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Abstract

We present the rigorous asymptotic analysis in thin domains of a diffuse interface
model of two-component Hele-Shaw flow based on an advective nonlocal Cahn—
Hilliard equation with singular potential and nonconstant nondegenerate mobility for
the relative concentration. The velocity is determined by a Stokes system in which the
inhomogeneous viscosity is highly oscillating and dependent on the relative concentra-
tion. Using the notion of sigma-convergence for thin heterogeneous media, we obtain
in the homogenization limit a new doubly nonlocal Hele-Shaw—Cahn-Hilliard-type
model system containing an additional term arising from the dependence of the viscos-
ity on the relative concentration. In the case when both the viscosity and the mobility
coefficients do not depend on the relative concentration, we additionally prove that
the new model is well posed and we establish the existence of global strong solutions.
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1 Introduction and Main Results

In fluid dynamics, topological transitions of interfaces between macroscopically
immiscible fluids are prominent phenomena and play an important role in many appli-
cations. Two-phase flow involving the slow flow at low Reynolds number of a fluid
between two parallel flat plates separated by a small distance can lead to surpris-
ing phenomena like the Saffmann—Taylor fingering instability (Saffmann and Taylor
1985). Thus, careful derivation and analysis of such models are required.

In this work, we are interested in the mathematically rigorous derivation by homog-
enization and analysis of a new doubly nonlocal Hele-Shaw—Cahn—Hilliard model. We
base our derivation of this new model on the nonlocal Cahn—Hilliard—Navier—Stokes
model at low Reynolds number (so that the convective term in the Navier—Stokes
equation is neglected) stated on the microscale, which we introduce first.

1.1 The &-Model

On the microscopic scale, the fluid domain is of Hele-Shaw type, that is, we consider
a region confined in between two rigid parallel plates described as follows: let 2 be
a bounded open Lipschitz domain in R¢~! (4 = 2, 3) and let ¢ > 0 be a fixed small
parameter. The domain €2, is given by 2, = Q x (—¢,¢). Any x € €2, is written
x = (X, xq) where X € Q2 and —¢ < x4 < ¢. The heterogeneity of the domain €2,
is implicit and arises from the fact that the fluids are mixed at length scale . This
is reflected in both the viscosity and the mobility terms which oscillate at scale &,
the distribution function of the microstructures being represented by an assumption
made on the fast spatial variable y = X /¢ covering several concrete behaviours such
as the periodic (uniform) distribution, the almost periodic distribution and many more
beside, specified in the context of sigma-convergence below. The domain €2; is a thin
layer shrinking to @ x {0} = Q as part of passing to the homogenization limit ¢ — O.
ForagivenT > 0,weset O, = (0,T) x Qg and Q = (0, T') x Q2. In Q,, we consider
the e-model problem given by:

du . .
: o Szdlv(ng( 0)Vug) +Vpe — ueVo, = hin Q,,
divu, = 01in Qg,
Gl . .
8[8 +u, - Vo, —divim®(-, ¢.)Vueg) =0in Q,, (1.1)
lgs =g ! (acpe — J % @c) + F' () in Q,,

He — 0andu, = 0on (0, T) x 9,

v
u: (0, x) = uf(x) and (0, x) = @ (x) in Q.
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In (1.1), u, represents the velocity of the fluid mixture, ¢, is the order parameter
representing the relative concentration of the mixture (relative difference of the two
concentrations), . is the chemical potential, p, is the pressure, J is a suitable interac-
tion kernel, a, is a coefficient (depending on J, see below), 1° is the inhomogeneous
oscillating viscosity, m® is the oscillating mobility, & stands for an external force den-
sity acting on the fluid mixture, F' is the configuration potential accounting for the
presence of two phases, while v is the outward unit normal on 9€2.. In (1.1), the data
are constrained as follows:

(A1) the viscosity n°(-, @) (f, x) = n(x/e, p.(t, x)), where n : RY x R — R, lies
in L (RY; C]OO’C1 (R)) and there exist 51, 72 > 0 such that

n <n(y,r) <mforae.ye R? and for all r € R; (1.2)

(A2) the interaction kernel J € W1 (R4) N C(R4~1\ {0}) satisfies J(y) = J(—y)
and is related to the coefficient a, via a.(x) = fﬂp J(x —2)dz > 0, x € Q,,

which satisfies e 1a, € L®(,) and there is B > 0 such that
B < 8_1ag < ﬂ_l forall x € Qg;

(A3) the potential F' can be written in the form F = F; 4+ F, with a singular part
F| € C([—1, 1])NC?(—1, 1) and a regular component F» € C*>([—1, 1]), which
satisfy the following assumptions: there exist a; > 4(8~! — B — ) (where
o :=min;_ 11 F;),0 < 09 < 1 and ¢co > 0 such that

(i) F{'(s) = ayforalls € (=1, —1 + 0ol U[l — 0o, 1),

(i) F{'(s)+ B =coforalls e (—1,1),
(iii) F| is nondecreasing in [1 — op, 1) and nonincreasing in (—1, —1 + op],
@v) lim,_,_;+ F{ = +ocand lim,_, - F| = —o0;

(A4) the mobility m®( -, @) (t, x) = m(x/e, (¢, x)), where m : RY x R — R, lies
in L®(R4; %1 (R)) and there exist m1, m> > 0 such that

loc
my <m(y,r) <mjpforae.y€ R? and for all r € R; (1.3)
(AS) the initial values ¢f € L>(Q,) and uf, € L*(Q,)? satisfy

1
| ”LZ(QE)‘/’ + |l ”LZ(QE) <ce, ¢ ”Ll(szg) = 028

(1.4)
g3 ”ug — u0||L2(Qg)‘1 + e 2 ||¢)8 _ ¢0||L2(QS) — 0ase — 0,

for some positive constants ¢ and c¢», where u° € L?(Q)¢ and ¢° € L®(Q);
finally, the forcing k has the form

h(t,x) = (hi(t,%),0) forae. (t,x = (¥, x2)) € (0, T) x @ x (—1, 1) =: 0y,
(1.5)
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where by € L2(Q)41.

Remark 1.1 Part (iv) of assumption (A3) on F’ shows that there exists so € (—1, 1)
such that F’(so) = 0. We assume without loss of generality that sy = 0, and since the
potential F' can be chosen up to a constant, we assume henceforth that

F(0) = F'(0) = 0. (1.6)

The physically most relevant examples of functions F and J are the logarithmic
potential

F(s) = g (14 s)log(l +5) 4+ (1 —5)log(l —s)) — %sz, se(—=1,1) (1.7)

and, ford = 3, J(x) = B Ix| "V or,ford =2, J(x) = — B> log | x|, respectively. Here,
6 and 6, are the absolute temperature and the critical temperature, respectively. Below
the critical temperature, i.e. when 0 < 6 < 0., phase separation occurs; otherwise,
the mixed phase is stable. The parameters 81 and S, are positive constants while |x|
denotes the Euclidean norm of x € R?. In (1.7), the splitting in singular and regular
parts is realized by taking Fi(s) = % (I +s)log(l +s)+ (1 —s)log(l —s)) and
F(s) = —%sz.

Now, assuming that each fluid has a viscosity n; (x/¢) (i = 1, 2), then the viscos-
ity of the mixture is modelled by the concentration-dependent quantity n°(x, ¢) =
n(x/e, ¢). In the unmatched viscosity case (n; # n2), a typical form of 5 is the
interpolation between 7y and 1, given by

1—r

5 rel[—1,1], forae.y € RY,

14+r
ny,r) = m(y)T +m ()

The special case n; = n is called the matched inhomogeneous viscosity; n; = 1, can
also be chosen to be a positive constant. In any case, the bounds (1.2) are assumed and
we refer to Abels (2009) for more information on the unmatched case arising from
different densities of the fluids.

It is important to note that the coefficient 1/¢ in front of (a.. — J * @) is to
preserve the relative size of €2, for small . It is easy to see that

e @epe — T % @) (1, x) = /;2 (Je(xr = O)(@e(t,x) — @e(t,£))dg,  (1.8)
1

where J.(x) = J(X, exg) for x = (x,x4) € Qp and @, (¢, x) = (1, X%, exg) for
(t;x) € Q1.

The system (1.1) is a nonlocal Cahn—Hilliard—Stokes system arising from a diffuse-
interface model, which describes the evolution of an incompressible mixture of two
immiscible fluids in Hele-Shaw cells (see, for example, Della Porta et al. 2018;
Frigeri and Grasselli 2012 and the references therein). The local version of (1.1) was
considered in Cheng and Feng (2017) (see also Gurtin et al. 1996). The system (1.1)
is a good approximation of the Cahn—Hilliard—Navier—Stokes system in the context

@ Springer



Journal of Nonlinear Science (2025) 35:107 Page50f66 107

of low Reynolds number, see, for example, Han et al. (2013) in which a number of
applications are discussed as well.

Our model (1.1) is a more general one as, in (1.1)1, we consider a concentration-
dependent inhomogeneous viscosity, thereby generalizing all the existing models.
Another new aspect is the dependence of the nonconstant nondegenerate mobility
coefficient upon both the spatial variable and the order parameter. These functions
are highly oscillating with respect to the fast spatial scale y = x/e. We will make a
structured hypothesis on the behaviour of n(-, y4, r) and m(-, y4, r) which covers a
wide range of concrete behaviours such as the periodicity, the almost periodicity and
many more beside in the context of sigma-convergence.

Our goal in this work is twofold: (i) investigate the limiting behaviour of (1.1)
when the thickness ¢ of the domain as well as the spatial oscillation of the coefficients
simultaneously approaches zero in order to derive the upscaled model; and (ii) ana-
lyze the homogenized model by addressing first its well-posedness and, second, the
regularity of its solutions. The above first goal will be achieved through deterministic
homogenization theory by means of the sigma-convergence concept for thin hetero-
geneous media introduced in Jdger and Woukeng (2022) as a generalization of the
two-scale convergence for thin periodic domains (Neuss-Radu and Jager 2007). It is
worth noting that the two-scale convergence for thin periodic domains is now well
known while its general deterministic counterpart is at its early stage. Indeed, the only
works using the latter concept appear to be Cardone et al. (2024), Jager and Woukeng
(2022), Peter and Woukeng (2024).

More generally, very few results on homogenization of multiphase flow are available
in the literature; see, for example, Auriault et al. (1989), Banas and Mahato (2017),
Cardone et al. (2024), Peter and Woukeng (2024), Sharmin et al. (2022). We also note
the related recent works on upscaling of the Cahn—Hilliard equation coupled with
the equations of linear elasticity, the so-called Cahn—Larché system, Reischmann and
Peter (2020), Reischmann and Peter (2022).

1.2 The Main Results

In order to state our main results in a compact form, we introduce shorthand notations
for certain mean integrals. For any fixed ¢ > 0 and function ¢ defined on Q,, we
define the partial mean integral M ¢ of ¥ on Q = (0, T') x 2 as follows

&

1
My (t,X) = %% Y(t, X, xq)dxq, (¢,%) € Q. (1.9)

The usual spatial average is denoted by an overbar, i.e. ¥ = |Q| ! fg /0

Assuming that the viscosity n(y,r) and the mobility m(y, r) satisfy a struc-
ture hypothesis in the context of sigma-convergence (see assumption (A6) in
“Appendix A”) with respect to y, we obtain from (1.1) in the limit as ¢ — 0 a
new Hele-Shaw—Cahn—Hilliard-type model stated in our first main result as follows.

Theorem 1.1 (Upscaled model) For any ¢ > 0, there exists a weak solution
(ue, @s, e, pe) of (1.1) in the sense of Definition 2.1. Moreover, up to a subsequence
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of € not relabelled, there exist functions u € L2(0, T;H), ¢ € C([0, T]; LZ(Q)) N
L0, T; H'(Q), p € L*0,T; H'(), p € L*0,T; L§(R)) and H(p,u) €
LY, T: LY(2)9~Y) such that, when ¢ — 0,

Meu, — (u,0) in L*(Q)-weak,
Mg, — @ in LZ(Q)-strong and in L2(O, T; HI(Q))-weak, (1.10)
Mgpe — win L2(0, T; H (Q))-weak and M, p, — p in L>(Q)-weak,

where the quintuple (u, ¢, t, p, H(p, u)) solves the effective system
u+H(p,u)=Gu’ 4+ G % (hy + uVxp — Vzp) in Q,
diviu =0in Qandu -n=00n (0,T) x 092,

B L .
B—(f +u - Vrp — divy(m(p)Vu) =0in Q,

R (1.11)
w=ap—Jxg+ F(p)inQ,
o

— =00n(0,T) x 022,
on

9(0) = ¢ in Q,

where the convolution operatorin (1.11)1 is with respect to time while the one in (1.11)4
is with respect to space, G is a symmetric positive definite (d — 1) x (d — 1) matrix-
valued function bounded a.e. in space and continuous in time defined in (3.2) and
H (@, u) is defined in (3.47), (3.48). Furthermore, if the function n is @-independent,
that is, n(y, r) = n(y), then the function H (¢, u) vanishes, andu € C([0, T]; H) and
p € L*(0, T; H'(Q) N L§(Q)).

Further notation and concepts involved in the statement of Theorem 1.1 are provided
in Sect. 3 and “Appendix A”.

Equation (1.11); is a nonlocal Hele-Shaw-type equation involving an extra term
H (¢, u) arising from the contribution of the viscosity coefficient 7, especially from
its dependence upon the relative concentration ¢; see Sect. 3. The convective Cahn—
Hilliard equation (1.11)3 also has a special form as the macroscopic mobility term
m(¢) is a symmetric and positive definite matrix, in contrast to the well-known sit-
uation where m(¢) is a scalar function of ¢. We note that if n does not depend on
@, then H (g, u) is identically zero so that we recover the nonlocal (in time) Hele-
Shaw equation obtained in Peter and Woukeng (2024). In this case, though (1.11); has
recently been derived in Peter and Woukeng (2024), the global model (1.11) is still
new in the literature in that the Cahn—Hilliard equation has a new form (the mobility
is a matrix) and the potential is singular. So our model (1.11) is a doubly nonlocal
Hele-Shaw—Cahn-Hilliard system with nonconstant nondegenerate mobility and with
a singular potential. Therefore, the analysis of this model is more involved compared
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to the one in Peter and Woukeng (2024) . To the best of our knowledge, this is the first
time that such a model is considered in the literature.

For the simplified case that  and m do not depend on ¢, (but may depend on y),
we present some further analysis of the models. To start out with, it turns out that the
e-model and the upscaled one are both well posed. The well-posedness of the limit
model is our second main result.

Theorem 1.2 (Continuous dependence on the data) Assume d = 3 as well as the
assumptions of Theorem 1.1. Assume moreover that the functions n and m are ¢ -
independent, that is, n(y,r) = n(y) and m(y,r) = m(y). Let (u, ¢, i, p) be as in
Theorem 1.1. Then, problem (1.1) possesses a unique solution. Furthermore, the func-
tion H (@, u) in (1.11) vanishes and the mobility coefficient m is a matrix independent
of ¢ and defined by

_ 1t
n = EflM(m(-,y3)(12 + V5o (-, y3))) dy3,

where the function ® = (w;j) j=12 € [Bi;%2 (R2; H(; (I))? is the unique solution of the
corrector problem

—divy (m(y)(Vyw; + /) =0inR? x I, w; € Byt(R% HL(I)),

I is the 2 x 2 identity matrix and e is the jth vector of the canonical basis in R3.
The effective system (1.11) becomes

u=Gu®+ G (hy + uVsp — Vep) in Q,

diviu =0in Qandu -n =00n (0, T) x 0%2,

Z—f +u - Vyp —divg(mVp) =0in Q,
(1.12)

w=ap—Txp+F(p)inQ,

9
B 0on (0,T) x 99,
on

00) = 0 in Q.

Assume in addition that hy € L, T; L4(Q)2). If (uy, ¢1) and (uy, o) are two
weak solutions of (1.12) corresponding to the initial data (u(l), (p?) and (ug, (pg) with

source terms hy and hy, and if further ‘go_lo) < 1,i = 1,2, then there is a positive
constant C depending on the norms of the solutions such that, for almostallt € [0, T],

Io10 = 2005+ f (lon ) - POl + 10 - 1O, ) dr
0 0 0 0 0 0 2

< ([t =8l [ =81+ [ = ] g, W10~ 2002 ).
(1.13)
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In particular, the weak solution of (1.12) is unique so that the whole sequence
(Ug, Ye, e, Pe)e>0 converges in the sense of (1.10).

