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Abstract
Background  Air pollution is among the top five environmental risk factors for human health worldwide. However, our 
understanding of the physiological responses to PM10 exposure over medium-term lag periods remains limited. This study 
aims to examine the medium-term lag–response associations—using lagging time windows of up to 21 days—between PM10 
exposure and all-cause mortality in Valencia and London from 2002 to 2006.
Methods  We used a time-stratified case-crossover design; building on the methodologies of Tobias et al. and Bhaskaran et al., 
we applied a fixed-effects conditional quasi-Poisson regression model to quantify the association between PM10 exposure 
and all-cause mortality. We also analyzed three different temporal lag methodological models for the exposure–mortality 
relationships.
Results  We found distinct differences in the relative risk (RR) patterns of PM10 exposure and all-cause mortality. In Valencia, 
the RR varied significantly, with confidence intervals that were wider than in London, where the RR remained more stable, 
fluctuating closely around 1. Significant associations were observed at early lag periods in both cities, consistent with Tobias 
et al. Notably, Valencia showed a significant peak in RR at lag 14, which was not observed in London. Subgroup analysis 
in Valencia also indicated delayed effects in younger populations. Scenario 3 (cumulative lag model) is conceptually closer 
to the cumulative progression of health risks associated with PM10 exposure and produces higher RR estimates compared 
to Scenario 1 and 2.
Conclusions  This study highlights the critical importance of addressing medium-term lag-response associations and meth-
odological variations in environmental epidemiology. The findings have important clinical and public health implications 
and offer insights for risk assessment, healthcare planning, and the development of policies to mitigate the health impacts 
of PM10 exposure.
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1  Introduction

According to the European Environment Agency, air pol-
lution is the leading environmental health risk in Europe, 
causing cardiovascular and respiratory diseases as well 
as preventable deaths [1, 2]. The level of PM10—mass of 
particulate matter with a diameter of 10 µm or less—is 
one of the most used metrics internationally for assessing 
outdoor air quality. According to the International Agency 
for Research on Cancer, PM10 is classified as carcinogenic 
to humans [3], although its carcinogenic potential also 
depends on its chemical composition. In 2021, the World 
Health Organization (WHO) published global air quality 
guidelines, recommending an annual average exposure 
limit for PM10 of 15 µg/m3 and a 24-h average exposure 
limit of 45 µg/m3 [4]. PM10 includes both PM2.5 (mass of 
particles with diameters of 2.5 µm or less) and PM10–2.5 
(mass of particles with diameters between 2.5 and 10 µm), 
and its atmospheric lifetime ranges from hours for PM10–2.5 
to several weeks for PM2.5 [5, 6]. From a medical perspec-
tive, acute exposure to elevated levels of PM10 can lead to 
increased hospital admissions for cardiovascular or cer-
ebrovascular events, while chronic exposure increases the 
risk of non-communicable diseases and even, indirectly, 
death [7–9].

Environmental epidemiologists have long investigated 
the association between air pollution and health outcomes, 
not only to assess health impacts and progressive deterio-
ration, but also to provide up-to-date research findings to 
inform health policies [9–11]. A recent systematic review 
from 2024 by Orellano et al. contributed to the updated 
WHO Global Air Quality Guidelines and was based on 
high-certainty evidence from 28 effect estimates [11]. The 
review reported a significant association between PM10 
exposure and all-cause mortality, with a relative risk (RR) 
of 1.08 (95% confidence interval [CI]: 1.05–1.11). This 
indicates worsening health risks and an increase in the RR 
of all-cause mortality compared to a previous systematic 
review published in 2020 by Chen et al., which reported 
a pooled RR of 1.04 (95% CI: 1.03–1.06) [9, 11]. The 
increase in all-cause mortality risk between those two 
reviews could partly reflect an apparent increase in risk 
over time, although other factors such as differences in 
study populations, exposure assessment methods, and 
study periods may also contribute. This reinforces the need 
for public health interventions to mitigate air-pollution-
related health impacts [5].

However, a gap remains in the research on PM10 expo-
sure and all-cause mortality [9, 11], as most studies do not 
account for medium-term lag-response associations (e.g., 
lagging time windows of 21 days for risk estimations). 
Incorporating medium-term lag-response associations is 

clinically justified, as hospitalization and mortality due 
to air-pollution-related diseases often do not occur imme-
diately after exposure. Instead of being solely driven by 
acute exposure, such adverse health events may peak 
2–3 weeks later due to cumulative physiological damage, 
particularly for chronic diseases with exacerbations, recur-
rences, or decompensations [12]. While previous studies 
have primarily focused on short-term lag-response asso-
ciations (lagging time windows of a week or less) [10, 13, 
14], understanding medium-term lag-response associa-
tions is crucial for medical practitioners and public health 
stakeholders to help with hospital preparedness for patient 
admissions, early-warning systems and alerts, increased 
awareness campaigns for high-risk populations, and imple-
mentation of preventive measures to reduce PM10 expo-
sure. Such efforts may collectively help delay or mitigate 
preventable adverse health outcomes [15, 16].

