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Abstract
Background and Objectives  Brain tissue oxygenation is usually inferred from arterial partial pressure of oxygen 
(paO2), which is in turn often inferred from pulse oximetry measurements or other non-invasive proxies. Our aim was 
to evaluate the feasibility of continuous paO2 prediction in an intraoperative setting among neurosurgical patients 
undergoing craniotomies with modern machine learning methods.

Methods  Data from routine clinical care of lung-healthy neurosurgical patients were extracted from databases of 
the respective clinical systems and normalized. We used recursive feature elimination to identify relevant features for 
the prediction of paO2. Six machine learning regression algorithms (gradient boosting, k-nearest neighbors, random 
forest, support vector, neural network, linear model with stochastic gradient descent) and a multivariable linear 
regression were then tuned and fitted to the selected features. A performance matrix consisting of standard deviation 
of absolute errors (σae), mean absolute percentage error (MAPE), adjusted R2, root mean squared error (RMSE), mean 
absolute error (MAE) and Spearman’s ρ was finally computed based on the test set, and used to compare and rank 
each algorithm.

Results  We analyzed N = 4,581 patients with n = 17,821 observations. Between 5 and 22 features were selected 
from the analysis of the training dataset comprising 3,436 patients with 13,257 observations. The best algorithm, a 
regularized linear model with stochastic gradient descent, could predict paO2 values with σae = 86.4 mmHg, MAPE = 16 
%, adjusted R2 = 0.77, RMSE = 44 mmHg and Spearman’s ρ = 0.83. Further improvement was possible by calibrating the 
algorithm with the first measured paO2/FiO2 (p/F) ratio during surgery.

Conclusion  PaO2 can be predicted by perioperative routine data in neurosurgical patients even before blood gas 
analysis. The prediction improves further when including the first measured p/F ratio, realizing quasi-continuous paO2 
monitoring.
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Introduction
It has long been known that brain tissue is exquisitely 
sensitive to decreased levels of blood oxygen, leading to 
potentially irreversible damage, including brain death 
within minutes [1]. Consequently, hypoxemia has been 
the subject of extensive research since the mid-19th cen-
tury, enabling a deeper understanding of its mechanisms 
and the development of life-saving interventions [2]. 
Hyperoxemia, an elevated level of oxygen in the blood, 
has been less extensively studied, even though it might 
occur very frequently in clinical practice through supple-
mental oxygen. In the last few years, however, it has been 
claimed in the literature that oxygen’s inherently reac-
tive nature may damage lipids, proteins, nucleic acids, 
and thus hyperoxemia may lead to acute lung, kidney, 
and myocardial injury, increased mortality, pulmonary 
complications, and cardio- and cerebrovascular compli-
cations [2–4]. Suzuki et al. estimate that more than 80% 
of patients undergoing general anesthesia are exposed to 
amounts of supplemental oxygen exceeding levels nec-
essary to maintain a normal blood oxygen saturation [3, 
5]. Diagnosing hyperoxemia is more difficult as its initial 
symptoms - if any - may be vague [2, 6], and also because 
confirmation requires an arterial blood draw. In contrast, 
hypoxemia can often be diagnosed with peripheral pulse 
oximetry, which is non-invasive. Consequently, hyperox-
emia is the subject of less extensive research. The lack of 
consensus regarding potential oxygen over-supplementa-
tion highlights the need for further research and guide-
lines in clinical practice [6–10].

Arterial blood gas analysis ABG is performed dur-
ing surgeries and in the intensive care unit, allowing the 
indirect monitoring of gas exchange in the lungs, tissue 
oxygenation, and oxygen consumption. However, these 
measurements are only valid at the time of each arterial 
blood draw, which, due to their invasive nature, is infre-
quently performed. To overcome this limitation, several 
approaches have been developed to achieve a non-inva-
sive and continuous estimation of the partial arterial 
pressure of oxygen (paO2) as a proxy for blood oxygen-
ation [11–17]. These methods estimate blood oxygen-
ation using factors such as the fraction of inspired oxygen 
(FiO2) and peripheral oxygen saturation (SpO2) [11–13, 
18], the oxygen transfer slope and estimated membrane 
oxygen transfer [14], the alveolar gas equation (pAO2) 
[15] or venous blood gas samples [16, 17, 19, 20]. How-
ever, it is important to note that our analysis reveals that 
none of these methods demonstrate a particularly high 
level of precision, and they also exhibit other limitations, 
such as constraints related to the formula they utilize.

Machine learning algorithms may be able to over-
come these limitations and potentially perform better 
when predicting outcomes based on a higher number of 

features, non-linear effects, and complex association pat-
terns [21–23].