System (1.12) is actually very close to the doubly nonlocal Hele-Shaw—Cahn—
Hilliard model derived in Peter and Woukeng (2024) although it generalizes the latter.
Indeed, in Peter and Woukeng (2024), we obtained a system like (1.12) but withm = I,
(the identity matrix stemming from the fact that the mobility coefficient was constant
and equal to 1). It is also very important to note that in Peter and Woukeng (2024)
the system (1.12) involved a regular potential, while the function F’ is singular at its
endpoints in the current situation. This model is also new because of the previous facts
and will be investigated. Noticing that the model in (1.12) is a two-dimensional one,
it is useful to point out that the Hele-Shaw—Cahn-Hilliard system was originally a
two-dimensional model (Dede et al. 2018). It is also worth noting that a simplified
version of (1.12) has already been investigated in Giorgini et al. (2018), Della Porta
et al. (2018), Della Porta and Grasselli (2016). Indeed, in Della Porta et al. (2018) the
following model was considered:

u=—-Vp+ uVe, divu =0,
w="F(p)—Jx*g,

with F being the convex logarithmic potential given by the singular part in (1.7), that
is,

F(s) = % (14 s)log(1 +5) + (1 —s)log(1 —5)), s € (=1, 1).

In Giorgini et al. (2018), the local version of (1.14) was considered while, in Della
Porta and Grasselli (2016), the following local version of (1.14),

u:—Vp-l—;,LVgD-Fh, divu = 0,
aa_gf_i_uV@—A(p:O, iHQX(O,T),
w=ap—Jxp+ F'(p),

was derived in a asymptotic procedure from a Cahn-Hilliard—Brinkman model by
letting the constant viscosity therein tend to zero.

The next main result deals with the regularity properties of the unique weak solution
of (1.12) provided that some further assumptions on the initial and source terms are
made.

Theorem 1.3 (Regularity of the solutions) Assume d = 3 as well as the assumptions
of Theorem 1.2. Assume further that u® = 0 and VF’((pO) € LZ(Q)Z. In addition,
suppose that hy € W1-°(0, T; L2(2)?). Let (u, ¢, j, p) be as in Theorem 1.2. Then,
the (unique) weak solution of (1.12) is a strong solution and satisfies

@ e L0, T; H'(2) N L*0, T; Wh*(Q) N L*0, T; W' (), (1.15)
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dp

5 € L>®0, T; H'(Q)) N L*(0, T; L*()), (1.16)
we L®0,T; H'(Q)NL*YO, T; wh*©Q) N L>, T; H*(Q)), (1.17)
peL>®0,T; H(Q) NL3(Q), (1.18)
F'(p) € L®(0, T: H'(Q)), (1.19)

where2 <r < oQ.
Moreover, if curlh € L*°(0, T; L"(2)) for some 2 < r < o0, then

LZ(O, T; W”(Q)z)for the same r as curl h,
ue L*0,T; WhQ)?) ifr =4, (1.20)
L0, T; H'()%) ifr = 2.

The results in Theorem 1.3 have been proved in Della Porta et al. (2018) for the
simplified model (1.14). They are new for our model (1.12).

The last main result deals with the two-dimensional e-model posed in 2, = (a, b) X
(—e, &) and it is stated as follows.

Theorem 1.4 Assume d = 2 and u® = 0. Assume further that the function 7
is constant (equal to 1). For each ¢ > 0, let (ug, ¢, ke, ps) be the solution to
(1.1). Then, the sequence (Mgug, Mgpig, Mcpg)e=o weakly converges (as ¢ — 0)
in L2((0, T) x (a, b))% x L2((0, T) x (a, b)) x L>((0, T) x (a, b)) towards (0, i, p)
and the sequence (Mypg)e=q strongly converges in L*((0, T) x (a, b)) towards ¢
with ¢ € L0, T; H'(a, b)), u € L*(0, T; H'(a, b)) and p € L*(0, T; L}(a, b)).
Moreover, the pair (¢, () is the unique solution to the 1D nonlocal Cahn—Hilliard
equation

% 2 (G ) =0in 0.7) x (a. b)
— ——|m — | =01 (0, X (a, b),
ot on UM%
w=ap—JTx¢+ F'(p)in(0,T) x (a,b),
(1.21)
3 3
Et,a)y = ~Z(t,) =0in 0, T),
dx1 dx1
¢(0) = ¢%in (a, ).
Furthermore, the pressure p is the unique solution of
9 9 b
P py 22 / pdx; =0, (1.22)
0x1 0X1 a

1.3 Outline of the Paper

Existence and the proof of the uniform estimates for the sequence of solutions to
(1.1) are addressed in Sect. 2. Section 3 is concerned with the passage to the limit
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in (1.1) when the thickness of the domain shrinks to zero using the notion of sigma-
convergence in thin heterogeneous media. We also derive therein the upscaled model
and complete the proof of Theorem 1.1 with the limit passage. Section 4 deals with the
continuous dependence of the solutions upon the initial data and some regularity results
of the solution, proving the remaining main theorems in particular. Finally, in Sect. 5,
we work out some concrete problems by relying on specific types of heterogeneities.
Standard results on sigma-convergence in thin heterogeneous media are gathered in
“Appendix A”, while an additional uniqueness result (for the microscopic problem) is
proved in “Appendix B”.

1.4 Notation

Unless otherwise specified, the vector spaces throughout are assumed to be real vector
spaces, and the scalar functions are assumed to take real values. If X and F denote a
locally compact space and a Banach space, respectively, then we write C(X; F) and
BUC(X; F) for continuous mappings of X into F' and bounded uniformly continuous
mappings of X into F, respectively. We shall always assume that BUC(X; F) is
equipped with the supremum norm ||u |, = sup,cy lu(x)ll, where ||| denotes the
norm in F. For brevity, we will write C(X) = C(X; R) and BUC(X) = BUC(X; R).
Likewise, the usual space L” (X; F) and LY (X: F)(X provided with a positive Radon

measure) will be denoted by L” (X) and L{iZC(X ), respectively, in the case when F = R.
Finally, it will always be assumed that the numerical spaces R (m > 1) and their
open sets are each equipped with Lebesgue measure dy = dy; ... dy,,. The space Rg"
will denote the numerical space R of generic variable &.

Throughout the work, C will denote a generic constant independent of ¢ > 0 which

may change from line to line.

2 Existence Result and Uniform Estimates
2.1 Existence Result

We begin with the functional-analytic setup. If X is a Banach space, we denote by (-, -)
the duality pairing between X and its topological dual X’. Weset X = X x --- x X,
d times, and we equip X with the product topology. In case X is a real Hilbert space
with inner product (-, -)x, we shall denote by ||-||x the induced norm. We therefore
introduce the classical Hilbert spaces for the Navier—Stokes systems with no-slip
boundary condition (see, for example, Temam 2001) H, and V. defined by V, =
{u € H(l)(Qg) s divu = 0in Q,} and H, = {u € L3(,) : divu = 0 in €, and
u-v = 0 on 08}, where v is the outward unit normal to 9S2,. The space H is
endowed with the scalar product denoted by (-, -), the associated norm of which is
denoted by ||-|lg, . The space V, is equipped with the inner product

((u,v)) = (Vu,Vv), (u,veV,)
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whose associated norm is the norm of the gradient. Owing to the Poincaré inequality,
the norm in V, is equivalent to the H' (£2,)-norm. We also define the space L%(Qs) =
{veL?(): st vdx = 0}. We denote by V (resp. H) the space defined as V., (resp.
H,) when replacing 2, by Q. Finally, forany f € H'(D)’ (D being any open bounded
domain in R), f will stand for the average of f over D, i.e. f = IDI~' (f, 1) where
| D| denotes the Lebesgue measure of D.

The following is the notion of weak solutions that will be considered in this work.

Definition 2.1 Let uf € H, and ¢ € L>(Q,) with F(¢%) € L'(Q.), |¢§| < 1
and 0 < T < oo be given. A couple (u,, ¢;) is a weak solution of (1.1) on [0, T']
corresponding to (ug, @0 if

o (ug, ) and u, satisfy

() ue € C([0, T]; He) N L2(0, T; V,) with du. /3t € L*(0, T; V.),
(i) @. € C([0, T]; L*(2:)) N L0, T; H'(Q,)) with d¢. /8t € L>(0,T; H!
(L)),
(iii) @ € L=(Qe), lpe(t, x)| < lae. (t,x) € Qg;

e Setting e (x, 9:) = e 1. (x)pe + F'(¢e), we have forevery ¢ € H'(Q),v € V,
and forae.t € (0, T),

0
< ;€,v>+82 (n°(-, @) Vg, Vv) = —/ (v-VMg)%dx+/ h(t)vdx,

<aa¢f’¢>+<wg,vw)=/ (ug-w)gogdw/ e (VI %) - VY dx;
Qe

o u:(0) =uj and ¢:(0) = ¢;.
The following existence result holds.

Theorem 2.1 Let the assumptions (A1)—(AS) be satisfied. Let ¢ > 0 be fixed and
assume further that )go_é‘ < 1. Then, there exists a solution (ug, @) of (1.1) in the

sense of Definition 2.1. Moreover, to each solution (ug, ¢.) is associated a unique
pe € L*(0, T; L%(QS)) such that (1.1)1 holds in the sense of distributions.

We can also prove a uniqueness results under additional assumptions. Namely,
if in addition the functions n(y, r) and m(y, r) are independent of r and further if
hy € L®, T; L*()?!) and uj € L*(2:)? , then the solution (u,, @) is unique.
As this result is not relevant for what follows, the proof is relegated to “Appendix B”.

2.2 Proof of Theorem 2.1

The proof is divided in three steps developed in the following subsections.

2.2.1 Approximate Solutions

We follow the same way of reasoning as in (Frigeri and Grasselli 2012, Proof of
Theorem 1) (see also Frigeri et al. 2015, Proof of Theorem 2) by regularizing the
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singular potential ' and defining the approximate problem. To this end, we fix 0 <
o < 1 and define the smooth potential as follows: F, = F, + F> where

Fl(l1-o)fors>1—-0
Fio(s) = { F{(s)for [s] <1 -0 .1
F{(—=1+o0)fors <—1+0

with Fi,(0) = Fi(0), F{,(0) = F{(0), and F» is a C*-extension of F> on R with
quadratic growth satisfying

Fols) > [Inlirh F; — 1 and f;/(s) > [mlir}] Fy forall s € R. (2.2)

Then, as it can be seen in (Frigeri et al. 2015, p. 1271), assumption (A3) infers that
Fi,5(s) < Fi(s) foralls € (—1, 1) and o € (0, og]. 2.3)

Putting together (2.3) and the fact that F, has quadratic growth, and invoking the
assumption F(¢() € L'(R,), yields

/ Fy(gg) dx < / Fi(gy) dx + C < oo forall o € (0, opl, 2.4)
Q Q

as it can easily be shown that F (¢() € LY(Q,) (recall that F(gg) € LY(Q,)). We also
get from (A3) as in Frigeri et al. (2015) that there exist 0 < 6 € R and &g, C1, C2 € R
such that, for all s € R,

Fy(s) = 85 — 8o,
Fl(s)+ B = co forall o € (0, o] . (2.5)
2
|Fj(9)|” < C11Fs(s)| + Ca,
This being so, we consider the following approximate problem
Meo 24 e .
—— —&°div(n®(+, Peo)Vites) + VPeo — leo Voo = h in O,
divu,; = 0in Q,,
00 . e .
Y FUes - Voo — divim® (-, ) Vides) = 01in Oy, (2.6)
lgea =e! (@e@es — J * Qe5) + F;(@sn) in O,
Moo _ Oandu,, =0o0n (0, T) x 082,
v
ue(0,x) = uf)(x) and @e, (0, x) = §08(x) in €2,

where o lies in (0, og]. Putting properties (2.4)—(2.5) together, we see that the func-
tion F, satisfies the same hypotheses like in Frigeri et al. (2015) (see assumptions
(H3)—(HS) therein), so that taking into account the above-mentioned properties in
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conjunction with (A1), (A2) and (A4), we may appeal to (Frigeri et al. 2015, Theorem
1) to derive the existence of a vector function (#ss, e ) satisfying

0y

ucy € C([0, T]; Hy) N L0, T; V) with € L*0,T; V), Q2.7

0
geo € C([0, TT; L*(R2:)) N L2(0, T; H'(R)) with % e L*(0,T; H'(Q:)),
(2.8)
Leo =& (ac@eo — J * @eo) + Ful@eo) € L2(0, T; H' (Q%)) (2.9)

and solving system (2.6). It is important to note that, as we assumed low Reynolds
number, the convective term (#,, - V)u, which appears in Frigeri et al. (2015) is of
no effect in our model, so that the estimates of the velocity here do not depend on the
dimension d as in Frigeri et al. (2015). Also, the fact that the diffusion term depends
on x /& does not tamper the proof since the operator —div(n®( -, ¢.s)V) has the same
properties as the one in Frigeri et al. (2015). We also obtain as in Peter and Woukeng
(2024) the existence of a pressure pg, € L0, T; L%(QE)) satisfying (2.6);.

2.2.2 A Priori Bounds Based on the Energy Estimate

We need to derive uniform estimates which will be useful in the limit passage firstin o
and then in ¢. (The passage to the limit in & will be done through the homogenization
process.) To begin with, we first use the dilatation in the vertical variable x4, i.e. yg =
x4/€, and therefore define the new functions and coefficients as follows: @z (¢, X) =
Qoo (1, X, £xg) (for (£, x) € Q1) and the same definition for W,q, Heg, Peos 15 (-, Peo)-
We also set Jo (x) = J(X, exg) and dp (x) = e la . (x) = (Je % 1)(x) for x € Q1. With
this definition, we recall that we have (1.8).
This being so, we set as in Peter and Woukeng (2024)

0 d
Ve = | Vg, e '— ) and div, = divy + el — = Ve .
0xy 0xy

We denote by Hsl(Ql) the space H'(Q) equipped with the H'-norm, the usual
gradient operator V being replaced by Vg, i.e.

1
2
llpqn = (122, + IVetlag,) ) foru e H'( ).
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In the new notation, the approximate problem reads as follows:
e 2 e e~ ~ ~ ~ ~ .
—— —&°div(° (-, Yoo ) Velles) + Ve Peo — Heo Ve@eo = h in Oy,
diy:lzm =0in Q1,
0eo + oo - VePeo — div(im® (-, Peo ) Velleo) = 0in Q1,
T T He N (e (2.10)
lggg = AgWeo — Je * Peo + Fg((psa) in Oy,

Ko o ¥, fieo v =0and ey = 0on (0, T) x 99,

v

Ueo (0, x) = Ug(x) and g0 (0, x) = g5 (x) in ;.

Then, setting

o o
Elles (1), §eo (1) = 5 eoI72

1

+Z// Tt = ) @eo (6, 3) — Foo (1, £ dx dE (2.1 1)
QxR

+ / Fy @es(1)) dx,
Q)

and proceeding exactly as in the proof of (Peter and Woukeng 2024, Lemma 2.2), one
gets

d . - . o~ ~ ~ ~ ~ ~ ~ ~
ag(usav Yeo) + &2 (718(  @e0) Vellgo Vsuga) + (mg( s @eo ) Velleo s Vsﬂea) = (h,ugo) .
2.12)

Hence, integrating (2.12) over (0, ) (r > O freely fixed) gives

Eliza (1), Fea 1) + [ (2 |V C Foa) Veiieo (0|72 + | VAFC Foo) Velleo (072 ) dr
< E@, G + [y h(x) - Hieo (T) dr,
(2.13)

or, taking into account (A1) and (A4),

EWee (1), Poo (1)) + [y (M [ Veleo (D172 + ma [ Velle(T)]17,) dr

2.14
< E@5, 75) + [ h(r) - Heo (v) dr, @19

forallt € [0, T].

Before proceeding to the a priori estimates, let us state the following result found
in (Marusié¢ and Marusi¢-Paloka 2000, Lemmas 8, 11 and Remark 5), see also (Peter
and Woukeng 2024, Lemma 2.1 and Remark 2.1).

Lemma 2.1 There exists a positive constant C independent of € such that
||5||L2(Ql) =< Ce ||st||L2(gzl)d s (2~15)
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and
~ 3 ~
1Vl 4@,y < Ce? VeVl 2,y » (2.16)

forallv e H(} (2).

