to fit the
input size before applying the model. The training configuration of
the U-Net is shown in Tab. 4.

Table 4: U-Net Configuration

Parameter Value

Learning rate 0.0001

Batch Size 10

Epochs 200

Loss Function Binary Cross Entropy / Dice Loss
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5.3.5 WGAN Configuration

The configuration for the WGAN training is shown in Table 5. As
the WGAN produces non-binary image data as output, we applied
a binarization stage to the final output images in order to get binary
label masks.

Table 5: WGAN Configuration

Parameter Value

Learning rate 0.00005

Batch Size 64

Epochs 100,000

5.4 results

The metrics accuracy, MCC and Fβ − Score are less dependable for
an objective evaluation of the segmentation model in our specific task.
The proportion between background pixels (i.e., the non-defect pixels)
and foreground pixels (i.e., the defect pixels) per image is thoroughly
unbalanced, as the defects mostly consist of single fibers and there-
fore take much less space in the images. While accuracy returns the
proportion of true results among all data points examined, MCC and
Fβ − Score aim to balance out true and false positives and negatives
of the binary classification result. In contrast, the Jaccard index or Inter-
section over Union (IoU) is used to measure the similarity of two sets,
i. e., the similarity of the ground truth and the prediction. This prop-
erty makes the IoU the most appropriate for the task at hand. Thus,
we focus on the IoU metric for our experiments in order to allow an
objective and problem related evaluation methodology. However, all
relevant scores are reported in Tab. 6 for the sake of completeness.

For all of the six datasets, the training was aborted after 200 epochs
since it was observable that the models had converged. Respective
loss graphs can be seen in Figure 29 and Figure 30

All training results are shown in Tab. 6.
The trained models were all evaluated on the test dataset. The

model trained on dataset 1 reached an accuracy of 0.985 and an
IoU of 0.391 on the test set, while the model trained with dataset 2

reached an accuracy of 0.992 and an IoU of 0.593. Furthermore, the
IoU for the model based on dataset 3 reached an IoU of 0.579 and an
accuracy of 0.991, while training with dataset 4 achieved a value of
0.575 for the IoU and 0.991 for the accuracy. In addition, dataset 5

resulted in an IoU of 0.423 and accuracy of 0.991, while training on
dataset 6 let the IoU drop to 0.206 and accuracy decrease to 0.980.
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Table 6: U-Net results from test runs on the datasets 1 through 6 for batch
size 5.

PPV TPR IoU ACC MCC F1 F2

Dataset 1 0.539169 0.586753 0.390778 0.985035 0.55487 0.561956 0.576576

Dataset 2 0.772803 0.718101 0.592925 0.991935 0.740872 0.744448 0.728413

Dataset 3 0.745926 0.721067 0.578888 0.991419 0.729034 0.733286 0.725905

Dataset 4 0.756767 0.705387 0.57502 0.991471 0.72631 0.730175 0.715098

Dataset 5 0.602418 0.585941 0.422541 0.990628 0.594065 0.543877 0.589383

Dataset 6 0.281570 0.433361 0.205801 0.980426 0.339847 0.341352 0.354881

Fig. 31 shows a sample selection of defect images taken from the
test set with red overlays representing the Regions of Interest (ROIs),
i.e., the regions that were predicted to contain defect areas, predicted
by the U-Net model.

5.5 discussion

As can be seen, the U-Net model trained on dataset 3 substantially
outperformed the model trained on dataset 1. This shows that our
approach of mathematical defect modeling in combination with a
pix2pix architecture could substantially improve the quality and di-
versity of the raw training set. When comparing the results of dataset
2 (conventional data augmentation) and dataset 3, it becomes appar-
ent that our approach is slightly worse, however not substantially
diverts from conventional data augmentation techniques as applied
on dataset 2. The difference comprises within less then 0.02 for the
IoU.

The combination of generating synthetic data using that first
approach with subsequent conventional data augmentation as for
dataset 4 did not lead to any improvement. The model trained on
dataset 4 outperforms dataset 1, but leads to a slighty lower IoU,
accuracy and MCC than dataset 2 and 3. However, the degradation
ranges within less then 0.02 for the IoU and is therefore not substan-
tial under the given circumstances. The last two rows of Tab. 6 show
the results from the experiments that apply image-to-image trans-
lation on labels generated with the WGAN model. As can be seen,
dataset 5 slightly outperforms dataset 1 since it results in a higher
IoU, accuracy and MCC. However, it clearly proves inferior to datasets
2 through 4 which means regular data augmentation as well as the
problem-tailored label generator clearly performs better in the given
scenario. For the sake of completeness and transparency, we also
did an experiment in which we extended the data of dataset 5 with
conventional data augmentation, resulting in dataset 6. The outcome,
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Figure 29: IoU Score and Loss during U-Net training for dataset 1 through 4 from top to bottom row.
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Figure 30: IoU Score and Loss during U-Net training for dataset 5 and 6 from top to bottom row.

though, indicates a clear deterioration all along the line. Every metric
appears lower than for any other dataset (i. e., datasets 1 - 5 perform
better).

As the results from Tab. 6 and the samples depicted in Fig. 31 sug-
gest, the pairs of synthetic images and labels of carbon fiber defects
were successfully used to replace traditional data augmentation for
semantic segmentation network training - but they were not better
than traditional data augmentation.

At first glance, it might look like our approach does not add
anything to traditional data augmentation. However, we suggest to
keep in mind that this study has only applied the workflow on im-
ages of carbon fiber surfaces with its very special types of defects
and anomalies. It is conceivable that designing more complex and
thought-through models for the defect modeling might yield even
better results. At this point, it cannot be ruled out that the workflow
functions differently under other circumstances that are considerably
distinct to the present use case.

We consider both our pix2pix based image generation approaches
a more realistic and application-oriented form of data augmentation.
The experiments were conducted with and without traditional data
augmentation in order to evaluate the effectiveness and expandabil-
ity of our approach. Excessive use of traditional data augmentation
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Figure 31: Real carbon fiber defects from the test set with red overlay from U-Net segmentation for
dataset 1 (top row), dataset 3 (second row), dataset 5 (third row) and the ground truth (bottom
row).
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Figure 32: Comparison of noticable side effects in the classification of filaments based on the WGAN
based approach with (With DA) and without (No DA) data augmentation and the corre-
sponding ground truth.

might superimpose the ‘real’ data within the training set due to its
low level form of manipulation, reproduction and reuse which raises
the risk of overfitting during model training. GAN based data aug-
mentation might be less prone to repetitive patterns since it tries to
project the variation found in the original data to the synthetic data.

In summary, the approach as proposed in this chapter reveals a po-
tential alternative to traditional, simple data augmentation. The gen-
erated data forms a representation of images that is substantially dif-
ferent from the sample data but still resembles the training domain.
Furthermore, the suggested algorithms support training deep learn-
ing models for semantic segmentation with small sample datasets.
This also applies if only few annotations are available.

In this chapter, two competing concepts were suggested and eval-
uated on industry data. While the first approach based on a hand-
crafted function represents a very problem-specific, handcrafted solu-
tion, the second concept entirely uses adversarial and deep learning
for model training.

On the one hand, the approach based on WGAN, Pix2Pix and U-
Net combines three different deep learning architectures and only re-
quires parameter tuning to work for the given dataset. This workflow
already offers a high level of automation since it reduces the effort for
designing a defect detection system to providing a small sample set of
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annotated data. Of course, only a well-selected and sufficiently anno-
tated test set allows for serious model validation and testing. On the
other hand, the handcrafted function is transparent, human-readable
and stable. Its output can be visualized and tested against tolerance
criteria. It also allows to be tuned by setting limiting parameters, such
as window size, orientation or line thickness. Also, auditing and re-
quirements testing can be easily performed. However, the mathemati-
cal function lacks of flexibility in terms of domain transfer. In order to
design a mathematical model specific to the problem, domain knowl-
edge needs to be collected and translated into abstract dependencies.
Thus, it qualifies for applications with a high need for transparency
and stability, e. g., security in critical environments.

5.6 conclusion

In this chapter, we presented image-to-image translation as a means
for data augmentation in the context of defect detection on textiles
and carbon fiber in particular. Therefore, we discussed related GAN
approaches and designed two variations of a novel concept for gen-
erating synthetic defects based on sparse labeled data using a pix2pix
model.

Within our experiments on six different datasets we showed that a
pix2pix based approach could substantially improve the pixel-based
classification quality of U-Net models when using a problem-specific
label generator compared to using no data augmentation at all. In
general, the synthetic defects helped to augment the dataset so that
segmentation quality improves on sparse data. However, the ap-
proach did not outperform regular data augmentation techniques.

Although WGAN proved inferior to competing techniques, it still
helped to support semantic segmentation to a certain degree.

The suggested approach has been tested for the given setting but
is not limited to textiles.

In conclusion, we could show the potential of our novel data aug-
mentation technique, although it is still not mature enough to com-
pletely replace traditional data augmentation.





Part III

E X P L A I N A B I L I T Y

With the rapid development of Machine Learning (ML)
methods, black-box models powered by complex ML algo-
rithms are increasingly making their way into high risk ap-
plications, such as healthcare (Stone et al., 2016). Systems
used here must not only work, but also need to provide
comprehensible and transparent information about their
decisions. To support more transparent Artificial Intelli-
gence (AI) applications, approaches for Explainable Arti-
ficial Intelligence (XAI) are an ongoing topic of high in-
terest (Arrieta et al., 2020). A recent trend in XAI is to
work with explanations that are based on Counterfactual
Reasoning, i.e., explanations that show how an AI system
would react to an alternative input. The most prominent
example of such explanations are Counterfactual Explana-
tions. They communicate information about relevant fea-
tures by showing a modified version of the input that
leads to a different decision of the AI to be explained. Cre-
ating such explanations is a difficult task - especially in the
image domain, where explanations should still have high
quality to appear reasonable. Here, GANs can help - not
only due to their capabilities of generating high-quality
data, but also as they are able to create data that still
looks consistent. As such, in this part of the thesis, after a
short overview on traditional XAI techniques and factual
explanations is given in Chapter 6, we will present how
GANs can be used to generate high-quality counterfactual
explanations for image classifiers in Chapter 7. In some
cases, it might not even be sufficient to communicate infor-
mation about relevant features - irrelevant features might
be similarly important for an AI’s understanding. How-
ever, approaches that explicitly address such irrelevant
features do not yet exist. Therefore, in Chapter 8, we in-
troduce such a paradigm that we call Alterfactual Explana-
tions. As that concept is completely new, we also present
a user study to evaluate if such explanations can actu-
ally complement counterfactual explanations. After hav-
ing validated that the concept itself is promising, we also
introduce a technical framework to generate those expla-
nations (see Chapter 9). Again, we show that GANs are
perfectly suited for generating such explanations for an
image classification task.
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T R A D I T I O N A L X A I T E C H N I Q U E S

Some parts of this chapter have already been published in the follow-
ing publications:

Mertes, S., Karle, C., Huber, T., Weitz, K., Schlagowski, R., &
André, E. (2022). Alterfactual Explanations - The Relevance of
Irrelevance for Explaining AI Systems. In IJCAI 2022 Work-
shop on XAI. (Mertes, Karle, et al., 2022)

Mertes, S., Huber, T., Karle, C., Weitz, K., Schlagowski, R.,
Conati, C., & André, E. (2024). Relevant Irrelevance: Gener-
ating Alterfactual Explanations for Image Classifiers. In 33rd
International Joint Conference on Artificial Intelligence (IJCAI)
2024. (Mertes, Huber, Karle, et al., 2024)

Before introducing our new concepts and technical frameworks,
first, a very brief overview over existing XAI approaches is given.
Note that this overview only takes into account approaches that were
used in the following chapters. For a more detailed overview, we
would like to point the user to more comprehensive surveys, e.g.,
Tjoa and Guan (2020) or Das and Rad (2020).

6.1 feature attribution

Feature Attribution refers to the concept of communicating which fea-
tures are relevant for decisions - and often also how important they
are.

A frequently-used representative for an XAI approach based on
feature attribution is Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro, Singh, and Guestrin, 2016). The basic idea of LIME
is to approximate an interpretable model around the original model.
As a consequence, it is possible to create explanations for various ma-
chine learning domains like text and image classification. Depending
on the model to be explained, the explanations come in the form of
textual or visual feedback. In the case of image classification, LIME is
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highlighting whole areas in the image that have been crucial for the
prediction of a specific class.

Other mechanisms aim to produce so-called Saliency Maps, i.e.,
heatmaps that show how much each pixel of an input image con-
tributed to a certain decision. Examples for such mechanisms that
are particularly used in the image domain are Layer-wise Relevance
Propagation (LRP) (Bach et al., 2015) or GradCAM (Selvaraju et al.,
2020). There, LRP assigns a relevance value to each neuron in a neu-
ral network, measuring how relevant this neuron was for a particular
prediction. In order to do so, LRP defines different rules, all of which
are based on the intermediate outputs of the neural network during
a forward pass. On the other hand, GradCAM focuses on the fea-
ture maps of a convolutional neural network’s final convolutional
layer. Therefore, gradients flowing into that layer are computed and
visualized.

Note that besides those few mentioned approaches, there is a huge
amount of other feature attribution mechanisms in the field of XAI,
e.g., DeepLIFT (Shrikumar, Greenside, and Kundaje, 2017), SHAP
(Lundberg and S.-I. Lee, 2017), or SmoothGrad (Smilkov et al., 2017).
However, what all of them have in common is that they - in one way
or the other - try to communicate which features of an input contribute
to a model’s decision to what degree.

6.2 counterfactual reasoning

In contrast to mechanisms from the field of Feature Attribution (i.e.,
those mechanisms that try to communicate which features are impor-
tant for a decision), the paradigm of Counterfactual Reasoning refers to
communicating how decisions could have turned out if another input
would have been given. Figure 33 illustrates the difference between
those concepts using exemplary explanations for a fictional AI that
decides if a person is creditworthy or not. We will use that scenario
as a running example of how the different explanation paradigms
would answer the question of “Why does the AI say that I am not credit-
worthy?”.

6.2.1 Factual Explanations

“There was another female person that also had rather little
money, and she also did not get the credit.”

Factual explanations are the traditional way of explaining by exam-
ple, and often provide a similar instance from the underlying data
set (adapted or not) for the input data point that is to be explained
(Keane, Kenny, Temraz, et al., 2021). Other approaches do not choose
an instance from the dataset, but generate new ones (Guidotti et al.,
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Figure 33: Explanation types that follow the principles of Counterfactual Reasoning. Input features to
a fictional decision system to be explained are Income and Gender, whereas the former is
relevant and the latter is irrelevant to the AI’s decision on whether a credit is given or not.

2019). The idea behind factual explanations is that similar data in-
stances lead to similar decisions, and the awareness of those similar-
ities leads to a better understanding of the model. Further explana-
tion mechanism that fall in this category are Prototypical Explanations
and Near Hits (B. Kim, Khanna, and Koyejo, 2016; Herchenbach et al.,
2022).

6.2.2 Counterfactual Explanations

“If you had that amount of money, you would get the credit.”

Counterfactual explanations are a common method humans natu-
rally use when attempting to explain something and answer the ques-
tion of Why not ...? (Miller, 2019; R. M. J. Byrne, 2019). In XAI, they do
this by showing a modified version of an input to an AI system that
results in a different decision than the original input. Counterfactual
explanations should be minimal, which means they should change
as little as possible in the original input (Keane, Kenny, Temraz, et
al., 2021; Miller, 2021). Many researchers have emphasized that coun-
terfactual explanations should be actionable and feasible, i.e., should
provide a user with an example that is achievable and realistic in
real life (Barocas, Selbst, and Raghavan, 2020; Ustun, Spangher, and
Y. Liu, 2019). How to achieve this is an ongoing research topic, with
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open questions for example whether feasibility can be achieved by
adhering to data distributions found in the training set (Laugel et
al., 2019; Mahajan, C. Tan, and Sharma, 2019; Keane, Kenny, Delaney,
et al., 2021). Wachter, Mittelstadt, and C. Russell (2017) name mul-
tiple advantages of counterfactual explanations, such as being able
to detect biases in a model, providing insight without attempting to
explain the complicated inner state of the model, and often being ef-
ficient to compute. For counterfactual explanations, a multitude of
works exist that use GANs to automatically generate explanations for
image classifiers (Nemirovsky et al., 2022; Van Looveren, Klaise, et al.,
2021; Khorram and Fuxin, 2022).

6.2.3 Semifactual Explanations

“Even if you had that amount of money, you would still not get
the credit.”

Similar to counterfactual explanations, semifactual explanations
are an explanation type humans commonly use. They follow the
pattern of Even if X, still P., which means that even if the input was
changed in a certain way, the prediction of the model would still
not change to the foil (McCloy and R. M. Byrne, 2002). In an XAI
context, this means that an example, based on the original input, is
provided that modifies the input in such a way that moves it toward
the decision boundary of the model, but stops just before crossing
it (Kenny and Keane, 2020). Similar to counterfactual explanations,
semifactual explanations can be used to guide a user’s future action,
possibly in a way to deter them from moving toward the decision
boundary (Keane, Kenny, Temraz, et al., 2021).
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C O U N T E R FA C T U A L E X P L A N AT I O N G E N E R AT I O N

Large parts of this chapter have already been published in the follow-
ing publication:

Mertes, S., Huber, T., Weitz, K., Heimerl, A., & André, E.
(2022). Ganterfactual —Counterfactual Explanations for Med-
ical Non-Experts using Generative Adversarial Learning. In
Frontiers in Artificial Intelligence, 5, 825565. (Mertes, Huber,
Weitz, et al., 2022)

Counterfactual explanations try to help to understand why the ac-
tual decision was made instead of another one by creating a slightly
modified version of the input which results in another decision of
the AI (Wachter, Mittelstadt, and C. Russell, 2017; R. M. J. Byrne,
2019). As they alter the original input, they directly show how the in-
put could have looked like, such that another decision would have
been made, instead of only showing where a modification of the input
would make a difference in the classifiers outcome. Creating such
a slightly modified input that changes the model’s prediction is by
no means a trivial task. In the visual domain, current counterfactual
explanations often utilize images from the training data as basis for
modified input images. This often leads to counterfactual images that
are either distinct but similar images from the training data, or that
are unrealistically modified versions of the input image. Humans,
however, prefer counterfactuals that modify as little as necessary and
are rooted in reality (R. M. J. Byrne, 2019). In this chapter, we present
a novel counterfactual explanation approach that aims to tackle these
current challenges by utilizing adversarial image-to-image translation
techniques. Traditional generative adversarial networks for image-to-
image translation do not take a model’s decision into account and are
therefore not suited for counterfactual generation. To this end, we pro-
pose to include the classifier’s decision into the objective function of
the generative networks. This allows for the creation of counterfactual
explanations in a highly automated way, without the need for heavy
engineering when adapting the system to different use cases. Further,
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although our approach is steered by a classifier model’s decision, it is
independent of that model’s specific architecture - it is model-agnostic.

We evaluate our approach by a computational evaluation and a
user study. Specifically, we use our system to create counterfactual
explanations for a classifier that was trained on a classification task
to predict if x-ray images of the human upper body are showing
lungs that are suffering from pneumonia or not. In addition to be-
ing a highly relevant application for explanations, this scenario is
suitable for evaluating explanations for non-experts since they are
not expected to have in-depth knowledge of that domain, i.e., they
are completely reliant on the explanation that the XAI system gives
in order to follow the AI’s decisions. Furthermore, pneumonia in x-
ray images predominantly is reflected by opacity in the shown lungs.
Opacity is a textural information that can not be explained sufficiently
enough by the spatial information provided by common saliency map
approaches. To validate our assumptions, we compare the perfor-
mance of our approach against two established saliency map meth-
ods, namely Local Interpretable Model-agnostic Explanations (LIME) and
Layer-wise Relevance Propagation (LRP).
With our work we make the following contributions:

• We present a novel approach for generating counterfactual ex-
planations for image classifiers and evaluate it computationally.

• We evaluate our approach in a user study and gain insights
in the applicability of counterfactual explanations for non-ML
experts in an exemplary medical context.

• We compare counterfactual explanations against two state-of-
the-art explanation systems that use saliency maps.

7.1 related work

Counterfactual explanations describe an alternative reality that is con-
trastive towards the observed one (Molnar, 2019). This approach of
generating explanations is in line with how humans explain things.
Humans rarely ask why something happened, but rather why the
current outcome is present instead of a different one (Miller, 2019).
This similarity is one of the advantages over approaches that focus
on feature importance.

7.1.1 Generating Counterfactual Explanations

Various approaches to generate counterfactual explanations have
emerged. The first to introduce counterfactual explanations have
been Wachter, Mittelstadt, and C. Russell (2017). They formulated
the computation of counterfactuals as an optimization problem. Their
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goal was to identify a counterfactual that is the closest to the orig-
inal input, by minimizing the distance between the input data and
a potential counterfactual. One of the first technical approaches on
generating counterfactual explanations - that is still widely used -
was DICE (Mothilal, Sharma, and C. Tan, 2020). However, DICE was
designed to work with numerical data, while in this chapter we focus
on image data.

7.1.2 Counterfactual Explanations for the Image Domain

For the image domain, Van Looveren and Klaise (2019) proposed a
model-agnostic approach to generate counterfactual explanations by
using class prototypes to improve the search for interpretable coun-
terfactuals. They evaluated their approach on the MNIST dataset, as
well as the Breast Cancer Wisconsin (Diagnostic) dataset. Goyal et al.
(2019) present an approach to create counterfactual explanations for
an image classification task. They exchange a patch of the original im-
age with a patch from a similar image from the training dataset which
gets classified differently. They evaluated their approach on four dif-
ferent datasets, including MNIST, SHAPES, Omniglot and Caltech-
UCSD Birds (CUB). Both the approaches, as they are not making use
of state-of-the-art generative models, produce outcomes of rather low
quality. Also, due to their specific counterfactual search procedures,
it is not guaranteed that the counterfactuals only change the input
images as much as needed.

7.1.3 GAN-based Counterfactual Explanations

Matthew L Olson et al. (2019) use a combination of a GAN and a
Wasserstein Autoencoder to create counterfactual states to explain
Deep Reinforcement Learning algorithms for Atari games. However,
their approach is not applicable to classification or regression prob-
lems.

Nemirovsky et al. (2022) proposed CounterGAN, an architecture in
which a generator learns to produce residuals that result in counter-
factual images when added to an input image. However, their ap-
proach was only tested for low-dimensional image data. Also the re-
sulting explanations were only computationally evaluated. W. Zhao,
Oyama, and Kurihara (2021) propose an approach for generating
counterfactual image explanations by using text descriptions of rel-
evant features of an image to be explained. Those text descriptions
are then analyzed regarding features that are not present in the coun-
terfactual class. A counterfactual text description is built, which is
subsequently transformed into a counterfactual image by using a text-
to-image GAN architecture. However, the text descriptions have to be
defined a priori, resulting in a lot of manual overhead.
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7.1.4 Counterfactual Explanations based on Style Transfer

GAN architectures from the field of Style Transfer or Image-to-Image
Translation - as explained in detail in Section 2.9 - enable the trans-
formation of images between different image domains. There is ex-
isting work that uses those techniques of adversarial image-to-image
translation for creating counterfactuals, but often the counterfactu-
als are not created for the purpose of explaining ML algorithms, but
rather to improve such models by augmenting training datasets. For
example, Neal et al. (2018) presented an algorithm to generate coun-
terfactual images in order to augment data for an open set learning
task, i.e., a task where not all classes are known during the train-
ing stage. C.-r. Wang et al. (2020) published an approach to create
counterfactual images of breast images to improve the task of mam-
mogram classification. To this end, they make use of the observation
that healthy human breasts look symmetrical, allowing for a projec-
tion of a healthy breast to an unhealthy breast of the same person.
While their results in theory could also be used as counterfactual
explanations, their generation algorithm inherently relies on the sym-
metry of body parts, strongly limiting the generalization capabilities
of their approach. Y. Zhao (2020) proposed to use a StarGAN (Y. Choi
et al., 2018) architecture to create counterfactual explanation images.
However, the system was only applied on binary images, i.e., images
where each pixel is either black or white. The resulting counterfactu-
als were used to highlight the pixels which differ between original
and counterfactual images.

All in all, our approach is the first that automatically generates coun-
terfactual images that are of high quality and are meant to explain a
classifier from the image domain. Additionally, we are the first to
conduct an extensive user study to compare such an image coun-
terfactual explanation mechanism to traditional feature attribution
mechanisms.

7.2 approach

In the following sections, we present a novel approach for generat-
ing counterfactual explanations for image classifiers using generative
adversarial learning that addresses the problems that remain in exist-
ing work: the approach generates realistic counterfactual explanations
while at the same time taking an AI’s decisions into account.

7.2.1 Counterfactual Explanations as an Image-to-Image Translation Prob-
lem

As discussed by Wachter, Mittelstadt, and C. Russell (2017), one of
the key concepts of counterfactual explanations is the concept of the
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closest possible world. Counterfactual explanations aim to show a slight
variation of some object, where the change between the original ob-
ject and its variation results in a different outcome. Transferred to
the task of explaining image classifiers, counterfactual explanations
should aim to answer the following question:

What minimal changes to the input image would lead the classi-
fier to make another decision?

This question implicates two major requirements to counterfactual
images:

• The counterfactual image should look as similar to the original
image as possible.

• The classifier should predict the counterfactual image as belong-
ing to another class as the original image.

Looking at the second statement at a more abstract level, the pre-
dicted class of an image can be seen as some sort of top-level feature
that describes a combination of several underlying features which the
classifier considers to be relevant for the classification. Thus, the gen-
eration of counterfactual images can be broken down to a transforma-
tion of certain features that are relevant for the classification, while
maintaining all other features which were not relevant for the classifi-
cation. However, these two objectives are also defining the problem of
Image-to-Image Translation. The goal of image-to-image translation is
to transform features that are relevant for a certain image domain to
features that lead to another image domain, while all other features
have to be maintained. An example of such an image-to-image trans-
lation task are style-conversion problems, where each image domain
represents a certain style. In this case, translating an image from one
domain to another is equivalent to changing the style of the image.
Viewing the problem of counterfactual creation from the perspective
of image-to-image translation inevitably leads to the idea of borrow-
ing techniques from that area for generating counterfactual images to
explain image classifiers.

7.2.2 Image-to-Image Translation with CycleGANs

In this section, some
important contents
from Section 2.9 is
very briefly
refreshed. If you
have paid close
attention there, you
can jump straight on
to the next section
(Section 7.2.3).

As already introduced in Section 2.9, there are various approaches for
solving image-to-image translation problems which rely on the use of
adversarial learning. The original GANs (Goodfellow et al., 2014) ap-
proximate a function that transforms random noise vectors to images
which follow the same probability distribution as a training dataset
(i.e., that appear similar to images from the training set which the
GAN was trained on). They do this by combining a generator network
G and a discriminator network D. During training the generator learns
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to create new images, while the discriminator learns to distinguish
between images from the training set and images that were created
by the generator. Thus, the two networks are improving each other
in an adversarial manner. The objective of the two networks can be
defined as follows:

Loriginal(G,D) = Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[log (1−D(G(z)))],
(12)

where x are instances of image-like structures and z are random noise
vectors. During training, the discriminator D maximizes that objective
function, while the generator G tries to minimize it.

Various modified architectures have successfully been used to re-
place the random input noise vectors with images from another do-
main. Thus, those architectures are capable of transforming images
from one domain to images of another domain. These approaches are
commonly described as image-to-image translation networks. Com-
mon adversarial approaches for these kind of tasks rely on paired
datasets (i.e., datasets that consist of pairs of images which only differ
in the features that define the difference of the two image domains).
As described above, in the context of counterfactual image generation
for image classifiers, the aim is to transfer images from the domain
of one class to the domain of another class. The aforementioned ad-
versarial architectures are therefore not suited for the generation of
counterfactual images since they could only be applied for classifiers
that are trained on paired datasets. In practice, paired datasets for
image classification are a rare occasion. A solution to the problem
of paired datasets was posed by Zhu et al. (2017), who introduced
the CycleGAN architecture. This architecture is based on the idea of
combining two GANs, where one GAN learns to translate images of
a certain domain X to images of another domain Y, while the other
GAN learns to do the exact opposite: convert images of domain Y to
images of domain X. The respective objective is defined as follows:

LGAN(G,DY ,X, Y) = Ey∼pdata(y)[logDY(y)]+Ex∼pdata(x)[log(1−DY(G(x)))]

(13)

where G is the generator of the first GAN and DY the discriminator
of the same GAN. Therefore, that first GAN learns the translation
from images of domain X to images of domain Y. The objective of the
second GAN, which consists of a generator F and a discriminator DX,
is defined analogously.

By feeding images x of domain X to G and subsequently feeding
the resulting image G(x) to F, the output of the second GAN F(G(x))

can be compared with the initial input x (and vice versa) to formulate
a so-called Cycle-consistency Loss:

Lcycle(G, F) = Ex∼pdata(x)[∥F(G(x)) − x∥1]+Ey∼pdata(y)[∥G(F(y)) − y∥1],
(14)
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Figure 34: Schematic overview of our approach. A CycleGAN architecture is extended with the clas-
sifier that shall be explained. Both the generators of the CycleGAN include the classifier’s
decisions for the generated data into their loss function.

where ∥x1∥ represents the L1 norm. In combination with the adver-
sarial losses given by Equation 13, the cycle-consistency loss can be
minimized to solve image-to-image translation tasks that do not rely
on a dataset of paired images. The full objective of such common
CycleGANs is denoted as:

L(G, F,DX,DY) = LGAN(G,DY ,X, Y)+LGAN(F,DX, Y,X)+λLcycle(G, F)
(15)

During training, the discriminators DX and DY aim to maximize that
objective function, while the generators G and F try to minimize it.