In addition to investigating the medium-term lag-
response associations between PM10 exposure and mor-
tality, it is methodologically important to compare com-
putational models with varying lag structures [10, 14]. 
Simplified analyses may overlook subtle variations in 
lagged effects, potentially obscuring the true dynamics of 
the exposure–response relationships [10]. Bhaskaran et al. 
[14] introduced methodological concepts for modeling lag 
structures, including (i) treating lag effects as independent 
by fitting each lag into the independent model separately, 
and (ii) treating lag effects as joint effects by modeling 
all lag days together using an “unconstrained” distributed 
lag model. Tobias et al. [10] mainly focused on the latter 
approach, modeling all lag days together, but both studies 
primarily addressed short-term lag-response associations 
[10, 14].

To go beyond these approaches [10, 14], we proposed a 
methodological comparison of medium-term lag-response 
analysis using three different lag structures: (i) independ-
ent lag effects [14], (ii) joint lag effects [10, 14], and (iii) 
stepwise cumulative lag effects. In environmental research, 
there is currently no universally accepted “gold standard” for 
selecting the most appropriate lag structure for modelling. 
Our study therefore explored these three lag structures and 
their public health relevance to provide a comprehensive 
understanding of the temporal dynamics in the RR associa-
tions between PM10 exposure and all-cause mortality. This 
comparison aims to ensure that important nuances are not 
overlooked.

For this study, we used publicly available datasets from 
the metropolitan cities of Valencia, Spain and London, 
the UK. The aims were: (i) to examine the medium-term 
lag-response associations between PM10 exposure and all-
cause mortality, and (ii) to investigate these effects using 
lagging time windows of 21 days across the three different 
lag methodologies.
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2 � Materials and Methods

2.1 � Original Data Source

We used publicly available open-source datasets, which 
can be downloaded from Tobias et al. [10, 17]. These data-
sets are structured as date-level records, documenting the 
total number of all-cause mortalities in the respective cit-
ies on each specific date, along with 24-h average mean 
temperatures, relative humidity, and PM10 concentrations. 
The date-level data covers the period from January 1, 
2002, to December 31, 2006. We treated the Valencia and 
London data as separate datasets for the analysis.

Daily all-cause mortality was simply the total deaths 
each day for 1,826 days. In the Valencia dataset only, mor-
tality counts were divided into two age groups—less than 
65 years and 65 years or older—for subsequent subgroup 
analysis [10].

Temperature, relative humidity, and PM10 data for 
Valencia were obtained from the National Institute of 
Meteorology and the Valencian Community Air Pollution 
Monitoring Network. For London, temperature and rela-
tive humidity data were sourced from the British Atmos-
pheric Data Centre and PM10 concentration data were 
retrieved from the Westminster-Marylebone site of the 
London Air Quality Network [10].

2.2 � Study Design and Research Outcome

This study employed a time-stratified case-crossover 
design. The primary outcome was the RR associations 
between PM10 exposure and all-cause mortality in both 
Valencia and London, accounting for medium-term lag-
response effects.

2.3 � Inclusion and Exclusion Criteria

We included all available data on daily all-cause mortality 
counts and environmental exposure from 2002 to 2006. No 
data were excluded.

2.4 � Statistical Analyses

We used the methodological concepts outlined in Tobias 
et al. and Bhaskaran et al. [10, 14], in our medium-term 
lag-response association analyses by applying a fixed-
effects conditional quasi-Poisson regression model to 
quantify the associations between PM10 exposure and 
all-cause mortality in both Valencia and London. The 
gnm function from the gnm package in R was used to fit 
generalized nonlinear models. All the statistical analyses 

accounted for the RR association estimates up to 21-day 
lagging time window, with corresponding 95% CIs (Sup-
plementary Material 1).

2.4.1 � Case‑Crossover Approach

We compared ambient PM10 exposure concentrations on 
days on which mortality occurred (termed case days) with 
exposure on days during the same month and on the same 
day of the week (termed control days) [10, 18, 19]. This 
approach was methodologically distinct from patient-level 
study designs.

