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ABSTRACT
The West African Monsoon, known for its significant rainfall variability, led to the Sahel drought from 1968 to the 1990s, fol-
lowed by a recovery in rainfall since the 1990s. In response to such variability, this study introduces a statistical approach for 
reconstructing interannual rainfall variability across seven rainfall regimes, each representing unique climatic zones in West 
Africa. Initially, a robust catalogue of daily atmospheric circulation pattern classifications over West Africa is established, based 
on pre-selected variables from the ERA5 reanalysis and using k-means clustering. Subsequently, the annual occurrence fre-
quencies of these circulation pattern classifications, along with the annual rainfall conditions in the rainfall regimes, serve as 
inputs in a multi-class logistic regression model. This model is designed to identify dry, normal, and wet years, relative to the 
climatology. The rainfall regimes are determined using k-means clustering and a quality-controlled dataset from 971 rainfall 
stations, with daily observations ranging from 1959 to 2010. These regimes vary from the Sahelian belt, characterised by a short 
rainy season, to tropical regions exhibiting a bimodal rainfall regime. After comprehensive predictor screening of specific West 
African Monsoon patterns, such as the Tropical Easterly Jet and the African Easterly Jet, six variables at four different pressure 
levels under a running split-sampling cross-validation, the best models achieve an average proportion correct of 0.57 and a posi-
tive Peirce skill score for all regions over West Africa. This shows the performance in reconstructing dry, normal, and wet years 
for the different rainfall regimes in West Africa. Therefore, this study provides a statistical tool for the reconstruction of annual 
rainfall anomalies in this challenging region.

1   |   Introduction

The West African Monsoon (WAM) is one of the world's 
most complex regional climate systems, affecting key surface 
fluxes including rainfall, across a broad range of spatial and 
temporal scales (Nicholson  2001, 2009; Lafore et  al.  2011; 
Fink et  al.  2017; Nicholson et  al.  2018). Rainfall-related ex-
tremes and disasters in this region, such as the recent Nigeria 
floods in 2022 (Tunde  2022) or the Sahel droughts of the 

1970s and 1980s (Hagos and Cook  2008), highlight the sub-
stantial vulnerabilities of both urban and rural communi-
ties (Paeth et  al.  2011; Epule et  al.  2013; Engel et  al.  2017; 
Maranan et  al.  2019; Atiah et  al.  2023). To mitigate the im-
pacts of natural disasters, accurate local-scale rainfall infor-
mation is crucial for providing reliable warnings of seasonal 
rainfall anomalies, extreme events and for numerous other 
applications. The existing methods employed by national 
weather services in West Africa exhibit various limitations, 
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for example, in the domain of seasonal rainfall forecasting 
(Bliefernicht et  al.  2019). Moreover, state-of-the-art general 
circulation models (GCMs) fail to provide accurate local-
scale rainfall information for West Africa, as shown by Vogel 
et al.  (2018) in their assessment of global numerical weather 
prediction models. In contrast, GCMs demonstrate good per-
formances in capturing regional-scale atmospheric phenom-
ena such as the West African heat low or the African Easterly 
Waves (AEWs) in this challenging region (Ngoungue Langue 
et al. 2021; Bliefernicht, Rauch, et al. 2022).

To bridge this disparity, innovative statistical downscaling 
methods and strategies are essential (Maraun et  al.  2010; 
Maraun and Widmann 2018). Statistical downscaling frame-
works are computationally efficient compared to dynamical 
downscaling (e.g., Siegmund et al. 2015), making them a prac-
tical choice for regional studies, particularly in developing 
countries. Moreover, they can be tailored to address specific 
research questions or integrated with other techniques to en-
hance performance (Rust et al. 2013). However, the focus on 
statistical relationships may not fully capture the complexity 
of physical climate processes. Additionally, while statistical 
downscaling is effective at explaining certain variability pat-
terns, it can struggle with accounting for longer-term trends 
or handling non-stationarities in atmospheric circulation pat-
terns (Maher et  al.  2020). For the context of this study, sta-
tistical techniques that use circulation patterns (CPs) have 
emerged as a promising approach, as shown by their diverse 
applications across various regions of the world over recent 
decades (Moron et al. 2008b; Rust et al. 2013; Batté et al. 2018; 
Böker et al. 2023). In this study, the approach is tested for the 
annual areal rainfall amount of rainfall zones whose spatial 
extent is similar to the scales often used in climate predictions 
or seasonal forecasts (Bliefernicht et al. 2019). Although the 
current approach does not downscale the GCM output in the 
sense of providing higher spatiotemporal information, the 
statistical methods used here are based on the downscaling 
procedures.

For the West African region, CP-based methods are especially 
promising because large-scale circulation features like the 
African Easterly Jet, Tropical Easterly Jet or the West African 
heat low play a central role in modulating rainfall variabil-
ity (Lafore et  al.  2011; Fink et  al.  2017; Lemburg et  al.  2019; 
Bliefernicht, Rauch, et  al.  2022). While GCMs may represent 
these features at a coarse scale, they often fail to accurately 
reproduce their regional structure or interactions with meso-
scale convective systems, which are one of the primary rainfall 
drivers in the region (Mathon et al. 2002; Nkrumah et al. 2023; 
Semunegus et al. 2017; Atiah et al. 2023; Diedhiou et al. 2024). 
CP-based methods, in contrast, offer a way to statistically link 
these key circulation modes to rainfall anomalies without re-
quiring full physical simulation of convection. This is particu-
larly beneficial in West Africa, where sparse observational data 
limits both the initialization of dynamical models through data 
assimilation and the post-processing calibration (e.g., bias cor-
rection) of their output.

Despite the evident potential of CP-based statistical tech-
niques, its application in monsoon regions has been less 
explored. In the WAM region, relatively few studies have 

explored the relationship between CP classifications and 
local meteorological variables. Moron et al. (2008a) employed 
a k-means cluster analysis to classify regional circulation in 
the Western Sahel, focusing on its influence on rainfall in 
Senegal. This classification considered three wind levels (200, 
700, and 925 hPa) during the months of July to September. 
Subsequently, these CPs were utilised in a downscaling 
method that performed well in capturing the interannual vari-
ability of rainfall, including the frequency and mean duration 
of dry and wet spells (Moron et al. 2008b). Guèye et al. (2011) 
identified nine CPs to account for Senegal's daily atmospheric 
circulation variability, primarily focusing on AEWs and the 
Saharan heat low (SHL). Camberlin et al.  (2020) determined 
six types of intense rainfall events in southern West Africa, 
noting westward signals at the 700 hPa wind field. Moron 
et  al.  (2018) employed cluster analysis to assess CPs' rele-
vance for temperature fluctuations in tropical North Africa. 
Batté et  al.  (2018) used CPs to predict West African Heat 
Waves at both subseasonal and seasonal timescales. They pro-
posed that these CP classifications might be integrated into 
a hybrid statistical-dynamical forecasting method. Instead of 
using direct model outputs for temperature, this method uses 
the ECMWF's SEAS5 forecasted CP-frequency anomalies 
to generate temperature anomaly forecasts. However, their 
findings also indicated that this technique needs further im-
provement. In contrast, Rust et  al.  (2013) demonstrated that 
when large-scale CPs are incorporated into their statistical 
regression model, there is an enhancement in the predictive 
ability for both the occurrence and amount of rainfall in 
Senegal. Bliefernicht, Rauch, et  al.  (2022) introduced a two-
step atmospheric CP classification for West Africa, focusing 
on both seasonal and daily rainfall variability in the Sudan-
Sahel zone (Burkina Faso). As predictor variables, they used 
mean sea level pressure for the seasonal classification and the 
stream function fields at 700 hPa to better account for daily 
rainfall variability. Recently, Nkrumah et al. (2023) identified 
nine CPs over West Africa and investigated changes associ-
ated with favourable environments for mesoscale convective 
systems using self-organising maps (SOMs) based on the 
925 hPa geopotential height. While the aforementioned stud-
ies have primarily addressed CP classifications and their ef-
fects on daily variability, this study builds upon the work of 
Bliefernicht, Rauch, et al. (2022) and specifically targets CPs 
indicative of interannual variability.

