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Abstract
We present the rigorous asymptotic analysis in thin domains of a diffuse interface
model of two-component Hele-Shaw flow based on an advective nonlocal Cahn–
Hilliard equation with singular potential and nonconstant nondegenerate mobility for
the relative concentration. The velocity is determined by a Stokes system in which the
inhomogeneous viscosity is highly oscillating and dependent on the relative concentra-
tion. Using the notion of sigma-convergence for thin heterogeneous media, we obtain
in the homogenization limit a new doubly nonlocal Hele-Shaw–Cahn–Hilliard-type
model system containing an additional term arising from the dependence of the viscos-
ity on the relative concentration. In the case when both the viscosity and the mobility
coefficients do not depend on the relative concentration, we additionally prove that
the new model is well posed and we establish the existence of global strong solutions.
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1 Introduction andMain Results

In fluid dynamics, topological transitions of interfaces between macroscopically
immiscible fluids are prominent phenomena and play an important role in many appli-
cations. Two-phase flow involving the slow flow at low Reynolds number of a fluid
between two parallel flat plates separated by a small distance can lead to surpris-
ing phenomena like the Saffmann–Taylor fingering instability (Saffmann and Taylor
1985). Thus, careful derivation and analysis of such models are required.

In this work, we are interested in the mathematically rigorous derivation by homog-
enization and analysis of a new doubly nonlocal Hele-Shaw–Cahn–Hilliardmodel.We
base our derivation of this new model on the nonlocal Cahn–Hilliard–Navier–Stokes
model at low Reynolds number (so that the convective term in the Navier–Stokes
equation is neglected) stated on the microscale, which we introduce first.

1.1 The "-Model

On the microscopic scale, the fluid domain is of Hele-Shaw type, that is, we consider
a region confined in between two rigid parallel plates described as follows: let � be
a bounded open Lipschitz domain in R

d−1 (d = 2, 3) and let ε > 0 be a fixed small
parameter. The domain �ε is given by �ε = � × (−ε, ε). Any x ∈ �ε is written
x = (x, xd) where x ∈ � and −ε < xd < ε. The heterogeneity of the domain �ε

is implicit and arises from the fact that the fluids are mixed at length scale ε. This
is reflected in both the viscosity and the mobility terms which oscillate at scale ε,
the distribution function of the microstructures being represented by an assumption
made on the fast spatial variable y = x/ε covering several concrete behaviours such
as the periodic (uniform) distribution, the almost periodic distribution and many more
beside, specified in the context of sigma-convergence below. The domain �ε is a thin
layer shrinking to �×{0} ≡ � as part of passing to the homogenization limit ε → 0.
For a given T > 0, we set Qε = (0, T )×�ε and Q = (0, T )×�. In�ε, we consider
the ε-model problem given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε

∂t
− ε2div(ηε( ·, ϕε)∇uε) + ∇ pε − με∇ϕε = h in Qε,

divuε = 0 in Qε,
∂ϕε

∂t
+ uε · ∇ϕε − div(mε( ·, ϕε)∇με) = 0 in Qε,

με = ε−1 (aεϕε − J ∗ ϕε) + F ′(ϕε) in Qε,
∂με

∂ν
= 0 and uε = 0 on (0, T ) × ∂�ε,

uε(0, x) = uε
0(x) and ϕε(0, x) = ϕε

0(x) in �ε.

(1.1)
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In (1.1), uε represents the velocity of the fluid mixture, ϕε is the order parameter
representing the relative concentration of the mixture (relative difference of the two
concentrations),με is the chemical potential, pε is the pressure, J is a suitable interac-
tion kernel, aε is a coefficient (depending on J , see below), ηε is the inhomogeneous
oscillating viscosity, mε is the oscillating mobility, h stands for an external force den-
sity acting on the fluid mixture, F is the configuration potential accounting for the
presence of two phases, while ν is the outward unit normal on ∂�ε. In (1.1), the data
are constrained as follows:

(A1) the viscosity ηε( · , ϕε)(t, x) = η(x/ε, ϕε(t, x)), where η : Rd × R → R, lies
in L∞(Rd; C0,1loc (R)) and there exist η1, η2 > 0 such that

η1 ≤ η(y, r) ≤ η2 for a.e. y ∈ R
d and for all r ∈ R; (1.2)

(A2) the interaction kernel J ∈ W 1,1(Rd) ∩ C(Rd−1\ {0}) satisfies J (y) = J (−y)
and is related to the coefficient aε via aε(x) = ∫

�ε
J (x − z) dz ≥ 0, x ∈ �ε,

which satisfies ε−1aε ∈ L∞(�ε) and there is β > 0 such that

β ≤ ε−1aε ≤ β−1 for all x ∈ �ε;

(A3) the potential F can be written in the form F = F1 + F2 with a singular part
F1 ∈ C([−1, 1])∩C2(−1, 1) and a regular component F2 ∈ C2([−1, 1]), which
satisfy the following assumptions: there exist a2 > 4(β−1 − β − α) (where
α := min[−1,1] F ′′

2 ), 0 < σ0 < 1 and c0 > 0 such that

(i) F ′′
1 (s) ≥ a2 for all s ∈ (−1,−1 + σ0] ∪ [1 − σ0, 1),

(ii) F ′′
1 (s) + β ≥ c0 for all s ∈ (−1, 1),

(iii) F ′′
1 is nondecreasing in [1 − σ0, 1) and nonincreasing in (−1,−1 + σ0],

(iv) limx→−1+ F ′
1 = +∞ and limx→1− F ′

1 = −∞;

(A4) the mobility mε( · , ϕε)(t, x) = m(x/ε, ϕε(t, x)), where m : Rd × R → R, lies
in L∞(Rd; C0,1loc (R)) and there exist m1,m2 > 0 such that

m1 ≤ m(y, r) ≤ m2 for a.e. y ∈ R
d and for all r ∈ R; (1.3)

(A5) the initial values ϕε
0 ∈ L∞(�ε) and uε

0 ∈ L2(�ε)
d satisfy

∥
∥uε

0

∥
∥
L2(�ε)d

+ ∥∥ϕε
0

∥
∥
L2(�ε)

≤ c1ε
1
2 ,
∥
∥ϕε

0

∥
∥
L1(�ε)

≤ c2ε;
ε− 1

2
∥
∥uε

0 − u0
∥
∥
L2(�ε)d

+ ε− 1
2
∥
∥ϕε

0 − ϕ0
∥
∥
L2(�ε)

→ 0 as ε → 0,
(1.4)

for some positive constants c1 and c2, where u0 ∈ L2(�)d and ϕ0 ∈ L∞(�);
finally, the forcing h has the form

h(t, x) = (h1(t, x), 0) for a.e. (t, x = (x, xd)) ∈ (0, T ) × � × (−1, 1) =: Q1,

(1.5)
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where h1 ∈ L2(Q)d−1.

Remark 1.1 Part (iv) of assumption (A3) on F ′ shows that there exists s0 ∈ (−1, 1)
such that F ′(s0) = 0. We assume without loss of generality that s0 = 0 , and since the
potential F can be chosen up to a constant, we assume henceforth that

F(0) = F ′(0) = 0. (1.6)

The physically most relevant examples of functions F and J are the logarithmic
potential

F(s) = θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)) − θc

2
s2, s ∈ (−1, 1) (1.7)

and, for d = 3, J (x) = β1 |x |−1 or, for d = 2 , J (x) = −β2 log |x |, respectively. Here,
θ and θc are the absolute temperature and the critical temperature, respectively. Below
the critical temperature, i.e. when 0 < θ < θc, phase separation occurs; otherwise,
the mixed phase is stable. The parameters β1 and β2 are positive constants while |x |
denotes the Euclidean norm of x ∈ R

d . In (1.7), the splitting in singular and regular
parts is realized by taking F1(s) = θ

2 ((1 + s) log(1 + s) + (1 − s) log(1 − s)) and
F2(s) = − θc

2 s
2.

Now, assuming that each fluid has a viscosity ηi (x/ε) (i = 1, 2), then the viscos-
ity of the mixture is modelled by the concentration-dependent quantity ηε(x, ϕ) =
η(x/ε, ϕ). In the unmatched viscosity case (η1 
= η2), a typical form of η is the
interpolation between η1 and η2 given by

η(y, r) = η1(y)
1 + r

2
+ η2(y)

1 − r

2
, r ∈ [−1, 1], for a.e. y ∈ R

d .

The special case η1 = η2 is called the matched inhomogeneous viscosity; η1 = η2 can
also be chosen to be a positive constant. In any case, the bounds (1.2) are assumed and
we refer to Abels (2009) for more information on the unmatched case arising from
different densities of the fluids.

It is important to note that the coefficient 1/ε in front of (aεϕε − J ∗ ϕε) is to
preserve the relative size of �ε for small ε. It is easy to see that

ε−1(aεϕε − J ∗ ϕε)(t, x) =
∫

�1

(Jε(x − ζ )(ϕ̃ε(t, x) − ϕ̃ε(t, ζ )) dζ, (1.8)

where Jε(x) = J (x, εxd) for x = (x, xd) ∈ �1 and ϕ̃ε(t, x) = ϕε(t, x, εxd) for
(t; x) ∈ Q1.

The system (1.1) is a nonlocal Cahn–Hilliard–Stokes system arising from a diffuse-
interface model, which describes the evolution of an incompressible mixture of two
immiscible fluids in Hele-Shaw cells (see, for example, Della Porta et al. 2018;
Frigeri and Grasselli 2012 and the references therein). The local version of (1.1) was
considered in Cheng and Feng (2017) (see also Gurtin et al. 1996). The system (1.1)
is a good approximation of the Cahn–Hilliard–Navier–Stokes system in the context
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of low Reynolds number, see, for example, Han et al. (2013) in which a number of
applications are discussed as well.

Our model (1.1) is a more general one as, in (1.1)1, we consider a concentration-
dependent inhomogeneous viscosity, thereby generalizing all the existing models.
Another new aspect is the dependence of the nonconstant nondegenerate mobility
coefficient upon both the spatial variable and the order parameter. These functions
are highly oscillating with respect to the fast spatial scale y = x/ε. We will make a
structured hypothesis on the behaviour of η(·, yd , r) and m(·, yd , r) which covers a
wide range of concrete behaviours such as the periodicity, the almost periodicity and
many more beside in the context of sigma-convergence.

Our goal in this work is twofold: (i) investigate the limiting behaviour of (1.1)
when the thickness ε of the domain as well as the spatial oscillation of the coefficients
simultaneously approaches zero in order to derive the upscaled model; and (ii) ana-
lyze the homogenized model by addressing first its well-posedness and, second, the
regularity of its solutions. The above first goal will be achieved through deterministic
homogenization theory by means of the sigma-convergence concept for thin hetero-
geneous media introduced in Jäger and Woukeng (2022) as a generalization of the
two-scale convergence for thin periodic domains (Neuss-Radu and Jäger 2007). It is
worth noting that the two-scale convergence for thin periodic domains is now well
known while its general deterministic counterpart is at its early stage. Indeed, the only
works using the latter concept appear to be Cardone et al. (2024), Jäger and Woukeng
(2022), Peter and Woukeng (2024).

More generally, very few results on homogenization ofmultiphasefloware available
in the literature; see, for example, Auriault et al. (1989), Banas and Mahato (2017),
Cardone et al. (2024), Peter and Woukeng (2024), Sharmin et al. (2022). We also note
the related recent works on upscaling of the Cahn–Hilliard equation coupled with
the equations of linear elasticity, the so-called Cahn–Larché system, Reischmann and
Peter (2020), Reischmann and Peter (2022).

1.2 TheMain Results

In order to state our main results in a compact form, we introduce shorthand notations
for certain mean integrals. For any fixed ε > 0 and function ψ defined on Qε, we
define the partial mean integral Mεψ of ψ on Q = (0, T ) × � as follows

Mεψ(t, x) = 1

2ε

∫ ε

−ε

ψ(t, x, xd) dxd , (t, x) ∈ Q. (1.9)

The usual spatial average is denoted by an overbar, i.e. ψ = |�|−1
∫

�
ψ .

Assuming that the viscosity η(y, r) and the mobility m(y, r) satisfy a struc-
ture hypothesis in the context of sigma-convergence (see assumption (A6) in
“Appendix A”) with respect to y, we obtain from (1.1) in the limit as ε → 0 a
new Hele-Shaw–Cahn–Hilliard-type model stated in our first main result as follows.

Theorem 1.1 (Upscaled model) For any ε > 0, there exists a weak solution
(uε, ϕε, με, pε) of (1.1) in the sense of Definition 2.1. Moreover, up to a subsequence
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of ε not relabelled, there exist functions u ∈ L2(0, T ;H), ϕ ∈ C([0, T ]; L2(�)) ∩
L2(0, T ; H1(�)), μ ∈ L2(0, T ; H1(�)), p ∈ L2(0, T ; L2

0(�)) and H(ϕ, u) ∈
L1(0, T ; L1(�)d−1) such that, when ε → 0,

Mεuε → (u, 0) in L2(Q)d-weak,
Mεϕε → ϕ in L2(Q)-strong and in L2(0, T ; H1(�))-weak,
Mεμε → μ in L2(0, T ; H1(�))-weak and Mε pε → p in L2(Q)-weak,

(1.10)

where the quintuple (u, ϕ, μ, p, H(ϕ, u)) solves the effective system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u + H(ϕ, u) = Gu0 + G ∗ (h1 + μ∇xϕ − ∇x p) in Q,

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂(ϕ)∇μ) = 0 in Q,

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �,

(1.11)

where the convolution operator in (1.11)1 iswith respect to timewhile the one in (1.11)4
is with respect to space, G is a symmetric positive definite (d − 1) × (d − 1) matrix-
valued function bounded a.e. in space and continuous in time defined in (3.2) and
H(ϕ, u) is defined in (3.47), (3.48). Furthermore, if the function η is ϕ-independent,
that is, η(y, r) = η(y), then the function H(ϕ, u) vanishes, and u ∈ C([0, T ];H) and
p ∈ L2(0, T ; H1(�) ∩ L2

0(�)).

Further notation and concepts involved in the statement of Theorem1.1 are provided
in Sect. 3 and “Appendix A”.

Equation (1.11)1 is a nonlocal Hele-Shaw-type equation involving an extra term
H(ϕ, u) arising from the contribution of the viscosity coefficient η, especially from
its dependence upon the relative concentration ϕ; see Sect. 3. The convective Cahn–
Hilliard equation (1.11)3 also has a special form as the macroscopic mobility term
m̂(ϕ) is a symmetric and positive definite matrix, in contrast to the well-known sit-
uation where m̂(ϕ) is a scalar function of ϕ. We note that if η does not depend on
ϕ, then H(ϕ, u) is identically zero so that we recover the nonlocal (in time) Hele-
Shaw equation obtained in Peter andWoukeng (2024). In this case, though (1.11)1 has
recently been derived in Peter and Woukeng (2024), the global model (1.11) is still
new in the literature in that the Cahn–Hilliard equation has a new form (the mobility
is a matrix) and the potential is singular. So our model (1.11) is a doubly nonlocal
Hele-Shaw–Cahn–Hilliard system with nonconstant nondegenerate mobility and with
a singular potential. Therefore, the analysis of this model is more involved compared
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to the one in Peter and Woukeng (2024) . To the best of our knowledge, this is the first
time that such a model is considered in the literature.

For the simplified case that η and m do not depend on ϕε (but may depend on y),
we present some further analysis of the models. To start out with, it turns out that the
ε-model and the upscaled one are both well posed. The well-posedness of the limit
model is our second main result.

Theorem 1.2 (Continuous dependence on the data) Assume d = 3 as well as the
assumptions of Theorem 1.1. Assume moreover that the functions η and m are ϕ -
independent, that is, η(y, r) = η(y) and m(y, r) = m(y). Let (u, ϕ, μ, p) be as in
Theorem 1.1. Then, problem (1.1) possesses a unique solution. Furthermore, the func-
tion H(ϕ, u) in (1.11)1 vanishes and the mobility coefficient m̂ is a matrix independent
of ϕ and defined by

m̂ = 1

2

∫ 1

−1
M(m( · , y3)(I2 + ∇yω( · , y3))) dy3,

where the function ω = (ω j ) j=1,2 ∈ [B1,2
#A (R2; H1

0 (I ))]2 is the unique solution of the
corrector problem

−divy(m(y)(∇yω j + e j )) = 0 in R2 × I , ω j ∈ B1,2
#A (R2; H1

0 (I )),

I2 is the 2 × 2 identity matrix and e j is the j th vector of the canonical basis in R
3.

The effective system (1.11) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h1 + μ∇xϕ − ∇x p) in Q,

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂∇μ) = 0 in Q,

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(1.12)

Assume in addition that h1 ∈ L∞(0, T ; L4(�)2). If (u1, ϕ1) and (u2, ϕ2) are two
weak solutions of (1.12) corresponding to the initial data (u01, ϕ

0
1) and (u02, ϕ

0
2) with

source terms h1 and h2, and if further
∣
∣
∣ϕ0

i

∣
∣
∣ < 1, i = 1, 2, then there is a positive

constant C depending on the norms of the solutions such that, for almost all t ∈ [0, T ],

‖ϕ1(t) − ϕ2(t)‖2# + ∫ t0
(
‖ϕ1(τ ) − ϕ2(τ )‖2

L2(�)
+ ‖u1(τ ) − u2(τ )‖2

L2(�)

)
dτ

≤ C

(∥
∥
∥ϕ01 − ϕ02

∥
∥
∥
2

#
+
∣
∣
∣ϕ01 − ϕ02

∣
∣
∣+
∥
∥
∥u01 − u02

∥
∥
∥
2

L2(�)
+ ‖h1(t) − h2(t)‖2L2(�)

)

.

(1.13)
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In particular, the weak solution of (1.12) is unique so that the whole sequence
(uε, ϕε, με, pε)ε>0 converges in the sense of (1.10).

System (1.12) is actually very close to the doubly nonlocal Hele-Shaw–Cahn–
Hilliard model derived in Peter andWoukeng (2024) although it generalizes the latter.
Indeed, in Peter andWoukeng (2024),we obtained a system like (1.12) butwith m̂ = I2
(the identity matrix stemming from the fact that the mobility coefficient was constant
and equal to 1). It is also very important to note that in Peter and Woukeng (2024)
the system (1.12) involved a regular potential, while the function F ′ is singular at its
endpoints in the current situation. This model is also new because of the previous facts
and will be investigated. Noticing that the model in (1.12) is a two-dimensional one,
it is useful to point out that the Hele-Shaw–Cahn–Hilliard system was originally a
two-dimensional model (Dedè et al. 2018). It is also worth noting that a simplified
version of (1.12) has already been investigated in Giorgini et al. (2018), Della Porta
et al. (2018), Della Porta and Grasselli (2016). Indeed, in Della Porta et al. (2018) the
following model was considered:

⎧
⎨

⎩

u = −∇ p + μ∇ϕ, divu = 0,
∂ϕ
∂t + u · ∇ϕ − �ϕ = 0,
μ = F ′(ϕ) − J ∗ ϕ,

in � × (0, T ), (1.14)

with F being the convex logarithmic potential given by the singular part in (1.7), that
is,

F(s) = θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)) , s ∈ (−1, 1).

In Giorgini et al. (2018), the local version of (1.14) was considered while, in Della
Porta and Grasselli (2016), the following local version of (1.14),

⎧
⎨

⎩

u = −∇ p + μ∇ϕ + h, divu = 0,
∂ϕ
∂t + u · ∇ϕ − �ϕ = 0,
μ = aϕ − J ∗ ϕ + F ′(ϕ),

in � × (0, T ),

was derived in a asymptotic procedure from a Cahn–Hilliard–Brinkman model by
letting the constant viscosity therein tend to zero.

The nextmain result deals with the regularity properties of the uniqueweak solution
of (1.12) provided that some further assumptions on the initial and source terms are
made.

Theorem 1.3 (Regularity of the solutions) Assume d = 3 as well as the assumptions
of Theorem 1.2. Assume further that u0 = 0 and ∇F ′(ϕ0) ∈ L2(�)2. In addition,
suppose that h1 ∈ W 1,∞(0, T ; L2(�)2). Let (u, ϕ, μ, p) be as in Theorem 1.2. Then,
the (unique) weak solution of (1.12) is a strong solution and satisfies

ϕ ∈ L∞(0, T ; H1(�)) ∩ L4(0, T ;W 1,4(�)) ∩ L2(0, T ;W 1,r (�)), (1.15)
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∂ϕ

∂t
∈ L∞(0, T ; H1(�)′) ∩ L2(0, T ; L2(�)), (1.16)

μ ∈ L∞(0, T ; H1(�)) ∩ L4(0, T ;W 1,4(�)) ∩ L2(0, T ; H2(�)), (1.17)

p ∈ L∞(0, T ; H1(�) ∩ L2
0(�)), (1.18)

F ′(ϕ) ∈ L∞(0, T ; H1(�)), (1.19)

where 2 ≤ r < ∞.
Moreover, if curl h ∈ L∞(0, T ; Lr (�)) for some 2 ≤ r < ∞, then

u ∈
⎧
⎨

⎩

L2(0, T ;W 1,r (�)2) for the same r as curl h,
L4(0, T ;W 1,4(�)2) if r = 4,
L∞(0, T ; H1(�)2) if r = 2.