2.4.2 � Time‑Stratified Approach

We constructed a categorical stratum variable for model 
fitting by interacting the year, month, and day of the 
week for each observation. This time-stratified approach 
accounted for time-varying confounders (e.g., seasonal 
trends, day-of-week effects) by ensuring that exposures 
were compared within the same temporal framework. 
Observations with a mortality count of zero within a given 
stratum were excluded.

2.4.3 � Statistical Adjustments for Confounders

To minimize bias in the association between PM10 expo-
sure and all-cause mortality, we accounted for confounders 
by including in the model the four-day moving averages 
of two key variables, as proposed by Tobias et al. [10]: (i) 
the 24-h mean temperature from the preceding four days 
and (ii) the 24-h mean relative humidity from the preced-
ing four days. To account for potential nonlinear relation-
ships, natural cubic B-spline functions were applied. The 
four-day moving average of temperature was modeled with 
six degrees of freedom to capture its complex and nonlin-
ear association with mortality, while the four-day mov-
ing average of relative humidity was modeled with three 
degrees of freedom to account for its simpler and more 
stable relationship, thus avoiding overfitting.

To test the robustness of the current model’s RR esti-
mates to the choice of moving average windows and 
degrees of freedom, as proposed by Tobias et al. [10], we 
conducted a sensitivity analysis. This involved systemati-
cally varying the moving average time windows from three 
to seven days and the degrees of freedom from three to six 
for both temperature and relative humidity, resulting in 
400 different adjustment combinations. Detailed informa-
tion is provided in Supplementary Material 2.
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2.4.4 � Three Different Lag Structures for the Associations 
between PM10 Exposure and All‑Cause Mortality

Scenario 1: Independent Lag Effects Model  In this model, 
each lag day was treated as independent, meaning that each 
was fitted into the model separately, with no assumed inter-
action effects or influences from neighboring lag days [14]. 
Each model independently provided an RR estimate for all-
cause mortality, with each estimate representing the effect 
of a specific lag day. We fitted a conditional quasi-Poisson 
regression model for Scenario 1:

where Yt,s represents daily mortality on day t and is assumed 
to follow a Poisson distribution with overdispersion (i.e., its 
variance is not necessarily equal to its mean). The model is 
conditioned on the total number of deaths in each stratum s , 
defined by the combination of day-of-week, within-month, 
and year. The terms ns(T) and ns(RH) represent natural cubic 
spline functions of temperature T  and relative humidity RH , 
respectively, with degrees of freedom as specified above, 
accounting for their potential confounding effects on mor-
tality. The term �lPM10l captures the effect of PM10 on a 
specified lag day l.

Scenario 2: Joint Lag Effects Model  Unlike Scenario 1, this 
model assumed that lag days may have joint lag effects, cre-
ating effects that cannot be easily disentangled. All lag days 
were modeled together, similar to the multivariable analysis 
that adjusts confounding effects jointly within a single model 
described by Tobias et al. [10]. Our model estimated RR for 
each lag day while simultaneously accounting for potential 
confounding effects from all other lag days within a single 
model:

���
(

E
(

Yt,s=Dow×Month × Year

))

= � + ns(T) + ns(RH) + βlPM10l

���
(

E
(

Yt,s=Dow×Month × Year

))

= � + ns(T) + ns(RH) +
∑Lmax

l=0
�lPM10l

where Lmax denotes a pre-specified maximum number of lag 
days (from 1 to 21 days) to which the health effect—mortal-
ity, in this case—could be attributed.

Scenario 3: Cumulative Lag Effects Model  We built upon the 
lag-stratified distributed lag model introduced by Bhaskaran 
et al. [14], in which effect estimates are grouped (e.g., days 1 
and 2 share the same effect, while days 3 to 7 share another 
effect) based on broad patterns observed in the uncon-
strained model. However, our cumulative lag effects model 
extends this approach by explicitly accounting for stepwise 
cumulative effects over multiple lag days. The conditional 
quasi-Poisson regression model for Scenario 3 is fitted as:

In this model, the estimated RR for a given lag day Ltarget 
is influenced only by the exposures that occur on subsequent 
days until the health outcome is observed, while earlier 
exposures (i.e., those before the target lag) are assumed to 
have no effect on the health outcome. We adopted a stepwise 
cumulative approach, in which lag day’s variables are incre-
mentally incorporated into the model, allowing the RR for 
each specific lag to be estimated independently. Unlike Sce-
nario 2, which was constrained by a pre-defined maximum 
lag Lmax , Scenario 3 allowed for a more robust estimation of 
lag-specific effects.