7.2.3 Extending CycleGANs for Counterfactual Explanations

Without loss of generality, we restrict ourselves to the generation of
counterfactual explanations for a binary classifier (i.e., a classifier that
only decides if an input image belongs to either one class or another).
In theory, this can easily be extended to a multi-class classification
problem by looking at each combination of classes as a separate bi-
nary problem. A naive approach to creating counterfactual images for
a binary classifier would be to train a traditional CycleGAN architec-
ture to transfer images between the two domains which are formed
by the two classes of the training dataset of the classifier. This would
lead to a system that is able to convert images from the domain of
one class to images of the domain of the other class, while maintain-
ing features that do not contribute to determining to which domain
an image belongs to. If we now assume that the classifier, which we
want to explain, is perfect and always predicts the correct class for
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every possible image in the two domains, then this would lead to
counterfactual explanations: An input image, which was classified to
belong to one of the two classes, can be fed into the trained Cycle-
GAN to translate it into an image that is classified as the other class.
However, this might not be an ideal explanation, since it is theoret-
ically possible that the classifier does not use all the features which
define a class (e.g., if some features are redundant). Moreover, the as-
sumption of a perfect classifier is obviously wrong in the most cases.
Thus, the resulting image can by no means be seen as a counterfac-
tual explanation of a classifier, as the translation happens between two
classes of the training dataset without considering the classifier’s de-
cision. To tackle that problem, a further constraint has to be added
to the CycleGAN in order to take the actual decision of the classifier
into account. To achieve this, we propose to incorporate an additional
component to the CycleGAN’s objective function, which we will de-
scribe below. Analogous to above, where x represented an image of
domain X, let x now be an image that belongs to class X, while y

belongs to class Y. Furthermore, consider a classifier C that for every
input image img predicts either C(img) = X or C(img) = Y. In this
case, a perfect classifier would fulfill both of the following statements:

∀x ∈ X : C(x) = X and ∀y ∈ Y : C(y) = Y (16)

As of the objective functions that are used for the definition of the
CycleGAN, G is responsible for the translation of images x from do-
main X to images that belong to Y, while F translates images from Y

to X. As a counterfactual explanation should show images that the
classifier would assign to another class as the original input images,
the following statements should be fulfilled by G and F respectively:

C(img) = X =⇒ C(G(img)) = Y

and

C(img) = Y =⇒ C(F(img)) = X (17)

Most state-of-the-art classifiers do not simply output the actual class
that was predicted. They rather use a softmax function to output a
separate value for each class, representing the probability that the
input actually belongs to the respective class. Thus, we extend the
above formulation of our binary classifier to C2(img) = (pX,pY)

T ,
where pX represents the probability of img belonging to X, while pY

represents the probability of img belonging to Y. With this in mind,
we can formulate a loss component for the counterfactual generation:

Lcounter(G, F,C) = Ex∼pdata(x)[∥C2(G(x)) −
(
0
1

)
∥22]

+ Ey∼pdata(y)[∥C2(F(y)) −
(
1
0

)
∥22], (18)

where ∥·∥22 is the squared L2 Norm (i.e., the squared error).
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We chose the vector (1, 0)T and (0, 1)T since we wanted very expres-
sive counterfactuals that are understandable by non-expert users. In
theory one could also chose closer vectors like (0.49, 0.51) to enforce
counterfactual images that are closer to the decision boundary of the
classifier.

Using our proposed counterfactual loss function allows to train a
CycleGAN architecture for counterfactual image generation. During
training, the generator networks of both GANs are getting punished
for creating translated images that are not classified as belonging to
the respective counterfactual class by the classifier.
Furthermore, as proposed by the authors of CycleGAN (Zhu et al.,
2017), we add an identity loss, that forces input images to stay the
same, if they already belong to the target domain:

Lidentity(G, F) = Ey∼pdata(y)[||G(y)−y||1]+Ex∼pdata(x)[||F(x)−x||1]

(19)

Thus, the complete objective function of our system is composed as
follows:

L(G, F,DX,DY ,C) = LGAN(G,DY ,X, Y)

+LGAN(F,DX, Y,X)

+ λLcycle(G, F)

+ µLidentity(G, F)

+ γLcounter(G, F,C) (20)

where µ is an Identity Loss Weight and γ is a Counterfactual Loss Weight.
During training, the discriminators DX and DY aim to maximize that
objective function, while the generators G and F try to minimize it.
A schematic overview of our approach is depicted in Figure 34.

7.3 implementation and computational evaluation

The code of our implementation can be found online.1

7.3.1 Use Case: Pneumonia Detection

One major drawback of common XAI techniques such as LIME or
LRP is that they highlight certain regions of interest, but they do
not tell something about the semantics of that regions. Thus, when
explaining a machine learning model, they give information about
where to look for relevant things, but not explicitly why those things
are relevant. Counterfactual explanation images tackle this problem.
We argue that the advantages of such a counterfactual system stand
out especially in explanation tasks where the users of the system do

1 https://github.com/hcmlab/GANterfactual

https://github.com/hcmlab/GANterfactual
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Figure 35: Example images of the used dataset. The top row shows images that are labeled as Normal,
while the bottom row shows images labeled as Lung Opacity, indicating lungs that are suf-
fering from pneumonia.

not have much prior knowledge about the respective problem area
and thus are not able to interpret the semantics of the regions of rele-
vance without assistance.
Therefore, to evaluate our approach, we chose the exemplary use-
case of Pneumonia Detection. We trained a binary classification Convo-
lutional Neural Network (CNN) to decide whether a given input of
a human upper body’s x-ray image shows a lung that suffers from
pneumonia or not. Subsequently, we trained a CycleGAN that was
modified with our proposed counterfactual loss function, incorporat-
ing the trained classifier.

Besides the importance of medical non-experts being able to un-
derstand diagnoses relating to them (Zucco et al., 2018), medical non-
experts do not have a deeply formed mental model of the chosen
domain. As such, we hypothesize that this leads to a lack of inter-
pretability for common XAI techniques that only highlight areas of
relevance.

7.3.1.1 Classifier Training

The aim of this section is to give an overview of the classifier that we
want to be explained for our particular use case. However, we want
to emphasize that our approach is not limited to this classifier’s archi-
tecture. The only requirement for training our explanation network is
a binary classifier C that is able to return a class probability vector
(pX,pY)

T for an image that is fed as input.
To evaluate our system, we trained a CNN to decide if input images of
x-rays are showing lungs that suffer from pneumonia or not. We used
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the dataset published for the RSNA Pneumonia Detection Challenge2 by
the Radiological Society of North America. The original dataset con-
tains 29,700 frontal-view x-ray images of 26,600 patients. The training
data is split into three classes: Normal, Lung Opacity and No Lung Opac-
ity / Not Normal. We took only the classes Normal and Lung Opacity,
as Franquet (2018) argue that opacity of lungs is a crucial indicator
of lungs suffering from pneumonia, and we only wanted to learn the
classifier to distinct between lungs suffering from pneumonia and
healthy lungs. Other anomalies that do not result in opacities in the
lungs are excluded from the training task to keep it a binary classifica-
tion problem. All duplicates from the same patients were removed as
well. For the sake of simplicity, we will refer to the class Lung Opacity
as Pneumonia in the rest of this chapter. The resolution of the images
was reduced to 512x512 pixels. Subsequently, we randomly split the
remaining 14,863 images into three subsets: train, validation, and test.
The distribution of the partitions is shown in Table 7.

Partition Normal Pneumonia Total

Train (70%) 6195 4208 10403

Validation (10%) 886 602 1488

Test (20%) 1770 1202 2972

Total 8851 6012 14863

Table 7: Distribution of the images of the used dataset.

We trained an AlexNET architecture to solve the described task.
For details about AlexNET, we want to point the interested reader
to Krizhevsky, Sutskever, and G. E. Hinton (2017). We slightly mod-
ified the architecture to fit our needs. These modifications primarily
include L2 regularization to avoid overfitting. Further, we replaced
the loss function with an MSE loss, as this worked well for our classi-
fication task. A detailed description of the model that we used can be
found in the appendix. The training configuration is shown in Table
8.

After training the classifier on the train partition for 1000 epochs, it
achieved an accuracy of 91,7% on the test set (f1 score: 0.894; f2 score:
0.883). It should be noted that there exists a plethora of work that fo-
cuses on building classifiers that achieve a high classification perfor-
mance on tasks that are similar to this one. Those classifiers achieve
much better performance values than our classifier does. However,
the aim of our work is to explain the decisions of a classifier. Explain-
ing an AI model does not only include explaining decisions where
the AI was right, but also cases where the AI was wrong, as a com-
plete understanding of an AI also covers an understanding of cases

2 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/
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Parameter Value

Optimizer Stochastic Gradient Descent

Learning Rate 0.0001

Momentum 0.9

Batch Size 32

Epochs 1000

Loss Function Mean Squared Error

Table 8: Training configuration of the used AlexNET.

where the AI’s decisions are incorrect. Thus, we found that a perfect
classification model would not be an appropriate tool to measure the
performance of an XAI system, resulting in our decision to not im-
prove the classifier performance further (i.e., we did not conduct any
hyperparameter tuning or model optimization).

7.3.1.2 CycleGAN Training

We trained a CycleGAN model with the objective function adapted
as proposed in Section 7.2. As training dataset, we used the train
partition of the same dataset that we used for our classifier. Our pro-
posed counterfactual loss Lcounter was calculated using the trained
classifier that was described in the previous subsection. The architec-
ture of both the generators as well as both the discriminators where
adopted from Zhu et al. (2017). As proposed by them, we addition-
aly used a modified version of the discriminator architecture called
PatchGAN. This variant of the discriminator approximates validity
values for different patches of the input instead of a single validity
value for the whole input. Such a validity value estimates whether
the input was generated by the generator or came from the training
set. Further architectural details can be found in their publication.
The training configuration parameters are listed in Table 9. Examples
of counterfactual images that were produced by feeding images from
the test partition into our trained generative model are shown in
Figure 36. Here, the main structure and appearance of the lungs are
maintained during the translation process, while the opacity of the
lungs is altered. This was expected due to the pneumonia class of
the used dataset being defined by lungs that show a certain degree
of opacity. All in all, the visual inspection of the produced results
already shows that our approach is promising.



7.3 implementation and computational evaluation 111

Figure 36: Examples of counterfactual images produced with our proposed approach. In each pair,
the left image shows the original image, while the right image shows the corresponding
counterfactual explanation. The red boxes were added manually to point the reader to the
regions that were altered the most. The original images in the top row were classified as
normal, while the original images in the bottom row were classified as pneumonia. The shown
counterfactual images were all classified as the opposite as their respective counterpart.

Parameter Value

Optimizer Adam

Learning Rate 0.0002

Beta 1 0.5

Beta 2 0.999

Batch Size 1

Epochs 20

Cycle Consistency Loss Weight 10

Identity Loss Weight 1

Counterfactual Loss Weight 1

Table 9: Training configuration of the CycleGAN with our proposed coun-
terfactual loss function.

7.3.2 Computational Evaluation

To see if the produced counterfactual images are classified differently
than the original input images, we evaluated the system on the test
partition. By doing so, we explicitly assess the Validity of the counter-
factual explanations. To this end, we fed every image into the classi-
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Figure 37: Computational evaluation results of the counterfactual image generation performance. The
confusion matrices show the number of samples out of each subset (Normal, Pneumonia,
Total) of the rsna dataset that the classifier predicted to be the respective class before (y-axis)
and after (x-axis) the samples had been translated by either the original CycleGAN or by
our approach.
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fier, translated the image by the use of the respective generator net-
work, and then classified the resulting counterfactual image. We did
this separately for the images that originally were labeled as normal,
as well as for those that were labeled as Lung Opacity. We performed
this whole procedure for a CycleGAN that was modified with our
approach, as well as for an original CycleGAN architecture that does
not implement our proposed counterfactual loss function. It should
be noted that this computational evaluation is not meant to assess the
explanation performance per se, but rather it evaluates if our main
modification to the CycleGAN (i.e., the addition of the counterfactual
loss), indeed enhances the CycleGAN architecture with the capability
to generate counterfactual images. To assess the explanation perfor-
mance of our approach compared to traditional XAI techniques, we
conducted a user study that will be described in Section 7.4.

Figure 37 shows the results of the computational evaluation. It can
be seen that the counterfactual images generated by our approach
were indeed classified as a different class than the original image
in most of the cases. In total, our approach reaches an accuracy of
94.68%, where we understand the accuracy of a counterfactual im-
age generator to be the percentage of counterfactuals that actually
changed the classifier’s prediction. For the images that were origi-
nally labeled as normal, the accuracy was 99.77%, while for the images
that were labeled as Lung Opacity the accuracy reached 87.19%. Con-
trary, the original CycleGAN only reaches 37.75% accuracy in total
(34.58% on normal lungs, 42.43% on Lung Opacity lungs). Those results
indicate that the modification of the CycleGAN’s objective with our
additional counterfactual loss has a huge advantage over the original
CycleGANs when aiming for the creation of counterfactual images. In
conclusion, the counterfactual generation with our approach works
sufficiently well, but it has a harder time when being confronted with
images that actually show lungs suffering from pneumonia than in
the case of processing images that show healthy lungs.

7.4 user study

To investigate the advantages and limitations of XAI methods, it is
crucial to conduct human user studies.

In this section, we describe the user study we conducted to com-
pare our proposed counterfactual approach with two state-of-the-art
XAI approaches (LRP and LIME).

7.4.1 Conditions

We compare three independent variables by randomly assigning each
participant to one of three conditions. The participants in each con-
dition only interacted with a single visual explanation method. This
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between-subject design was chosen to avoid fatigue among the partic-
ipants. Participants in the LRP condition were assisted by heatmaps
generated through Layer-wise Relevance Propagation using the z-rule
for fully connected layers and the α1β0-rule for convolutional layers,
as recommended by Montavon et al. (2019). The LIME condition con-
tained highlighted Super-Pixels which were generated by LIME. Here,
we chose the Simple Linear Iterative Clustering (SLIC) segmentation al-
gorithm which Schallner et al. (2019) found to perform well in a simi-
lar medical use case. For the remaining hyperparameters, we used the
default values and showed the five most important super-pixels. For
both LIME and LRP, we omit the negative importance values since
those were highly confusing to participants in our pilot study. Par-
ticipants in the counterfactual condition were shown counterfactual
images generated by our proposed approach (see section 7.2). The
three different visualisations can be seen in Figure 38.

7.4.2 Hypotheses

All our hypotheses are targeting non-experts in healthcare and artifi-
cial intelligence. Since our aim is to evaluate our proposed counterfac-
tual approach, we do not investigate differences between the saliency
map conditions (LRP and LIME). For our user study we formulated
the following hypotheses. Note that we did not specifically evaluate
the image quality of the explanations, as the focus of our study was on
the conceptual comparison between our method and feature attribu-
tion mechanisms and not on achieving the best possible quality.

• Explanation Satisfaction: Participants are more satisfied with
the explanatory quality of counterfactuals compared to LIME
and LRP.

• Mental Models: Counterfactuals helped participants to create
more correct mental models about the AI than LIME and LRP.

• Trust: Participants have more trust in the AI system if it is ex-
plained with counterfactuals than if it is explained with LRP or
LIME.

• Emotions: The intuitive and simple interpretation of counter-
factuals makes participants feel happier, more relaxed and less
angry compared to LRP and LIME.

• Self-efficacy: If counterfactuals are a more satisfying XAI
method than LRP or LIME, participants feel also strength-
ened in their self-efficacy towards the AI system, compared
to participants in the LRP and LIME conditions.
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7.4.3 Methodology

To evaluate our hypotheses, we used the following Methods:

mental models We use two metrics to evaluate the mental mod-
els that the participants formed through our XAI methods. Quantita-
tively, we conduct a prediction task, as proposed by Hoffman et al.
(2018), where the participants have to predict what the AI model will
decide for a given x-ray image. For a more qualitative evaluation, we
used a form of task reflection, also proposed by Hoffman et al. (2018).
Here, the participants were asked to describe their understanding of
the AI’s reasoning after they completed the prediction task. For this,
the participants were asked two questions about their mental model
of the AI: “What do you think the AI pays attention to when it pre-
dicts pneumonia?” and “What do you think the AI pays attention to
when it predicts healthy lungs?”

explanation satisfaction We used the Explanation Satisfac-
tion Scale, proposed by Hoffman et al. (2018) to measure the partici-
pants’ subjective satisfaction with the visual explanations (LRP, LIME,
or counterfactuals) that we presented.

trust To evaluate the trust in the presented AI system, we used
two items (i.e., “I trust the system” and “I can rely on the AI system”)
from the Trust in Automation (TiA) questionnaire proposed by Kör-
ber (2018). Körber points out that one or two items are sufficient to
measure trust if people have no previous experience with the system,
as is the case with our system.

emotions We used items for the subscales anger, happiness, and
relaxation of the Discrete Emotions Questionnaire (DEQ) (C. Harmon-
Jones, Bastian, and E. Harmon-Jones, 2016) to evaluate the partici-
pants’ feelings after having solved the tasks.

self-efficacy We used one item to measure the self-efficacy to-
wards the AI system. For this, we used a variation of one item pro-
posed by Bernacki, Nokes-Malach, and Aleven (2015) (i.e., "How con-
fident are you that you could detect pneumonia using the presented
explanations in the future?").

7.4.4 Participants

In order to detect an effect of η2p =0.04, with 80 % power in a one-way
between subject MANOVA (three conditions, α=.05), the conducted
a-priori power analysis suggested that we would need 37 participants
in each condition (N = 111). In order to compensate for possible drop-
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outs, we collected data of 122 participants using the Clickworker on-
line platform3.

To ensure a sufficient English level, participation was limited to
users from the US, UK, Australia, or Canada whose native language
is English. Since LRP and LIME are not designed with color blind
people in mind, the participants were also asked if they were color
blind and stopped from participating if they were.

To make sure that the participants understood the provided infor-
mation about the task correctly, we used a quiz that they had to com-
plete correctly to take part in the study. As incentive to diligently
do the task, the participants received a bonus payment in addition
to the base payment if they correctly predicted at least 2/3 of the AI
model’s prediction. In addition to these precautions, we subsequently
excluded 4 participants due to the fact that they never looked at the
XAI visualisations or their responses did not reflect a serious engage-
ment with the study (e.g., free text answers which are not related to
the question at all).

For our final analysis we used data from 118 participants between
18 and 67 years (M = 38.5, SD = 10.9). 63 of them were male, 53 fe-
male and 2 non-binary. The participants were randomly separated
into the three XAI visualisation conditions. All in all, only 8 partic-
ipants reported experience in healthcare. 43 participants stated that
they had experience in AI. The level of AI and healthcare experience
was evenly distributed between the three conditions.

7.4.5 Procedure

The entire study was web-based. After providing some demographic
information, the participants received a short tutorial that explained
the x-ray images and the XAI visualisations which they would inter-
act with in the experiment. After the tutorial, each participant had
to answer a quiz. Here, questions were asked to ensure that the par-
ticipants carefully read the tutorial and understood how to interpret
the x-ray images (e.g., “Which part of the body is marked in this
picture?”) and the XAI visualisations (e.g., “What do green areas in
images tell you?” for the LIME and LRP conditions). Only partici-
pants who solved the quiz successfully were allowed to participate in
the actual experiment.

The quiz was followed by the prediction task. Here, the partici-
pants were asked to predict the AI’s diagnosis for 12 different images.
To avoid cherry picking while still ensuring variety in the images,
we randomly chose 12 images based on the following constraints: To
make sure that the classifier equally makes false and correct predic-
tions for each class, we wanted 3 true positives, 3 false positives, 3 true
negatives, and 3 false negatives. Furthermore, inspired by Alqaraawi

3 https://www.clickworker.com/clickworker/
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Figure 38: An example x-ray image classified as Pneumonia, as well as the different XAI visualizations
used in our study when the slider is fully on the right side. Best viewed in color.

et al. (2020), we additionally used the AI model’s confidence to en-
sure diversity in the images. Decisions where the model is certain are
often easier to interpret than decisions where the AI model struggled.
Since our prediction classifier mainly had confidence values between
0.8 and 1, we randomly chose one x-ray image with confidence val-
ues of 0.8, 0.9 and 1 (rounded) out of each of the sets of true positives,
false positives, true negatives, and false negatives.

In addition to the original image, the participants were provided
with a slider to interact with the XAI visualizations. Moving the slider
to the right linearly interpolated the original image to either the coun-
terfactual image or a version of the image that is augmented with a
LRP or LIME heatmap, depending on the condition the user was in.
Figure 38 shows an example of the 3 different XAI visualizations for
one of the images used in our experiment. By tracking if the partici-
pants used the slider, we additionally know whether they looked at
the XAI visualizations.

In our pilot study (N = 10), we found that participants often project
their own reasoning to the AI. To mentally differentiate between their
own diagnosis and the AI’s diagnosis, the participants in the final
study were asked whether they themselves would classify the given
image as pneumonia or not pneumonia and how confident they are in
this diagnosis on a Likert scale from 1 (not at all confident) to 7 (very
confident). Then they were asked to predict whether the AI will clas-
sify the image as pneumonia or not pneumonia, based on the given XAI
visualization. Again, they had to give a confidence rating in their pre-
diction from 1 to 7. Finally, they could give a justification for their
prediction if they wanted to. After each prediction they were told the
actual decision of the AI for the last image. A schematic of the full
task is shown in Figure 39.

After predicting the AI’s decision for all 12 x-ray images, the task re-
flection followed. Here, participants had to describe their understand-
ing of the AI’s reasoning. Then the questionnaires about Explanation
Satisfaction, Trust, Self-efficacy and Emotion were provided.
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Figure 39: A simplified schematic of our prediction task.
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7.4.6 Evaluation Methods

quantitative evaluation of the results We calculated the
mean of the correct predictions of the AI and the participants confi-
dences in their predictions of the AI. To make sure that we only use
responses, where the participants at least saw the visual explanations,
we excluded answers where the participant did not move the slider.
If, for example, a participant did not use the slider 4 times then we
only calculated the mean for the remaining 8 answers.

For the DEQ we calculated the mean for the emotion subscales
happy, anger, and relaxation. For the TiA, we calculated an overall
trust score from the two questions presented.

qualitative evaluation of the participants’ mental

model of the ai Similar to Anderson et al. (2019) and Huber,
Weitz, et al. (2020), we used a form of summative content analysis
(Hsieh and Shannon, 2005) to qualitatively evaluate the participants’
free text answers to the questions “What do you think the AI pays
attention to when it predicts pneumonia?” and “What do you think
the AI pays attention to when it predicts healthy lungs?”. Our clas-
sifier was trained on a dataset consisting of x-ray images of normal
lungs and x-ray images that contain lung opacity, which is a crucial
indicator of lungs suffering from pneumonia. Since we only told the
participants that our model classifies pneumonia, we can score their
responses based on whether they correctly identified lung opacity
as a key decision factor for our model. To this end, two annotators
independently went through the answers and assigned concepts to
each answer (e.g., opacity, clarity, contrast and other organs than the
lung). Then, answers to the pneumonia question that contained at
least one concept which related to opacity, like opacity, white color in
the x-ray and lung shadows, received 1 point. Answers to the healthy
lungs question that contained at least one concept related to clarity,
like clarity, black color in the x-ray or no lung shadows, received 1 point.
Answers for both questions that contained a concept related to con-
trast, like contrast or clear edges, received 0.5 points. All other answers
received 0 points. For 21 out of all 236 responses, the two annota-
tors differed in the given score. Here, a third annotator was asked
to assign 0, 0.5 or 1 points to the answer and the final points were
calculated by majority vote between the three annotators. By adding
the points for those two questions, each participant was given a score
between 0 and 2, approximating the correctness of their description
of the AI.
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Figure 40: Results of the explanation satisfaction and trust questionnaires. Error bars represent the 95%
Confidence Interval (CI).

Figure 41: Results of the prediction task, and the task reflection questions. Error bars represent the 95%
Confidence Interval (CI).

7.5 results

7.5.1 Impact of XAI methods on Explanation Satisfaction, Trust, and Pre-
diction Accuracy

As a first impression of their mental models of the AI, the participants
had to predict the decision of the neural network (pneumonia / no
pneumonia). At the end of the study, they rated their trust in the AI as
well as their explanation satisfaction. To evaluate these variables be-
tween the three conditions, we conducted a one-way MANOVA. Here,
we found a significant statistical difference, Wilks’ Lambda = 0.59,
F(6, 226) = 11.2, p < .001. The following ANOVA revealed that all
three variables showed significant differences between the conditions:



7.5 results 121

• Prediction accuracy: F(2, 115) = 30.18, p = .001,

• Explanation satisfaction: F(2, 115) = 5.87, p = .004,

• Trust: F(2, 115) = 3.89, p = .02,

To determine the direction of the differences between the three XAI
method conditions, we used post-hoc comparisons for each variable4.
The effect size d is calculated according to Cohen5 (Cohen, 2013).

We found the following differences:

• Prediction accuracy: The participants’ predictions of the AI’s
decisions were significantly more correct in the counterfactual
condition compared to the LRP condition t(115) = -6.48, p = .001,
d = 1.47 (large effect) as well as compared to the LIME condi-
tions t(115) = -6.92, p = .001, d = 1.55 (see left sub-figure of Figure
41).

• Explanation satisfaction: Participants were significantly more
satisfied with the explanation quality of the counterfactual ex-
planations compared to the LRP saliency maps, t(115) = -3.05,
p = .008, d = 0.70 (medium effect) and the LIME visualisations,
t(115) = -2.85, p = 0.01, d = 0.64 (medium effect)(see Figure 40).

• Trust: The AI was rated as significantly more trustworthy in
the counterfactual condition compared to the LRP condition,
t(115) = -2.56, p = .03, d = 0.58 (medium effect) but not to the
LIME condition, t(115) = -0.29, p = .07 (see Figure 40).

7.5.2 Results of the qualitative Evaluation of the Users’ Mental Models

Subsequently to the significant differences in the prediction accuracy
as a first impression of the mental model of the participants, we anal-
ysed the results of the content analysis of the task reflection responses.
For this, we conducted a one-way ANOVA. Here we found a signif-
icant statistical difference, F(2, 115) = 7.91, p < .001. To determine
the direction of the differences between the three conditions, we used
post-hoc comparisons (see right sub-figure of Figure 41): Participants
were asked to describe the AI’s reasoning in three different conditions:
counterfactual, LRP and LIME. Out of these, participants created cor-
rect descriptions significantly more often in the counterfactual condi-
tion compared to the LRP condition, t(115) = -3.76, p < .001, d = 0.85

(large effect) and the LIME condition, t(115) = -2.97, p = .01, d = 0.66

(medium effect).

4 We used the Holm correction for multiple testing to adjust the p-values for all post-
hoc tests we calculated.

5 Interpretation of the effect size is: d < .5 : small effect; d= 0.5-0.8 : medium effect;
d > 0.8 : large effect
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Figure 42: Results of the emotion questionnaires. Participants in the counterfactual condition felt sig-
nificantly less angry and more relaxed compared to the LRP saliency map condition. For
LIME, no significant differences were found. Error bars represent the 95% CI.

7.5.3 Impact of XAI Methods on Users’ Emotional State

We also wanted to investigate whether working with the XAI meth-
ods had an influence on the emotional state of the participants. To
analyse possible effects, we conducted a one-way MANOVA. Here
we found a significant statistical difference, Pillai’s’ Trace = 0.20,
F(6, 228) = 4.26, p < .001. The following ANOVA revealed that the
emotion anger, F(2, 115) = 6.75, p = .002 and relaxation, F(2, 115) = 9.07,
p < .001 showed significant differences between the conditions.
Happy showed no significant differences between the conditions,
F(2, 115) = 2.06, p = .13. The post-hoc comparisons6 showed the
following differences (see Figure 42):

• Anger: Participants in the counterfactual condition felt signif-
icantly less angry than in the LRP condition, t(115) = 3.68,
p = .001, d = 0.83 (large effect). No differences were found for
the LIME condition, t(115) = 1.83, p = .12.

• Relaxation: Participants in the counterfactual condition were
significantly more relaxed than in the LRP condition, t(115) = -
4.26, p < .001., d = 0.96 (large effect). No differences were found
for the LIME condition, t(115) = -2.12, p < .06

7

7.5.4 Impact of XAI Methods on Users’ Self-Efficacy

The analysis showed that (1) the quality of counterfactual explana-
tions was rated significantly higher and (2) participants predicted the
decisions of the AI significantly more accurate compared to LIME and
LRP. Based on our last hypothesis, we therefore examined whether
these positive assessments were also reflected in the self-efficacy and
in the prediction confidence of the participants. For this purpose, we

6 We used the Holm correction for multiple testing to adjust the p-values
7 This p-value was no longer significant due to the Holm correction.
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Figure 43: Significant differences regarding self-efficacy and general confidence of the participants in
their predictions of the AI between the counterfactual condition and the saliency map con-
ditions (LRP and LIME). Error bars represent the 95% CI.

conducted a one-way MANOVA. Here, we found a significant statis-
tical difference, Pillai’s Trace = 0.15, F(4, 230) = 4.69, p = .001. The
following ANOVA revealed a statistical difference for self-efficacy
F(2, 115) = 6.93, p = .001 and prediction confidence F(2, 115) = 7.68,
p < .001 between the conditions. The post-hoc comparisons showed
that counterfactuals lead to a significantly higher self-efficacy com-
pared to LRP t = -3.44, p = .002, d = 0.78 (medium effect) as well
as LIME, t(115) = -2.94, p = .01, d = 0.66 (medium effect). The same
pattern was found for the prediction confidence, where counterfac-
tuals lead to a significantly higher prediction confidence compared
to LRP t(115) = -3.45, p = .002, d = 0.78 (medium effect) as well as
LIME, t(115) = -3.32, p = .003, d = 0.74 (medium effect) (see Figure 43).
A closer look reveals that these significant differences stem from the
confidence in the correct predictions and not the confidence in the
incorrect ones (see Figure 44).

7.6 discussion

The study described in the previous sections was conducted with
the aim to verify our hypotheses. With this in mind, we discuss our
results in this section.

7.6.1 Explanation Satisfaction

As the results show, the counterfactual explanation images that were
generated by the use of our novel approach provided the participants
with significantly more satisfying explanations as both of the saliency
map approaches. Saliency map methods like LIME and LRP only
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Figure 44: Confidence of the participants in correct and false predictions. The significant difference
between the counterfactual condition and the saliency map conditions is based on the confi-
dence in correct predictions, not in the incorrect ones. Error bars represent the 95% CI.

show which pixels were important for the AI’s decision. The users
are left alone with the task of building a bridge between the informa-
tion of where the AI looked at, and why it looked there. Contrary, the
counterfactual explanations generated by our system directly show
how the input image would have to be modified to alter the AI’s de-
cision. Thus, the participants did not have to come up with an inter-
pretation of the semantics of important areas by themselves. As the
results of our study show, this difference plays a significant role in
how satisfying the explanations are to non-expert users, validating
our first hypothesis.