By a simple change of variable y; = ex, in the above lemma, we get for the above
constant C,

Ivlliz2,) = CellVull2g.ya (2.17)
and
3
vl L4,y < Ce® IVVllL2q, (2.18)

for any u € HO1 (2).
Bearing this in mind, the following result holds.

Proposition 2.1 For any o € (0, 0¢] and ¢ > 0 fixed, let (Ueo, Peo, Moo ) De a weak
solution of (2.6) in the sense of (Peter and Woukeng (2024), Definition 2.1) such that
(2.7)—(2.9) are satisfied. Then, there exists a positive constant C independent of both
& and o such that

||ﬁw||L00(0,T;L2(Ql)d) <C, (2.19)
& |Velleo | 120 )axa < C, (2.20)
1@eo llL20,7: 1) @1)) = C (2.21)
||ﬁerr||L2(o,T;H£] @y =C, (2.22)
and
||Fé(asa)||L2(0,T;Ll(Ql)) S C (223)

Proof A review of the proof of (Peter and Woukeng 2024, Proposition 2.1) reveals
that, if we follow the same line of reasoning, we get

liizo 125 + @ 1Ge0 OI25 + f§ (me? | Veiieo (D2, +2ma | Vefis (D12, ) de
(2.24)

_ ! e _
< @152 + 5 Slayxay Jelr = D@00 = T dxde +2 o, Fa @) dx +C.

where C is a positive constant depending on €21 and on the given constants of the
assumptions, and o > 0 depends on ||J || ;1. The assumptions on a, and J lead us to

[ = 0@ w -7 ixde < C 17l
1 X341
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This, together with (2.4), shows that the right-hand side of (2.24) is bounded by a
positive constant C independent of both ¢ and o € (0, og]. Hence, we infer from
(2.24) that (2.19) and (2.20) hold, and moreover, we have

IVelleoll 200,y < C (2.25)

and
| Peor ”LOO(O’T;LZ(QI)) <C. (2.26)

Now, we take the gradient V, of (2.10)4 and then take the scalar product in L2(Q))
of the resulting equality with V.@,,. Then, proceeding as in the proof of (Peter and
Woukeng 2024, Proposition 2.1) , we obtain (see (2.30) in Peter and Woukeng (2024))

IVe@eollFacp,) = C (||Vgﬁw||iz(gl) + ||580||i2(Q1)> =G

which, together with (2.26), yields (2.21). It remains to check (2.22) and (2.23). Let
us start with (2.23). It is worth recalling that we have assumed that F(0) = F’(0) =0
(see (1.6)). This being so, we follow the steps of (Frigeri and Grasselli 2012, Proof of
Theorem 1) and define the function

Ho(5) = Fy )+ 552 s e,
where f is given in assumption (A3) so that (2.5); is satisfied. Then, from (2.5);, we

notice that H(’7 is monotone. Therefore, relying on the fact that ‘(p_g) < 1, we infer from

the proof of (Frigeri and Grasselli 2012, (3.36)) that there exists a positive constant C
depending on ¢ but neither on & otherwise nor on o such that

;@) 1@y =€ [ Goo =T Hy @rar+C. @2
1

Indeed, if we have a look at the proof of (3.36) in (Frigeri and Grasselli 2012, Section
3), we see that

K2 — K]
8

C= 11| max (|F{| + |F;| + B52),

[rc1,62]
where k1, k2 € (—1, 1) are fixed such that x; < 0 < kp and x| < go_é < k3,8 =
min {g’b'_g — K1, K2 — (25_5} and 8, = max {—«71, k2} so that we may assume that (2.27)

holds true with a constant completely independent of ¢ in the place of C. Indeed, in
view of assumption (1.4) on ¢, we infer that |5 — ¢° | L2y —> 0ase — 0. This
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yields at once

7 -0 = ‘lszlrl/ @ — ¢*)dx
Q1

— Qase — 0.

= c@| o
1

7 - ¢

Now, assume without loss of generality that k; # 0 for i = 1, 2. We distinguish two
different cases. o
Case 1) We assume that k1, kp are such that %‘ <Y < ’(—22 Let &9 > 0 be such that

- E‘ < % forall 0 < & < &. This yields

—_— K1 ~
(00_35(/)8_1(1 VO < & < gg. (2.28)

We also choose £; > 0 such that 5_8 — F’ < ’%2 forall 0 < ¢ < &7 to get

K2

?—_0§K2—5_8V0<8§81. (2.29)
(2.28) and (2.29) lead to
81 =m1n<w_%’%__0) Sé;:minia_g—lq,lcz—a_g},

for all 0 < & < min(eo, €1). o o
Case 2) We assume that 7 < ¢0 < k. (The case k1 < @0 < % is treated

similarly as the case % < @Y < K7.) Let ng be a positive integer such that 2 < oV <

(1 —27™)k». Such an integer exists. Let &, > 0 be such that

fﬁ_g — E‘ < 270y, for
all 0 < & < g5. Then we have

(1=2""k — 0 <Ky — @5 VO <& < e

Since ’% < E, it follows that % < F, so that, arguing as in the previous case, we

have @ -3 =< fo'_f) — k1 forall 0 < & < g. Therefore, taking

8, := min (E — ’% (1 =270y — E) ,

we have §; < § for all 0 < & < min(gg, £2).
Now, letting

K2 — K1
81

C =

21| max (|F{|+ |F;| + Bs2),
[x1,K2]
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we get immediately C < Cforall0 < & < min(gg, p) (p = €1 or &), and so, it holds
that, for all o € (0, op] and all 0 < & < min(gg, &1),

|5, @ 11,0y < € fg Beo — G H, (Foo) dx + C, (2.30)
1

where in (2.30) the positive constant C is independent of both o and ¢.

We assume in the sequel that ¢ satisfies the above requirement. This being so,
testing fles by @co — ¢ and using the fact that oo (1) = @ for all 1 > 0 (the mass
conservation property) yields

; (@eo — 95 Fy(Peo) dx = ; (@eo — 0§) (oo — Teo) dx
1 1
- o (Ae@eo — Je * Peo ) (Peo — 90_5) dx,
1
so that
| @~ Ry @) dx = C (Vo2 + 10 112) |Goo = 45,
1

(2.31)
where we have used the Poincaré—Wirtinger inequality for iz, — [, . Going back to

(2.30) and using therein the definition of F, (in terms of H, ) and appealing to (2.31),
we get

”FC;((ZEO)HLI(QI) S ”H(;(aé‘d)”lll(gl) + ﬂ ”aé‘U”L](Q])

< C/Q Beo — G (FL @ew) + Bioo) dx + C + B [Feal 11
1

= C (IVefleoll 2 + 180 112) | 8o = 45,
+C 1@eo l 12¢0,) + C- (2.32)

Hence, using inequalities (2.25) and (2.26), we infer from the last series of above
inequalities that

” F(;(aé‘o)HLl(Ql) S C’

thatis, (2.23). Now, since le Heo dx = le F}($eo) dx, wereadily get || ioo ||L2(0 <
C, so that, by the Poincaré—Wirtinger inequality and ( 2.25), it follows at once that

T 2
f \fieo|> dxdr < C / |V£ﬁw|2dxdt+/ fﬁwdx dr
01 01 0 Q)

<C. (2.33)
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Therefore, (2.22) stems from (2.25) and (2.33). O

Based on the results contained in Proposition 2.1, we deduce the following estimates
for the solution of (2.6).

Corollary 2.1 Let (e, Yeo, oo ) be the solution of (2.6) given by (2.7), (2.8) and
(2.9). Then, it holds that

||uw||L00(0,T;L2(QE)d) = Cg%, (2.34)
lueollr20,7: 14007 = CE%, (2.35)
& [ Viteo |l 2, yixa < Ce?, (2.36)
Qe ll Looo, 1:02(020)) + N@ea ll 20,7, 51 (2.)) = Ce?, (2.37)
lieo 2007 11 () < Ce2 (2.38)
Hau—" < Cs?, (2.39)
3t |l 20,1:v1)
H 0¢e0 < Ce?, (2.40)
ot Nr20.m:m @0y
| F(/f((psa)”Lz(O,T;Ll(Qg)) =Cs, (2.41)
and
Ipeoll 2o, < Ce?, (2.42)

where C is a positive constant independent of both ¢ > 0 and o € (0, op].

Proof The estimates (2.34), (2.36), (2.37), (2.38) and (2.41) are easy conse-
quences of the straightforward identities ”‘P”LZ(QE) = 8% ||$||L2(Ql)’ ”V¢”L2(Q€) =

8% || VE‘;;HL?(QI and ”¢”L'(Qs) = ¢ ||$||L1(Ql . Estimate (2.39) can be obtained
exactly as we did it in the proof of (Peter and Woukeng 2024, Corollary 2.1). With
this in mind, let us check (2.35) and (2.40). To this end, let v € H'(;); then,

0¢eo , .
K%“” >‘ = | = (div(eopeo). v) = {divOn® (-, 9e0) Viteo), v)|

<

+

/ mé (-, Peo)Viteo - Vodx

Q,

/ QYeolles - Vv dx
Q

< Cllugo 4@ 190 I L4 1VVIL2@,)
+mo |Vites 200 VUl 20, -

(o)

Thus,

sup

= C(””sa”L“(QS) |72 ||L4(Q€) + ||V,U«scr||L2(gzg))~
veHN(Qe),llvll 1 <1
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Integrating the square of both members of the above last inequality over (0, T'), we
obtain

=< C(lluge ||L2(0,T;L4(Qg)) llpeo ”LZ(O,T;L“(QE)) + 1 Vieo ”L2(Q€))'

(2.43)

0¢so
ot

L2(0.T:H (2¢))

We use the Gagliardo—Nirenberg inequality to get

1 5
||uw ||L2(0,T;L4(Qg)) < Ce# and ||(p80' ||L2(0,T;L4(Q£)) < Ces, (244)
Indeed, if d = 3, we have from (2.18)
3
lueollpaq,) < Ce? Vel L2,y

so that using (2.36) we get

1 1

T 2 T
(/0 ltteo 174, dr) <Cs (/0 IVateo 135 dt)

Ced.
As for ¢4, one has, using the 3D Gagliardo—Nirenberg inequality,

P

IA

1 3
Ieo sy < C 1960 s o) 1000 1 -

Hence,

1 1 3

T ) 2 T . 8 T ) 8
([ 10l o) = ([ tonelizg, o) ([ 190120, o)

Ces,

IA
ooln

This yields (2.40) for the case d = 3. Now, if d = 2, the Gagliardo—Nirenberg
inequality gives

T T
/Q ||u80||‘;44(93) dt S C ”ué‘U”%‘oo(o’T;LZ(Qg)) \/() ”VuS(T”iZ(QS) dt

< C;see (2.34) and (2.36),

and

T T
fo 19eo W a0, 4 = Cllgeo o 1120 /0 19000 122,

< Cée?; see (2.37) and (2.26).

@ Springer



Journal of Nonlinear Science (2025) 35:107 Page210f66 107

This also leads to (2.40) for d = 2. Altogether, this gives (2.35) and (2.40). Finally,
(2.42) is obtained by arguing exactly as in the proof of (Peter and Woukeng 2024,
Proposition 2.2). This concludes the proof. O

2.2.3 The Cahn-Hilliard-Stokes System: the Limit 0 — 0

Consider the sequence (U¢o, Qo5 Heo s Peo)0<o<oy- Lhanks to the uniform controls
(2.34)—(2.42) and to well-known compactness results, we obtain the existence of
a subsequence of the above-mentioned sequence (not relabelled) and of functions
u, € L0, T;H,) N L20,T; Vo) N HYO,T; VL), 9. € L0, T; L*(R:)) N
L*(0.T: H'(Q) N H'(0.T: H'(Q)), e € L*0,T; H'(Q)) and p, €
L0, T; L%(QS)) such that, as 0 — 0,

Uey — U, in L°(0, T; H,)-weak * and in L2(0, T'; V,)-weak, (2.45)
Ugy —> U IN Lz(O, T; Hg)-strong and a.e. in Q,, (2.46)
Uey — e in L2(0, T; L*(Q,)?)-weak, (2.47)
B 9

Roo _, T in L2(0, T; V')-weak, (2.48)

ot ot €
Qoo — @e in L0, T; L*(Q,))-weak * and in L?(0, T; H'(Q,))-weak,

(2.49)

@eo — e in L2(0, T; L?(£2,))-strong and a.e. in Q, (2.50)
9 3

‘gj“ - 8“;€ in L2(0, T: H'(Q4)')-weak, (2.51)
Ueo — pe in L2(0, T; H'(2,))-weak, (2.52)
Pes —> Pe in L2(Q)-weak. (2.53)

With these convergence results at hand, we need to pass to the limit in the variational
formulation of (2.6) in order to prove that the quadruple (u., ¢, (e, pe) solves (1.1).
Prior to that, we need to show that |¢:| < 1 a.e. in Q. . Proceeding as in (Frigeri and
Grasselli 2012, Proof of Theorem 1), we rely on the monotonicity of H/ to reach our
goal, that is, to show that

e € L°(Q;) with |, (¢, x)| < 1 a.e.in Q. (2.54)

Thus, it follows from (2.54) noting the pointwise convergence (2.50) and the uniform
convergence of F, to F’ on every compact subinterval of (—1, 1) (recall that F’ and
F are continuous on (—1, 1)) that

Fl (¢eo) = F'(¢e) ace.in Q. (2.55)
This being so, by a mere routine, we may use the convergence results (2.45)—(2.53)
and (2.55) to pass to the limit in the variational form of (2.6) and, therefore, solve (1.1)

in the sense of Definition 2.1.
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2.3 Uniform Estimates

Owing to the above convergence results, we may pass to the limit in the energy
inequality (2.14) and obtain

E@:(1), Fe )+ Jo (me? [Vello (D7 +ma [Vefle(D7) dv 5 5
< E@@, @) + [y h(z) - s () dr forall 1 € [0, T1. '
Thus, proceeding as in Sect. 2.2.2 and taking into account (2.54), we obtain the fol-
lowing uniform bounds (constants C > 0 independent of ¢):

1
luell Lo, 7:12(0,y4) < CE2, (2.57)
1
luellz20,7: 1404 =< Ced, (2.58)
& ||Vu§||L2(Q€)d><d < CS%, (259)
1
I@eo ll Loo0.7: 222,y + 19ea lL200.7: Y (0, < CE2, (2.60)
l@ellp=o,y < 1, (2.61)
1
||l/vs||L2((),T;H1(QS)) < Ce2, (2.62)
du, 3
< Cez2, (2.63)
ot llr20,1:v)
“ F/((ps) ||L2(0,T;L1(Q€)) S CS, (264)
and
1
IPell 20,y < Ce2. (2.65)

We need a further estimate which will be useful in the forthcoming sections. Using
the notation M., for the partial mean integral of the order parameter, see (1.9), we
have the following result.

Proposition 2.2 We have M.¢, € L>(0, T; H'()) with 2M% ¢ 12(0, T; H'(Q)")
and it holds

oM.,
ot

sup | | Me@ellL20.7: 51 () + H <C,
L2(0,T;H'(Q)")

e>0

where the positive constant C is independent of .

Proof The proof is very similar to the one of (Peter and Woukeng 2024, Proposition
2.3) and is therefore omitted. O
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3 Passage to the Homogenization Limit

In this section, we aim to pass to the limit in system (1.1) for ¢ — 0. This will be
achieved provided that we make a structure hypothesis on the oscillating viscosity and
mobility terms. To proceed with, let A be an ergodic algebra with mean value on R4~
and let Bi (R4=1; L2(I)) be the associated vector-valued generalized Besicovitch
space defined in “Appendix A”. We assume throughout the current section that the
functions 1 and m satisfy:

(A6) n(-,r),m(-,r) € BARI™Y; L2(I)) for all r € R, where I = (—1, 1).

If for instance A = Cper(Y), the algebra of Y-continuous periodic function in
RI=1 then B (RY™1; L2(1)) = L3, (Y; L2(I)), the subspace of Lj, (R~1; L2(1))
consisting of Y-periodic functions, ¥ = (0, 1)4=1. In this case, assumption (A6) will
amount to the functions 7 (y, r) and m(y, r) being periodic with respect to y, where

y = (¥, y4). So assumption (A6) is of capital interest in the limit passage when the
coefficients are oscillating like in (1.1).

