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Although surgical resection is the standard therapy for stage II/Ill colorectal
cancer, recurrence rates exceed 30%. Circulating tumor DNA (ctNDA) detects
molecular residual disease (MRD), but lacks spatial and tumor microenviron-
ment information. Here, we develop a deep learning (DL) model to predict
disease-free survival from hematoxylin & eosin stained whole slide images in
stage II-IV colorectal cancer. The model is trained on the DACHS cohort
(n=1766) and validated on the GALAXY cohort (n=1404). In GALAXY, the DL
model categorizes 304 patients as DL high-risk and 1100 as low-risk (HR 2.31;
p <0.005). Combining DL scores with MRD status improves prognostic stra-
tification in both MRD-positive (HR 1.58; p < 0.005) and MRD-negative groups
(HR 2.1; p < 0.005). Notably, MRD-negative patients predicted as DL high-risk
benefit from adjuvant chemotherapy (HR 0.49; p=0.01) vs. DL low-risk
(HR=0.92; p = 0.64). Combining ctDNA with DL-based histology analysis sig-
nificantly improves risk stratification, with the potential to improve follow-up
and personalized adjuvant therapy decisions.

Colorectal cancer (CRC) is one of the leading causes of cancer-related
deaths worldwide'. Surgical resection remains the standard curative
therapy in patients with stages II-Ill CRC and resectable metastases.
Despite advancements in surgical and adjuvant therapies, recurrence
rates remain substantial up to 30% for stages Il CRC and up to 60% in
resectable metastatic CRC*”. Patients who relapse have an increased
mortality risk, hence identifying these patients at an early stage is
crucial for optimizing follow-up treatment decisions. Current prog-
nostication systems for risk assessment, including imaging techniques,
clinicopathological features and molecular data, such as BRAF, RAS
mutational status and microsatellite instability (MSI), are moderate

predictors for recurrence risk®®. Similarly, follow-up strategies, such
as tumor marker monitoring with carcinoembryonic antigen (CEA),
lack sensitivity and specificity in identifying recurrence’ . In particular
for stage Il CRC, the decision on adjuvant chemotherapy (ACT) is
based on diverging risk assessment recommendations provided
through international oncological associations'>, Thus, a more fine-
grained system for estimating the risk of relapse is required, as no
stage-specific survival benefit for adjuvant chemotherapy has been
proven. Therefore, new biomarkers for better and more precise
prognostication are needed. Circulating tumor DNA (ctDNA) has
emerged as a promising minimally invasive biomarker that measures a
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Fig. 1| Study Design and DL Model Architecture. A DACHS cohort and B GALAXY
cohort overview including patient characteristics and WSI preprocessing pipeline
using UNI, a pretrained vision encoder for feature extraction. C Overview Experi-
mental Setup: Clinical data is fed into DL Model with WSIs for training process and
then externally deployed onto the GALAXY cohort to obtain the DL-Score, which
are then binarized into DL high-risk and DL low-risk categories. D Architecture of
the Transformer-based Multiple Instance Learning (MIL) pipeline. WSIs are divided
into patches and preprocessed to feature vectors with a dimension of n-tiles x1024
using the UNI foundation model. Patch feature vectors are then projected to a 512-
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dimensional vector using a fully connected layer with ReLU activation, with a
learnable class token (CLS) added. A two-layer transformer refines the CLS token
via self-attention and feedforward networks. The final CLS token, encoding WSI-
level information, is processed by an MLP to generate the patient-level risk score.
This Figure was partly generated using Flaticon. DACHS=Darmkrebs: Chancen der
Verhiitung durch Screening Study, WSI=whole-slide image, DFS=disease-free sur-
vival, DL=Deep Learning, MRD=molecular residual disease, CLS=class learnable
token, MLP=multilayer perceptron.