(1.20)

The results in Theorem 1.3 have been proved in Della Porta et al. (2018) for the
simplified model (1.14). They are new for our model (1.12).

The lastmain result dealswith the two-dimensional ε-model posed in�ε = (a, b)×
(−ε, ε) and it is stated as follows.

Theorem 1.4 Assume d = 2 and u0 = 0. Assume further that the function η

is constant (equal to 1). For each ε > 0, let (uε, ϕε, με, pε) be the solution to
(1.1). Then, the sequence (Mεuε, Mεμε, Mε pε)ε>0 weakly converges (as ε → 0)
in L2((0, T )× (a, b))2 × L2((0, T )× (a, b))× L2((0, T )× (a, b)) towards (0, μ, p)
and the sequence (Mεϕε)ε>0 strongly converges in L2((0, T ) × (a, b)) towards ϕ

with ϕ ∈ L∞(0, T ; H1(a, b)), μ ∈ L2(0, T ; H1(a, b)) and p ∈ L2(0, T ; L2
0(a, b)).

Moreover, the pair (ϕ, μ) is the unique solution to the 1D nonlocal Cahn–Hilliard
equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕ

∂t
− ∂

∂x1

(

m̂(ϕ)
∂μ

∂x1

)

= 0 in (0, T ) × (a, b),

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in (0, T ) × (a, b),

∂μ

∂x1
(t, a) = ∂μ

∂x1
(t, b) = 0 in (0, T ),

ϕ(0) = ϕ0 in (a, b).

(1.21)

Furthermore, the pressure p is the unique solution of

∂ p

∂x1
= h1 + μ

∂ϕ

∂x1
,

∫ b

a
p dx1 = 0. (1.22)

1.3 Outline of the Paper

Existence and the proof of the uniform estimates for the sequence of solutions to
(1.1) are addressed in Sect. 2. Section 3 is concerned with the passage to the limit
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in (1.1) when the thickness of the domain shrinks to zero using the notion of sigma-
convergence in thin heterogeneous media. We also derive therein the upscaled model
and complete the proof of Theorem 1.1 with the limit passage. Section 4 deals with the
continuous dependence of the solutions upon the initial data and some regularity results
of the solution, proving the remaining main theorems in particular. Finally, in Sect. 5,
we work out some concrete problems by relying on specific types of heterogeneities.
Standard results on sigma-convergence in thin heterogeneous media are gathered in
“Appendix A”, while an additional uniqueness result (for the microscopic problem) is
proved in “Appendix B”.

1.4 Notation

Unless otherwise specified, the vector spaces throughout are assumed to be real vector
spaces, and the scalar functions are assumed to take real values. If X and F denote a
locally compact space and a Banach space, respectively, then we write C(X; F) and
BUC(X; F) for continuous mappings of X into F and bounded uniformly continuous
mappings of X into F , respectively. We shall always assume that BUC(X; F) is
equipped with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖, where ‖·‖ denotes the
norm in F . For brevity, we will write C(X) = C(X;R) and BUC(X) = BUC(X;R).
Likewise, the usual space L p(X; F) and L p

loc(X; F) (X providedwith a positiveRadon
measure)will be denoted by L p(X) and L p

loc(X), respectively, in the casewhen F = R.
Finally, it will always be assumed that the numerical spaces Rm (m ≥ 1) and their
open sets are each equipped with Lebesgue measure dy = dy1 . . . dym . The spaceRm

ξ

will denote the numerical space Rm of generic variable ξ .
Throughout the work,C will denote a generic constant independent of ε > 0 which

may change from line to line.

2 Existence Result and Uniform Estimates

2.1 Existence Result

We begin with the functional-analytic setup. If X is a Banach space, we denote by 〈·, ·〉
the duality pairing between X and its topological dual X ′. We set X = X × · · · × X ,
d times, and we equip X with the product topology. In case X is a real Hilbert space
with inner product (·, ·)X , we shall denote by ‖·‖X the induced norm. We therefore
introduce the classical Hilbert spaces for the Navier–Stokes systems with no-slip
boundary condition (see, for example, Temam 2001) Hε and Vε defined by Vε =
{u ∈ H

1
0(�ε) : divu = 0 in �ε} and Hε = {u ∈ L

2(�ε) : divu = 0 in �ε and
u · ν = 0 on ∂�ε}, where ν is the outward unit normal to ∂�ε. The space Hε is
endowed with the scalar product denoted by (·, ·), the associated norm of which is
denoted by ‖·‖Hε

. The space Vε is equipped with the inner product

((u, v)) = (∇u,∇v), (u, v ∈ Vε)

123



Journal of Nonlinear Science           (2025) 35:107 Page 11 of 66   107 

whose associated norm is the norm of the gradient. Owing to the Poincaré inequality,
the norm in Vε is equivalent to theH1(�ε)-norm. We also define the space L2

0(�ε) =
{v ∈ L2(�ε) : ∫

�ε
v dx = 0}. We denote byV (resp.H) the space defined asVε (resp.

Hε) when replacing�ε by�. Finally, for any f ∈ H1(D)′ (D being any open bounded
domain in Rd ), f will stand for the average of f over D, i.e. f = |D|−1 〈 f , 1〉 where
|D| denotes the Lebesgue measure of D.

The following is the notion of weak solutions that will be considered in this work.

Definition 2.1 Let uε
0 ∈ Hε and ϕε

0 ∈ L∞(�ε) with F(ϕ0) ∈ L1(�ε),
∣
∣ϕε

0

∣
∣ ≤ 1

and 0 < T < ∞ be given. A couple (uε, ϕε) is a weak solution of (1.1) on [0, T ]
corresponding to (uε

0, ϕ
0) if

• (uε, ϕε) and με satisfy

(i) uε ∈ C([0, T ];Hε) ∩ L2(0, T ;Vε) with ∂uε/∂t ∈ L2(0, T ;V′
ε),

(ii) ϕε ∈ C([0, T ]; L2(�ε)) ∩ L2(0, T ; H1(�ε)) with ∂ϕε/∂t ∈ L2(0, T ; H1

(�ε)
′),

(iii) ϕε ∈ L∞(Qε), |ϕε(t, x)| < 1 a.e. (t, x) ∈ Qε;
• Settingρε(x, ϕε) = ε−1aε(x)ϕε+F ′(ϕε), we have for everyψ ∈ H1(�ε), v ∈ Vε

and for a.e. t ∈ (0, T ),

〈
∂uε

∂t
, v

〉

+ ε2
(
ηε( · , ϕε)∇uε,∇v

) = −
∫

�ε

(v · ∇με)ϕε dx +
∫

�ε

h(t)v dx,

〈
∂ϕε

∂t
, ψ

〉

+ (∇ρε,∇ψ) =
∫

�ε

(uε · ∇ψ)ϕε dx +
∫

�ε

ε−1(∇ J ∗ ϕε) · ∇ψ dx;

• uε(0) = uε
0 and ϕε(0) = ϕε

0.

The following existence result holds.

Theorem 2.1 Let the assumptions (A1)–(A5) be satisfied. Let ε > 0 be fixed and

assume further that
∣
∣
∣ϕε

0

∣
∣
∣ < 1. Then, there exists a solution (uε, ϕε) of (1.1) in the

sense of Definition 2.1. Moreover, to each solution (uε, ϕε) is associated a unique
pε ∈ L2(0, T ; L2

0(�ε)) such that (1.1)1 holds in the sense of distributions.

We can also prove a uniqueness results under additional assumptions. Namely,
if in addition the functions η(y, r) and m(y, r) are independent of r and further if
h1 ∈ L∞(0, T ; L4(�)d−1) and uε

0 ∈ L4(�ε)
d , then the solution (uε, ϕε) is unique.

As this result is not relevant for what follows, the proof is relegated to “Appendix B”.

2.2 Proof of Theorem 2.1

The proof is divided in three steps developed in the following subsections.

2.2.1 Approximate Solutions

We follow the same way of reasoning as in (Frigeri and Grasselli 2012, Proof of
Theorem 1) (see also Frigeri et al. 2015, Proof of Theorem 2) by regularizing the
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singular potential F and defining the approximate problem. To this end, we fix 0 <

σ < 1 and define the smooth potential as follows: Fσ = F1σ + F2 where

F1σ (s) =
⎧
⎨

⎩

F ′
1(1 − σ) for s ≥ 1 − σ

F ′
1(s) for |s| ≤ 1 − σ

F ′
1(−1 + σ) for s ≤ −1 + σ

(2.1)

with F1σ (0) = F1(0), F ′
1σ (0) = F ′

1(0), and F2 is a C2-extension of F2 on R with
quadratic growth satisfying

F2(s) ≥ min[−1,1] F2 − 1 and F
′′
2(s) ≥ min[−1,1] F

′′
2 for all s ∈ R. (2.2)

Then, as it can be seen in (Frigeri et al. 2015, p. 1271), assumption (A3) infers that

F1σ (s) ≤ F1(s) for all s ∈ (−1, 1) and σ ∈ (0, σ0]. (2.3)

Putting together (2.3) and the fact that F2 has quadratic growth, and invoking the
assumption F(ϕε

0) ∈ L1(�ε), yields

∫

�ε

Fσ (ϕε
0) dx ≤

∫

�ε

F1(ϕ
ε
0) dx + C < ∞ for all σ ∈ (0, σ0], (2.4)

as it can easily be shown that F1(ϕε
0) ∈ L1(�ε) (recall that F(ϕε

0) ∈ L1(�ε)). We also
get from (A3) as in Frigeri et al. (2015) that there exist 0 < δ ∈ R and δ0,C1,C2 ∈ R

such that, for all s ∈ R,

⎧
⎨

⎩

Fσ (s) ≥ δs2 − δ0,

F ′′
σ (s) + β ≥ c0∣
∣F ′

σ (s)
∣
∣2 ≤ C1 |Fσ (s)| + C2,

for all σ ∈ (0, σ0] . (2.5)

This being so, we consider the following approximate problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uεσ

∂t
− ε2div(ηε( ·, ϕεσ )∇uεσ ) + ∇ pεσ − μεσ ∇ϕεσ = h in Qε,

divuεσ = 0 in Qε,
∂ϕεσ

∂t
+ uεσ · ∇ϕεσ − div(mε( ·, ϕεσ )∇μεσ ) = 0 in Qε,

μεσ = ε−1 (aεϕεσ − J ∗ ϕεσ ) + F ′
σ (ϕεσ ) in Qε,

∂μεσ

∂ν
= 0 and uεσ = 0 on (0, T ) × ∂�ε,

uεσ (0, x) = uε
0(x) and ϕεσ (0, x) = ϕε

0(x) in �ε,

(2.6)

where σ lies in (0, σ0]. Putting properties (2.4)–(2.5) together, we see that the func-
tion Fσ satisfies the same hypotheses like in Frigeri et al. (2015) (see assumptions
(H3)–(H5) therein), so that taking into account the above-mentioned properties in
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conjunction with (A1), (A2) and (A4), we may appeal to (Frigeri et al. 2015, Theorem
1) to derive the existence of a vector function (uεσ , ϕεσ ) satisfying

uεσ ∈ C([0, T ];Hε) ∩ L2(0, T ;Vε) with
∂uεσ

∂t
∈ L2(0, T ;V′

ε), (2.7)

ϕεσ ∈ C([0, T ]; L2(�ε)) ∩ L2(0, T ; H1(�ε)) with
∂ϕεσ

∂t
∈ L2(0, T ; H1(�ε)

′),

(2.8)

μεσ = ε−1 (aεϕεσ − J ∗ ϕεσ ) + F ′
σ (ϕεσ ) ∈ L2(0, T ; H1(�ε)) (2.9)

and solving system (2.6). It is important to note that, as we assumed low Reynolds
number, the convective term (uεσ · ∇)uεσ which appears in Frigeri et al. (2015) is of
no effect in our model, so that the estimates of the velocity here do not depend on the
dimension d as in Frigeri et al. (2015). Also, the fact that the diffusion term depends
on x/ε does not tamper the proof since the operator −div(ηε( · , ϕεσ )∇) has the same
properties as the one in Frigeri et al. (2015). We also obtain as in Peter and Woukeng
(2024) the existence of a pressure pεσ ∈ L2(0, T ; L2

0(�ε)) satisfying (2.6)1.

2.2.2 A Priori Bounds Based on the Energy Estimate

We need to derive uniform estimates which will be useful in the limit passage first in σ

and then in ε. (The passage to the limit in ε will be done through the homogenization
process.) To begin with, we first use the dilatation in the vertical variable xd , i.e. yd =
xd/ε, and therefore define the new functions and coefficients as follows: ϕ̃εσ (t, x) =
ϕεσ (t, x, εxd) (for (t, x) ∈ Q1) and the same definition for ũεσ , μ̃εσ , p̃εσ , η̃ε( · , ϕ̃εσ ).
We also set Jε(x) = J (x, εxd) and ãε(x) = ε−1aε(x) ≡ (Jε ∗1)(x) for x ∈ �1. With
this definition, we recall that we have (1.8).

This being so, we set as in Peter and Woukeng (2024)

∇ε =
(

∇x , ε
−1 ∂

∂xd

)

and divε = divx + ε−1 ∂

∂xd
≡ ∇ε · .

We denote by H1
ε (�1) the space H1(�1) equipped with the H1-norm, the usual

gradient operator ∇ being replaced by ∇ε, i.e.

‖u‖H1
ε (�1)

=
(
‖u‖2L2(�1)

+ ‖∇εu‖2L2(�1)

) 1
2
for u ∈ H1(�1).
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In the new notation, the approximate problem reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ũεσ

∂t
− ε2div(̃ηε(·, ϕ̃εσ )∇ε ũεσ ) + ∇ε p̃εσ − μ̃εσ ∇εϕ̃εσ = h in Q1,

divũεσ = 0 in Q1,
∂ϕ̃εσ

∂t
+ ũεσ · ∇εϕ̃εσ − div(m̃ε(·, ϕ̃εσ )∇εμ̃εσ ) = 0 in Q1,

μ̃εσ = ãεϕ̃εσ − Jε ∗ ϕ̃εσ + F ′
σ (ϕ̃εσ ) in Q1,

∂μ̃εσ

∂ν
≡ ∇εμ̃εσ · ν = 0 and ũεσ = 0 on (0, T ) × ∂�1,

ũεσ (0, x) = ũε
0(x) and ϕ̃εσ (0, x) = ϕ̃ε

0(x) in �1.

(2.10)

Then, setting

E (̃uεσ (t), ϕ̃εσ (t)) = 1

2
‖ũεσ ‖2L2

+ 1

4

∫∫

�1×�1

Jε(x − ξ)(ϕ̃εσ (t, x) − ϕ̃εσ (t, ξ))2 dx dξ

+
∫

�1

Fσ (ϕ̃εδ(t)) dx,

(2.11)

and proceeding exactly as in the proof of (Peter and Woukeng 2024, Lemma 2.2), one
gets

d

dt
E (̃uεσ , ϕ̃εσ ) + ε2

(
η̃ε( ·, ϕ̃εσ )∇ε ũεσ , ∇ε ũεσ

)+ (m̃ε( ·, ϕ̃εσ )∇εμ̃εσ , ∇εμ̃εσ

) = (h, ũεσ ) .

(2.12)

Hence, integrating (2.12) over (0, t) (t > 0 freely fixed) gives

E (̃uεσ (t), ϕ̃εσ (t)) + ∫ t0
(
ε2
∥
∥
√

η̃ε( ·, ϕ̃εσ )∇ε ũεσ (τ )
∥
∥2
L2 + ∥∥√m̃ε( ·, ϕ̃εσ )∇εμ̃εσ (τ )

∥
∥2
L2

)
dτ

≤ E (̃uε
0, ϕ̃

ε
0) + ∫ t0 h(τ ) · ũεσ (τ ) dτ,

(2.13)

or, taking into account (A1) and (A4),

E (̃uεσ (t), ϕ̃εσ (t)) + ∫ t0
(
η1ε

2 ‖∇ε ũεσ (τ )‖2L2 + m2 ‖∇εμ̃ε(τ )‖2L2

)
dτ

≤ E (̃uε
0, ϕ̃

ε
0) + ∫ t0 h(τ ) · ũεσ (τ ) dτ,

(2.14)

for all t ∈ [0, T ].
Before proceeding to the a priori estimates, let us state the following result found

in (Marusić and Marusić-Paloka 2000, Lemmas 8, 11 and Remark 5), see also (Peter
and Woukeng 2024, Lemma 2.1 and Remark 2.1).

Lemma 2.1 There exists a positive constant C independent of ε such that

‖̃v‖L2(�1)
≤ Cε ‖∇εṽ‖L2(�1)d

, (2.15)
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and

‖̃v‖L4(�1)
≤ Cε

3
4 ‖∇εṽ‖L2(�1)d

, (2.16)

for all v ∈ H1
0 (�ε).

By a simple change of variable yd = εxd in the above lemma, we get for the above
constant C ,

‖v‖L2(�ε)
≤ Cε ‖∇v‖L2(�ε)d

, (2.17)

and

‖v‖L4(�ε)
≤ Cε

3
4 ‖∇v‖L2(�ε)d

(2.18)

for any u ∈ H1
0 (�ε).

Bearing this in mind, the following result holds.

Proposition 2.1 For any σ ∈ (0, σ0] and ε > 0 fixed, let (uεσ , ϕεσ , μεσ ) be a weak
solution of (2.6) in the sense of (Peter and Woukeng (2024), Definition 2.1) such that
(2.7)–(2.9) are satisfied. Then, there exists a positive constant C independent of both
ε and σ such that

‖ũεσ ‖L∞(0,T ;L2(�1)d ) ≤ C, (2.19)

ε ‖∇ε ũεσ ‖L2(Q1)d×d ≤ C, (2.20)

‖ϕ̃εσ ‖L2(0,T ;H1
ε (�1))

≤ C, (2.21)

‖μ̃εσ ‖L2(0,T ;H1
ε (�1))

≤ C, (2.22)

and

∥
∥F ′

σ (ϕ̃εσ )
∥
∥
L2(0,T ;L1(�1))

≤ C . (2.23)

Proof A review of the proof of (Peter and Woukeng 2024, Proposition 2.1) reveals
that, if we follow the same line of reasoning, we get

‖ũεσ (t)‖2
L2

+ α ‖ϕ̃εσ (t)‖2
L2

+ ∫ t0
(
η1ε

2 ‖∇ε ũεσ (τ )‖2
L2

+ 2m2 ‖∇εμ̃εσ (τ )‖2
L2

)
dτ

≤ ∥∥ũε
0

∥
∥2
L2 + 1

2

∫∫

�1×�1
Jε(x − ζ )(ϕ̃ε

0(x) − ϕ̃ε
0(ζ ))2 dx dζ + 2

∫

�1
Fσ (ϕ̃ε

0) dx + C,

(2.24)

where C is a positive constant depending on �1 and on the given constants of the
assumptions, and α > 0 depends on ‖J‖L1 . The assumptions on aε and J lead us to

∫∫

�1×�1

Jε(x − ζ )(ϕ̃ε
0(x) − ϕ̃ε

0(ζ ))2 dx dζ ≤ C
∥
∥ϕ̃ε

0

∥
∥2
L2(�1)

.
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This, together with (2.4), shows that the right-hand side of (2.24) is bounded by a
positive constant C independent of both ε and σ ∈ (0, σ0]. Hence, we infer from
(2.24) that (2.19) and (2.20) hold, and moreover, we have

‖∇εμ̃εσ ‖L2(Q1)
≤ C (2.25)

and

‖ϕ̃εσ ‖L∞(0,T ;L2(�1))
≤ C . (2.26)

Now, we take the gradient ∇ε of (2.10)4 and then take the scalar product in L2(�1)

of the resulting equality with ∇εϕ̃εσ . Then, proceeding as in the proof of (Peter and
Woukeng 2024, Proposition 2.1) , we obtain (see (2.30) in Peter andWoukeng (2024))

‖∇εϕ̃εσ ‖2L2(Q1)
≤ C
(
‖∇εμ̃εσ ‖2L2(Q1)

+ ‖ϕ̃εσ ‖2L2(Q1)

)
≤ C,

which, together with (2.26), yields (2.21). It remains to check (2.22) and (2.23). Let
us start with (2.23). It is worth recalling that we have assumed that F(0) = F ′(0) = 0
(see (1.6)). This being so, we follow the steps of (Frigeri and Grasselli 2012, Proof of
Theorem 1) and define the function

Hσ (s) = Fσ (s) + β

2
s2, s ∈ R,

where β is given in assumption (A3) so that (2.5)2 is satisfied. Then, from (2.5)2, we

notice that H ′
σ is monotone. Therefore, relying on the fact that

∣
∣
∣ϕε

0

∣
∣
∣ < 1, we infer from

the proof of (Frigeri and Grasselli 2012, (3.36)) that there exists a positive constant C̃
depending on ϕε

0 but neither on ε otherwise nor on σ such that

∥
∥H ′

σ (ϕ̃εσ )
∥
∥
L1(�1)

≤ C̃
∫

�1

(ϕ̃εσ − ϕε
0)H

′
σ (ϕ̃εσ ) dx + C̃ . (2.27)

Indeed, if we have a look at the proof of (3.36) in (Frigeri and Grasselli 2012, Section
3) , we see that

C̃ = κ2 − κ1

δ
|�1| max[κ1,κ2]

(
∣
∣F ′

1

∣
∣+ ∣∣F ′

2

∣
∣+ βδ2),

where κ1, κ2 ∈ (−1, 1) are fixed such that κ1 ≤ 0 ≤ κ2 and κ1 < ϕε
0 < κ2, δ =

min
{
ϕ̃ε
0 − κ1, κ2 − ϕ̃ε

0

}
and δ2 = max {−κ1, κ2} so that we may assume that (2.27)

holds true with a constant completely independent of ε in the place of C̃ . Indeed, in
view of assumption (1.4) on ϕε

0, we infer that
∥
∥ϕ̃ε

0 − ϕ0
∥
∥
L2(�1)

→ 0 as ε → 0. This

123



Journal of Nonlinear Science           (2025) 35:107 Page 17 of 66   107 

yields at once

∣
∣
∣ϕ̃ε

0 − ϕ0
∣
∣
∣ =
∣
∣
∣
∣|�1|−1

∫

�1

(ϕ̃ε
0 − ϕ0)dx

∣
∣
∣
∣

≤ C(�1)

∥
∥
∥ϕ̃

ε
0 − ϕ0
∥
∥
∥
L2(�1)

→ 0 as ε → 0.