3.1 Preliminaries

Let us first define some function spaces. Let
V={ueA®R";cld)))? : divu =0},

andlet V (resp. H) be the closure of Vin B}A’Z(Rd_l; Hé ()4 (resp. Bi (R4 L2(1))9).
Foru € Bi (R4=1: L2(1))4, we set

1
= [ M(luC,yp))?) d )2.
it = ( f (1. 50 ) a3

Then, endowed with the norm ||-|,, B%(Rd_l; L2(I))? is a Hilbert space. Now,
vV o= (- 98 k]

set V. = (3y| > dya—1” Oya

BYARIY HY ()4, we set

. B ) 1/2
|¥ul, = (fIM(|V®u<~,yd>| ) dyd) ,

where V@ u = <§i> with 31, = ai, (the usual partial derivative in the dis-
Yj 1<i,j<d yd Yd

tributional sense). As shown in (Cardone et al. 2024, Lemma 4.1), B 2’2 (RA-1, H(} (1))
is a Hilbert space under the norm ‘W ||2 . With this in mind, it is a fact that
V ={u e Bi’z(Rd’l; Hy(I)? : divu = 0} where div = V.. We equip V and
H with the relative topologies. In practice, we shall rather consider the subspace V,

), where % is defined in “Appendix A”. For u €
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of V defined below:
Vi = {u = (Uj)1<i<d €V : /M(ud(', ya))dya = 0},
I

a closed subspace of V endowed with the relative norm.

Bearing this in mind, we consider the following auxiliary Stokes system, which
corresponds to local cell problems in the periodic case: for a.e. x € £, find
ol (X, -, ) = o/ (X) solving

dw’ (X)
ot

—divy((-, ¢(-, D)V, (@) + Vyr/ = 0in (0, 00) x R x 1,

divy/ (%) = 0in (0, 00) x R~ x 1, (3.1)

@’/ (X) = 0on (0, 00) x R x {—1, 1},

a)j(f, 0,)=¢jin RI-1 % p,

where e; is the jth vector of the canonical basis in R? and where ¢ €
C([0, T1; L2(R)) N L*(0, T; H'(RQ)). The following result holds.

Proposition 3.1 Let the assumptions (A2) and (A6) be satisfied. Then, there exists
a unique solution ol (x) = (a)lj (X))1<i<a € C(0, T]; H) N L%0,T: Vy) for1 <
j<d—1(resp. C(10, T]; H) N L2(0, T; V) for j = d) of (3.1) verifying 22 ¢
L%(0, T; V'). Moreover, it holds that »/ € C([0, T1; L*(Q2; H)) N L%(Q; Vy) for
1 <j<d—1(resp.C([0, T1; L*(2; H)) N L*(Q; V) for j = d). If, in addition, we
set

1 ! . —
Gij(t, %) = E/IM(w’@,r,-,yd))ej dyg for (1,%) € Oand 1 <i,j <d

1

1 .
=3 [ M@t ) (3.2)

then the G;; are uniformly bounded a.e. in Q2 by a function continuous in time and
decreasing exponentially as t increases and Gjq = Ggj =0 forall1 < j <d — 1.
Moreover, the matrix G = (Gjj)1<i, j<d—1 is symmetric and positive definite.

Proof Although the coefficient n( -, ¢) depends on the order parameter ¢, the proof
of (Cardone et al. 2024, Section 4.1) (see also Peter and Woukeng 2024, Section 4.1)
carries over mutatis mutandis to the present setting. Indeed, the well-posedness of (3.1)
follows a classical setting (recall that n(y, r) > n a.e.in (y, r)). Also, it is a fact that
the matrix G is symmetric, positive definite and its coefficients decrease exponentially
in time. The bound on the entries stems from the inequality (see Cardone et al. 2024,
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Propositions 4.1 and 4.2)
ij(f, 1) ”2 < «/zexp (—%t) forallt € [0, T],ae. x € 2,
where 7] is given by (Al), so that
|Gij(t,%)| < exp (—%t) ,allf € [0, T]and ae. X € 2,
which completes the proof. O

3.2 The Limit Procedure

Owing to bounds (2.57)—(2.65) and to Proposition 2.2, we are in position to
apply the compactness results stated in “Appendix A” as follows: given any
ordinary sequence E = (&,)uen+, there exist a subsequence E’ of E and func-
tions ug € L2(Q; By*(RI=1 HY (1)), (@, 1), (1, 1) € L*(0,T; H'(Q) x
L(Q; ByP (R4 HY (1)) and p € L2(Q; B%(R?™!; L2(I))) such that, as E' 3
e — 0,

u, — ugin L*(Q,)%-weak X4, (3.3)
eV, — Vyug in L2(Q)"*9 -weak T4, (3.4)
Qe — @ in L2(Q5)—strong YA, 3.5)
M.p:. — ¢ in L°°(Q)-weaks, (3.6)
Vge — Veg + Vyor in L2(Q:)?-weak T4, (3.7)
we — pin L2(Q,) -weak Ty, (3.8)
Vite = Vi + Vyuy in L2(Qe)-weak T4, (3.9)
and
pe — pin L?(Q,)-weak ¥ 4. (3.10)
We recall that Vx¢ = (g%, R Bfil ,0) for ¢ = ¢, n. One can easily see that in

view of the equation dive, = 0in Q,, we get myuo =0in Q x R?~! x I. Next, let

1
u(t,x) = %/1 Muo(t, X, -, xq))dxg, (t,X) € O, (3.11)

and set
u = (u;)1<i<d—1, where u = (u; (¢, X)) 1<i<d- (3.12)
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Then we have
u, — uin L>(Q)?-weak, (3.13)

and we deduce from the bound (2.58) that u € L%(0, T; L*(Q)?). Also, as shown
in (Cardone et al. 2024, Section 4), we have uy; = 0 so that u = (u, 0), where
u e L>(Q)?! with

divig =0in Qandu-n=0o0n (0,T) x 92, (3.14)

where n stands for the outward unit normal to d€2. One also has
/ /M(P(t,f, »¢))dsdx =0,
QJi

which stems from the identity [, pedx = 0.
This being so, let '

a®@) = (T * 1)(;):/ J(x —7,0)dz for¥ € Q. (3.15)
Q

We shall need the following auxiliary lemma.

Lemma 3.1 Let (vy)sck be a sequence in L*(Q,) satisfying vy — vo in L*(Qg)-
strong X4 as E 3 ¢ — 0, where vy € L2(O, T; LZ(Q)). Let f: R xR — Rbea
Carathéodory function satisfying f(-,r) € L¥(R?) (for any fixed r € R), and let
there exist a positive constant k such that

|[fy,r)— f(Oy,8)| <kl|r—s| forae. y eRandallr,s € R.

Assume in addition that f(-,r) € Bi (R4 L2(D)) forallr € R. Then, as E > ¢ —
0)

fECve) = f(,v0) in L*(Qe)-strong Ta, (3.16)
where fE(-,v.)(t, x) = f(x/e, ve(t, x)) for (t,x) € Q.
Proof 1t is sufficient to show that, as £ 3 ¢ — 0,
e g = 1 C g @iz - GAD)
First of all, set
g(t.%,y) = f(y. v, T), (t,T.y)e QxR x 1.
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Then, g(1, X, -) € By (RI~1; L2(I)) forae. (1,X) € Q, where B¥™ = B2 N L™,
such that [|g(z, X, )|l g2.0 < B(#,x) fora B € L2(Q). Itis a well-known fact that for
A

any function go € C(Q; By™° (R4~1; L3(I))), one has
g6 — goin L*(Q,) -strong Ty, (3.18)

where gf(1,x) = go(t, X, x/¢). Owing to the density of C(Q; By (R~'; L2(1)))
in the corresponding space which is only square-integrable over Q, we may show that
(3.18) still holds for gq in the latter space. This shows that (3.18) is true for g defined
above. Therefore, proving (3.17) amounts to checking

g2 ||f€(.,vg)_g8||L2(QS) — Owhen E 3¢ — 0.

But in view of the properties of f, we have
L e e _1
€ 2 ||f ('9v8)_g ||L2(Qs) < kg 2 ||U5_U()||L2(Q8)—>O

as E 5 ¢ — 0 (recall that v, — vp in L2(Q6)—strong % 4 and that vg does not depend
on y). This concludes the proof. O

Now, we have all the ingredients to pass to the limit in the variational formulation
of (1.1). To this end, let ¥ € (C5°(Q) ® A®(RI~1; C5° (1)), (¢o, $1) € CS°(Q) x
CFO)® A® (R4 Coo(1))) and xo € C;°(Q). Define the functions W* and ¢, on
Q. as follows:

WE(r, x) = W (t,f, g) L Be(t, xX) = dot, T) + £y (r,x, g) ,

for (t,x) € Q.. We take (W%, ¢¢, x0) € Cgo(Qs)d x C°(Q¢) x C3(Q) as test
function in the variational formulation of (1.1) to get

¢ 1

— o, ue (%) dxdi+ 62 [ 1 (¢e) Ve - <(vy\1:)8 + g(Vy\y)S) dx dr

~Jo, Pe ((div;\l/)g + é(divylll)‘g) drdr — [, me Ve WE drdr (3.19)

= [, h¥ dxdr,
0
— an ey dxdr + an (e - Ve )pe dx dt
(3.20)
+ st m®(@e)Vite - (Vxgo + e(Vxp1)® + (Vyg1)®) dxdr =0,

/ MaXdedt:/ 871ag<p5)(0dxdt—/ afl(J*rpg)dexdt-i-/ F'(@e)x dx dr.
Q¢ Q¢ Q¢

8 (3.21)
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We deal with each equation separately. First, we consider (3.19). Letting E’ 3 ¢ — 0,
we obtain

/fM(pdiquz)dyddrcdt:o,
0JI

showing that p isindependent of y, thatis, p(¢, X, y) = p(t, X). As aresult, the identity
fQo J; M(p(t,%, -, ya)) dyqa dX = 0 obtained above amounts to fQo p(t,x)dx = 0,
meaning that p € L2(0, T; L%(Q)). Next, we restrict to W satisfying divy, ¥ = 0 and
divide (3.19) by ¢ to obtain

1 1 1
- o, e (57)° dxdr + - Jo. €1 (@) Vae - ((VX\I/)E + E(vyxy)g) dx dt
(3.22)
! divyW)®dx d ! \% lIJde—l hW¥edxd
_ngSPS(IVx )¢ dx I_Engﬂs Pe X f—ngE xdr.
Our aim is to pass to the limit in (3.22) when E’ 3 ¢ — 0. A quick look at (3.22)
reveals that only the second and the last terms on its left-hand side require attention.
So, as for the second term, we first use the strong sigma-convergence of (¢;).cg’ to get

the strong sigma-convergence of n(p,) towards n(-, ¢) in Lz(Qe), see Lemma 3.1.
Next, we use (3.4) and appeal to Theorem A.4 to obtain, as E' 3 ¢ — 0,

1 _
—/ en®(@e)Vug - (Vy W) dx dr — / /M(n(', ©)Vyug - V,W)dy, dx dr.
€ Jo. ' oJi
(3.23)

Concerning the last term on the left-hand side of (3.22), we have

1 1
—/ eV W dxdr = ——/ ©e(WEV g + e (divyW)®) dx dt
€ e

& &

— f /M (¢ [(Vsr + Vyp)W + pdiveW]) dyg dx de.
0Ji

Hence, dividing both sides of (3.22) by two and taking the limit of the resulting equality
when E’ 3 ¢ — 0 yield

1 _ v _ —
_5 fQ f]M uO(t»X, 'ayd)g(taxa ) yd) d)’ddth

1 Eva f—
+§ fQ .[] M(’7( ] (P)Vyuo . qul) dyd dx dr
(3.24)

1
-5 fQ [; M (¢ [(Vsr 4+ Vypu)W + pdiveV]) dyg dx dr

1 . _ 1 B
=5 Jo [y M(pdive®) dyg dxdr = 2 [, [, M(hW) dy d¥ dr
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forall W € (C3°(Q) ® A (RI™!; C5°(1)))? satisfying divy, W = 0.
Now, we turn to (3.20) and divide it by 2¢ and proceed as we did in obtaining (3.24)
(see especially the proof of (3.23)). Using the equality

/ (Voo )pe dx dt = —/ QU Vo dx dt,
[0

Qs

and passing to the limit ¢ — 0 yields

1 1 _
> JodiM (waa#) dya A% di = 5 [ [, M(puo(Vago + Vy1)) dyq dx dr

(3.25)
1 _
+§ fQ ;M (m(-, 9)(Vep + Vyu1)(Vego + Vygr)) dyg dx de = 0.
Let us now have a look at (3.21). First and foremost, we need to show that
lp(,x)] <1 fora.e. (t,Xx) € Q. (3.26)

This would clarify the limit passage in the term involving F’(g;). First of all, we know
from (3.5) that

g! /Q e (2, X) — @(t,%)|* dxdr = fQ |9 (2, X, x4) — @(t, %)|* dx dt
8 —>0\17vhenE/98—>0.
So, setting @ (¢, x) = @ (¢, X, £x4), (t, x) € Q1, we see that
Pe —> @ in L2(Q1)—strong and a.e. in Q.
With this in mind, let us introduce the sets

Ej ={(t.x) € Q1 1 1@:(r,. )| > 1 =8},

Es = {(t,x) € Q1 : |go(t, x)| > 1 — 5},
where 0 < § < 1 is arbitrarily given and where ¢ (¢, x) = ¢(t,x) for (¢, x) € Q1.
Then, from the pointwise convergence of @, and the Fatou lemma, we get that, for any

§ >0,

meas(Es) < liminf meas(E),
e—0

where meas stands for the Lebesgue measure in Q.
Now define the function H by H(s) = F(s) + gsz, s € (—1,1). Since H' is
nondecreasing, we have that H'(s) > 0 fors € [0, 1) and H'(s) < 0 fors € (-1, 0].
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Thus, we can write

min (H'(1 = 8), —H'(—1 + 8)) meas(E}) < |H' (@) ”Ll(Ql) .

However,

” H/(<Ps)||L1(Q€) = ” F/(%)”U(QS) +ﬁ ”wS”Ll(QS)
= T% || F/(¢8)||L2(O,T;L1(Qg)) +58 |Q£|% ”(/)8 ||L°°(0,T;L2(Qg))
=< Ce,

so that ” H'(¢,) || I3 C, C being independent of both ¢ and §. Thus, we have

oy =
C

meas(Es) < — )
min (H'(1 —38), —H'(—1+1))

Letting 6 — 0 in the last inequality yields at once
meas({(t, x) € Q1 : |go(t, x)| = 1}) = 0.
This infers
lpt,X)| <1 ae. (¢t,X) € Q,

that is, (3.26). We are now in a position to proceed with (3.21). We first deal with the
term % pr F'(¢¢) x0 dx dt. We have

1 ~
—f F'(ge)xodx dr =/ F'(ge) xo dx dr.
€ Qs Ql

By virtue of the pointwise convergence ¢, — ¢ a.e. in Q;, we deduce from the
continuity of F’ in (=1, 1) that F’(¢.) — F'(¢) a.e. in Q1. Next, it holds that
| F’((ZS)”U(QI) < C (recall that | F/(gog)HLl(QF) < Cé). The Lebesgue dominated
convergence theorem gives

1
—/ F/(gog)Xdedt—)[ /F’((p))(odydd)_cdt. (3.27)
€ Jo, 0JI

As for the other terms in (3.21), we rely on (Peter and Woukeng 2024, Proposition
4.1)toget,as E' 36 — 0,

1 ~
—/ e Naspe — J % @e) xodx dr — / /(ﬁ(p —J x@)xodygdxde. (3.28)
€ Jo, 0JI

@ Springer



Journal of Nonlinear Science (2025) 35:107 Page310f66 107

Collecting the convergence results (3.27)—(3.28), we get from (3.21) (which has been
divided by 2¢) the following equation after the limit passage

1 _ 1 - _ 1 ~ _
3 le [y uxodysdxde = 3 fQ [y agxodyq dx dr — 3 fQ J;(J % @)xodya d)(63('1£9)
+§fQ [; F'(¢)x0dyq dx dt.
Finally, since uf) — u%in L2(Qs)d—strong Y4 and (pg — goo in LZ(QS)d—Strong YA,
we conclude by integration by parts that u¢(0) = u° and @0(0) = ¢°. Recalling the
definition (3.12), we infer from the equality u; = O that ud = (u0, 0), that is, the last

component of u? is zero.
In summary, we have just proved the following result.