A Unified Framework for Scenarios  More generally, the three 
scenarios aforementioned can be expressed within a unified 
framework:

where Wl represents the weight assigned to each specific lag 
day. The weighting schemes for Wl are illustrated in Fig. 1. 
In Scenario 1, only the target lag day is assigned a weight 

���
(

E
(

Yt,s=Dow×Month × Year

))

= � + ns(T) + ns(RH) +
∑Ltarget

l=0
�lPM10l

���
(

E
(

Yt,s=Dow×Month × Year

))

= � + ns(T) + ns(RH) +
∑Ltarget

l=0
Wl�lPM10l

Fig. 1   Weighting schemes for Scenarios 1 (a), 2 (b) and 3 (c) within 
a unified framework. In Scenario 1, only the target lag day is assigned 
a weight of 1, with all other days set to 0. In Scenario 2, all days up 
to the maximum lag day receive a weight of 1. In Scenario 3, lag 

days up to and including the target lag day are assigned a weight of 
1, while earlier days receive a weight of 0.  In our analyses i corre-
sponds to lag days from 0 to 21
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of 1, with all other days set to 0. In Scenario 2, all days 
up to the maximum lag day receive a weight of 1. In Sce-
nario 3, lag days up to and including the target lag day are 
assigned a weight of 1, while earlier days receive a weight 
of 0. In addition to the weighting schemes discussed above, 
Supplementary Material 3 presents several additional vari-
ants designed to capture more complex lagging effects of 
environmental exposures. However, a detailed exploration 
of these is beyond the scope of this paper.

2.4.5 � Autocorrelation

Environmental exposure variables often exhibit medium-
term trends and seasonal variability, resulting in stronger 
correlations between proximate observations than between 
those further apart in time. Autocorrelation measures the 
linear relationship between observations at different lagging 
time windows to identify underlying trends, seasonality, or 
persistent patterns in exposure and mortality data; there-
fore, to assess the extent of temporal correlation in our data, 
we examined autocorrelations in the time series of daily 
death counts and PM10 exposure at lag values ranging from 
0 to 21 days. This ensured that our modeling approach—par-
ticularly the different lag structures applied—appropriately 
accounted for potential time-dependent patterns in the expo-
sure–response relationship.

2.4.6 � Sensitivity Analysis

To assess the robustness of our results, we conducted a sen-
sitivity analysis by incorporating age groups (below 65 years 
and 65 or older) as additional confounders into the model 
for the Valencia dataset to observe their impact on the over-
all results [20]. A fixed-effects conditional quasi-Poisson 
regression model was applied to quantify the associations 
between PM10 exposure and all-cause mortality while adjust-
ing for age—in addition to temperature and relative humid-
ity—within the three different lag structures. The London 
dataset was not stratified by age due to data availability con-
straints, which made a sensitivity analysis infeasible.

2.4.7 � Subgroup Analysis

Distinct from the sensitivity analysis, a subgroup analysis 
was conducted separately for the two age groups (under 
65 years and 65 years or older) in the Valencia dataset, treat-
ing each age group as an independent dataset. The subgroup 
analysis investigated whether age modifies the association 
between PM10 exposure and all-cause mortality, thus identi-
fying potential age-specific differences relevant for targeted 
public health interventions. We applied a fixed-effects con-
ditional quasi-Poisson regression model to quantify the 

associations between PM10 exposure and all-cause mortal-
ity, adjusting for temperature and relative humidity, using 
the three different lag structures. For the London dataset, 
subgroup analysis was not possible because age-stratified 
mortality data were unavailable.

2.5 � Ethics

This study used publicly available, open-source, anonymized 
data for secondary analysis. No additional ethical approval 
was therefore required, and the analysis adhered to ethical 
research principles by using data with no personal or identi-
fying information. According to the guidelines of the Decla-
ration of Helsinki and international standards for the use of 
publicly available data, studies employing such data sources 
are also generally exempt from formal ethical review [21]. 
This study was reported in accordance with the STrengthen-
ing the Reporting of OBservational studies in Epidemiology 
(STROBE) statement (Supplementary Material 4) [22].

3 � Results

3.1 � Study Population and Relevant Autocorrelation 
Patterns

A total of 30,887 all-cause mortality cases were recorded 
in Valencia and 273,003 in London from January 1, 2002, 
to December 31, 2006, spanning 1,826 days. In Valencia, 
the daily number of all-cause mortality cases ranged from 
4 to 39, with a median of 16 and an interquartile range of 
14–20. In London, daily deaths ranged from 99 to 280, with 
a median of 148 and an interquartile range of 135–162. Fig-
ure 2 presents the time series data for all-cause mortality 
counts and PM10 exposure concentrations in the two cit-
ies. The trends, estimated using the B-splines methodology, 
provide a smooth visualization of the time series over the 
study period.