Now, assume without loss of generality that κi 
= 0 for i = 1, 2. We distinguish two
different cases.

Case 1) We assume that κ1, κ2 are such that
κ1
2 < ϕ0 < κ2

2 . Let ε0 > 0 be such that∣
∣
∣ϕ̃ε

0 − ϕ0
∣
∣
∣ ≤ − κ1

2 for all 0 < ε ≤ ε0. This yields

ϕ0 − κ1

2
≤ ϕ̃ε

0 − κ1 ∀0 < ε ≤ ε0. (2.28)

We also choose ε1 > 0 such that
∣
∣
∣ϕ̃ε

0 − ϕ0
∣
∣
∣ ≤ κ2

2 for all 0 < ε ≤ ε1 to get

κ2

2
− ϕ0 ≤ κ2 − ϕ̃ε

0 ∀0 < ε ≤ ε1. (2.29)

(2.28) and (2.29) lead to

δ1 := min
(
ϕ0 − κ1

2
,
κ2

2
− ϕ0
)

≤ δ = min
{
ϕ̃ε
0 − κ1, κ2 − ϕ̃ε

0

}
,

for all 0 < ε ≤ min(ε0, ε1).
Case 2) We assume that κ2

2 ≤ ϕ0 < κ2. (The case κ1 < ϕ0 ≤ κ1
2 is treated

similarly as the case κ2
2 ≤ ϕ0 < κ2.) Let n0 be a positive integer such that

κ2
2 ≤ ϕ0 <

(1− 2−n0)κ2. Such an integer exists. Let ε2 > 0 be such that
∣
∣
∣ϕ̃ε

0 − ϕ0
∣
∣
∣ ≤ 2−n0κ2 for

all 0 < ε ≤ ε2. Then we have

(1 − 2−n0)κ2 − ϕ0 ≤ κ2 − ϕ̃ε
0 ∀0 < ε ≤ ε2.

Since κ2
2 ≤ ϕ0, it follows that κ1

2 < ϕ0, so that, arguing as in the previous case, we

have ϕ0 − κ1
2 ≤ ϕ̃ε

0 − κ1 for all 0 < ε ≤ ε0. Therefore, taking

δ1 := min
(
ϕ0 − κ1

2
, (1 − 2−n0)κ2 − ϕ0

)
,

we have δ1 ≤ δ for all 0 < ε ≤ min(ε0, ε2).
Now, letting

C = κ2 − κ1

δ1
|�1| max[κ1,κ2]

(
∣
∣F ′

1

∣
∣+ ∣∣F ′

2

∣
∣+ βδ2),
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we get immediately C̃ ≤ C for all 0 < ε ≤ min(ε0, ρ) (ρ = ε1 or ε2), and so, it holds
that, for all σ ∈ (0, σ0] and all 0 < ε ≤ min(ε0, ε1),

∥
∥H ′

σ (ϕ̃εσ )
∥
∥
L1(�1)

≤ C
∫

�1

(ϕ̃εσ − ϕε
0)H

′
σ (ϕ̃εσ ) dx + C, (2.30)

where in (2.30) the positive constant C is independent of both σ and ε.
We assume in the sequel that ε satisfies the above requirement. This being so,

testing μ̃εσ by ϕ̃εσ − ϕε
0 and using the fact that ϕ̃εσ (t) = ϕε

0 for all t ≥ 0 (the mass
conservation property) yields

∫

�1

(ϕ̃εσ − ϕε
0)F

′
σ (ϕ̃εσ ) dx =

∫

�1

(ϕ̃εσ − ϕε
0)(μ̃εσ − μ̃εσ ) dx

−
∫

�1

(̃aεϕ̃εσ − Jε ∗ ϕ̃εσ )(ϕ̃εσ − ϕε
0) dx,

so that
∫

�1

(ϕ̃εσ − ϕε
0)F

′
σ (ϕ̃εσ ) dx ≤ C

(‖∇εμ̃εσ ‖L2 + ‖ϕ̃εσ ‖L2
) ∥∥
∥ϕ̃εσ − ϕε

0

∥
∥
∥
L2

,

(2.31)

where we have used the Poincaré–Wirtinger inequality for μ̃εσ − μ̃εσ . Going back to
(2.30) and using therein the definition of Fσ (in terms of Hσ ) and appealing to (2.31),
we get

∥
∥F ′

σ (ϕ̃εσ )
∥
∥
L1(�1)

≤ ∥∥H ′
σ (ϕ̃εσ )
∥
∥
L1(�1)

+ β ‖ϕ̃εσ ‖L1(�1)

≤ C
∫

�1

(ϕ̃εσ − ϕε
0)(F

′
σ (ϕ̃εσ ) + βϕ̃εσ ) dx + C + β ‖ϕ̃εσ ‖L1(�1)

≤ C
(‖∇εμ̃εσ ‖L2 + ‖ϕ̃εσ ‖L2

) ∥∥
∥ϕ̃εσ − ϕε

0

∥
∥
∥
L2

+C ‖ϕ̃εσ ‖L2(�1)
+ C . (2.32)

Hence, using inequalities (2.25) and (2.26), we infer from the last series of above
inequalities that

∥
∥F ′

σ (ϕ̃εσ )
∥
∥
L1(�1)

≤ C,

that is, (2.23).Now, since
∫

�1
μ̃εσ dx = ∫

�1
F ′

σ (ϕ̃εσ ) dx ,we readily get
∥
∥μ̃εσ

∥
∥
L2(0,T )

≤
C , so that, by the Poincaré–Wirtinger inequality and ( 2.25), it follows at once that

∫

Q1

|μ̃εσ |2 dx dt ≤ C

[∫

Q1

|∇εμ̃εσ |2 dx dt +
∫ T

0

∣
∣
∣
∣

∫

�1

μ̃εσ dx

∣
∣
∣
∣

2

dt

]

≤ C . (2.33)
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Therefore, (2.22) stems from (2.25) and (2.33). ��
Based on the results contained in Proposition 2.1,we deduce the following estimates

for the solution of (2.6).

Corollary 2.1 Let (uεσ , ϕεσ , μεσ ) be the solution of (2.6) given by (2.7), (2.8) and
(2.9). Then, it holds that

‖uεσ ‖L∞(0,T ;L2(�ε)d ) ≤ Cε
1
2 , (2.34)

‖uεσ ‖L2(0,T ;L4(�ε)d ) ≤ Cε
1
4 , (2.35)

ε ‖∇uεσ ‖L2(Qε)d×d ≤ Cε
1
2 , (2.36)

‖ϕεσ ‖L∞(0,T ;L2(�ε))
+ ‖ϕεσ ‖L2(0,T ;H1(�ε))

≤ Cε
1
2 , (2.37)

‖μεσ ‖L2(0,T ;H1(�ε))
≤ Cε

1
2 , (2.38)

∥
∥
∥
∥
∂uεσ

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

≤ Cε
3
2 , (2.39)

∥
∥
∥
∥
∂ϕεσ

∂t

∥
∥
∥
∥
L2(0,T ;H1(�ε)′)

≤ Cε
1
2 , (2.40)

∥
∥F ′

σ (ϕεσ )
∥
∥
L2(0,T ;L1(�ε))

≤ Cε, (2.41)

and

‖pεσ ‖L2(Qε)
≤ Cε

1
2 , (2.42)

where C is a positive constant independent of both ε > 0 and σ ∈ (0, σ0].
Proof The estimates (2.34), (2.36), (2.37), (2.38) and (2.41) are easy conse-

quences of the straightforward identities ‖φ‖L2(�ε)
= ε

1
2
∥
∥φ̃
∥
∥
L2(�1)

, ‖∇φ‖L2(�ε)
=

ε
1
2
∥
∥∇εφ̃
∥
∥
L2(�1)

and ‖φ‖L1(�ε)
= ε
∥
∥φ̃
∥
∥
L1(�1)

. Estimate (2.39) can be obtained
exactly as we did it in the proof of (Peter and Woukeng 2024, Corollary 2.1). With
this in mind, let us check (2.35) and (2.40). To this end, let v ∈ H1(�ε); then,

∣
∣
∣
∣

〈
∂ϕεσ

∂t
(t), v

〉∣
∣
∣
∣ =
∣
∣−〈div(uεσ ϕεσ ), v〉 − 〈div(mε( ·, ϕεσ )∇μεσ ), v

〉∣
∣

≤
∣
∣
∣
∣

∫

�ε

ϕεσ uεσ · ∇v dx

∣
∣
∣
∣+
∣
∣
∣
∣

∫

�ε

mε( ·, ϕεσ )∇μεσ · ∇v dx

∣
∣
∣
∣

≤ C ‖uεσ ‖L4(�ε)
‖ϕεσ ‖L4(�ε)

‖∇v‖L2(�ε)

+m2 ‖∇μεσ ‖L2(�ε)
‖∇v‖L2(�ε)

.

Thus,

sup
v∈H1(�ε),‖v‖H1≤1

∣
∣
∣
∣

〈
∂ϕεσ

∂t
(t), v

〉∣
∣
∣
∣ ≤ C(‖uεσ ‖L4(�ε)

‖ϕεσ ‖L4(�ε)
+ ‖∇μεσ ‖L2(�ε)

).
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Integrating the square of both members of the above last inequality over (0, T ), we
obtain

∥
∥
∥
∥

∂ϕεσ

∂t

∥
∥
∥
∥
L2(0,T ;H1(�ε)′)

≤ C(‖uεσ ‖L2(0,T ;L4(�ε))
‖ϕεσ ‖L2(0,T ;L4(�ε)) + ‖∇μεσ ‖L2(Qε)).

(2.43)

We use the Gagliardo–Nirenberg inequality to get

‖uεσ ‖L2(0,T ;L4(�ε))
≤ Cε

1
4 and ‖ϕεσ ‖L2(0,T ;L4(�ε))

≤ Cε
5
8 . (2.44)

Indeed, if d = 3, we have from (2.18)

‖uεσ ‖L4(�ε)
≤ Cε

3
4 ‖∇uεσ ‖L2(�ε)

,

so that using (2.36) we get

(∫ T

0
‖uεσ ‖2L4(�ε)

dt

) 1
2

≤ Cε
3
4

(∫ T

0
‖∇uεσ ‖2L2(�ε)

dt

) 1
2

≤ Cε
1
4 .

As for ϕεσ , one has, using the 3D Gagliardo–Nirenberg inequality,

‖ϕεσ ‖L4(�ε)
≤ C ‖ϕεσ ‖

1
4
L4(�ε)

‖∇ϕεσ ‖
3
4
L4(�ε)

.

Hence,

(∫ T

0
‖ϕεσ ‖2L4(�ε)

dt

) 1
2

≤ C

(∫ T

0
‖ϕεσ ‖4L2(�ε)

dt

) 1
8
(∫ T

0
‖∇ϕεσ ‖2L2(�ε)

dt

) 3
8

≤ Cε
5
8 .

This yields (2.40) for the case d = 3. Now, if d = 2, the Gagliardo–Nirenberg
inequality gives

∫ T

0
‖uεσ ‖4L4(�ε)

dt ≤ C ‖uεσ ‖2L∞(0,T ;L2(�ε))

∫ T

0
‖∇uεσ ‖2L2(�ε)

dt

≤ C ; see (2.34) and (2.36),

and

∫ T

0
‖ϕεσ ‖4L4(�ε)

dt ≤ C ‖ϕεσ ‖2L∞(0,T ;L2(�ε))

∫ T

0
‖∇ϕεσ ‖2L2(�ε)

dt

≤ Cε2; see (2.37) and (2.26).
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This also leads to (2.40) for d = 2. Altogether, this gives (2.35) and (2.40). Finally,
(2.42) is obtained by arguing exactly as in the proof of (Peter and Woukeng 2024,
Proposition 2.2). This concludes the proof. ��

2.2.3 The Cahn–Hilliard–Stokes System: the Limit � → 0

Consider the sequence (uεσ , ϕεσ , μεσ , pεσ )0<σ≤σ0 . Thanks to the uniform controls
(2.34)–(2.42) and to well-known compactness results, we obtain the existence of
a subsequence of the above-mentioned sequence (not relabelled) and of functions
uε ∈ L∞(0, T ;Hε) ∩ L2(0, T ;Vε) ∩ H1(0, T ;V′

ε), ϕε ∈ L∞(0, T ; L2(�ε)) ∩
L2(0, T ; H1(�ε)) ∩ H1(0, T ; H1(�ε)

′), με ∈ L2(0, T ; H1(�ε)) and pε ∈
L2(0, T ; L2

0(�ε)) such that, as σ → 0,

uεσ → uε in L∞(0, T ;Hε)-weak ∗ and in L2(0, T ;Vε)-weak, (2.45)

uεσ → uε in L2(0, T ;Hε)-strong and a.e. in Qε, (2.46)

uεσ → uε in L2(0, T ; L4(�ε)
d)-weak, (2.47)

∂uεσ

∂t
→ ∂uε

∂t
in L2(0, T ;V′

ε)-weak, (2.48)

ϕεσ → ϕε in L∞(0, T ; L2(�ε))-weak ∗ and in L2(0, T ; H1(�ε))-weak,

(2.49)

ϕεσ → ϕε in L2(0, T ; L2(�ε))-strong and a.e. in Qε, (2.50)
∂ϕεσ

∂t
→ ∂ϕε

∂t
in L2(0, T ; H1(�ε)

′)-weak, (2.51)

μεσ → με in L2(0, T ; H1(�ε))-weak, (2.52)

pεσ → pε in L2(Qε)-weak. (2.53)

With these convergence results at hand, we need to pass to the limit in the variational
formulation of (2.6) in order to prove that the quadruple (uε, ϕε, με, pε) solves (1.1).
Prior to that, we need to show that |ϕε| < 1 a.e. in Qε . Proceeding as in (Frigeri and
Grasselli 2012, Proof of Theorem 1), we rely on the monotonicity of H ′

σ to reach our
goal, that is, to show that

ϕε ∈ L∞(Qε) with |ϕε(t, x)| < 1 a.e. in Qε. (2.54)

Thus, it follows from (2.54) noting the pointwise convergence (2.50) and the uniform
convergence of F ′

σ to F ′ on every compact subinterval of (−1, 1) (recall that F ′ and
F ′

σ are continuous on (−1, 1)) that

F ′
σ (ϕεσ ) → F ′(ϕε) a.e. in Qε. (2.55)

This being so, by a mere routine, we may use the convergence results (2.45)–(2.53)
and (2.55) to pass to the limit in the variational form of (2.6) and, therefore, solve (1.1)
in the sense of Definition 2.1.
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2.3 Uniform Estimates

Owing to the above convergence results, we may pass to the limit in the energy
inequality (2.14) and obtain

E (̃uε(t), ϕ̃ε(t)) + ∫ t0
(
η1ε

2 ‖∇ε ũσ (τ )‖2L2 + m2 ‖∇εμ̃ε(τ )‖2L2

)
dτ

≤ E (̃uε
0, ϕ̃

ε
0) + ∫ t0 h(τ ) · ũε(τ ) dτ for all t ∈ [0, T ]. (2.56)

Thus, proceeding as in Sect. 2.2.2 and taking into account (2.54), we obtain the fol-
lowing uniform bounds (constants C > 0 independent of ε):

‖uε‖L∞(0,T ;L2(�ε)d ) ≤ Cε
1
2 , (2.57)

‖uε‖L2(0,T ;L4(�ε)d ) ≤ Cε
1
4 , (2.58)

ε ‖∇uε‖L2(Qε)d×d ≤ Cε
1
2 , (2.59)

‖ϕεσ ‖L∞(0,T ;L2(�ε))
+ ‖ϕεσ ‖L2(0,T ;H1(�ε))

≤ Cε
1
2 , (2.60)

‖ϕε‖L∞(Qε)
≤ 1, (2.61)

‖με‖L2(0,T ;H1(�ε))
≤ Cε

1
2 , (2.62)

∥
∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2(0,T ;V′

ε)

≤ Cε
3
2 , (2.63)

∥
∥F ′(ϕε)

∥
∥
L2(0,T ;L1(�ε))

≤ Cε, (2.64)

and

‖pε‖L2(Qε)
≤ Cε

1
2 . (2.65)

We need a further estimate which will be useful in the forthcoming sections. Using
the notation Mεϕε for the partial mean integral of the order parameter, see (1.9), we
have the following result.

Proposition 2.2 We have Mεϕε ∈ L2(0, T ; H1(�)) with ∂Mεϕε

∂t ∈ L2(0, T ; H1(�)′)
and it holds

sup
ε>0

[

‖Mεϕε‖L2(0,T ;H1(�)) +
∥
∥
∥
∥
∂Mεϕε

∂t

∥
∥
∥
∥
L2(0,T ;H1(�)′)

]

≤ C,

where the positive constant C is independent of ε.

Proof The proof is very similar to the one of (Peter and Woukeng 2024, Proposition
2.3) and is therefore omitted. ��
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3 Passage to the Homogenization Limit

In this section, we aim to pass to the limit in system (1.1) for ε → 0. This will be
achieved provided that we make a structure hypothesis on the oscillating viscosity and
mobility terms. To proceed with, let A be an ergodic algebra with mean value onRd−1,
and let B2

A(Rd−1; L2(I )) be the associated vector-valued generalized Besicovitch
space defined in “Appendix A”. We assume throughout the current section that the
functions η and m satisfy:

(A6) η( · , r),m( · , r) ∈ B2
A(Rd−1; L2(I )) for all r ∈ R, where I = (−1, 1).

If for instance A = Cper(Y ), the algebra of Y -continuous periodic function in
R
d−1, then B2

A(Rd−1; L2(I )) = L2
per(Y ; L2(I )), the subspace of L2

loc(R
d−1; L2(I ))

consisting of Y -periodic functions,Y = (0, 1)d−1. In this case, assumption (A6) will
amount to the functions η(y, r) and m(y, r) being periodic with respect to y, where
y = (y, yd). So assumption (A6) is of capital interest in the limit passage when the
coefficients are oscillating like in (1.1).

3.1 Preliminaries

Let us first define some function spaces. Let

V = {u ∈ (A∞(Rd−1; C10(I )))d : divu = 0},

and letV (resp.H ) be the closure ofV inB1,2
A (Rd−1; H1

0 (I ))d (resp.B2
A(Rd−1; L2(I ))d ).

For u ∈ B2
A(Rd−1; L2(I ))d , we set

‖u‖2 =
(∫

I
M
(
|u(·, yd)|2

)
dyd

) 1
2

.

Then, endowed with the norm ‖·‖2, B2
A(Rd−1; L2(I ))d is a Hilbert space. Now,

set ∇ = ( ∂
∂ y1

, . . . , ∂
∂ yd−1

, ∂
∂ yd

), where ∂
∂ yi

is defined in “Appendix A”. For u ∈
B1,2
A (Rd−1; H1

0 (I ))d , we set

∥
∥∇u
∥
∥
2 =
(∫

I
M
(∣
∣∇ ⊗ u(·, yd)

∣
∣2
)
dyd

)1/2

,

where ∇ ⊗ u =
(

∂ui
∂ y j

)

1≤i, j≤d
with ∂

∂ yd
:= ∂

∂ yd
(the usual partial derivative in the dis-

tributional sense). As shown in (Cardone et al. 2024, Lemma 4.1),B1,2
A (Rd−1; H1

0 (I ))
is a Hilbert space under the norm

∥
∥∇.
∥
∥
2 . With this in mind, it is a fact that

V = {u ∈ B1,2
A (Rd−1; H1

0 (I ))d : divu = 0} where div = ∇· . We equip V and
H with the relative topologies. In practice, we shall rather consider the subspace Vd
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of V defined below:

Vd =
{

u = (ui )1≤i≤d ∈ V :
∫

I
M(ud(·, yd)) dyd = 0

}

,

a closed subspace of V endowed with the relative norm.
Bearing this in mind, we consider the following auxiliary Stokes system, which

corresponds to local cell problems in the periodic case: for a.e. x ∈ �, find
ω j (x, · , · ) ≡ ω j (x) solving

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω j (x)

∂t
− divy(η( · , ϕ( · , x))∇ yω

j (x)) + ∇ yπ
j = 0 in (0,∞) × R

d−1 × I ,

divyω j (x) = 0 in (0,∞) × R
d−1 × I ,

ω j (x) = 0 on (0,∞) × R
d−1 × {−1, 1},

ω j (x, 0, ·) = e j in Rd−1 × I ,

(3.1)

where e j is the j th vector of the canonical basis in R
d and where ϕ ∈

C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)). The following result holds.