Proposition 3.2 The function tuple (ug, ¢, @1, |4, L1, p) solves the following system:
1 _ ov —
_Efo[M uO(t,X, ,J’d)g(t,xa 7yd) dedth

1 7 p—
+§ fQ f[ M, )Vyug - VyW) dyy dx dt
(3.30)

1
-5 jQ [; M (¢ [(Vsre + Vyu) W + pdiveW]) dyg dx dr

I . o ~
=5 Jo Jy M(pdive¥) dya dxd = 2 [, [, M(RW) dyg X dr.
1 _ 1 B
—5JoiM (w%) dya dxdt = 5 [o [; M(guo(Vego + Vy91)) dya dx di
(3.31)
1 p—
+§ fQ [; M (m(, @) (Vs + Vyu1) (Vego + Vy1)) dygdx dr =0,

1 _ 1 - _ 1 -~ _
EfoI uxodysdxdt = Efola(pXOdyddxdt— Efo,(J*qa))(odyddxdt
1 (3.32)
+§fQ J; F'(@)xodyq dx dr,

lp(t, %) < lae. (t,%) € Q, (3.33)
uo(0,%, y) = u®®) and ¢(0,%) = °(X) fora.e. x € Qand y € R x I, (3.34)

forall W e (CF(Q) ® A®RI™L; €5 (1)) with divy W = 0, (do, 1) € C°(Q) x
(C3°(Q) ® AR C5°(1))) and xo € C(Q).

3.3 The Doubly Nonlocal Homogenized Limit
In this subsection, we aim to recover the homogenized problem for (u, ¢, i, p), where

u is defined by (3.12) and satisfies (3.14). We should consider each of the equations
(3.30)—(3.32) separately.
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First, we deal with (3.32) to see that it is equivalent to
w=ap—Jx¢+ F(p)in Q. (3.35)
This stems from the fact that none of the terms in (3.32) depends on the variable y; € 1

and, moreover, meas(/) = 2.
Now, we proceed with (3.31) to see that it is equivalent to the system

— /o @20 axdr — fQ [, M(puq - Vo) dyq dx dr

(3.36)
+= fQ [y M (m(-, 9) (Ve + Vyur) - Vo) dyg dx dr =0,
for all ¢o0 € C5°(Q),
1 _
) fQ f] M (pug - Vy¢1) dyq dx dt
(3.37)

+5 fQ/} (m(-. ) (Ve + Vyu1) Vyd1) dyg dxdr =0,
forall ¢1 € C(Q) ® AXRI™L; €80 (D).

We continue with (3.37), where we choose ¢; to be of the form ¢(¢,x,y) =
$)(t, ¥)0(y) with ¢) € C5°(Q) and & € A% (R?~!; C3°(1)). Then, we obtain

/M(couo - V,0)dyq + / M (m(-, ) (Ve + Vyu1)Vy6) dyg =0,
1 1

or, taking into account that [, M (puoV,0)dys = [, M(pdivy(uod) dy; = 0 (recall
that ¢ does not depend on y),

[ M € T T 0,3+ Va1, )9,6) v =0,
6 € AXRIT, CO(1)  (3.38)
for a.e. (t,x) € Q, which is the weak formulation of the equation
—divy(m(-, ¢(t, %)) (Ve (t,X) + Vyu1 (6, X, -)) = 0in R~ x 1
So, for £ € R~ x {0} and r € R arbitrarily fixed, we consider the corrector problem

{Find Mo, =7, (1, X, ) € Byg(RYY HY (1)) such that

3.3
—divy(m(-,r)(r + Vyme (1, %, -)) =0in R~ x [. (3.39)

Proceeding as in the proof of (Ja ager etal. 2023, Theorem 1.2), we may prove that there
exists a function ¢ , € L? (0; B#A (Rd I H (I))) whose gradlent v, ng » 1S unique,

and which is such that, for a.e. (t,X) € Q, m¢ ,(¢,X, ) € B#A (Rd I H (I)) solves
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(3.39) in the classical sense of distributions in R?~! x I. This being so, choosing
& = Vzu(t,x) and r = @(¢, x) in (3.39) and relying on the uniqueness of the gradient
of the solution to (3.39), it emerges that

11 (1, X, ) = Tvepe5),.00.0 (1, X, ) forae. (1, %,y) € 0 x R x 1.

Now, choosing § = e; (the jth vector of the canonical basis R4-1 ; remember that we
view it as the vector (e}, 0) € R?) and r = ¢(z, %), and denoting by w; (¢, X, -) the
corresponding solution of (3.39), we easily get that

Ml(lva )’) = VYM(I,)_C) : a)(t3 f, )’) Wlth a)(t7 f, ) = (w(t’fv ))1§]§d—1(340)

Bearing this in mind, we define the homogenized mobility term (matrix) as follows

Iy .1 _ _ _
m((P)(tax):E/[M(m(’yd, (p(tﬂx))(ldfl +Vyw(t7x7 »)’d))d}’d, (tvx) S Q’
(3.41)

where I;_1 denotes the (d — 1) x (d — 1) identity matrix.
Finally, substituting in (3.36) the expression for | given by (3.40), we arrive at

a L~ .
8_(5 +u - Vo — dive(m () Vsr) = 0in Q. (3.42)

Before proceeding further, it is worth noting that in case the mobility m does not
depend on y, we can easily show that ;1 = 0 and, in that case, the homogenized
mobility coefficient is exactly m (¢) and not a matrix as in (3.42). This stems from the
fact that the function ¢ does not depend on the microscopic variable y.

Let us consider problem (3.30). By a mere routine using (Jidger and Woukeng 2022,
Proposition 3.1), we infer the existence of a function p; € L?(Q; [3’124 (RI=1: L2(1)))
such that

au() =3 =3 . —

— V(10 9)Vyu0) + Vypr = by = Vep + uVegin @ x R x 1.
(3.43)

In order to deal with (3.43), let us pay attention to the auxiliary Stokes system (3.1)

and consider the function w/ = (a)ij )1<i<a defined therein with the associated matrix

G = (Gij)1<i,j<d—1. Fix (t,X) € Q and choose in the variational formulation of

(3.1) the test function v(z, y) = ug(t — 7, X, y) for (z, y) € (0, 1) x R4~ x I. Then,
we have

dw’ 1 — _
<%(r), ot — r)> + f M 9@y @) Tyuolt = 1) dva =0,
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that is,

. 9 .
4 f_ll M (! (Duo(t — 7)) dys + <§(t — 1), 0 (r)>

+f—11 M(-, (p(t))vywj(r) 'Vyuo(l —1))dys; =0.

Here, the brackets (, ) mean the duality pairing between BL’Z(R”I_I; HOl (1)) and its
dual. We integrate the above last equation over (0, #) and divide both sides of the
resulting equality by two. Then,

1 . 1 . 1 0 .
5 JL M@ 0uo©) dya = 5 [y Mo e dya + 3 fg <£<z — ), wf<r>> dr
(3.44)

1 _ . _
+3 o S2i M- @) Vye (2) - Vyuo(t = 1)) dyg dr = 0.

Now, we test (3.43) by W(z, X, y) = @)/ (X, t—1, y) for (1%, y) € QxR x [
with ¢ € CgO(Q), where t € (0, T'] is fixed. Then, a simple computation shows that
we have, in the sense of distributions in €2,

1 ]a . 1 _ o
55 <%(r), wl(t = r)> ar+ > f3 I MO, e Vyug(r) - Vywl ( — 1) dyg dr

= %fé S M(@! (6 = 0)h(e) dyg dr — %fo’ I Vep(mM (@l (1 — 1) dyg dr (3.45)

1 .
+5 /o IY @O Vrp@ M (0 — 1)) dyg dr.

But we have

t t
/<8ﬂ(r),aﬂ'(z—r)> dr:/ <8ﬂ(t—r),wf(r)> dr,
0 at 0 at

and

Jo L5 M- o)V yuo(0) - V0 (t = 1)) dyq d
= fo [L M (- ot — D)V ,0/ (1) - Vyuo(t — 1)) dyg dr.
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Therefore, comparing (3.44) and (3.45) we are led to

1 1 .
5 I M@o())ej dya — 5 I M@/ (1)u® dy,
1 t 1 g = ]
+3 Jo JoyMIn(-, ot =) = n(-, @(@)IVyuo(t — ) - Vyo! (1)) dyg dt
1 . 1 .
=5k [ M@/ (t = ©)h(r) dys dt — 5o [ M@/ (1 — ) Vep(r) dr dyg

1 .
3 Jo J2 M@/t = (D) Vep(r) dya dr.
or, equivalently,

uj(t) — Gj(u’ + Hj(p, u)(t)
=(Gj*h)(®) —(Gj* Vep)(t) + (G * uVze)(1), (3.46)

where the function H; (¢, u) € C([0, T]; LY(Q)) is defined by

1 t 1
Hi(o. (1, %) = Ef / M- ol — 1)
0 J-—1
—n(, () IVyuo(t — 1) - Vyo! (1)) dyg de
forae. (t,x) € Q. (3.47)

Then, setting

H(p,u) = (Hj(¢,w))1<j<da-1, (3.48)

and knowing that G = (G)1<j<q—1, We get at once

w(t) + H(p, w)(t) = GO’ + (G * (hy — Vep + uVs9))(t) in 2, ¢ € [0, T].
(3.49)

@ Springer



107  Page 36 of 66 Journal of Nonlinear Science (2025) 35:107

We notice that the functions @, ¢, 1, p and H (¢, u) solve the following system
U+ H(p,w) =G’ + G * (h; + uVsp — Vgp) in O,

diviu =0in Qandu-n=00n (0,T) x 02,

ad PN .
a—(f +u - Vyxp — divy(im(e)Vxu) = 0in Q,

R (3.50)
w=1dp—Jx¢+ F(p)in Q,
ap
2 —0on(0,T) x 32,
on
@(0) = ¢" in Q.

We are now in a position to prove the first main result of the work.

Proof of Theorem 1.1 First of all, we note that existence of solutions satisfying uniform
a priori estimates was proved in Sect. 2, see Theorem 2.1 and Sect. 2.3. Now, we know
from Definition A.1 that if v, — vg in L"(Q,)-weak X4, then defining M v, as in
(1.9) we have

1 o
Meve — 3 / Mwo(- va)) dyg in L (Q)-weak.
I

Bearing this in mind and given an ordinary sequence E of positive real numbers
converging to zero, we infer from the above property and from the convergence results
(3.3),(3.13), (3.5) and (3.7), (3.8)—(3.9) and (3.10) that, up to a subsequence, we have

Mgu, — (u,0)in LZ(Q)d—weak,
Mqp. — @ in L2(Q)-str0ng and in L2(0, T; H'(Q))-weak,
Meope — pin L0, T; H'(Q))-weak,

and

M.p, — pin L2(Q) -weak,
where u € L2(0, T; H), ¢ € C([0, T]; L>(Q)NL*(0, T; H'(Q)), n € L>(0, T; H'
(R)) and p € L%, T; L%(Q)). Defining H (¢, u) like in (3.47), (3.48), we have
shown that the quintuple (u, ¢, u, p, H(¢, u)) solves system (1.11). The proof is

completed. O

The homogenized mobility 7 (¢) is defined by (3.41). The function H (¢, u) arises
from the contribution of the viscosity coefficient n, especially from its dependence
upon the order parameter. If 1 is ¢-independent, then H (¢, u) vanishes.
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Remark 3.1 Assume that the function 7 does not depend on the second variable, that
is, n(y,r) = n(y) for all (y,r) € R? x R. Then the function H (¢, &) vanishes. As
a by-product, the solution @/ of the auxiliary Stokes system (3.1) is independent of
the macroscopic variable X. As a result, we recover the nonlocal (in time) Hele-Shaw
equation derived in Peter and Woukeng (2024) for smooth potentials F'.

For the case that 7 is p-independent, we may summarize the results of the analysis
made in the current subsection as follows.

Theorem 3.1 The quintuple (u, ¢, 1, p, H (@, n)) definedby(3.12),(3.5),(3.8),(3.10)
and (3.50), respectively, is the weak solution to the homogenized system (3.50). If in
addition the function 1 is independent of its second variable, then the function w’
is independent of the macroscopic variable x € Q and we recover in (3.50); the

nonlocal (in time) Hele-Shaw equation. In this case, the quadruple (u, ¢, i, p) solves
the Hele-Shaw—Cahn—Hilliard system

#=Gu’+ G % (hy + uVxp — Vip) in Q,
diviu =0in Qandu-n=00n (0,T) x 022,

a . ~ .
a—f + 1 Vg — dive(i(9) Vi) = 0 in Q.
(3.51)

pw=ap—Jx¢+F(p)inQ,

9
B 0on(0.T) x 92,
on

00) = ¢%in Q.

4 Analysis of the Upscaled Doubly Nonlocal Model

In this section, we are concerned with the analysis of the problem (3.51). Our aim is
twofold: (i) addressing the well-posedness of (3.51 ) and (ii) providing some regularity
properties of its solution. Throughout this section, we assume that the functions n and
m do not depend on the second variable, that is, n(y, 7) = n(y) and m(y, r) = m(y)
forall (v, r) € R? xR. Then, in (3.50), the function H vanishes and the homogenized
mobility coefficient in (3.50)3 becomes independent of ¢ and has the form

1
n = 3 /1 M(m (-, ya)(la—1 + Vyo (-, ya))) dya,

where the corrector function w = (w;)1<j<¢—1 18 now independent of (¢, X) and solves
the problem

—divy (m(y)(ej + Vyw,)) =0in R x I, w; € BiZ (R HE (D).
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As a result, m has constant entries. One may easily check that 7 is symmetric and
positive definite.

Now, for f € H' (), we recall the definition of its average f over Q: f =
|Q|_l (f, 1). Here Q is the open bounded set considered in Sect. 1, which is assumed
to be Lipschitz. We recall the definition of the following sets (see (B.1) where this
time we replace 21 by Q):

Vo = {veH Q) : v—o} sothatVO_{feH Q) : _o}
We consider the operator A: H'(Q) — H'(Q)’ defined by

(Au, v) =/ mVu - Vodx foru, v e H(Q).
Q

We observe that A is a continuous mapping from H'() into V- We also see that its
restriction Ag to Vp is an isomorphism from Vj onto V{j; this stems from the fact that

the matrix 7 is symmetric and positive definite. We denote by A, !the inverse of Ag;
then,
AAG f=f Yf e Vi, and Ay' Au = u Yu € Vp.

It is also a fact that, for f € Vé, u=4A4, ! f is the unique solution with zero mean
value of the Neumann problem

—divimVu) = fin Q,mVu-n=0onde, 4.1)
n being the unit outward normal to 2. In addition, it holds that
<.Au, Ag‘f) = (f.u) forallu € H'(Q) andall f € V{,

<f,A51g>=<g, Aalf>=AﬁV(Aalf)-V(Aalg)dx, foge Vi (4.2

We equip Vg with the norm || |y, = HV(A(;l

2@ for f € V;, which makes it a

Hilbert space. As a result, one has

af
<8t f> 3dr ||f||V, fora.e. t € (0, T)andallfeH 0, T; Vj). (43)

It is also known that the following map (defined on H L))

171 = (1 =7y + 7). ret' @),
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is a norm on H'(£2)’ equivalent to the usual norm of H'()’. Since 7 has constant
coefficients, the following ellipticity estimates for the solutions of (4.1) hold

HVA(;lfHHk(Q) < Cllfllgior g forall f e H*'(@) N L3(Q) andk = 1,2.
(4.4)

Bearing all these preliminaries in mind, we proceed to the first aim of this section.

4.1 Continuous Dependence of the Solutions on the Initial Data

We deal in this subsection with the system (3.51) arising from the upscaling of the
3D problem (1.1). It is posed on the 2D domain 2. We rewrite it without using the
subscripts, hat, etc. This gives

u=Gu’+Gx(h+puVe—Vp)in Q,
divu =0inQandu-n=0o0n (0,T) x 952,

e

o1 +u-Vo —divim(e)Vu) =0in Q,

4.5)
nw=ap—Jxg+F'(p)inQ,

9
E —0on(0.T) x 92,
on

0(0) = ¢%in Q.