Furthermore, the availability of in  situ observations remains 
a persistent challenge (Salack et  al.  2019; Bliefernicht, Salack, 
et al. 2022). Such data are crucial for establishing the relation-
ships between regional-scale atmospheric patterns (predictors) 
and local weather variables (predictands). Despite significant 
progress in the development of improved meteorological net-
works through various initiatives (van de Giesen et  al.  2014; 
Galle et al.  2018; Bliefernicht et al.  2018; Schunke et al. 2021; 
Sawadogo et al. 2023), the scarcity of long-term in situ observa-
tions continues to inhibit the development of reliable statistical 
approaches in the region. In response to these challenges, our 
study proposes several key contributions to enhance the un-
derstanding of interannual rainfall variability in West Africa 
through the development of a CP-based statistical adaptation 
approach. Therefore, our research is directed towards achieving 
three key objectives:
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•	 Establishment of an improved rainfall dataset for the West 
Africa region based on long-term in situ observations.

•	 Development of historical catalogues of daily CP classifica-
tions using pre-selected atmospheric variables for different 
climate zones.

•	 Introduction of a straightforward method that uses daily 
CPs to reconstruct interannual rainfall anomalies under 
ideal reanalysis conditions similar to regional climate out-
look forums.

The focus on interannual rainfall variability aligns with 
the seasonal forecasting approaches of regional climate out-
look forums (Semazzi  2011) like Prévisions Climatiques 
Saisonnières en Afrique Soudano-Sahélienne (PRESASS). 
Seasonal rainfall amounts are categorised into terciles (below-
average, near-average, and above-average) relative to the cli-
matology (e.g., 1981–2010) and simplify complex climate data 
into actionable insights for stakeholders through maps (see 
Bliefernicht et al.  (2019) and Pirret et al.  (2020) for more in-
formation). However, these forecasts face several limitations 
(Mason and Chidzambwa 2009; Bliefernicht et al. 2019; Pirret 
et al. 2020), and statistical downscaling models that support 
this process are relatively rare in West Africa (e.g., Ndiaye 
et al. 2011; Manzanas 2017). Our CP-based approach also clas-
sifies rainfall into terciles using a probabilistic multi-class lo-
gistic regression, thus providing outputs that are structurally 
compatible with PRESASS-style products. While the current 
study focuses on reconstruction of the interannual variabil-
ity of West Africa, a complementary study evaluates the fore-
casting potential of this framework in greater detail (Rauch 
et al. 2025), showing that CP-based models may enhance the 
skill and transparency of operational regional forecasts in 
data-scarce regions.

The article is structured as follows: Section 2 provides an over-
view of the study area and rainfall data with a particular focus 
on the ERA-5 dataset and the extensive network of rainfall sta-
tions across West Africa. Section  3 outlines the methodolog-
ical workflow. This includes an explanation of the clustering 
method, the multi-class logistic regression, and the validation 
of the latter. Section 4 presents the results, including a special 
focus on the Sahelian belt. Section 5 offers a discussion of the 
results, and Section 6 provides a key summary.

2   |   Study Area and Data

2.1   |   Study Area

The focus of this study is on West Africa, with special empha-
sis on the Sahelian belt—a zone dependent on the dynamics of 
the WAM. The WAM is characterised by a complex interplay 
of atmospheric, oceanic, and terrestrial forces. A strong influ-
ence on the monsoon's northward progression during the boreal 
summer is the thermal gradient established between the land-
mass of the African continent and the relatively cooler Atlantic 
and Mediterranean Seas. As the land heats up due to season-
ally driven insolation changes, the associated temperature dif-
ferences amplify, leading to a northward shift of the low-level 
pressure gradient. This shift plays a central role in the seasonal 

rainfall distribution and the overall seasonal cycle in West 
Africa.

Central atmospheric features in the WAM region include 
the SHL, the intertropical discontinuity (ITD), the AEJ, the 
TEJ, and the AEWs (Lafore et al. 2010; Nicholson 2009; Fink 
et  al.  2017). These features, each with their unique impact 
on the WAM, play crucial roles in determining rainfall pat-
terns. For instance, Sheen et  al.  (2017) point out the signifi-
cance of certain elements, such as the convergence of southern 
monsoon winds with northern Mediterranean winds, in en-
hancing rainfall. Enhanced rainfall is also associated with 
a more potent TEJ positioned further north and a strength-
ened AEJ (Grist and Nicholson  2001). The West African 
Westerly Jet (WAWJ), a low-level westerly jet located between 
8° N and 11° N over the West African coast and the Atlantic, 
plays a pivotal role in moisture transport into the Sahel (Pu 
and Cook 2010). Thorncroft et al.  (2011) emphasise the SHL 
and the Atlantic equatorial cold tongue's role in moisture 
fluxes and subsequent rainfall. Moreover, the variability in 
West African summer rainfall is heavily influenced by the 
equatorial Atlantic sea surface temperature (Fontaine and 
Bigot 1993; Fontaine and Janicot 1996; Vizy and Cook 2002; 
Reason and Rouault 2006; Losada et al. 2010).

In essence, the WAM is a complex system characterised by in-
teractions between zonal features such as the WAWJ, AEJ, and 
TEJ, and meridional elements like southerly monsoon winds, 
northerly Mediterranean winds, and convergence zones. The 
strength, positioning, and interplay of these WAM features 
are pivotal in determining rainfall quantity and its variabil-
ity across the region. Given the evident relationships between 
these regional-scale atmospheric processes and meteorological 
variables, there is a strong motivation for their use in statistical 
adaptation of model outputs. Harnessing these relationships al-
lows us to infer local-scale phenomena from larger-scale atmo-
spheric conditions. Therefore, this study leverages the fact that 
many of the key atmospheric components of the WAM shape 
both daily and seasonal rainfall patterns across the region. By 
identifying and classifying CPs that reflect the combined states 
of these atmospheric elements, we aim to capture the variabil-
ity in their structure and location from year to year. This ap-
proach represents an interpretable and computationally efficient 
tool which enables us to statistically link large-scale circulation 
modes with observed rainfall anomalies, thus directly address-
ing our goal of reconstructing interannual rainfall variability 
over West Africa.

2.2   |   Rainfall Data

The in situ daily rainfall records were sourced from two data-
bases: the KASS-D (Karlsruhe Surface Station Database, indi-
cated in red in Figure 1, 1810 stations) and a daily subset of the 
WAHPD (West African Historical Precipitation Database, indi-
cated in blue in Figure 1, 410 stations). The WAHPD is described 
in Bliefernicht, Salack, et al.  (2022), providing information on 
data sources and the quality algorithms applied. Furthermore, 
these databases have been used in various other studies, for 
example, Bliefernicht, Rauch, et al.  (2022), Ascott et al.  (2020) 
for WAHPD, and Schlueter et al.  (2019), Vogel et al.  (2018) for 
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KASS-D. Both databases have overlaps and include data from 
national hydrological and meteorological services but also draw 
on regional repositories (e.g., AMMA-Catch, Galle et al. 2018) 
and global networks (e.g., GHCNd). Although both the KASS-D 
and WAHPD databases include partially overlapping station 
data, their use is complementary and necessary. Each database 
is a curated collection compiled from various national, regional, 
and international sources, often following different metadata 
conventions, quality control procedures, and formatting stan-
dards. To make both usable in a unified analysis, a harmoni-
sation step was applied to align station metadata, formats, and 
quality filters. This integrated approach enables us to construct 
a more comprehensive and spatially balanced rainfall dataset 
for West Africa, which is crucial for robust CP classification and 
interannual variability analysis.

In order to cover a significant portion of Africa north of the 
equator, the data selection focuses on the region between 18° W 
and 10° E longitude and 4° N and 20° N latitude (see Predictand 
in Figure  1, WAHPD: 299 stations, KASS-D: 1467 stations) 
and spans an overall period from 1959 to 2010. To ensure an 
adequate data sample for meaningful analysis, time series are 
required to have a minimum of 5 years of data (WAHPD: 276 
stations, KASS-D: 1099 stations). A five-year threshold was cho-
sen as a balance between ensuring sufficient temporal coverage 

to capture basic interannual variability and retaining enough 
stations for robust spatial representation.