Proposition 3.1 Let the assumptions (A2) and (A6) be satisfied. Then, there exists
a unique solution ω j (x) = (ω

j
i (x))1≤i≤d ∈ C([0, T ]; H) ∩ L2(0, T ; Vd) for 1 ≤

j ≤ d − 1 (resp. C([0, T ]; H) ∩ L2(0, T ; V ) for j = d) of (3.1) verifying ∂ω j (x)
∂t ∈

L2(0, T ; V ′). Moreover, it holds that ω j ∈ C([0, T ]; L2(�; H)) ∩ L2(Q; Vd) for
1 ≤ j ≤ d − 1 (resp. C([0, T ]; L2(�; H)) ∩ L2(Q; V ) for j = d). If, in addition, we
set

Gi j (t, x) = 1

2

∫ 1

−1
M(ωi (x, t, ·, yd))e j dyd for (t, x) ∈ Q and 1 ≤ i, j ≤ d

≡ 1

2

∫ 1

−1
M(ωi

j (x, t, ·, yd)) dyd , (3.2)

then the Gi j are uniformly bounded a.e. in � by a function continuous in time and
decreasing exponentially as t increases and G jd = Gdj = 0 for all 1 ≤ j ≤ d − 1.
Moreover, the matrix G = (Gi j )1≤i, j≤d−1 is symmetric and positive definite.

Proof Although the coefficient η( · , ϕ) depends on the order parameter ϕ, the proof
of (Cardone et al. 2024, Section 4.1) (see also Peter and Woukeng 2024, Section 4.1)
carries overmutatismutandis to the present setting. Indeed, thewell-posedness of (3.1)
follows a classical setting (recall that η(y, r) ≥ η1 a.e. in (y, r)). Also, it is a fact that
the matrixG is symmetric, positive definite and its coefficients decrease exponentially
in time. The bound on the entries stems from the inequality (see Cardone et al. 2024,

123



Journal of Nonlinear Science           (2025) 35:107 Page 25 of 66   107 

Propositions 4.1 and 4.2)

∥
∥
∥ω

j (x, t)
∥
∥
∥
2

≤ √
2 exp
(
−η1

4
t
)
for all t ∈ [0, T ], a.e. x ∈ �,

where η1 is given by (A1), so that

∣
∣Gi j (t, x)

∣
∣ ≤ exp

(
−η1

4
t
)
, all t ∈ [0, T ] and a.e. x ∈ �,

which completes the proof. ��

3.2 The Limit Procedure

Owing to bounds (2.57)–(2.65) and to Proposition 2.2, we are in position to
apply the compactness results stated in “Appendix A” as follows: given any
ordinary sequence E = (εn)n∈N∗ , there exist a subsequence E ′ of E and func-
tions u0 ∈ L2(Q;B1,2

A (Rd−1; H1
0 (I )))d , (ϕ, ϕ1), (μ,μ1) ∈ L2(0, T ; H1(�)) ×

L2(Q; B1,2
#A (Rd−1; H1(I ))) and p ∈ L2(Q;B2

A(Rd−1; L2(I ))) such that, as E ′ �
ε → 0,

uε → u0 in L2(Qε)
d -weak �A, (3.3)

ε∇uε → ∇ yu0 in L2(Qε)
d×d -weak �A, (3.4)

ϕε → ϕ in L2(Qε)-strong �A, (3.5)

Mεϕε → ϕ in L∞(Q)-weak∗, (3.6)

∇ϕε → ∇xϕ + ∇yϕ1 in L2(Qε)
d -weak �A, (3.7)

με → μ in L2(Qε) -weak �A, (3.8)

∇με → ∇xμ + ∇yμ1 in L2(Qε)
d -weak �A, (3.9)

and

pε → p in L2(Qε)-weak �A. (3.10)

We recall that ∇xφ = (
∂φ
∂x1

, . . . ,
∂φ

∂xd−1
, 0) for φ = ϕ,μ. One can easily see that in

view of the equation divuε = 0 in Qε, we get divyu0 = 0 in Q ×R
d−1 × I . Next, let

u(t, x) = 1

2

∫ 1

−1
M(u0(t, x, ·, xd)) dxd , (t, x) ∈ Q, (3.11)

and set

u = (ui )1≤i≤d−1, where u = (ui (t, x))1≤i≤d . (3.12)
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Then we have

uε → u in L2(Q)d -weak, (3.13)

and we deduce from the bound (2.58) that u ∈ L2(0, T ; L4(�)d). Also, as shown
in (Cardone et al. 2024, Section 4), we have ud = 0 so that u = (u, 0), where
u ∈ L2(Q)d−1 with

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�, (3.14)

where n stands for the outward unit normal to ∂�. One also has

∫

�

∫

I
M(p(t, x, ·, ζ )) dζ dx = 0,

which stems from the identity
∫

�ε
pε dx = 0.

This being so, let

â(x) = ( Ĵ ∗ 1)(x) =
∫

�

J (x − z, 0) dz for x ∈ �. (3.15)

We shall need the following auxiliary lemma.

Lemma 3.1 Let (vε)ε∈E be a sequence in L2(Qε) satisfying vε → v0 in L2(Qε)-
strong �A as E � ε → 0, where v0 ∈ L2(0, T ; L2(�)). Let f : Rd × R → R be a
Carathéodory function satisfying f ( · , r) ∈ L∞(Rd) (for any fixed r ∈ R), and let
there exist a positive constant κ such that

| f (y, r) − f (y, s)| ≤ κ |r − s| for a.e. y ∈ R
d and all r , s ∈ R.

Assume in addition that f ( · , r) ∈ B2
A(Rd−1; L2(I )) for all r ∈ R. Then, as E � ε →

0,

f ε( · , vε) → f (·, v0) in L2(Qε)-strong �A, (3.16)

where f ε( · , vε)(t, x) = f (x/ε, vε(t, x)) for (t, x) ∈ Qε.

Proof It is sufficient to show that, as E � ε → 0,

ε− 1
2
∥
∥ f ε( · , vε)

∥
∥
L2(Qε)

→ ‖ f ( · , v0)‖L2(Q;B2
A(Rd−1;L2(I ))) . (3.17)

First of all, set

g(t, x, y) = f (y, v0(t, x)), (t, x, y) ∈ Q × R
d−1 × I .
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Then, g(t, x, · ) ∈ B2,∞
A (Rd−1; L2(I )) for a.e. (t, x) ∈ Q, where B2,∞

A = B2
A ∩ L∞,

such that ‖g(t, x, · )‖B2,∞
A

≤ B(t, x) for a B ∈ L2(Q). It is a well-known fact that for

any function g0 ∈ C(Q; B2,∞
A (Rd−1; L2(I ))), one has

gε
0 → g0 in L2(Qε) -strong �A, (3.18)

where gε
0(t, x) = g0(t, x, x/ε). Owing to the density of C(Q; B2,∞

A (Rd−1; L2(I )))
in the corresponding space which is only square-integrable over Q, we may show that
(3.18) still holds for g0 in the latter space. This shows that (3.18) is true for g defined
above. Therefore, proving (3.17) amounts to checking

ε− 1
2
∥
∥ f ε( · , vε) − gε

∥
∥
L2(Qε)

→ 0 when E � ε → 0.

But in view of the properties of f , we have

ε− 1
2
∥
∥ f ε( · , vε) − gε

∥
∥
L2(Qε)

≤ κε− 1
2 ‖vε − v0‖L2(Qε)

→ 0

as E � ε → 0 (recall that vε → v0 in L2(Qε)-strong �A and that v0 does not depend
on y). This concludes the proof. ��

Now, we have all the ingredients to pass to the limit in the variational formulation
of (1.1). To this end, let � ∈ (C∞

0 (Q) ⊗ A∞(Rd−1; C∞
0 (I )))d , (φ0, φ1) ∈ C∞

0 (Q) ×
(C∞

0 (Q) ⊗ A∞(Rd−1; C∞
0 (I ))) and χ0 ∈ C∞

0 (Q). Define the functions �ε and φε on
Qε as follows:

�ε(t, x) = �
(
t, x,

x

ε

)
, φε(t, x) = φ0(t, x) + εφ1

(
t, x,

x

ε

)
,

for (t, x) ∈ Qε. We take (�ε, φε, χ0) ∈ C∞
0 (Qε)

d × C∞
0 (Qε) × C∞

0 (Q) as test
function in the variational formulation of (1.1) to get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∫Qε
uε

(
∂�

∂t

)ε
dx dt + ε2

∫

Qε
ηε(ϕε)∇uε ·

(

(∇x�)ε + 1

ε
(∇y�)ε

)

dx dt

− ∫Qε
pε

(

(divx�)ε + 1

ε
(divy�)ε

)

dx dt − ∫Qε
με∇ϕε�

ε dx dt

= ∫Qε
h�ε dx dt,

(3.19)

⎧
⎪⎪⎨

⎪⎪⎩

− ∫Qε
ϕε

∂φε

∂t
dx dt + ∫Qε

(uε · ∇ϕε)φε dx dt

+ ∫Qε
mε(ϕε)∇με · (∇xφ0 + ε(∇xφ1)

ε + (∇yφ1)
ε) dx dt = 0,

(3.20)

∫

Qε

μεχ0 dx dt =
∫

Qε

ε−1aεϕεχ0 dx dt −
∫

Qε

ε−1(J ∗ ϕε)χ0 dx dt +
∫

Qε

F ′(ϕε)χ0 dx dt .

(3.21)
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We deal with each equation separately. First, we consider (3.19). Letting E ′ � ε → 0,
we obtain

∫

Q

∫

I
M(p divy�) dyd dx dt = 0,

showing that p is independent of y, that is, p(t, x, y) = p(t, x). As a result, the identity∫

�0

∫

I M(p(t, x, ·, yd)) dyd dx = 0 obtained above amounts to
∫

�0
p(t, x) dx = 0,

meaning that p ∈ L2(0, T ; L2
0(�)). Next, we restrict to � satisfying divy� = 0 and

divide (3.19) by ε to obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

ε

∫

Qε
uε

(
∂�
∂t

)ε
dx dt + 1

ε

∫

Qε
ε2ηε(ϕε)∇uε ·

(

(∇x�)ε + 1

ε
(∇y�)ε

)

dx dt

−1

ε

∫

Qε
pε(divx�)ε dx dt − 1

ε

∫

Qε
με∇ϕε�

ε dx dt = 1

ε

∫

Qε
h�ε dx dt .

(3.22)

Our aim is to pass to the limit in (3.22) when E ′ � ε → 0. A quick look at (3.22)
reveals that only the second and the last terms on its left-hand side require attention.
So, as for the second term, we first use the strong sigma-convergence of (ϕε)ε∈E ′ to get
the strong sigma-convergence of ηε(ϕε) towards η( · , ϕ) in L2(Qε), see Lemma 3.1.
Next, we use (3.4) and appeal to Theorem A.4 to obtain, as E ′ � ε → 0,

1

ε

∫

Qε

εηε(ϕε)∇uε · (∇y�)ε dx dt →
∫

Q

∫

I
M(η( · , ϕ)∇ yu0 · ∇y�) dyd dx dt .

(3.23)

Concerning the last term on the left-hand side of (3.22), we have

1

ε

∫

Qε

με∇ϕε�
ε dx dt = −1

ε

∫

Qε

ϕε(�
ε∇με + με(divx�)ε) dx dt

→
∫

Q

∫

I
M
(
ϕ
[
(∇xμ + ∇yμ1)� + μdivx�

])
dyd dx dt .

Hence, dividing both sides of (3.22) by two and taking the limit of the resulting equality
when E ′ � ε → 0 yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2

∫

Q

∫

I M

(

u0(t, x, · , yd)∂�

∂t
(t, x, ·, yd)

)

dyd dx dt

+1

2

∫

Q

∫

I M(η( · , ϕ)∇ yu0 · ∇y�) dyd dx dt

−1

2

∫

Q

∫

I M
(
ϕ
[
(∇xμ + ∇yμ1)� + μdivx�

])
dyd dx dt

−1

2

∫

Q

∫

I M(pdivx�) dyd dx dt = 1

2

∫

Q

∫

I M(h�) dyd dx dt

(3.24)
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for all � ∈ (C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )))d satisfying divy� = 0.
Now, we turn to (3.20) and divide it by 2ε and proceed as we did in obtaining (3.24)

(see especially the proof of (3.23)). Using the equality

∫

Qε

(uε∇ϕε)φε dx dt = −
∫

Qε

ϕεuε∇φε dx dt,

and passing to the limit ε → 0 yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

2

∫

Q

∫

I M
(
ϕ

∂φ0
∂t

)
dyd dx dt − 1

2

∫

Q

∫

I M(ϕu0(∇xφ0 + ∇yφ1)) dyd dx dt

+1

2

∫

Q

∫

I M
(
m( · , ϕ)(∇xμ + ∇yμ1)(∇xφ0 + ∇yφ1)

)
dyd dx dt = 0.

(3.25)

Let us now have a look at (3.21). First and foremost, we need to show that

|ϕ(t, x)| < 1 for a.e. (t, x) ∈ Q. (3.26)

This would clarify the limit passage in the term involving F ′(ϕε). First of all, we know
from (3.5) that

ε−1
∫

Qε

|ϕε(t, x) − ϕ(t, x)|2 dx dt =
∫

Q1

|ϕε(t, x, εxd) − ϕ(t, x)|2 dx dt

→ 0 when E ′ � ε → 0.

So, setting ϕ̃ε(t, x) = ϕε(t, x, εxd), (t, x) ∈ Q1, we see that

ϕ̃ε → ϕ in L2(Q1)-strong and a.e. in Q1.

With this in mind, let us introduce the sets

Eε
δ = {(t, x) ∈ Q1 : |ϕ̃ε(t, x)| > 1 − δ} ,

Eδ = {(t, x) ∈ Q1 : |ϕ̃0(t, x)| > 1 − δ} ,

where 0 < δ < 1 is arbitrarily given and where ϕ̃(t, x) = ϕ(t, x) for (t, x) ∈ Q1.
Then, from the pointwise convergence of ϕ̃ε and the Fatou lemma, we get that, for any
δ > 0,

meas(Eδ) ≤ lim inf
ε→0

meas(Eε
δ ),

where meas stands for the Lebesgue measure in Q1.
Now define the function H by H(s) = F(s) + β

2 s
2, s ∈ (−1, 1). Since H ′ is

nondecreasing, we have that H ′(s) ≥ 0 for s ∈ [0, 1) and H ′(s) ≤ 0 for s ∈ (−1, 0].
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Thus, we can write

min
(
H ′(1 − δ),−H ′(−1 + δ)

)
meas(Eε

δ ) ≤ ∥∥H ′(ϕ̃ε)
∥
∥
L1(Q1)

.

However,

∥
∥H ′(ϕε)

∥
∥
L1(Qε)

≤ ∥∥F ′(ϕε)
∥
∥
L1(Qε)

+ β ‖ϕε‖L1(Qε)

≤ T
1
2
∥
∥F ′(ϕε)

∥
∥
L2(0,T ;L1(�ε))

+ β |�ε| 12 ‖ϕε‖L∞(0,T ;L2(�ε))

≤ Cε,

so that
∥
∥H ′(ϕ̃ε)

∥
∥
L1(Q1)

≤ C , C being independent of both ε and δ. Thus, we have

meas(Eδ) ≤ C

min (H ′(1 − δ),−H ′(−1 + δ))
.

Letting δ → 0 in the last inequality yields at once

meas({(t, x) ∈ Q1 : |ϕ̃0(t, x)| ≥ 1}) = 0.

This infers

|ϕ(t, x)| < 1 a.e. (t, x) ∈ Q,

that is, (3.26). We are now in a position to proceed with (3.21). We first deal with the
term 1

ε

∫

Qε
F ′(ϕε)χ0 dx dt . We have

1

ε

∫

Qε

F ′(ϕε)χ0 dx dt =
∫

Q1

F ′(ϕ̃ε)χ0 dx dt .

By virtue of the pointwise convergence ϕ̃ε → ϕ a.e. in Q1, we deduce from the
continuity of F ′ in (−1, 1) that F ′(ϕ̃ε) → F ′(ϕ) a.e. in Q1. Next, it holds that∥
∥F ′(ϕ̃ε)

∥
∥
L1(Q1)

≤ C (recall that
∥
∥F ′(ϕε)

∥
∥
L1(Qε)

≤ Cε). The Lebesgue dominated
convergence theorem gives

1

ε

∫

Qε

F ′(ϕε)χ0 dx dt →
∫

Q

∫

I
F ′(ϕ)χ0 dyd dx dt . (3.27)

As for the other terms in (3.21), we rely on (Peter and Woukeng 2024, Proposition
4.1) to get, as E ′ � ε → 0,

1

ε

∫

Qε

ε−1(aεϕε − J ∗ ϕε)χ0 dx dt →
∫

Q

∫

I
(̂aϕ − Ĵ ∗ ϕ)χ0 dyd dx dt . (3.28)
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Collecting the convergence results (3.27)–(3.28), we get from (3.21) (which has been
divided by 2ε) the following equation after the limit passage

⎧
⎪⎨

⎪⎩

1

2

∫

Q

∫

I μχ0 dyd dx dt = 1

2

∫

Q

∫

I âϕχ0 dyd dx dt − 1

2

∫

Q

∫

I ( Ĵ ∗ ϕ)χ0 dyd dx dt

+1

2

∫

Q

∫

I F
′(ϕ)χ0 dyd dx dt .

(3.29)

Finally, since uε
0 → u0 in L2(�ε)

d -strong �A and ϕε
0 → ϕ0 in L2(�ε)

d -strong �A,
we conclude by integration by parts that u0(0) = u0 and ϕ0(0) = ϕ0. Recalling the
definition (3.12), we infer from the equality ud = 0 that u0 = (u0, 0), that is, the last
component of u0 is zero.

In summary, we have just proved the following result.

Proposition 3.2 The function tuple (u0, ϕ, ϕ1, μ, μ1, p) solves the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2

∫

Q

∫

I M

(

u0(t, x, · , yd)∂�

∂t
(t, x, · , yd)

)

dyd dx dt

+1

2

∫

Q

∫

I M(η(·, ϕ)∇ yu0 · ∇y�) dyd dx dt

−1

2

∫

Q

∫

I M
(
ϕ
[
(∇xμ + ∇yμ1)� + μdivx�

])
dyd dx dt

−1

2

∫

Q

∫

I M(pdivx�) dyd dx dt = 1

2

∫

Q

∫

I M(h�) dyd dx dt,

(3.30)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

2

∫

Q

∫

I M
(
ϕ

∂φ0
∂t

)
dyd dx dt − 1

2

∫

Q

∫

I M(ϕu0(∇xφ0 + ∇yφ1)) dyd dx dt

+1

2

∫

Q

∫

I M
(
m(·, ϕ)(∇xμ + ∇yμ1)(∇xφ0 + ∇yφ1)

)
dyd dx dt = 0,

(3.31)

⎧
⎪⎨

⎪⎩

1

2

∫

Q

∫

I μχ0 dyd dx dt = 1

2

∫

Q

∫

I âϕχ0 dyd dx dt − 1

2

∫

Q

∫

I ( Ĵ ∗ ϕ)χ0 dyd dx dt

+1

2

∫

Q

∫

I F
′(ϕ)χ0 dyd dx dt,

(3.32)

|ϕ(t, x)| < 1 a.e. (t, x) ∈ Q, (3.33)

u0(0, x, y) = u0(x) and ϕ(0, x) = ϕ0(x) for a.e. x ∈ � and y ∈ R
d−1 × I , (3.34)

for all � ∈ (C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )))d with divy� = 0, (φ0, φ1) ∈ C∞
0 (Q) ×

(C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I ))) and χ0 ∈ C∞
0 (Q).

3.3 The Doubly Nonlocal Homogenized Limit

In this subsection, we aim to recover the homogenized problem for (u, ϕ, μ, p), where
u is defined by (3.12) and satisfies (3.14). We should consider each of the equations
(3.30)–(3.32) separately.
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First, we deal with (3.32) to see that it is equivalent to

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q. (3.35)

This stems from the fact that none of the terms in (3.32) depends on the variable yd ∈ I
and, moreover, meas(I ) = 2.

Now, we proceed with (3.31) to see that it is equivalent to the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ∫Q ϕ
∂φ0
∂t dx dt − 1

2

∫

Q

∫

I M(ϕu0 · ∇xφ0) dyd dx dt

+1

2

∫

Q

∫

I M
(
m( · , ϕ)(∇xμ + ∇yμ1) · ∇xφ0

)
dyd dx dt = 0,

for all φ0 ∈ C∞
0 (Q),

(3.36)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

2

∫

Q

∫

I M(ϕu0 · ∇yφ1) dyd dx dt

+1

2

∫

Q

∫

I M
(
m( · , ϕ)(∇xμ + ∇yμ1)∇yφ1

)
dyd dx dt = 0,

for all φ1 ∈ C∞
0 (Q) ⊗ A∞(Rd−1; C∞

0 (I )).