Supplementary Material 5 presents the autocorrelation 
patterns for all-cause mortality and PM10 exposure across 
a 21-day lagging time window in both cities. For Valencia, 
there is a sharp drop in PM10 exposure autocorrelation val-
ues after lag 0, followed by an apparent variation attributable 
to a pronounced weekly and biweekly periodicity of PM10 
levels. In contrast, for London, PM10 exposure has weaker 
biweekly periodicity, leading to less variation in the autocor-
relation patterns.

For all-cause mortality in London, the autocorrelation 
values remain above 0.5 during the first seven lag days, 
gradually declining thereafter and dropping below 0.5. 
For Valencia, the autocorrelation values remain consist-
ently around 0.25 throughout the analyzed lag period. Both 
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mortality autocorrelation plots indicate no clear weekly or 
biweekly periodicity.

3.2 � Medium‑Term Lag‑Response Associations 
for Relative Risk

The overall trends reveal distinct patterns in the RR of PM10 
exposure concentrations associated with all-cause mortality 
across lagging time windows up to 21 days. For Valencia, the 
RR shows considerable fluctuations around 1.00, accompa-
nied by noticeable variability and wider confidence intervals 
across all lag days (Fig. 3). In contrast, for London, there is 
a relatively stable pattern over the longer lagging time win-
dows, with the RR consistently close to 1.00, minimal vari-
ations, and narrower confidence intervals than for Valencia.

Although our study focused on medium-term lag-
response associations—unlike Tobias et al. [10]— our find-
ings for the shorter lagging time windows generally align 
with that study, particularly in terms of significant relation-
ships. Specifically, for Valencia, a significant association 
can be seen at lag 0, while significant associations can be 
observed at both lag 0 and lag 1 for London (Fig. 3 and Sup-
plementary Material 6).

Notably, the Valencia dataset reveals a dynamic temporal 
pattern. Despite most results being non-significant (Fig. 3), 
a degree of regularity can be seen. Specifically, from lag 
0 to lag 3, the RR starts above 1; from lag 4 to lag 6, it 
stabilizes below 1, forming a low-level plateau; from lag 7 
to lag 14, it rises above 1 again, with a fluctuating upward 
trend and significance observed at lag 14. Beyond lag 14, 

the pattern becomes less consistent, with no clear regularity 
in RR dynamics.

In contrast, the London dataset has a slightly oscillating 
pattern without strong deviations, with most results being 
non-significant and the RR oscillating close to 1. Specifi-
cally, the RR is significantly greater than 1 at lags 0 and lag 
1, drops below 1 at lags 2 and 3, and rises above 1 again 
at lags 4 and 5. This alternating trend continues but with 
weaker medium-term effects than in the Valencia dataset and 
with broader segments: the RR remains below 1 from lags 6 
to 8, rises above 1 from lags 9 to 12, and drops below 1 from 
lags 13 to 16, before increasing again from lags 17 to 21.

In the sensitivity analysis of the Valencia dataset, no sig-
nificant differences were seen between the models without 
age adjustment and those with age included as a confounder. 
In particular, the general trend of the RR was consistent 
within the 21-day lagging time window between the two 
models (Fig. 3a and Fig. 4).

3.3 � Different Lag Structures in the Analysis 
of Exposure–Mortality Relationships

Figure 3 also presents the three different lag methodo-
logical structures (Scenarios 1, 2, and 3). These scenarios 
have somewhat similar trends, but there are variations in 
the RR values within different lag structures for associa-
tions between PM10 exposure concentrations and all-cause 
mortality.

For Valencia, Scenario 2 (joint lag effects model) offers 
more conservative estimates (lower RR values at most lags) 

Fig. 2   Time series data for all-cause mortality counts and PM10 
exposure for Valencia and London.  The trends for all-cause mortal-
ity counts and PM10 exposure concentrations, estimated using the 

B-splines methodology, provide a smooth visualization of the time 
series over the study period
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and often has slightly lower RR estimates than Scenario 1 
(independent lag effects model) and Scenario 3 (cumulative 

lag effects model) (Supplementary Material 6). Notably, a 
peak at lag 14 appears in all three scenarios, indicating a 
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Fig. 3   Medium-term lag–response associations of relative risk 
(lags up to 21  days) for London and Valencia.  In this analysis, we 
accounted for confounders by including in the model the four-day 
moving averages of two key variables, as proposed by Tobias et  al. 
[10]: (i) the 24-h mean temperature from the preceding four days and 

(ii) the 24-h mean relative humidity from the preceding four days.  
Tobias et al. accounted only for relative risk trends up to lag 3 days 
[10].  Supplementary Material 6 presents the results for relative risks 
for all-cause mortality and PM10 exposure across a 21-day lagging 
time window in both cities