2.3   |   ERA-5 Reanalysis

The ERA-5 dataset, developed by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), represents 
their most recent reanalysis dataset. It provides comprehen-
sive insights into atmospheric, terrestrial, and oceanic climate 
variables (Hersbach et  al.  2020). For the CP-based regression 
analysis, ERA-5 serves as a primary source of predictor data. For 
the analysis, ERA-5 hourly data from 1959 to 2010 was obtained 
from the Climate Data Store of the Copernicus Climate Change 
Service. This data was then averaged from an hourly scale to 
provide daily-scale predictor information. To further optimise 
computational efficiency, the ERA-5 reanalysis fields were pre-
processed to a resolution of 2◦

× 2
◦ which is widely used to reduce 

computational load during clustering, particularly for variables 
like mean sea level pressure or high-level wind fields that exhibit 
low spatial variability (Bliefernicht, Rauch, et al. 2022). In total, 
this study uses six individual variables (stream function, SF; U-
component of wind, U; V-component of wind, V; wind direction, 
WD; wind speed, WS; and mean sea level pressure, MSLP) on four 
different pressure levels (200, 700, 850, 925 hPa) from the ERA-5 

FIGURE 1    |    Distribution of the rainfall stations across the study area in West Africa, with the locations of WAHPD (West African Historical 
Precipitation Database, red) stations and KASS-D (Karlsruhe Surface Station Database, blue) stations. The box labelled ‘Predictand’ denotes the 
target region for the chosen rainfall data, whereas the broader area labelled ‘Predictor’ represents the target region for the reanalysis data (ERA-5). 
[Colour figure can be viewed at wileyonlinelibrary.com]

WAHPD

KASS-D
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dataset. Detailed information about the variables can be found 
in Table 1. The pre-selection of predictor variables in this study is 
based on existing literature, aligning with the studies by Moron 
et  al.  (2008a) (U/V200, U/V700, U/V925), Guèye et  al.  (2011, 
2012) (U/V850), and Bliefernicht, Rauch, et  al.  (2022) (U/V at 
multiple levels, SF700, SF850). MSLP is also commonly em-
ployed (Guèye et al. 2011, 2012; Bliefernicht, Rauch, et al. 2022). 
These variables were selected not only based on precedent in the 
literature, but also due to their physical relevance for capturing 
the dynamics of the WAM system. For instance, the U and V 
wind components at 200 and 700 hPa reflect the influence and 
positioning of the TEJ and AEJ. The 925 and 850 hPa levels cap-
ture low-level monsoon inflow and moisture transport from the 
Gulf of Guinea. SF at 700 and 850 hPa provides information on 
rotational flow and large-scale vorticity, aiding in identifying 
circulation features like AEWs. MSLP is closely linked to the 
position and intensity of the SHL. Additionally, every possible 
combination of these variables up to four is considered, leading 
to C(21, 2) + C(21, 3) + C(21, 4) = 7525 combinations. As a re-
sult, a total of 7546 initial predictor combinations are assessed.

To describe dominant regional-scale features of the WAM (e.g., 
SHL, TEJ or AEJ), we use a domain spanning from 30° W to 
40° E and 5° S to 40° N (see predictor in Figure 1). This coverage 
encompasses a majority of the regions in Africa located north 
of the equator, aligning precisely with the domain size used by 
Bliefernicht, Rauch, et al. (2022). To prepare the data for mod-
elling, a data scaling preprocessing step was executed. This step 
involved the normalisation of the variables' range. Specifically, 
standardised anomalies, represented as z(i, t), were derived from 
the predictor data x(i, t) according to:

In this equation, i = 1, … ,L pertains to the grid points, 
t = 1, … T denotes the time steps in days, x(i) signifies the 
time-inclusive long-term mean, and s(i) indicates the standard 
deviation of the time series. This means standardised unfiltered 
(i.e., the annual cycle is kept) daily anomalies are used for the 
analysis.

In addition to the atmospheric data, the variable of total precip-
itation from ERA-5 at the original resolution of 0.25◦

× 0.25
◦ has 

been used to determine the value-added of the proposed CP-
based logistic regression model. No further preprocessing steps 
were applied.

3   |   Methods

To capture the relationships between selected predictors and 
desired outcomes, a multi-data preparation pipeline was de-
signed. As shown in Figure 2, the methodology is split into two 
branches: one to process atmospheric predictor data and the 
other focusing on the different RRs over the West African conti-
nent. For the atmospheric data, the following steps were under-
taken to prepare the predictors for modelling:

1.	 Standardisation: The initial step involved transforming 
the predictors into anomaly-based variables, as detailed in 
Equation (1).

2.	 CP classification: The clustering technique k-means was 
deployed. The aim was to generate a time series of daily 
CPs.

3.	 Frequency computation: Post-classification, the occur-
rence frequencies of each CP were standardised and calcu-
lated on an annual basis.

4.	 Setup of a regression model: The computed CP frequencies 
served as predictor variables in a subsequent multi-class 
logistic regression analysis.

For processing and integrating the rainfall data (predictand), 
the methodology consisted of:

1.	 Data integration: The different sources (WAHPD, KASS-D) 
of rainfall data were prepared and merged.

2.	 Station-based averaging: Rainfall records from multiple 
stations within the chosen region were aggregated to ob-
tain an average areal rainfall measure. This average areal 
rainfall is then aggregated to yearly sums, denoted as RA.

(1)z(i, t) =
x(i, t) − x(i)

s(i)

TABLE 1    |    Pressure-level variables: Listing of abbreviations, associated atmospheric pressures, units, and input variables for computation. The 
designation ‘all levels’ includes atmospheric pressures at 200, 700, 850, and 925 hPa. Further information on each variable can be found in Hersbach 
et al. (2023a, 2023b).

Name Abbreviation Levels Units Input

Pressure-level variables

Stream function SF All levels m2 s−1 U, V

U-component of wind U All levels m s−1 —

V-component of wind V All levels m s−1 —

Wind direction WD All levels degrees U, V

Wind speed WS All levels m s−1 U, V

Single-level variables

Mean sea level pressure MSLP — Pa —

Total precipitation TP — mm —
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3.	 Categorization: This RA value was then discretized into or-
dinal classes using two quantile thresholds (q1 and q2). The 
classes were categorised as follows:
•	 RA ≤ q1: Class 1, signifying a ‘dry’ condition.
•	 q1 < RA < q2: Class 2, indicative of a ‘normal’ condition.
•	 RA ≥ q2: Class 3, representing a ‘wet’ condition.

Here q1 is the 0.33th quantile and q2 is the 0.66th quantile. 
This choice was made to align with the seasonal forecast-
ing approach used by regional climate outlook forums like 
PRESASS.

4.	 Preparation for regression: These categorizations then be-
came the target variables in the multi-class logistic regres-
sion model.

Detailed discussions on important methodological steps follow 
in the subsequent sections.

3.1   |   Rainfall Merging

To merge the KASS-D and WAHPD datasets (1375 stations in 
total), a multi-step approach is necessary. Initially, we address 
the discrepancies in time stamps between the datasets. The 
norm for daily rainfall measurements is a 24-h period, from 
06:00 UTC to 06:00 UTC, but real-world inconsistencies often 
occur due to factors like local time zones, station-specific data 
collection practices, and occasional errors in recording or re-
porting. For KASS-D, stations assign date stamps for daily ac-
cumulated rainfall observations from 06:00 UTC to 06:00 UTC 
to the subsequent day. This practice deviates from the WAHPD 
database alignment. To reconcile this, we consider shifting the 
WAHPD time series by 1 day, aligning it with the KASS-D time 
stamps. We then evaluate the correlation between the adjusted 
WAHPD data and nearby stations within a 50 km radius. If a 
significant improvement in correlation (> 0.5 improvement) is 
observed, suggesting a closer agreement with nearby stations, 
the respective WAHPD station's data is shifted by 1 day for better 
alignment.