Here the data are constrained as follows:

(Al); The matrix G = G(t) is symmetric, positive definite and has entries which
decrease exponentially as 7 increases,

(A2); J € WHI(R?) NCRA\{0}), a(x) = [ J(x — £)dE > 0 (x € Q), and the
function F satisfies (A3) (see Sect. 1),

(A4), The 2 x 2 matrix m has constant entries, is symmetric and (mé&, &) > m |& 2
forall £ € R2, where m1 > 0 1is a constant,

(AS) u e H={uec L>(Q)?:divu =0inQandu -n = 00n dQ}, 9° € LX(Q)
with F(¢) € L () and ‘wo( <1, hel20)>

Assumptions (A1), (A2)1, (A3), (A4); and (AS5); being valid, it is known from
Sect. 3 that problem (4.5) possesses at least a solution (u, ¢, i, p) satisfying u €
C(I0, TI; HHNLA(0, T35 LH(2)*), ¢ € C(0, T1; L*(Q)NL*(0, T5 H' (2))NL>(Q)
with [p(#, x)| < 1 ae.in Q, u € L*(0,T; H'(Q)) and p € L*(0, T; L3()). That
u belongs to L2(0, T; L*(2)?) stems from the convergence result (3.13) and the
definition (3.11).

As afurther notation, when there is a danger of confusion, we shall write ; (resp. *y)
to denote the convolution operator with respect to time (resp. space).
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Theorem 4.1 Assume h € L*®(0, T; L*()?) and u® € L*()% If (u1, ¢1) and
(ua, 2) are two weak solutions of (4.5) corresponding to the initial conditions (u(l), (p?)
v
exists a positive constant C depending on the norms of the two solutions such that, for
allt € [0, T, we have

< 1,i =1, 2, then there

and (ug, (pg) with source terms hy and hy and if further

llor (@) = @213 + fo (1 (1) — w2 (D)2, + 191(0) = 92072 de
0 02 . 170_"0 0 012 2
=C (”‘pl — ¢ ”* + ‘% - ‘Pz‘ + ”“1 - "2||L2(sz) + I — h2”L°°(0,T;L2(s2)) :
(4.6)

In particular, the solution of (4.5) is unique.
Note that proving this theorem proves the second main result, Theorem 1.2.

Proof First of all, arguing as in (Peter and Woukeng 2024, Proposition 5.1) we observe
that p € L2(0, T; HY(Q) N L3(R)) and u € L0, T; L*(R2)?). Also, rewriting the
term Ve in the form

¢ ¢
uVeo =V <F(<p) ~|—a?) - Va? —(Jx9)Ve

and using p = p — (F(p) + a‘%z) as the new pressure, Eq. (4.5); becomes

2
u=GOu’ + G (h— %Va+(] s 9)Vo — V). @.7)

Let (u1, ¢1) and (u3, ¢2) be two solutions of (4.5) (with (4.5); being replaced by
(4.7)) corresponding to the initial data and source terms as in the statement of the
theorem. Setting u = uy —up, ¢ = ¢ — @2, 4 = w1 — uz and p = p| — pa, we
have ¢(0) = (p? - (pg = ¢%and u(0) = ”(1) — ”(2) = u" and the quadruple (&, ¢, 1, P)
satisfies the system

u=G60u"—Gx (h+ ¢(p
+02) % + (J #x ©)Vr + (J %, 91)Ve + V) in Q,

divu =0inQandu-n=0o0n (0,T) x 0€2,

9
2 UV +us Vo —divmVu) = 0in O,

ot (4.8)
r=ap—Jxg+F(p)— F'(g)in Q,

3
o 0on(0.7) x 9.
on

90) = ¢%in Q.
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The variational formulation of (4.8) is as follows:

a
<a—(f, w> + MV, V) = (uer, Vi) + (0, V), ¢ € H(Q), (4.9)

(@, v) = (Gu®, v) + (G * h,v) = (G * (¢(01 + 92) %) . v) 4.10)
— (G (J 4 V2. 0) + (G (e o)V, v), veH

for a.e. t € (0,T). First of all, taking ¥ = 1 in (4.9) yields ¢(t) = F for all
t € [0, T']. Still considering (4.9), we take therein v = Aj l((p — ©) to obtain the
following identity (see (4.2) and (4.3)):

1d

Sl =TI+ (p =) = (o1, Vs (0 D) + (w20, V(4y (0 )

or, equivalently,

L4l =13, + (ap + F'(o1) — F'(92), ¢) = (ug1, V(45 ' (0 — )

. B o (4.11)
+ (uzfﬂ, V(A) (¢ — w)) + (J xx ¢, 9) + Q2] QL.
Using part (ii) of Assumption (A3), we see that
(ap + F'(p1) = F'(92),9) = co lpl72g

so that (4.11) yields

1d :

—12 2
53 1o =l +colglfag, s};lk, (4.12)

where
= (e, VAT 0 =), 1= (w20, V(AT (0 = D).
Iy = (J *x ¢, ¢) and Iy = [Q[ 19

Now, we return to (4.10) and take v = u as the test function. We immediately get
from the resulting equality that

el = (G # (@1 + ¢ Va)ll o + 1G5 (V4 52 @0)ll1) 2
+|Gu| BN +1G 4 (VT 0 @)l 2 (4.13)

where we have used the fact that ||¢2 ||~ < 1. However,

t 2
G (V7 5 I = [ ’/ G(t — T)(VJ % @)(D) de| dx
Q1J0
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t
< ||G||%<>0(O,T)/0 (/QIVJ *x<p|2(r)dx> dr

t
<Gli~w.1) ||W||il/ lp()113 dr.
0

Thus,

1
t 2
G * (VJ sx @)ll2 < C </0 le(@)l72 df) ; (4.14)

where C in (4.14) depends on the norms of G and VJ. Plugging (4.14) into (4.13),
we get after some algebra

1
t 2
a2 < C[HuO\L2+||h||Lz+||go||Lz+ (fo o) 12, dr) } (4.15)

where the constant C depends on the norms of the ¢;, J and a.
With this in mind, we use (4.15) to control the terms in the right-hand side of (4.12)
as follows:

il = Clluliz2 lle —@lly; = Clluli2 llo — @l
<l

o 1o =@l + N2 lle — @l + lell2 lle — @ll.)

1
t 2
+C llp — 9l (/0 e, dr)

so that

co
1< el +C (Huo\

2 2 —n2 ! 2
L2+Ilhlle+II<ﬂ—¢ll*+/0 ()13, dr ).
(4.16)

Moreover,
€0 2 —2 4 —2
|| < 1 lelly2 + Clol™ + C lluzlly lle — ol

(&) _
< 7 lglge + (C +llualize) g — 713 (4.17)

where we have used the 2D-Ladyzhenskaya inequality (w4 =
1 1

Cllwll 2y w15

k = 1 both applied to V(A ! (¢ — ©) to obtain the last inequality. For the third term,

we estimate

forallw € H! (£2)) in conjunction with the inequality (4.4) for

1] < |(J %5 0,0 = @) + |(J %2 ¢, D)

@ Springer



Journal of Nonlinear Science (2025) 35:107 Page43of66 107

= |(mVU 5 0. VAT @ - D)+ 10 5 0. D)
< m2 IVI N1 gl o = @l + C 11z Nl 2 9
€0 _
< 5 lolz. + Clig — 33 (4.18)

while the fourth term is estimated as

Ll = |(F'(@1) — F'(92), 7|
< [ (1F @]+ [ Fn] ). (4.19)

where we have used conservation of the total mass (¢(t) = E, t € [0, T']) in the last
inequality.
Gathering (4.12), (4.16), (4.17), (4.18) and (4.19), we obtain

1d
2 drt

|

_ o 2 _
le = I+ ez, < € (\ ot ||h||iz) + W) e —9l;
t —
+ [l e wo. @)
where

Wi(t) = C + Clluz(®)l}, and Wo(t) = C(|F'(o1) |1 + | F' ()] ).

Therefore, owing to the fact that Wy, W, € L! (0, T), we apply the Gronwall lemma
to (4.20) to get at once

t 2 R
lp@ ol +/O lp(@I2. dr < C (HuO\ LRI+ 1w°|>

or

2 il 2 5 5
L i+ |0)) @2

t
lo@I +/O le(3; dr < € (Huo\

for all t € [0, T], where we used the equality ¢(7) = E. Now, integrating (4.21), we
are led to (4.6), thereby finishing the proof. O

4.2 Further Regularity Results

Our goal now is to prove that the unique weak solution of the doubly nonlocal system
(4.5) is actually a strong one provided the initial order parameter satisfies an additional
assumption and we assume u° = 0. More precisely, we aim to prove the following
theorem.

@ Springer



107  Page 44 of 66 Journal of Nonlinear Science (2025) 35:107

Theorem 4.2 Suppose u® = 0, @° € L(Q) with F(¢*) € L'(Q) and W‘ <1

Assume further that VF'(¢°) € L2(Q2)% and h € W'°(0, T; L>(Q2)?). Then, the
weak solution of (4.5) is a strong solution and satisfies

?;_l: € L0, T; L*(2)?), (4.22)
@ € L0, T; H'(Q) N L*0, T; Wh*(Q) N L*0, T; W' (), (4.23)
Z—‘f e L™, T; H'(Q)) N L*0, T; L*(Q)), (4.24)
we L®0,T; H(Q)NL*O, T;: W Q) N L*0, T; H*(R)), (4.25)
p €C(0,T1; H'(2) N L3(Q)), (4.26)
and
F'(p) € L®(0, T; H(Q)), 4.27)

where2 <r < oo.
If further curl h € L*°(0, T'; L" (2)) for some 2 < r < 00, then

L?(0, T; W ()?) for the same r as curl h,
ue L0, T; W Q)2 ifr =4, (4.28)
L0, T; H'()%) ifr = 2.
Note that proving this theorem also proves the third main result, Theorem 1.3.
Let (u, ¢, 1, p) be the unique weak solution of (4.5) given by Theorem 4.1. To

obtain (4.22)—(4.28), we proceed in three steps detailed in the three following subsec-
tions.

4.2.1 First Estimates on Time Derivatives

Let 2 > 0 be fixed and set
n 1 . .
D"v(t) = Z(v(t + h) — v(t)) for a given function v.
Next, set
Va , ~
H(t) = h() — 5% () = [(J *x @)Vl (1) = Vp(1), t €[0,T],

so that u(t) = (G %, H)(1), see (4.5); and (4.7). Then, H € L*(0, T; L*(2)?). An
easy computation shows that

D"u(t) = (G % D"H)(t) + (G %; ap, H(- + h))(¢) fora.e.t € (0, T), (4.29)
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where o, () = L I{=n,01(¢) for t € R (1j—p,0) being the indicator function of [—£, O])
is an approximation of unity in R. It is easy to see that

ap — OQae.inRash — 0. (4.30)

Using the fact that || H (- + h) — H||2(g)2 — 0 as h — 0 in conjunction with (4.30),
one can show that, when 4 — 0,

apH(-+h) — 0in L2(0, T; L*(2)?). (4.31)

Bearing this in mind, we consider the variational formulation of (4.5), in which we
replace ¢ in (4.5)3 by D"¢ and u in (4.7) by D"u. Then, after setting 0 = @(-+h),
we obtain

aD"g
at

,w> + (mDh;L, vl/f) - (‘EhgoDhu, VI//) + (uDhgp, vw) . Y e H(DQ),
(4.32)
(D"u,v) = (G % D"h,v) — (G % % (thp + @) D"¢, v)
— (G # (VJ %, D"@)p, v) — (G *; (VJ %, 1y9) D", v), veH.
(4.33)

We take v = D"u in (4.33) and we proceed as we did in obtaining (4.15) leading to
1
el = [0 |25l ([ 1o ) o |
(4.34)

Now, we go back to (4.32) and choose therein ¥y = A, ! (Dh(p). Then, recalling
that D¢ = 0 as well as the properties of Ay ! we obtain

a2

2
L+ (D" D) = (meD"u, v(Ag (D' ) + (uD", V(ag (D)
0

or, equivalently,

2 ! ’
1d | ph h Fue)=F(@) ph,) — h —1 ph
14 ]p (/J)Vé-l—(aD o+ L@O=L@) phy) = (v,0D"u, V(ay (D)) wss)
+(uDle, V(=AG (D)) + (J #x Dhg, Dig).
Using part (ii) of (A3) combined with (4.35), we are led to

Ld ) pig|? Dyl 3 I 4.36
- < .
2 dr H (p‘v(;+co“ ¢ LZ(Q)_I; ks (4.36)
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where
I = (meD"u, VAT (D'g)), 1= (uDg, V(=AG' (D)),
Iy = (J x D"¢, D"g).

By virtue of (4.34), we control /1 as follows:

ini = ol , |2

’
Yo
2

2 2 1 2
B LR (2 Y I ey e )
4.37)
Next, we control /> and I3 as we did in the proof of Theorem 4.1 to obtain
€0 n |1 4 n )%
Ll <X HD c D H 438
1Ll =7 N2yt lelia | D7 (4.38)
and
151 = |(J % D, Dig)| = | (mV( % D), V(AT (D))
=mz VI [ D] | |t
L? *
Pl +clorel
< —|D C|D s
4 ” ¢ L2 . ¢ *
that is,
o h 112 a2
<X HD ‘ CHD 439
RE ).t an (4.39)
Putting together (4.36)—(4.39), we are led to
1d ho |12 4« h |2
L1000l + 2 1Dl i
<

C (10" h] 5. + | Dhe]2 Wao) + lantu H1Z, + fy | DR dr).

where W3(-) = C + C |ju(- )||‘£4 e L'(0, T). An application of Gronwall’s lemma
gives

[ PP o] + fy | Dhe ()] }2 dr
h 2 T h 2 2 t (4'41)
=[PP O] + € Ji (AP R@[7: + lan@ e H©22) dr | f3 x(s) ds,

where we have set
h 2 * h 2 2
x() =D ¢<0>H*+c/0 (o], + 1@t @) dr.
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In order to take full advantage of (4.41), we need to control the term uniformly in 4.
To do this, we go back to (4.9) to recall that

e
2dt v

- <aa—‘f A5\ —¢°>>
= (0= ¢ + (up. V(ag 0 — ¢0)
= (mV(ag + F' (@), V(Ay (0 — ¢") — (VI %x 9), V(A5 (0 — ¢*))

+ (ug, V(Ag @ = 6"). (4.42)

Therefore, in view of (4.42) and using (4.41), we get after mere computations involving
Gronwall’s lemma,

2

<(C+ HVF’((pO) HLz)’ forall 7 € [0, T]. (4.43)

0
o], =

1
2
Taking t = h in (4.43), we get

|"

<C+ HVF/((pO)
*

L b0 (4.44)

Now, combining (4.41) and (4.44), we are led to

[Pt + Ji 10" o]} dr
<[+ [T AP" @ [} + len@umH@ IR dr | fo x(5)ds.

Now, taking into account (4.34) (which we integrate over (0, ¢)) together with (4.41)
and the above last inequality, we end up with

[ D" + fy(| D" @) |72, + [ DM@ [120) dT

) (4.45)
= C+C (lan@uH @I + [ DR 7,120 ) -

Since ¢ € H'(0, T; H' (Q)"), we know that D"¢ — 33—‘;’ in L2(0, T; HY(Q)) as
h — 0. We therefore deduce from (4.31) and the assumption on A that we may pass
to the limit in (4.45) when & — 0 and obtain

o+ Ol + | 2@,
g 8(; S L2(Q) (4.46)
=C+C ) W lloo,2@)

ol

This yields %—f € L®(0, T; HY(Q))NL2(0, T; L*()) and 2% € L2(0, T; L2(Q)?).
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4.2.2 Uniform L*°-Estimates in Time

First, we take the gradient of 4 and test the resulting equality by V¢ in L2,
(@+ F" (@) Ve, Vo) = (Vi, Vo) + (VJ % ¢, Vo) — (¢Va, Vo).

Applying part (ii) of Assumption (A3), we obtain

co IVell7: < IVill2 1Y@l + IVl el 1Vell2 + 1Val e el 2 Vel 2
=CA+Vul) Vel

where C depends on ||¢||;2, |VJ] ;1 and | Val| ;. This yields

A

Vol 2 < CA+IVillp2). (4.47)
Next, defining the function H(s) = F(s) + gsz, s € (—1, 1), as previously, and

using the same reasoning as in (Frigeri and Grasselli 2012, Proof of Theorem 1), we
see that there is a positive constant C depending on ¢° such that

[ @) 10 = cf (0 — P H () dx + C,
Q
so that, arguing as previously (see (2.32)), we get

< CO+IVpll).

o= ,+Cliglla+C

Now, from the equality fQ ndx = fQ F’(¢) dx, we deduce from the Poincaré —
Wirtinger inequality that

/Qw dx < C(1+ Vi),
and so,
el < CA+ 1Vl 2). (4.48)

This being so, we test (4.5)3 by w and get

0
(mVp,Vp) = — <a_(f’ M> + (up, V).