(3.37)

We continue with (3.37), where we choose φ1 to be of the form φ1(t, x, y) =
φ0
1(t, x)θ(y) with φ0

1 ∈ C∞
0 (Q) and θ ∈ A∞(Rd−1; C∞

0 (I )). Then, we obtain

∫

I
M(ϕu0 · ∇yθ) dyd +

∫

I
M
(
m( · , ϕ)(∇xμ + ∇yμ1)∇yθ

)
dyd = 0,

or, taking into account that
∫

I M(ϕu0∇yθ) dyd = ∫I M(ϕdivy(u0θ) dyd = 0 (recall
that ϕ does not depend on y),

∫

I
M
(
m( · , ϕ(t, x))(∇xμ(t, x) + ∇yμ1(t, x, · ))∇yθ

)
dyd = 0,

θ ∈ A∞(Rd−1; C∞
0 (I )) (3.38)

for a.e. (t, x) ∈ Q, which is the weak formulation of the equation

−divy(m( · , ϕ(t, x))(∇xμ(t, x) + ∇yμ1(t, x, · )) = 0 in Rd−1 × I .

So, for ξ ∈ R
d−1×{0} and r ∈ R arbitrarily fixed, we consider the corrector problem

{
Find πξ,r ≡ πξ,r (t, x, · ) ∈ B1,2

#A (Rd−1; H1
0 (I )) such that

−divy(m( · , r)(r + ∇yπξ,r (t, x, · )) = 0 in Rd−1 × I .
(3.39)

Proceeding as in the proof of (Jäger et al. 2023, Theorem 1.2), we may prove that there
exists a function πξ,r ∈ L2(Q; B1,2

#A (Rd−1; H1
0 (I )))whose gradient∇yπξ,r is unique,

and which is such that, for a.e. (t, x) ∈ Q, πξ,r (t, x, ·) ∈ B1,2
#A (Rd−1; H1

0 (I )) solves
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(3.39) in the classical sense of distributions in R
d−1 × I . This being so, choosing

ξ = ∇xμ(t, x) and r = ϕ(t, x) in (3.39) and relying on the uniqueness of the gradient
of the solution to (3.39), it emerges that

μ1(t, x, y) = π∇xμ(t,x),ϕ(t,x)(t, x, y) for a.e. (t, x, y) ∈ Q × R
d−1 × I .

Now, choosing ξ = e j (the j th vector of the canonical basis Rd−1; remember that we
view it as the vector (e j , 0) ∈ R

d ) and r = ϕ(t, x), and denoting by ω j (t, x, ·) the
corresponding solution of (3.39), we easily get that

μ1(t, x, y) = ∇xμ(t, x) · ω(t, x, y) with ω(t, x, ·) = (ω(t, x, · ))1≤ j≤d−1.(3.40)

Bearing this in mind, we define the homogenized mobility term (matrix) as follows

m̂(ϕ)(t, x) = 1

2

∫

I
M(m( · , yd , ϕ(t, x))(Id−1 + ∇yω(t, x, · , yd)) dyd , (t, x) ∈ Q,

(3.41)

where Id−1 denotes the (d − 1) × (d − 1) identity matrix.
Finally, substituting in (3.36) the expression for μ1 given by (3.40), we arrive at

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂(ϕ)∇xμ) = 0 in Q. (3.42)

Before proceeding further, it is worth noting that in case the mobility m does not
depend on y, we can easily show that μ1 = 0 and, in that case, the homogenized
mobility coefficient is exactly m(ϕ) and not a matrix as in (3.42). This stems from the
fact that the function ϕ does not depend on the microscopic variable y.

Let us consider problem (3.30). By a mere routine using (Jäger andWoukeng 2022,
Proposition 3.1), we infer the existence of a function p1 ∈ L2(Q;B2

A(Rd−1; L2(I )))
such that

∂u0
∂t

− divy(η(·, ϕ)∇ yu0) + ∇ y p1 = h1 − ∇x p + μ∇xϕ in Q × R
d−1 × I .

(3.43)

In order to deal with (3.43), let us pay attention to the auxiliary Stokes system (3.1)
and consider the function ω j = (ω

j
i )1≤i≤d defined therein with the associated matrix

G = (Gi j )1≤i, j≤d−1. Fix (t, x) ∈ Q and choose in the variational formulation of
(3.1) the test function v(τ, y) = u0(t − τ, x, y) for (τ, y) ∈ (0, t) ×R

d−1 × I . Then,
we have

〈
∂ω j

∂τ
(τ ), u0(t − τ)

〉

+
∫ 1

−1
M(η( · , ϕ(τ ))∇ yω

j (τ ) · ∇ yu0(t − τ)) dyd = 0,
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that is,

⎧
⎪⎪⎨

⎪⎪⎩

d
dτ

∫ 1
−1 M(ω j (τ )u0(t − τ)) dyd +

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

+ ∫ 1−1 M(η( · , ϕ(τ ))∇ yω
j (τ ) · ∇ yu0(t − τ)) dyd = 0.

Here, the brackets 〈 , 〉 mean the duality pairing between B1,2
A (Rd−1; H1

0 (I )) and its
dual. We integrate the above last equation over (0, t) and divide both sides of the
resulting equality by two. Then,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

∫ 1
−1 M(ω j (t)u0(0)) dyd − 1

2

∫ 1
−1 M(u0(t)e j ) dyd + 1

2

∫ t
0

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

dτ

+ 1

2

∫ t
0
∫ 1
−1 M(η( · , ϕ(τ ))∇ yω

j (τ ) · ∇ yu0(t − τ)) dyd dτ = 0.

(3.44)

Now, we test (3.43) by�(τ, x, y) = ϕ(x)ω j (x, t−τ, y) for (τ, x, y) ∈ Q×R
d−1× I

with ϕ ∈ C∞
0 (�), where t ∈ (0, T ] is fixed. Then, a simple computation shows that

we have, in the sense of distributions in �,

1

2

∫ t
0

〈
∂u0
∂τ

(τ ), ω j (t − τ)

〉

dτ + 1

2

∫ t
0
∫ 1
−1 M(η( · , ϕ(τ ))∇ yu0(τ ) · ∇ yω

j (t − τ)) dyd dτ

= 1

2

∫ t
0
∫ 1
−1 M(ω j (t − τ))h(τ ) dyd dτ − 1

2

∫ t
0
∫ 1
−1 ∇x p(τ )M(ω j (t − τ)) dyd dτ

+ 1

2

∫ t
0
∫ 1
−1 μ(τ)∇xϕ(τ)M(ω j (t − τ)) dyd dτ.

(3.45)

But we have

∫ t

0

〈
∂u0
∂τ

(τ ), ω j (t − τ)

〉

dτ =
∫ t

0

〈
∂u0
∂τ

(t − τ), ω j (τ )

〉

dτ,

and

∫ t
0

∫ 1
−1 M(η( · , ϕ(τ ))∇ yu0(τ ) · ∇ yω

j (t − τ)) dyd dτ

= ∫ t0
∫ 1
−1 M(η( · , ϕ(t − τ))∇ yω

j (τ ) · ∇ yu0(t − τ)) dyd dτ.
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Therefore, comparing (3.44) and (3.45) we are led to

1

2

∫ 1
−1 M(u0(t))e j dyd − 1

2

∫ 1
−1 M(ω j (t))u0 dyd

+1

2

∫ t
0

∫ 1
−1 M([η( · , ϕ(t − τ)) − η( · , ϕ(τ ))]∇ yu0(t − τ) · ∇ yω

j (τ )) dyd dτ

= 1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))h(τ ) dyd dτ − 1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))∇x p(τ ) dτ dyd

+1

2

∫ t
0

∫ 1
−1 M(ω j (t − τ))μ(τ)∇xϕ(τ) dyd dτ,

or, equivalently,

u j (t) − G j (t)u0 + Hj (ϕ, u)(t)

= (G j ∗ h1)(t) − (G j ∗ ∇x p)(t) + (G j ∗ μ∇xϕ)(t), (3.46)

where the function Hj (ϕ, u) ∈ C([0, T ]; L1(�)) is defined by

Hj (ϕ, u)(t, x) = 1

2

∫ t

0

∫ 1

−1
M([η( · , ϕ(t − τ))

−η( · , ϕ(τ ))]∇ yu0(t − τ) · ∇ yω
j (τ )) dyd dτ

for a.e. (t, x) ∈ Q. (3.47)

Then, setting

H(ϕ, u) = (Hj (ϕ, u))1≤ j≤d−1, (3.48)

and knowing that G = (G j )1≤ j≤d−1, we get at once

u(t) + H(ϕ, u)(t) = G(t)u0 + (G ∗ (h1 − ∇x p + μ∇xϕ))(t) in �, t ∈ [0, T ].
(3.49)
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We notice that the functions u, ϕ, μ, p and H(ϕ, u) solve the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u + H(ϕ, u) = Gu0 + G ∗ (h1 + μ∇xϕ − ∇x p) in Q,

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂(ϕ)∇xμ) = 0 in Q,

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(3.50)

We are now in a position to prove the first main result of the work.

Proof of Theorem 1.1 First of all, we note that existence of solutions satisfying uniform
a priori estimates was proved in Sect. 2, see Theorem 2.1 and Sect. 2.3. Now, we know
from Definition A.1 that if vε → v0 in Lr (Qε)-weak �A, then defining Mεvε as in
(1.9) we have

Mεvε → 1

2

∫

I
M(v0( · , yd)) dyd in Lr (Q)-weak.

Bearing this in mind and given an ordinary sequence E of positive real numbers
converging to zero, we infer from the above property and from the convergence results
(3.3), (3.13), (3.5) and (3.7), (3.8)–(3.9) and (3.10) that, up to a subsequence, we have

Mεuε → (u, 0) in L2(Q)d -weak,

Mεϕε → ϕ in L2(Q)-strong and in L2(0, T ; H1(�))-weak,

Mεμε → μ in L2(0, T ; H1(�))-weak,

and

Mε pε → p in L2(Q) -weak,

where u ∈ L2(0, T ;H), ϕ ∈ C([0, T ]; L2(�))∩ L2(0, T ; H1(�)), μ ∈ L2(0, T ; H1

(�)) and p ∈ L2(0, T ; L2
0(�)). Defining H(ϕ, u) like in (3.47), (3.48), we have

shown that the quintuple (u, ϕ, μ, p, H(ϕ, u)) solves system (1.11). The proof is
completed. ��

The homogenized mobility m̂(ϕ) is defined by (3.41). The function H(ϕ, u) arises
from the contribution of the viscosity coefficient η, especially from its dependence
upon the order parameter. If η is ϕ-independent, then H(ϕ, u) vanishes.
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Remark 3.1 Assume that the function η does not depend on the second variable, that
is, η(y, r) = η(y) for all (y, r) ∈ R

d × R. Then the function H(ϕ, u) vanishes. As
a by-product, the solution ω j of the auxiliary Stokes system (3.1) is independent of
the macroscopic variable x . As a result, we recover the nonlocal (in time) Hele-Shaw
equation derived in Peter and Woukeng (2024) for smooth potentials F .

For the case that η is ϕ-independent, we may summarize the results of the analysis
made in the current subsection as follows.

Theorem 3.1 Thequintuple (u, ϕ, μ, p, H(ϕ, u))definedby (3.12), (3.5), (3.8), (3.10)
and (3.50), respectively, is the weak solution to the homogenized system (3.50). If in
addition the function η is independent of its second variable, then the function ω j

is independent of the macroscopic variable x ∈ � and we recover in (3.50)1 the
nonlocal (in time) Hele-Shaw equation. In this case, the quadruple (u, ϕ, μ, p) solves
the Hele-Shaw–Cahn–Hilliard system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h1 + μ∇xϕ − ∇x p) in Q,

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂(ϕ)∇xμ) = 0 in Q,

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(3.51)

4 Analysis of the Upscaled Doubly Nonlocal Model

In this section, we are concerned with the analysis of the problem (3.51). Our aim is
twofold: (i) addressing the well-posedness of (3.51 ) and (ii) providing some regularity
properties of its solution. Throughout this section, we assume that the functions η and
m do not depend on the second variable, that is, η(y, r) = η(y) and m(y, r) = m(y)
for all (y, r) ∈ R

d×R. Then, in (3.50)1, the function H vanishes and the homogenized
mobility coefficient in (3.50)3 becomes independent of ϕ and has the form

m̂ = 1

2

∫

I
M(m( · , yd)(Id−1 + ∇yω( · , yd))) dyd ,

where the corrector functionω = (ω j )1≤ j≤d−1 is now independent of (t, x) and solves
the problem

−divy
(
m(y)(e j + ∇yω j )

) = 0 in Rd−1 × I , ω j ∈ B1,2
#A (Rd−1; H1

0 (I )).
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As a result, m̂ has constant entries. One may easily check that m̂ is symmetric and
positive definite.

Now, for f ∈ H1(�)′, we recall the definition of its average f over �: f =
|�|−1 〈 f , 1〉. Here � is the open bounded set considered in Sect. 1, which is assumed
to be Lipschitz. We recall the definition of the following sets (see (B.1) where this
time we replace �1 by �):

V0 =
{
v ∈ H1(�) : v = 0

}
, so that V ′

0 =
{
f ∈ H1(�)′ : f = 0

}
.

We consider the operator A : H1(�) → H1(�)′ defined by

〈Au, v〉 =
∫

�

m̂∇u · ∇v dx for u, v ∈ H1(�).

We observe that A is a continuous mapping from H1(�) into V ′
0. We also see that its

restriction A0 to V0 is an isomorphism from V0 onto V ′
0; this stems from the fact that

the matrix m̂ is symmetric and positive definite. We denote by A−1
0 the inverse of A0;

then,

AA−1
0 f = f ∀ f ∈ V ′

0, and A−1
0 Au = u ∀u ∈ V0.

It is also a fact that, for f ∈ V ′
0, u = A−1

0 f is the unique solution with zero mean
value of the Neumann problem

− div(m̂∇u) = f in �, m̂∇u · n = 0 on ∂�, (4.1)

n being the unit outward normal to ∂�. In addition, it holds that

〈
Au, A−1

0 f
〉
= 〈 f , u〉 for all u ∈ H1(�) and all f ∈ V ′

0,

〈
f , A−1

0 g
〉
=
〈
g, A−1

0 f
〉
=
∫

�

m̂∇(A−1
0 f ) · ∇(A−1

0 g) dx, f , g ∈ V ′
0. (4.2)

We equip V ′
0 with the norm ‖ f ‖V ′

0
=
∥
∥
∥∇(A−1

0 f )
∥
∥
∥
L2(�)

for f ∈ V ′
0, which makes it a

Hilbert space. As a result, one has

〈
∂ f

∂t
, A−1

0 f

〉

= 1

2

d

dt
‖ f ‖2V ′

0
for a.e. t ∈ (0, T ) and all f ∈ H1(0, T ; V ′

0). (4.3)

It is also known that the following map (defined on H1(�)′)

‖ f ‖∗ =
(∥
∥ f − f

∥
∥2
V ′
0
+ ∣∣ f ∣∣2
) 1

2
, f ∈ H1(�)′,
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is a norm on H1(�)′ equivalent to the usual norm of H1(�)′. Since m̂ has constant
coefficients, the following ellipticity estimates for the solutions of (4.1) hold

∥
∥
∥∇A−1

0 f
∥
∥
∥
Hk (�)

≤ C ‖ f ‖Hk−1(�) for all f ∈ Hk−1(�) ∩ L2
0(�) and k = 1, 2.

(4.4)

Bearing all these preliminaries in mind, we proceed to the first aim of this section.

4.1 Continuous Dependence of the Solutions on the Initial Data

We deal in this subsection with the system (3.51) arising from the upscaling of the
3D problem (1.1). It is posed on the 2D domain �. We rewrite it without using the
subscripts, hat, etc. This gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = Gu0 + G ∗ (h + μ∇ϕ − ∇ p) in Q,

divu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇ϕ − div(m(ϕ)∇μ) = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(4.5)

Here the data are constrained as follows:

(A1)1 The matrix G = G(t) is symmetric, positive definite and has entries which
decrease exponentially as t increases,

(A2)1 J ∈ W 1,1(R2) ∩ C(R2\ {0}), a(x) = ∫
�
J (x − ξ) dξ ≥ 0 (x ∈ �), and the

function F satisfies (A3) (see Sect. 1),
(A4)1 The 2 × 2 matrix m has constant entries, is symmetric and (mξ, ξ) ≥ m1 |ξ |2

for all ξ ∈ R
2, where m1 > 0 is a constant,

(A5)1 u0 ∈ H = {u ∈ L2(�)2 : divu = 0 in � and u · n = 0 on ∂�}, ϕ0 ∈ L∞(�)

with F(ϕ0) ∈ L1(�) and
∣
∣
∣ϕ0
∣
∣
∣ < 1, h ∈ L2(Q)2.

Assumptions (A1)1, (A2)1, (A3), (A4)1 and (A5)1 being valid, it is known from
Sect. 3 that problem (4.5) possesses at least a solution (u, ϕ, μ, p) satisfying u ∈
C([0, T ];H)∩L2(0, T ; L4(�)2), ϕ ∈ C([0, T ]; L2(�))∩L2(0, T ; H1(�))∩L∞(Q)

with |ϕ(t, x)| < 1 a.e. in Q, μ ∈ L2(0, T ; H1(�)) and p ∈ L2(0, T ; L2
0(�)). That

u belongs to L2(0, T ; L4(�)2) stems from the convergence result (3.13) and the
definition (3.11).

As a further notation,when there is a danger of confusion,we shallwrite∗t (resp.∗x )
to denote the convolution operator with respect to time (resp. space).
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Theorem 4.1 Assume h ∈ L∞(0, T ; L4(�)2) and u0 ∈ L4(�)2. If (u1, ϕ1) and
(u2, ϕ2) are twoweak solutions of (4.5) corresponding to the initial conditions (u01, ϕ

0
1)

and (u02, ϕ
0
2) with source terms h1 and h2 and if further

∣
∣
∣ϕ0

i

∣
∣
∣ < 1, i = 1, 2, then there

exists a positive constant C depending on the norms of the two solutions such that, for
all t ∈ [0, T ], we have

‖ϕ1(t) − ϕ2(t)‖2∗ + ∫ t0 (‖u1(τ ) − u2(τ )‖2L2(�)
+ ‖ϕ1(τ ) − ϕ2(τ )‖2L2(�)

) dτ

≤ C
(∥
∥ϕ0

1 − ϕ0
2

∥
∥2∗ +
∣
∣
∣ϕ0

1 − ϕ0
2

∣
∣
∣+ ∥∥u01 − u02

∥
∥2
L2(�)

+ ‖h1 − h2‖2L∞(0,T ;L2(�))

)
.

(4.6)

In particular, the solution of (4.5) is unique.

Note that proving this theorem proves the second main result, Theorem 1.2.

Proof First of all, arguing as in (Peter andWoukeng 2024, Proposition 5.1) we observe
that p ∈ L2(0, T ; H1(�) ∩ L2

0(�)) and u ∈ L∞(0, T ; L4(�)2). Also, rewriting the
term μ∇ϕ in the form

μ∇ϕ = ∇
(

F(ϕ) + a
ϕ2

2

)

− ∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ

and using p̃ = p − (F(ϕ) + a ϕ2

2 ) as the new pressure, Eq. (4.5)1 becomes

u = G(t)u0 + G ∗t (h − ϕ2

2
∇a + (J ∗x ϕ)∇ϕ − ∇ p̃). (4.7)

Let (u1, ϕ1) and (u2, ϕ2) be two solutions of (4.5) (with (4.5)1 being replaced by
(4.7)) corresponding to the initial data and source terms as in the statement of the
theorem. Setting u = u1 − u2, ϕ = ϕ1 − ϕ2, μ = μ1 − μ2 and p̃ = p̃1 − p̃2, we
have ϕ(0) = ϕ0

1 − ϕ0
2 ≡ ϕ0 and u(0) = u01 − u02 ≡ u0 and the quadruple (u, ϕ, μ, p̃)

satisfies the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = G(t)u0 − G ∗t (h + ϕ(ϕ1

+ϕ2)
∇a
2 + (J ∗x ϕ)∇ϕ2 + (J ∗x ϕ1)∇ϕ + ∇ p̃)) in Q,

divu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇ϕ1 + u2 · ∇ϕ − div(m∇μ) = 0 in Q,

μ = aϕ − J ∗ ϕ + F ′(ϕ1) − F ′(ϕ2) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �.