Prior to geostatistical analysis, the data undergoes preprocess-
ing: years marked only by dry periods, and stations with only 
missing values or duplicate coordinates are excluded (1299 sta-
tions remaining). This ensures the dataset is free from anom-
alies like years with exclusive dry periods and stations with 
missing or redundant data. By considering the spatial relation-
ships between stations, we can assess the correlation between 
neighbouring stations within a specific distance, which allows 
us to evaluate the similarity or dissimilarity of rainfall time se-
ries and identify any discrepancies between the databases. After 
acquiring the distance and correlation matrices, several geosta-
tistical steps are performed to filter stations with insufficient 
data quality. These steps help ensure that the merged dataset 
includes reliable and representative stations. The following pro-
cedures are implemented:

•	 Highly correlated stations (less than 25 km apart, with a 
correlation greater than 0.9) were consolidated, retain-
ing the one with more complete data (elimination of 280 
stations).

•	 Poorly correlated nearby stations (less than 25 km apart, 
with a correlation less than 0.1) were removed (elimination 
of 25 stations).

•	 For distant but highly correlated stations (more than 25 km 
apart, with a correlation greater than 0.9), the station with 
the lowest correlation among the ten nearest was deleted 
(elimination of 23 stations).

By applying these geostatistical filtering steps, stations with in-
sufficient data quality or poor spatial consistency are eliminated.

To address missing values, we employ a nearest-neighbour 
(NN) infilling approach. While traditional NN methods de-
pend on Euclidean distance, our approach leans on the high-
est observed Pearson correlation for the specific station; this 
approach has outperformed others in our evaluations [not 
shown]. We draw upon the insights from Pegram et al. (2016), 
which show that the performance differences between 

FIGURE 2    |    Flowchart illustrating the multifaceted approach to reconstruct rainfall anomalies in the West African region. The flowchart is 
divided into two main branches: the left one focusing on atmospheric data and the right one on rainfall regions (RR). Each branch undergoes a 
series of transformations and classifications. They converge at a multi-class logistic regression model, which detects whether a year will be dry, 
normal, or wet.
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sophisticated statistical methods, such as dynamic copula re-
gression (Bárdossy and Pegram 2014), and simpler NN tech-
niques are minimal. Additional details about the NN infilling 
methodology can be found in the aforementioned references. 
Furthermore, NN methods preserve spatial variance more ef-
fectively than other interpolation techniques such as ordinary 
kriging or inverse distance weighting, which tend to cause 
smoothing (Rauch et al. 2024).

3.2   |   K-Means

The k-means algorithm is a widely used clustering algorithm 
in atmospheric sciences (Huth et  al.  2008; Govender and 
Sivakumar  2020), designed to group data by dividing samples 
into K distinct clusters, each characterised by similar variance 
levels. This algorithm is selected in this study for its simplicity, 
reproducibility and widespread use in CP classification (e.g., 
Solman and Menéndez 2003; Moron et al. 2008a).

The prerequisite for this algorithm is the pre-determination of 
the number of clusters. In k-means clustering, a set of N samples, 
denoted as X, is divided into K non-overlapping clusters C. These 
clusters are defined by their mean �j, known as the cluster's 
centroid. The primary objective of k-means is to determine cen-
troids that minimise inertia, the within-cluster sum-of-squares 
criterion, represented as:

For classifying the standardised anomalies of the predictors, 
we used the MiniBatchKMeans algorithm from scikit-learn 
(Pedregosa et  al.  2012), an efficient adaptation of the tradi-
tional k-means. MiniBatchKMeans reduces computational 
time by processing mini-batches—smaller, randomly selected 
data subsets—in each iteration. This method significantly 
lowers the computational load required for converging to 
a local solution. Although this technique compromises the 
algorithm's accuracy, MiniBatchKMeans maintains high-
quality outputs, typically with only marginal deviations from 
the standard k-means results. The k-means++ initialization 
method (Arthur and Vassilvitskii  2007) was used for robust 
centroid selection, which aids in faster convergence. To effec-
tively uncover atmospheric CPs, we experimented with cluster 
counts ranging from 5 to 15. This range follows earlier studies 
in the region (Moron et al. 2008a; Rust et al. 2013; Bliefernicht, 
Rauch, et al. 2022) and reflects a balance between capturing 
dominant circulation regimes and avoiding overly fine clus-
tering. It also ensures adequate sample sizes for stable logistic 
regression.

3.3   |   Multi-Class Logistic Regression Model

Logistic regression is widely used in many atmospheric applica-
tions (Gijben et al. 2017; Moon et al. 2019; Moon and Kim 2020). 
It offers a method of modelling a categorical dependent variable 
based on one or more independent variables. Unlike linear re-
gression, which estimates continuous outputs, logistic regres-
sion focuses on predicting binary outcomes using the logistic 

function. Logistic regression is chosen because it is highly in-
terpretable, as coefficients directly reveal predictor influences. 
In our implementation, the computed frequencies of the CPs 
on an annual basis were used as predictor variables, while the 
classes—dry, normal, or wet—were used as the predictand vari-
ables. The use of CP frequencies as predictors, rather than direct 
atmospheric variables, reduces dimensionality and emphasises 
the role of physically interpretable CPs in modulating interan-
nual rainfall variability.

Given a set of predictors X1,X2, … ,Xp, the logistic regression 
model expresses the probability P(Y = 1) as:

where �0, �1, … , �p are coefficients that the model seeks to esti-
mate. Given the multi-class nature of the dependent variable, a 
conventional binary logistic regression model would be insuffi-
cient. To address this, the study employed the one-vs-rest (OVR) 
strategy combined with logistic regression to perform multi-class 
classification. The OVR approach inherently breaks down a multi-
class classification problem into multiple binary classification 
tasks. For a dataset with n classes, n distinct binary classifiers are 
trained. For each classifier, one class is treated as the positive class, 
while all other classes are treated as the negative class. In this 
study, the LogisticRegression function from the scikit-learn library 
was used (Pedregosa et al. 2012).

3.4   |   Validation and Performance Measures

To evaluate the performance of our multi-class logistic re-
gression model, we use two different metrics: Proportion 
correct (PC) and Peirce skill score (PSS). These metrics are 
implemented in accordance with the guidelines provided by 
Wilks  (2006). For additional information on these perfor-
mance measures, the cited work offers an in-depth discussion. 
The performance measures are derived from a 3 × 3 contin-
gency table. The PC is the most straightforward metric, com-
puted as the sum of the diagonal elements (correct hindcasts) 
divided by the total number of joint hindcast and observation 
pairs in a 3 × 3 contingency table. As pointed out by Grandini 
et al. (2020), the PC is particularly suitable for balanced data-
sets. In the tercile-based approach of this study, the balanced 
nature of the dataset ensures that the metric is not biased to-
wards any specific class. A shortcoming of the PC is that no 
comparison is done versus a low skill reference. That is the 
reason why the PSS is chosen in addition to the PC to deter-
mine the skill of the reconstruction. The equation for the PSS 
is as follows:

Here, p
(
yi, oi

)
 represents the joint probability of hindcasts and 

observations, while p
(
yi
)
 and p

(
oj
)
 are the marginal distribu-

tions of hindcasts and observations, respectively. I and J  de-
note the number of categories for hindcast and observations. 
The PSS aims to quantify the hindcast skill while accounting 

(2)
n∑

i= 0

min
�j ∈C

(‖‖‖xi−�j
‖‖‖
2)

(3)P(Y = 1|X ) = e�0+�1X1+⋯+�pXp

1 + e�0+�1X1+⋯+�pXp
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for random chance. A perfect hindcast would result in PC and 
PSS scores of 1. Conversely, a hindcast no better than ran-
dom chance would yield PSS scores of 0 and zero hits for PC. 
Negative PSS scores indicate a hindcast worse than random 
chance.

In atmospheric sciences, a variety of methods are used to as-
sess the quality of regression models that link predictors and 
predictands. A key aspect of this validation process is choos-
ing appropriate training and validation periods. This choice 
is crucial to avoid overfitting and ensure the reliability of the 
model. To achieve this, techniques like split-sampling (Bárdossy 
et  al.  2002), cross-validation (Rust et  al.  2013; Gutiérrez 
et  al.  2019), stratified validation (Zeng and Martinez  2000), 
and statistical model ensembles (Hertig and Jacobeit  2008) 
can be applied. Particularly, the latter technique employs mul-
tiple statistical models across different training and validation 
periods to avoid artificial skill and address non-stationarities 
in predictor-predictand dynamics (Hertig and Jacobeit  2013). 
These non-stationarities occur on varying temporal and spa-
tial scales, with the El Niño–Southern Oscillation being a well-
documented example that significantly affects global climate 
(Janicot et al. 1996; Greatbatch et al. 2004; Cannon 2015).