small fraction of cell free ctDNA in the blood, allowing for the detec-
tion of molecular residual disease (MRD) status'*". Additionally,
ctDNA can be used for monitoring treatment response and early pre-
diction of recurrence, as ctDNA positivity after surgery is associated
with a higher risk of disease recurrence'®”. Previous studies have
shown that this correlation had already been found as early as four
weeks after primary tumor resection'®. However, ctDNA analysis alone
does not capture the morphological characteristics of the tumor. For
instance, histopathological features such as subtype, grading, vascular
and lymphatic invasion, as well as the abundance of tumor-infiltrating
lymphocytes? have been shown to be prognostically relevant and
are reflected in clinical guidelines™”. In addition, molecular features
like MSI are included in treatment recommendations due to their
association with prognosis®?**. Deep Learning (DL) is an artificial
intelligence technology that is useful to extract quantitative bio-
markers from routinely available clinical data in oncology*?°. DL
models, trained on histopathological routine hematoxylin and eosin
(H&E) tumor slides have been shown to act as survival prediction
models augmenting current risk-stratifications systems” >, DL can
extract highly relevant information from routine pathology slides of

CRC, including presence of MSF®?, genetic alternations®*, response

to neoadjuvant therapy®, and overall survival (OS)*. Given the ability
of DL to extract meaningful biological information from pathology
slides that ctDNA cannot capture, we hypothesize that the combina-
tion of MRD assessment with a transformer-based DL risk score from
morphology could significantly improve prognosis prediction.

Here, we show that combining MRD status from ctDNA with a DL-
based risk score derived from routine WSIs significantly improves
patient stratification and recurrence prediction in patients with CRC.

Results

DL stratifies patients by recurrence risk

We trained a DL model to generate risk scores based on DFS and
validated its performance on the GALAXY cohort. Patients were cate-
gorized into DL high- and DL low-risk and their recurrence risk was
analyzed. Among the 1404 patients 21.7% (n = 304) were categorized as
DL high-risk and 78.3% (n =1100) as DL low-risk (Fig. 1, Supplementary
Fig. 1). Patients classified as DL high-risk exhibited a significantly ele-
vated risk of disease recurrence compared to DL low-risk patients
(HR=2.31, Cl 95% 1.86-2.86; p < 0.005), with a 24-month DFS of 57.6%
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Fig. 2 | DL and ctDNA-status stratify patients by recurrence risk. A Kaplan-Meier
curves for DFS stratified by DL high-risk and DL low-risk patients. B Kaplan-Meier
curves for DFS stratified by MRD-positive and MRD-negative patients. C Forest plot
showing multivariate cox regression analysis including the covariates gender
(p=0.70), age (p=0.06), DL risk score (p =0.06), pathological nodal stage (pN),
pathological tumor stage (pT; p = 0.20), metastasis stage (pM), adjuvant che-
motherapy treatment (ACT), microsatellite instability status (MSI; p = 0.01), and
MRD-status, and their association with DFS. D Kaplan-Meier curves for DFS strati-
fied into three distinct risk categories: Double High Risk (MRD-positive and DL high-
risk), Either High Risk (either MRD-positive/DL low-risk or MRD-negative/DL high-

risk), and Double Low Risk (MRD-negative/DL low-risk). HR and 95% CI were cal-
culated by the Cox proportional hazard model. P value was calculated using the
two-sided log-rank test (*p < 0.05, **p <0.005). P values < 0.005 are not listed
individually. Each Kaplan-Meier analysis was performed once using the full cohort
and reflects the entire dataset. No subsampling or repeated trials were applied.
Plots were generated using the lifelines package in Python 3.11.5. Source data is
provided as a Source Data file. DACHS=Darmkrebs: Chancen der Verhtitung durch
Screening Study, WSI=whole-slide image, DFS=disease-free survival, DL=Deep
Learning, MRD=molecular residual disease, HR=Hazard ratio, CI=Confidence
interval.

vs. 79.1%, respectively (Fig. 2A). In the landmark analysis excluding
early recurrences within 3 and 6 months, the hazard ratios (HRs) were
2.37 (1.88-3; p<0.0001) and 2.14 (1.61-2.84; p < 0.0001) respectively,
which confirmed consistent trends with the primary analysis. (Sup-
plementary Fig. 2A, B). In the stage-specific analysis the DL risk score
significantly stratified the stage Ill CRC patients with an HR of 1.87 (ClI%
1.35-2.61, p < 0.0005), whereas for stage Il and IV the DL score was not
significant (Supplementary Fig. 3A-C). For comparison, ctDNA analysis
alone stratified 17 % (n=239) patients as MRD-positive and 83%
(n=1165) as MRD-negative, with an HR of 10.34 (CI 95% 8.4-12.72,
p<0.005, Fig. 2B). In the multivariate analysis, we found the most
prognostic indicator for recurrence risk to be MRD positivity (HR =
13.71, CI 95% 10.4-18.06; p<0.005), followed by adjuvant