(4.8)
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The variational formulation of (4.8) is as follows:

〈
∂ϕ

∂t
, ψ

〉

+ (m∇μ,∇ψ) = (uϕ1,∇ψ) + (u2ϕ,∇ψ) , ψ ∈ H1(�), (4.9)

(u, v) = (Gu0, v) + (G ∗t h, v) − (G ∗t
(
ϕ(ϕ1 + ϕ2)

∇a
2

)
, v
)

− (G ∗t (J ∗x ϕ)∇ϕ2, v) + (G ∗t (J ∗x ϕ1)∇ϕ, v) , v ∈ H
(4.10)

for a.e. t ∈ (0, T ). First of all, taking ψ = 1 in (4.9) yields ϕ(t) = ϕ0 for all
t ∈ [0, T ]. Still considering (4.9), we take therein ψ = A−1

0 (ϕ − ϕ) to obtain the
following identity (see (4.2) and (4.3)):

1

2

d

dt
‖ϕ − ϕ‖2V ′

0
+ (μ, ϕ − ϕ) =

(
uϕ1,∇(A−1

0 (ϕ − ϕ)
)

+
(
u2ϕ,∇(A−1

0 (ϕ − ϕ)
)

or, equivalently,

1
2

d
dt ‖ϕ − ϕ‖2V ′

0
+ (aϕ + F ′(ϕ1) − F ′(ϕ2), ϕ

) =
(
uϕ1,∇(A−1

0 (ϕ − ϕ)
)

+
(
u2ϕ,∇(A−1

0 (ϕ − ϕ)
)

+ (J ∗x ϕ, ϕ) + |�| ϕμ.
(4.11)

Using part (ii) of Assumption (A3), we see that

(
aϕ + F ′(ϕ1) − F ′(ϕ2), ϕ

) ≥ c0 ‖ϕ‖2L2(�)
,

so that (4.11) yields

1

2

d

dt
‖ϕ − ϕ‖2V ′

0
+ c0 ‖ϕ‖2L2(�)

≤
4∑

k=1

Ik, (4.12)

where

I1 =
(
uϕ1,∇(A−1

0 (ϕ − ϕ)
)

, I2 =
(
u2ϕ,∇(A−1

0 (ϕ − ϕ)
)

,

I3 = (J ∗x ϕ, ϕ) and I4 = |�| μϕ.

Now, we return to (4.10) and take v = u as the test function. We immediately get
from the resulting equality that

‖u‖L2 ≤ (‖G ∗t ((ϕ1 + ϕ2)∇a)‖L∞ + ‖G ∗t (∇ J ∗x ϕ1)‖L∞) ‖ϕ‖L2

+
∥
∥
∥Gu0
∥
∥
∥
L2

+ ‖h(t)‖L2 + ‖G ∗t (∇ J ∗x ϕ)‖L2 , (4.13)

where we have used the fact that ‖ϕ2‖L∞ ≤ 1. However,

‖G ∗t (∇ J ∗x ϕ)‖2L2 =
∫

�

∣
∣
∣
∣

∫ t

0
G(t − τ)(∇ J ∗x ϕ)(τ) dτ

∣
∣
∣
∣

2

dx
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≤ ‖G‖2L∞(0,T )

∫ t

0

(∫

�

|∇ J ∗x ϕ|2 (τ ) dx

)

dτ

≤ ‖G‖2L∞(0,T ) ‖∇ J‖2L1

∫ t

0
‖ϕ(τ)‖2L2 dτ.

Thus,

‖G ∗t (∇ J ∗x ϕ)‖L2 ≤ C

(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2

, (4.14)

where C in (4.14) depends on the norms of G and ∇ J . Plugging (4.14) into (4.13),
we get after some algebra

‖u‖L2 ≤ C

[
∥
∥
∥u0
∥
∥
∥
L2

+ ‖h‖L2 + ‖ϕ‖L2 +
(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2
]

, (4.15)

where the constant C depends on the norms of the ϕi , J and a.
With this in mind, we use (4.15) to control the terms in the right-hand side of (4.12)

as follows:

|I1| ≤ C ‖u‖L2 ‖ϕ − ϕ‖V ′
0

= C ‖u‖L2 ‖ϕ − ϕ‖∗

≤ C(

∥
∥
∥u0
∥
∥
∥
L2

‖ϕ − ϕ‖∗ + ‖h‖L2 ‖ϕ − ϕ‖∗ + ‖ϕ‖L2 ‖ϕ − ϕ‖∗)

+C ‖ϕ − ϕ‖∗
(∫ t

0
‖ϕ(τ)‖2L2 dτ

) 1
2

so that

|I1| ≤ c0
4

‖ϕ‖2L2 + C

(∥
∥
∥u0
∥
∥
∥
2

L2
+ ‖h‖2L2 + ‖ϕ − ϕ‖2∗ +

∫ t

0
‖ϕ(τ)‖2L2 dτ

)

.

(4.16)

Moreover,

|I2| ≤ c0
4

‖ϕ‖2L2 + C |ϕ|2 + C ‖u2‖4L4 ‖ϕ − ϕ‖2∗
≤ c0

4
‖ϕ‖2L2 + (C + ‖u2‖4L4) ‖ϕ − ϕ‖2∗ , (4.17)

where we have used the 2D-Ladyzhenskaya inequality (‖w‖L4(�) ≤
C ‖w‖

1
2
L2(�)

‖w‖
1
2
H1(�)

for allw ∈ H1(�)) in conjunction with the inequality (4.4) for

k = 1 both applied to ∇(A−1
0 (ϕ − ϕ) to obtain the last inequality. For the third term,

we estimate

|I3| ≤ |(J ∗x ϕ, ϕ − ϕ)| + |(J ∗x ϕ, ϕ)|
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=
∣
∣
∣

(
m∇(J ∗x ϕ),∇(A−1

0 (ϕ − ϕ)
)∣
∣
∣+ |(J ∗x ϕ, ϕ)|

≤ m2 ‖∇ J‖L1 ‖ϕ‖L2 ‖ϕ − ϕ‖∗ + C ‖J‖L1 ‖ϕ‖L2 |ϕ|
≤ c0

4
‖ϕ‖2L2 + C ‖ϕ − ϕ‖2∗ , (4.18)

while the fourth term is estimated as

|I4| = ∣∣(F ′(ϕ1) − F ′(ϕ2), ϕ)
∣
∣

≤
∣
∣
∣ϕ0
∣
∣
∣
(∥
∥F ′(ϕ1)

∥
∥
L1 + ∥∥F ′(ϕ2)

∥
∥
L1

)
, (4.19)

where we have used conservation of the total mass (ϕ(t) = ϕ0, t ∈ [0, T ]) in the last
inequality.

Gathering (4.12), (4.16), (4.17), (4.18) and (4.19), we obtain

1

2

d

dt
‖ϕ − ϕ‖2∗ + c0

4
‖ϕ‖2L2 ≤ C

(∥
∥
∥u0
∥
∥
∥
2

L2
+ ‖h‖2L2

)

+ W1(t) ‖ϕ − ϕ‖2∗

+
∫ t

0
‖ϕ(τ)‖2L2 dτ + C

∣
∣
∣ϕ0
∣
∣
∣W2(t), (4.20)

where

W1(t) = C + C ‖u2(t)‖4L4 and W2(t) = C(
∥
∥F ′(ϕ1)

∥
∥
L1 + ∥∥F ′(ϕ2)

∥
∥
L1).

Therefore, owing to the fact that W1,W2 ∈ L1(0, T ), we apply the Gronwall lemma
to (4.20) to get at once

‖ϕ(t) − ϕ‖2∗ +
∫ t

0
‖ϕ(τ)‖2L2 dτ ≤ C

(∥
∥
∥u0
∥
∥
∥
2

L2
+ ‖h‖2L2 +

∣
∣
∣ϕ0
∣
∣
∣

)

or

‖ϕ(t)‖2∗ +
∫ t

0
‖ϕ(τ)‖2L2 dτ ≤ C

(∥
∥
∥u0
∥
∥
∥
2

L2
+
∥
∥
∥ϕ0
∥
∥
∥
2

∗ + ‖h‖2L2 +
∣
∣
∣ϕ0
∣
∣
∣

)

(4.21)

for all t ∈ [0, T ], where we used the equality ϕ(t) = ϕ0. Now, integrating (4.21), we
are led to (4.6), thereby finishing the proof. ��

4.2 Further Regularity Results

Our goal now is to prove that the unique weak solution of the doubly nonlocal system
(4.5) is actually a strong one provided the initial order parameter satisfies an additional
assumption and we assume u0 = 0. More precisely, we aim to prove the following
theorem.
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Theorem 4.2 Suppose u0 = 0, ϕ0 ∈ L∞(�) with F(ϕ0) ∈ L1(�) and
∣
∣
∣ϕ0
∣
∣
∣ < 1.

Assume further that ∇F ′(ϕ0) ∈ L2(�)2 and h ∈ W 1,∞(0, T ; L2(�)2). Then, the
weak solution of (4.5) is a strong solution and satisfies

∂u
∂t

∈ L2(0, T ; L2(�)2), (4.22)

ϕ ∈ L∞(0, T ; H1(�)) ∩ L4(0, T ;W 1,4(�)) ∩ L2(0, T ;W 1,r (�)), (4.23)
∂ϕ

∂t
∈ L∞(0, T ; H1(�)′) ∩ L2(0, T ; L2(�)), (4.24)

μ ∈ L∞(0, T ; H1(�)) ∩ L4(0, T ;W 1,4(�)) ∩ L2(0, T ; H2(�)), (4.25)

p ∈ C([0, T ]; H1(�) ∩ L2
0(�)), (4.26)

and

F ′(ϕ) ∈ L∞(0, T ; H1(�)), (4.27)

where 2 ≤ r < ∞.
If further curl h ∈ L∞(0, T ; Lr (�)) for some 2 ≤ r < ∞, then

u ∈
⎧
⎨

⎩

L2(0, T ;W 1,r (�)2) for the same r as curl h,
L4(0, T ;W 1,4(�)2) if r = 4,
L∞(0, T ; H1(�)2) if r = 2.

(4.28)

Note that proving this theorem also proves the third main result, Theorem 1.3.
Let (u, ϕ, μ, p) be the unique weak solution of (4.5) given by Theorem 4.1. To

obtain (4.22)–(4.28), we proceed in three steps detailed in the three following subsec-
tions.

4.2.1 First Estimates on Time Derivatives

Let h > 0 be fixed and set

Dhv(t) = 1

h
(v(t + h) − v(t)) for a given function v.

Next, set

H(t) = h(t) − ∇a

2
ϕ2(t) − [(J ∗x ϕ)∇ϕ] (t) − ∇ p̃(t), t ∈ [0, T ],

so that u(t) = (G ∗t H)(t), see (4.5)1 and (4.7). Then, H ∈ L2(0, T ; L2(�)2). An
easy computation shows that

Dhu(t) = (G ∗t DhH)(t) + (G ∗t αh H(· + h))(t) for a.e. t ∈ (0, T ), (4.29)
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where αh(t) = 1
h 1[−h,0](t) for t ∈ R (1[−h,0] being the indicator function of [−h, 0])

is an approximation of unity in R. It is easy to see that

αh → 0 a.e. in R as h → 0. (4.30)

Using the fact that ‖H(· + h) − H‖L2(Q)2 → 0 as h → 0 in conjunction with (4.30),
one can show that, when h → 0,

αh H(· + h) → 0 in L2(0, T ; L2(�)2). (4.31)

Bearing this in mind, we consider the variational formulation of (4.5), in which we
replace ϕ in (4.5)3 by Dhϕ and u in (4.7) by Dhu. Then, after setting τhϕ = ϕ(·+ h),
we obtain

〈
∂Dhϕ

∂t
, ψ

〉

+
(
mDhμ,∇ψ

)
=
(
τhϕD

hu,∇ψ
)

+
(
uDhϕ,∇ψ

)
, ψ ∈ H1(�),

(4.32)
(
Dhu, v

) = (G ∗t Dhh, v
)− (G ∗t ∇a

2 (τhϕ + ϕ)Dhϕ, v
)

− (G ∗t (∇ J ∗x Dhϕ)ϕ, v
)− (G ∗t (∇ J ∗x τhϕ)Dhϕ, v), v ∈ H.

(4.33)

We take v = Dhu in (4.33) and we proceed as we did in obtaining (4.15) leading to

∥
∥
∥Dhu
∥
∥
∥
L2

≤ C

⎡

⎣
∥
∥
∥Dhh
∥
∥
∥
L2

+
∥
∥
∥Dhϕ

∥
∥
∥
L2

+
(∫ t

0

∥
∥
∥Dhϕ(τ)

∥
∥
∥
2

L2
dτ

) 1
2 + ‖αhτh H‖L2

⎤

⎦ .

(4.34)

Now, we go back to (4.32) and choose therein ψ = A−1
0 (Dhϕ). Then, recalling

that Dhϕ = 0 as well as the properties of A−1
0 , we obtain

1

2

d

dt

∥
∥
∥Dhϕ

∥
∥
∥
2

V ′
0

+
(
Dhμ, Dhϕ

)
=
(
τhϕDhu,∇(A−1

0 (Dhϕ)
)

+
(
uDhϕ,∇(A−1

0 (Dhϕ)
)

or, equivalently,

1
2

d
dt

∥
∥
∥Dhϕ

∥
∥
∥
2

V ′
0

+
(
aDhϕ + F ′(τhϕ)−F ′(ϕ)

h , Dhϕ
)

=
(
τhϕDhu, ∇(A−1

0 (Dhϕ)
)

+
(
uDhϕ, ∇(−A−1

0 (Dhϕ)
)

+ (J ∗x Dhϕ, Dhϕ).

(4.35)

Using part (ii) of (A3) combined with (4.35), we are led to

1

2

d

dt

∥
∥
∥Dhϕ

∥
∥
∥
2

V ′
0

+ c0
∥
∥
∥Dhϕ

∥
∥
∥
2

L2(�)
≤

3∑

k=1

Ik, (4.36)
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where

I1 =
(
τhϕD

hu,∇(A−1
0 (Dhϕ)

)
, I2 =

(
uDhϕ,∇(−A−1

0 (Dhϕ)
)

,

I3 = (J ∗x Dhϕ, Dhϕ).

By virtue of (4.34), we control I1 as follows:

|I1| ≤ C
∥
∥
∥Dhu
∥
∥
∥
L2

∥
∥
∥Dhϕ

∥
∥
∥
V ′
0

≤ c0
4

∥
∥
∥Dhϕ

∥
∥
∥
2

L2(�)
+ C

(∥
∥
∥Dhh
∥
∥
∥
2

L2
+
∥
∥
∥Dhϕ

∥
∥
∥
2

∗ + ‖αhτh H‖2
L2

+
∫ t

0

∥
∥
∥Dhϕ(τ)

∥
∥
∥
2

L2
dτ

)

.

(4.37)

Next, we control I2 and I3 as we did in the proof of Theorem 4.1 to obtain

|I2| ≤ c0
4

∥
∥
∥Dhϕ

∥
∥
∥
2

L2(�)
+ C ‖u‖4L4

∥
∥
∥Dhϕ

∥
∥
∥
2

∗ (4.38)

and

|I3| =
∣
∣
∣(J ∗x Dhϕ, Dhϕ)

∣
∣
∣ =
∣
∣
∣

(
m∇(J ∗x Dhϕ),∇(A−1

0 (Dhϕ)
)∣
∣
∣

≤ m2 ‖∇ J‖L1

∥
∥
∥Dhϕ

∥
∥
∥
L2

∥
∥
∥Dhϕ

∥
∥
∥∗

≤ c0
4

∥
∥
∥Dhϕ

∥
∥
∥
2

L2
+ C
∥
∥
∥Dhϕ

∥
∥
∥
2

∗ ,

that is,

|I3| ≤ c0
4

∥
∥
∥Dhϕ

∥
∥
∥
2

L2
+ C
∥
∥
∥Dhϕ

∥
∥
∥
2

∗ . (4.39)

Putting together (4.36)–(4.39), we are led to

1
2

d
dt

∥
∥Dhϕ
∥
∥2∗ + c0

4

∥
∥Dhϕ
∥
∥2
L2(�)

≤ C
(∥
∥Dhh
∥
∥2
L2 + ∥∥Dhϕ

∥
∥2∗ W3(t) + ‖αhτh H‖2

L2 + ∫ t0
∥
∥Dhϕ(τ)

∥
∥2
L2 dτ
)

,
(4.40)

where W3( · ) = C + C ‖u( · )‖4L4 ∈ L1(0, T ). An application of Gronwall’s lemma
gives

∥
∥Dhϕ(t)

∥
∥2∗ + ∫ t0

∥
∥Dhϕ(τ)

∥
∥2
L2 dτ

≤
[∥
∥Dhϕ(0)

∥
∥2∗ + C

∫ T
0 (
∥
∥Dhh(τ )

∥
∥2
L2 + ‖αh(τ )τh H(τ )‖2L2) dτ

] ∫ t
0 x(s) ds,

(4.41)

where we have set

x(s) =
∥
∥
∥Dhϕ(0)

∥
∥
∥
2

∗ + C
∫ s

0
(

∥
∥
∥Dhh(τ )

∥
∥
∥
2

L2
+ ‖αh(τ )τh H(τ )‖2L2) dτ.
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In order to take full advantage of (4.41), we need to control the term uniformly in h.
To do this, we go back to (4.9) to recall that

1

2

d

dt

∥
∥
∥ϕ − ϕ0

∥
∥
∥
2

V ′
0

=
〈
∂ϕ

∂t
, A−1

0 (ϕ − ϕ0)

〉

= (μ, ϕ − ϕ0) +
(
uϕ, ∇(A−1

0 (ϕ − ϕ0)
)

= (m∇(aϕ + F ′(ϕ)), ∇(A−1
0 (ϕ − ϕ0)) − (m(∇ J ∗x ϕ), ∇(A−1

0 (ϕ − ϕ0))

+
(
uϕ, ∇(A−1

0 (ϕ − ϕ0)
)

. (4.42)

Therefore, in viewof (4.42) and using (4.41), we get aftermere computations involving
Gronwall’s lemma,

1

2

∥
∥
∥ϕ − ϕ0

∥
∥
∥
2

V ′
0

≤ (C +
∥
∥
∥∇F ′(ϕ0)

∥
∥
∥
L2

)t for all t ∈ [0, T ]. (4.43)

Taking t = h in (4.43), we get

∥
∥
∥Dhϕ(0)

∥
∥
∥∗ ≤ C +

∥
∥
∥∇F ′(ϕ0)

∥
∥
∥
L2

, h > 0. (4.44)

Now, combining (4.41) and (4.44), we are led to

∥
∥Dhϕ(t)

∥
∥2∗ + ∫ t0

∥
∥Dhϕ(τ)

∥
∥2
L2 dτ

≤
[
C + C

∫ T
0 (
∥
∥Dhh(τ )

∥
∥2
L2 + ‖αh(τ )τh H(τ )‖2L2) dτ

] ∫ t
0 x(s) ds.

Now, taking into account (4.34) (which we integrate over (0, t)) together with (4.41)
and the above last inequality, we end up with

∥
∥Dhϕ(t)

∥
∥2∗ + ∫ t0 (

∥
∥Dhu(τ )

∥
∥2
L2(�)

+ ∥∥Dhϕ(τ)
∥
∥2
L2(�)

) dτ

≤ C + C
(
‖αh(τ )τh H(τ )‖2L2 + ∥∥Dhh

∥
∥2
L∞(0,T ;L2(�))

)
.

(4.45)

Since ϕ ∈ H1(0, T ; H1(�)′), we know that Dhϕ → ∂ϕ
∂t in L2(0, T ; H1(�)′) as

h → 0. We therefore deduce from (4.31) and the assumption on h that we may pass
to the limit in (4.45) when h → 0 and obtain

∥
∥
∥

∂ϕ
∂t (t)
∥
∥
∥
2

∗ + ∫ t0 (
∥
∥ ∂u

∂t (τ )
∥
∥2
L2(�)

+
∥
∥
∥

∂ϕ
∂t (τ )

∥
∥
∥
2

L2(�)
) dτ

≤ C + C
∥
∥
∥ ∂h∂t

∥
∥
∥
2

L∞(0,T ;L2(�))
.

(4.46)

This yields ∂ϕ
∂t ∈ L∞(0, T ; H1(�)′)∩ L2(0, T ; L2(�)) and ∂u

∂t ∈ L2(0, T ; L2(�)2).
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4.2.2 Uniform L∞-Estimates in Time

First, we take the gradient of μ and test the resulting equality by ∇ϕ in L2,

(
(a + F ′′(ϕ))∇ϕ,∇ϕ

) = (∇μ,∇ϕ) + (∇ J ∗ ϕ,∇ϕ) − (ϕ∇a,∇ϕ).

Applying part (ii) of Assumption (A3), we obtain

c0 ‖∇ϕ‖2L2 ≤ ‖∇μ‖L2 ‖∇ϕ‖L2 + ‖∇ J‖L1 ‖ϕ‖L2 ‖∇ϕ‖L2 + ‖∇a‖L∞ ‖ϕ‖L2 ‖∇ϕ‖L2

≤ C(1 + ‖∇μ‖L2) ‖∇ϕ‖L2 ,

where C depends on ‖ϕ‖L2 , ‖∇ J‖L1 and ‖∇a‖L∞ . This yields

‖∇ϕ‖L2 ≤ C(1 + ‖∇μ‖L2). (4.47)

Next, defining the function H(s) = F(s) + β
2 s

2, s ∈ (−1, 1) , as previously, and
using the same reasoning as in (Frigeri and Grasselli 2012, Proof of Theorem 1), we
see that there is a positive constant C depending on ϕ0 such that

∥
∥H ′(ϕ)

∥
∥
L1(�)

≤ C
∫

�

(ϕ − ϕ0)H ′(ϕ) dx + C,

so that, arguing as previously (see (2.32)), we get

∥
∥F ′(ϕ)

∥
∥
L1(�)

≤ C(‖∇μ‖L2 + ‖ϕ‖L2)

∥
∥
∥ϕ − ϕ0

∥
∥
∥
L2

+ C ‖ϕ‖L2 + C

≤ C(1 + ‖∇μ‖L2).