This work is based on a 2/3 to 1/3 running split-sampling 
method, allocating 39 years for training and 13 years for val-
idation. The complete approach, as illustrated in Figure 2, is 
applied to all variable combinations and CP number configu-
rations leading to a total of 75,460 potential combinations for 
each RR in a running calibration mode. In this context, the 
metrics PC and PSS are calculated for each training (subscript 
t) and validation (subscript v) period for a selected period in 
a split-sampling approach. This period is then subsequently 
shifted forward by 1 year for the complete period (1959 to 
2010). As the entire time series concludes, years from the start 
are progressively incorporated. In this study, we begin with 
a training period from 1959 to 1997, followed by a validation 
period from 1998 to 2010. Subsequently, we use the years 
1960 to 1998 for training and 1959, 1999 to 2010 for valida-
tion, incorporating years from the beginning of the time series 
progressively.

The mean metrics P̂C and P̂SS are then computed over the statis-
tical model ensembles. The final configuration is selected based 
on its performance during the validation period P̂Cv, as evalu-
ated during the ensemble step. This process ensures that the ini-
tial model solution is both robust and reliable.

3.5   |   Value-Added

Based on the generally poor performance of GCMs for local-
scale rainfall and their ability to simulate regional-scale 
meteorological phenomena, this study adopts the use of the 
‘raw’ total precipitation variable from the ERA5 dataset to 
determine the added value of the proposed CP-based logistic 
regression model. By extracting daily rainfall sums on a point-
to-pixel basis from ERA5, we directly compare our modelled 
outcomes with the reanalysis model output. Since rainfall ex-
hibits high spatial variability (Rauch et  al.  2024), we retain 
the original resolution of the fields, unlike the atmospheric 

variables which are coarsened to reduce the computational ef-
fort. This enables a comparative analysis that quantifies the 
enhancements our approach brings to rainfall reconstruction 
in West Africa, as opposed to the often used ERA5. We follow 
the same data preparation steps (averaging and categoriza-
tion in RRs) and validation measures (PC, PSS) as described in 
Section 3.

4   |   Results

The following section first discusses the creation of a rainfall 
dataset for West Africa and then the optimal parsimonious set 
of variables crucial for accurately reconstructing interannual 
rainfall anomalies in the WAM region. It furthermore presents 
a quality assessment of the CP-based multi-class logistic regres-
sion model of the best solution, with a particular focus on the 
Sahelian belt as a case study. This assessment encompasses an 
in-depth examination of the spatial composite of the selected 
CPs, their meteorological interpretation, CP statistics, the coef-
ficients of the regression model, and a predictive analysis of in-
terannual rainfall variability in the Sahel. Subsequently, the last 
chapter provides a brief summary of the other RRs.

4.1   |   Rainfall Dataset

By applying the workflow of Section 3.1 the result is a curated 
dataset of 971 quality-controlled stations with an average station 
data availability of approximately 44% for the period of 1959 to 
2010 (Figure 3), underscoring the data scarcity in West Africa. 
To easily apply statistical techniques like k-means, an infilled 
dataset is helpful. Therefore, the missing values are infilled as 
described in Section  3.1. Thus, we can establish an improved 
rainfall dataset for the West Africa region based on long-term 
in situ observations. This dataset serves then as the foundation 
for our analysis.

In literature, hard borders at specific latitudes are often employed 
to delineate the diverse rainfall patterns characterising the sea-
sonal cycle across West Africa (Omotosho and Abiodun  2007; 
Akinsanola et al. 2017). While this conventional approach offers 
simplicity, it may fall short in capturing the interactions of cli-
matic factors and the unique characterisation that defines the 
region's rainfall regimes (RRs). As a shift from this approach, we 
use a more fluid approach by employing the k-means algorithm 
to classify the rainfall patterns. This classification is based on 
standardised anomalies from the monthly sums. First, we ag-
gregated the data into monthly sums. Afterwards, we calculated 
the standardised anomalies for each station by subtracting the 
station's long-term mean and then dividing by its standard devi-
ation from the complete monthly time series. Thus, the k-means 
algorithm uses data from 624 months (52 years) across 971 sta-
tions as input. This analytical framework allows for a nuanced 
classification of rainfall variability.

These clusters, or RRs, offer representations of distinctive rain-
fall patterns in the region, thereby providing a better under-
standing of West Africa's rainfall dynamics. The geographical 
arrangement of the rainfall stations in relation to the designated 
RRs is illustrated in Figure 3. Additionally, their corresponding 
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monthly rainfall totals are depicted in Figure 4, while their in-
terannual rainfall variability (target predictand) is presented in 
Figure 5. Within each RR, we sum the daily rainfall to obtain a 
regional annual sum, which is then standardised to zero mean 
and unit variance at the interannual scale. Here is a brief de-
scription of each RR:

•	 RR1: Strongly associated with the Sahelian belt, the north-
ernmost region which typically experiences a single, short 
rainy season spanning from June to September. The inter-
annual variability shows a wet phase starting in 1959, fol-
lowed by the great Sahel drought from 1968 to the 1990s. 
The subsequent phase is a period of rainfall recovery since 
the 1990s (Descroix et al. 2018).

•	 RR2: A transition zone, bridging the Sahelian and Sudanian 
Zones. The rainfall pattern here reflects its intermediary 
position, with rainfall totals and season length increasing 
compared to the Sahelian Zone. This region shows a similar 
behaviour of the interannual rainfall variability to RR1, but 
the rainfall recovery seems to take longer, with more dry 
years extending until the early 2000s.

•	 RR3: Pertains predominantly to the Sudanian Zone, which 
is characterised by a lengthier rainy season extending from 
May to October. The rainfall is more abundant than in the 
Sahelian zone. Similar to RR1 and RR2, this region experi-
ences comparable patterns of interannual rainfall variabil-
ity, but the onset of the dry period is delayed until the early 
1970s, similar to RR2.

•	 RR4: Serves as a climatic transition between the Sudanian 
Zone and the Guinean and Coastal Zones. It experiences a 
bi-modal rainfall pattern, although the ‘August break’ and 
rainfall peaks are less pronounced than in the zones further 
south. This region has fewer prolonged periods of dry or wet 
conditions compared to RR1 to RR3, indicating an overall 
more even distribution of the interannual rainfall variabil-
ity categories.

•	 RR5: Primarily associated with the Guinean and Coastal 
Zones, specifically representing the coastal region of Côte 
d'Ivoire, experiences a unique double peak rainfall pattern 
due to its geographical proximity to the Atlantic Ocean and 
equatorial position. The maritime influence and position 
near the equator cause an extended rainy season with a pri-
mary maximum in June and a secondary peak in October. 
For this coastal region, there is a visual trend towards more 
normal and dry years from the 1990s to the 2010s, with 
fewer occurrences of wet years.

•	 RR6: Represents regions like Ghana, Togo, and Benin 
which exhibit a slightly less pronounced double peak 
rainfall pattern with lower peaks compared to RR5. This 
region shows a balance between dry and wet years and 
a generally more even distribution. It overlaps well with 
at least the coastal part of the “Dahomey Gap” (Vollmert 
et al. 2003).

•	 RR7: Represents mostly southern Nigeria specifically the 
wet Niger Delta region, characterised by a less pronounced 

FIGURE 3    |    Geographical distribution of rainfall stations across West Africa, classified into seven Rainfall Regimes (RRs) using the k-means 
algorithm based on monthly rainfall anomalies. Each RR represents a unique rainfall pattern, surpassing the traditional latitude-based distinc-
tions: RR1—Sahelian Zone, RR2—Transition between Sahelian and Sudanian Zones, RR3—Sudanian Zone, RR4—Transition between Sudanian, 
Guinean and Coastal Zones, RR5—Guinean and Coastal Zones, Côte d'Ivoire, RR6—Guinean and Coastal Zones, Ghana, Togo, and Benin, and 
RR7—Guinean and Coastal Zones, Nigeria. [Colour figure can be viewed at wileyonlinelibrary.com]
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bimodal RR compared to RR5 or RR6. In this region, a dry 
phase followed by a recovery from normal to more wet 
years can be observed.