chemotherapy treatment (HR=3.36, CI 95% 2.54-4.46; p<0.005,
Fig. 2C). The DL-risk score was not significant with an HR of 1.3 (CI 95%
0.99-1.72, p=0.06). When correlating the DL risk categories with
patient characteristics of the validation cohort, we found significant
differences in sex, pT-Stage, pN-Stage, pathological Stage, and MRD
status (Supplementary Table 1). Together, these results demonstrate
that our DL model can significantly stratify patients according to their
risk of recurrence.

DL stratifies recurrence risk within MRD subgroups

We hypothesized that combining MRD status with our DL risk scores
can further improve patients stratification four-weeks after curative
surgery, particularly the MRD-negative patients. First, we grouped the
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test. Plots were generated using the lifelines package in Python 3.11.5 Source data is
provided as a Source Data file. DFS=disease-free survival, DL=Deep Learning,
ACT=adjuvant chemotherapy, MRD=molecular residual disease, HR=Hazard ratio,
Cl=Confidence interval.

patients into three distinct risk categories: Double High Risk (MRD-
positive and DL high-risk), Either High Risk (either MRD-positive/DL
low-risk or MRD-negative/DL high-risk), and Double Low Risk (MRD-
negative/DL low-risk). These categories showed significant differences
in DFS (Fig. 1D). In the MRD-positive group, 33.9% (81 out of 239
patients) were categorized as DL high-risk and 66.1% (158 out of 239
patients) as DL low-risk. Patients in the DL high-risk groups had sig-
nificantly worse outcomes with an HR of 1.58 (CI 95% 1.18-2.13;
p<0.005, Fig. 3A). The DFS-time interval was longer in the DL low-risk
group, with a 24-months DFS of 29.1% compared to 8.6% in the DL high-
risk group (Fig. 3A). In the MRD-negative group, 19.1% (223 out of 1165
patients) were classified as high-risk by the DL model and 80.9% (942

out of 1165 patients) as DL low-risk with an HR of 2.1 (CI 95% 1.53-2.87;
p <0.005, Fig. 3B). Additionally, the 24-month DFS was longer in the DL
low-risk group at 87.4%, compared to 75.3% in the DL high-risk group
(Fig. 3B). In a multivariate Cox analysis with age, gender, pT, pN and pM
as covariates, the DL-score was the only independent prognostic pre-
dictor in the MRD-positive group with an HR of 1.51 (CI 95% 1.06-2.15;
p=0.02, Supplementary Fig. 2C). In the MRD-negative group, pM was
the strongest prognostic indicator with an HR of 2.39 (CI 95%
1.43-4.01; p < 0.001, Supplementary Fig. 2D), while the DL risk score
was not an independent prognostic predictor (HR=1.08 CI 95%
0.68-1.72; p=0.75, Supplementary Fig. 2D). In summary, these data
show that the combination of MRD status with the DL risk score
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provides improved patients stratification, with the DL risk score being
independently prognostic only in the MRD-positive group.

DL-based recurrence risk predicts benefit from adjuvant che-
motherapy in MRD-negative patients