Age−adjusted Fixed−Effects Model
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Fig. 4   Medium-term lag–response associations of relative risk (lags 
up to 21 days) for Valencia, adjusted for age, temperature, and rela-
tive humidity.  To assess the robustness of our results, we conducted a 
sensitivity analysis by incorporating age groups (below 65 years and 
65 or older) as additional confounders into the model for the Valencia 
dataset to observe their impact on the overall results [20]. A fixed-
effects conditional quasi-Poisson regression model was applied to 
quantify the associations between PM10 exposure and all-cause mor-

tality while adjusting for age—in addition to temperature and relative 
humidity—within the three different lag structures. The London data-
set was not stratified by age due to data availability constraints, which 
made a sensitivity analysis infeasible.  Supplementary Material 7 pre-
sents the results for the relative risks of all-cause mortality associated 
with PM10 exposure in Valencia, adjusted for age, temperature, and 
relative humidity
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delayed and stronger association between all-cause mortal-
ity and PM10 exposure 14 days before. In contrast, London 
dataset not only has a weaker relationship between PM10 
exposure and all-cause mortality but also exhibits minimal 
differences across the three scenarios, particularly when 
compared to the Valencia dataset.

4 � Discussion

This study addresses a key research gap in environmental 
epidemiology by extending the research of Tobias et al. 
and Bhaskaran et al. developing new health insights that 
were not available from their studies [10, 14]. We analyzed 
medium-term lag-response associations up to 21 days and 
went beyond their methodologies, incorporating the inde-
pendent lag effects model from Bhaskaran et al. [14]., as our 
Scenario 1; the joint lag effects model from both Bhaskaran 
et al. and Tobias et al. [10, 14]., as our Scenario 2; and an 
additional cumulative lag effects model as Scenario 3. This 
study design allowed us to explore and compare different 
methodological lag structures in assessing the relation-
ship between PM10 exposure and all-cause mortality with 
medium-term lag-response associations.

Consistent with Tobias et al. and other research [23, 24], 
our results revealed significant immediate and early-time-lag 
associations between increased all-cause mortality and PM10 
exposure. This is likely because high PM10 exposure con-
centrations trigger immediate pathophysiological responses, 
leading to acute respiratory, cardiovascular, and cerebrovas-
cular diseases shortly after pollution spikes [23, 24] (Table 1 
and Fig. 3). Elderly populations, especially those with severe 
comorbidities, are particularly vulnerable to mortality dur-
ing the early lag stages following air pollution exposure; 
this was particularly pronounced in the Valencia subgroup 
analysis, in which we observed a statistically significant 

association between PM10 exposure and all-cause mortality 
among individuals aged 65 years and older (Fig. 5), with 
relatively narrow 95% CIs. This is an important public health 
consideration, and healthcare settings must be aware of the 
increased risk immediately following PM10 exposure. Health 
authorities, in collaboration with weather forecasting sta-
tions, can improve preparedness for a rise in cases by issuing 
public health alerts, which would enable healthcare facilities 
to anticipate such periods, implement emergency responses, 
and manage the expected surge in inpatient admissions.

For both Valencia and London, we observed a pattern 
in the subsequent lagging-day windows where the RR val-
ues dropped below 1 (Fig. 3). The pattern emerged from 
lag 4 in the Valencia dataset and from lag 2 in the Lon-
don dataset. Although neither was statistically significant, 
these decreases are consistent with the “harvesting effect” 
(mortality displacement) described by Bhaskaran et al. and 
Schwartz et al. [14, 25], whereby a short-term increase in 
mortality is followed by a subsequent decrease because the 
most susceptible individuals have already died.

Population demographic structures may also have 
impacted the RRs. For London, the relationship between 
PM10 exposure and all-cause mortality was weaker than 
for Valencia, with narrow 95% CIs, even though the abso-
lute number of all-cause mortality cases in London was 
greater. This can be explained by demographic differ-
ences: in 2006, London's population (median age 34 years) 
was younger than Valencia's (median age approximately 
37.7 years), where 16% were aged 65 and over [26–28]. 
Specifically, the all-cause mortality attributable to outdoor 
air pollution differs between these age groups (0.34 deaths 
per 100,000 inhabitants in 2021 for Great Britain in the 
30–34 age group vs. 0.54 deaths per 100,000 in Spain in 
the 35–39 age group) [29]. Furthermore, Younger people 
are generally more resilient to PM10 exposure than elderly 
people and have experienced less cumulative exposure 

Table 1   Summaries of city-specific differences in vulnerability and public health strategies

Aspect Valencia London

Short-term impact
(lags 0–3)