Because the presentation and application of the methodology for 
each RR are quite extensive, our main focus is on the findings of 
RR1, with summaries of the other RRs provided in Chapter 4.4.

FIGURE 4    |    Averaged monthly rainfall sums [mm] for the seven rainfall regimes (RRs). See Figure 3 for an overview of the different RRs. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5    |    Averaged standardised interannual rainfall variability for the seven RRs. See Figure 3 for an overview of the different RRs. The con-
tinuous black line represents the actual values of standardised annual rainfall sums, with the two dashed lines denoting the 0.33 and 0.66 quantiles, 
which segment the data into three categories: Dry (dark orange circle, below the first dashed line), normal (red square, between the two dashed lines), 
and wet (blue diamond, above the second dashed line). [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2   |   Identifying the Optimal Parsimonious 
Set of Variables for Interannual Rainfall 
Reconstruction

This section focuses on identifying the most effective combi-
nation of atmospheric variables for reconstructing interan-
nual rainfall in the RR1 region. We employ our methodology 
(Figure  2) to evaluate different variable combinations and de-
termine which combination captures the essential dynamics 
influencing regional rainfall with the highest accuracy and 
efficiency.

Table 2 shows the best-performing models for each specific class 
of variable combinations, ranging from 1 to 4 variables. It re-
veals that the single variable WS200 delivers comparatively ro-
bust performance metrics. Specifically, WS200 as single variable 
achieved a P̂Ct of 0.627 and a P̂SSt of 0.449, with the validation 
metrics standing at 0.602 and 0.244 respectively. When addi-
tional variables are included, the improvements in both P̂C and 
P̂SS are marginal.

Therefore, just a single variable and the solution of WS200 for 
RR1 is chosen due to its superior performance, simplicity, and 
lower computational demands compared to models using mul-
tiple variables. The slight improvements offered by additional 
variables do not outweigh the benefits of a parsimonious model, 
which adheres to the principle of achieving a similar level of 
skill scores (PC, PSS) with the least complexity.

4.3   |   Sahelian Belt—RR1

Given the availability of solutions from 52 models (one for each 
shifted year) for the k-means clustering applied to the WS200 
variable under six CPs, we chose to showcase an extraordinary 
case marked by an exceptionally high PCv. This particular model 
underwent training during two separate intervals: from 1959 to 
1977 and from 1991 to 2010. The validation period for the model 
covered the years from 1978 to 1990, a period notable for the 
great Sahel drought. During these phases, the model achieved 
the following performance measures: PCt = 0.59, PSSt = 0.39, 
PCv = 0.85 and PSSv = 0.59.

Figure 6 shows the composites of the spatial CPs from WS200 
anomalies which signify changes in wind speed in the upper tro-
posphere, around an altitude of 12 km, often associated with the 
TEJ. The relationship between the TEJ and rainfall activity in 
the Sahel is well-documented (Lemburg et al. 2019; Nicholson 
and Klotter 2021). CP1, CP2 and CP3 mainly occur in the north-
ern hemisphere's winter and spring months. Their occurrence 
decreases in April and reaches a minimum in May and October. 
The CPs are almost completely absent from June to September 
(Figure 7). The WS200 fields exhibit strong positive anomalies 
over the West African continent, which may be attributed to 
the strong westerly flow of the subtropical jet stream in winter 
(Krishnamurti 1961). During this period (especially December 
to March), the TEJ develops in the southern hemisphere, extend-
ing between the equator and 10° S (Nicholson and Klotter 2021), 
and is therefore mostly outside our predictor domain (Figure 1).

As the seasonal cycle progresses, key atmospheric features such 
as the TEJ migrate northward, in alignment with the sun's ze-
nith position. Specifically, CP4 primarily occurs in May, October 
and November, while being completely absent in July and 
August (Figure 7). This pattern is further illustrated by the spa-
tial reduction of positive anomalies and the emergence of higher 
negative anomalies in the WS200 fields (Figure  6). Moreover, 
the rainfall intensity is slightly increased when compared to 
CP1, CP2 and CP3 (Table 3).

CP5 and CP6 are primarily observed during the main mon-
soon period. CP5 occurs prominently in June with an average 
duration of 21 days (Figure 7). Notably, there is a slight positive 
anomaly at 0° N in the WS200 fields, which suggests a poten-
tially weakened TEJ. CP6 exhibits a very specific temporal pat-
tern, appearing only from June to August, but with a very high 
frequency, peaking at over 26 days in both July and August. This 
phase is characterised by pronounced positive WS200 anomalies 
around the Equator, indicating a strengthened TEJ, which typi-
cally signifies intense upper tropospheric winds. However, for a 
comprehensive analysis, it is crucial to evaluate the zonal wind 
component at this altitude to determine whether these anoma-
lies correspond to a strengthened or weakened TEJ.

Table  3 summarises the behaviour of the six CPs under three 
tercile-based categories: dry, normal, and wet years and the cli-
matology. Each category is evaluated using three metrics: (1) 
occurrence percentage, representing the relative occurrence fre-
quency of each CP expressed as a percentage; (2) mean rainfall 
(RA [mm]), indicating the average rainfall associated with each 
CP; and (3) occurrence anomaly, defined as the percentage in-
crease or decrease in occurrence relative to climatology. In gen-
eral, CP6 exhibits the highest amounts of rainfall, followed by 
CP5. Conversely, CP1 to CP4 show almost no rainfall (< 1 mm). 
CP1 is less common in wet years (−15.39%), while CP2 is less 
common in dry years (−12.39%). CP3 and CP4 are fairly stable 
across the different categories. In contrast, CP5 and CP6 exhibit 
significant variability, indicating greater sensitivity to rainfall 
variability. The occurrence of CP5 reduces considerably in wet 
years, dropping by −16.79%, which suggests it is less prevalent 
in wetter conditions. This decrease in both occurrence and rain-
fall amounts reveals CP5's sensitivity to dry years. On the other 
hand, CP6 occurs more often in wet years (+14.22%) with en-
hanced rainfall amounts.

TABLE 2    |    Evaluation of the optimal variable combinations for 
interannual rainfall variability reconstruction in RR1. This table 
identifies the highest-performing combinations of one to four, along 
with the count of CPs, and compares their performance metrics across 
training and validation phases.

k-means CPs P̂Ct P̂SSt P̂Cv P̂SSv

WS200 6 0.627 0.449 0.602 0.244

WS200, SF200 7 0.640 0.466 0.612 0.276

U200, V200, 
WS200

7 0.652 0.485 0.620 0.263

U200, V700, 
WS200, SF200

7 0.637 0.463 0.623 0.284
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FIGURE 6    |    Atmospheric CPs for the WS200 variable as the chosen solution for RR1. The colour scale signifies the mean intensity of the mea-
sured variable, where red and blue shades represent positive and negative anomalies, respectively. WS200 anomalies are represented only where 
the anomaly is statistically significant at the 1% level (or 99% confidence level) computed with a two-tailed t-test. [Colour figure can be viewed at 
wileyonlinelibrary.com]

FIGURE 7    |    Monthly occurrence frequencies in days for each CP of the classification using WS200. Only values exceeding more than 1 day are 
displayed. [Colour figure can be viewed at wileyonlinelibrary.com]
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Regression coefficients from the multi-class logistic regression 
model further support these observations (Figure 8). The pur-
pose of these coefficients is to gauge the likelihood of each CP 
occurring under specific categories, thereby providing an an-
alytical foundation for understanding their climate sensitivity. 
For CP5, coefficients are positive during dry (0.36) but negative 
during wet years (−0.47), aligning with its occurrence data. For 
CP6, a negative coefficient during dry years (−0.69) and a posi-
tive one during wet years (0.57) indicate its high importance for 
these years. The coefficients for both CP5 and CP6 largely agree 
with their occurrence percentages and rainfall amounts, rein-
forcing their roles as key CPs for the rainy season in the Sahelian 
belt. Winter CPs indicating a dry year tend to persist longer. The 
findings from the logistic regression model support this hypoth-
esis. CP1 exerts a positive impact (0.21) on dry conditions when 
it occurs more frequently, whereas it has a negative influence 
(−0.23) on wet conditions when it occurs less frequently. This 
demonstrates the significant role that winter CPs play.