Given the brain tissue’s sensitivity to hypoxia, neuro-
surgical patients may be regularly administered exces-
sive amounts of oxygen to increase the margin of safety 
in case of an emergency [4]. This cohort consists of 
lung-healthy patients who undergo frequent ABG analy-
ses compared to other interventions, providing a larger 
data pool. Therefore, our study aimed to demonstrate 
that machine learning algorithms outperform surrogate 
parameters or existing equations in calculating paO2 
values for neurosurgical patients, achieving a satisfiable 
range of error and good performance parameters. Addi-
tionally, we aimed to identify the most accurate machine 
learning algorithm for near-continuous prediction of 
paO2 values.

Materials and methods
Data and data preparation
The study was conducted as a single-left retrospective 
cohort study. Before accessing the data, our protocol 
(submission 19–539) received approval from the Univer-
sity of Munich’s institutional review board and consent 
was waived.

We included all patients at the University Hospital of 
Munich between January 1st 2008 and December 31st 
2019 undergoing craniotomy as identified by the German 
surgical procedure classification [24] codes 5–01 or 5–02 
being at least 18 years old. Further inclusion criteria were 
as follows: receiving general anesthesia with endotracheal 
intubation, with documented anesthesia induction, inci-
sion, closure, and termination of anesthesia times, and 
having at least two perioperatively paO2 measurements. 
In cases where a patient had undergone multiple surger-
ies, the one with most paO2 measurements was included 
for analysis. The minimum number of patients required 
for the study was calculated applying the formula 

N = L
f2 + k + 1, with k = 23 (number of available fea-

tures), f2 = 0.02 (small effect) and L = 27.94 for α = 0.05 
and β = 0.9 [25, 26].

Data were extracted and integrated from the Anes-
thesia Information Management System (NarkoData®, 
IMESO IT GmbH, Giessen, Germany) and the Hospital 
Information System (SAP/Cerner i.s.h.med, Idstein, Ger-
many) prior to data anonymization.

Hemoglobin and pH values were included regard-
less of their sampling site and without transformations 
[27, 28]. Variables known to impact oxygenation were 
pre-selected. Additionally, we included the underlying 
physiologic model of the alveolar gas equation (pAO2) 
[15] as well as the intraoperatively measured paO2/FiO2 
(p/F) ratio as an indicator of pulmonary function. Ven-
tilation compliance, represented by static compliance, 
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was incorporated in our analysis as well [29]. Finally, we 
calculated a paO2 value based on Gadrey et al. [30]. The 
formulas are stated in appendix A. Each observation was 
defined as a set of multiple measurements at the same 
time, encompassing the aforementioned features, as 
well as one-time measures, such as socio-demographic 
information. The complete set of variables is provided 
in appendix B. Of note, more than one observation was 
collected throughout each surgical procedure. Thus, mul-
tiple paO2 values were predicted for each patient.

A detailed description of inclusion and exclusion crite-
ria is provided in appendix C.

Little’s test for data missing completely at random was 
conducted [31], yielding no significant p-values. This 
supports the use of complete case analysis [32]. Still, 
missing values in pre-operative creatinine and tem-
perature measurements were systematic in nature. Spe-
cifically, temperature data can be absent because the 
urinary catheter-and with it, the temperature probe-is 
typically placed as one of the final pre-surgical steps. In 
contrast, ABG analyses are frequently performed ear-
lier, resulting in some missing temperature readings. 
Similarly, pre-operative creatinine values were not con-
sistently recorded, as these measurements are not rou-
tinely ordered for all patients. Following the application 
of exclusion criteria, missing values for both parameters 
were iteratively imputed, using median values for initial-
ization. Imputed pre-operative creatinine values were 
averaged across each patient to obtain a single value.

All features (independent variables) and labels (depen-
dent variable) were normalized before analysis by scaling 
them to a range between 0 and 1. The formula is stated in 
appendix A.

Algorithms
Six machine learning algorithms and a multivariable 
linear regression (MLR), which was used as a reference 
model, were used for feature selection and hyperparam-
eter tuning. The best model, based on the performance 
matrix, was used for further evaluation. The employed 
machine learning algorithms were:

 	• Gradient Boosting for Regression (GBR),
 	• Regression based on k-nearest neighbors (KNN),
 	• Random Forest Regressor (RFR),
 	• Epsilon-Support Vector Regression (SVR),
 	• Linear model fitted by minimizing a regularized 

empirical loss with stochastic gradient descent 
(SGD),

 	• Multi-layer Perceptron Regressor (MLP).