Immediate increase in RR, significant at lag 0 Immediate increase in RR, significant at lags 0 and 1

Intermediate trends
(lags 4–13)

Alternating trends, possible adaptation, and delayed 
inflammatory effects

No strong changes; exposure–response relationship remains 
weak

Delayed impact
(lags 14–21)

Significant peak at lag 14 No significant medium-term impact detected

Clinical implications Requires both immediate and medium-term monitoring for 
pollution-exposed individuals, with a focus on younger 
populations

Requires both immediate and medium-term monitoring for 
pollution-exposed individuals

Policy considerations Air pollution control should account for both acute and 
delayed effects

Greater emphasis should be placed on mitigating short-term 
exposures, followed by addressing delayed effects

Preventive measures Early interventions for high-risk patients (e.g., medica-
tions, air filtration, hospital preparation)

Short-term action plans (e.g., stay-at-home warnings for 
high-risk groups, hospital preparation)
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over their lifetimes. In contrast, older individuals have 
experienced longer-term chronic exposure due to their age, 
increasing their risk of developing chronic diseases and 
even death. Therefore, it is not surprising that the medium-
term lag-response association in London was closer to an 
RR of 1 than that in Valencia, indicating a weaker expo-
sure–response relationship.

In the Valencia dataset, the RR values had a fluctuating 
upward trend beyond lag 7, with a decline in RR values 
at lag 11 (Fig. 3). In contrast, the RR values in London 
remained relatively stable at around 1. Although these obser-
vations were not significant, the pattern noted in Valencia 
might suggest possible influences from mortality linked to 
subacute or chronic responses to air pollution or to the pro-
gression of chronic conditions, such as chronic obstructive 
pulmonary disease. Understandably, when comparing peaks 
of mortality across different lagging time windows, the peak 
levels from later effects (second peak elevation at lag 10) are 
noticeably lower than those from the acute and immediate 
effects (first peak elevations at lag 0 and lag 3) observed 
shortly after exposure (Fig. 3). Nevertheless, due to the lack 
of statistical significance, these trends should be interpreted 
cautiously.

Another interesting result was the significant association 
between PM10 exposure and all-cause mortality at lag 14 in 
the Valencia dataset, including a similar significant associa-
tion observed in the subgroup analysis of individuals aged 
over 65 at the same lag (Fig. 3 and Fig. 5). In contrast, no 
comparable association was noted in the London dataset. 
Beyond the influence of Valencia’s older population (Fig. 5), 
another plausible explanation could be the natural progres-
sion of chronic obstructive pulmonary disease. Patients 
admitted to intensive care units with this disease—espe-
cially those with other chronic conditions—may experience 
delayed health outcomes that peak 2–3 weeks after exposure, 
likely due to cumulative damage.

A key finding emerged from the subgroup analysis 
conducted with the Valencia dataset (Fig. 5). Unlike indi-
viduals aged 65 and older, those younger than 65 did not 
exhibit an immediate exposure–mortality relationship at 
lag 0 but showed initial peaks at lag 3. We also observed 
an upward trend between lags 7 and 12, followed by a 
downward trend between lags 13 and 18. Conversely, in 
the 65 + age group, the RR remained stable and close to 1 
throughout a prolonged lagging period from lag 4 to lag 
12, followed by a sudden increase thereafter. Although 
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Fig. 5   Age-specific subgroup analysis for the Valencia dataset.  Dis-
tinct from the sensitivity analysis, a subgroup analysis was conducted 
separately for the two age groups (under 65  years and 65  years or 
older) in the Valencia dataset, treating each age group as an inde-
pendent dataset. We applied a fixed-effects conditional quasi-Poisson 
regression model to quantify the associations between PM10 exposure 

and all-cause mortality, adjusting for temperature and relative humid-
ity, using the three different lag structures.  Supplementary Material 8 
presents the results for the relative risks of all-cause mortality associ-
ated with PM10 exposure from the age-specific subgroup analysis of 
the Valencia dataset
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the reasons underlying these differences remain unclear, 
such temporal patterns may reflect age-related dispari-
ties in vulnerability, exposure behaviors, or pre-existing 
health conditions. Despite the absence of statistical sig-
nificance, these observations highlight the potential value 
of implementing age-specific public health messaging fol-
lowing air pollution episodes. This is particularly relevant 
for individuals with pre-existing respiratory conditions, 
such as asthma or bronchiectasis, or those at higher risk of 
pneumonia, who should be advised to wear masks, use air 
filters, and avoid strenuous outdoor activities during and 
shortly after periods of high pollution events.