We hypothesized that our DL-risk score could identify patients with
stage II-IV CRC who might benefit from ACT, despite being MRD-
negative (Fig. 3 C-F). For the MRD-positive group, ACT significantly
improved DFS in both the DL low-risk group (HR=0.20, CI 95%
0.13-0.28; p < 0.001, Fig. 3C) and in the DL high-risk group (HR =0.25,
Cl 95% 0.16-0.42; p < 0.001, Fig. 3E). Without receiving ACT, all MRD-
positive and DL high-risk patients experienced recurrence within 24-
months, whereas 16.3% of those receiving ACT remained disease-free
after 24 months (Fig. 2E). In the MRD-negative group, patients in the DL
low-risk group did not benefit from ACT (HR=0.92, Cl 95% 0.64-1.31;
p=0.64). The 24-month DFS was 88.3% for patients treated with ACT
vs 86.7% for patients not receiving ACT (Fig. 3D). Interestingly, patients
in the MRD-negative and DL high-risk group showed significantly
longer DFS when treated with ACT (HR 0.49, ClI 95% 0.27-0.87;
p=0.01, Fig. 3D). The 24-month DFS rate was 84% in patients who
received ACT and thus significantly higher than in patients who did not
receive ACT (69%). This disease-free survival advantage persisted at 36-
months, with DFS rate of 83% (with ACT) vs. 69% (without receiving
ACT, Fig. 2F). The DFS trends among different groups remained con-
sistent in the 3-months performed landmark analysis (Supplementary
Fig. 4). This indicated that even within the low-risk subgroup
(according to MRD), there are high-risk individuals for whom the
omission of ACT may carry a higher risk of recurrence. However, in a
stage-specific analysis of MRD-negative and DL high-risk patients,
compromising a smaller subset of individuals, no significant DFS dif-
ference was observed (Supplementary Fig. 3D-F). Patient character-
istics between those receiving ACT and those who did not revealed
significant differences in age, ECOG-status, pT, pN and MSI-status
(Supplementary Table 2). Together, these data show that the DL
prognostication model can successfully further stratify MRD-negative
patients.

DL as a tool for prognostic histopathological discovery

While measurements of ctDNA provides information about viable
and disseminated tumor cells and enables minimal-invasive MRD
assessment, it does not capture any information regarding tumor
morphology or the TME, both of which are reflected in histo-
pathology slides and known to impact clinical outcomes. We eval-
uated whether our DL model, trained without manual annotations,
identifies morphological features of the tumor and TME synergistic
to MRD status. Therefore, we visualized highly predictive regions at
multiple magnifications in the GALAXY cohort. (Fig. 4). In the DL
low-risk classified patients, the morphological analysis revealed a
variety of benign histopathological tissue features. As the DL score
increased, the histological image tiles still below the risk threshold
displayed moderately differentiated tumor components. These
samples still displayed a balanced tumor-stroma ratio and tumor
glands with tubular to cribriform architecture, indicating an inter-
mediate phenotype between DL low and DL high-risk morphological
characteristics (Fig. 4A). The images, above the risk threshold, dis-
played high-grade tumor cells with a significant desmoplastic
stroma reaction. There was a high intratumoral stroma fraction, and
the presence of tumor buds/poorly differentiated clusters, which
are known to be associated with a higher recurrence risk
(Fig. 4B)** 7%, Taken together, we observed a clear morphological
continuum mirroring the progression from DL low to DL high-risk
tumors. Moreover, we analyzed the distribution of the DL risk score
with clinically relevant molecular information, namely MSI status,
BRAF and RAS mutational status (Supplementary Fig. 5A-C). We
found that the distribution was very similar for all these factors,

suggesting that our DL model independently detects and accounts
for additional prognostically relevant morphological features.