7.6.2 Mental Models

As described in section 7.4, two different methods were used to eval-
uate if the explanation systems allowed the participants to build up
an appropriate mental model of the classifier. First, the participants
had to do a prediction task of 12 images, where they had to decide if
the AI would classify each of those images either as Pneumonia or No
Pneumonia. Our results show that the participants were significantly
better in performing those prediction tasks when they were shown
counterfactual images created by our system than they were when
provided with LIME or LRP saliency maps. Again, it could be argued
that this advantage is caused by the fact that the counterfactual im-
ages give more than just a spatial information about the regions of
importance. In fact, the actual decision of the AI was highly depen-
dent on the blurriness of certain areas of the lung. A crucial thing
to mention is that the absence of blurriness, i.e. the clarity of x-ray
images that do not show lungs that are infected by pneumonia, ob-
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viously occurs at similar places where cloudy areas would appear in
the case of pneumonia. Thus, the visual highlighting created by LIME
or LRP predominantly shows where this distinction between opaque
and not opaque lungs is made. However, the information is missing
to which degree the AI actually thinks that there is an opacity in the
lung. In contrast, the counterfactual images give this information by
increasing or decreasing that opacity respectively. In general, we think
that our counterfactual system has the most advantage in these kind
of tasks, where the important regions are not distinct for different de-
cisions. Specifically, we think that our approach excels in tasks where
the AI’s decision is being directed by different textural characteristics
rather than by the position of certain objects in the image. The content
analysis of the task reflection strengthens this assumption. Here, par-
ticipants from the LRP and LIME conditions often referred to certain
organs or regions in the image instead of focusing on the key decision
factor of opacity. Examples for this are: “The AI pays attention not to
just the lungs but the surrounding areas as well. The Abdomen seems
to be an area of focus.”, “From the heatmap I noticed the AI paying
attention to the surrounding areas of the lungs, the spine, heart, ab-
domen, and the armpits often when it predicted pneumonia.” and “I
think the AI needs to see the green near the bottom of the chest to
think healthy lungs.”

7.6.3 Trust

Our results show that counterfactual explanations encouraged the
participants to have more trust in the AI system. However, this only
became apparent in comparison to LRP, but not to LIME. This result
indicates that, on the one hand, the type of explanation (counterfac-
tual explanation vs. feature importance/saliency maps) has an influ-
ence on the perceived trust of users. On the other hand, it also shows
that even explanations of one type of XAI mechanisms (here: saliency
map approaches) are perceived differently by users. This finding is
important because it indicates that the type of visualisation (pixel-
wise or superpixel-based) also has an influence on the users’ trust
rating. In our study we examined the general influences of three XAI
methods on trust. Based on the results, further analyses are now nec-
essary. For example, the question arises whether there is a correlation
between the participants’ predictions and the trust rating. One in-
teresting observation in our results is that participants in the LIME
condition trusted the system on a similar level as the participants
in the counterfactual condition even though they performed signifi-
cantly worse in the mental model evaluation. This indicates that their
trust might not be justified. While this is interesting, the question of
whether the trust of the participants in the AI system was actually
justified needs to be examined more closely in the future.
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7.6.4 Emotions

In our user study, we not only investigated the impact of XAI visuali-
sations on trust and mental models, but also - for the first time - the
emotional state of the participants. The results show that XAI not only
influences users’ understanding and trust, but also has an impact on
users’ affective states: Counterfactual explanations promote positive
emotions (i.e., relaxation) and reduce negative emotions (i.e., anger).
We suspect that this was because users might have found it easier
to interpret the counterfactuals: users might have gotten frustrated
while looking at explanations that they did not fully understand.

7.6.5 Self-efficacy

Our results show that participants were not only able to correctly
assess the predictions of the AI with the help of the counterfactual
explanations, but also that they were very confident in their judge-
ments. Upon closer inspection we found that this boost in confidence
only stems from the predictions which the participants got right. This
indicates that they were not overconfident but justified in their confi-
dence. While this is an interesting observation, it needs further inves-
tigation. The increase in confidence is also reflected in a significant
increase in the self-efficacy of participants in the counterfactual con-
dition, compared to LIME and LRP. Already A. Heimerl et al. (2020)
assumed that the use of XAI could be a valuable support to improve
self-efficacy towards AI. This assumption was empirically proven for
the first time in our study and contributes to building more human-
centered AI systems.

7.6.6 Limitations

It has to be investigated further how our proposed counterfactual
generation method performs in other use cases. We believe that the
advantage of our system in this pneumonia detection scenario to
some degree results from the fact that the relevant information of the
images is of a rather textural structure.
A further noteworthy observation is that, although the study showed
that the produced counterfactuals lead to good results in our cho-
sen non-expert task, our system modifies relevant features in a very
strong way, i.e., features that are relevant for the classifier are mod-
ified to such a degree that the classifier is sure that the produced
image belongs to the respective other class. As these strong image
modifications point out the relevant features in a very emphasized
way, they lead to satisfactory explanations for non-experts that are
not familiar with fine details of the problem domain. However, those
kind of explanations might not be optimal for expert users, as those
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could perceive the performed feature translation as an exaggerated
modification of the original features. The adaption of our system
for an expert system would demand for further modification of our
proposed loss function to produce images that are closer to the clas-
sifier’s decision boundary. We already propose a possible adjustment
for this in section 7.2 but did not test this adjustment thoroughly yet.
In our work, we presented a use case that was based on a binary
classification problem. We want to emphasize that the proposed
method can in theory easily be extended to a multi-class classifica-
tion problem. In order to do so, multiple CycleGAN models have to
be trained. When dealing with k classes {S1, ...,Sk}, for every pair of
classes (Si,Sj), with i ̸= j, a CycleGAN has to be trained to solve
the translation task between domain Si and Sj, resulting in k!

2(k−2)!
models. While there is conceptually not a problem with this, the
training of a huge number of models in practice can become a chal-
lenge due to limited resources. Thus, we see the application of our
approach rather in explaining classifiers that do not deal with too
many different classes. A further question that arises when dealing
with a multi-class problem is the choice of the classes for which a
counterfactual image is generated. A straight-forward solution to
this is to simply generate counterfactual explanations for all classes.
Another way - that is more feasible for problems with a huge number
of classes - is to pick the counterfactual classes according to the class
probability that was attributed by the classifier.

In our chosen use case, relevant information is mainly contained
in textural structures. Therefore, we cannot make a general statement
about how the approach would perform in different scenarios where
information is more dependent on non-textural information, e.g., oc-
currence or location of certain objects. However, we plan to address
this question in future research by applying our approach to different
scenarios.

Further, medical research often uses 3D data. Future work has to
investigate if our GAN-based approach can be modified to cope with
3D structures (e.g., MRT data) in order to cover a wider range of
practical scenarios.

7.7 conclusion

In this chapter, we introduced a novel approach for generating coun-
terfactual explanations for explaining image classifiers.
Our computational comparison between counterfactuals generated
by an original CycleGAN and a CycleGAN that was modified by
our approach showed that our introduced loss component forces the
model to predominantly generate images that were classified in a
different way than the original input, while the original CycleGAN
performed very poorly in this respective task. Thus, the introduced
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modification had a substantially positive impact generating counter-
factual images.
Furthermore, we conducted a user study to evaluate our approach
and compare it to two state-of-the-art XAI approaches, namely LIME
and LRP. As evaluation use case, we chose the explanation of a clas-
sifier that distinguishes between x-ray images of lungs that are in-
fected by pneumonia and lungs that are not infected. In this particu-
lar use case, the counterfactual approach outperformed the common
XAI techniques in various regards. Firstly, the counterfactual expla-
nations that were generated by our system led to significantly more
satisfying results as the two other systems that are based on saliency
maps. Secondly, the participants formed significantly better mental
models of the AI based on our counterfactual approach than on the
two saliency map approaches. Also, participants had more trust in the
AI after being confronted with the counterfactual explanations than
with the LRP condition. Furthermore, users that were shown counter-
factual images felt less angry and more relaxed than users that were
shown LRP images.
All in all, we showed that our approach is very promising and shows
great potential for being applied in similar domains.
However, it has to be investigated further how the system performs
in other use cases and modalities. We believe that the advantage of
our system in this specific scenario results from the relevant informa-
tion of the images being of a rather textural structure, e.g., opacity.
Thus, raw spatial information about important areas, as provided by
LIME and LRP, does not carry enough information to understand the
AI’s decisions. Therefore, we recommend the application of our ap-
proach in similar use cases, where relevant class-defining features are
expected to have a textural structure.
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T H E C O N C E P T O F A LT E R FA C T U A L
E X P L A N AT I O N S

Large parts of this chapter have already been published in the follow-
ing publication:

Mertes, S., Karle, C., Huber, T., Weitz, K., Schlagowski, R., &
André, E. (2022). Alterfactual Explanations - The Relevance of
Irrelevance for Explaining AI Systems. In IJCAI 2022 Work-
shop on XAI. (Mertes, Karle, et al., 2022)

Counterfactual explanations show a version of the input data that
is altered just enough to change an AI’s decision. By doing so, the
user is shown not only which features are relevant to the decision, but
more importantly, how they would need to be changed to result in a
different decision of the AI. Semifactual explanations follow a similar
principle, but they modify the relevant features of the input data to
an extent that the AI’s decision does not change just yet.

Both methods have in common that they focus on the important fea-
tures. However, awareness of irrelevant features can also contribute
substantially to the complete understanding of a decision domain, as
knowledge of the important features for the AI does not necessarily
imply knowledge of the unimportant ones.

For example, if we want to investigate whether an AI system is
subject to some bias regarding its predictions, we often want to know
explicitly whether a particular feature is completely irrelevant to a
classifier. As a concrete example, consider an AI system that assesses
a person’s creditworthiness based on various characteristics, and we
want to study that system regarding its fairness. If that system was
completely fair, a counterfactual explanation would be of the form: If
your income was higher, you would be creditworthy. However, this expla-
nation does not exclude the possibility that your skin color also in-
fluenced the AI’s decision. It only shows that the income had a high
impact on the AI. An explanation confined to the irrelevant features,
on the other hand, might say No matter what your skin color is, the deci-
sion would not change. In this case, direct communication of irrelevant
features ascertains that the system is fair with regards to skin color.

129
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Figure 45: (A) Conceptual comparison of factual, counter-, semi-, and alterfactual explanations. The
diagram shows the original input which is to be explained below the decision boundary
belonging to class X. A factual explanation could be the nearest neighbor, located anywhere
around the original input. A semifactual explanation would be located in minimal distance
directly next to the decision boundary, but still below it. A counterfactual explanation would
be above it in the region of class Y, but barely so. An alterfactual explanation would move
in parallel to the decision boundary, indicating which feature values would not modify the
model’s decision. Note that this diagram is highly simplified - normally, there are more than
two features, the decision boundary is more complex, etc. (B) Examples of a counterfactual
and an alterfactual explanation. Input features to a fictional decision system to be explained
are temperature and weather, whereas the former is relevant and the latter is irrelevant to the
AI’s decision on whether a cactus survives or not.
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Conventional counterfactual thinking explanation paradigms do not
provide this information directly.

To address this issue, this chapter introduces and evaluates a
novel explanatory paradigm. We call explanations that follow this
paradigm Alterfactual Explanations. This principle is based on show-
ing the user of the XAI system an alternative reality that leads to
the exact same decision of the AI, but where only irrelevant features
change. All relevant features of the input data, on the other hand,
remain the same. As this type of explanation conveys completely
different information than common methods, we investigate whether
the mental model that users have of the explained AI system is also
formed in a different way, or can even be improved. We show that the
communication of features unimportant to the decision contributes
significantly to the understanding and formation of a mental model
of AI systems.

Note, that in this chapter, we focus on the concept of these new
explanation paradigm. Generating such alterfactual explanations will
be the topic of the next chapter. By isolating concept and generation,
we want to make sure that the findings of this chapter’s study are
not biased (either positively or negatively) by the specific generation
approach.

8.1 idea

The basic idea of alterfactual explanations introduced in this chap-
ter is to strengthen the user’s mental model of an AI by showing
irrelevant attributes of a predicted instance. Hereby, we understand
irrelevance as the property that the corresponding feature, regardless
of its value, does not contribute in any way to the decision of the AI
model. When looking at models that are making decisions by map-
ping some sort of input data x ∈ X to output data y ∈ Y, the so-called
decision boundary describes the region in X which contains data points
where the corresponding y that is calculated by the model is ambigu-
ous, i.e., lies just between different instances of Y. Thus, irrelevant
features can be thought of as features that do not contribute to a data
point’s distance to the decision boundary.

On the other hand, the information that is carried out by an ex-
planation should be communicated as clearly as possible. As the in-
formation that is contained in an alterfactual explanation consists of
the irrelevance of certain features, it should somehow be emphasized
that these features can take any possible value. If we would change
the respective features only to a small amount, the irrelevance is not
clearly demonstrated to the user. Therefore, we argue that an alterfac-
tual explanation should change the affected features to the maximum
amount possible. By doing so, we communicate that the feature, even
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if it is changed as much as it can change, still does not influence the
decision.

We take those two considerations as the base for the definition of
an alterfactual explanation:

Let d : X×X → R be a distance metric on the input space
X. An alterfactual explanation for a model M is an altered
version a ∈ X of an original input data point x ∈ X, that
maximizes the distance d(x,a) whereas the distance to the
decision boundary B ⊂ X and the prediction of the model
do not change: d(x,B) = d(a,B) and M(x) = M(a)

Thus, the main difference between an alterfactual explanation and
a counterfactual or semifactual explanation becomes clear: While the
latter methods alter features resulting in a decreased distance to the
decision boundary, the former method tries to keep that distance
fixed. Further, while counterfactual explanations as well as semifac-
tual explanations try to keep the overall change to the original input
minimal (Keane, Kenny, Delaney, et al., 2021; Kenny and Keane, 2020),
alterfactual explanations do exactly the opposite, which is depicted in
Figure 45A. Figure 45B illustrates the difference between counterfac-
tual and alterfactual explanations using a simple example.

8.2 user study

In order to validate if our approach of focusing only on irrelevant
features for explaining an AI system helps users to form correct men-
tal models of the system, we performed an online user study. Prior to
the real study, a pilot study (n=14) was conducted to find out whether
subjects could cope with the tasks. Note that in this study, we only fo-
cus on the concept of Alterfactual Explanations. The generation of such
explanations will be subject of the next chapter. As our concept of
communicating only irrelevant features of an AI’s decision is entirely
new, we wanted to study its validity unbiased from specific technical
implementations.

8.2.1 Hypotheses

As the concept of alterfactual explanations can be considered a coun-
terfactual thinking approach, we did not only want to validate the fea-
sibility of alterfactual explanations per se. While traditional counter-
factual explanations communicate information about relevant features,
alterfactual explanations communicate information about irrelevant
features. As such, we argue that counterfactual and alterfactual ex-
planations might complement each other. Therefore, we also investi-
gate how alterfactual explanations perform in comparison to such tra-
ditional counterfactual explanations. Furthermore, as we claim that
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counterfactual and alterfactual explanations convey different kinds of
information, we also included the combination of the two approaches.
We suspect that this combination could lead to even better explana-
tions. To gain a decent understanding of the advantages and disad-
vantages of alterfactual explanations, we took different metrics into
account that are commonly used to assess XAI systems. Concretely,
we evaluated the explanation satisfaction as well as the mental model
creation capabilities of the shown explanations. Thus, our hypotheses
are as follows:

1. Mental Model Creation

a) Alterfactual explanations lead to a more correct mental
model of the AI than no explanations.

b) Alterfactual explanations lead to similarly good mental
models as counterfactual explanations.

c) The combination of alterfactual and counterfactual expla-
nations outperform both alterfactual as well as counterfac-
tual explanations in terms of mental model creation.

2. Explanation Satisfaction

a) Alterfactual explanations lead to a similarly good explana-
tion satisfaction as counterfactual explanations (i.e., we do
not expect to find significant differences here).

b) The combination of alterfactual and counterfactual expla-
nations outperform both alterfactual as well as counterfac-
tual explanations in terms of explanation satisfaction.

8.2.2 Methodology

In order to test the hypotheses stated above, an online user study was
conducted. We used a between-subject design with four conditions:

• Alterfactual condition. Participants in that condition were pre-
sented with original input features to an AI as well as alterfac-
tual explanations.

• Counterfactual condition. Participants in that condition were
presented with the original features as well as the counterfac-
tual explanations.

• Combination condition. Participants in that condition were pre-
sented with the original features as well as both the alterfactual
and the counterfactual explanations.

• No Explanation condition. Participants in that condition were
presented only with the original features. No explanation was
shown.
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Similarly to our study presented in Chapter 7, a between-subject
study design was chosen because we wanted to avoid order effects
and mitigate the risk of fatigue. In the study, the participants were
presented with an imaginary AI. The participants were told that the
AI decides if hypothetical historical documents are forged or not. This
specific scenario was chosen as it is not present in most people’s ev-
eryday life, ensuring that the mental model of the AI that the par-
ticipants develop is predominantly induced by the explanations that
they are presented with during the study and do not stem from prior
knowledge of the domain. The AI gets different inputs to work with.
We designed the imaginary AI so that it follows a set of rules (un-
known to the participants), where each input feature has a specific
relevance to the AI. Those features are as follows:

• Parchment Color. The documents can be either of light, medium
or dark parchment.

• Word Count. A single integer in the range [1, 500].

• Year of Creation. The documents were created sometime be-
tween 200 BC and 200 AD.

The rules which the fictional AI uses to decide if a document is forged
are:

• A document is forged if the word count is equal to or below 50.

• A document is forged if the word count is between 51 and 150

and the parchment color is light or medium.

• In all other cases, the document is considered to be authentic

Therefore, one attribute is always relevant (word count), one is rel-
evant only in some cases (parchment color), and one is always irrel-
evant (year of creation). After answering some questions about their
demographic background, the participants were given some general
information about the data and AI used in the experiment. They
were told that some historical documents had been found, and some
of them had already been identified as forgeries. Futhermore, they
were told that an AI had been trained to detect forgeries based on
a short description of the documents containing the three attributes
mentioned above. The three attributes were shown along with their
value ranges. An exemplary input to the fictional AI was displayed
in a table. Additionally, we explained which explanation type the
participant was going to be shown during the study, and how the
explanation type works. The participants were provided with exam-
ple explanations that could be revealed by clicking a button. After
using that button, the explanations were shown next to the original
input. An example explanation is shown in Figure 46. Following this
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introduction, the participants were given two example inputs and cor-
responding explanations in order to familiarise themselves with the
document descriptors and the mechanism to reveal the explanations.
After that, each participant was quizzed about the information that
was given up to that point. By doing so, we could exclude subjects
who did not conscientiously participate in the study. After the quiz,
a short training phase followed. In this phase, the participants were
shown four exemplary document descriptors. Explanations for the
AI’s decisions, as well as the decisions itself were shown as well. The
training phase was conducted to give the participants another chance
to get comfortable with the explanation type and the domain itself.
Subsequently, the study itself started. It was divided into three parts:
For assessing the participants’ mental model of the AI, we used (i)
a prediction task and (ii) a questionnaire about the AI’s rule set. To
assess the participants’ explanation satisfaction, we used (iii) an ex-
planation satisfaction questionnaire.

8.2.2.1 Mental Model Creation (i): Prediction Task

The goal of the prediction task was to detect how well the partic-
ipants could anticipate the classifier’s decisions, which provides a
quick window into how well they understood the AI (Hoffman et
al., 2018). To this end, eight example inputs with explanations were
shown in a random order. Four examples were classified as forged by
the AI, whereas four examples were predicted as being authentic. As
proposed by Hoffman et al. (2018), the decision of the AI was not
shown, but had to be predicted by the participants. The idea of such
a prediction task is that a good explanation should help to build a
correct mental model of the AI, allowing to understand its decision
process to an extent that those decisions can be predicted by the user.
Additionally to the prediction of the AI’s decision, participants had to
choose how confident they were in their prediction on a 7-point Lik-
ert scale (0 = not at all confident, 6 = very confident). Furthermore,
they had to justify their prediction in a free text form. Participants
that were in the No Explanation condition did not see any explana-
tions but had to rely on the original input data for their predictions.
For every single prediction task, explanations had to be revealed by
pressing the Explain button. By doing so, we were able to track if the
participants really looked at the explanations.

8.2.2.2 Mental Model Creation (ii): Understanding Questionnaire

To assess if the participants developed a correct mental model of the
AI’s decision process, for each feature (i.e., parchment color, word
count, year of creation), they were explicitly asked how much they
agreed that it was relevant to the AI’s decision on a 5-point Likert
scale (0 = strongly disagree, 4 = strongly agree) after completing all
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predictions of the Prediction Task. Thus, while the Prediction Task can
be seen as implicit measurement of the mental model’s correctness,
our Understanding Questionnaire directly measures if participants
understood the relevance of different features.

8.2.2.3 Explanation Satisfaction

In order to validate hypotheses 2a and 2b, we used the Explanation
Satisfaction Scale proposed by Hoffman et al. (2018) which consists
of seven items, rated on a 5-point Likert scale (0 = strongly disagree,
5 = strongly agree).

Finally, the participants had the possibility to give free text feed-
back. The whole study was built using the oTree framework by D. L.
Chen, Schonger, and Wickens (2016).

8.2.3 Participants

113 Participants between 24 and 71 years (M = 41.2, SD = 10.2) were
recruited via Amazon MTurk. 62 of them were male, 48 female, 1 non-
binary, and 2 preferred not to answer this question. Only participants
with an MTurk Masters Qualification were allowed to participate, and
subjects that did not pass the quiz were excluded from the study to
minimize bias due to inattentive participants. The participants were
randomly separated in the four conditions. Subjects of the three ex-
planation conditions that did not look at a single explanation dur-
ing the whole study were moved to the No Explanation condition for
evaluation. Participants got paid a base reward of 5.00$ and another
0.50$ for each right prediction in the Prediction Task. By communi-
cating that bonus payment before participation, we wanted to further
motivate the participants to stay focused on the study. Only 5.3% of
the participants had no experience with AI. Most of the participants
(86.7%) have heard from AI in the media. In general, 79.7% of the par-
ticipants were expecting a positive or extremely positive impact of AI
systems in the future.

8.3 results

8.3.1 Mental Model Creation

To investigate the impact of the four different experimental con-
ditions1 on the (1) understanding and (2) prediction accuracy, we
conducted a MANOVA. We found a significant difference, Pillai’s
Trace = 0.13, F(6,218) = 2.52, p = .022.

1 (Alterfactual condition, Counterfactual condition, Combination condition, No Explana-
tion condition)
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The following ANOVA revealed that only the understanding of the
participants showed significant differences between the conditions:

• Understanding: F(3,109) = 3.90, p = .011.

• Prediction Accuracy: F(3,110) = 2.63, p = .217.

As displayed in Figure 47, the post-hoc t-tests showed that the par-
ticipants’ understanding was significantly better in the Alterfactual
condition compared to all other conditions. The effect size d is calcu-
lated according to Cohen (2013)2:

• alterfactual vs. counterfactual: t(109) = 2.58, p = .011, d = 0.89

(large effect).

• alterfactual vs. combination: t(109) = 3.11, p = .002, d = 1.24

(large effect).

• alterfactual vs. no explanation: t(109) = 2.86, p = .005, d = 0.82

(large effect).

The results indicate that alterfactual explanations help participants
understand the relevant features more correctly than in all other con-
ditions. Interestingly, the combination of alterfactual and counterfac-
tual explanations leads to a worse performance and understanding
by the participants (see Figure 47).

Therefore, hypothesis 1a holds, because alterfactual explanations
outperformed the No Explanation condition as well as the Combination
condition. Hypotheses 1b and 1c have to be rejected because alterfac-
tuals explanations also outperfomed counterfactual explanations as
well as the combination of both explanation types in the context of
mental model creation.

Wondering about the results, especially about the fact that the No
Explanation condition outperformed the Combination condition, we
took a closer look, which of the features (i.e., word count, parchment
color, year of creation) the participants did or did not understand in
each condition. For this, we compared the amount of the correct fea-
tures between the group, using a MANOVA. We found a significant
difference, Pillai’s Trace = 0.26, F(9,327) = 3.49, p < .001.

The following ANOVA revealed that only the feature parchment
color showed significant differences between the conditions:

• Parchment color: F(3,109) = 10.49, p < .001.

• Word count: F(3,109) = 0.03, p = .099.

• Creation year: F(3,109) = 1.22, p = .305.

2 Interpretation of the effect size is: d < .5 : small effect; d = 0.5-0.8 : medium effect;
d > 0.8 : large effect
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Figure 46: A sample document descriptor with explanations. In the Combination condition, both an
alter- and a counterfactual explanation were shown. Subjects in the Alterfactual and Coun-
terfactual conditions did not see the respective other explanation type. Subjects in the No
Explanation condition did not see an explanation at all, but only the original document de-
scriptor.

Figure 47: Impact of the four experimental conditions on the understanding of the relevant features of
the AI. Alterfactual explanations outperformed all other conditions in helping participants
to understand the relevant features of the AI system. Best viewed in color. Error bars repre-
sent the 95% CI. *p < .05, **p < .001.
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As displayed in Figure 47, the post-hoc t-tests showed that the par-
ticipants’ correct understanding of the relevance of the parchment
color feature were significant better in the Alterfactual condition, com-
pared to all other conditions:

• alterfactual vs. counterfactual: t(109) = 5.21, p < .001, d = 1.80

(large effect).

• alterfactual vs. combination: t(109) = 4.34, p < .001, d = 1.72

(large effect).

• alterfactual vs. no explanation: t(109) = 4.24, p < .001, d = 1.21

(large effect).

8.3.2 Explanation Satisfaction

The ANOVA revealed that there were no significant differences be-
tween the three explanation conditions, F(2,42) = 1.57, p = .219, indi-
cating that participants felt not specific satisfied by one of the expla-
nation conditions.

Therefore, hypothesis 2b has to be rejected, as the combination of
alterfactual and counterfactual explanations does not lead to a higher
explanation satisfaction of the participants. Nevertheless, hypothesis
2a holds since the alterfactual explanations do not differ significantly
compared to counterfactual explanations.

8.4 discussion

The results of our user study show novel insights into the explanatory
performance of the different XAI approaches. Alterfactual

explanations support
global
understanding of
users.

First of all, although not significantly differing from the other con-
ditions in the Prediction Task, subjects that were provided with alter-
factual explanations performed significantly better in the Understand-
ing Task than all other participants. This indicates that direct commu-
nication of information about irrelevant features does indeed offer
benefits. Contrary to our original assumption, the alterfactual expla-
nations outperformed even the more traditional counterfactual expla-
nations. Different from the Prediction Task, the Understanding Task
directly surveys the users’ mental models regarding the relevance
of the input features. Thus, we argue that alterfactual explanations
work better when it comes to the communication of how important
different features are for a decision in general, although they do not
convey a better understanding of which exact decision will be made
when presented with a concrete input sample compared to counter-
factual explanations. This suggests that alterfactual explanation could
find application in scenarios where a global understanding of the AI
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system is important. Our investigation of the participants’ feature-
specific understanding strengthens this assumption: The alterfactual
explanations’ better performance in the Understanding Task mainly
stems from users presented with alterfactual explanations having a
significantly better understanding of the importance of the parchment
feature. As that feature was relevant in some cases and irrelevant in
others, understanding its relevance highly depends on global under-
standing of the model. However, future studies have to be conducted
to assess the capability of alterfactual explanations to induce a global
understanding of an AI’s decision process in a broader scope.Too many

explanations can
overstrain users.

Further, it seems very surprising that the combination of alterfac-
tual and counterfactual explanations performs poorly, although they
contain more information than any other condition. We assume that
this stems from the fact that more information comes with higher de-
mands on the users’ cognitive load. We argue that the participants in
the Combination condition were simply overwhelmed by the wealth of
information. This finding is in line with cognitive load research that
emphasized the fact that too much information can overwhelm users
(Sweller, Van Merrienboer, and Paas, 1998). Future research has to
find ways to communicate this vast amount of information without
overburdening users.Alterfactual

explanations are
equally satisfying as

counterfactual
explanations.

Lastly, we found no significant differences regarding Explanation
Satisfaction between the three conditions that were presented with
some kind of explanation. We argue again that the combination of
counterfactual and alterfactual explanations could have overwhelmed
the user. However, we see that alterfactual explanations lead to sim-
ilarly good Explanation Satisfaction as the traditional counterfactual
explanations, making them a viable approach for real-world XAI sce-
narios.

8.5 conclusion

In this study, we presented a new XAI paradigm that we call Alter-
factual Explanations. Our approach is based on only communicating
information about features that are irrelevant to an AI’s decision. A
user study that we conducted showed that alterfactual explanations
show huge potential for the field of XAI. In an Understanding Task
measuring the capabilities of users to tell which features of an exam-
ple input to an AI are important for its decision, alterfactual explana-
tions significantly outperformed the more traditional counterfactual
explanations as well as the combination of alterfactual and counter-
factual explanations. Surprisingly, combining counterfactual and al-
terfactual explanations did not result in more correct mental models.
We showed that alterfactual explanations lead to a similar good Ex-
planation Satisfaction as counterfactual explanations.



9
A LT E R FA C T U A L E X P L A N AT I O N G E N E R AT I O N

Large parts of this chapter have already been published in the follow-
ing publication:

Mertes, S., Huber, T., Karle, C., Weitz, K., Schlagowski, R.,
Conati, C., & André, E. (2024). Relevant Irrelevance: Gener-
ating Alterfactual Explanations for Image Classifiers. In 33rd
International Joint Conference on Artificial Intelligence (IJCAI)
2024. (Mertes, Huber, Karle, et al., 2024)

As we argue that alterfactual and counterfactual explanations con-
vey different information, we designed a generative approach that is
capable of creating both types of explanations in order to explain an
image classifier. For both, a set of requirements arises that need to be
reflected in the objectives of our explanation generation approach.

1. The generated explanations should have high quality and look
realistic.

2. The resulting explanation should be either classified as the same
class as the original input (for alterfactual explanations), or as
the opposite class (for counterfactual explanations).

3. For alterfactual explanations, the output image should change
as much as possible, while for counterfactual explanations, it
should change as little as possible.

4. For alterfactual explanations, only irrelevant features should
change, i.e., the distance to the decision boundary should be
maintained.