Using the fact that %—‘f € L0, T; H'()") and by virtue of (A4);, we have

dy
my|Vill7, < H—

91 ||ﬂ||H1(Q) + ||u¢)||L2 ||VM||L2

H! (Q)/
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dg
<c H_ (U4 IVl 2) + lall 2 1Vl 2
H'(Q)
dp | 2m 2
<c|Z + 2 vl 2+CIIuIIL2,
3t HI(Q)/ 3

where we used (4.48) and Young’s inequality. This yields, thanks to ( 4.46),

+ ||u||L°°(0,T;L2(Q))) < C.

(4.49)

e

Vel pooo, 7 L2(Q) = c
Bt
L®(0,T; H (Q))

Therefore, in view of (4.48), we have

el zoe 0,75 11 (2 < C-
It also follows from (4.47) in association with (4.49) that
loll oo, 7,11 (0)) < C-

Now, assumlng that curlh € L*°(0, T, LZ(Q)) (we recall that for any v =
(vi,vm) el (Q)2 curlv =V x v = ng — dxz) we have, fora.e.r € (0, T),

curlu(t) = G *; (curlh — ¢(Va x Vo) — (VJ *x, ¢) x V). (4.50)

We know from the equality (3.18) in (Girault and Raviart 1986, Page 44) that there is
a positive constant C such that

ol g2 < Clvl2@e + IV X vli2@), ve H (QNH.  (4.51)
Rewriting (4.50) in the form
t
curlu(t) = / G(t —t)(curlh(t) — (Va x V) (1) — (VJ %, ¢) x Vp)(1)) dr,
0
(4.52)
we have
t
lcurlu(@)ll 2 < /O |Gt — D)l (leurl k(D)2 + C Vo) 2) dT
< C (”Cllflh”Lm(O’T;LZ(Q)) +C ”V(p”LOO(O,T;LZ(Q))) (453)
since fé |G(t —t)| dt < C forall¢t € [0, T']. We infer by (4.51) and (4.53) that
||u||L00(o,T;H1(Q)) = C(||u||Loc>(o T:12(Q) T IV x u||L00(() T: L2(Q)))
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<c. (4.54)

As far as the pressure is concerned, arguing exactly as in Mikeli¢ (1994) (see also
Peter and Woukeng 2024) we arrive at p € C([0, T]; H'(Q) N L%(Q)). Also, the fact
that F'(¢) € L®(0, T; H'()) stems from the same property for p and ¢, recalling
that F'(¢) = u —ap — J x ¢.

It remains to check higher-order regularity in space.

4.2.3 Higher-Order Regularity in Space

First and foremost, the fact that d¢/dr € L*(0, T; L*()), n € L*°(0, T; H(Q))
andug € L0, T; L?(£2)?) entail that (4.5)5 is satisfied a.e. in Q. As a by-product,
we rewrite it as a Neumann problem for u: for a.e. t € (0, T),

9 9
—div(mVp) = — (a_(f + div(u<p)> in Q, ﬁ —0ondQ.  (455)

As the matrix m has constant entries, a classical elliptic regularity result entails that
we L*0,T; HX(Q)).

Next, observe that assuming €2 to be smooth, we apply the Gagliardo—Nirenberg
inequality in dimension 2 to obtain that, forany 1 < r < oo, thereis C = C(r) > 0
such that

1 1—

1 1
lullr e <C ||u||£1(9)2 ||u||H]EQ)2 ; see [7, Comments on Chapter 9].

This yields readily u € L*°(0,T; L" (2)?), where we have taken into account
(4.54). This entails that up € L>(0, T; L" (2)?), i.e.

||u(p||L00(O’T;Lr(Q)2) < C V1 S r < Q. (456)

Bearing this in mind, we proceed as in (Della Porta et al. 2018, Section 4) to derive
the existence of C > 0 depending on r such that

L2(Q)

a
<C|Il+ H—(p
E)t LZ(Q)

for any r > 1. This leads to
leellz20,7;wir @) = C- 4.57)

dp
lllyrr ) < C (HE + lluellpr @2 + ||M||L2(Q))

Let us now check the analogue of (4.57) for ¢. To this end, we take the gradient of
w in (4.5)4 and multiply the resulting equality by |Ve|" =2 V¢ (we assume here that
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r > 2) and next integrate over 2. We notice that in light of (4.57) we have
[(a+ F"(p) Vo] 120,71y = € forany r =2,
so that the following resulting equality makes sense:
[a+ Freniver av= [ Vu-voIver? ar - [ [9or2eva- voax
Q Q Q

—/ (VJ x¢)- Vo |Ve| 2 dx.
Q

Owing to Assumption (A3), we see that

A

co Vel < IVul IVl + IVal e + IV Tl Il 1Vell 7!
€0
> Vel + ClIVuly + Cliely: .

IA

It follows promptly that

Vel = CA+IVullpr), (4.58)
which, by (4.57), yields
”@”LZ(O,T;WIJ(Q)) <C. (4.59)
1 1
Now, from the 2 D-Ladyzhenskaya inequality (||w||L4(Q) <C ||w||22(9) ||w||12_11(m

for all w € HY(Q)), we take advantage of (4.57), (4.58) (for r = 4) and (4.59) to
deduce that

1 1
”V:LL”L“(O,T;L“(Q)) = C ”H’”lz‘oo(oyT;Hl(Q) ||M||12‘2(0’T;H2(Q))
<C

and
IVollso.7:04) < CA+ I1Vllpao.7:042)) < C-

This shows that ¢, u € L*(0, T; WH4(Q)).
Now, considering again the equality (4.52), we observe that, for any » > 2,

lcurl ()l 1r @) < C (lcurl bl oo, 7: 1)) + VOOl Lr (@) -

Therefore, proceeding as in (Della Porta et al. 2018, Section 4.3), we find that
u e L*0,T; Wh*(2)?) provided that curlk € L0, T; L"(2)) and that u €
L%(0, T; W ()?) for any 2 < r < oo provided that curlh € L>®(0, T; L" ().
This completes the proof of the theorem.
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With these results at hand, we can also prove our final main result.

Proof of Theorem 1.4 It can be proved exactly as in the proof of (Peter and Woukeng
2024, Theorem 1.2). O

5 A Few Concrete lllustrations

The goal of this section is to present some physical situations leading to the use
of sigma-convergence with the underlying algebras with mean value leading to the
upscaling process in (1.1).

5.1 Equidistribution of Microstructures in Q

We assume that the heterogeneities are uniformly distributed in 2. This means that
the distribution function of the microstructures is periodic, so that the functions y —
n(y, ya,r) and y +— m(y, yq,r) are 1 -periodic in each of their occurrences. The
underlying algebra with mean value here is thus the algebra of Y -periodic continuous
functions A = Cper(Y), ¥ = (0, 1)?~'. The mean value of a function u € Cper(Y) is
given by

M) = fy u(y)dy.

The function spaces associated with A are as follows: BY(RI™!; LP(I)) =
Lf,'er(Y; LP (1)) (the space of functions in LY (RI=L. LP(I)) which are Y -periodic),

loc
BYP(RITL, WhP(I)) = Woel (Y; WHP(I)) (the subspace of WP (Y; WhP(I))
made of Y-periodic functions), and

By P R WhP (D)) = WP (v WP ()
= {u € Wplér”(Y; whr(n) /Zu(y) dy = 0}

(where Z =Y x I with I = (—1, 1)), which is a Banach space when equipped with
the norm

1/p
laell 1.0 = (f Vul? dy) ue Wyl (vs wh(ny).
# z

It is worth noting that BY (R, LP (1)) = BY (R ~Y; LP(I)) since Ljer(Y; LP (1))
is a Banach space with the corresponding norm, and so, Bi’p RI-L,wlr(ry) =
By I~ whe (D).

In this case, the sigma-convergence concept is merely the well-known two-scale
convergence method for thin heterogeneous domains defined in Neuss-Radu and Jiger
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(2007) as follows: A sequence (ug).~0 C L?(Q,) weakly two-scale converges in
LP(Q,) towards ug € L”(Q; Lper(Y; LP(1))) if, when & — 0,

1
—/ w0 f (1%7) ddef /uoa,f,wfa,f,wdydfdr
€Jo, € 0Jz

forany f € L (Q; Cper(Y: LP' (1)) (1/p' = 1 —1/p).
For the benefit of the reader, we restate the homogenization result in Theorem 1.1
in the periodic setting.

Theorem 5.1 Foranye > 0, let (ug, @., (e, pe) be aweak solution of (1.1) in the sense
of Definition 2.1. Then, up to a subsequence of € not relabelled, there exist functions
uelL*0,T;H), ¢ € C(0, T); L>(Q)) N L*(0, T; H'(Q)), u € L*>(0, T; H (Q)),
p € L¥0,T; L3(Q)) and H(p,u) € L' (0, T; LY ()4~") such that, when & — 0,

Mou, — (u,0) in LZ(Q)d—weak,

Mo — @ in L2(Q)—str0ng and in L2(0, T; HY(Q))-weak,

Mepe — in L%0, T: HY())-weak and Mcp: — pin LZ(Q)-weak,
where the quintuple (u, ¢, t, p, H(p, u)) solves the effective system
u+ H(p,u) = Gu’ + G * (h1 + nVxp — Vip) in Q,
diviu =0in Qandu -n=00n (0, T) x 02,

d .~ .
a_(f +u - Vrp — divy(m(p)Vu) =01in Q,

p=ap—J%¢+F(p)inQ,

o
= =00n(0,T) x 3%,
on

0) = ¢%in Q,

where G = (Gij)1<i,j<d—1 Is a symmetric positive definite (d — 1) x (d — 1)
matrix defined by its entries G;j(t,X) = %fz o (%, ¢, v)ej dy, which are bounded
a.e. in space and continuous in time. Here, o = (a)ij )1<i<q IS the unique solution in
C([0, TT; L2(2; L2,.(Y: LAI)D)NLA(Q; Wpet (Y: HY (1))?) of the auxiliary Stokes
system

dw’ . . . )
ryale divy(n(-, @) Vyo!) + Vyn/ =0in (0,T) x Z,

divya)j =0in(0,T) x Z,
w’ (0) = ejinZ and fz a)é(f,t, y)dy =0,
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and ej is the jth vector of the canonical basis in RY. Furthermore, if the function
n is @-independent, that is, n(y,r) = n(y), then the function H (¢, u) vanishes and
u e C([0,T1; H) and p € L*(0, T; H'(Q) N L§(Q)).

Proof The result is obtained just by identifying the mean value of a periodic function:
foru € L2, (Y), M(u) = [, u(y)dy. O

per
5.2 Almost Periodic Distribution of the Microstructures

Assuming that the heterogeneities are distributed in €2 in an almost periodic way, the
functionsy — n(y, y4,r)andy — m(y, yq, r) are almost periodic in the Besicovitch
sense (Besicovitch 1954; Bohr 1947). The corresponding algebra with mean value in
R4~ is the algebra of Bohr continuous almost periodic functions on R¢~! denoted by
A = AP(R?1). We recall that AP(R?~!) (Besicovitch 1954; Bohr 1947) is defined
as the algebra of functions on R?~! which are uniformly approximated by finite linear
combinations of functions in the set {cos(k-), sin(k-) : k € RA-1 } where cos(k-)(y) =
cos(2mk - y) and sin(k-)(y) = sin(2nk - y), y € R?-!_ It is known that AP(Rd_l) is
an algebra wmv called the almost periodic algebra wmv on R?~!. The corresponding
generalized Besicovitch space B X (R?=1) is precisely the Besicovitch space B (R4~ 1)
defined in Besicovitch (1954), Bohr (1947).

Under the assumption of an almost periodic distribution of microstructures, the
main results of our work are valid with the corresponding function spaces. It is well
known from Bohr (1947) that the mean value of a function u € AP(R?~!) is the unique
constant that belongs to the closed convex hull of the set of translates {u(- +a) : a €
R4~1} of u. In any case, it satisfies property (A.1).

5.3 The Asymptotic Periodic/Almost Periodic Setting

Assuming that the distribution of the microstructures inside 2 is almost uniform
but with a defect leads to the use of the algebra wmv A = Cper(Y) + Co(R—1)
(Jiger and Woukeng 2021, Section 5.2.3), where Co(R?~!) stands for the Banach
algebra of continuous functions which vanish at infinity. In this case, hypothesis (A6)
holds with A = Cper (Y) + Co (R4-1). We may also deal with the asymptotic almost
periodic distribution of heterogeneities with the corresponding algebra wmv A =
APRI1) + Co(RY~1) (Jiger and Woukeng 2021, Section 5.2.3).

Appendix A. Sigma-Convergence for Thin Heterogeneous Domains

This section summarizes some well-known results on sigma-convergence for thin het-
erogeneous domains, which are required for the homogenization process of Section 3.
We start with some preliminaries about the algebras with mean value to introduce the
generalized Besicovitch spaces.
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A.1. Besicovitch Spaces

Let A be an algebra with mean value on R" (Zhikov and Krivenko 1983) (integer
n > 1), thatis, a closed subalgebra of the C*-algebra of bounded uniformly continuous
real-valued functions on R”, BUC(R"), which contains the constants, is translation
invariant and is such that any of its elements possesses a mean value in the following
sense: for every u € A, the sequence (1°).~¢o (u®(x) = u(x/e)) weaklyx-converges
in L®(RY) to some real number M (u) (called the mean value of u) as ¢ — 0. The
mean value expresses as

M) = Rli_)moo][B u(y)dy foru € A, (A1)
R

where we have set JCBR = \BIT f Bgr*
Let A be an algebra wmv on R". For any integer ¢ > 0, let [|lulll, =

glel
SUP 4| <¢ HDngoo, where D;’,‘w = a;fl—jﬁ" Then, the space A® = {y €
C®R") : D‘y’fl// € AVa = (a1, ..., a,) € N} is a Fréchet space under the family of
norms ||-[[[-

The concept of vector-valued algebra wmv will also be useful in this work. We
define it as follows. For F a Banach space, BUC(R"; F) stands for the Banach space
of bounded uniformly continuous functions u: R” — F equipped with the norm

lulloo = sup llu(W)lg .
yeR?

where [|-||g denotes the norm in F (cf. Section 1.4). This being so, if A is an algebra
with mean value on R”, we denote by A ® F the usual space of functions of the form

Zui@)eiwithuieAande,-eF,

finite

where (#; ® ¢;)(y) = u;(y)e; for y € R". Then, we define the vector-valued algebra
wmv A(R"; F) as the closure of A ® F in BUC(R"; F).
For 1 < p < oo, we define the Marcinkiewicz space, 91” (R"; F) as the vector

space of functions u € Lf;c (R"; F) satisfying

1
. P
lull p e = (llm Sup][ lu() g dy) < 00,
R

R—o0

Then, M? (R"; F) is a complete seminormed space when equipped with the seminorm

1
. P
lull ¢ = (11111 Sup][ lu) g dy) < 00.
R—o0 J Bg
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It is a fact that A(R"; F) C 9IMP(R"; F) since |lul[, p < oo for any u € A(R"; F).
Thus, we define the generalized Besicovitch space ij (R"; F) to be the closure of
A(R"; F) in 9MP (R"; F), and it holds that:

@) BZ(R”; F) = Bﬁ(R”; F)/N (where N = {u € Bﬁ;(R”; F) :lull,y =0pisa
Banach space under the norm ||u +N||p’F = |lull g foru € Bﬁ:(R”; F).

(ii) The mean value M: A(R"; F) — F extends by continuity to a continuous linear
mapping (still denoted by M) on B g (R"; F) satisfying

L(M(u)) = M(L()) forall L € F' and u € B! (R"; F)
and we have, for u € BY(R"; F),
1

wmf=(Mww$Wps(mnﬁ wowﬁw)f
R

R— o0

Note that, when F = H is a Hilbert space, BZA (R"™; H) is also a Hilbert space with
inner product

(,v)y = M[(u,v)y] foru,v e BLR"; H), (A2)

where (-, - )y stands for the inner product in H and (u, v)y the function y +—
u(y), v(y))y from R" to R, which belongs to le (R™).
We shall also need Sobolev—Besicovitch-type spaces defined as

ByP(R";F) = {u € BYR"; F) : V,u € (BL(R"; F))"},

and endowed with the seminorm

1
lulhp = (lally + [ V3] 7).

which makes it a complete seminormed space. Its Banach counterpart is denoted by
BL”’(R"; F) and is defined by replacing B} (R"; F) by B} (R"; F) and 8/3y; by 9/0yi,
where /9y, is defined by

F] B
gy N = % + N foru € BYP(R"; F). (A3)
1 1

Denoting by o: BQ(R"; F) — Bi(R“; F) = Bi(R"; F)/N, ou) = u + N, the
canonical surjection, we see that

k] 9
dow) _ 0 <_u> foru € B:{p(Rn; F)
dyi dyi

as seen above in (A.3).
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We define a further notion by restricting ourselves to the case F = R. We say that
the algebra A is ergodic if any u € 8}4 (R"; R) which is invariant under (7 (y)) yer» is
a constant in 3 114 (R"; R). This amounts to the following: if 7 (y)u = u in B}l (R™; R)
forevery y € R”, then u = c in B}L‘(R”; R) in the sense that ||u — c||; = 0, ¢ being a
constant.