Discussion

CRC can often be cured through surgery; however, a subset of
patients, particularly those with metastatic colorectal cancer (mCRC),
experience relapse, associated with high mortality. To mitigate this
risk, ACT is administered to mCRC patients post-surgery. However, not
all of these patients benefit equally from such treatment, which is
associated with substantial side effects®*>. Decades of research have
focused on identifying potential biomarkers to administer ACT selec-
tively to high-risk individuals who would benefit the most, while
withholding it from low-risk individuals. To date, one of the most
promising biomarkers for this purpose is ctDNA. Measurement of MRD
through ctDNA is minimal-invasive, robust, and highly prognostic.
However, ctDNA does not capture the tumor’s interaction with its
microenvironment—the complex spatial ecology of tumors*-nor the
tumor morphology itself. This is a limitation of ctDNA as a biomarker,
given that, in addition to conventional histopathology tumor features,
the interplay between tumors and their microenvironment has been
demonstrated to be highly prognostic and predictive over the years. In
our study, we demonstrate that combining DL-based risk assessment
with MRD measurement further enhances prognostic capabilities:
MRD-negative patients who were predicted to be at high-risk for
relapse by our DL model had a significantly longer DFS if treated with
ACT, whereas in MRD-negative patients with a DL-based low-risk status
no DFS benefit was seen for those receiving ACT (Fig. 3F). These
observations suggest that healthcare providers may identify a subset
of patients who are at risk for relapse but are not detected through
current diagnostic tools, including a diagnostic as innovative as ctDNA.
On the other hand, our model contributes to identifying patients who
can safely forgo ACT to minimize the burden of unnecessary toxicity
without compromising outcomes. This could support customized
treatment decisions and reduce overtreatment of low-risk patients.
However, we acknowledge that patients who did not receive ACT in
our cohort more often had unfavorable baseline characteristics—such
as older age, higher ECOG performance status, and a higher propor-
tion of stage IV disease—factors that are independently linked to
poorer outcomes. The pN-status demonstrated strong prognostic
value in our study. While primary tumor histology contains features
partially predictive of pN-status”**, combining explicit pN-status with
DL model outputs, as shown by Jiang et al.*® may further enhance
prognostic performance. Recent studies* demonstrate the potential
of integrating histological and clinical data for multimodal outcome
prediction. However, further research is required to determine whe-
ther multimodal training or post-hoc integration yields better risk
stratification. Previous studies developing DL-based prognostication
systems failed to provide evidence for potentially different che-
motherapy efficacy across DL categories, by which all potential ther-
apeutic implications of these models remain speculative?*¢ Our study
builds upon this foundation by incorporating an additional key finding:
although our histopathology DL model was trained without human
annotations and solely on raw WSIs, we found that the model learned
to pay attention to regions linked to tumor biological features plau-
sibly associated with prognosis, thereby synergizing with ctDNA. The
DL model combines contributions from all tiles in a nonlinear manner -
a process that is learned during the training. As a result, high- and low-
risk tiles do not cancel each other out. The tile-level heatmaps provide
interpretability by highlighting prognostically relevant regions, which
could complement traditional pathology evaluation in diagnostic set-
tings. However, heatmaps cannot visualize all nonlinear operations in
the model and improved explainability techniques remain a subject of
ongoing investigation®’. Our findings are consistent with previous DL-
based end-to-end prognostication approaches in CRC based on H&E
histopathology alone?®*%, To our knowledge, our study provides initial
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Fig. 4 | DL can identify morphological features linked to prognosis. A Highly
predictive tiles for patients below the DL risk-threshold and above the DL risk-
threshold exemplarily with DL score reported. B Whole slide patient heatmaps

showing the DL prediction score, red indicating high-risk, and blue indicating low-
risk. Visualizations are based on a single analysis run and represent typical patterns
observed in the dataset. DL=Deep Learning, MRD=molecular residual disease.

evidence suggesting that a DL risk assessment algorithm may indicate
therapy efficacy in a real-world setting in CRC. This combined
approach may improve patient selection, suggesting a way to restrict
ACT to those patients who are most likely to benefit from it. By inte-
grating DL-based risk stratification alongside established and emer-
ging biomarkers such as histopathological features and ctDNA, a more
comprehensive, multidimensional risk assessment could be achieved,
potentially refining traditional classifications. Regarding feasibility in
clinical practice, our DL model is not intended to replace pathologist
evaluation but rather to complement it by providing an additional
layer of quantitative risk assessment based on whole-slide imaging
data. Pathologists’ expertise remains crucial, especially for assessing
established histopathological features such as vascular invasion and
tumor budding, which remain significant independent risk factors.
Furthermore, our DL method uses state-of-the-art models, is fully open
source and can be reused and adapted by anyone.