None of these algorithms handle longitudinal paired data 
by default. To account for this, we added subject IDs and 
time points of measurements. All cross-validations are 

performed as group cross-validation, i.e. by taking the 
cluster structure into account (the measurements of one 
patient building a “cluster”), as commonly recommended 
in the literature [33]. Thus, all measurements of the same 
patient were assigned to the same fold, in order to avoid 
leakage between training and test data.

Training and test datasets
The dataset was randomly divided by an 8:2 ratio into a 
training and test set, preventing an overoptimistic bias 
in performance evaluation. The feature selection process 
and hyperparameter tuning of all algorithms were con-
ducted exclusively on the training set (Fig. 1). The test set 
was reserved solely to calculate the performance metrics. 
The same set was used for evaluating feature importance, 
percentage errors and binning.

Feature selection
To optimize each algorithm effectively, a two-step feature 
selection process was performed individually for each 
model. The optimal number of features was determined 
via five-fold group cross-validation (CV) on the training 
set, with patients randomly assigned to one of the folds. 
Model performance was evaluated using the pooled 
negative standard deviation of absolute errors (σae). To 
maintain compatibility with the scikit-learn package, per-
formance metrics intended to be minimized were multi-
plied by −1.

In the first step, the goal was to identify the optimal 
number of features by balancing computational efficiency 
(fewer features) against predictive performance (cross-
validated σae). For each algorithm, we calculated the 
percentage improvement of the pooled σae between suc-
cessive feature counts. When this improvement exceeded 
50%, the corresponding score was recorded as the point 
of substantial improvement. The lowest of these scores 
across all algorithms was then used as a global threshold 
to uniformly determine the optimal number of features.

In the second step, the features themselves were 
selected using recursive feature elimination (RFE), with 
each regressor serving as its own estimator. Feature 
importance rankings were computed on the full train-
ing set, constrained to the previously determined optimal 
number of features. The top-ranked features were then 
used for hyperparameter tuning and final model training.

Tuning of machine-learning algorithms and model fitting
Hyperparameter tuning was performed using group 
cross-validation with a grid search or - in case of high 
computational costs - a randomized search (for MLP 
only) across all prespecified parameter combinations 
within the training set. For each algorithm and hyper-
parameter setting, 5-fold group CV was applied. In each 
fold, negative σae, negative mean absolute percentage 
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error (MAPE), adjusted R2, and negative root mean 
squared error (RMSE) were recorded, among other 
parameters like fitting and scoring time or ranks of the 
averaged metrics. These metrics were aggregated as 
means and standard deviations per hyperparameter com-
bination. A composite score was then computed as the 
weighted sum of pooled σae, pooled MAPE, pooled nega-
tive adjusted R2, and pooled RMSE with weights of 0.5, 
0.3, 0.1 and 0.1, respectively. The best model was selected 
based on the lowest composite score.

Details about the architectures of all algorithms are 
reported in appendix D.

Performance evaluation
For each base and tuned algorithm, a performance matrix 
consisting of six metrics was calculated on the whole test 
set. These metrics were (1) σae, (2) MAPE, (3) adjusted R2, 
(4) RMSE, (5) mean absolute error (MAE), and (6) Spear-
man’s rank correlation coefficient ρ [13, 30, 34–36].

For each algorithm, we ranked the quality measure of 
the tuned estimator from one for best to seven for worst 
based on the test set. These ranks were summed up as 
the overall rank for each algorithm, and the best one was 
determined by the lowest overall rank.

Further evaluation
The agreement between measured and predicted paO2 
values was evaluated using a Bland-Altman plot [37]. 

Feature importance was evaluated using SHapley Addi-
tive exPlanations (SHAP) values [38, 39].

We grouped all measured and predicted paO2 values 
into bins spanning 50 mmHg based on the measured 
paO2 value. Any values above 450 mmHg were grouped 
into a single bin, while all values below 100 mmHg were 
also grouped into a single bin. For each bin, the mean 
and standard deviation of the observed and the predicted 
paO2 values was calculated.

Outliers were defined based on a combination of the 
Percentage Error (PE = Ai−Pi∗100

Ai
), the interquartile 

range (IQR), first quartile and the third quartile (Q1 / Q3): 
outliers := PE < [Q1 − 1.5 ∗ IQR; Q3 + 1.5 ∗ IQR]
< PE [40]. We investigated all corresponding observa-
tions to detect differences between highly over- or under-
estimated paO2 values.

At last, the best algorithm was retrained with the first 
measured p/F ratio of each patient as an additional fea-
ture to assess whether the prediction of paO2 values 
could be further improved. The same test set was used to 
calculate the performance measures.