To address these objectives, different loss components (see next sec-
tion) were used to steer a GAN-based architecture to generate the
desired explanations. A GAN-based approach was chosen as similar
concepts have successfully been applied to the task of counterfactual
explanation generation in various existing works (Matthew L. Olson
et al., 2021; Huber, Demmler, et al., 2023; Nemirovsky et al., 2022;
Y. Zhao, 2020) - and also in the approach introduced in Chapter 7.

141
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Figure 48: Architecture overview of the generator network.

In order to allow for a more focused and comprehensive user study
design, in this work, we focus on explaining a binary image classifier.

A schematic overview of our architecture can be seen in Figures 48

and 49. For a more detailed description, we refer to Appendix D.2.

9.1 approach

9.1.1 Adversarial Component

To address the first objective, an adversarial setting is used. Here, a
generator network G is trained to take an original image x and a
random noise vector z and transforms them into the respective expla-
nation x̂. As such, a mapping {x, z} → x̂ is learned by the generator. A
discriminator network D is trained to identify the generated images
as fake images in an adversarial manner.

Additionally, to partly target the second objective, we feed a target
class label ŷ ∈ {0, 1} to the discriminator. By doing so, the discrimina-
tor learns not only to assess if the produced images are real or fake,
but also has the capability to decide if an explanation fits the data dis-
tribution of the class it is supposed to belong to. A somewhat similar
idea was put forth by Sharmanska et al. (2020) within the context of
fairness and yielded promising results there. During training, the dis-
criminator is alternately fed with real and fake data. For real data, the
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Figure 49: Architecture overview of the discriminator network.

target class label ŷ reflects the class that the classifier to be explained
assigns to the respective image x. For the generated explanations, the
target class label ŷ reflects either the class that was assigned to the
original image x (for alterfactual explanations), or the opposite class
(for counterfactual explanations).

By letting the generator and discriminator compete against each
other during training, it is enforced that the resulting images look
realistic and resemble the data distribution of the respective target
classes. The objective function for the adversarial setting is formu-
lated as follows:

Ladversarial = Ex∼pdata(x) [logD(x, ŷ)] +

Ex∼pdata(x),z∼pnoise(z) [log(1−D(G(x, z), ŷ))] (21)

9.1.2 Including Classifier Information

The second objective is further addressed by incorporating the deci-
sions of the classifier to be explained into the generator’s loss func-
tion.

Let C : X → [0, 1] be a binary classifier with threshold 0.5. We define
the classification target C̃(x) as C̃(x) := C(x) for alterfactual explanations
and C̃(x) := 1−C(x) for counterfactual explanations. To measure the
error between the actual classification of the generated explanation
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and the target classification, we used Binary Crossentropy (BCE) to
define a classification loss LC:

LC = Ex,x̂∼pdata(x,x̂)[C̃(x) · logC(x̂)

+ (1− C̃(x)) · log(1−C(x̂))] (22)

9.1.3 SSIM Component

The third objective was addressed by including a similarity compo-
nent into the loss function. Explanations are meant for humans. There-
fore, using the Structural Similarity Index Measure (SSIM) seemed to be
an appropriate choice to measure image similarity for our approach,
as it correlates with how humans are perceiving similarity in images
(Z. Wang et al., 2004). The parameters for SSIM were chosen as rec-
ommended by Y. Wu et al. (2019).

As alterfactual explanations should change irrelevant features as
much as possible, while counterfactual explanations should be as close
as possible to the original image, the learning objective differs for both
(low similarity for alterfactual explanations, high similarity for coun-
terfactual explanations). With [0, 1] as the range of SSIM, we designed
the loss function as follows:

Lsim =

Ex,x̂∼pdata(x,x̂) [SSIM(x, x̂)] Alterfactual

Ex,x̂∼pdata(x,x̂) [1− SSIM(x, x̂)]Counterfactual
(23)

9.1.4 Feature Relevance Component

The fourth objective, i.e., forcing the network to only modify ir-
relevant features when generating alterfactual explanations, was
addressed by using an auxiliary Support Vector Machine (SVM) clas-
sifier. Note that this loss is only applied when generating alterfactual
explanations, not when generating counterfactual explanations. Y.
Li, L. Ding, and Gao (2018) and Elsayed et al. (2018) have shown
theoretically and empirically that the last weight layer of a Neural
Network converges to an SVM trained on the data transformed up
to this layer. An SVM’s decision boundary can be calculated directly
- unlike the one of a Neural Network (Yiding Jiang et al., 2018). As
such, we use an SVM which was trained to predict the classifier’s
decision based on the activations of the classifier’s penultimate layer
as a way to approximate the classifier’s decision boundary - if the
generated alterfactual explanation has moved closer to the SVM’s
separating hyperplane, relevant features were most likely modified.
Although an unchanged decision boundary distance does not neces-
sarily guarantee that no relevant features were modified, it is a good
indicator.
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Figure 50: Example outputs of our system. It can be seen that alterfactual ex-
planations change features that are irrelevant to the classifier, e.g.,
the color of the shoes or the width of the boot shaft, while coun-
terfactual explanations change relevant features like the presence
or absence of a boot shaft. From top to bottom the original images
are a correctly classified ankle boot and sneaker, followed by two
inputs incorrectly classified as ankle boot and sneaker.

The distance of x to the SVM’s separating hyperplane f was defined
as follows, with w as the SVM’s weight vector:

SVM(x) =

∣∣∣∣f(x)||w||

∣∣∣∣ (24)

The SVM loss is defined by the absolute difference in distance to the
separating hyperplane between the original image and the generated
alterfactual explanation:

LSVM = Ex∼pdata(x),z∼pnoise(z) [|SVM(x) − SVM(x̂)|] (25)

9.2 evaluation scenario

To assess the performance of our approach, we applied it to the
Fashion-MNIST data set (Xiao, Rasul, and Vollgraf, 2017). That data
set contains 7,000 gray scale images for each of its ten categories of
clothes, such as ‘ankle boots’ or ‘pullover’, splitted into train (6,000 im-
ages per class) and test (1,000 images per class) sets. The two classes
we chose, ‘ankle boots’ and ‘sneakers’, were selected due to being
somewhat similar in order not to oversimplify the classification task
while still being distinct enough to be able to visually assess whether
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the generated explanations are clear. To create the classifier to be ex-
plained, we trained a relatively simple four-layer convolutional neu-
ral network, achieving an accuracy of 96.7% after 40 training epochs.
The exact architecture and training configuration can be found in Ap-
pendix D.2.

Our explanation generation architecture was trained for 14 epochs,
until visually no further improvement could be observed. For alter-
factual explanations, we reached a validity (i.e., which portion of the
explanations are classified as the correct target class by the classifier)
of 96.20% and an average SSIM of 0.32 (here, lower is better), whereas
the counterfactual explanations reached a validity of 87.70% and an
average SSIM of 0.90 (here, higher is better). For more details refer
to Appendix D.2. Exemplary generated explanations are shown in
Figure 50.

9.3 user study

9.3.1 Research Question and Hypotheses

We conducted a user study to validate whether the counterfactual
and alterfactual explanations generated by our approach help human
users to form correct model understanding of an AI system. We de-
signed our study similar to the the one presented in the previous
chapter. Our hypotheses are as follows:

• Alterfactual and counterfactual explanations, as well as the com-
bination of both, are more effective in enabling model under-
standing than no explanations.

• There is a difference in model understanding and explanation
satisfaction between alterfactual and counterfactual explana-
tions. However, we do not anticipate a specific direction since
we see them as complementary concepts (i.e., alterfactual expla-
nations focusing on irrelevant features, counterfactual explana-
tions focusing on relevant features).

• Compared to the individual explanations, a combination of al-
terfactual and counterfactual explanations is a more effective
way to enable a good model understanding and is more satisfy-
ing for users.

• There is a difference between conditions regarding the under-
standing of relevant and irrelevant features, where alterfactual
explanations are more effective to identify irrelevant features
while counterfactual explanations should help more with iden-
tifying relevant features.
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Figure 51: An example of how the explanations were presented in the Com-
bination condition during the user study. By moving the slider to
either side, the image is linearly interpolated into the counterfac-
tual or alterfactual explanation. The order of the sides was ran-
domized. In the Alterfactual and Counterfactual conditions, only
one side of the slider was present and in the Control condition,
there was no slider.

9.3.2 Methodology

9.3.2.1 Conditions and Explanation Presentation

We used a between-groups design with four conditions. Participants
in the Control condition were presented only with the original input
images to the AI. No explanation was shown. In the Alterfactual and
Counterfactual conditions, participants were presented with the orig-
inal input images and either alterfactual or counterfactual explana-
tions. In the Combination condition, participants were presented with
the original input images as well as both the alterfactual and the coun-
terfactual explanations. Figure 51 shows how the explanations were
presented in each condition.

9.3.2.2 Procedure

The whole study was built using the oTree framework by D. L. Chen,
Schonger, and Wickens (2016). After answering questions about their
demographic background, participants were given some general in-
formation about the data and their task during the prediction task.
For the classifier, they were only told that an AI was trained to dis-
tinguish between ankle boots and sneakers. Two example images for
each class (ankle boots and sneakers) were shown and some shoe
specific terminology (e.g., "shaft") was introduced. Following this in-
formation, the participants were given an example input image for
each class together with the classifier’s prediction for this input im-
age. In the explanation conditions, the participants were introduced
to their corresponding explanation types (counterfactuals, alterfactu-
als or a combination) and could explore the explanations for those
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two images. After that, each participant answered a quiz about the in-
formation that was given up to that point, to make sure that they un-
derstood everything correctly. Subsequently, the study itself started.
It was divided into three parts: For assessing the participants’ under-
standing of the classifier, we used (i) a prediction task for assessing
the local understanding, i.e., to assess if the participants understand
why the AI makes a specific decision, and (ii) a questionnaire about
the relevance of certain features for assessing the global understand-
ing, i.e., to assess if the participants understand how the AI works
overall. To assess the participants’ explanation satisfaction, we used
(iii) an explanation satisfaction questionnaire. The three phases of the
experiment are described below.

9.3.2.3 Local Model Understanding: Prediction Task

To measure the local understanding of the classifier, we used a pre-
diction task, which assesses the participants’ ability to anticipate the
AI classifier’s decisions (Hoffman et al., 2018). Eight examples were
shown, covering all possible classification outcomes (two correctly
classified images for both sneakers and ankle boots, and two incor-
rectly classified images for both) to avoid bias. Figure 50 shows four
of the images from the study. The example images were chosen ran-
domly but we made sure that the alterfactual and counterfactual ex-
planations generated by our model for those images were valid (i.e.,
the classifier predicted the same class as for the original image when
fed with the alterfactual explanation, and the opposite class when
fed with the counterfactual explanation). Participants had to predict
the classifier’s decision for each example image. Participants were ad-
ditionally asked about their own opinion on which class the original
shoe image belonged to. The answers to that particular question were
not further analyzed - it was only added to help the participants dis-
tinguish between their own opinion and their understanding of the
classifier. After predicting an example, they were told the correct label
and the AI classifier’s decision before moving on to the next example.
The order of the examples was randomized.

9.3.2.4 Global Model Understanding: Feature Relevance

While the Prediction Task can be seen as local measurement of the
users’ understanding of the model in specific instances, we also
wanted to investigate whether participants understood the global rele-
vance of different features. To this end, we looked at two features that
were relevant for our classifier ("presence/absence of a boot shaft"
and "presence/absence of an elevated heel") as well as two features
that were irrelevant for our classifier ("boot shaft width" and "the
shoe’s color and pattern on the surface area"). These features were
chosen based on the authors’ experience from training the classifier
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Figure 52: Mean participant prediction accuracy of the AI’s prediction by
condition. The conditions containing alterfactual explanations
outperformed all other conditions. Error bars represent the 95%
CI. *p < .05, **p < .001.

and a-priori explorations with the Feature Attribution explanation
mechanisms LIME (Ribeiro, Singh, and Guestrin, 2016) and SHAP
(Lundberg and S.-I. Lee, 2017). As such, after the participants went
through the eight examples that were used for the prediction task,
they were asked for each feature how much they agreed that it was
relevant to the AI’s decisions on a 5-point Likert scale (0 = strongly
disagree, 4 = strongly agree). To aid them in their task, they were
again shown the eight example images from the previous predic-
tion task together with the classifier’s decisions and the explanations
corresponding to their condition.

9.3.2.5 Explanation Satisfaction

In order to measure the participants’ subjective satisfaction, we
used the Explanation Satisfaction Scale proposed by Hoffman et
al. (2018) which consists of eight items rated on a 5-point Likert scale
(0 = strongly disagree, 5 = strongly agree) that we averaged over all
items. Since it does not apply to our use-case, we excluded the 5th
question of the questionnaire. The seven remaining items address con-
fidence, predictability, reliability, safety, wariness, performance, likeability.
Finally, the participants had the possibility to give free text feedback.

9.3.3 Participants

Through a power analysis, we estimated a required sample size of
at least 21 per condition for a MANOVA with 80% power and an al-
pha of 5%, based on the Pillai’s Trace of 0.13 reported in the previous
chapter’s study. 131 Participants between 18 and 29 years (M = 22.2,
SD = 2.44) were recruited at the University of blinded for review. 61
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Irrelevant Features Relevant Features

Figure 53: Mean understanding of the irrelevant and relevant features in our study. Error bars repre-
sent the 95% CI.

of them were male, 70 female. The participants were randomly sep-
arated into the four conditions (33 per condition and 32 in the Al-
terfactual condition). The highest level of education that most par-
ticipants held (76.3%) was a high-school diploma. Only 11.5% of the
participants had no experience with AI. Most of the participants (74%)
have heard from AI in the media. Excluding participants that had no
opinion on the subject, the participants expected a positive impact
of AI systems in the future (M = 3.73 on a 5-point Likert Scale from
1 = "Extremely negative" to 5 = "Extremely positive"). There were no
substantial differences in the demographics between conditions (see
Appendix D.2).

9.4 results

9.4.1 Model Understanding

To investigate the impact of the four different experimental condi-
tions on the (1) feature understanding and (2) prediction accuracy,
we conducted a MANOVA. We found a significant difference, Wilks’
Lambda = 0.859, F(6,252) = 3.31, p = .004.

The following ANOVA revealed that only the prediction accuracy
of the participants showed significant differences between the con-
ditions:

• Feature Understanding: F(3,127) = 0.877, p = .455.

• Prediction Accuracy: F(3,127) = 6.578, p < .001.

As displayed in Figure 52, the post-hoc t-tests showed that the
participants’ prediction accuracy was significantly better in the Alter-
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factual and Combination conditions compared to the other conditions.
The effect size d is calculated according to Cohen (2013):

• Alterfactual vs. Control: t(127) = 3.19, p = .002, d = 0.79

(medium effect).

• Alterfactual vs. Counterfactual: t(127) = 2.06, p = .042, d = 0.51

(medium effect).

• Combination vs. Control: t(127) = 3.93, p < .001, d = 0.97 (large
effect).

• Combination vs. Counterfactual: t(127) = 2.79, p = .006, d = 0.69

(medium effect).

These results regarding the prediction task confirm our hypoth-
esis that the conditions with alterfactual explanations outperform
the condition without explanations in the prediction task. Further,
the combination of both explanation types did significantly outper-
form counterfactual explanations. However, our hypothesis that the
combination is more effective in terms of enabling a correct model
understanding than alterfactual explanations has to be rejected.

9.4.2 Relevant and Irrelevant Information

As reported in the section above, we did not find a significant over-
all difference in the feature understanding task. However, in order to
investigate our hypotheses about irrelevant vs. relevant features, we
conducted another MANOVA between the conditions and the com-
bined understanding values for the two relevant features and the two
irrelevant features. This MANOVA did not find any significant dif-
ferences, Wilks’ Lambda = 0.951, F(6,252) = 1.07, p = .379. The mean
understanding per condition can be seen in Figure 53.

9.4.3 Explanation Satisfaction

The ANOVA revealed that there were no significant differences in
the subjective explanation satisfaction between the three explanation
conditions, F(2,95) = 0.34, p = .713. The mean satisfaction values with
standard deviation were: Counterfactual condition: 3.54± 0.53 ; Alter-
factual condition: 3.65± 0.6; Combination condition: 3.58± 0.5.

9.5 discussion

With our proposed GAN-based approach, we demonstrated that it
is possible to generate both counterfactual and alterfactual explana-
tions for a black box image classifier. Using computational metrics, we
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showed that both of those generated explanations fulfill their respec-
tive requirements: The counterfactual explanations are very similar to
the original images (i.e., 0.90 average SSIM) but change the classifiers
prediction in 87.70% of the cases while alterfactual explanations are
very different from the original image (i.e., 0.32 average SSIM), but
do not change the classifier’s prediction in 96.20% of the cases.

For the prediction task of our user study, alterfactual explanations
and the combination of alterfactual and counterfactual explanations
performed significantly better than the other two conditions. How-
ever, we did not observe a significant difference for the feature rele-
vance understanding. This is highly interesting, as it contrasts with
our previous study. There, a similar experimental design was em-
ployed for assessing the effect that alterfactual explanations have on
users’ mental models of a hard-coded classifier that assesses numer-
ical feature descriptors for a fictional classification problem. In that
scenario, alterfactual explanations led to a significantly better feature
relevance understanding, while not having a substantial impact on
the performance in a prediction task. A possible explanation for this
is the fact that in this study, where we used an image classifier in
the context of fashion classification, the users might already have had
a quite distinctive mental model of the problem domain itself, not
only because fashion holds a certain value in peoples’ everyday lives,
but also because images might be more accessible than numerical
feature descriptors to end users. As such, the global understanding
of the classifier might already be positively biased. This argument is
supported by looking at the feature relevance understanding results
of the control group - although not seeing any explanations, they al-
ready performed very well in identifying relevant features.

However, as can be seen by the significant performance improve-
ment in the prediction task, the local understanding of the model
does not benefit from this effect. As the classification model is imper-
fect, a global understanding of the use case itself does not necessarily
imply an understanding of specific cases, e.g., when the classifier’s
decision does not correctly model reality.

Interestingly, we did not observe any significant differences in ex-
planation satisfaction. This indicates that participants felt similarly
satisfied by all explanation methods even though the alterfactual and
combined explanations objectively helped more during the prediction
task. The presentation of more information (i.e., in the combination
condition) could have led to a higher cognitive load and influenced
the subjective assessments of explanation satisfaction, resulting in the
difference between objective measurement (i.e., model understand-
ing) and subjective measurement (i.e., explanation satisfaction). Our
results motivate future research to include measurements of the need
for cognition and cognitive load when investigating counterfactual
and alterfactual explanations.
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9.6 conclusion

In this chapter, we demonstrated the practical feasibility of alterfac-
tual explanations. We show for the first time that it is possible to gen-
erate such explanations for black box models. Therefore, we used a
DCGAN-based architecture that we enhanced with additional loss
components to server our goal. Besides a computational evaluation,
we conducted a user study which showed that our generated alterfac-
tual explanations can complement counterfactual explanations.

In that study, we compared how users’ model understanding of
a binary image classifier changes when being confronted with coun-
terfactual explanations, alterfactual explanations, or a combination of
both. Further, a control group was assessed that did not see any ex-
planations.

We found that in a prediction task, where the classifier’s prediction
had to be anticipated by looking at the explanations, users performed
significantly better when they were provided with explanations that
included alterfactual explanations compared to users that did not see
alterfactual explanations, although we did not observe a significant
difference in explanation satisfaction.

Overall, we showed that alterfactual explanations are a promis-
ing explanation method that can complement counterfactual expla-
nations in future XAI systems.





Part IV

E X P R E S S I V E N E S S

State-of-the-art generative models are capable of synthe-
sizing new data of high quality. However, such models
are data hungry, and training them requires datasets that
cover large parts of the problem domain. Highly expres-
sive models - e.g., models that are able to synthesize data
with specific characteristics that can be controlled in a de-
tailed way - demand data that is annotated with regards
to those features that we want to control. In practice, this
is a huge limitation. Although a lot of datasets for a va-
riety of use-cases and scenarios exist, annotations are of-
ten only rudimentary. For instance, we often want to be
able to continuously steer specific features of the gener-
ated data, while at the same time, datasets only include
discrete annotations. In these cases, building expressive
generative models poses a problem. In this chapter, it is
shown how GANs can be leveraged to counteract this
problem. Therefore, we propose an approach that we call
Label Interpolation. That approach enables the use of GANs
to generate continuously controllable outputs while only
being trained on categorically annotated data. Therefore,
we tackle the exemplary use-case of emotional face syn-
thesis. As such, we show how we can use GANs that were
trained on a categorically labeled emotional face dataset
to synthesize face images that can be conditioned in a con-
tinuous valence/arousal space.
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L A B E L I N T E R P O L AT I O N

Large parts of this chapter have already been published in the follow-
ing publications:

Mertes, S., Lingenfelser, F., Kiderle, T., Dietz, M., Diab, L., &
André, E. (2021). Continuous emotions: exploring label inter-
polation in conditional generative adversarial networks for face
generation. In International Conference on Deep Learning The-
ory and Applications. (Mertes, Lingenfelser, et al., 2021)

Mertes, S., Schiller, D., Lingenfelser, F., Kiderle, T., Kroner, V.,
Diab, L., & André, E. (2023). Intercategorical Label Interpola-
tion for Emotional Face Generation with Conditional Genera-
tive Adversarial Networks. In International Conference on Deep
Learning Theory and Applications - Revised and Selected Pa-
pers. (Mertes, Schiller, et al., 2023)

During the course of this thesis, we have already seen examples for
the capability of GANs to create high-quality images. Also, in Sec-
tion 2.8.2, we have introduced how GANs can be controlled by using
additional conditioning information. However, when training such
models for a specific, it is mandatory that respective datasets that are
available - datasets, where the desired features to be controlled are
annotated. However, often we do not have such datasets. Specifically
when aiming for a continuous controllability, i.e., when the scales of
the features to be controlled are continuous and not discrete, respec-
tive datasets are rare - and building such datasets is time and resource
intensive. On the other hand, datasets that were annotated with cate-
gorical labels are to be found more frequently - simply as annotating
datasets in a categorical manner is a much easier and faster task.

In this chapter, we explore the applicability of Label Interpolation for
Conditional GANs that were trained on categorical datasets. By do-
ing so, we study the possibility to bypass the need for continuously
labeled datasets when synthesizing images that should show contin-
uously scaled traits. Since categorical labels are essentially binned
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versions of continuous labels, we assume that the samples belong-
ing to a specific categorical label are covering a large spectrum of
expressiveness. We believe that this information can be learned by a
generative model and being exploited to create images on a continu-
ous scale by interpolating through the conditioning space of a trained
model. The goal of this chapter is therefore to answer the question of
whether label interpolation can be a tool to overcome the drawbacks
of categorical datasets for image synthesis. To explore the feasibil-
ity of our hypothesis, we first train cGANs on two datasets widely
used for benchmarking various deep learning tasks, namely CIFAR-
10 (Krizhevsky and G. Hinton, 2009) and Fashion-MNIST (Xiao, Ra-
sul, and Vollgraf, 2017). Those datasets contain discrete class labels
that we use for conditioning the GAN. We then examine the effects
of interpolating between those discrete class labels by observing how
a pre-trained classifier behaves when looking at continuously inter-
polated results. From the insights gained from these more generic
datasets, we tackle the exemplary but concrete use-case of emotional
face generation. Most datasets suitable for training such face gener-
ation GANs refer to categorical emotion models, i.e., they contain
emotion labels that were annotated in a discrete way. This means,
that the annotated emotions refer to emotional states like happy, an-
gry or sad. However, for many real-world use cases, corresponding
face images need to be generated in a more detailed manner to im-
prove the credibility and anthropomorphism of the results. By apply-
ing our approach to that scenario, we enable the cGAN to generate
faces showing emotional expressions that can be controlled in a con-
tinuous, dimensional way.

10.1 related work

As already introduced in 2, Conditional GANs (cGAN) can be used to
encode label information in the input vector, enabling the GAN to
consider certain pre-defined features in the output. This property of
cGANs was exploited by Y. Wang, Dantcheva, and Bremond (2018)
and Gauthier (2014) to generate face image data with respect to spe-
cific features (e.g. glasses, gender, age, mouth openness). Similarly, Yi,
Sun, and S. He (2018) made use of the cGAN conditioning mecha-
nisms in order to augment emotional face image datasets. One prob-
lem of this approach is that they either use discretely labeled features,
restricting the output to discrete categories, or they already use con-
tinuously labeled data during training which is rarely available in a
plethora of scenarios.

A related task that GANs are frequently applied to is the task of
Style Conversion, which in terms of facial expressions is also known as
Face Editing. It intends to modify existing image data instead of gener-
ating entirely new data (Z. He et al., 2019; Royer et al., 2020; Y. Choi et
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al., 2018; M.-Y. Liu, Breuel, and Kautz, 2017; J. Lin et al., 2018). Using
GANs, H. Ding, Sricharan, and Chellappa (2018) managed to develop
a framework that allows to continuously adapt the emotional expres-
sions of images. Although their approach is not explicitly based on
continuously annotated data, the diversity of the intensity of emo-
tions must be represented in the training set. Their system proved
its capability of generating random new faces expressing a particular
emotion. However, they didn’t investigate the generation capabilities
of their system according to common known dimensional emotion
models like Russel’s Valence-Arousal model (J. A. Russell and Barrett,
1999). The focus was rather to show that their face editing system is
able to modify the intensity of discrete, categorical emotions.

In general, although interpolating through the input space of a
GAN is common practice (see Chapter 2), interpolating through the
label space of a cGAN is a quite under-explored mechanism.

To the best of our knowledge, there is no system that is trained
on discrete emotion labels and outputs new face images that can be
controlled in a continuous way.

10.2 approach

In order to explore the applicability of label interpolation in cGANs,
an appropriate framework had to be defined, which is presented in
the following sections.

10.2.1 Network Architecture

The networks utilized in our experimental settings are largely founded
on a Deep Convolutional GAN (DCGAN) (Radford, Metz, and Chintala,
2015). A detailed description of the original DCGAN architecture can
be found in the respective publication. Additionally, to enable tar-
geted image generation (which is not part of the original DCGAN),
the architectures were extended with the principles of a cGAN.

Unlike conventional GANs, cGANs incorporate a conditioning
mechanism consisting of an additional class input vector. This vector
is used to control specific features of the output images by telling
the generator network about the presence of certain features dur-
ing training. Thus, this feature information must be given as labels
while training the cGAN. As such, the input for a cGAN consists of
a random noise component z (as in the original GAN framework)
and a conditioning vector v. After the training process, the generator
has learned to transform the random noise input into images that
resemble the training domain, taking into account the conditioning
information given by v in order to drive the outputs to show the
desired features. In the context of emotional face generation, the
random noise component is responsible for the face itself, while
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the conditioning information leads to specific emotions of the face.
Therefore, two identical noises conditioned with different feature in-
formation should result in the same face showing different emotions.

In our implementation, the conditioning information is given to the
network as one-hot encoded label vector, where each element repre-
sents a certain feature. Thus, the one-hot label vector v has the follow-
ing form:

v = (v1, v2, ..., vn) = {0, 1}n (26)

where n is the number of controlled features. The datasets that we
used in our experiments are primarily designed for classification
tasks. This implies that we consider a feature a class of the dataset.
As in the scope of this work only datasets for single-class classifica-
tion were considered, the following restriction holds true:

n∑
i=1

vi = 1 (27)

10.2.2 Interpolation

After training, the definition of the condition part of the cGAN’s in-
put vector is changed to allow for a continuous interpolation between
the originally discrete classes. Generally, this can simply be done by
reformulating the conditioning vector v so that is not forced to a bi-
nary structure:

v = (v1, v2, ..., vn) = [0, 1]n (28)

During our experiments, we found that keeping the restriction for-
mulated in Equation 27 leads to better quality of interpolated results
instead of picking the single elements of the vector arbitrarily in the
interval [0, 1]. In other words, interpolation is done by subtracting
some portion e from the input representative of one class and adding
it to another class. Our hypothesis is that due to the differentiable
function that is approximated by the cGAN model during the train-
ing process, those non-binary conditioning vectors lead to image out-
puts which are perceived as lying somewhere between the original,
discrete classes. For our target context, the generation of face images
with continuous emotional states, this would refer to images of faces
that do not show the extreme, discrete emotions that are modeled
in a categorical emotion system, but to more fine-grained emotional
states as they are conventionally modeled by a dimensional emotion
model as will be further elaborated on in Section 10.4.1.

10.3 feasibility studies

To evaluate the feasibility of our approach, we decided to first apply
it to two generic datasets, before finally addressing the problem of
emotional human face generation.
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10.3.1 Datasets

The Fashion-MNIST dataset (Xiao, Rasul, and Vollgraf, 2017) (which
we already used in Chapter 9 for generating Alterfactual Explana-
tions) encompasses a set of product pictures taken from the Zalando
website, where each image belongs to one of 10 classes. Each of these
contains 7,000 pictures. The images that we used are 8-bit grayscale
versions with a resolution of 28x28 pixels. All in all, this results in
a dataset of 70,000 fashion product pictures, whereas 60,000 are at-
tributed to the training dataset and 10,000 to the test set. Examples
for each class are shown in Figure 54.

Figure 54: Fashion-MNIST categories and examples (Xiao, Rasul, and Voll-
graf, 2017).

The CIFAR-10 and the CIFAR-100 datasets both are derived from
the 80 million tiny images dataset (Krizhevsky and G. Hinton, 2009). In
contrast to the 100 classes of CIFAR-100, CIFAR-10 only contains a
subset of 10 classes, whereas each class has 6,000 colored images of
size 32x32. This results in a dataset of 60,000 images in total, where
50,000 belong to the training and 10,000 to the test set. The classes
are mutually exclusive, even for narrow classes like trucks and cars.
Figure 55 depicts example images for the corresponding 10 classes.

We decided to use the Fashion-MNIST dataset because it has origi-
nally been designed for measuring the performance of machine learn-
ing approaches. The pictures are gray-scaled and comparably small,
making the dataset suitable for preliminary feasibility experiments.
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Figure 55: CIFAR-10 categories and examples. (Krizhevsky and G. Hinton,
2009)

To further test the viability of our approach, we aimed to increase the
challenge gradually. Thus, we additionally chose to use the CIFAR-
10 dataset. Although it also contains small pictures, the challenge is
raised by the colorization and the slightly higher resolution.