The lag analysis methodologies showed different pat-
terns in the two datasets: there were no obvious differences 
between the models for London, but there were for Valencia, 
with Scenario 2 (joint lag effects model) producing more 
conservative RR estimates (lower RR values at most lags) 
than the other two scenarios (Supplementary material 6). 
Scenario 3 (cumulative lag effects model) is conceptually 
closer to the cumulative progression of health risks associ-
ated with prolonged PM10 exposure. This model is particu-
larly relevant to vulnerable populations, such as the elderly 
and people with pre-existing cardiovascular, cerebrovascu-
lar, or respiratory conditions, who are more likely to experi-
ence cumulative effects from air pollution exposure. While 
Scenario 3 captures medium-term cumulative exposure pat-
terns and typically produces higher RR estimates compared 
to Scenario 1, interpreting it as directly capturing specific 
pathophysiological mechanisms should be done cautiously. 
Nevertheless, Scenario 3 remains valuable for assessing real-
istic physiological responses to chronic air pollution expo-
sure, providing important insights into health risks associ-
ated with prolonged PM10 exposure.

One of the strengths of our study is the scale of the data: 
large, population-based datasets of registered all-cause mor-
tality cases from two metropolitan cities, spanning 2002 
to 2006. This provides a generalizable and representative 
analysis of medium-term lag-response associations between 
PM10 exposure and all-cause mortality. Additionally, while 
Bhaskaran et al. considered only a 7-day lag period [14], 
we extended the lagging time windows to 21 days, offering 
additional insights into potential residual temporal trends. 
Furthermore, we demonstrated the robustness of the current 
model’s RR estimates to the choice of moving average win-
dows and degrees of freedom, as proposed by Tobias et al. 
[10]. In the sensitivity analysis, by systematically varying 
the moving average time windows and the degrees of free-
dom for both temperature and relative humidity, we found 
that the coefficients of variation are below 0.15%, indicating 
extremely low variability. This suggests that the RR esti-
mates from different specifications of natural cubic B-splines 
are tightly clustered around the mean, demonstrating high 
consistency and stability (Supplementary Material 2).

However, our study has several limitations. First, the 
all-cause mortality data lacks cause-specific details, which 
might allow for better recommendations regarding inpatient 
treatment and healthcare management following acute PM10 
exposure. Second, our study focuses only on PM10 exposure, 
even though individuals are typically exposed to multiple 
air pollutants, such as NO2 and O3, highlighting the need 
for future research to explore combined pollutant effects. 
Third, the data spans 2002–2006 and may be considered 
relatively old; nevertheless, it remains valuable for study-
ing medium-term lag-response associations, and because 
few environmental epidemiology studies have applied mul-
tiple lag methodological structures, our study design rep-
resents a novel and methodologically diverse approach in 
the field. Fourth, although we acknowledge the importance 
of incorporating PM2.5 into the analysis, our assessment of 
the open-source Air Quality Download Service provided by 
the European Environment Agency (https://​eeadm​z1-​downl​
oads-​webapp.​azure​websi​tes.​net/) showed that the available 
PM2.5 data for the selected locations—Valencia, Spain, and 
London, Great Britain—in the “Historical AirBase data” 
dataset do not cover the study period of this work. For the 
Greater London Area, the earliest available PM2.5 measure-
ments are from May 15, 2008, while for Valencia, PM2.5 data 
are first available from January 1, 2009.

For future studies, it would be important to define the 
lag structure a priori based on clinical knowledge of dis-
ease evolution (natural history of the disease). For example, 
decompensations resulting from co-infections induced by 
increased contamination may be more likely to occur after 
approximately 15 days of exposure, whereas clinical stroke 
often presents in an acute form within lags 0–3. This distinc-
tion warrants further investigation.

In conclusion, the current study not only highlights the 
critical importance of addressing medium-term lag-response 
associations and methodological variations in environmental 
epidemiology but also has strong clinical and public health 
implications. By analyzing the temporal dynamics between 
PM10 exposure and all-cause mortality, we provide insights 
to inform clinical practice and public health strategies. Inte-
grating medium-term lag-response data into public health 
policies can enhance early-warning systems and adaptive 
interventions, thus helping to protect vulnerable populations 
by enabling real-time risk prediction, resource allocation, 
and proactive healthcare responses. Clinicians can play a 
vital role by incorporating air quality indices into care work-
flows, advising patients on preventive measures, and adjust-
ing treatment plans for high-risk groups during pollution 
spikes. Additionally, public health authorities and healthcare 
systems can use these findings to better prepare for surges in 
hospital admissions during identified high-risk periods, miti-
gating the risks and improving population health outcomes.

https://eeadmz1-downloads-webapp.azurewebsites.net/
https://eeadmz1-downloads-webapp.azurewebsites.net/
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