A limitation of our exploratory study is that the results should be
interpreted as hypothesis-generating rather than conclusive. Inte-
grating our insights into clinical routine requires further evaluation in
additional cohorts, ideally in a prospective manner. Despite this, our
study, encompassing thousands of patients across different countries,
represents one of the largest studies in this field. Moreover, we utilized
a state-of-the-art foundation model for digital pathology analysis,
UNI*. This is particularly relevant for clinical translatability, as the
capabilities of foundation models are rapidly advancing, suggesting
that further performance gains are conceivable with improved DL
models. Nevertheless, medical device approval in Japan, the US, and
the European Union requires a static piece of software that cannot be
easily updated. This regulatory limitation introduces the risk of the
model becoming outdated by the time of clinical approval. A limitation
of this study is that other recent foundation models for survival ana-
lysis, which may offer enhanced performance, were not evaluated, and
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thus direct comparisons are not available. However, since the con-
clusions of our model are derived from extensive histopathological
data and fundamental tumor biology, we believe its prognostic
insights will likely remain clinically relevant despite future model
iterations. Furthermore, the influence of neoadjuvant treatment on
histopathological slides requires careful consideration. Neoadjuvant
therapy can alter tumor morphology and stromal composition,
potentially affecting the model’s interpretability and performance.
Further validation in neoadjuvantly treated cohorts will be necessary
to ensure consistent performance across diverse clinical scenarios.
Additionally, ACT in the GALAXY cohort was administered based on
physicians” decisions and patients’ preferences rather than a standar-
dized protocol, which may introduce variability in treatment effects
and their influence on outcomes. A further limitation is that we solely
controlled for the covariates pT and pN staging, M-stage, MSI-status,
age, gender, ACT and MRD status and therefore could not account for
all potential prognostic variables associated with survival outcomes,
and the relatively short median follow-up duration of 22 months
represents an additional limitation. Lastly, we did not perform a
quantitative analysis of high-attention regions. Future studies could
employ segmentation tools to analyze these regions and derive
quantitative metrics, such as glandular morphology or nuclear dis-
tribution, to further validate the features identified by the DL model.

Despite these limitations, our data show that the excellent prog-
nostic performance of ctDNA in CRC can be further improved by DL-
based end-to-end assessment of routine pathology slides. After pro-
spective validation, this approach provides a plausible and compre-
hensive strategy for relapse risk assessment with potential therapeutic
implications.

Methods

Ethics statement

The experiments in this study were carried out according to the
Declaration of Helsinki and the International Ethical Guidelines for
Biomedical Research Involving Human Subjects by the Council for
International Organizations of Medical Sciences (CIOMS). The present
study also adheres to the “Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis” (TRIPOD)
statement.20. The Ethics Board at the Medical Faculty of Technical
University Dresden (BO-EK-444102022) and Institutional Review Board
of the National Cancer Center Japan (2023-207) approved of the
overall analysis in this study. The patient sample collection in each
cohort was separately approved by the respective institutional
ethics board.

Patient data acquisition

In this study, we analyzed primary histological whole slide images
(WSIs) of H&E-stained tumor tissue of surgically curable CRC from two
large cohorts in Germany and Japan (Fig. 1A, B, Supplementary Fig. 1).
For most patients, only one slide was available within the scope of the
study. The first cohort was the Darmkrebs: Chancen der Verhiitung
durch Screening Study (DACHS)*°?, conducted between 2003 and
2010, which includes 1774 WSI's belonging to 1766 patients and served
as the training cohort (Supplementary Fig. 1A and Supplementary
Table 1). In the DACHS cohort, 43% of participants were female and 57%
male. The second cohort, was the GALAXY cohort, an observational
arm from the prospective CIRCULATE-Japan study (UMINO00039205,
conducted in 2020 and 2024), which includes 1404 primary WSlIs from
1404 patients and served as the independent external validation
cohort (Supplementary Fig. 1B). In this cohort, 46% of the participants
are female, and 54% are male. Patients with synchronous tumors were
excluded in the GALAXY cohort, while in the DACHS cohort, they were
classified based on the tumor with the highest stage, which also
defined tumor location. The GALAXY trial comprised ctDNA data
measuring the MRD status at the four weeks post-surgery. The ctDNA

detection method used in the study was based on a tumor informed
assay (Signatera, Natera Inc.). Tumor specific somatic single-
nucleotide variants (SNVs) were identified via whole-exome sequen-
cing of formalin-fixed, paraffin-embedded tumor tissue, creating a
personalized panel of up to 16 tumor-specific variants. Cell-free DNA
(cfDNA) extracted from blood plasma was analyzed using a multiplex
PCR-based NGS approach to detect ctDNA. MRD positivity was defined
by the detection of at least two out of 16 tumor-specific ctDNA variants
detected above a predefined threshold based on Natera’s method™®>,
Out of the 1404 patients included in the trial, 239 were MRD-positive
and 1165 patients were MRD-negative at the respective 4 weeks
interval® (Fig. 1B). Only a small proportion of patients in the DACHS
(12%) and GALAXY (10%) cohorts received neoadjuvant treatment.
Moreover information about adjuvant chemotherapy (ACT) applica-
tion was available for all the patients in the GALAXY cohort (Supple-
mentary Table 1). Patient sex was self-reported by study participants.