10.3.2 Methodology

In order to evaluate if the interpolation algorithm creates smooth tran-
sitions between two arbitrary classes, we decided to perform a fine-
grained analysis on the continuously generated outputs by the use of
our approach. To this end, we used pre-trained classifiers that are able
to accurately distinguish between the different discrete classes con-
tained in the respective datasets. As the focus of this work is to gain
insights into the question whether interpolating between discrete la-
bel information can be a promising tool for future applications, the
discrete decisions of such classification models are not a good met-
ric for our purposes. Instead, we want to explore if the interpolation
mechanism is able to model the full bandwidth of transitional states
that can occur between different classes. Thus, for evaluating if the
interpolation mechanism works correctly, we assessed the confidence
of the classification models that the interpolated result belongs to
certain classes. Ideally, during interpolation, this confidence should
continuously shift towards the class that is interpolated to.
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Figure 56: Exemplary outputs of the cGAN model trained on Fashion-
MNIST.

10.3.3 Training

For both the datasets, we adapted the DCGAN architecture to fit the
dataset. Slight changes to the architecture had to be made in order to
produce reasonable outputs. Further, we enhanced both models with
the conditioning mechanism as described in Sec. 10.2.1.

Fashion-MNIST. For this dataset, we trained the cGAN model for
20,000 random batches of size 32 on all of the 50,000 images of the
train partition of the dataset using Adam optimizer with a learning
rate of 0.0002 and β1 of 0.5. Example outputs of the trained model
can be seen in Figure 56, whereas example outputs of different inter-
polation steps are shown in Figure 58.

CIFAR-10. For this dataset, we trained the cGAN model for 30,000

random batches of size 32 on all of the 50,000 images of the train parti-
tion of the dataset, again using Adam optimizer with a learning rate
of 0.0002 and β1 of 0.5. Example outputs of the trained model can
be seen in Figure 57, whereas example outputs of different interpo-
lation steps are shown in Figure 59. In both images, it can be clearly
seen that the chosen cGAN architecture apparently was not able to re-
semble the traing domain sufficiently enough. Results are blurry, and
objects can only partially be recognized as the intended objects. How-
ever, we chose to continue with the validation of the interpolation as
we were also interested in how label interpolation behaves when deal-
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Figure 57: Exemplary outputs of the cGAN model trained on CIFAR-10.

Figure 58: Exemplary outputs of the interpolation steps of the cGAN model
trained on Fashion-MNIST.
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Figure 59: Exemplary outputs of the interpolation steps of the cGAN model
trained on CIFAR-10.

ing with models that do not represent the respective training domain
very well.

10.3.4 Computational Evaluation

In order to test the capability to interpolate between different classes,
we used classifiers that we trained on the task of object classification.
To this end, we used the EfficientNet-B0 architecture (M. Tan and Le,
2019), as these models turned out to achieve very high accuracy on
both datasets (Fashion-MNIST: 0.9089, CIFAR-10: 0.9931). We used a
softmax layer on top of the models, which produces an output vec-
tor r ∈ IR+ n with

∑n
i=1 ri = 1 where n is the number of classes.

By interpreting this class probability vector r as confidence distribu-
tion over all the classes, we can assess the interpolation capabilities
of the cGAN models by observing the change of r. To this end, 1,000

image sets were randomly generated for each class combination i, j
in CIFAR-10 as well as Fashion-MNIST. Each of these images was
conditioned on the respective source class i. Then, we performed in-
terpolation steps for every source image as described in Section 10.2.2
with α = 0.1, resulting in 10 interpolation steps until the target class
was reached. For each interpolation steps, we fed all resulting images
into the respective classifier model (i.e., either the Fashion-MNIST
or the CIFAR-10 model). Results of the computational evaluation are
plotted in Figure 60 and Figure 61.
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Figure 60: Results of the computational evaluation with Fashion-MNIST.

Figure 61: Results of the computational evaluation with CIFAR-10.
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10.4 dimensional face generation

As our feasibility studies revealed that the mechanism of label inter-
polation shows promise when being used with more generic datasets,
we apply it to the more sophisticated use-case of emotional face gen-
eration.

10.4.1 Emotion Models

Enabling algorithms to handle human emotion requires a discrete def-
inition of affective states. Categorical and dimensional models are the
two most prevalent approaches to conceptualize human emotions.
A categorical emotion model subsumes emotions under discrete cate-
gories like happiness, sadness, surprise or anger. There is a common
understanding of these emotional labels, as terms describing the emo-
tion classes are taken from common language. It is also for this rea-
son, that categorical labels are the more common form of annotation
found with datasets depicting emotional states. However, this (cate-
gorical) approach may be restricting, as many blended feelings and
emotions cannot adequately be described by the chosen categories.
Selection of some particular expressions can not be expected to cover
a broad range of emotional states, especially not differing degrees of
intensity.

An arguably more precise way of describing emotions is to at-
tach the experienced stimuli to continuous scales within dimensional
models. A. Mehrabian (1995) suggests to characterize emotions along
three axes, which he defines as pleasure, arousal and dominance.
Peter J. Lang, Margaret M. Bradley, and B. N. Cuthbert (1997) pro-
poses the simplified axes of arousal and valence as measurements,
resulting in the more commonly used dimensional emotion model.
The valence scale describes the pleasantness of a given emotion. A
positive valence value indicates an enjoyable emotion such as joy
or pleasure. Negative values are associated with unpleasant emo-
tions like sadness and fear. This designation is complemented by
the arousal scale which measures the agitation level of an emotion
(Figure 62). This representation is less intuitive but allows continuous
blending between affective states.

Categorical as well as dimensional models are simplified, synthetic
descriptions of human emotions and are not able to cover all of the
included aspects. However, with our interpolation approach, we aim
to cover the whole emotional range defined within the space of the di-
mensional valence-arousal model and enable a seamless transition be-
tween displayed emotions. As data collections featuring dimensional
annotation for facial expressions are more sparse than the ones con-
taining categorical labels (Section 10.4.2), being able to use emotional
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Figure 62: Russel’s 2-dimensional valence arousal circumplex (J. A. Russell
and Barrett, 1999).

labels in the training process is very beneficial. Goal of the following
study is to use a cGAN that was conditioned on categorical emotions
during training, and interpolate between those emotions in order to
be able to create new images. Those newly generated face images
show emotional states that are located in the continuous dimensional
space of the valence/arousal model without having to correlate di-
rectly with discrete emotion categories.

To formally represent the valence and arousal of a face image I,
we use a tuple VA(I) = (v,a), where v refers to valence and a to
arousal. Correlating with Russel’s theory explained above, an image
x with VA(x) = (0, 0) is representing the center of the emotion space
and thus show a neutral emotion. Emotions that are referred to in
categorical emotion systems (e.g., Happy, Sad) are represented by va-
lence/arousal states that show quite extreme values. When it comes
to the interpolation of those dimensional emotional states, i.e., to cre-
ate images with certain degrees of arousal or valence, we interpolate
between the neutral emotion and the extreme emotional states. By the
term extreme emotion, we refer to all categorical emotional states used
except the neutral state, as this represents the center of the dimen-
sional emotion model.

In our experiments, we stuck to performing interpolations between
Neutral and a particular other emotion to preserve comparability be-
tween emotions. It should be noted that the approach could easily be
extended to interpolate between two or even more categorical emo-
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Figure 63: Exemplary data from FACES showing neutral, sad, disgust, fear, anger and happiness from
left to right varying the age group (Ebner, Riediger, and Lindenberger, 2010).

tions. However, since we use only one categorical emotion and Neutral
at a time, the following restriction must be added:

∃i∈[2,6] : v1 + vi = 1 (29)

where v1 represents the condition for Neutral.
To create an image that should show a specific degree of valence v

or arousal a, where 0 ⩽ a, v ⩽ 1, we use the one-hot element of the
emotion that maximizes the specific value, for example Happy when
it comes to valence, or Angry for arousal, and then decrease it to the
desired degree. At the same time, we increase the one-hot element
related to Neutral by the same amount, which allows us to create im-
ages showing valence/arousal values anywhere in Russel’s emotion
system, as opposed to the extreme values given during training.

10.4.2 Dataset

As previously mentioned, datasets labeled in terms of dimensional
emotional models are scarce. Although there are a few datasets
with continuous labeled information (e.g. AffectNet by Mollahosseini,
Hasani, and Mahoor (2017) or AFEW-VA by Kossaifi et al. (2017)),
they use to be gathered in the wild, resulting in miscellaneous data.

Data diversity usually is beneficial for deep learning tasks, how-
ever, in our specific use case of face generation with the focus on
modeling certain emotional states in human faces, consistency in all
non-relevant characteristics (i.e., characteristics not related to facial
expressivity) is an advantage.

Thus, although a variety of categorically labeled datasets are avail-
able (Lucey et al., 2010; Matsumoto, 1988; Beaupré, Cheung, and Hess,
2000; Peter J Lang, Margaret M Bradley, Bruce N Cuthbert, et al., 1997;
Van der Schalk, Hawk, and A. Fischer, 2009; Tottenham, 1998), we de-
cided to use the FACES dataset (Ebner, Riediger, and Lindenberger,
2010) for our experiments, since it meets our requirements particu-
larly well. In this dataset, all images are labeled in a discrete manner,
and recorded with an identical uniformly colored background and an
identical gray shirt. This is exemplified in Figure 63. To overcome the
disadvantages of continuously labeled, but inconsistently recorded
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Figure 64: Example outputs of the trained cGAN model.

emotional face datasets, we explore the use of label interpolation with
categorically labeled datasets.

Overall the FACES dataset consists of 2,052 emotional facial expres-
sion images, distributed over 171 men and women. 58 subjects are
assigned to the group Young, 56 to Middle-Aged and 57 to Old, each
showing 2 styles of the emotions Neutral, Fear, Anger, Sadness, Dis-
gust and Happiness. For training, we resized the images to a target
resolution of 256x256 pixels.

10.4.3 Methodology

As our feasibility study revealed, the interpolation approach has po-
tential for creating transitions between different discrete states. How-
ever, it could be seen that the quality of the generated images, es-
pecially when dealing with the CIFAR-10 dataset, left room for im-
provement. To use the approach of label interpolation in a real world
scenario like avatar generation or similar, such a poor image quality
would be unacceptable. Thus, besides optimizing the cGAN model
for our face generation use case even more, our evaluation process
here is two-folded. First, we evaluate whether the cGAN is, before
applying any interpolation, able to create images that are perceived
correctly by human judgers. By doing so, we can assess if the cGAN
model that we trained is capable of generating images with sufficient
enough quality to express emotional states. Secondly, we conducted
a computational evaluation analogously to the feasibility study.
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Figure 65: Results of the user study. Blue graphs show the perceived emotion of real images from
the FACES dataset, while orange graphs show the perceived emotion of outputs of the
cGAN conditioned on one-hot vectors. The y-axis represents the degree of the participant’s
agreement with the corresponding emotions that are represented by the x-axis.

10.4.4 Training

The model was trained for 10,000 epochs on all 2,052 images of the
FACES dataset using Adam optimizer with a learning rate of 0.0001.
Example outputs of the trained model, conditioned on one-hot vec-
tors of all 6 used emotions, are shown in Figure 64.

10.4.5 User Evaluation

In our user study, we evaluated the cGAN’s ability to produce images
of discrete emotions generated with the respective one-hot vector en-
coding. In total, 20 probands of ages ranging from 22 to 31 years (M
= 25.8, SD = 2,46, 40% male, 60% female) participated in the study.
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During the survey, 36 images were shown to each of the partici-
pants. 18 of the images where original images taken from the FACES
dataset, whereas the other 18 images were generated by the trained
cGAN. All images were split evenly between all emotions, both for
the original as well as for the generated images. To keep consistency
with the images generated by the cGAN, the images taken from the
FACES dataset were resized to 256x256 pixels. For each image, the
participants were asked how much they agreed to the image showing
a certain emotion. To mitigate confirmation bias, they were not told
which emotion the image should show, but asked to provide their
rating for each emotion. The ratings were collected by the use of a 5-
point Likert scale (1 = strongly agree, 5 = strongly disagree). Results
of the user study are shown in Figure 65.

As can be seen, the images that were generated by the cGAN were
rated to show the respective target emotion in a similar convincing
way as the original images taken from the FACES dataset. Each emo-
tion is mostly recognized in the correct way by the study participants.
One emotion, namely Sadness, even stands out as the artificially gen-
erated images were recognized even better than the original images,
which were mistaken for Disgust more frequently. Considering these
results, the trained cGAN model proves to be an appropriate basis
for our interpolation experiments.

10.4.6 Computational Evaluation

Analogously to the computational evaluation in our feasibility stud-
ies, we verified if label interpolation can be used to enhance the cGAN
network with the ability to generate images with continuous degrees
of valence and arousal with the help of an auxiliary classifier. Again,
1,000 noise vectors per class were initially fed into the cGAN, where
here, the classes were the five emotions Sadness, Disgust, Fear, Anger
and Happiness. The conditioning vector was initially chosen to rep-
resent the neutral emotion. For each of the 5,000 noise vectors, 10

interpolation steps with step size e = 0.1 towards the respective ex-
treme emotion were conducted. Thus, the last interpolation step re-
sults in a one-hot vector representing the respective extreme emotion.
For evaluting the resulting valence/arousal values, we again used a
pre-trained auxiliary classifier.

Figure 66 shows exemplary outputs of interpolation steps between
neutral and the five used emotions.

The auxiliary classifier model was based on the MobileNetV2 ar-
chitecture (Sandler et al., 2018). The model was trained on the Affect-
Net dataset for 100 epochs with Adam optimizer and a learning rate
of 0.001, leading to a similar performance as the AffectNet baseline
models, as can be seen in Table 10. We assessed the valence/arousal
values for every interpolated output image of the cGAN and averaged
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AffectNet Baseline Evaluation Model

Valence Arousal Valence Arousal

RMSE 0.37 0.41 0.40 0.37

CORR 0.66 0.54 0.60 0.52

SAGR 0.74 0.65 0.73 0.75

CCC 0.60 0.34 0.57 0.44

Table 10: AffectNet performance comparison: Root Mean Square Error
(RMSE), Correlation (CORR), Sign Agreement (SAGR) (Nicolaou,
Gunes, and Pantic, 2011), and Concordance Correlation Coefficient
(CCC).

them over the 1,000 samples per emotion, analogously to the feasibil-
ity studies described in Section 10.3.4. The results can be taken from
Figure 67.

10.5 discussion

In our initial study we evaluated if our proposed approach can be
used to seamlessly interpolate images between generic classes. To this
end we relied on two widely used and publicly available datasets
CIFAR-10 and Fashion-MNIST (see 10.3.1) to train our cGAN inter-
polation model. Figure 58 and Figure 59 are showing examples of
the calculated interpolations between various classes on the Fashion-
MNIST dataset and the CIFAR-10 dataset respectively. We can clearly
see that the trained network was not able to capture the complexity
of the input domain optimally. While the images from the Fashion-
MNIST domain are showing slightly blurred contours, the generated
images from the CIFAR-10 domain can only be partially recognized as
the intended objects. However, when looking at the individual morph-
ing steps between the classes, we can observe that the model is able to
generate transitions that are generally smooth and continuous - two
necessary prerequisites to apply the approach to interpolate between
emotional expressions in human faces, in order to create meaningful
results.

To further validate this observation we also employed a trained
classifier for each dataset to predict the various interpolation steps
between classes. Assuming a well calibrated classifier, we expected
the distribution of the predicted class probabilities to continuously
shift between the two interpolated classes along with the degree of
interpolation.

Figure 60 and Figure 61 are showing the results for those classi-
fiers as described in Section 10.3.4. In those plots, we averaged the
class probabilities for both the base classes and the target classes for
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Figure 66: Example outputs of the interpolation mechanism. Each row shows a set of interpolation
steps, where in each step, the emotion portion e was increased by 0.1, whereas the neutral
portion was decreased by the same amount.

every interpolation step of all the assessed output images. It can be
observed that, generally speaking, the interpolation mechanism led
the network to generate transitions that are indeed perceived as ly-
ing between the classes by the classifier. Notably, the images produced
by the cGAN that was trained on CIFAR-10 were generally classified
with quite low confidence. This implies that the assumption that the
cGAN model was not able to accurately resemble the dataset holds
true. However, for both models, the confidence smoothly transitions
between the two intended classes, indicating that label interpolation
is a promising tool for further experiments.

We argue that those findings further substantiate the ability of our
trained cGAN to generate continuous interpolations between images
and therefore also the feasibility to further investigate if the approach
is able to generate meaningful interpolations between different cate-
gorical emotions.

Upon visual inspection of the Fashion-MNIST and CIFAR-10

datasets, we found that the quality of the artificially generated images
from the random noise vectors was substantially worse compared to
the original samples from the respective areas.

We therefore firstly conducted a user study to assess the capabili-
ties of our employed cGAN model to produce realistic images of peo-
ple expressing clearly identifiable emotions (see Section 10.4.5. The
results of this study, as depicted in Figure 65, show that participants
generally recognize the expressed emotions in the artificially gener-
ated images similarly well as in the original images from the FACES
dataset. The only exception being the emotion Sadness, which was
even better identifiable from the artificially generated images than
the original data, where participants confused the emotion more of-
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Figure 67: Computational Evaluation of our interpolation approach. Red graphs show valence, while
green graphs show arousal. The x-axis represents the interpolation steps. Each interpolation
step was performed by increasing the corresponding emotion vector element by 0.1, while
decreasing the neutral vector element by 0.1.
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ten with Disgust. Those results are leading us to the conclusion that
our employed cGAN model is suitable to further explore interpola-
tion between emotional classes.

The results of the computational evaluation are depicted in Fig-
ure 67 for each emotional class respectively. We can see that the inter-
polation mechanism is able to condition the cGAN to produce face
images with various valence/arousal values. Upon further inspection
we can observe that those values are mostly located in the value range
between the start and end point of the interpolation, which indicates
the general trend of the system to transition smoothly between emo-
tional states. However, the plots also show that the interpolation func-
tion is not in all cases strictly monotonic. For example, for Sadness and
Disgust, the valence value initially rises slightly before dropping to-
wards the interpolation endpoint. Similarly for Anger, both valence
and arousal values are first moving up and down before arriving at
their initial starting point. This is a strong deviation to the position
of anger in the circumplex model of emotions, where we would ex-
pect both valence and arousal to be notably higher when compared
with the neutral position. Furthermore, we can see that the detected
valence value is - in all cases - slightly below zero for the neutral
emotion. Since all emotions have been correctly recognized by hu-
man raters, we attribute this behaviour to shortcomings in the va-
lence/arousal regression model. Taking those human quality ratings
and the predominantly correct trend lines of the interpolation into
account, we argue that our approach can indeed be used to generate
face images of continuous emotional states. The fact that the values
are not evolving in a linear way, i.e., the plots appear rather as curves
than as straight lines, does not take away much from the results,
since the single interpolation step intervals can easily be modified
to achieve a more even interpolation. E.g., instead of using the same
step interval for every single interpolation step, higher intervals can
be used in ranges where the target features are changing slower.

10.6 conclusion

In this chapter, we examined the possibilities of continuous interpola-
tion through a discrete label space of Conditional Generative Adver-
sarial Networks. Therefore, we first conducted some feasibility stud-
ies to assess the general applicability of interpolating between dis-
crete classes to a trained cGAN. We found that indeed the technique
can be used to generate smooth transitions between classes, even in
cases where the cGAN did not learn to model the training domain
to a satisfactory level. Subsequently, we applied the label interpola-
tion mechanism to the exemplary scenario of continuous emotional
face generation. After ensuring that a cGAN trained on a dataset of
categorical emotional face images learned to model that categorical
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emotional states by conducting a user study, we assessed the applica-
bility of label interpolation in order to generate face images that show
continuous emotional states. By using an auxiliary classifier for eval-
uating the cGAN outputs, we found that the algorithm was able to
cover most of the valence/arousal ranges that are needed to cover the
full dimensional emotion space. Although the performance of the ap-
proach shows to be highly dependent on the emotions that are used
for interpolation, it demonstrates the potential of our novel approach
of Label Interpolation.





Part V

F E E D B A C K S Y N T H E S I S

A conceivable way of strengthening users’ self-worth and
self-esteem is to practice a specific skill with a user, while
constantly making him or her aware of points to improve.
By doing so, the user might get a more realistic impression
of their own skill - which in turn could result in higher
self-esteem. However, it is important that the feedback
given to a user is actionable and feasible. The feedback
should point the user in a direction that he or she can ac-
tually achieve. Therefore, counterfactual explanations are
a promising medium of conveying such feedback, as they
aim to show only the least possible change that has to
be made in order to achieve a better outcome. However,
synthesizing such counterfactual feedback is not a trivial
task, as the resulting explanations should still be consis-
tent. Here, GANs can help. In the following part, we will
show how we can use GANs to build user feedback sys-
tems in order to reveal potential opportunities of improve-
ment. Therefore, we will exemplarily address the scenario
of a job interview training system.





11
V E R B A L R E C O M M E N D AT I O N S F O R J O B
I N T E RV I E W T R A I N I N G S Y S T E M S

Large parts of this chapter have already been published in the follow-
ing publication:

Heimerl, A., Mertes, S., Schneeberger, T., Baur, T., Liu, A.,
Becker, L., Rohleder, N., Gebhard, P., & André, E. (2022). Gen-
erating personalized behavioral feedback for a virtual job in-
terview training system through adversarial learning. In In-
ternational Conference on Artificial Intelligence in Education
(AIED). (Alexander Heimerl et al., 2022b)

In stressful situations such as job interviews, many people tend to
show nervous and uncontrolled behaviours. This circumstance most
often affects their performance in a negative way. Especially in job
interviews, the goal is to convince a recruiter of ones fit in a com-
pany by actively engaging in the conversation. Recruiters hereby con-
sciously or unconsciously evaluate the candidate’s social cues. The
amount of positive engagement a candidate shows towards the in-
terviewer may play a central role in deciding whether the candidate
is suitable. Paulhus et al. (2013) found that active integration behav-
iors such as engagement, laughing, and humor led to better perfor-
mance ratings and, therefore, to a higher chance of getting the job.
In recent years, technology-based job interview training systems have
been developed to improve the performance of candidates (e.g., (Baur,
Damian, et al., 2013; Hoque et al., 2013; Takeuchi and Koda, 2021)).
In terms of feedback generation, previous systems mostly rely on ex-
pected features that either have or have not been observed (Naim et
al., 2018; Gebhard et al., 2019; Takeuchi and Koda, 2021).

This chapter extends previous approaches by not only measuring
the occurrence of certain social signals, but also by answering the
question "what would have been a better behaviour?". In order to achieve
this, our approach provides counterfactual explanations in the form
of textual advises for improving the behaviour to be more fitting
in the current situation. The counterfactual explanations are gener-
ated through a GAN and a subsequent template based system. A

181



182 verbal recommendations for job interview training systems

benefit of these created counterfactual explanations is that the gener-
ated recommendations change as much of the originally observed be-
haviour as needed, but as little as possible. Thus, recommendations
are not drawn from highly exaggerated or oversimplified samples
and therefore guarantee realistic and meaningful explanations. Com-
pared to only giving descriptive feedback, providing counterfactual
recommendations reduces possible errors in feedback interpretation.
As behavioural assessment criteria, we use the user’s engagement in
the interview. As such, we try to give feedback that enables the trainee
to appear more engaged in the conversion. Therefore, we present a
feedback extension to an existing job interview training environment
that uses a socially interactive agent as a recruiter and an engagement
recognition component to enable the virtual agent to react and adapt
to the user’s behavior, and emotions (Baur, Mehlmann, et al., 2015).
There, during a preparation phase, trainees were instructed to show
certain behaviors in specific job interview training situations and got
feedback from the virtual agent on whether they could perform these
instructions correctly. This training aims to help improve social skills
that are pertinent to job interviews. Our new feedback extension em-
ploys an XAI method based on counterfactual explanations for gener-
ating verbal feedback about observed social behavior. This approach
allows communicating features (e.g., no eye contact, closed body pos-
ture) that weaken the overall job interview performance.

The introduced feedback extension is based on a deep learning
classifier predicting the user engagement in job interview situations.
As input, the classifier uses multimodal feature representations (e.g.,
gaze, body posture, or gestures) of the trainee. We exploit the con-
cept of counterfactual explanations to show how the user would need
to adapt his or her behaviour to appear more engaged. Therefore, a
GAN-driven counterfactual explanation model is trained that trans-
forms the shown feature representations to corresponding counter-
factual explanations, i.e., the feature representations are changed in
a way that the user would have appeared engaged. The explanation
generation compares the counterfactual feature vectors with the orig-
inal feature vectors to derive textual recommendations automatically.
Finally, they are presented to the trainee by a socially interactive agent
in the role of a job interview coach. Figure 68 shows a schematic
overview of our approach.

11.1 related work

Due to the complexity and importance of job interviews, automatic
training approaches have been developed to improve the perfor-
mance of the candidates. Multiple simulated training systems have
been proposed over the years that combine social signal interpre-
tation and virtual agents (Baur, Damian, et al., 2013; Hoque et al.,
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Figure 68: Job interview training system with GAN-generated recommendations.
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2013; Takeuchi and Koda, 2021). Another example by Gebhard et al.
(2019) introduced a serious game simulation platform to train social
skills. They showed that their training systems can be utilized to
teach individuals how to display adequate socio-emotive reactions
during job interviews. Naim et al. (2018) introduced a framework for
the automatic assessment and analysis of job interview performance.
Their proposed system is capable of reliably predicting ratings for
interview features such as friendliness, excitement and engagement.
Through analysis of the learned feature weights of their regression
model they were able to derive general recommendations on how to
behave during job interviews, e.g., use filler words less frequently.
However, those recommendations are not specific to a situation but
rather general guidelines. Takeuchi and Koda (2021) developed a
job interview training system that provides automatically generated,
situation-specific feedback by analyzing nonverbal behaviour and
comparing it to a reference model of ideal nonverbal behaviour. The
feedback generation was accomplished by defining weights for the
shown improper nonverbal behavior in accordance with its impor-
tance during the interview.

Even though providing feedback or guidelines based on weight
prioritization may produce satisfactory results, those approaches fail
to take the interplay of different shown nonverbal behaviors into ac-
count, since each behavior is considered on its own. Imagine a job
candidate that is appearing to be low engaged due to a closed body
posture with crossed arms and additionally isn’t giving his interlocu-
tor much nonverbal feedback like nodding. For such a case it is not
enough to consider each behavior or corresponding feature on its
own. If we choose to recommend giving more nonverbal feedback,
we need to be also aware of how the person is being perceived while
changing one of his behaviors. In our case, this would result in a
person nodding while still maintaining a closed body posture with
crossed arms. Therefore, we argue that it is important to consider
the interplay of features when generating personalized feedback and
nonverbal behavior recommendations. By utilizing a counterfactual
reasoning process we are able to generate feedback that models a
holistic recommendation for nonverbal behavior adjustments. This
reasoning process tries to answer the question of how should the per-
son have behaved to be perceived as more engaged. For this purpose,
the underlying GAN tries to change simultaneously as many features
as needed while at the same time trying to change as few features as
possible and therefore guaranteeing meaningful recommendations.

Furthermore, by basing our approach on counterfactual explana-
tions, our system is able to give highly personalized feedback. Conati
et al. (2021) pointed out the potential value of personalized XAI for
intelligent tutoring systems - which is highly related to our problem
domain.
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11.2 recommendation generation

The next sections offer an overview of the different components we
implemented to generate behavioral recommendations that point out
how the user should have behaved to appear more engaged.

11.2.1 Feature Extraction

In order to train a model for engagement recognition and recommen-
dation generation, we modeled a high-level engagement feature set
that can be easily interpreted. The feature set consists of 18 metrics
mapping facial behavior, body language and conversation dynamics.

During conversations, the face usually occupies most of the inter-
locutors’ attention. A lot of important information regarding the level
of engagement can be extracted from the face, respectively the head.
In fact, there are multiple studies that found a correlation between
head movement / gaze behaviour and conversational engagement
(Ishii and Nakano, 2010; Bednarik, Eivazi, and Hradis, 2012; Ooko,
Ishii, and Nakano, 2011). Inspired by those findings we defined sev-
eral features that represent the overall movement of the head and
gaze behavior. Moreover, we considered the valence of the face cal-
culated from the facial action units that have been extracted with
OpenFace (Baltrusaitis et al., 2018).

Another modality we take into account is the general body lan-
guage of the job candidate. The alignment of the body and the
limbs play an important role in broadcasting the state of engage-
ment (Müller et al., 2013). Interlocutors that are engaged during a
conversation align their bodies to each other in order to “create a
frame of engagement” (Kidwell, 2013). We tried to cover the gen-
eral behaviour of the body, as well as specific gestures or poses that
are connected to engagement. We defined a group of features that
are mainly inspired by the coding system introduced in (Dael, Mor-
tillaro, and K. R. Scherer, 2012). It contains several metrics to map
the orientation and movement of the joints. Those metrics represent
- amongst others - the overall level of body openness. Besides that,
we also calculate a cumulative value over all joints to measure the
overall body movement. Lots of body movement may indicate rest-
lessness, which can be an indication for low engagement (D’Mello,
Chipman, and Graesser, 2007). In addition to that, we also considered
the amount of gesticulation an individual performs, as that plays an
important role in nonverbal communication (Albert Mehrabian, 2007;
Dael, Mortillaro, and K. R. Scherer, 2012).

Finally, we also covered some form of conversation dynamics. Turn-
taking and vocal cues play an important role throughout a conversa-
tion (Knapp and J. Hall A., 1997). During a conversation, the interlocu-
tors usually alternate their speaking turns. Therefore, we determine



186 verbal recommendations for job interview training systems

Figure 69: Confusion matrix of the neural network for the recognition of low
and high conversational engagement (Test set).

the interlocutor that is currently holding the turn by considering the
general voice activity of the interlocutors. This allows us to draw con-
clusions about the overall involvement of the individuals during the
conversation. An overall low voice activity may imply a conversation
with low engaged interlocutors.

11.2.2 Engagement Model

Based on the feature set introduced in Section 11.2.1, we trained a
simple feedforward neural network with two dense layers for the
recognition of low and high engagement. For training the network,
we used the NoXi database (Cafaro et al., 2017). It provides dyadic
novice-expert conversations. We decided on the NoXi corpus since it
contains multi-modal multi-person interaction data and its transfer-
ability to social coaching scenarios. Moreover, the setup of the corpus
allowed for both engaging as well as non-engaging interactions.