Implementation, reproducibility, and reporting
Data extraction, processing and analysis were done in 
Python on three different systems. Data were extracted 
on system 1, and statistical analyses were performed on 
system 2. All cross-validated recursive feature elimina-
tions and grid searches were performed on system 3. 

Fig. 1  Methods flowchart. Use of data in training and testing during feature selection, hyperparameter tuning, model fitting and performance evaluation
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Information about the systems and their operating sys-
tems as well as a complete list of each package version 
used in each system can be found in appendix F.

Extensive reporting for the prediction model devel-
opment was done using the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
Or Diagnosis checklist (appendix G). The results of the 
study were reported following the guideline as provided 
by The Strengthening the Reporting of Observational 
Studies in Epidemiology in appendix H.

Results
Patient cohort
The calculated required sample size for the study was 
1,421 patients. During the study period, 6,027 intra-
cranial surgeries (number of surgeries, N) with 25,032 
observations (number of perioperative value sets com-
prising two ABG analyses and all corresponding ventila-
tion and surgical parameters as well as demographic data 
and vital signs, n) met the inclusion criteria. 9,125 obser-
vations and 1,484 surgeries were excluded based on our 
other criteria, resulting in a final data set of 4,581 sur-
geries with a total of 17,821 observations (appendix C). 
2,140 and 1,385 temperature and preoperative creatinine 
values were imputed before splitting into training and 
test sets. The training set included 3,436 surgeries with 
13,257 observations and the test set 1,145 surgeries with 
4,564 observations.

The patients mean age was 54 years. Among the 
patients, 56% were female, and the mean body mass 
index (BMI) was 25.1 kg/m2. The mean ventilation time 
was 353 min, the mean incision to closure time was 
243 min. Before applying the exclusion criteria, patients 
received an average of 4.15 ABG analyses during the ven-
tilation period. After applying the criteria, the average 
number of ABG analyses per patient decreased to 3.89. 
The mean initial p/F ratio was 461.5. The minimum mea-
sured paO2 value was 33 mmHg, while the mean value 
was 212 mmHg with a standard deviation of 91 mmHg. 
Twelve measurements from eleven patients showed 
a paO2 <60 mmHg. Nine of these ABG analyses were 
obtained around the time of intubation, when oxygen 
supply was established via mechanical ventilation. 171 
patients had an American Society of Anesthesiologists 
(ASA) class of I, 1,752 had ASA class II, 2,118 had ASA 
class III, 496 had ASA class IV and 44 had ASA class V. 
The mean postoperative length-of-stay was 11.6 days. A 
detailed description as well as differences between the 
training and test set can be found in appendix I.

Feature selection
The feature selection started with 23 variables (see 
appendix B). The calculated negative σae during cross-
validated RFE for the scaled training set is shown in Fig. 
2.

For every regressor, the highest negative σae score was 
reached with 23 features. The appropriate number of fea-
tures was selected at the first point at which the negative 
σae exceeded −0.06158, which is indicated by the red ver-
tical line on every plot in Fig. 2.

Comparison to popular proxies and base models
The correlation coefficients of averaged FiO2, pAO2, and 
Gadrey’s paO2 to the averaged measured paO2 were 0.75, 
0.75 and 0.23 (Fig. 3).

All base models (BM) for the paO2 prediction (not-
tuned regressors with default parameters) reached 
MAPEs between 17 and 20%, σae between 83 and 
89 mmHg (for rescaled data), RMSEs of 51 mmHg and 
less (for rescaled data), MAEs of less than 87 mmHg (for 
rescaled data), adjusted R2 between 0.70 and 0.76, cor-
relation coefficients ρ between 0.74 and 0.82 with confi-
dence intervals ranging from 0.74 to 0.83. Therefore, all 
BMs showed at least the same correlation coefficients 
between measured and predicted paO2 values as the 
FiO2 or pAO2 values alone and a better correlation than 
Gadrey’s paO2.

Tuned algorithms
Following hyperparameter optimization, the GBR was 
updated to use a more robust loss function (huber) in 
place of the standard squared_error, a reduced learning 
rate of 0.05, and an increased number of boosting stages 
set to 150. The model now considers only the square root 
of the total number of features at each split, uses a sub-
sample of 80% of the training data to introduce stochas-
ticity, and enforces a higher minimum number of samples 
per leaf (set to 5) for better generalization. Additionally, 
the Huber loss smoothing parameter alpha was reduced 
slightly from 0.9 to 0.85 to make the model more sensi-
tive to moderate outliers.