Image processing and deep learning techniques

Data preprocessing. All WSIs were segmented into image patches,
each with a edge length of 256 pm and resized to 224 x 224 pixels,
resulting in an effective magnification of 1.14 pm per pixel. Tiles with an
average number of Canny edges below a threshold of 2 (indicative of
background or blurry regions) were excluded from the dataset. The
remaining patches were color normalized using the Macenko
method®, in order to avoid stain-associated bias. The preprocessing of
the WSIs was done using our open-source pipeline, HIBRID. This
pipeline utilizes UNI, a self-supervised, histology-specific pretrained
encoder, to transform each image patch into a 1024-dimensional fea-
ture vector (Fig. 1). UNI is a general-purpose self-supervised model,
pretrained on over 100 million images from more than 100,000
diagnostic H&E-stained WSIs across 20 major tissue types*’. Pre-
processed WSIs - Features are stored in.h5 files, including the coordi-
nates of the patches. One.h5 file corresponds to one WSIs with the
dimension of n-tiles x 1024 (Fig. 1D).

Deep learning model development. To train and validate our pre-
diction DL-models we used our open-source HIBRID-pipeline (https://
github.com/KatherLab/HIBRID). All the features vectors extracted
from the patches of each WSI were aggregated into a bag, which was
then processed using a Transformer-based Multiple Instance Learning
(MIL) model for a patient-level risk-score prediction (Fig. 1D). This
process involves projecting the feature vectors from each patch onto a
512-dimensional feature space through a fully connected layer with
ReLU activation. A learnable class token (CLS token) is then appended
to the sequence, resulting in a new sequence where the CLS token is
the first element, followed by the feature vectors of the patches®. This
new sequence is fed into the transformer module. The transformer
architecture is designed with two layers, each compromising two main
components: a self attention mechanism and a feedforward network,
both wrapped with residual connections and layer Normalization®.
The self-attention mechanism models the relationship between all
patches in the bag, allowing the CLS token to aggregate global infor-
mation about the WSI. Following this, the feedforward network refines
the feature representation through nonlinear transformation. These
operations are repeated across both layers, progressively enriching the
CLS token. Finally, the updated CLS token, which now encodes the bag-
level representation of the WSI is extracted from the sequence and
passed through the multilayer perceptron (MLP) head to generate a
patient-level risk score (Fig. 1D).

Model Training. During each training epoch, 512 tiles are randomly
sampled from the WSI. Throughout the training process, this method
ensures that the network comprehensively processes all tiles from the
WSI. The DACHS cohort was randomly split at patient-level into
training, validation, and test sets in a 4:4:2 ratio. The model was trained
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on the training set, and the checkpoint with the highest C-index on the
validation set was saved. This saved model was subsequently evaluated
on the test set and the external validation cohort. The model was
trained on an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory,
running on a Fedora 37 operating system. Training and evaluation were
conducted using the PyTorch library (version 1.12.1) with the Adam
optimizer, an initial learning rate of le-4, and a batch size of 64. To
minimize the risk of overfitting, several established techniques were
employed during the training process, including early stopping, L1
regularization, and L2 regularization. Early stopping was configured
with a patience of 15, and the weights for L1 and L2 regularization were
both set to 0.001. The network was trained for a total of 50 epochs. We
adhered to these parameters for training as they had been validated in
a prior study®.