A total of 19 sessions of the NoXi corpus have been annotated re-
garding conversational engagement resulting in 10.5 hours of training
data. The data has been randomly split into training and test sets, so
that no sample of the same participant is present in the training and
the test set. The training set included 13 sessions and contained 6.8
hours of data. The rest was allocated to the test set. Figure 69 displays
the confusion matrix of the classifier for the test set.

11.2.3 Counterfactual Features

In a next step, to be able to give recommendations on how the user
should have behaved to appear more engaged, we applied a coun-
terfactual explanation generation algorithm, i.e., we aim to modify
the input feature vectors that were classified as low engaged in a way
that the classifier would change it’s decision to high engaged. As de-
scribed above, the recommendations that we aim for can be seen as
counterfactual explanations for the engagement model presented in
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Section 11.2.2. To generate these counterfactual feature vectors, we
used an adversarial learning approach. In Chapter 7, we presented
our GANterfactual architecture, which extended the CycleGAN frame-
work (Zhu et al., 2017), which is an adversarial approach to domain
translation, with further modifications that support the architecture
in transforming original samples to counterfactual samples that are
classified in a different way by a specific decision system to be ex-
plained. To this end, we incorporated the classifier into the training
process of their CycleGAN-driven counterfactual explanation system
via an additional loss function component. For this chapter’s sys-
tem, we built a network architecture adapted from the GANterfactual
framework, which was originally implemented for generating coun-
terfactual explanations in the image domain. The use of the GAN-
terfactual framework has multiple benefits for the recommendation
quality: Firstly, the cycle-consistency loss that is an integral part of
CycleGANs forces that the learned transformation is minimal, i.e.,
only relevant features are changed. In the context of recommendation
generation, this implies that the generated behavioral recommenda-
tions are highly personalized. Secondly, the adversarial loss compo-
nent that is part of every GAN architecture leads to highly realistic
results. Thus, recommendations are not drawn from highly exagger-
ated or oversimplified feature vectors. Thirdly, the counterfactual loss
introduced in Chapter 7 enforces that the counterfactual explanations
(in our case, the behavioral recommendations), are valid. As the en-
gagement model that we used for our system works with feature vec-
tors with no spatial relations between the single features, we replace
the convolutional blocks of the original architecture with fully con-
nected blocks. Further, the input layer was adapted to fit the feature
representations that we also use for the engagement classifier. The
rest of the architecture, as well as the training procedure, was taken
from the original GANterfactual framework. For the GAN training,
we relied on the NOXI dataset, which we also used for training the
engagement classifier. Thus, the adversarial framework learns to con-
vert feature vectors that show low engagement to feature vectors that
show high engagement.

11.2.4 Textual Recommendations

After generating the counterfactual feature vectors, we compared
them to the original feature vectors that represent the shown non-
verbal behavior. Depending on the demanded detail of feedback, we
return the features that had undergone the greatest value transforma-
tion. After identifying the most meaningful counterfactual features,
we convert those into textual feedback. For this purpose, we discretize
the features based on a defined textual template. For example, the fea-
ture representing the overall activity of the head gets translated into
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"try to keep your attention on your interlocutor" or "try to use more
nonverbal feedback" depending on the present feature value. The
amount of discrete classes varies for different features and can easily
be adjusted depending on the given use case. The generated feedback
is provided verbally to the user by the virtual coach inside the job
interview training environment. An example of a recommendation
provided by the virtual coach is displayed in Figure 70.

11.3 pilot study

The present pilot study’s goal was to get preliminary insights about
the assessment of a possible job interview training applying GAN
driven recommendations. We used a mixed-methods design, combin-
ing questionnaires and a semi-structured interview. The study was
conducted in January 2022.

11.3.1 Method

11.3.1.1 Participants.

We gathered data from 12 volunteering student participants (7 female,
5 male). Participants’ age was between 21 and 29 years (M = 23.83,
SD = 2.66). On average, participants attended 4.33 job interviews
(SD = 2.74; Min = 1; Max = 10) prior to the study. Two of them had
already experience with job interview trainings, three with virtual
agents.

11.3.1.2 Procedure and Material.

In this pilot study, the experimenter and participant met in a video
call. After agreeing to the consent form, the experimenter explained
the background of the study and presented videos of our job inter-
view training system. For the videos, we used a multi-modal job
interview role-play dataset (Schneeberger et al., 2019) to create be-
havioral feedback. In that dataset, participants were confronted with
a job interview conducted either by an interactive social agent or a
human interviewer. Participants were recorded with the MS Kinect2.
We used 5 sessions with the human interviewer as input to our job
interview training system. The resulting recommendations were then
rendered into a video (Fig. 70) that was shown to the participants. The
participants saw the part of the job interview training in which the
trainee gets the individual feedback from the virtual coach after hav-
ing a mock job interview. The coach first presents the recorded part of
the job interview and gives the recommendation afterwards verbally.
Participants were asked to imagine that they were the trainees using
the training to practice a job interview. Next, participants filled in the
questionnaires. Then, the semi-structured interview was held. In the
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end, the experimenter thanked the participants for their participation.
The whole procedure took around 25 minutes.

Figure 70: Coach giving the recommendation after the mock job interview.

11.3.1.3 Measurements.

Demographics included age, sex, job interview experience, and job in-
terview training experience. Usefulness was measured with the use-
fulness scale of the MeCUE (Minge and Riedel, 2013). It contains
three items. Cronbach’s Alpha was .92. Transfer motivation was mea-
sured using four items adapted from (Rowold, Hochholdinger, and
Schaper, 2008) covering whether training lessons learned will be use-
ful in upcoming situations: “I believe that my performance in job
interviews will improve if I apply the knowledge and skills I have ac-
quired with training.”, “It is unrealistic to believe that mastering the
training content can improve my performance in job interviews. ”, “I
can apply skills and knowledge acquired from job interview training
to my daily life.”, “I feel like after the training I could apply the be-
havior very well. ”. Cronbach’s Alpha was .90. Feedback Quality was
measured with four self constructed items: “I felt the feedback was
accurate.”, “I would have given similar feedback.”, “I feel like the
feedback is helpful.”, “I don’t think the computer can give me accu-
rate feedback.”. Cronbach’s Alpha was .87. All questionnaire items
were answered on a 7 point scale ranging from 1 (strongly disagree) to
7 (strongly agree).
The Semi-structured interview covered six areas: 1) general impression,
2) persona, 3) other possible use-cases, 4) suggestions for improve-
ment, 5) intention for further use, and 6) added value.
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11.3.2 Results

11.3.2.1 Questionnaires

In the three questionnaires, the following descriptive data was
found: Usefulness (M = 4.72, SD = 1.17); Transfer motivation (M = 4.92,
SD = .94); Feedback (M = 4.60, SD = 1.26).

11.3.2.2 Semi-structured interviews

The answers gathered in the semi-structured interview were analyzed
and categorized for each of the six areas separately:
1) Regarding the General impression, participants mentioned six times
that the recommendations were useful / feasible (e.g., “Simple tips
that were easy to implement, but have a big impact.”) or comprehen-
sible (2x). Three participants mentioned that the recommendations
were too unspecific. Once each was mentioned that the recommenda-
tions are not useful (“Would prefer feedback on the content of my
answer. Job interview is too stressful for me such that I could focus
on non-verbal behavior.”) and too obvious (“If I saw myself in the
video, I would have known that I have to improve the recommended
behaviors.”).
2) Participants described the persona as someone with a wish to im-
prove (7 namings) that is open for new thing (3 namings), career ori-
ented (2 namings), young (2 namings), self reflective (2 namings) or
non-self reflective (1 naming).
3) As other possible use-cases participants named training to improve
communication skills in general (8 namings) and for more specific
groups, like patients with anxiety disorders or people with social
phobias. The named also other possible situations like preparing for
challenging employee appraisals, conflict resolution dialogs, or other
high stakes situations. Another named use-case was public speaking
(4 namings).
4) Participants mentioned seven times that they would like to have
more specific recommendations, e.g. “The agent could say something
like: Nonverbal feedback is nodding, for example." Moreover, they
thought that recommendations based on the content of the answers
would be helpful (2 namings). Also, some participants noted that
the agent could be improved (3 namings), like using a more em-
pathic voice. One participant noted that an interactive training mode,
where you practice recommendations directly and get instant feed-
back would be helpful.
5) Intention for further use was indicated by 9 participants. Three could
not imagine using the training.
6) The added value of the training was for most of the participants
that the recommendations are given directly on a specific behavior
shown in a specific situation during the job interview. Moreover, one
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participant mentioned that the training was especially helpful as it
gives a low-threshold possibility to practice job interviews that could
be offered by agencies supporting people to find employment. One
other participant said that having an agent instead of a human giving
recommendations decreases the feeling of being judged for mistakes.

11.3.2.3 Recommendation generation

As described in Section 11.2.3, we incorporated a classifier for the
recognition of engagement into the training process of the GAN via
an additional loss function component. In order to verify the validity
of our approach, we examined whether the counterfactuals generated
by the GAN are modifying the features that the engagement classifier
identified as important for the classification of low and high engage-
ment. For this evaluation, we used five sessions of the multi-modal
job interview role-play dataset (Schneeberger et al., 2019) that have
also been used in Section 11.3 and extracted the importance scores
of every feature in regard to the model’s classification with LIME
(Ribeiro, Singh, and Guestrin, 2016). Next, we calculated the absolute
value change of how much each feature has been modified by the
counterfactual transformation. Afterwards, we calculated the Pear-
son Correlation Coefficient between the importance scores of every
feature and the absolute change of each feature, see Figure 71. High
correlation scores indicate that the counterfactual feature transfor-
mation is in line with the corresponding importance of the feature.
The more important a feature is for the classification of a sample the
greater also should be the change of the feature in order to result
in a different classification result. Seven features showed a strong
positive correlation (GZ_DR, AM_CR, HD_TH, DIST_RW, YROT_LE,
SDX_HD, SDXROT_HD), six features had a moderate positive correla-
tion (HD_AC, YROT_RE, XROT_RE, TN_HD, CONT_MOV, EN_HA)
and two features presented with a low positive correlation (DIST_LW,
XROT_LE). Moreover, FO_RW had a strong negative correlation,
VAL_F showed a moderate negative correlation and FO_LW had a
weak negative correlation.

Moreover, we conducted a computational evaluation to investigate
how well the generated counterfactual features change the decision of
the engagement classifier. For this evaluation, we also used the multi-
modal job interview role-play dataset. We found that 96.49% of the
generated counterfactual feature vectors led to a different decision of
the engagement model as the original input features.

11.4 discussion

The results of our user study indicate that training with our system
could be helpful to prepare for job interviews successfully. The rec-
ommendations given by the system were found to be helpful and
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Figure 71: Pearson correlation between the absolute change of the feature values and the LIME classi-
fication relevance scores for every feature. The features are from left to right: Valence Face,
Gaze behavior, Head activity, Arms crossed, Head touch, X distance of left/right wrist and hip, Y
rotation left/right elbow, Y distance of left/right wrist and hip, X rotation left/right elbow, Standard
deviation head movement in X axis, Standard deviation Head X rotation, Turn hold, Continuous
movement, Gesticulation.

comprehensible, and transferable to other use cases. Moreover, most
participants noted that the proposed approach adds additional value
to the training by giving recommendations directly on a specific be-
havior in a specific situation. Part of the underlying training system
automatically extracts situations that could be improved and displays
them alongside the recommendation presented by the virtual coach.
However, the pilot study also revealed that the recommendations
should be more specific. Therefore, in future work, the template used
for discretizing the counterfactuals should be extended to be more di-
verse and specific or use natural language processing to generate tex-
tual recommendations from counterfactuals directly. The latter would
need additional annotation and training effort. Moreover, we exam-
ined the validity of our GAN-driven recommendation generation ap-
proach by calculating the Pearson correlation coefficient between the
absolute changes of the feature values after counterfactual transfor-
mation and the importance of the features the classifier attributed to
them regarding the classification result. We showed that most of the
features (15 out of 18 features) had a moderate to strong correlation,
which emphasizes the validity of the proposed approach. Only the
two features corresponding to the relative position and movement of
the left wrist and the feature representing the flexion of the left el-
bow presented a weak correlation. Further, it is interesting to point
out that the feature representing the relative movement of the right
wrist (FO_RW) has shown a strong negative correlation. This means
that the counterfactual suggests decreasing the relative distance from
the wrist to the rest of the body when the current feature value is
an indication for low engagement. The opposite is the case when the
current feature value indicates being highly engaged, here the rela-
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tive distance should be increased. This indicates that for the given
job interview data, the engagement classifier attributes a lower wrist
distance towards the body as appearing higher engaged. A similar
case presented itself for the valence of the face. For this feature, we
found a moderate negative correlation. For the valence of the face,
the classifier interprets lower valence values, meaning a more serious
facial expression, as a sign for higher engagement. This interpreta-
tion is most likely related to the dataset used for training the clas-
sifier and the corresponding conversational engagement annotations.
Therefore, extending the used training data for both the classifier and
the GAN for future work makes sense. Especially the classifier might
benefit from more training data as the accuracy scores leave room for
improvement. Also, the current classifier only distinguishes between
low and high engagement. It would also be interesting to investigate
the resulting counterfactuals when using a more fine-grained rep-
resentation for conversational engagement. Further, we also investi-
gated how well the generated counterfactual features can change the
decision of the engagement classifier. Overall, 96.49% of the counter-
factual feature vectors led to a different decision of the engagement
classifier as the original input features. This indicates that our GAN-
driven approach enables to generate recommendations that, when
being adopted, are consistently leading to a perception of high en-
gagement. The computational evaluation, as well as the user study,
indicate that the generated recommendations are valid and helpful in
the context of job interview coaching scenarios.

11.5 conclusion

In this chapter, we introduced a novel approach for generating tex-
tual nonverbal behavior recommendations in job interview training
environments. We extended an interactive virtual job interview train-
ing system with a GAN-based approach that first detects behavioral
weaknesses and subsequently generates personalized feedback. To
evaluate the usefulness of the generated feedback, we conducted a
mixed-methods pilot study using mock-ups from the job interview
training system. The overall study results indicated that the GAN-
based generated behavioral feedback is helpful. Moreover, partici-
pants assessed that the feedback would improve their job interview
performance. All in all, the presented approach is a step towards per-
sonalized feedback systems to support self-esteem, and as such to-
wards user-centered artificial intelligence.
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V I S U A L R E C O M M E N D AT I O N S F O R J O B
I N T E RV I E W T R A I N I N G S Y S T E M S

In the last chapter, we aimed to generate verbal feedback, i.e., feed-
back that was represented as text. There, GANs were used to find
decent counterfactual instances, while the presentation of the feedback
was done procedurally. In this chapter, we give a proof-of-concept
on how we could use GANs also for the representation of feedback.
Therefore, this time, we use a procedural approach for finding the
counterfactuals, while we use GANs for visualizing them.

Our approach uses tracked skeleton data of the user as interme-
diate representation – the actual counterfactual search is done on
skeleton-level, i.e., for a specific point in time, we perform a proce-
dural search for a skeleton data instance that is very close to a to the
original one, but is perceived as more engaged. In order to obtain
such data instances, we use manually labeled data of a publicly avail-
able dataset. The counterfactual skeleton is then used to synthesize
an image of a real person using our GAN model. By using the skele-
ton representation as intermediate layer, we are able to synthesize
data of arbitrary people, as long as we have enough data to train the
GAN. One logical decision here would be to directly use tracked data
of the trainee as training data – as such, the user could watch him-
self behaving in the correct way. However, here, training images of the
user would have to be available. Although these could be recorded di-
rectly during the job interview training, it would still need some time
to train the GAN before being able to show the feedback. A second
option is to use a GAN that is already trained to synthesize images
of another person (i.e., a job interview trainer) – and as such being
able to give immediate feedback. In this chapter, we provide a proof-
of-concept for the latter version, which, however, can technically be
used analogously for the former one.

12.1 approach

Our system is a pipeline of multiple processing steps. In a first stage,
we track a video stream of the job candidate. From that video data,
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Figure 72: Exemplary output of our system. First, a job candidate is captured and its skeleton data is
extracted. Then, a counterfactual skeleton is searched. Both the original and the counterfac-
tual skeleton are converted to realistic images of a job interview trainer by using the pix2pix
architecture. Faces blurred for privacy protection.

we extract pose skeleton data by the use of the OpenPose framework
(Cao et al., 2019). In a next step, we convert that skeleton in a way
that the pose would appear more engaged. To do so, we compare
the extracted skeleton data with data samples of the Noxi Corpus
(Cafaro et al., 2017). Through that comparison, we aim to find a skele-
ton sample that is as closely as possible to the candidate’s skeleton,
but appears to be highly engaged. Such a skeleton can be seen as a
counterfactual example to the original one. After having found that
counterfactual skeleton, we feed both the original and the counterfac-
tual skeleton data into a style transfer GAN architecture that converts
the skeletons data back into real looking images of a human.

By doing so, we have the possibility to present the candidate with
a realistic looking visualisation of how his posture should change in
order to appear more engaging.

12.1.1 Counterfactual Skeleton Data

The use of skeleton data as intermediate representation enables two
crucial benefits for the application. First, using an abstract representa-
tion of the job candidate allows for the comparison of that representa-
tion with a broad variety of video recordings. In our case, we used the
Noxi Corpus as a basis for finding a skeleton that is as closely to the
original as possible, but shows high engagement. Second, as skeleton
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data holds a lot of information about the shown engagement, we keep
the option open to use different counterfactual generation algorithms
that do not rely on a comparison to existing data, but perform an au-
tomated conversion step from original to counterfactual data. E.g., in
Chapter iii, we proposed a GAN-based generation system for counter-
factual explanations. Although such end-to-end based systems could,
in theory, be used in our application as well, we decided to use a
more straight-forward approach which provides satisfying results in
our domain. We calculated the Mean Squared Error (MSE) between
the input skeleton and the skeleton coordinates of all samples of the
Noxi Corpus that are labelled as highly engaged, i.e., that had an en-
gagement annotation greater than 0.9. The skeleton with the smallest
MSE was chosen as the counterfactual skeleton. The use of MSE as
comparison metric enforces that (i) the difference between original
and counterfactual skeleton is as small as possible, and (ii) if the orig-
inal skeleton is already showing high engagement, the counterfactual
skeleton will, due to the relatively large comparison dataset, most
likely not change much. Such, it is ensured, that a job candidate that
already appeared highly engaged does not get the advice to change
his or her behaviour.

12.1.2 From Skeleton Data to Visual Recommendations

In order to allow for a visualized counterfactual recommendation,
we used a pix2pix architecture (Isola et al., 2017) to convert the skele-
tons to photorealistic human data. For demonstration purposes, we
trained the network on a video dataset cropped from YouTube. We
used OpenPose to estimate skeleton data for each frame of the video,
and then trained the network to convert skeleton data back to image
data. Our pipeline allows our job interview coaching system to be re-
trained to produce images of job interview coaches that correspond to
the personal preference of the job candidate. Further, it would also be
possible to train the pix2pix network on images of the job candidate
itself. By doing so, the coached person could see him- or herself per-
forming the job interview while appearing more engaged. However,
for a proof-of-concept, we have stayed with the YouTube data, as here
we could use videos of a huge variety of different postures, allowing
the pix2pix architecture to model a broad spectrum of skeleton data.

12.2 discussion

12.2.1 Explanation Quality

Following the proposed approach we were able to generate realistic
images of poses from skeleton data. The conversion from skeleton
data to images produced reasonable poses. Therefore, it is safe to as-
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sume that the underlying model has been able to identify the relevant
information needed for a meaningful conversion.

However, our experiments also revealed room for improvement.
While most of the skeleton data has been successfully mapped, mod-
eling the hands and face has been inaccurate, i.e., the reconstructed
hands and faces are quite blurry or missing at all. A variety of reasons
could have potentially caused these results:

• One limitation is the small dataset used for training. For train-
ing the model, we used roughly one hour of YouTube video
data. In order to have training data that contained a variety
of different movement patterns, we selected a fitness video.
As such, the resulting dataset consisted of samples mapping
a broad range of joint positions and alignments. However, us-
ing that very compact data resulted in a quite low number of
training samples.

• While fitness videos provide a great variety of poses, they come
with the drawback of displaying repetitive motions (e.g., push-
ups and lunges). As such, the diversity of the training data suf-
fered.

• Moreover, we only used video data of one person. Therefore,
the person-dependent characteristics of the skeleton may differ
from the trainee, which can result in incorrect conversions.

These drawbacks can be overcome by extending the training dataset
with more individuals and a variety of scenarios, as well as increasing
the overall amount of sessions.

12.2.2 Explanation Selection

Our approach operates at the frame level, meaning skeletal data is
extracted from individual images and transformed into counterfactu-
als accordingly. Given the video inputs of the job interview training,
which consist of a large number of individual frames, the question
arises as to which frames should indeed be transformed and dis-
played in order to provide the user with the most useful feedback. In
principle, it is conceivable to transform the entire video stream frame
by frame into counterfactuals, and by doing so, regaining a new video
stream. However, this would require tweaks in the architecture, as the
temporal component is not currently represented, which would lead
to unsmooth videos with glitches and artifacts. Moreover, it is ques-
tionable whether an explanation is really needed for every point in
time, or whether it makes more sense to select individual, particu-
larly significant scenes/frames to showcase the feedback for a very
conspicuous misbehavior. For instance, one could train a classifier to
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automatically detect the trainee’s engagement and generate explana-
tions for precisely those situations in which the trainee performed
least effectively - as was done in the last previous chapter.

12.3 conclusion

Figure 72 shows an exemplary output of our system. As can be seen,
the behavioural feedback produced by our system is able to produce
outputs that are reasonable and can potentially help people with
preparing for a real job interview. However, the image quality of the
used pix2pix architecture has to be improved further. Also, although
technically analogously to the work presented here, it has still to be
validated if the approach can also generate feedback by using the
recorded data of the trainee itself. All in all, we presented a proof-
of-concept of our novel approach for automatically generating visual
counterfactual recommendations for job interview training systems.
Our outputs show that the approach is promising and shows great
potential to be investigated further.





Part VI

I N T E R A C T I O N W I T H G A N S

The real-time capabilities of GANs make them an ideal
choice to enable the development of interactive systems.
Such interactive systems could be used for a variety of
use-cases. In this chapter, we give a specific example on
how we can leverage the strengths of GANs to build in-
teractive experiences - by using a GAN-based system to
counteract stress. A popular method for stress relief is
the consumption of content inducing a Autonomous Sen-
sory Meridian Response (ASMR). ASMR is a sensory phe-
nomenon involving pleasurable tingling sensations in re-
sponse to stimuli such as whispering, tapping, and hair
brushing. It is increasingly used to promote health and
well-being, help with sleep, and reduce stress and anxi-
ety. While ASMR triggers are both highly individual and
of great variety. Consequently, finding or identifying suit-
able ASMR content, e.g., by searching online platforms,
can take time and effort. Also, while ASMR is highly re-
lated to the concept of flow, which in turn always involves
active involvement in a task, ASMR is - so far - always con-
sidered a passive experience. Here, we show how GANs
can be used to elevate the consumption of ASMR to being
an interactive experience. Therefore, we present a visual
interface that allows to interact with a GAN model that
was trained to synthesize ASMR sounds. By doing so, the
sounds can be individualized in an interactive way. As
such, we give an example of how GANs can be used to
foster well-being by reducing stress in a novel and effec-
tive way.
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U S I N G G A N S F O R I N T E R A C T I V E A S M R T R I G G E R S

Large parts of this chapter have already been published in the follow-
ing publication:

Mertes, S., Strobl, M., Schlagowski, R., & André, E. (2023).
ASMRcade: Interactive Audio Triggers for an Autonomous Sen-
sory Meridian Response. In Proceedings of the 25th Interna-
tional Conference on Multimodal Interaction. (Mertes, Strobl,
et al., 2023)

In today’s fast-paced world, stress is increasingly becoming a per-
vasive and challenging problem in people’s daily lives (Steele, J. A.
Hall, and Christofferson, 2020; Weinstein and Selman, 2016). Persis-
tent stress can lead to a variety of physical and mental health issues,
such as anxiety, depression, sleep disorders, heart disease, high blood
pressure, headaches, and many other health problems (Kessler, 1997;
Stults-Kolehmainen and Sinha, 2014; Halkos and Bousinakis, 2010;
McEwen, 2008; Partinen, 1994; Gasperin et al., 2009). Therefore, it is
very important for people to find an adequate balance to relax and
thus counteract stress.

An effective method of relaxation that is becoming more and more
popular is the consumption of content triggering an Autonomous Sen-
sory Meridian Response (ASMR) (Barratt and Davis, 2015). ASMR is a
term used to explain the tingling sensation some people experience
in response to certain, mostly auditive, stimuli. Typically, this feeling
is described as a delightful buzz that begins in the scalp and travels
down the neck and back (Barratt, Spence, and Davis, 2017). Auditive
triggers for ASMR can vary, including sounds such as whispering,
soft speaking, tapping, or scratching. Additionally, visual or physi-
cal stimuli, like observing someone do a repetitive task or receiving
a gentle touch, can also elicit ASMR. In recent years, ASMR has be-
come increasingly popular, with numerous content creators produc-
ing videos and audio recordings intended to induce ASMR in their
audience. While there is limited scientific research on the topic, many
individuals find ASMR to be a relaxing and pleasurable experience
(Barratt and Davis, 2015). However, it’s important to note that not ev-
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eryone experiences ASMR or is affected by sounds meant to induce
ASMR in the same way.

ASMR is often considered a passive experience because it involves a
state of relaxation and receptivity to certain stimuli rather than an ac-
tive engagement with them. However, Barratt and Davis (2015) found
a correlation between the number of ASMR responses and the flow
state of participants, which is the psychological state of being im-
mersed in a task (Csikszentmihalyi, 2000). Hence, as such tasks typi-
cally involve active participation or interaction with the environment,
e.g., in sports or playing video games, we propose an active approach
for ASMR triggers that interactively engages ASMR recipients.

To this end, this chapter introduces ASMRcade, an interactive ap-
plication for ASMR sound synthesis, exploration, and customization.
The application utilizes a GAN that we trained to generate high-
quality audio samples that are aimed to trigger ASMR. By providing a
graphical user interface, users of ASMRcade are able to interact with
that model’s latent space and, as such, directly influence the sounds
that the GAN produces in real time.

The main contributions of this chapter are as follows:

• We trained a WaveGAN (Donahue, McAuley, and Puckette,
2018) model on a dataset of ASMR sounds. Specifically, for a
proof-of-concept, we use tapping sounds, which have proven to
induce ASMR for many people in the past (Barratt, Spence, and
Davis, 2017). Such sounds are typically created by tapping on
various objects, such as surfaces, or directly on a microphone.

• Using a web-based graphical user interface as introduced by
Schlagowski, Mertes, and André (2021), we made the input la-
tent space of the trained WaveGAN model interactive. Specifi-
cally, we represent parts of the latent model space of the Wave-
GAN through certain interface elements. By moving those ele-
ments, the user directly influences the sounds that the model
produces.

• We present a first exploratory user study in which we let users
interact with our system. We show that our system can induce
ASMR and, as such, is a promising direction for future research
in the field of ASMR.

To the best of our knowledge, this chapter is the first work introduc-
ing an interactive approach to the field of ASMR research.

13.1 related work

13.1.1 Autonomous Sensory Meridian Response

Autonomous Sensory Meridian Response (ASMR) is a sensory phe-
nomenon characterized by a pleasurable tingling sensation with its
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origin in the scalp, moving down the neck, and sometimes following
the line of the spine down to other areas of the body in response to
specific audio and visual stimuli. In recent years, there has been a
growing interest in understanding the triggers that lead to ASMR ex-
periences and the potential benefits of experiencing ASMR. As such,
the research community has begun to embrace the potential of ASMR
as a valuable source of inspiration for Human-Computer Interaction
(Klefeker, Striegl, and Devendorf, 2020).

Barratt and Davis (2015) proposed that ASMR is a flow-like men-
tal state, which refers to a state of intense focus and absorption in
an activity. They suggested that ASMR experiences involve a deep
immersion in the sensory stimuli, which can lead to a sense of time-
lessness and an altered state of consciousness. The researchers also
found that people who experience ASMR report a range of positive
effects, such as relaxation, stress relief, and improved mood.

In their later study, Barratt, Spence, and Davis (2017) investigated
the sensory determinants of ASMR by surveying a large online com-
munity of individuals who experience ASMR. They found that the
most common triggers were related to auditory stimuli, such as whis-
pering, tapping, and scratching sounds. Other common triggers in-
cluded visual stimuli, such as hand movements and personal atten-
tion, and touch-related stimuli, such as gentle touch and hair brush-
ing. Interestingly, the researchers also found that individual factors,
such as personality traits and mood, could influence the likelihood of
experiencing ASMR.

Poerio et al. (2018) further explored the triggers of ASMR by con-
ducting laboratory experiments in which participants listened to a
range of audio and visual stimuli while their physiological responses
were measured. They found that ASMR experiences were associated
with a reduction in heart rate and an increase in skin conductance re-
sponses, indicating a relaxation response. The study also found that
the most effective ASMR triggers were those that involved interper-
sonal closeness, such as whispering and soft-spoken voices.

In terms of content, people consume a variety of ASMR videos and
audio recordings to experience the tingling sensation. Common types
of content include role-playing scenarios, where the so-called ASM-
Rtist portrays a particular role (such as a hairdresser or a doctor),
soundscapes, where various sounds are played, and guided medi-
tations or affirmations. There are many successful ASMRtists with
millions of subscribers on YouTube, indicating the existence of a vast
online community interested in the phenomenon. Overall, ASMR is
a complex phenomenon that involves a combination of sensory and
personal factors, and triggers can vary widely between individuals.
However, research has shown that certain types of stimuli, such as
gentle sounds and interpersonal closeness, are more likely to elicit
an ASMR response. Furthermore, the flow-like mental state experi-
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enced during ASMR has been proposed to have potential benefits for
mental health and well-being.