Now, from the equality
∫

�
μ dx = ∫

�
F ′(ϕ) dx , we deduce from the Poincaré –

Wirtinger inequality that

∫

�

|μ|2 dx ≤ C(1 + ‖∇μ‖2L2),

and so,

‖μ‖H1(�) ≤ C(1 + ‖∇μ‖L2). (4.48)

This being so, we test (4.5)3 by μ and get

(m∇μ,∇μ) = −
〈
∂ϕ

∂t
, μ

〉

+ (uϕ,∇μ).

Using the fact that ∂ϕ
∂t ∈ L∞(0, T ; H1(�)′) and by virtue of (A4)1, we have

m1 ‖∇μ‖2L2 ≤
∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥
H1(�)′

‖μ‖H1(�) + ‖uϕ‖L2 ‖∇μ‖L2
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≤ C

∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥
H1(�)′

(1 + ‖∇μ‖L2) + ‖u‖L2 ‖∇μ‖L2

≤ C

∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥

2

H1(�)′
+ 2m1

3
‖∇μ‖2L2 + C ‖u‖2L2 ,

where we used (4.48) and Young’s inequality. This yields, thanks to ( 4.46),

‖∇μ‖L∞(0,T ;L2(�)) ≤ C

(∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥
L∞(0,T ;H1(�)′)

+ ‖u‖L∞(0,T ;L2(�))

)

≤ C .

(4.49)

Therefore, in view of (4.48), we have

‖μ‖L∞(0,T ;H1(�)) ≤ C .

It also follows from (4.47) in association with (4.49) that

‖ϕ‖L∞(0,T ;H1(�)) ≤ C .

Now, assuming that curl h ∈ L∞(0, T ; L2(�)) (we recall that for any v =
(v1, v2) ∈ L1(�)2, curl v = ∇ × v = ∂v2

∂x1
− ∂v1

∂x2
), we have, for a.e. t ∈ (0, T ),

curl u(t) = G ∗t (curl h − ϕ(∇a × ∇ϕ) − (∇ J ∗x ϕ) × ∇ϕ). (4.50)

We know from the equality (3.18) in (Girault and Raviart 1986, Page 44) that there is
a positive constant C such that

‖v‖H1(�)2 ≤ C(‖v‖L2(�)2 + ‖∇ × v‖L2(�)), v ∈ H1(�)2 ∩ H. (4.51)

Rewriting (4.50) in the form

curl u(t) =
∫ t

0
G(t − τ)(curl h(τ ) − ϕ(∇a × ∇ϕ)(τ) − (∇ J ∗x ϕ) × ∇ϕ)(τ)) dτ,

(4.52)

we have

‖curl u(t)‖L2 ≤
∫ t

0
|G(t − τ)| (‖curl h(τ )‖L2 + C ‖∇ϕ(τ)‖L2) dτ

≤ C
(‖curl h‖L∞(0,T ;L2(�)) + C ‖∇ϕ‖L∞(0,T ;L2(�))

)
(4.53)

since
∫ t
0 |G(t − τ)| dτ ≤ C for all t ∈ [0, T ]. We infer by (4.51) and (4.53) that

‖u‖L∞(0,T ;H1(�)) ≤ C(‖u‖L∞(0,T ;L2(�)) + ‖∇ × u‖L∞(0,T ;L2(�)))
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≤ C . (4.54)

As far as the pressure is concerned, arguing exactly as in Mikelić (1994) (see also
Peter and Woukeng 2024) we arrive at p ∈ C([0, T ]; H1(�) ∩ L2

0(�)). Also, the fact
that F ′(ϕ) ∈ L∞(0, T ; H1(�)) stems from the same property for μ and ϕ, recalling
that F ′(ϕ) = μ − aϕ − J ∗ ϕ.

It remains to check higher-order regularity in space.

4.2.3 Higher-Order Regularity in Space

First and foremost, the fact that ∂ϕ/∂t ∈ L2(0, T ; L2(�)), μ ∈ L∞(0, T ; H1(�))

and uϕ ∈ L∞(0, T ; L2(�)2) entail that (4.5)3 is satisfied a.e. in Q. As a by-product,
we rewrite it as a Neumann problem for μ: for a.e. t ∈ (0, T ),

− div(m∇μ) = −
(

∂ϕ

∂t
+ div(uϕ)

)

in �,
∂μ

∂n
= 0 on ∂�. (4.55)

As the matrix m has constant entries, a classical elliptic regularity result entails that
μ ∈ L2(0, T ; H2(�)).

Next, observe that assuming � to be smooth, we apply the Gagliardo–Nirenberg
inequality in dimension 2 to obtain that, for any 1 ≤ r < ∞, there is C = C(r) > 0
such that

‖u‖Lr (�)2 ≤ C ‖u‖
1
r
L1(�)2

‖u‖1−
1
r

H1(�)2
; see [7, Comments on Chapter 9].

This yields readily u ∈ L∞(0, T ; Lr (�)2), where we have taken into account
(4.54). This entails that uϕ ∈ L∞(0, T ; Lr (�)2), i.e.

‖uϕ‖L∞(0,T ;Lr (�)2) ≤ C ∀1 ≤ r < ∞. (4.56)

Bearing this in mind, we proceed as in (Della Porta et al. 2018, Section 4) to derive
the existence of C > 0 depending on r such that

‖μ‖W 1,r (�) ≤ C

(∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥
L2(�)

+ ‖uϕ‖Lr (�)2 + ‖μ‖L2(�)

)

≤ C

(

1 +
∥
∥
∥
∥
∂ϕ

∂t

∥
∥
∥
∥
L2(�)

)

for any r > 1. This leads to

‖μ‖L2(0,T ;W 1,r (�)) ≤ C . (4.57)

Let us now check the analogue of (4.57) for ϕ. To this end, we take the gradient of
μ in (4.5)4 and multiply the resulting equality by |∇ϕ|r−2 ∇ϕ (we assume here that
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r ≥ 2) and next integrate over �. We notice that in light of (4.57) we have

∥
∥(a + F ′′(ϕ))∇ϕ

∥
∥
L2(0,T ;Lr (�))

≤ C for any r ≥ 2,

so that the following resulting equality makes sense:

∫

�

(a + F ′′(ϕ)) |∇ϕ|r dx =
∫

�

∇μ · ∇ϕ |∇ϕ|r−2 dx −
∫

�

|∇ϕ|r−2 ϕ∇a · ∇ϕ dx

−
∫

�

(∇ J ∗ ϕ) · ∇ϕ |∇ϕ|r−2 dx .

Owing to Assumption (A3), we see that

c0 ‖∇ϕ‖rLr ≤ ‖∇μ‖Lr ‖∇ϕ‖r−1
Lr + (‖∇a‖L∞ + ‖∇ J‖L1) ‖ϕ‖Lr ‖∇ϕ‖r−1

Lr

≤ c0
2

‖∇ϕ‖rLr + C ‖∇μ‖rLr + C ‖ϕ‖rLr .

It follows promptly that

‖∇ϕ‖Lr ≤ C(1 + ‖∇μ‖Lr ), (4.58)

which, by (4.57), yields

‖ϕ‖L2(0,T ;W 1,r (�)) ≤ C . (4.59)

Now, from the 2D-Ladyzhenskaya inequality (‖w‖L4(�) ≤ C ‖w‖
1
2
L2(�)

‖w‖
1
2
H1(�)

for all w ∈ H1(�)), we take advantage of (4.57), (4.58) (for r = 4) and (4.59) to
deduce that

‖∇μ‖L4(0,T ;L4(�)) ≤ C ‖μ‖
1
2
L∞(0,T ;H1(�)

‖μ‖
1
2
L2(0,T ;H2(�))

≤ C

and

‖∇ϕ‖L4(0,T ;L4(�)) ≤ C(1 + ‖∇μ‖L4(0,T ;L4(�))) ≤ C .

This shows that ϕ,μ ∈ L4(0, T ;W 1,4(�)).
Now, considering again the equality (4.52), we observe that, for any r ≥ 2,

‖curl u(t)‖Lr (�) ≤ C
(‖curl h‖L∞(0,T ;Lr (�)) + ‖∇ϕ(t)‖Lr (�)

)
.

Therefore, proceeding as in (Della Porta et al. 2018, Section 4.3), we find that
u ∈ L4(0, T ;W 1,4(�)2) provided that curl h ∈ L∞(0, T ; Lr (�)) and that u ∈
L2(0, T ;W 1,r (�)2) for any 2 ≤ r < ∞ provided that curl h ∈ L∞(0, T ; Lr (�)).
This completes the proof of the theorem.
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With these results at hand, we can also prove our final main result.

Proof of Theorem 1.4 It can be proved exactly as in the proof of (Peter and Woukeng
2024, Theorem 1.2). ��

5 A Few Concrete Illustrations

The goal of this section is to present some physical situations leading to the use
of sigma-convergence with the underlying algebras with mean value leading to the
upscaling process in (1.1).

5.1 Equidistribution of Microstructures inÄ

We assume that the heterogeneities are uniformly distributed in �. This means that
the distribution function of the microstructures is periodic, so that the functions y �→
η(y, yd , r) and y �→ m(y, yd , r) are 1 -periodic in each of their occurrences. The
underlying algebra with mean value here is thus the algebra of Y -periodic continuous
functions A = Cper(Y ), Y = (0, 1)d−1. The mean value of a function u ∈ Cper(Y ) is
given by

M(u) =
∫

Y
u(y) dy.

The function spaces associated with A are as follows: B p
A(Rd−1; L p(I )) =

L p
per(Y ; L p(I )) (the space of functions in L p

loc(R
d−1; L p(I )) which are Y -periodic),

B1,p
A (Rd−1;W 1,p(I )) = W 1,p

per (Y ;W 1,p(I )) (the subspace of W 1,p
loc (Y ;W 1,p(I ))

made of Y -periodic functions), and

B1,p
#A (Rd−1;W 1,p(I )) = W 1,p

# (Y ;W 1,p(I ))

:=
{

u ∈ W 1,p
per (Y ;W 1,p(I )) :

∫

Z
u(y) dy = 0

}

(where Z = Y × I with I = (−1, 1)), which is a Banach space when equipped with
the norm

‖u‖
W 1,p

#
=
(∫

Z
|∇u|p dy

)1/p

, u ∈ W 1,p
# (Y ;W 1,p(I )).

It is worth noting that B p
A(Rd−1; L p(I )) = B p

A(Rd−1; L p(I )) since L p
per(Y ; L p(I ))

is a Banach space with the corresponding norm, and so, B1,p
A (Rd−1;W 1,p(I )) =

B1,p
A (Rd−1;W 1,p(I )).
In this case, the sigma-convergence concept is merely the well-known two-scale

convergence method for thin heterogeneous domains defined in Neuss-Radu and Jäger
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(2007) as follows: A sequence (uε)ε>0 ⊂ L p(Qε) weakly two-scale converges in
L p(Qε) towards u0 ∈ L p(Q; L p

per(Y ; L p(I ))) if, when ε → 0,

1

ε

∫

Qε

uε(t, x) f
(
t, x,

x

ε

)
dx dt →

∫

Q

∫

Z
u0(t, x, y) f (t, x, y) dy dx dt

for any f ∈ L p′
(Q; Cper(Y ; L p′

(I ))) (1/p′ = 1 − 1/p).
For the benefit of the reader, we restate the homogenization result in Theorem 1.1

in the periodic setting.

Theorem 5.1 For any ε > 0, let (uε, ϕε, με, pε) be aweak solution of (1.1) in the sense
of Definition 2.1. Then, up to a subsequence of ε not relabelled, there exist functions
u ∈ L2(0, T ;H), ϕ ∈ C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)), μ ∈ L2(0, T ; H1(�)),
p ∈ L2(0, T ; L2

0(�)) and H(ϕ, u) ∈ L1(0, T ; L1(�)d−1) such that, when ε → 0,

Mεuε → (u, 0) in L2(Q)d-weak,
Mεϕε → ϕ in L2(Q)-strong and in L2(0, T ; H1(�))-weak,
Mεμε → μ in L2(0, T ; H1(�))-weak and Mε pε → p in L2(Q)-weak,

where the quintuple (u, ϕ, μ, p, H(ϕ, u)) solves the effective system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u + H(ϕ, u) = Gu0 + G ∗ (h1 + μ∇xϕ − ∇x p) in Q,

divxu = 0 in Q and u · n = 0 on (0, T ) × ∂�,

∂ϕ

∂t
+ u · ∇xϕ − divx (m̂(ϕ)∇μ) = 0 in Q,

μ = âϕ − Ĵ ∗ ϕ + F ′(ϕ) in Q,

∂μ

∂n
= 0 on (0, T ) × ∂�,

ϕ(0) = ϕ0 in �,

where G = (Gi j )1≤i, j≤d−1 is a symmetric positive definite (d − 1) × (d − 1)
matrix defined by its entries Gi j (t, x) = 1

2

∫

Z ωi (x, t, y)e j dy, which are bounded

a.e. in space and continuous in time. Here, ω j = (ω
j
i )1≤i≤d is the unique solution in

C([0, T ]; L2(�; L2
per(Y ; L2(I ))d))∩L2(Q;W 1,2

per (Y ; H1
0 (I ))d) of the auxiliary Stokes

system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ω j

∂t
− divy(η(·, ϕ)∇yω

j ) + ∇yπ
j = 0 in (0, T ) × Z ,

divyω j = 0 in (0, T ) × Z ,

ω j (0) = e j in Z and
∫

Z ω
j
3(x, t, y) dy = 0,
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and e j is the j th vector of the canonical basis in R
d . Furthermore, if the function

η is ϕ-independent, that is, η(y, r) = η(y), then the function H(ϕ, u) vanishes and
u ∈ C([0, T ];H) and p ∈ L2(0, T ; H1(�) ∩ L2

0(�)).

Proof The result is obtained just by identifying the mean value of a periodic function:
for u ∈ L2

per(Y ), M(u) = ∫Y u(y) dy. ��

5.2 Almost Periodic Distribution of theMicrostructures

Assuming that the heterogeneities are distributed in � in an almost periodic way, the
functions y �→ η(y, yd , r) and y �→ m(y, yd , r) are almost periodic in theBesicovitch
sense (Besicovitch 1954; Bohr 1947). The corresponding algebra with mean value in
R
d−1 is the algebra of Bohr continuous almost periodic functions onRd−1 denoted by

A = AP(Rd−1). We recall that AP(Rd−1) (Besicovitch 1954; Bohr 1947) is defined
as the algebra of functions onRd−1 which are uniformly approximated by finite linear
combinations of functions in the set {cos(k·), sin(k·) : k ∈ R

d−1}where cos(k·)(y) =
cos(2πk · y) and sin(k·)(y) = sin(2πk · y), y ∈ R

d−1. It is known that AP(Rd−1) is
an algebra wmv called the almost periodic algebra wmv on Rd−1. The corresponding
generalized Besicovitch space B p

A(Rd−1) is precisely the Besicovitch spaceB p(Rd−1)

defined in Besicovitch (1954), Bohr (1947).
Under the assumption of an almost periodic distribution of microstructures, the

main results of our work are valid with the corresponding function spaces. It is well
known fromBohr (1947) that themean value of a function u ∈ AP(Rd−1) is the unique
constant that belongs to the closed convex hull of the set of translates {u(· + a) : a ∈
R
d−1} of u. In any case, it satisfies property (A.1).

5.3 The Asymptotic Periodic/Almost Periodic Setting

Assuming that the distribution of the microstructures inside � is almost uniform
but with a defect leads to the use of the algebra wmv A = Cper(Y ) + C0(Rd−1)

(Jäger and Woukeng 2021, Section 5.2.3), where C0(Rd−1) stands for the Banach
algebra of continuous functions which vanish at infinity. In this case, hypothesis (A6)
holds with A = Cper(Y ) + C0(Rd−1). We may also deal with the asymptotic almost
periodic distribution of heterogeneities with the corresponding algebra wmv A =
AP(Rd−1) + C0(Rd−1) (Jäger and Woukeng 2021, Section 5.2.3).

Appendix A. Sigma-Convergence for Thin Heterogeneous Domains

This section summarizes some well-known results on sigma-convergence for thin het-
erogeneous domains, which are required for the homogenization process of Section 3.
We start with some preliminaries about the algebras with mean value to introduce the
generalized Besicovitch spaces.
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A.1. Besicovitch Spaces

Let A be an algebra with mean value on R
n (Zhikov and Krivenko 1983) (integer

n ≥ 1), that is, a closed subalgebra of the C∗-algebra of bounded uniformly continuous
real-valued functions on R

n , BUC(Rn), which contains the constants, is translation
invariant and is such that any of its elements possesses a mean value in the following
sense: for every u ∈ A, the sequence (uε)ε>0 (uε(x) = u(x/ε)) weakly∗-converges
in L∞(Rd) to some real number M(u) (called the mean value of u) as ε → 0. The
mean value expresses as

M(u) = lim
R→∞ −
∫

BR

u(y) dy for u ∈ A, (A.1)

where we have set −
∫

BR
= 1

|BR |
∫

BR
.

Let A be an algebra wmv on R
n . For any integer � ≥ 0 , let ‖|u|‖� =

sup|α|≤�

∥
∥
∥Dα

yψ

∥
∥
∥∞, where Dα

yψ = ∂ |α|ψ
∂ y

α1
1 ...∂ yαn

n
. Then, the space A∞ := {ψ ∈

C∞(Rn) : Dα
yψ ∈ A ∀α = (α1, . . . , αn) ∈ N

n} is a Fréchet space under the family of
norms ‖|·|‖�.

The concept of vector-valued algebra wmv will also be useful in this work. We
define it as follows. For F a Banach space, BUC(Rn;F) stands for the Banach space
of bounded uniformly continuous functions u : Rn → F equipped with the norm

‖u‖∞ = sup
y∈Rn

‖u(y)‖F ,

where ‖·‖F denotes the norm in F (cf. Section 1.4). This being so, if A is an algebra
with mean value on Rn , we denote by A⊗F the usual space of functions of the form

∑

finite

ui ⊗ ei with ui ∈ A and ei ∈ F,

where (ui ⊗ ei )(y) = ui (y)ei for y ∈ R
n . Then, we define the vector-valued algebra

wmv A(Rn;F) as the closure of A ⊗ F in BUC(Rn;F).
For 1 ≤ p < ∞, we define the Marcinkiewicz space, Mp(Rn;F) as the vector

space of functions u ∈ L p
loc(R

n;F) satisfying

‖u‖p,F =
(

lim sup
R→∞

−
∫

BR

‖u(y)‖p
F dy

) 1
p

< ∞,

Then,Mp(Rn;F) is a complete seminormed space when equippedwith the seminorm

‖u‖p,F =
(

lim sup
R→∞

−
∫

BR

‖u(y)‖p
F dy

) 1
p

< ∞.
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It is a fact that A(Rn;F) ⊂ Mp(Rn;F) since ‖u‖p,F < ∞ for any u ∈ A(Rn;F).
Thus, we define the generalized Besicovitch space B p

A(Rn;F) to be the closure of
A(Rn;F) inMp(Rn;F), and it holds that:

(i) B p
A(Rn;F) = B p

A(Rn;F)/N (where N = {u ∈ B p
A(Rn;F) : ‖u‖p,F = 0}) is a

Banach space under the norm ‖u + N‖p,F = ‖u‖p,F for u ∈ B p
A(Rn;F).

(ii) The mean value M : A(Rn;F) → F extends by continuity to a continuous linear
mapping (still denoted by M) on B p

A(Rn;F) satisfying

L(M(u)) = M(L(u)) for all L ∈ F′ and u ∈ B p
A(Rn;F)

and we have, for u ∈ B p
A(Rn;F),

‖u‖p,F = (M(‖u‖p
F)
)1/p ≡

(

lim
R→∞ −
∫

BR

‖u(y)‖p
F dy

) 1
p

.

Note that, when F = H is a Hilbert space, B2
A(Rn; H) is also a Hilbert space with

inner product

(u, v)2 = M
[
(u, v)H

]
for u, v ∈ B2

A(Rn; H), (A.2)

where ( · , · )H stands for the inner product in H and (u, v)H the function y �→
(u(y), v(y))H from R

n to R, which belongs to B1
A(Rn).

We shall also need Sobolev–Besicovitch-type spaces defined as

B1,p
A (Rn;F) = {u ∈ B p

A(Rn;F) : ∇yu ∈ (B p
A(Rn;F))n},

and endowed with the seminorm

‖u‖1,p =
(
‖u‖p

p + ∥∥∇yu
∥
∥p
p

) 1
p
,

which makes it a complete seminormed space. Its Banach counterpart is denoted by
B1,p
A (Rn;F) and is defined by replacing B p

A(Rn;F) byB p
A(Rn;F) and ∂/∂ yi by ∂/∂ yi ,

where ∂/∂ yi is defined by

∂

∂ yi
(u + N ) := ∂u

∂ yi
+ N for u ∈ B1,p

A (Rn;F). (A.3)

Denoting by � : B p
A(Rn;F) → B p

A(Rn;F) = B p
A(Rn;F)/N , �(u) = u + N , the

canonical surjection, we see that

∂�(u)

∂ yi
= �

(
∂u

∂ yi

)

for u ∈ B1,p
A (Rn;F)

as seen above in (A.3).