Visualization. To interpret our model’s output, we generated WSI
heatmaps visualizing the tile-level importance and risk scores across
the entire slide. Our transformer model processed the patch-level
features from the WSI to generate a slide-level risk score. To assess
each tile’s contribution to the predicted risk score, we computed
gradients of the models’ output with respect to tile feature vectors
using backpropagation. A single importance score for each tile was
calculated, by performing element-wise multiplication between the
gradients and the feature values, followed by averaging the resulting
values across all features. This importance score, which captures the
contribution of each tile to the final slide-level risk score, is referred to
as the Grad-CAM-like score. Additionally, tile-level prediction scores
were obtained by passing each tile individually through the model and
normalizing the scores across the WSI. Finally, the Grad-CAM-like
scores were weighted by the normalized tile-level prediction scores to
derive a comprehensive importance score for each tile. These scores
identified the most influential tiles for both categories (Fig. 4A).
Heatmaps were created based on these weighted scores, with red
indicating high-risk regions and blue indicating low-risk regions. To
maintain interpretability, we merged these heatmaps with the original
WSI, providing clear insights into the tumor morphology and the
model’s predictions (Fig. 4B).

Experimental Design

In our study, we trained a transformer-based DL model on the
DACHS cohort, utilizing clinical data on disease-free survival (DFS)
events and DFS time in months to generate patient-level DL-based
risk scores (Fig. 1C). DFS marks the time from primary surgery to
disease recurrence or death, whichever event occurs first. The
median follow-up time for the DACHS cohort was 121 months and
22.6 months for the GALAXY cohort, respectively. The median of the
DL-risk score in the training cohort was 0.9357855 and was subse-
quently used as a threshold for the binarization of the DL-risk
scores. The trained DL-model was then externally validated on the
GALAXY cohort. The continuous DL-risk scores from the validation
cohort were binarized into DL high-risk and DL low-risk categories
using the threshold derived from the DACHS cohort. Firstly, we
performed a survival analysis comparing the overall DL-derived risk
score stratification with the stratification outcomes of MRD status
four weeks post-surgery in the GALAXY cohort. Multivariate analysis
was conducted using Cox proportional hazard models, including the
covariates: age, gender, pathological T-Stage (pT), metastasis stage
(M-Stage), ACT, MSI-status and pathological N-Stage (pN)*® to fur-
ther evaluate these associations. Secondly, we combined the DL-risk
scores with the four-week post-surgery MRD status to analyze sur-
vival differences for DL high-risk vs. DL low-risk within the sub-
groups of MRD-positive and MRD-negative patients. Thirdly, to
further stratify the results, we explored the association of ACT with
DFS within the DL high-risk and low-risk subgroups among both
MRD-positive and MRD-negative patients. In this GALAXY cohort,

patients enrolled in the interventional VEGA and ALTAIR studies
were excluded. Therefore, the patients in this cohort received
treatment based on clinical practice, guided by clinicopathological
evaluations (Taniguchi et al., 2021). All the survival analysis in this
study were performed using Kaplan-Meier estimator and log-rank
test. Lastly, we performed a morphological analysis to identify his-
topathological correlations between the DL high-risk and low-risk
subgroups, using classification heatmaps to provide interpretability
of the DL model’s predictions. We evaluated whether our DL model,
trained without manual annotations, identifies morphological fea-
tures of the tumor and TME synergistic to MRD status. Therefore, we
visualized highly predictive regions at multiple magnifications in the
GALAXY cohort.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The respective study Principal Investigators provided the clinical and
image data. Clinical, Sequencing and image data from the DACHS and
GALAXY studies are available under restricted access due to ethical
and legal constraints. For detailed data sharing policies, please refer to
the original publications (https://www.nature.com/articles/s41591-
024-03254-6#data-availability; https://ascopubs.org/doi/10.1200/JCO.
2011.35.93072url_ver=739.88-2003&rfr_id=ori:rid:crossref.org&rfr_
dat=cr_pub%20%200pubmed)™'#*°, Requests for access to additional
de-identified data can be submitted to the corresponding author and
will be assessed by the steering committee within approximately 2-3
weeks. Data will be shared solely for the purpose of scientific validation
and cannot be reused for other purposes. Source data are provided
with this paper.

Code availability

The pretrained vision encoder UNI is available at https://github.com/
mahmoodlab/uni under a CC-BY-NC-ND 4.0 license and may be used
only for non-commercial academic research with proper attribution.
Access to the model requires prior registration on Hugging Face and
acceptance of the terms of use. Our WSI preprocessing pipeline and
deep learning model code are publicly available at https://github.com/
KatherLab/HIBRID under MIT license.
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