Figure  9 displays the outcomes derived from the multi-class 
logistic regression model for RR1. This plot shows the model's 

reconstruction compared to the actual standardised annual 
rainfall amounts from 1959 to 2010. The grey continuous line 
shows the real values of standardised annual rainfall sums. 
The two dashed lines represent the terciles which cut the data 
into three rainfall categories: dry (below the first dashed line), 
normal (between the two dashed lines), and wet (above the sec-
ond dashed line). Model hindcasts appear as scatter points: blue 
circle-markers indicate correct hindcasts, while yellow square-
markers signify incorrect ones.

In the Sahel, two contrasting hydrological behaviours emerged 
over the past five decades. The first is the great Sahel drought 
from 1968 to the 1990s, while the second is the subsequent pe-
riod of rainfall recovery since the 1990s (Descroix et al. 2018) 
(grey line in Figure 9). These phases are generally well-detected 
with minor inconsistencies, such as at the beginning of the 
time series or the years 2007 to 2009. Remarkably, the Sahel 
drought falls in into the validation period. In summary, built on 
the foundation of k-means clustering for the WS200 anomalies, 
this multi-class logistic regression model demonstrates an aver-
age P̂C of 0.61 with a reasonable meteorological interpretation. 
This makes it a statistical tool for reconstructing annual rainfall 
amounts with respect to the Sahelian belt.

4.4   |   Overall Performance and Value-Added

Table 4 provides an overview of the validation performance for 
each RR, the top-performing variable, their respective CP num-
bers, training and validation metrics. The RRs display balanced 
performance metrics between training and validation phases 
relative to RR1. The CP count varies across the regions, with 
values ranging from 5 to 14. Due to space constraints, a compre-
hensive presentation of results for each RR is beyond the scope 
of this paper. Therefore, we primarily focus on presenting the 
findings of RR1 as a representative case study.

Additionally, we evaluate the performance of our approach 
against the total precipitation variable from ERA5, serving as a 
reference(PCERA5 and PSSERA5 in Table 4). It is shown that our ap-
proach either outperforms or achieves comparable performance 
to that of ERA5 across all regions. Specifically, the proposed 

TABLE 3    |    Occurrence and rainfall statistics of the CPs in RR1 with respect to climatology, dry, normal, and wet years (1959–2010).

CP

Climatology Dry years Normal years Wet years

Occ. [%]
RA 

[mm] Occ. [%]
RA 

[mm] Ano. [%] Occ. [%]
RA 

[mm] Ano. [%] Occ. [%]
RA 

[mm] Ano.[%]

1 14.99 0.03 16.66 0.03 10.00 14.22 0.02 −5.42 12.99 0.02 −15.39

2 12.80 0.03 11.34 0.03 −12.86 14.48 0.02 11.61 13.31 0.03 3.84

3 16.35 0.09 17.04 0.08 4.07 15.39 0.13 −6.24 16.30 0.09 −0.29

4 19.05 0.38 18.86 0.36 −1.02 18.42 0.31 −3.45 20.18 0.49 5.56

5 18.38 1.88 20.22 1.78 9.12 17.87 1.88 −2.82 15.73 2.13 −16.79

6 18.43 3.97 15.88 3.31 −16.08 19.62 4.21 6.06 21.48 4.57 14.22

Note: A �2-test assessed the statistical significance between observed (O) and expected (E) frequencies from climatology. All categories (dry, wet, and normal) showed 
p values below 0.05, rejecting the null hypothesis (H0) that O equals E, indicating significant differences in all cases.
Abbreviations: Ano.: occurrence anomaly [%] with respect to the climatology; Occ.: relative occurrence of each CP [%]; RA: spatially averaged rainfall amount [mm].

FIGURE 8    |    Heat map of coefficients from the multi-class logistic re-
gression model for RR1. The colour coding indicates the importance of 
each CP for dry, normal, or wet years. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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CP-based logistic model demonstrates an average performance 
with a PC of 0.57 and a PSS of 0.32. In contrast, ERA5 yields 
values of 0.46 and 0.18, respectively. Overall, a performance en-
hancement of more than 28% on average in terms of PC can be 
achieved, despite the relatively modest performance of both.

5   |   Discussion

This study followed a straightforward statistical approach 
based on CPs to reconstruct interannual rainfall variability 
in the West African Sahelian belt. The further development 
of this study focuses on a comprehensive application covering 
the entire WAM region. It takes into account the variability 
across different RRs, relying on a long-term dataset span-
ning 52 years. Our approach establishes a robust catalogue of 

daily CP classification, which can be used for further refine-
ment and offers greater flexibility to tackle specific research 
questions.

However, it is important to note that year-to-year changes in CP 
frequencies cannot fully account for the interannual variability 
of rainfall. Even if the frequency of a specific CP remains con-
stant, it may still be associated with wetter conditions in some 
years than in others. This temporal non-stationarity, together 
with the limited sample size (i.e., one value per year), introduces 
the risk of overfitting in the statistical model, particularly when 
using many clusters or predictors. For subsequent research, it 
could be beneficial to delineate between high-frequency and low-
frequency fluctuations—for instance, by categorising variations 
as either shorter or longer than a decade. This distinction is im-
portant because low-frequency (long-term) variations typically 

FIGURE 9    |    Outcomes of the CP-based multi-class logistic regression model for the interannual rainfall variability in RR1. The continuous line 
represents the actual values of standardised annual rainfall sums, with the two dashed lines denoting the 0.33 and 0.66 quantiles, which segment 
the data into three categories: Dry (below the first dashed line), normal (between the two dashed lines) and wet (above the second dashed line). 
Predictions from the regression model are presented as scatter points: ‘o’ markers in blue represent matches (correct predictions), and ‘x’ markers in 
yellow indicate mismatches (incorrect predictions). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4    |    Evaluation of the performance by region. The table presents the best-performing variables for each region based on the performance 
criterion P̂Cv, along with the count of CPs and the evaluation metrics for both training (P̂Ct, P̂SSt) and validation (P̂Cv, P̂SSv) phases. The values of 
PCERA5 and PSSERA5 show the performance of ERA5.

RR Variable CPs P̂Ct P̂Cv P̂Ct,v PCERA5 Diff. PC [%] P̂SSt P̂SSv P̂SSt,v PSSERA5 Diff. PSS [%]

1 WS200 6 0.63 0.60 0.62 0.44 39.77 0.45 0.24 0.34 0.16 115.62

2 SF925 5 0.58 0.53 0.55 0.56 −0.89 0.37 0.20 0.29 0.34 −16.18

3 U200 6 0.62 0.55 0.58 0.56 4.46 0.43 0.22 0.32 0.34 −4.41

4 V200 14 0.82 0.48 0.65 0.46 41.30 0.73 0.19 0.46 0.19 142.11

5 SF850 6 0.66 0.55 0.60 0.42 44.05 0.49 0.19 0.34 0.13 161.54

6 U925 7 0.60 0.44 0.52 0.37 40.54 0.41 0.13 0.27 0.05 440.00

7 WD925 6 0.55 0.45 0.50 0.38 31.58 0.33 0.11 0.22 0.08 175.00
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demonstrate greater predictability compared to their high-
frequency (short-term) counterparts. Such a separation could 
provide deeper insights into the dynamics influencing rainfall 
variability and enhance the accuracy of hindcasting efforts.