13.1.2 Customizable Sound Generation

The technical foundation to make an interactive ASMR experience
possible is a method to synthesize artificial sounds in a controlled way.
While early works in that field made use of procedural approaches
like Concatenative Sound Synthesis (Schwarz, 2005) or Modular Sound
Synthesis (Sueur, Aubin, and Simonis, 2008), mechanisms using ma-
chine learning are on the rise since several years. For example, ap-
proaches from the field of Evolutionary Computing are widely used
for optimizing sound synthesis problems (Mitchell, 2012; Lai et al.,
2006; Miranda and Al Biles, 2007) and were, although not in an inter-
active setting, also applied to ASMR sound synthesis (Nan and Fuku-
moto, 2022). One promising approach for sound generation is the
use of Generative Adversarial Networks (GANs), which were origi-
nally developed for image synthesis (Goodfellow et al., 2014). Vari-
ous modifications to the original GAN architecture were presented
that address the generation of audio data, such as GANSynth (Engel
et al., 2019) or WaveGAN (Donahue, McAuley, and Puckette, 2018).

In order to add the possibility for controlling the audio outputs
generated by a GAN, mechanisms were proposed that incorporate
directive features into the GAN training (C. Y. Lee et al., 2018; Dong
et al., 2018), or directly search through the input space of an already
trained GAN, e.g., using methods such as Latent Variable Evolution
(LVE). In the context of ASMR, Fang et al. (2023) adapted the DCGAN
architecture (Radford, Metz, and Chintala, 2015) to create random
new ASMR sounds. A similar approach was followed by Oh et al.
(2023), who created artificial ASMR sounds using the SpecVQGAN
architecture (Iashin and Rahtu, 2021). However, although evaluations
of both of these approaches indicated that GANs could create audi-
tively pleasing ASMR sounds, they did not include mechanisms to
engage with the sound synthesis process interactively.

13.1.3 Interactive Approaches to Parameter Space Exploration

The generation of ASMR audio content is only one part of our ob-
jective - another goal is to actively engage users in the ASMR sound
generation process. For the ASMRcade application, we use the Wave-
GAN architecture for sound synthesis, which can transform an ar-
bitrary, non-interpretable input vector to sound that resembles the
data the model was trained on. Therefore, we have to enable the user
to interact with the input parameter space of the WaveGAN. In the
general field of audio synthesis, multiple approaches exist to inter-
actively explore parameter spaces, such as mapping parameters to
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2D-Interfaces using Hilbert curves (Tubb and Dixon, 2014), or us-
ing interactive evolutionary algorithms (Dahlstedt, 2001; Ritschel et
al., 2019). In the context of music synthesis, interaction with parame-
ter spaces was even used as musical instruments (Berndt, Al-Kassab,
and Dachselt, 2015; Snyder and Ryan, 2014; Morris, Simon, and Basu,
2008; Kaliakatsos-Papakostas, Gkiokas, and Katsouros, 2018). Further,
several works have focused on building interactive systems specifi-
cally for exploring a GAN’s input parameter space. Here, a popu-
lar use case is to interactively control the output of GANs that were
trained to generate drum sounds. For instance, Ramires et al. (2022)
used SeFa, a closed-form factorization method (Y. Shen and Zhou,
2021), to find dimensionality-reduced directions of a GAN’s parame-
ter space, which they made accessible to the user through a Graph-
ical User Interface (GUI). Further, Schlagowski, Mertes, and André
(2021) and Schlagowski, Wildgrube, et al. (2022) aimed for interactive
drum sound synthesis for a drum sequencer application. Similar to
our work, they used the WaveGAN architecture and built a user in-
terface to directly modify single latent vector elements of a GAN. As
they observed positive user experience ratings in their user study, we
decided to include certain GUI-elements of their system within our
system.

13.2 the asmrcade system

Our system consists of two major parts. Firstly, a WaveGAN model
that was trained to produce highly realistic and diverse ASMR tap-
ping sounds, and secondly, a web-based graphical user interface,
which includes visual representations of the WaveGAN’s latent in-
put vector elements. By interacting with those visual representations,
i.e., changing their spatial position, the user can directly influence the
WaveGAN’s audio output in real-time. All in all, by using our system,
the user can actively engage in the ASMR sound generation process
instead of just passively listening to ASMR stimuli. The following
sections give a more detailed overview of the ASMRcade system’s
single components.

13.2.1 Audio Generation

A modification of the original GAN framework was introduced by
Donahue, McAuley, and Puckette (2018), who presented the Wave-
GAN architecture. While originally, GAN models were used for im-
age synthesis, WaveGAN was specifically designed for audio synthe-
sis. We selected the WaveGAN architecture for our system as it is fast
and fulfills the required quality standards of the generated output for
successful ASMR triggers.
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Figure 73: The ASMRcade user interface adopted from Schlagowski, Mertes,
and André (2021).
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13.2.1.1 Dataset

A necessary prerequisite for training a WaveGAN model is the exis-
tence of a suitable dataset. Datasets that can be used to train a GAN
for high-quality content generation must be restricted to short, non-
verbal, and quality-consistent data (K. Yang, B. Russell, and Salamon,
2020). As existing ASMR datasets did not fulfill these requirements,
we collected data by processing suitable ASMR YouTube videos. For a
proof-of-concept, we focused on tapping sounds, which were found to
be a well-functioning ASMR trigger for many people (Barratt, Spence,
and Davis, 2017). We used tapping-only videos of content creators
well-known to the ASMR community, namely “ASMR Bakery”1, “Lot-
tieLoves ASMR”2, “Coromo Sara”3 and “ricarda”4. We downsampled
the audio to 16kHz mono using FFMPEG. One limitation of GANs
is that they require a fixed output length definition. Therefore, we
extracted audio segments of 1 second length using a threshold-based
segmentation. Further, we applied Fade-In and Fade-Out effects to the
segments. By doing so, we got rid of unwanted cracking or popping
sounds at the start or end of the audio sample that the generator
might otherwise reproduce. We divided the dataset into training, test-
ing, and validation sets to ensure robust evaluation and validation of
the GAN model.

13.2.1.2 GAN Training

We used the WaveGAN architecture presented by Donahue, McAuley,
and Puckette (2018). WaveGAN is a modification of the DCGAN (Rad-
ford, Metz, and Chintala, 2015) architecture, which in turn extends
the original GAN framework by replacing the fully connected layers
by convolutional and deconvolutional layers. WaveGAN modifies the
DCGAN to work well specifically with audio data, e.g., by replacing
2D kernels with 1D kernels and other adapatations. For a full architec-
ture description, please refer to the WaveGAN publication (Donahue,
McAuley, and Puckette, 2018). The model was trained using the train-
ing configuration recommended by Donahue, McAuley, and Puckette
(2018). After 20k training steps, the generated audio samples resem-
bled tapping sounds with various surfaces like glass and wood, and
no further improvement could be observed. Minor artifacts were still
present, but the overall results were satisfactory.

1 https://www.youtube.com/watch?v=sIgkTYTWPz8

2 https://www.youtube.com/watch?v=kMvGsOrpjNo

3 https://www.youtube.com/watch?v=y03M_isyV3E

4 https://www.youtube.com/watch?v=EGgKJsuM7Ns

https://www.youtube.com/watch?v=sIgkTYTWPz8
https://www.youtube.com/watch?v=kMvGsOrpjNo
https://www.youtube.com/watch?v=y03M_isyV3E
https://www.youtube.com/watch?v=EGgKJsuM7Ns
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13.2.2 User Interface

Schlagowski, Mertes, and André (2021) compared different graphical
user interfaces, called Vector Manipulation Modules (VMMs), that make
audio generated by WaveGAN customizable. Opting for a VMM de-
sign with high hedonistic UEQ ratings in Attractiveness, Stimulation,
and Novelty, we adopted one of their designs representing elements
of the latent input space in 3D spheres (see Fig. 73). The user can drag
and drop these spheres to adjust their corresponding numerical value
in the latent input space of the GAN and hear the resulting change
of the generated audio sample in real-time. As the WaveGAN model
that we trained transforms a 100-dimensional noise input vector to
audio data resembling ASMR tapping sounds, there are 100 manip-
ulatable spheres in the GUI. The numerical latent space value is pro-
portional to the spatial distance of the dragged (smaller) sphere to
an inner and outer sphere, representing the minimum and maximum
thresholds of the corresponding latent space value (semitransparent
spheres in Fig. 73). The initial 3D positions are calculated using the
fibonacci lattice algorithm (Stanley, 1975).

Other application features include controls to add a Reverb effect,
control the volume, and completely reshuffle the current input vector.
Further, an additional Size slider is part of the system. By moving that
slider, the number of controls for the input vector can be decreased
so that the user can focus on only a few dimensions instead of all 100.

We embedded both the VMM and a Javascript-based version of
WaveGAN into a webpage that uses the browser to display the VMM,
run the GAN, and playback generated audio. Additional features of
the resulting demonstrator system include:

1. Playback of the last generated ASMR sound in a loop.

2. An optional "Hands off" mode, in which the input vector au-
tomatically changes each time the sound is played within the
loop.

3. A tutorial mode, which explains the system by pointing to cer-
tain AI elements and describing their features.

13.3 evaluation

To evaluate if our application is suitable to induce an ASMR experi-
ence, we conducted an explorative user study in which participants
had to interact with the ASMRcade system. Therefore, we made ASM-
Rcade available on a web server and invited online participants to test
it.
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13.3.1 Study Group

We wanted to ensure that a good portion of our participants were al-
ready familiar with and actively engaging with the concept of ASMR.
Thus, we targeted the existing ASMR community by creating a post
in the subreddit "r/ASMR", an online platform where people share
ASMR-related experiences and information on a regular basis. There,
we briefly explained the application and invited users to test the
ASMRcade application and complete the associated questionnaires.
As a result, we acquired 17 participants, which primarily consisted of
users from the "r/ASMR" subreddit and others who discovered the
Reddit post.

13.3.2 Study Procedure

During the study, the participants could first interact with the ASMR-
cade system for as long as they liked. After that, they had to complete
an online questionnaire which consisted of three different parts:

1. Personal information: This part contained three questions re-
garding age, gender, and familiarity with ASMR to understand
the demographic profile of the participants.

2. User experience questionnaire: We used the user experience
questionnaire (UEQ) (Laugwitz, Held, and Schrepp, 2008) to as-
sess how participants experienced the interaction with the sys-
tem. The questionnaire contains 26 items measuring six dimen-
sions of user experience: Attractiveness, Perspicuity, Efficiency, De-
pendability, Stimulation, and Novelty. Each item is represented
by two opposing terms and a corresponding seven-point scale
ranging from -3 (most negative) to 3 (most positive), with 0 in-
dicating a neutral response. To maintain the integrity of the on-
line questionnaire, we followed the UEQ Handbook’s advice to
remove suspicious data. As such, participant responses were
considered suspicious if:

• They gave vastly different answers for questions within the
same scale, and this occurred in at least three scales.

• They provided identical answers to more than 15 of the 26

questions.

3. ASMR-specific questions: The final section consisted of ques-
tions related to the participants’ experience of ASMR while
using ASMRcade. These questions aimed to gather informa-
tion about whether participants experience ASMR in general,
whether they experienced it while using ASMRcade, factors in-
fluencing the triggering or lack thereof, the time spent with the
ASMRcade application, suggestions for improvement, likes and
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Figure 74: Flowchart of the user study.

dislikes, opinions on the generated sounds and the interaction
with the system. Specifically, we asked the following questions:

• Q1: Do you experience ASMR in general? (Binary choice)

• Q2: Have you experienced ASMR while using the ASMRcade?
(Binary choice). Depending on their answer, participants
had to provide free-form feedback on how they interacted
with the application when ASMR was triggered (Q2.1) or
what they thought would have to change to experience
ASMR (Q2.2).

• Q3: How much time (in minutes) have you spent in the ASMR-
cade? (Numerical-only free-form input)

• Q4: What improvements would you suggest for a better ASMR
experience? (Free form input)

• Q5: What did you like about the ASMRcade? (Free form input)

• Q6: What did you dislike about ASMRcade? (Free form input)

• Q7: How did you like the generated sounds? (Free form input)

• Q8: How did you like the interaction with the system? (Free
form input)

The procedure of the user study is shown in Figure 74.

13.4 results

In the following sections, we present the results of the online study.
A total of 17 participants fully completed the survey. However, two
participants reported spending 0 minutes with ASMRcade, leading to
their removal before data analysis.

13.4.1 Demographic Questions

The demographic analysis of the remaining 15 participants revealed
the following:
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Figure 75: Mean values and variances for UEQ scales. The plot was created with the UEQ Data Analy-
sis Tool, Version 12.

• Age: Participants ranged from 19 to 35 years old, with a mean
age of 24.53 years.

• Gender: The sample included 10 males, 4 females, and 1 partic-
ipant who preferred not to answer.

• Familiarity with ASMR:

⋆ 1 participant never heard about it before

⋆ 2 participants heard about it but never consumed ASMR
content

⋆ 11 participant consumed ASMR content before, but don’t
consume it occasionally or regularly

⋆ 1 participant consumed ASMR content occasionally, but
not regularly

⋆ 0 participants consumed ASMR content regularly

13.4.2 User Experience Questionnaire (UEQ)

To maintain the integrity of the questionnaire, we removed suspi-
cious data as suggested in the UEQ Handbook’s guidelines. As such,
two data entries were removed, leaving 13 valid samples for analysis.
We used the analysis tool provided by Laugwitz, Held, and Schrepp
(2008) to analyze participants’ responses. The results for the UEQ
scales are presented in Table 11 and depicted in Figure 75.
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Figure 76: Word cloud resembling the responses to how the users were in-
teracting with the application when ASMR was triggered (Q2.1,
green), and what they think would need to change in order to
experience ASMR (Q2.2, red).

The best-performing scale was Novelty (mean score of 1.712),
followed by Attractiveness (1.551) and Perspicuity (1.5). Efficiency
and Stimulation scored 1.25 and 1.365, respectively. The lowest-
performing measure was Dependability, with a mean score of 0.904.
However, according to the UEQ handbook, mean scores above 0.8 rep-
resent a good evaluation. Our application surpasses that value across
all dimensions.

Scale Mean Variance

Attractiveness 1.551 0.54

Perspicuity 1.500 1.02

Efficiency 1.250 0.47

Dependability 0.904 0.50

Stimulation 1.365 0.90

Novelty 1.712 0.36

Table 11: UEQ Scales (Mean and Variance)

13.4.3 ASMR related questions

In the following, we present the results of the ASMR-specific ques-
tions from the online questionnaire. These questions aimed to assess
participants’ general ASMR experiences and their experiences with
ASMRcade.
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Figure 77: Improvement suggestions from participants (Q4).

• General ASMR Experience: 8 participants reported that they
generally experience ASMR.

• ASMR Experience in ASMRcade: 7 participants indicated that
they had experienced ASMR while interacting with ASMRcade.

• ASMR Experience Overlap: Among the 8 participants who re-
ported general ASMR experiences, five also experienced ASMR
while using ASMRcade. ASMRcade triggered an ASMR experi-
ence for two users that generally don’t experience ASMR.

• Time Spent in ASMRcade: On average, participants spent 12.47

minutes interacting with ASMRcade. The minimum reported
time was 3 minutes, and the maximum was 30 minutes.

To analyze the free-form feedback from participants, an inductive
thematic analysis (Braun and Clarke, 2012) was conducted, which
helps identify and report patterns within textual data. This qualita-
tive method allows for understanding participants’ experiences and
opinions without imposing predetermined categories or theoretical
perspectives and was previously used in similar studies (e.g., (Krauß
et al., 2021; T. Zhang et al., 2020; Diethei et al., 2021)).

Code/word clouds were created using the themes and codes iden-
tified in the analysis to represent user feedback visually. Code clouds
display words or phrases in varying font sizes, with larger sizes rep-
resenting higher occurrence frequency within the data.

Figure 76 presents the code cloud to Q2.1 and Q2.2. Participants
were shown one of those questions depending on how they answered
regarding experiencing ASMR while interacting with ASMRcade.
Green words represent feedback on how participants (that reported
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Figure 78: Word cloud resembling the responses to what users liked (Q5).

Figure 79: Word clouds resembling the responses to what users disliked
(Q6)
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Figure 80: Feedback to the generated sounds (Q7).

Figure 81: Feedback about the interaction experience (Q8).
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experiencing ASMR while interacting with ASMRcade) interacted
with ASMRcade when their ASMR was triggered. Red words repre-
sent participants’ feedback that they hadn’t experienced ASMR while
interacting with ASMRcade about what they thought was missing or
needed to change for them to experience ASMR.

The feedback by users that had experienced ASMR (green) includes
aspects such as intuitive interaction (1 mention; e.g., "Changing the
sounds became way more intuitive"), reshuffling (2 mentions; e.g.,
"Reshuffling until I experienced it"), associating sounds with daily
life (1 mention; e.g., "My brain started to find references from my
daily life from which the sound could be known and tried to find
rhythm and movement that could be applied to the sound effects"),
and using headphones (1 mention).

The feedback on what was missing to experience ASMR (red) en-
compasses comments on the need for longer sound clips (1 men-
tion), different sounds (3 mentions; e.g., "Other sounds" and "Differ-
ent sounds to choose from, not just tapping"), more natural sounds
(1 mention; e.g., "I would like the sounds to be more natural, they
felt kind of mechanical in the ASMRcade"), and smoother transition
between loops (1 mention; e.g., "The transition between the loops was
pretty noticeable which made it feel less natural to me").

Figure 77 displays the code cloud visualizing participants’ sug-
gestions for improvements to enhance the ASMR experience (i.e.,
Q4). The codes encompass various improvement suggestions, such as
sound variety (5 mentions; e.g., "Different sounds," "Bigger variety of
sounds," and "Diversify sound categories"), instructions and tutorial
(2 mentions; e.g., "Clear instructions" and "Clickthrough tutorial"),
sound customization (2 mentions; e.g., "Changing the speed"), longer
sound clips (1 mention), lower frequency sounds (2 mentions; e.g.,
"Sound frequency adjustment" and "More profound bass sounds"),
sphere interaction (2 mentions; e.g., "Sphere influence visualization"
and "3D model interface improvement"), and headphone recommen-
dation (1 mention).

Figure 78 presents the code cloud illustrating the aspects partici-
pants liked about ASMRcade (i.e., Q5). The codes highlight various
positive aspects, including sound variety (4 mentions; e.g., "End-
less sound possibilities," "Different patterns," and "Wide variety of
sounds"), interface and usability (6 mentions; e.g., "Intuitive interac-
tion," "Nice interface," "Minimalistic interface," and "Easy to use"),
sound customization (5 mentions; e.g., "Volume and reverb control,"
"Realistic sounds," "Customizable sounds," and "User control over
sounds"), reshuffle button (1 mention), browser compatibility (1 men-
tion; e.g., "Runs in-browser"), vector representation (1 mention; e.g.,
"Vector representation was quite nice"), engaging experience (4 men-
tions; e.g., "Engaging and creative," "Interactive experience," and
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"Unique experience"), and visual design (1 mention; e.g., "Visually
pleasing").

Figure 79 presents the code cloud for user feedback regarding the
aspects they disliked about ASMRcade (i.e., Q6). Unintuitive tutorial
button (1 mention; e.g., "I disliked the question mark button as a
Tutorial being very small."), Understanding size change (2 mentions;
e.g., "I didn’t understand the size change. I couldn’t hear any differ-
ence with changing the size"), Unknown sphere function (3 mentions;
e.g., "I didn’t really understand what manipulating the spheres actu-
ally does", "fine-tuning is a little bit confusing"), Small lags (1 men-
tion), Overlapping text (2 mentions; e.g., "bubble thingy laid over the
text"), length of sound clips (1 mention), high frequencies (1 mention),
Repetitive sounds (2 mentions; e.g., "Some sounds seemed to appear
repetitively even though different orbs were manipulated", Limited
sound variety (3 mentions; e.g., "too few different sounds", "it can
only generate relatively unexciting sounds (i.e. tapping)"), Visually
unpleasing (1 mention).

Figure 80 presents the code cloud generated based on participants’
feedback on the generated sounds in ASMRcade (i.e., Q7). The posi-
tive feedback (green) includes aspects such as sound quality (4 men-
tions; e.g., "The sounds were pleasant" and "The tapping sounded
convincing"), sound realism (2 mentions; e.g., "The knocking sounds
were pleasant"), good sound variety (1 mention), reverb effect (1 men-
tion) and unique experience (1 mention; e.g., "The loops added a
unique and enjoyable aspect to the experience").

On the other hand, negative feedback (red) encompasses comments
on the need for greater sound variety (3 mentions; e.g., "Some other
sounds would’ve been nice" and "More variety"), loop transitions (2
mentions; e.g., "Regulate the length of the sounds" and "The transi-
tion between loops felt disruptive"), and unnatural sounds (1 men-
tion; e.g., "They didn’t feel very natural to me").

Figure 81 presents the code cloud for user feedback regarding their
interaction with ASMRcade (i.e., Q8). It is composed of three colors:
green for positive feedback, red for negative feedback, and yellow for
neutral feedback. The codes highlight different aspects, including En-
joyable experience (3 mentions; e.g., "It was an enjoyable experience",
"It was interesting and was fun to use"), Intuitive interaction (5 men-
tions; e.g., "The interaction was easy and intuitive", "It was mostly
intuitive", "Easy to understand, learning by doing worked fast"), Tu-
torial issue (2 mentions; e.g., "the Tutorial problem", "Would have
liked to be able to pause/click through the tutorial myself"), Unique
interaction features (2 mentions; e.g., "I was pleasantly surprised that
the system placed the balls at the maximum possible distance when
I moved them too far", "Nice imaging of the different bubbles as an
input vector for the neuronal network"), Interface issues (1 mention;
e.g., "Bubbles partly laid over the text"), Potential for improvement (2
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mentions; e.g., "More possibilities to customize and play around with
different sounds would make it very enjoyable").

13.5 discussion

user experience Overall, the User Experience Questionnaire
(UEQ) results indicate a positive user experience with ASMRcade.
The highest mean scores were observed for Novelty, Attractiveness,
and Perspicuity, suggesting that ASMRcade was perceived as an in-
novative and appealing solution with a clear and understandable
design. In the open feedback, one user stated, "It’s a very interest-
ing experience that I haven’t had like that before. I really enjoyed
customizing the sounds to what I wanted to hear, which is some-
thing I can’t do when I’m watching an ASMR video." The relatively
lower scores for Efficiency, Stimulation, and Dependability indicate
room for improvement in these more pragmatic and usability-related
scores. The efficiency and dependability of the application might be
affected by the inherent unpredictability of WaveGAN. Users may
need to manipulate multiple spheres to produce a pleasant sound,
which might need to be more efficient. One user mentioned, "I felt
like manipulating the spheres didn’t really change much".

Overall, as the Pragmatic Quality scales (Perspicuity, Efficiency, De-
pendability) had lower mean scores than the Hedonic Quality scales
(Stimulation, Originality), one can conclude that participants found
ASMRcade to be more enjoyable and stimulating than efficient and
dependable. As such, ASMRcade might not be reliable for generat-
ing desired sounds on every interaction because of the GANs’ inher-
ent unpredictability. This finding suggests that while the application
offers an engaging and novel experience, its practical aspects may
need further refinement to enhance user satisfaction. However, we
also note that goal-oriented qualities may be less critical for an appli-
cation designed for relaxation and de-stressing, such as ASMRcade.
Furthermore, higher scores in Hedonic qualities may be attributed to
the use case itself, as experiencing ASMR is a relaxing and immersive
experience in itself (Barratt and Davis, 2015; Poerio et al., 2018). One
participant’s open feedback supports this notion: "It created curiosity
and started to engage the creative mind."

asmr experiences More than half of the participants reported
generally experiencing ASMR, with almost the same proportion ex-
periencing ASMR while interacting with ASMRcade. The overlap be-
tween these groups demonstrates ASMRcade’s potential to induce
ASMR in users susceptible to the phenomenon. However, not all par-
ticipants who generally experienced ASMR reported experiencing it
with ASMRcade, suggesting that the application may need further
improvements to cater to a broader range of ASMR triggers and pref-
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erences. On the other hand, certain participants were able to experi-
ence ASMR that did not experience ASMR before. This observation
indicates that the interactive component we introduced through the
ASMRcade application might have advantages over passive ASMR
consumption. Interacting with an ASMR content generator can even
be seen as a new category of ASMR triggers, which, like other cate-
gories, may work very well for some users but less for others. Here,
future work has to dive more into detail on how exactly interactive
and passive ASMR consumption differs in triggering ASMR experi-
ences.

The open feedback collected from participants provided valuable
insights into their experiences and opinions regarding ASMRcade,
which complemented the quantitative data obtained from the User
Experience Questionnaire (UEQ). By applying an inductive thematic
analysis approach to the open feedback, several recurring themes
were identified that shed light on the strengths and areas for improve-
ment of the application.

One of the key strengths of ASMRcade highlighted by the partici-
pants was the intuitive interaction. Participants found navigating and
manipulating the spheres to create different sounds easy. For exam-
ple, one participant noted that "Changing the sounds became way
more intuitive" once they got the hang of the system. This feedback
corresponds with the above-average scores for Attractiveness and Per-
spicuity in the UEQ results. However, participants also mentioned
that some aspects of ASMRcade’s sphere functions needed clarifica-
tion. One user stated, "I didn’t really understand what manipulating
the spheres actually does," while another mentioned, "Fine-tuning
is a little bit confusing." These comments suggest that some users
struggled to comprehend how the sphere manipulation impacted the
generated sounds. Addressing this issue by providing clearer expla-
nations about the function and limits of sphere interaction, visual
cues, or tooltips could help users better understand the connection
between sphere manipulation and the resulting sounds, thus enhanc-
ing their overall experience. One way to give visual cues would be
to do a Vector Impact Analysis, like Schlagowski, Mertes, and André
(2021) did for their drum sequencer . After analyzing their impact on
the generated sounds, spheres can be sorted accordingly, and shaders
could be used to indicate individual spheres’ impact on different fre-
quency bands.

The open feedback also revealed that participants appreciated the
sound customization options available in ASMRcade but desired
more advanced customization features. Users found the ability to
manipulate volume and reverb controls helpful, as one participant
noted, "I liked the option that you could separately change the vol-
ume and the Reverb" However, some users expressed a desire for
even more control over sound characteristics, such as speed and
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frequency adjustments. For example, one participant suggested, "I
would also like there to be a slider where I could manipulate the
speed of the sound".

Further constructive feedback on areas that could be improved was
provided. For instance, several users mentioned that the application
would benefit from a more diverse selection of sounds. One partici-
pant suggested, "Diversify the sound categories". Another user men-
tioned that the sound transitions could be smoother, stating, "The
transition between the loops was pretty noticeable, which made it
feel less natural to me."

Furthermore, some participants found certain features to need to
be clarified or to be more intuitive within ASMRcade. For example,
one user noted that the tutorial button needed to be bigger and easier
to notice. Another participant mentioned difficulties understanding
the impact of changing the sphere size slider, which hides certain ma-
nipulatable spheres: "I didn’t understand the size change; I couldn’t
hear any difference with changing the size." To address these issues,
the application could be refined by improving the visibility and acces-
sibility of the tutorial, as well as providing more precise explanations
of what the size slider does and how it affects the generated sounds.

As the by far most recurring theme was the diversity of sounds,
the logical next step should be to train the WaveGAN not only on
tapping sounds but on a broad spectrum of different ASMR audio
triggers that exist. These could include scratching, whispering, or
other mouth-made sounds. Further improvements could address clar-
ifying the sphere functions, refining sound transitions, refining con-
fusing features, and providing clearer instructions or a more inter-
active tutorial for new users. By addressing these areas, ASMRcade
could further enhance user satisfaction and provide a more engaging
and enjoyable experience for users seeking relaxation and stress relief
through ASMR.

13.6 conclusion

In this chapter, we presented ASMRcade, an application for inter-
actively exploring and generating personalized ASMR audio trig-
gers. Using this application, users could change the input vector for
a WaveGAN capable of transforming that input vector to ASMR-
triggering tapping sounds by manipulating the synthesized sounds
via a web-based user interface. A first explorative user study indi-
cates that some users can benefit from the interactive approach and
that it might be able to broaden accessibility for ASMR experiences as
some users had their first successful ASMR triggers with our system.

From user experience questionnaires and the qualitative feedback,
we conclude that users appreciated the intuitive interaction with the
application, which was also perceived as innovative and appealing.
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However, users wished to understand better how their input affected
the generated sounds. Users especially enjoyed the sound customiza-
tion options and requested further control over the speed and fre-
quency of the generated sound. Furthermore, while the sound qual-
ity was good enough, many users asked for more variety in the gen-
erated sounds. As such, future work has to extend the system to a
larger set of ASMR sound categories.

To conclude, the study is a proof of concept for a novel interac-
tive approach for generating ASMR triggers. The substantial share of
users that experienced ASMR and their interest in improving ASMR-
cade shows great potential for an interactive ASMR experience as a
suitable alternative to conventional ASMR content.
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14
C O N T R I B U T I O N S

In the following, the contributions of this thesis are summarized
- categorized into conceptual, technical, and empirical contributions.
Thereby, they will be contextualized with regard to the research
questions of this thesis (as defined in Chapter 1):

• RQ1: How can we use GANs to augment small datasets without being
stuck in the original dataset distribution?

• RQ2: How can we use GANs to generate realistic Counterfactual Ex-
planations for image classifiers?

• RQ3: How can we use GANs to build explanation systems that com-
municate information about irrelevant features?

• RQ4: How can we use GANs to synthesize continuously conditioned
images by using only discretely labeled training data?

• RQ5: How can we use GANs to enhance an AI based job interview
training system in order to give personalized, realistic and comprehen-
sible feedback?

• RQ6: How can we use GANs to build an interactive ASMR experi-
ence?

14.1 conceptual contributions

In this work, some new concepts were introduced:

• Existing approaches to augment datasets either rely on rather
simple transformation algorithms or they are based on train-
ing generative models on the available data without constraints.
Both those approaches have in common that the augmented
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data still follows the original data distribution quite strictly -
which in turn hinders the information that is gained through
the new data. In Part ii, to address RQ1, two approaches were
introduced to overcome those limitations of being stuck in a
dataset distribution when augmenting datasets.

The first approach (see Chapter 4) proposed to interpolate
through the latent space of a GAN by using an evolutionary al-
gorithm. That GAN was trained with the latent space sampled
from a uniform noise distribution. As such, the original data is
encoded in a latent space following that uniform distribution.
Using an evolutionary algorithm to search for samples that help
the training task at hand allows the latent input to break out
of that uniform distribution - and as such is able to generate
samples that actually hold new information.