Now, we assume thatn = d—1 (integerd > 2)andweset/ = (—1,1).Anyy € R4
iswrittenas y = (¥, yq). Wedefine the corrector function space B;’Ap (RE-1. wlr(py)
by

Byl R, WP (D) = {u € Wit R WP (D) - Vi € BRI LP(1)?
and [; M(Vyu(-, ya)) dys = 0},

0
0ya
to the variable y € RI-1. We identify two elements of B;Ap (Rd_l; whr(r)) by
their gradients in the sense that ¥ = v in B;AP(R‘I_I; wLp(n) iff Viu — v) =
0.ie. [ IV@(, ya) = vC. ya) ) dya = 0. The space By (R~ WP (1)) is a
Banach space under the norm [[ully , = (/f; IVu (-, ya) Iy dyd)l/p.

where, in this case, V = (Vy, 5°-), V5 being the gradient operator with respect

A.2. Sigma-Convergence for Thin Heterogeneous Domains

We are now in a position to the define the sigma-convergence concept for thin hetero-
geneous domains. The integer d > 2 is as above and 2 C R?~! is the open bounded
domain given in Section 1 of this work. We also recall the definition of our thin domain
Q. (for a given small ¢ > 0): Q;, = Q2 x (—¢&,¢) and we set @, = (0,T) x ;.
When ¢ — 0, Q. shrinks to the interface Q9 = Q2 x {0} = Q. We also set and
0=0,T)xQy=(00,T) x Qaswellas I = (—1,1).

The space R? is the numerical space R™ of generic variable &. In this regard, we
set RI—1 = Ré_l or R%_l, where X = (x1,...,x4-1),sothat x € R4 can be written
as (x, xg) or (x, ¢). We identify ¢ with Q2 so that the generic element in €2 is also
denoted by X instead of (X, 0).

Let A be an ergodic algebra with mean value on R¢~!. We denote by M the mean
value on A as well as its extension on the underlying generalized Besicovitch spaces
BRI~ LP (1)) and B (RI~Y; LP(1)), 1 < p < oo.

Definition A.1 A sequence (ug)e>0 C LP(Q;) is

(i) weakly X-convergent in L”(Q,) towards ug € L”(Q; Bf; (RA=L: LP (1)) if, as
e — 0, we have

1
7/ we (1, %) f (t,f, f) dxdt—>/ /M(uo(t,f,uyd)f(t,f,-,yd))dyddfdt
e Jo. e o/t

for any [ € LP/(Q; AR, LP/(I))) (1/p’ = 1 — 1/p); we denote this by
“Ug — ugin LP(Qg)-weak X4
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(ii) strongly X-convergent in L?(Q,) towards ug € L?(Q; BZ(Rd’l; LP(I))) if it
is weakly sigma-convergent and, additionally,

_1
& 7 lluellzrg.y = ol Lro: 87 ®a-1:Lr (1)) 3 (A4)

we denote this by “u, — ug in L?(Q;)-strong X4 .

RemarkA.1 (1) If ug € LP(Q; A(R?~'; LP(I))) then (A.4) amounts to

_1
g r ||u8—u8||Lp(Q£)—>Oase—>O, (A.5)
where ug(t, x) = uo(t, x, x/¢) for (t,x) € Q..
(2) In Definition A.1, the test functions in part (i) may also be taken in the space

C(0Q; B,(RY~1; LP' (1)) N L®(R?~! x 1)) , see, for example, Woukeng (2015).

In what follows, the letter E denotes any ordinary sequence (€,,),>1 withO < ¢, <1
and &, — 0 when n — oco. We shall merely denote by ¢ the generic term of E so that
“e — 0” shall mean “g, — QOasn — 00.”

Theorem A.1 For 1l < p < o9, let (ug).cg be a sequence in LP (Q,) satisfying

—1
sup e P ugll oo, < C,
cek

where C > 0 is independent of ¢. Then, there exists a subsequence of (ug)ecg Which
is weakly T 4 -convergent in L”(Q.).

The proof of the above theorem is very similar to its homologue stated in Jager
and Woukeng (2022). We also provide some further important results and we refer to
Cardone et al. (2024) (see also Jiager and Woukeng 2022) for their proofs.

Theorem A.2 Let A be an ergodic algebra with mean value on R4 and let 1 < p <
o0. If (ug)sek is a sequence in LP(0, T; WP (Q,)) such that

sup (£77 el oo, 7w ) = C (A6)

ecE

where C > 0 is independent of ¢, then there exist a subsequence E' of E and a couple
(u, uy) withu € LP(0, T; WP (Q0)) and uy € LP(Q; By R~ WP (1)) such
that, as E' 5 ¢ — 0,

ug — uin LP(Qg)-weak X4, (A7)

a a a
LN —u+ﬂian(Q8)-weakEAforl <i<d-1 (A.8)
ax; ax;  dy;

and

9 9
Yo QM i LP(Q,)-weak Sa. (A.9)
0xy4 A}
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Remark A.2 Set

Then, (A.8)-(A.9) amount to
Vue — Vzug + Vyuy in L7 (Qe)?-weak T 4. (A.10)

The following result provides us with sufficient conditions for which the conver-
gence result in (A.7) is strong.

Theorem A.3 Let the assumptions of Theorem A.2 be satisfied and, moreover, suppose
that

OMug
at

sup
e>0

<C, (A.11)
LY (0.T; (WP (Q)))

where My is defined by (1.9). Finally assume that 2 is regular enough so that the
embedding Whr(Q) — LP(Q) is compact. Let (ug, uy) and E' be as in Theorem
A.2. Then, as E' > ¢ — 0, the conclusions of Theorem A.2 hold, and in addition, we
have

us — ug in LP(Qy) -strong X 4. (A.12)

The next theorem with its corollary deal with the product of sequences and their
proofs are obtained by proceeding as in (Sango and Woukeng 2011, Theorem 6 and
Corollary 5) (see also Woukeng 2015).

TheoremA.4 For 1 < p,q < oo, let r > 1 be such that 1/r = 1/p 4+ 1/q <
1. Suppose that (uc)ecg is a weakly X s-convergent sequence in L1(Q.) with limit
uyg € L1(Q; BZ (R‘lil; L9(1))) and (ve)ecE is a strongly ¥4 -convergent sequence
in LP(Q,) with limit vy € LP(Q; B (R?~Y; LP(1))). Then, the sequence (ugve)ser
is weakly X g-convergent in L (Q¢) towards ugvo.

Corollary A1 If (ue)eer C LP(Qx) and (ve)eer C LP (Q)NL®(Q) (1 < p < 00
and p' = p/(p — 1)) are two sequences such that

(1) ug — ugin LP(Q,) -weak X 4,
(i) ve > vo in Lp/(Qg)-strong YA,
(iii) (ve)eek is bounded in L°°(Qy),

then ugve — ugvg in LP(Q.)-weak % 4.

The following proposition is used in finding the limit of the velocity in the homog-
enization process of (1.1).
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Proposition A.1 (Peter and Woukeng 2024, Proposition 3.1) Let (u; ) scE be a sequence
in LP(0, T; WP (2,)) such that

sup (717 e Lo,y +&'~7 IVue oo, ) = C

ecE

where C > 0 is independent of s. Then, there are a subsequence E’ of E and a function
ug € L?(Q; B}A’p(Rd’l; WP (1)) such that, as E' 5 ¢ — 0,

ug — ug in L?(Qg)-weak T 4
and

eVu, — gyuo in LP (Qp)?-weak 4.

Appendix B. Uniqueness of the Solution of (1.1)

Although not relevant for the homogenization result, we can also prove a uniqueness
results under additional assumptions. Namely, if the functions n(y, r) and m(y, r) are
independent of r and, further, if by € L°°(0, T; L*(2)?~!) and uf, € L*(Q)?, then
the microscopic solution (u,, ¢;) is unique.

Therefore, we assume that the functions 1 and m are independent of ¢, that is,
n(y,r) = n(y) and m(y,r) = m(y) for all (y,r) € R? x R in this appendix.
This being so, we omit for a while the subscript ¢ and we replace Q. by Q. For
f € H'(Q1), we define its average f over | by f = ||~ (f, 1). With this in
mind, we define the set

Vo={ve H(Q) :7=0},sothat V) = {f € H'(Q))': f =0}.  (B.1)

We consider the operator B: H!(Q21) — H'(Q1)’ defined by

(Bu,v) = / m(x)Vu - Vvdx forall u, v € Hl(Ql).
Q)

Then, it is a fact that B maps continuously H L)) into VO’, and furthermore, the
restriction By of B to Vp is an isomorphism from Vj onto V;. Denoting by B, ! the
inverse of By, we have

BBy'f=f ¥YfeVjand By 'Bu=u Yu € Vy.

One may see that, for f € Vj,u = B ! f is the unique solution with zero mean value
of the Neumann problem

—divimVu) = fin Q,mVu -v =00n 909y, (B.2)
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v being the unit outward normal to d€21. In addition, it holds that

<Bu, Bo—lf> = (f.u) forallu € H'(2) and all f € V,

(r.B5"e)= (2. 85" r) = / mV(By' f)-V(By'g)dx Vf. g € Vy.(B3)
Q)
With the above definitions and properties, one may endow V; with the norm

1/l = | VB3 )

for f € V/.
L2@)) A

As a by-product, we have

) 1d
<8—{ Bo_lf> =33 ||f||2VO, fora.e.r € (0, T) and forall f € H'(0, T; Vj)XB.4)

With this in mind, we define the following norm on H! (1)

171 = (1 =75 + 7). fen'@.

Then, || - ||+ is equivalent to the usual norm of H'(21)’. The classical regularity theory
for elliptic partial differential equations with Neumann boundary conditions entails
that the solution of (B.2) satisfies the following estimates:

< Cllfllgr-1(q, forall f e H* "' (Q)NL{(SQ) andk = 1,2.

VB! ‘
H o/ HY Q)

(B.5)

We also recall the following well-known interpolation inequality:

1—-4 d 1
Il aiay < Clvllo ol g, forallv e HY(Q).d =23,  (B.6)

where C = C(d, 221) > 0.
With this in mind, we take advantage of the identity

e* ¢?
uVp = V(F() +a=) = Va—(J x9)Vp

2
to rewrite (1.1); with the extra pressure p := p — F(p) —a % in the following form:

2

9
a—’; — div(n(x)Vu) + V= h — Va% — (J x@)Vg. (B.7)
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Set H=h— Va%z — (J % ¢)Vo. Then, from the equ;tlity ((Jxp)Ve,v) = ((VJ %
@)@, v), valid forall v € H, we see that H = h — Va% — (VJ x @)@ in H. Therefore,

recalling that ¢ € L°°(Q) with |¢| < 1 a.e. in Q1, we observe that Va%2 + (VJ %
©)p € L®(Q1)4, so that H € L®(0, T; L*(21)%). (We have assumed that h; €
L>®(0, T; L*(Q)4~1).) This yields in particular that H € L8(0, T; L*(Q1)%). This
being so, we consider the following Stokes system

u — div(n(x)Vu) + Vr = H in Qy,
divu =01in Q;, (B.8)
u=00n(0,T) x 32 and u(0) = u° in Q.

It is well known from the LP—L? estimates of the solution of (B.8) that, since H €
L30, T; L*(21)%), we have

ue L0, T; LY QDY) (B.9)

provided thatu® € (Wy*(21))? (LY, (1), where LY, () is the closure in L*(€21)¢
of the space C5%, (Q1) = {u € C°(Q1) : divu = 0}.

Bearing this in mind, let (u1, ¢1) and (u2, ¢2) be two solutions of (1.1) correspond-
ing to the same initial value @, ¢°) withu® (Wé’4(§21))d ﬂLﬁiv(Ql) and the same
source term k. Setu = up —u1, ¢ = @2 — @1, u = up — 1 and p = p> — pi. Then,
(u, @, 1, p) satisfies

ou . ~
T div(n(x)Vu) +Vp
= =1 + )% — (VI x@)p2 — (V] % 91)g) in Q1
divu =01in Q;,
0
a—(f —divim(x)Vu) = —div(ug)) — div(usze) in Q1, (B.10)
Ag =ap—Jx¢+ F'(p2) — F'(¢1) in O,
8_M =0andu =0o0n (0,7) x 0Q21,
v
u(0) = 0and ¢(0) = 0in ;.

The variational formulation of (B.10) reads, fora.e.t € (0, T),
<?T(f’ w>+ MV, V) = (ugy, Vi) + (upp, Vi) forall y € H' (2)). (B.11)

u Va
<§, v> + (Vu, Vv) = —(p(p1 + wz)7, v) — (VJ % @)@, v) — (VJ % 91)p), v)

forall v € V. (B.12)

Note that if we choose ¢ = 1 in (B.11) then ¢(¢) = E = 0forall ¢ € [0, T], so that
¢ € V. Next, choosing ¥ = By '¢ in (B.11) yields

1d 2 —1 —1
S5 ol + G o) = (ur. V(B '9)) + (w20, V(By ')
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that is,

1d
—— ||¢||2, + (ap + F'(¢2) — F'(91). 9)

2 dt | : (B.13)
= (usol, V(By')) + (w20, V(BT ') + (U 0. 0).
We infer from (A3) (see (ii) therein) that
1d 3
2
S5 el +eollellag,) < Z (B.14)

with I} = <u<p1, V(Bo_lgo)), I = (uzfp, V(Bo_l(p)) and I3 = (J % ¢, ¢). Now we
take v = u in (B.12) and use (1.2) to get

6

1d

53 1Ty +m VRl g, < D dk, (B.15)
k=4

where Iy = —(@(@1+¢2) %, u), Is = —(VJ @)@, w) and I = —((V T 1)), u).
Addition of (B.14) and (B.15) gives

(o)

(Il + 132 0,)) + o l0l2 g, +m IVEIG 2, < Z . (B.16)

| =
Q-lQ_

We control the right-hand side of (B.16) as follows:

] < llullz2

ol

= ClVu| .

VB, o),

n
< S IValf, + Cllelgs (®B.17)

v(B;!

12| < lluzlizs llell 2

-1 17%
witoll

d
Y

< Clluzlizs llellg2

d
< Cluzligs el 2 lelly * llell
- {@ loll2, + C lluall? 4 lgll3 if d = 2,

5 §

¢ . B.18
D lplZ, + C llualS, gl ifd =3, (®.13)

where, to obtain the above last inequality, we have used inequality (B.6) associated
with inequality (B.5) for k = 1;

5] = |V %0, VBT )| < ma 1V gl 2 | V(85!
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co
<3 lel?, + C llglli; (B.19)
1Ll < el ller + @2l 1 Vall Lo a2
o
<3 lll3> + C llul?, (B.20)
€0 2 2
|51 < IVl liglz el < g lgligs + C llwlzs (B.21)
and
€0 2 2
ol < IV lIpr el gl lullpe < - lglga + Clluliz, . (B.22)

Using estimates (B.17)—(B.22) in (B.16), we are led to

1 co m
2 2 U 2
(1013 + 1 0,)) + 191320y + 5 IV,

4 2 2 T B.2
(€ + Il 01+ Cllulag,, ifd =2, (B.23)
(C + ||u2||L4(Ql)) ||(P||# + C ”u”Lz(Q]) lfd = 3

d
dr

N3

=

Each of the functions ¢t + C + ||uz(1) ||‘1t4(91) and? — C+|lux(?) |Ii4(91) is integrable
over (0, T'), see (B.9). Thus, applying the Gronwall lemma to (B.23) yields at once
¢ = 0and u = 0. As aresult, © = 0. This concludes the proof of the uniqueness of
the microscopic solutions.
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