A study by Batté et  al.  (2018) also used a statistical-dynamical 
forecasting approach similar to ours. They employed forecasted 
CP-frequency anomalies from the ECMWF SEAS5 to construct 
temperature anomaly forecasts. Interestingly, they found no sig-
nificant skill in predicting CP frequency at a seasonal timescale, 
a finding that should be evaluated in future for our models. This 
underscores the complexity of climate systems in the WAM re-
gion and highlights the challenges of seasonal forecasting for 
meteorological variables. Beyond their indirect utility, such as 
using CP frequencies for analyses, CPs can be included as addi-
tional covariates in regression models to directly model rainfall 
(Rust et  al.  2013). They can also be used in conjunction with 
other techniques, such as canonical correlation analysis (Moron 
et al. 2008a). Furthermore, CPs can serve in an analog method 
(Zorita and von Storch 1999), wherein CPs simulated by climate 
models (e.g., CMIP6) are matched with local variables observed 
in conjunction with similar CPs from historical observations. For 
instance, this could allow us to more accurately predict the distri-
bution of extreme values in future climate projections, which is 
crucial for understanding the risks associated with severe weather 
events. Additionally, our catalogue of classification schemes can 
be swiftly accessed and utilised for further regression tasks, 
thereby providing a valuable resource for future research.

The application of k-means clustering to delineate different RRs 
might be an overly broad generalisation for these diverse areas, par-
ticularly considering our initial choice of regionalisation based on 
the mean annual cycle, which may not fully capture the complex-
ity of interannual variability. While the differentiation in Burkina 
Faso aligns well with the latitudinal subjective categorisation into 
the Sahelian zone, Sudano-Sahelian zone, and Sudanian zone as 
described by Garba et al. (2023), the longitudinal differentiation 
within regions like the Sahelian belt (RR1) poses challenges. For 
instance, projections of future rainfall patterns suggest that the 
central-eastern Sahel will experience increased rainfall, while 
the western Sahel will likely see a decrease (Monerie et al. 2012; 
Akinsanola and Zhou  2019). These distinctions, usually found 
between Eastern Senegal and Central Mali, are not visible in our 
analysis based on the mean annual cycle, questioning the efficacy 
of our chosen regionalisation approach for capturing the targeted 
interannual variability. This oversight underscores the need for a 
more nuanced approach that can account for both latitudinal and 
longitudinal variations in rainfall patterns, beyond the averaging 
of weather station data across the respective RRs.

The methodology used to define regional rainfall indices is a piv-
otal aspect of our analysis. It involves aggregating daily rainfall 
data within each cluster (RR) by mean to then obtain a regional 
annual sum, which is standardised to zero mean and unit vari-
ance on an interannual scale. This method was primarily selected 
for its potential to illuminate inter-cluster variations and trends 
over an extended period. However, this approach may inadver-
tently emphasise the contributions of the wettest stations within 
each region. Such stations, due to their higher rainfall totals, can 
disproportionately influence the regional index, potentially skew-
ing the interpretation of regional rainfall characteristics. This 

issue is particularly critical as it may lead to an overestimation of 
wet conditions in regions that are otherwise more variably char-
acterised by both dry and wet extremes. A better approach would 
be to standardise the annual rainfall at each station prior to calcu-
lating the average for the cluster. This method has the advantage 
of normalising the input from all stations, thereby mitigating the 
influence of outliers and emphasising years when rainfall anom-
alies are spatially consistent across the region. This could provide 
a more balanced view of regional climate patterns, especially in 
studies focused on interannual predictability where understand-
ing spatially coherent anomalies is crucial.

The methodology presented in this study, mainly based on k-
means clustering and logistic regression, offers a modular 
framework that can be adapted to suit different data environ-
ments, research goals, or end-user needs. In principle, each 
component of the workflow can be replaced by alternative 
techniques. The use of k-means clustering for identifying domi-
nant CPs is widely established in atmospheric sciences (Solman 
and Menéndez  2003; Santos et  al.  2005; Moron et  al.  2008a). 
Nevertheless, other unsupervised or semi-supervised classifi-
cation methods like hierarchical clustering (Guèye et al. 2011; 
Govender and Sivakumar  2020), SOMs (Hewitson and 
Crane  2002; Cassano et  al.  2006), principal component-based 
methods (Galambosi et al. 1996; Esteban et al. 2005), or fuzzy 
rule-based methods (Bárdossy et  al.  1995; Zehe et  al.  2006; 
Wetterhall et  al.  2009) could also be employed. While logistic 
regression was chosen for its transparency, interpretability, and 
compatibility with probabilistic classification tasks, more com-
plex models such as random forests (Parmar et al. 2019), support 
vector machines (Noble 2006), or neural networks (Dotse 2024) 
could also be used. These methods may improve performance, 
particularly in nonlinear or high-dimensional predictor spaces.

This study highlights the promising performance of statistical 
adaptation approaches like the CP-based logistic regression 
model for rainfall reconstruction in challenging regions like 
West Africa, where GCM outputs alone may lack sufficient de-
tail. By using these CP-based techniques, there is significant 
potential to enhance seasonal forecasts (Rauch et al. 2025) and 
build confidence in future climate projections for the Sahel 
(Biasutti  2019). These advancements underscore the value of 
refining statistical adaptation techniques to support robust and 
localised estimates of climate variability.

6   |   Summary and Conclusion

This research provides an approach for a statistical tool using at-
mospheric circulation patterns to effectively reconstruct interan-
nual rainfall variability in West Africa. This method integrates a 
reliable dataset of rainfall and atmospheric circulation patterns, 
offering a comprehensive view of the factors influencing rainfall.

We sourced information from 971 rainfall stations covering a 
broad geographical range (18° W to 10° E longitude and 4° N to 
20° N latitude) spanning from 1959 to 2010. Our study categorises 
rainfall stations into distinct regimes representing different cli-
matic zones, from the Sahelian Zone with a short rainy season to 
Nigeria's bimodal rainfall regime. The ERA-5 dataset served as our 
primary source of predictor data, with six pre-selected variables.
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Our methodology involved several crucial steps to ensure data 
quality and contextual relevance. We standardised the predic-
tors into anomaly-based measures, classified daily atmospheric 
circulation patterns using k-means, and established a robust 
historical catalogue for multiple relevant variables. After clas-
sification, we calculated the annual occurrence frequencies of 
each label, which then served as predictor variables in a multi-
class logistic regression analysis. Our final solutions showed 
an average correct proportion of 0.57 and positive PSSs for all 
regions, mostly outperforming the TP variable from the ERA5 
dataset. This makes it a valuable tool for reconstructing an-
nual rainfall across various West African regimes. To address 
non-stationarities and avoid overfitting, we incorporated an ex-
tensive validation framework with statistical model ensembles 
using running training and validation periods.

Focusing specifically on the Sahelian belt, the study highlights 
two contrasting hydrological behaviours over the past five de-
cades: the great Sahel drought (1968 to the 1990s) and the sub-
sequent rainfall recovery since the 1990s. These periods are 
linked to TEJ. Wet years show high frequency with significant 
positive anomalies in upper air wind speed (200 hPa), indicating 
a strong TEJ and intense upper tropospheric winds, while dry 
years show a slight positive anomaly, suggesting a potentially 
weakened TEJ. Thus, we have directly combined atmospheric 
characteristics with the annual rainfall anomalies in this diffi-
cult region. In summary, our key results are:

•	 A quality-controlled and infilled dataset of 971 rainfall sta-
tions spanning from 1959 to 2010 for the data-scarce West 
African region.

•	 A nuanced classification of seven rainfall regimes, from the 
Sahelian belt to the Guinea zone.

•	 A robust catalogue of daily atmospheric circulation pattern 
classifications.

•	 A straightforward statistical method using daily circula-
tion patterns to reconstruct interannual rainfall anomalies 
across seven rainfall regimes.

Furthermore, the presented work opens up numerous possi-
bilities for statistical applications in climate science and other 
disciplines within the WAM region. For example, the target can 
be easily shifted from the interannual variability to other appli-
cations (e.g., the onset of the rainy season, Rauch et al. 2019), 
thereby enhancing the understanding of rainfall or other me-
teorological variables in this challenging region. Moreover, the 
developed methodology forms the foundation for the seasonal 
prediction of rainfall variability in the West African Sudan–
Sahel region, serving as a subsequent study to support the West 
African regional climate outlook forums (Rauch et al. 2025).
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