The second approach (see Chapter 5) used a Style-Conversion
GAN to map artificial labels to training data. Here, a paradigm
shift was proposed: Instead of augmenting data itself, the labels
(here in the form of segmentation masks) were augmented and
successively mapped to new data points. By doing so, the origi-
nal data distribution does not have to be approximated directly -
allowing to synthesize data pairs that bring information outside
of that distribution to the dataset.

• Counterfactual Explanations are a form of explanation that alter
an input to an AI system in a way that the decision of that AI
changes. However, generating such explanations is still a chal-
lenge. On the other hand, in recent years models for style trans-
fer have become mature and efficient. As such, Chapter 7 pro-
poses to consider a decision of an AI as a style. By doing so,
style transfer models become applicable to the task of generat-
ing counterfactual explanation, addressing RQ2.

• Existing paradigms of explaining decisions of AI systems
mostly rely on communicating information about relevant fea-
tures. However, communicating information about irrelevant
features might be similarly important for a comprehensive un-
derstanding of a model. As such, in Chapter 8, a completely
new concept - named Alterfactual Explanations - was introduced.
That new paradigm aims to directly communicate irrelevant in-
formation about an AI decision to the user. As the paradigm is
based on showing an alternative reality where the decision of an
AI does not change, it uses the concepts of factual explanations
to effectively addressing RQ3.

• Although GANs are capable of generating highly realistic im-
ages, equipping them with the ability to be controlled in a fine-
grained manner commonly is dependent on datasets that cover
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that granularity. As in many scenarios such data is not avail-
able, the concepts introduced in Chapter 10 propose to inter-
polate through the label space of a synthesis network that was
trained on discretely labeled data. By doing so, the desired fea-
tures can be controlled in a continuous way during the image
synthesis process - without the need for continuously labeled
training data. Therefore, RQ4 is effectively addressed.

• Feedback systems are a proper way to increase users’ self-
esteem. However, generating actionable feedback is not a trivial
task. In Chapter 11 and Chapter 12, it is proposed to make
use of concepts from the field of XAI in order to generate such
feedback. Instead of explaining a classifier in order to make that
classifier’s decision transparent, we use counterfactual reason-
ing processes to explain a user’s behavior. As such, generated
counterfactual explanations for the behaviour serve as feedback
for a training system - here, specifically a job interview training
system. As such, RQ5 was addressed.

• ASMR is a popular method to reduce stress and as such con-
tribute to well-being. ASMR is highly related to the state of flow.
Although flow is coupled to being actively involved in a task,
ASMR is commonly seen as a purely passive experience. So far,
there is no research on the effects of incorporating interactive
components to ASMR. Chapter 13 contributed to RQ6, as the
concept of Interactive ASMR was introduced. There, instead of
seeing ASMR only as a passive experience, the user is directly
incorporated into the sound synthesis process.

14.2 technical contributions

While technical implementations for all the approaches and experi-
ments presented in this paper were needed and developed, some of
them might have particularly high potential for being used in future
research and development. Therefore, most of the implementations
that were developed for answering the research questions of this the-
sis were open-sourced and made publicly available.1 The main tech-
nical contributions are as follows:

• In Chapter 7 and Chapter 9, technical frameworks for generat-
ing both counterfactual explanations and alterfactual explana-
tions for binary image classifiers were presented. Those frame-
works contributed in answering RQ2. They allow to create ex-
planations for various kinds of scenarios and are easy to adapt.
Both frameworks leverage the idea of using mechanisms from

1 The open-source repositories can be found on the GitHub page of the Chair for
Human-Centered Artificial Intelligence: https://github.com/hcmlab

https://github.com/hcmlab
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the field of style conversion for the synthesis of explanations.
As such, they use established network architectures and extend
them with additional loss components to achieve the desired ex-
planation capabilities. Those additional loss components made
sure that the classifier’s decisions are taken into account when
performing the style conversion step - steering the decision into
a direction that satisfies the respective explanation mechanism’s
definition. They both work independently of the specific neural
network architecture of the classifier that should be explained -
the only requirement is that the model’s gradients can be back-
propagated through the model. As such, both the frameworks
can easily be adapted to new use-cases and scenarios.

• In Chapter 4, a technical approach to data augmentation for the
audio domain was presented. The approach includes the train-
ing of a GAN to model the initial data distribution of the dataset.
Subsequently, an evolutionary algorithm was deployed to steer
the GAN to synthesize new data that helps to improve the clas-
sification performance of a classifier model. The approach can
easily be adapted to further use-cases, as it only relies on the
definition of features to build an appropriate fitness function
for the underlying evolutionary algorithm. Here, for our spe-
cific use-case, we made use of spectral features that can easily
be calculated by proprietary libraries.

• Chapter 5 presented two methods for data augmentation in the
image domain. While the first one incorporates a hand-crafted
solution to model defects in carbon fibres, the second one is
completely data-driven. As such, it can be adapted for further
scenarios without the need for excessive engineering overhead.
Both approaches aim to synthesize new label masks which sub-
sequently can be processed by a GAN model in order to build
new training pairs for semantic segmentation.

• Chapter 11 and Chapter 12 introduced applications for giving
verbal and visual feedback for job interview training, effectively
contributing to R5. For the first approach, we extended the coun-
terfactual explanation generation framework that we already
presented in Chapter 7, which was specifically modified to work
with the feature representations that we used to assess an inter-
viewee’s performance. The second approach introduced a proce-
dural approach to finding counterfactual feedback, which was
complemented by a GAN-based method to convert counterfac-
tual skeletons to realistic looking images of humans. Both ap-
plications can be used to conduct studies and also for real job
interview trainings.
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• In Chapter 13, an application for experiencing interactive ASMR
was presented, addressing RQ6. Therefore, a WaveGAN model
was trained to synthesize ASMR tapping sounds. The model
was integrated into a user-friendly GUI, allowing for a seemless
interaction. Further, the whole system was deployed as a web
application, making it accessible to a broader audience. The ap-
plication allows to further study the new concept of interactive
ASMR. Also, by using it, everyone can experience that paradigm
by themselves.

14.3 empirical contributions

Besides the conceptual and technical contributions, in this thesis, re-
sults of various conducted user studies have been presented:

• In Chapter 7, a user study revealed that, in the chosen medical
use-case, counterfactual explanations lead to significantly better
results regarding mental models, explanation satisfaction, trust,
emotions, and self-efficacy than two state-of-the art systems that
work with saliency maps, namely LIME and LRP. As such, this
study assessed if we successfully solved RQ2.

• With regard to RQ3, in Chapter 8, we presented a user study
showing that alterfactual explanations are suited to convey an
understanding of different aspects of the AI’s reasoning than
established counterfactual explanation methods.

• In the study in Chapter 9, we further demonstrated that in a
prediction task, where the classifier’s prediction had to be an-
ticipated by looking at the explanations, users performed sig-
nificantly better when they were provided with explanations
that included alterfactual explanations compared to users that
did not see alterfactual explanations. Again, this study assessed
if we successfully could solve RQ2, while also contributing to
RQ3.

• The study in Chapter 11 examined the usefulness of our job in-
terview training system that generates verbal feedback. Here,
besides approving that our system is helpful and comprehen-
sible, it was found that recommendations for such use-cases
should be highly specific, addressing RQ5.

• In Chapter 13, we presented a user study to answer RQ6. That
study revealed that the concept of interactive ASMR has the po-
tential to induce the state of ASMR for people that are generally
not able to experience it when confronted with passive ASMR.
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Research is never finished. As such, the following sections give an
outlook on future work that might explore the topics of this thesis
even further. Therefore, the main parts of this thesis are revisited.

15.1 robustness

Data augmentation
techniques must be
equipped with the
ability to generate
more diverse data.

In Part ii, approaches for data augmentation were introduced. While
those approaches helped the AI to become better, they relied on rather
complex mechanisms to control the networks’ outputs to a high de-
gree. The model that we used in Chapter 4 was steered by the fit-
ness function of an evolutionary algorithm. In Chapter 5, we used a
pix2pix model which takes artificially generated labels as input (ei-
ther generated by a procedural algorithm or by another GAN). As
such, in both approaches, mechanisms exist that slightly limit the
diversity of the outputs. The evolutionary algorithm tries to find spe-
cific solutions for data points that are missing in the dataset, and the
pix2pix architecture that we used does not use a random vector in its
input (although the label synthesis steps have). However, the whole
aim of conducting data augmentation is to diversify a dataset in order
to make trained models more robust. Here, the approaches could be
enhanced in future work. For the evolutionary-based approach (see
Chapter 4), this could be achieved by adding more feature dimen-
sions to the fitness function. As such, instead of only searching for
data points that show one certain feature value, multiple feature com-
binations could be considered at a time. By doing so, multiple feature
combinations could drastically increase the variety of the generated
data. For the second approach (see Chapter 5), additionally to the
dropout layers that are already included in our version of the model,
a random input component could be added to the pix2pix input. In
order to do so, solutions would have to be found that lead the GAN
to not just ignoring that noise input (Isola et al., 2017).
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15.2 explainability

Appropriate metrics
have to be found for

evaluating
alterfactual

explanations.

In Part iii, the concept of Alterfactual Explanations, alongside with a
technical approach to generate those explanations, was introduced.
Those alterfactual explanations are, similar to counterfactual explana-
tions, grounded in the concept of counterfactual reasoning. For coun-
terfactual explanations, a variety of metrics have established which
define good counterfactual explanations. The most mentioned ones in
literature are Proximity, Sparsity, Diversity, Feasibility and Plausibility
(Y.-L. Chou et al., 2022). For alterfactual explanations, on the other
hand, appropriate metrics still have to be defined. Certainly, not all
of the metrics apply that are use for counterfactual explanations. For
example, achieving a high proximity (e.g., the distance of the explana-
tion from the instance to be explained (Verma, Dickerson, and Hines,
2020)) or sparsity (e.g., focusing on as few features as possible (Keane
and Smyth, 2020)) even contradicts the definition of an alterfactual ex-
planation. Other metrics, like aiming for a high diversity in the expla-
nations, seem also desirable for alterfactual explanations. However,
there are metrics - like plausibility - where it is not so easy to tell if
they are desirable for alterfactual explanations or not. Non-plausible
explanations, for example, might include feature changes that are im-
possible to observe in reality. E.g., if an explanation changes an im-
mutable feature - such as race - then it is not plausible (Y.-L. Chou
et al., 2022). However, in an alterfactual explanation, changing the
race implies that race is irrelevant for the AI to be explained. As such,
even if the explanation might not be plausible, it directly commu-
nicates that the AI has no bias with regard to race. However, there
might be scenarios where plausibility is desired. Future work has to
dive more into these topics - it has to examine which metrics should
be applied to the evaluation of alterfactual explanations.

15.3 expressiveness

Ethical
considerations are

important when
generating human

faces.

In Part iv, an approach was introduced that is able to generate face
images the show emotions steerable in a dimensional emotion space.
That work joins the ranks of recent trends and developments in the
broader field of generative AI, where generating data with human vi-
suals is an actively researched topic (M. Kim et al., 2023; Z. Huang et
al., 2023; X. Shen et al., 2024; M. Liu et al., 2021). Especially since Dif-
fusion Models came around in 2020 (Ho, A. Jain, and Abbeel, 2020)
- a category of generative models that produces even more realistic
outputs than GANs, with the drawback of taking substantially more
time for inference, and thus limited to non-realtime applications - it
has become possible to generate outputs that are truly indistinguish-
able from real data. While those advances come with great poten-
tial for making AI systems more empathic by equipping them with
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highly relatable, human-like visuals, they don’t come without draw-
backs. Specifically when generating human faces, attention has to be
paid to ethical concerns. For example, when equipped with appropri-
ate training data, generative models are able to generate convincing
deepfakes of specific people. Those deepfakes can be misused for var-
ious malicious purposes - be it identity theft, faking legal evidences,
or generating adult content. The only requirement that state-of-the-
art algorithms have here is the availability of training data that cov-
ers the needed data distribution. However, when looking on our ap-
proach of generating human faces from a more conceptual view, it
enables to generate realistic data more easily even if only parts of
the data distribution is in the training set. In our case, the training
set only consisted of categorical, prototypical emotions. With our label
interpolation approach, we were able to generate those intermediate
steps that were not in the training data. We restricted ourselves to
generating emotional faces - however, future work has to find ways
to prevent such algorithms, approaches and systems from generating
malicious content.

15.4 feedback synthesis

Feedback systems
should keep the
human in the loop.

In Part v, we introduced approaches for generating verbal and visual
counterfactual feedback for job interview training systems. There, the
user was shown how he or she could have behaved better in order to
appear more engaged in the interview. However, what that approach
misses is an interactive component of choosing the explanation. Gen-
erally, in complex scenarios such as job interviews, there is not just
one factor determining the outcome. As our approach (and also re-
lated works (Alexander Heimerl et al., 2022a; Alexander Heimerl et
al., 2022b)) synthesizes a data point that alters the input just as much
as needed for achieving a better outcome, it is limited to giving one
single counterfactual state. However, especially in a training scenario,
the user might want to decide to train different aspects than proposed
by the counterfactual generation approach. For example, imagine that
the counterfactual feedback proposes to keep the arms more open in
order to appear more engaged - but the user has been in the gym
all day, his arms are exhausted, and he only wants to focus on facial
expressions in that training session. More generally speaking, when
building feedback systems for end users, it is important that not only
the user receives feedback, but also the system receives feedback on how
to give feedback. As such, future work should try to build more compre-
hensive human-in-the-loop feedback systems that interactively give
users more choice.
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15.5 interacting with gans

Other modalities
have to be explored

to improve the
accessibility of

Interactive ASMR.

In Part vi, the concept of Interactive ASMR was introduced. Also, we
presented a web application for experiencing that new concept. There,
users could play around with a graphic visualization of a GANs latent
input space. We found that the paradigm of introducing an interac-
tive component to the usually passive experience of ASMR has great
potential. In our work, we only focused on one specific interaction
modality - playing around with a graphical user interface. However,
in order to make the concept accessible to an even broader range of
people, more interaction designs have to be evaluated for being used
for interactive ASMR. For instance, ASMR is often used as a “tool”
to fall asleep. McErlean and Banissy (2017) report that 41% of par-
ticipants of a user study stated that they used ASMR to help them
fall asleep. It is obvious that using a graphical user interface while
trying to fall asleep might be hindering. However, there are modali-
ties that still could be used here. For instance, physiological signals
are a promising alternative to steer a system that synthesizes ASMR
sounds, as it has been shown that the consumption of ASMR content
has an effect on the heart rate of users (Engelbregt et al., 2022). This
correlation could be exploited in order to build a system that uses the
heart rate as input to an optimization model in order to build a per-
fectly personalized ASMR experience while trying to fall asleep. As
the whole concept of interactively incorporating user input into the
ASMR synthesis process is completely new, future work has infinite
possibilities to extend the work presented in this thesis.
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• Generating Audio Triggers for an Autonomous Sensory Merid-
ian Response with Generative Adversarial Networks (2023)

• GradCam zur Analyse von GAN-Trainingsprozessen (2024)

• Computer-assisted Feedback for Javelin Throw (2024, Co-Supervision)

• Entwicklung eines interaktiven, durch maschinelles Lernen
gestützten Trainingssystems für extreme Gesangstechniken
(2024, Co-Supervision)

• Konzeption und Implementierung einer nutzerfreundlichen
grafischen Oberfläche für multimodale Emotionserkennung
(2024, Co-Supervision)

• Gezielte Manipulation von Umgebung und Darstellung virtueller
Charaktere in Bildern durch Diffusion Models (2024)

• Automatische Kolorierung von Mangas mithilfe von Deep
Learning (2024)

• Automatische Generierung von Soundkulissen mit Hilfe von
Deep Learning (2024)

• Generating Personalized Counterfactual Feedback for Javelin
Throw Technique Improvement (2024, Co-Supervision)

b.3 supervised master’s theses

• Konträre Chatbotpersonas im internen Businessumfeld: En-
twicklung und Präferenzanalyse (2021)

• Reinforcement Learning Techniques as Enhancement of frame-
level Speech Emotion Recognition (2021, Co-Supervision)

• Exploring Opportunities for Musical Creativity Support in VR
through Human-Computer-Interfaces and Interaction Design
(2021, Co-Supervision)

• Alterfactuals as a Novel Explanation Method for Image Classi-
fiers (2021)
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• Generating Counterfactual Explanations for Atari Agents via
Generative Adversarial Networks (2022, Co-Supervision)

• Using GANs for Combining Counterfactual Explanations and
Feature Attribution (2023)

• Computational Generation and Adaption of Climbing Routes
through Adversarial Learning (2023, Co-Supervision)

• Using CycleGAN to Learn Image-to-Image Translation for Un-
paired Facial Expression Data (2023, Co-Supervision)

• Dynamische Texturgenerierung von Videospielen mit Diffusion
Models (2023)

b.4 supervised project modules

• Evaluating GAN-based Alterfactual Explanation Generation
(2023)

• Diffusion-based Counterfactual Explanation Generation for Fa-
cial Emotion Recognition (2023)

• Texture Editing with Diffusion Models (2024)





C
A C A D E M I C A C T I V I T I E S

c.1 peer reviews

I have served as a peer reviewer for the following venues:

• Transactions on Affective Computing

• ACM Conference on Human Factors in Computing Systems
(CHI)

• IEEE Signal Processing Magazine

• International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS)

• ACM Conference on Intelligent User Interfaces (IUI)

• International Conference on Multimodal Interaction (ICMI)

• Transactions on Audio, Speech and Language Processing

• Applied Artificial Intelligence

• XAI2023 (XAI@IJCAI)

• European Conference on Artificial Intelligence (ECAI)

• IEEE Robotics and Automation Letters

• Elsevier Expert Systems with Applications

• International Conference on Affective Computing & Intelligent
Interaction (ACII)

• Audio Mostly Conference

• PeerJ Computer Science
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c.2 roles

During the past years, I was given the opportunity to fulfill the fol-
lowing roles:

• Scientific Coordinator Human-Centered Production Technologies at
the AI Production Network at University of Augsburg

• Organizing Committee member (Proceedings Chair) ACM In-
ternational Conference on Intelligent Virtual Agents (IVA) 2025

• Program Committee member ACM Conference on Intelligent
User Interfaces (IUI) 2025

• Program Committee member International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS) 2025

• Scientific Committee member Audiomostly 2024

• Organizing Committee member Interdisciplinary Tutorshop on
Interactions with Embodied Virtual Agents at IVA 2024

• Session Chair 5th International Conference on Deep Learning
Theory and Applications (DeLTA’24)

• Program Committee member Trustworthy Sequential Decicion-
making and Optimization Workshop at ECAI 2024

• Program Committee member International Conference on Af-
fective Computing & Intelligent Interaction (ACII) 2024

• Program Committee member Workshop on Explainable Artifi-
cial Intelligence at IJCAI 2023

• Session Chair 2nd International Conference on Deep Learning
Theory and Applications (DeLTA’21)

• Program Committee member International Conference on Mul-
timodal Interaction (ICMI) 2021-2023
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c.3 awards

I received the following awards:

• Best Paper Award at Conference on Deep Learning Theories
and Applications (DeLTA 2020)

• Honorable Mention at IEEE Virtual Reality (IEEEVR 2022)

• Honorable Mention at Creativity & Cognition (C&C 2022)

• 1st Place at the A-VB Challenge held at the International
Conference on Affective Computing & Intelligent Interaction
(ACII2022)

• 2nd Place at the ComParE Challenge (Subchallenge Escalation
Detection) at Interspeech 2021

• 4th Place at the STOIC2021 COVID-19 AI Challenge

• Best Poster Award at the International Conference on Deep
Learning Theories and Applications (DeLTA 2024)





D
T E C H N I C A L & E X P E R I M E N TA L D E TA I L S

d.1 counterfactual explanation generation

Table 12 shows the classifier architecture that we used in Chapter 7.

Layer Description Number of Filters Size Stride Dropout Probability

1 Conv2D 96 11 x 11 4 -

2 MaxPooling2D - 2 x 2 2 -

3 Batch Normalization - - - -

4 Conv2D 256 11 x 11 1 -

5 MaxPooling2D - 2 x 2 2 -

6 Batch Normalization - - - -

7 Conv2D 384 3 x 3 1 -

8 Batch Normalization - - - -

9 Conv2D 384 3 x 3 1 -

10 Batch Normalization - - - -

11 Conv2D 256 3 x 3 1 -

12 MaxPooling2D - 2 x 2 2 -

13 Batch Normalization - - - -

14 Flatten - - - -

15 Dense - 4096 - -

16 Dropout - - - 0.4

17 Batch Normalization - - - -

18 Dense - 4096 - -

19 Dropout - - - 0.4

20 Batch Normalization - - - -

21 Dense - 1000 - -

22 Dropout - - - 0.4

23 Batch Normalization - - - -

24 Dense - 2 - -

Table 12: L2 bias and kernel regularization with a regularization factor of
0.001 was applied to all convolutional and dense layers except layer
25.
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Layer Description # Filter Size Stride Dropout BatchNorm Activation

1 Conv2D 64 4x4 2 - no LeakyReLU (0.2)

2 Conv2D 128 4x4 2 - yes LeakyReLU (0.2)

3 Conv2D 256 4x4 2 - yes LeakyReLU (0.2)

4 Conv2D 512 4x4 2 - yes LeakyReLU (0.2)

5 Conv2D 512 4x4 2 - yes LeakyReLU (0.2)

6 Conv2D 512 4x4 2 - yes LeakyReLU (0.2)

7 Conv2D 512 4x4 2 - no ReLU

8 Conv2DTranspose 512 4x4 2 0.5 yes ReLU

9 Conv2DTranspose 512 4x4 2 0.5 yes ReLU

10 Conv2DTranspose 512 4x4 2 0.5 yes ReLU

11 Conv2DTranspose 256 4x4 2 - yes ReLU

12 Conv2DTranspose 128 4x4 2 - yes ReLU

13 Conv2DTranspose 64 4x4 2 - yes ReLU

14 Conv2DTranspose 1 4x4 2 - no Tanh

Table 13: Generator Architecture used in our evaluation scenario. The archi-
tecture is adapted from Y. Wu et al. (2019). Where BatchNorm,
Dropout, or Activation function occurred together, the order ap-
plied was BatchNorm - Dropout - Activation.

d.2 alterfactual explanation generation

d.2.1 GAN Architecture and Training

d.2.1.1 Generator Model

The GAN’s generator architecture is listed in Table 13.

d.2.1.2 Discriminator Model

The GAN’s discriminator architecture is listed in Table 14.

d.2.1.3 Training Configuration and Hyperparameters

The training configuration and hyperparamters are shown in Table
15. The Adam optimizer was configured with β1 = 0.5, β2 = 0.999,
ϵ = 1e− 8.

Further, the Support Vector Machine (SVM) that was included in
the loss function (see main paper) was trained with the parameters
listed in Table 16.

d.2.2 Classifier Architecture and Training

In Table 17, the model architecture for the classifier that we used
in our evaluation scenario is described. The training configuration
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Layer Description # Filter Size Stride BatchNorm Activation

0a Embedding - 8x8 - no -

0b Upsample - 128x128 - no -

1 Conv2D 64 4x4 2 no LeakyReLU (0.2)

2 Conv2D 128 4x4 2 yes LeakyReLU (0.2)

3 Conv2D 256 4x4 2 yes LeakyReLU (0.2)

4 Conv2D 1 4x4 2 no Sigmoid

Table 14: Discriminator Architecture used in our evaluation scenario. Where
BatchNorm and Activation function occurred together, BatchNorm
preceded the activation function. The first two layers, marked as
‘0a’ and ‘0b’ were used to upsample the label information to the
size of the input image. The label and image were passed together
to layer 1. The architecture is adapted from Y. Wu et al. (2019).

Batch Size 1

Epochs 14

Learning Rate Generator 1e-4

Learning Rate Discriminator 1e-4

Optimizer Adam

Table 15: The setting used to train the GAN.

C (Regularisation) 10

Kernel linear

Iterations 5000

Table 16: The setting used to train the SVM.

Layer Description # Filter Size Stride BatchNorm Activation

1 Conv2D 32 3x3 1 yes ReLU

2 Conv2D 32 3x3 1 yes ReLU

3 MaxPool2D - 2x2 2 no -

4 Conv2D 64 3x3 1 yes ReLU

5 Conv2D 64 3x3 1 yes ReLU

6 GAP - - - no -

7 Dense - 2 - no Softmax

Table 17: Classifier architecture used to train the classifier for the MNIST-
Fashion dataset (classes Sneaker and Ankle Boot). Where Batch-
Norm and Activation function occurred together, BatchNorm pre-
ceded the activation function.
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Batch Size 32

Epochs 40

Learning Rate 1e-3

Optimizer Adam

Loss Function Binary Cross Entropy

Table 18: The setting used to train the Fashion-MNIST classifier.

and hyperparamters are shown in Table 18. The Adam optimizer was
configured with β1 = 0.9, β2 = 0.999, ϵ = 1e− 8.

d.2.3 Additional Dataset Experiments

In order to demonstrate that our alterfactual generation approach is
generalizable to different datasets, we additionally trained models for
three other datasets. Here, we omitted the Feature Relevance compo-
nent. As for that component an additional SVM has to be trained on
the penultimate layer of the classifier layer, it takes away the model-
agnostic property from the alterfactual generation network. By per-
forming these additional experiments, we show that the approach
can simply be adapted to be model-agnostic, although that may neg-
atively affect the outcomes of the results - it is not specifically forced
that only irrelevant features change. For the classifiers, we used the
same architecture as for the Fashion-MNIST dataset, although batch
size and epochs were modified to fit the hardware that we used.

d.2.3.1 MNIST

As the MNIST datasets has more than two classes (each class contains
hand-drawn images of one specific digit), we picked the two digits
that are most likely to be confused by deep learning classifiers: Three
and Eight. The MNIST classifier was trained for 9 epochs with batch
size 32. Besides not using the Feature Relevance component and in-
creasing the epoch number to 42, the GAN network was trained with
the same parameter settings as for the Fashion-MNIST dataset. We
reached a validity of 95.92% and an average SSIM of 0.425. Example
outputs are shown in Figure 82.

d.2.3.2 MaskedFace-Net

The MaskedFace-Net dataset contains images of people wearing face
masks. Binary labels are provided, indicating that on the respective
image the mask is worn correctly or incorrectly. The classifier was
trained for 2 epochs with batch size 128. Besides not using the Feature
Relevance component and decreasing the epoch number to 11, the
GAN network was trained with the same parameter settings as for
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Figure 82: Examplary alterfactual outputs for the MNIST dataset.

Figure 83: Examplary alterfactual outputs for the MaskedFace-Net dataset.

the Fashion-MNIST dataset. We reached a validity of 84.27% and an
average SSIM of 0.091. Example outputs are shown in Figure 83.

d.2.3.3 MaskedFace-Net (Gray Scale)

Here, we also used the MaskedFace-Net dataset, but converted it to
gray scale, demonstrating that our approach also works with gray
scale data. The classifier was trained for 1 epoch with batch size 128.
Besides not using the Feature Relevance component and decreasing
the epoch number to 6, the GAN network was trained with the same
parameter settings as for the Fashion-MNIST dataset. We reached a
validity of 48.89% and an average SSIM of 0.002. Example outputs are
shown in Figure 84.

d.2.4 User Study

d.2.4.1 Demographic Details

For the AI experience and Attitude we adapted a description of AI
from B. Zhang and Dafoe (2019) and S. Russell and Norvig (2016) to
“The following questions ask about Artificial Intelligence (AI). Collo-
quially, the term ‘artificial intelligence’ is often used to describe ma-
chines (or computers) that mimic ‘cognitive’ functions that humans
associate with the human mind, such as ‘learning’ and ‘problem solv-
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Figure 84: Examplary alterfactual outputs for the gray scale version of the
MaskedFace-Net dataset. It can be clearly seen that the only part
of the image that gets unchanged is the mask itself - indicating
that everything else is irrelevant.

ing’.” After this description, participants had to select one or more
item describing their experience with AI. The distribution of the items
for each condition is shown in Fig. 85. Following this we adapted a
question from B. Zhang and Dafoe (2019) to measure the participants’
attitude towards AI. We asked them to rate their answer to the ques-
tion “Suppose that AI agents would achieve high-level performance
in more areas one day. How positive or negative do you expect the
overall impact of such AI agents to be on humanity in the long run?”
on a 5-point Likert scale from “Extremely negative” to “Extremely
positive”. The participants also had the option to answer “I do not
know” here, which would exclude them from the evaluation of this
question.

d.2.4.2 Additional Post-Hoc Results

For completeness, we also report the results of the post-hoc t-tests
on the participants’ prediction accuracy that were not significant. The
effect size d is calculated according to Cohen (2013):

• Counterfactual vs. Control: t(127) = 1.14, p = .258, d = 0.28

• Combination vs. Alterfactual: t(127) = 0.71, p < .478, d = 0.18.

For feature understanding and explanation satisfaction we did not
calculate post-hoc tests since the ANOVA was not significant.

d.2.4.3 Explanation Satisfaction Scale

For evaluating explanation satisfaction, we used the Explanation Sat-
isfaction scale by Hoffman (Hoffman et al., 2018) except one item that
did not apply to our use case. The items that we used were as follows,
where each item was rated on a 5-point likert scale (1 = strongly dis-
agree, 5 = strongly agree):
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Control Counterfactual

Alterfactual Combination

Figure 85: Distribution of the chosen AI experience items for each condition.
The x-axis depicts the following items: 1 - I do not have any ex-
perience in AI related topics; 2 - I know AI from the media; 3 - I
use AI technology in my private life; 4 - I use AI technology in
my work; 5 - I have taken at least one AI related course; 6 - I do
research on AI-related topics; 7 - Other:

• From the explanations, I understand how the AI makes its de-
cision.

• The explanations of how the AI makes its decision are satisfy-
ing.

• The explanations of how the AI makes its decision have suffi-
cient detail.

• The explanations of how the AI makes its decision seem com-
plete.

• The explanations of how the AI makes its decision are useful to
predict the AI’s decision.

• The explanations of how the AI makes its decision show me
how accurate the AI is.

• The explanations let me judge when I should trust and not trust
the AI.
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