123



Journal of Nonlinear Science           (2025) 35:107 Page 57 of 66   107 

We define a further notion by restricting ourselves to the case F = R. We say that
the algebra A is ergodic if any u ∈ B1

A(Rn;R) which is invariant under (T (y))y∈Rn is
a constant in B1

A(Rn;R). This amounts to the following: if T (y)u = u in B1
A(Rn;R)

for every y ∈ R
n , then u = c in B1

A(Rn;R) in the sense that ‖u − c‖1 = 0, c being a
constant.

Now,we assume that n = d−1 (integer d ≥ 2) andwe set I = (−1, 1). Any y ∈ R
d

iswritten as y = (y, yd).Wedefine the corrector function space B1,p
#A (Rd−1;W 1,p(I ))

by

B1,p
#A (Rd−1;W 1,p(I )) = {u ∈ W 1,p

loc (Rd−1;W 1,p(I )) : ∇u ∈ B p
A(Rd−1; L p(I ))d

and
∫

I M(∇yu( · , yd)) dyd = 0},

where, in this case, ∇ = (∇y,
∂

∂ yd
), ∇y being the gradient operator with respect

to the variable y ∈ R
d−1. We identify two elements of B1,p

#A (Rd−1;W 1,p(I )) by

their gradients in the sense that u = v in B1,p
#A (Rd−1;W 1,p(I )) iff ∇(u − v) =

0, i.e.
∫

I ‖∇(u(·, yd) − v(·, yd))‖p
p dyd = 0. The space B1,p

#A (Rd−1;W 1,p(I )) is a

Banach space under the norm ‖u‖#,p = (∫I ‖∇u(·, yd)‖p
p dyd
)1/p

.

A.2. Sigma-Convergence for Thin Heterogeneous Domains

We are now in a position to the define the sigma-convergence concept for thin hetero-
geneous domains. The integer d ≥ 2 is as above and � ⊂ R

d−1 is the open bounded
domain given in Section 1 of this work.We also recall the definition of our thin domain
�ε (for a given small ε > 0): �ε = � × (−ε, ε) and we set Qε = (0, T ) × �ε.
When ε → 0, �ε shrinks to the interface �0 = � × {0} ≡ �. We also set and
Q = (0, T ) × �0 ≡ (0, T ) × � as well as I = (−1, 1).

The space Rm
ξ is the numerical space Rm of generic variable ξ . In this regard, we

set Rd−1 = R
d−1
x or Rd−1

y , where x = (x1, . . . , xd−1), so that x ∈ R
d can be written

as (x, xd) or (x, ζ ). We identify �0 with � so that the generic element in �0 is also
denoted by x instead of (x, 0).

Let A be an ergodic algebra with mean value on Rd−1. We denote by M the mean
value on A as well as its extension on the underlying generalized Besicovitch spaces
B p
A(Rd−1; L p(I )) and B p

A(Rd−1; L p(I )), 1 ≤ p < ∞.

Definition A.1 A sequence (uε)ε>0 ⊂ L p(Qε) is

(i) weakly �-convergent in L p(Qε) towards u0 ∈ L p(Q;B p
A(Rd−1; L p(I ))) if, as

ε → 0 , we have

1

ε

∫

Qε

uε(t, x) f
(
t, x,

x

ε

)
dx dt →

∫

Q

∫

I
M(u0(t, x, ·, yd ) f (t, x, ·, yd )) dyd dx dt

for any f ∈ L p′
(Q; A(Rd−1; L p′

(I ))) (1/p′ = 1 − 1/p); we denote this by
“uε → u0 in L p(Qε)-weak �A”;
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(ii) strongly �-convergent in L p(Qε) towards u0 ∈ L p(Q;B p
A(Rd−1; L p(I ))) if it

is weakly sigma-convergent and, additionally,

ε
− 1

p ‖uε‖L p(Qε) → ‖u0‖L p(Q;Bp
A(Rd−1;L p(I ))) ; (A.4)

we denote this by “uε → u0 in L p(Qε)-strong �A ”.

Remark A.1 (1) If u0 ∈ L p(Q; A(Rd−1; L p(I ))) then (A.4) amounts to

ε
− 1

p
∥
∥uε − uε

0

∥
∥
L p(Qε)

→ 0 as ε → 0, (A.5)

where uε
0(t, x) = u0(t, x, x/ε) for (t, x) ∈ Qε.

(2) In Definition A.1, the test functions in part (i) may also be taken in the space
C(Q; B ′

A(Rd−1; L p′
(I )) ∩ L∞(Rd−1 × I )) , see, for example, Woukeng (2015).

Inwhat follows, the letter E denotes anyordinary sequence (εn)n≥1 with 0 < εn ≤ 1
and εn → 0 when n → ∞. We shall merely denote by ε the generic term of E so that
“ε → 0” shall mean “εn → 0 as n → ∞.”

Theorem A.1 For 1 < p < ∞, let (uε)ε∈E be a sequence in L p(Qε) satisfying

sup
ε∈E

ε−1/p ‖uε‖L p(Qε) ≤ C,

where C > 0 is independent of ε. Then, there exists a subsequence of (uε)ε∈E which
is weakly �A -convergent in L p(Qε).

The proof of the above theorem is very similar to its homologue stated in Jäger
and Woukeng (2022). We also provide some further important results and we refer to
Cardone et al. (2024) (see also Jäger and Woukeng 2022) for their proofs.

Theorem A.2 Let A be an ergodic algebra with mean value on Rd−1 and let 1 < p <

∞. If (uε)ε∈E is a sequence in L p(0, T ;W 1,p(�ε)) such that

sup
ε∈E

(
ε−1/p ‖uε‖L p(0,T ;W 1,p(�ε))

)
≤ C, (A.6)

where C > 0 is independent of ε, then there exist a subsequence E ′ of E and a couple
(u, u1) with u ∈ L p(0, T ;W 1,p(�0)) and u1 ∈ L p(Q; B1,p

#A (Rd−1;W 1,p(I ))) such
that, as E ′ � ε → 0,

uε → u in L p(Qε)-weak �A, (A.7)
∂uε

∂xi
→ ∂u

∂xi
+ ∂u1

∂ yi
in L p(Qε)-weak �A for 1 ≤ i ≤ d − 1 (A.8)

and

∂uε

∂xd
→ ∂u1

∂ yd
in L p(Qε)-weak �A. (A.9)
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Remark A.2 Set

∇xu0 =
(

∂u0
∂x1

, . . . ,
∂u0

∂xd−1
, 0

)

.

Then, (A.8)–(A.9) amount to

∇uε → ∇xu0 + ∇yu1 in L p(Qε)
d -weak �A. (A.10)

The following result provides us with sufficient conditions for which the conver-
gence result in (A.7) is strong.

Theorem A.3 Let the assumptions of TheoremA.2 be satisfied and, moreover, suppose
that

sup
ε>0

∥
∥
∥
∥
∂Mεuε

∂t

∥
∥
∥
∥
L p′ (0,T ;(W 1,p(�))′)

≤ C, (A.11)

where Mε is defined by (1.9). Finally assume that � is regular enough so that the
embedding W 1,p(�) ↪→ L p(�) is compact. Let (u0, u1) and E ′ be as in Theorem
A.2. Then, as E ′ � ε → 0, the conclusions of Theorem A.2 hold, and in addition, we
have

uε → u0 in L p(Qε) -strong �A. (A.12)

The next theorem with its corollary deal with the product of sequences and their
proofs are obtained by proceeding as in (Sango and Woukeng 2011, Theorem 6 and
Corollary 5) (see also Woukeng 2015).

Theorem A.4 For 1 < p, q < ∞, let r ≥ 1 be such that 1/r = 1/p + 1/q ≤
1. Suppose that (uε)ε∈E is a weakly �A-convergent sequence in Lq(Qε) with limit
u0 ∈ Lq(Q;Bq

A(Rd−1; Lq(I ))) and (vε)ε∈E is a strongly �A -convergent sequence
in L p(Qε) with limit v0 ∈ L p(Q;B p

A(Rd−1; L p(I ))). Then, the sequence (uεvε)ε∈E
is weakly �A-convergent in Lr (Qε) towards u0v0.

Corollary A.1 If (uε)ε∈E ⊂ L p(Qε) and (vε)ε∈E ⊂ L p′
(Qε)∩ L∞(Qε) (1 < p < ∞

and p′ = p/(p − 1)) are two sequences such that

(i) uε → u0 in L p(Qε) -weak �A,
(ii) vε → v0 in L p′

(Qε)-strong �A,
(iii) (vε)ε∈E is bounded in L∞(Qε),

then uεvε → u0v0 in L p(Qε)-weak �A.

The following proposition is used in finding the limit of the velocity in the homog-
enization process of (1.1).
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Proposition A.1 (Peter andWoukeng 2024, Proposition 3.1)Let (uε)ε∈E be a sequence
in L p(0, T ;W 1,p(�ε)) such that

sup
ε∈E

(
ε−1/p ‖uε‖L p(Qε) + ε1−1/p ‖∇uε‖L p(Qε)

)
≤ C,

where C > 0 is independent of ε. Then, there are a subsequence E ′ of E and a function
u0 ∈ L p(Q;B1,p

A (Rd−1;W 1,p(I ))) such that, as E ′ � ε → 0,

uε → u0 in L p(Qε)-weak �A

and

ε∇uε → ∇ yu0 in L p(Qε)
d-weak �A.

Appendix B. Uniqueness of the Solution of (1.1)

Although not relevant for the homogenization result, we can also prove a uniqueness
results under additional assumptions. Namely, if the functions η(y, r) andm(y, r) are
independent of r and, further, if h1 ∈ L∞(0, T ; L4(�)d−1) and uε

0 ∈ L4(�)d , then
the microscopic solution (uε, ϕε) is unique.

Therefore, we assume that the functions η and m are independent of ϕε, that is,
η(y, r) = η(y) and m(y, r) = m(y) for all (y, r) ∈ R

d × R in this appendix.
This being so, we omit for a while the subscript ε and we replace �ε by �1. For
f ∈ H1(�1)

′, we define its average f over �1 by f = |�1|−1 〈 f , 1〉. With this in
mind, we define the set

V0 = {v ∈ H1(�1) : v = 0}, so that V ′
0 = { f ∈ H1(�1)

′ : f = 0}. (B.1)

We consider the operator B : H1(�1) → H1(�1)
′ defined by

〈Bu, v〉 =
∫

�1

m(x)∇u · ∇v dx for all u, v ∈ H1(�1).

Then, it is a fact that B maps continuously H1(�1) into V ′
0, and furthermore, the

restriction B0 of B to V0 is an isomorphism from V0 onto V ′
0. Denoting by B−1

0 the
inverse of B0, we have

BB−1
0 f = f ∀ f ∈ V ′

0, and B−1
0 Bu = u ∀u ∈ V0.

One may see that, for f ∈ V ′
0, u = B−1

0 f is the unique solution with zero mean value
of the Neumann problem

− div(m∇u) = f in �1, m∇u · ν = 0 on ∂�1, (B.2)
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ν being the unit outward normal to ∂�1. In addition, it holds that

〈
Bu, B−1

0 f
〉
= 〈 f , u〉 for all u ∈ H1(�1) and all f ∈ V ′

0,

〈
f , B−1

0 g
〉
=
〈
g, B−1

0 f
〉
=
∫

�1

m∇(B−1
0 f ) · ∇(B−1

0 g) dx ∀ f , g ∈ V ′
0. (B.3)

With the above definitions and properties, one may endow V ′
0 with the norm

‖ f ‖V ′
0

=
∥
∥
∥∇(B−1

0 f )
∥
∥
∥
L2(�1)

for f ∈ V ′
0.

As a by-product, we have

〈
∂ f

∂t
, B−1

0 f

〉

= 1

2

d

dt
‖ f ‖2V ′

0
for a.e. t ∈ (0, T ) and for all f ∈ H1(0, T ; V ′

0).(B.4)

With this in mind, we define the following norm on H1(�1)
′:

‖ f ‖# =
(∥
∥ f − f

∥
∥2
V ′
0
+ ∣∣ f ∣∣2
) 1

2
, f ∈ H1(�1)

′.

Then, ‖ · ‖# is equivalent to the usual norm of H1(�1)
′. The classical regularity theory

for elliptic partial differential equations with Neumann boundary conditions entails
that the solution of (B.2) satisfies the following estimates:

∥
∥
∥∇B−1

0 f
∥
∥
∥
Hk (�1)

≤ C ‖ f ‖Hk−1(�1)
for all f ∈ Hk−1(�1) ∩ L2

0(�1) and k = 1, 2.

(B.5)

We also recall the following well-known interpolation inequality:

‖v‖L4(�1)
≤ C ‖v‖1−

d
4

L2(�1)
‖v‖

d
4
H1(�1)

for all v ∈ H1(�1), d = 2, 3, (B.6)

where C = C(d,�1) > 0.
With this in mind, we take advantage of the identity

μ∇ϕ = ∇(F(ϕ) + a
ϕ2

2
) − ϕ2

2
∇a − (J ∗ ϕ)∇ϕ

to rewrite (1.1)1 with the extra pressure p̃ := p− F(ϕ)− a ϕ2

2 in the following form:

∂u
∂t

− div(η(x)∇u) + ∇ p̃ = h − ∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ. (B.7)
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Set H = h − ∇a ϕ2

2 − (J ∗ ϕ)∇ϕ. Then, from the equality ((J ∗ ϕ)∇ϕ, v) = ((∇ J ∗
ϕ)ϕ, v), valid for all v ∈ H, we see that H = h−∇a ϕ2

2 − (∇ J ∗ϕ)ϕ inH. Therefore,

recalling that ϕ ∈ L∞(Q1) with |ϕ| < 1 a.e. in Q1, we observe that ∇a ϕ2

2 + (∇ J ∗
ϕ)ϕ ∈ L∞(Q1)

d , so that H ∈ L∞(0, T ; L4(�1)
d). (We have assumed that h1 ∈

L∞(0, T ; L4(�)d−1).) This yields in particular that H ∈ L8(0, T ; L4(�1)
d). This

being so, we consider the following Stokes system

⎧
⎨

⎩

∂u
∂t − div(η(x)∇u) + ∇π = H in Q1,

divu = 0 in Q1,

u = 0 on (0, T ) × ∂�1 and u(0) = u0 in �1.

(B.8)

It is well known from the L p–Lq estimates of the solution of (B.8) that, since H ∈
L8(0, T ; L4(�1)

d), we have

u ∈ L8(0, T ; L4(�1)
d)), (B.9)

provided that u0 ∈ (W 1,4
0 (�1))

d∩L4
div(�1), whereL4

div(�1) is the closure in L4(�1)
d

of the space C∞
0,σ (�1) = {u ∈ C∞

0 (�1)
d : divu = 0}.

Bearing this in mind, let (u1, ϕ1) and (u2, ϕ2) be two solutions of (1.1) correspond-
ing to the same initial value (u0, ϕ0)with u0 ∈ (W 1,4

0 (�1))
d ∩L4

div(�1) and the same
source term h. Set u = u2 − u1, ϕ = ϕ2 − ϕ1, μ = μ2 − μ1 and p = p̃2 − p̃1. Then,
(u, ϕ, μ, p̃) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− div(η(x)∇u) + ∇ p̃

= −ϕ(ϕ1 + ϕ2)
∇a
2 − (∇ J ∗ ϕ)ϕ2 − (∇ J ∗ ϕ1)ϕ) in Q1,

divu = 0 in Q1,
∂ϕ

∂t
− div(m(x)∇μ) = −div(uϕ1) − div(u2ϕ) in Q1,

μ = aϕ − J ∗ ϕ + F ′(ϕ2) − F ′(ϕ1) in Q1,
∂μ

∂ν
= 0 and u = 0 on (0, T ) × ∂�1,

u(0) = 0 and ϕ(0) = 0 in �1.

(B.10)

The variational formulation of (B.10) reads, for a.e. t ∈ (0, T ),
〈
∂ϕ

∂t
, ψ

〉

+ (m∇μ,∇ψ) = (uϕ1, ∇ψ) + (u2ϕ, ∇ψ) for all ψ ∈ H1(�1), (B.11)
〈
∂u
∂t

, v

〉

+ (η∇u,∇v) = −(ϕ(ϕ1 + ϕ2)
∇a

2
, v) − ((∇ J ∗ ϕ)ϕ2, v) − ((∇ J ∗ ϕ1)ϕ), v)

for all v ∈ V1. (B.12)

Note that if we choose ψ = 1 in (B.11) then ϕ(t) = ϕ0 = 0 for all t ∈ [0, T ], so that
ϕ ∈ V0. Next, choosing ψ = B−1

0 ϕ in (B.11) yields

1

2

d

dt
‖ϕ‖2V ′

0
+ (μ, ϕ) =

(
uϕ1,∇(B−1

0 ϕ)
)

+
(
u2ϕ,∇(B−1

0 ϕ)
)

,
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that is,

1

2

d

dt
‖ϕ‖2V ′

0
+ (aϕ + F ′(ϕ2) − F ′(ϕ1), ϕ

)

=
(
uϕ1,∇(B−1

0 ϕ)
)

+
(
u2ϕ,∇(B−1

0 ϕ)
)

+ (J ∗ ϕ, ϕ).
(B.13)

We infer from (A3) (see (ii) therein) that

1

2

d

dt
‖ϕ‖2V ′

0
+ c0 ‖ϕ‖2L2(�1)

≤
3∑

k=1

Ik (B.14)

with I1 =
(
uϕ1,∇(B−1

0 ϕ)
)
, I2 =

(
u2ϕ,∇(B−1

0 ϕ)
)
and I3 = (J ∗ ϕ, ϕ). Now we

take v = u in (B.12) and use (1.2) to get

1

2

d

dt
‖u‖2L2(�1)

+ η1 ‖∇u‖2L2(�1)
≤

6∑

k=4

Ik, (B.15)

where I4 = −(ϕ(ϕ1+ϕ2)
∇a
2 , u), I5 = −((∇ J∗ϕ)ϕ2, u) and I6 = −((∇ J∗ϕ1)ϕ), u).

Addition of (B.14) and (B.15) gives

1

2

d

dt

(
‖ϕ‖2V ′

0
+ ‖u‖2L2(�1)

)
+ c0 ‖ϕ‖2L2(�1)

+ η1 ‖∇u‖2L2(�1)
≤

6∑

k=1

Ik . (B.16)

We control the right-hand side of (B.16) as follows:

|I1| ≤ ‖u‖L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥
L2

‖ϕ1‖L∞

≤ C ‖∇u‖L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥
L2

≤ η1

2
‖∇u‖2L2 + C ‖ϕ‖2# ; (B.17)

|I2| ≤ ‖u2‖L4 ‖ϕ‖L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥
L4

≤ C ‖u2‖L4 ‖ϕ‖L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥
1− d

4

L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥

d
4

H1

≤ C ‖u2‖L4 ‖ϕ‖L2 ‖ϕ‖1−
d
4

# ‖ϕ‖
d
4
L2

≤
{ c0

8 ‖ϕ‖2
L2 + C ‖u2‖4L4 ‖ϕ‖2# if d = 2,

c0
8 ‖ϕ‖2

L2 + C ‖u2‖8L4 ‖ϕ‖2# if d = 3,
(B.18)

where, to obtain the above last inequality, we have used inequality (B.6) associated
with inequality (B.5) for k = 1;

|I3| =
∣
∣
∣(m∇(J ∗ ϕ),∇(B−1

0 ϕ))

∣
∣
∣ ≤ m2 ‖∇ J‖L1 ‖ϕ‖L2

∥
∥
∥∇(B−1

0 ϕ)

∥
∥
∥
L2
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≤ c0
8

‖ϕ‖2L2 + C ‖ϕ‖2# ; (B.19)

|I4| ≤ ‖ϕ‖L2 ‖ϕ1 + ϕ2‖L∞ ‖∇a‖L∞ ‖u‖L2

≤ c0
8

‖ϕ‖2L2 + C ‖u‖2L2 ; (B.20)

|I5| ≤ ‖∇ J‖L1 ‖ϕ‖L2 ‖u‖L2 ≤ c0
8

‖ϕ‖2L2 + C ‖u‖2L2 ; (B.21)

and

|I6| ≤ ‖∇ J‖L1 ‖ϕ1‖L∞ ‖ϕ‖L2 ‖u‖L2 ≤ c0
8

‖ϕ‖2L2 + C ‖u‖2L2 . (B.22)

Using estimates (B.17)–(B.22) in (B.16), we are led to

1

2

d

dt

(
‖ϕ‖2# + ‖u‖2

L2(�1)

)
+ c0

4
‖ϕ‖2

L2(�1)
+ 7η1

8
‖∇u‖2

L2(�1)

≤
{

(C + ‖u2‖4L4(�1)
) ‖ϕ‖2# + C ‖u‖2

L2(�1)
if d = 2,

(C + ‖u2‖8L4(�1)
) ‖ϕ‖2# + C ‖u‖2

L2(�1)
if d = 3.

(B.23)

Each of the functions t �→ C+‖u2(t)‖4L4(�1)
and t �→ C+‖u2(t)‖8L4(�1)

is integrable
over (0, T ), see (B.9). Thus, applying the Gronwall lemma to (B.23) yields at once
ϕ = 0 and u = 0. As a result, μ = 0. This concludes the proof of the uniqueness of
the microscopic solutions.
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