The KNN was reconfigured to use 29 neighbors for 
prediction, up from the default of 5, and to apply dis-
tance-based weighting, giving greater influence to closer 
neighbors. The search algorithm was explicitly set to 
kd_tree for faster neighbor lookup in low-dimensional 
spaces, with a reduced leaf size of 10 to allow for finer-
grained tree structures. Additionally, the distance metric 
was changed from the general minkowski to the more 
specific l2 (Euclidean distance), improving consistency 
with the weighting strategy.

The RFR was enhanced by increasing the number of 
trees in the ensemble to 200 and enabling warm starts 
to allow incremental model building. The maximum 
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Fig. 3  Comparison of paO2 measurements to popular proxies. The first row shows scatter plots of the parameter evaluated on the x-axis vs. The mean 
measured pAO2 and the second row shows the density plots corresponding to the first row. First column: FiO2; second column: pAO2; third column: 
Gadrey’s paO2

 

Fig. 2  Cross-validation scores (negative σae) for n number of features. The red dot indicates the selected number of features
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depth of each tree was limited to 3 to reduce overfitting, 
and the number of features considered at each split was 
restricted using the square root strategy. Additionally, the 
criterion for splitting was changed to friedman_mse to 
better handle variance, the minimum number of samples 
required at a leaf node was raised to 7, and bootstrapping 
was disabled to ensure full dataset usage per tree.

To enhance performance, the SVR was adjusted with 
a lower regularization strength (C = 0.1) to reduce over-
fitting, and a significantly expanded cache size of 10,000 
MB to accommodate more efficient computation. The 
kernel was changed from rbf to poly, enabling the model 
to capture more complex, nonlinear patterns. Addition-
ally, the epsilon margin was tightened from 0.1 to 0.01 for 
more precise fits around target values, the coef0 param-
eter was increased slightly to 0.1 to influence the polyno-
mial kernel’s flexibility, and the kernel coefficient gamma 
was switched from scale to auto. A looser convergence 
tolerance (tol = 0.1) was also introduced to speed up 
optimization.

The SGD was reconfigured to include elastic net regu-
larization and a much smaller regularization strength 
(alpha) of 0.00001, allowing for more flexible fitting. Early 
stopping was enabled to reduce overfitting, and the total 
number of training iterations was reduced to 1,000 for 
computational efficiency. The initial learning rate (eta0) 
was lowered to 0.001 and coupled with an adaptive learn-
ing rate schedule, replacing the previous inverse scaling 
strategy. Additionally, the exponent used in learning rate 
scaling (power_t) was increased to 0.5, and the conver-
gence tolerance (tol) was decreased to 0.0001 for finer 
convergence criteria.

The MLP was extensively refined to improve general-
ization and training stability. Early stopping was enabled 
to halt training when validation performance plateaued, 
and the maximum number of training iterations was 
substantially increased from 200 to 2,000 to allow more 
thorough convergence. The optimizer was switched from 
Adam to stochastic gradient descent (solver=’sgd’). The 
learning schedule was made adaptive, enabling the model 
to reduce the learning rate when progress slows, and the 
initial learning rate was lowered from 0.001 to 0.0001 
for finer weight updates. Additionally, the batch size was 
explicitly set to 128 to better control gradient noise dur-
ing training.

Lastly, the MLR model was adjusted to exclude the 
intercept term (fit_intercept = False), and constrain the 
model coefficients to be strictly positive (positive = True). 
Additionally, the convergence tolerance was relaxed from 
1e-6 to 0.0001 to allow faster optimization without sig-
nificantly compromising precision.

All default and tuned parameters are listed in appendix 
D. The results of each step of the hyperparameter tuning 
are listed in appendix E.

Performance evaluation
The SGD reached the highest adjusted R2 (0.77), the 
highest ρ (0.83), the lowest MAPE (16.15%) and the low-
est RMSE (44.13 mmHg), while it performed worse for 
the σae (86.39) and the MAE (87.66 mmHg). Although 
most algorithms performed similarly, the SGD reached 
the lowest rank in four out of six parameters in our per-
formance matrix from Table 1, and was hence selected as 
the best-performing algorithm for the given task.

To visualize the correlation for each algorithm, the 
predicted and measured paO2 values of the test set were 
plotted against each other (Fig. 4).

Further evaluation
A Bland-Altman plot was generated to assess the agree-
ment between the measured and predicted paO2 val-
ues (Fig. 5). The mean difference (bias) was minimal at 
−0.24 mmHg, indicating no substantial systematic error. 
The limits of agreement (mean ±1.96 standard deviation) 
ranged from −86.74 mmHg to 86.26 mmHg, reflecting 
the variability of prediction errors across the measure-
ment range. While most errors clustered around zero, 
increased dispersion was observed at higher paO2 levels.

In the next step, we constructed a confusion matrix 
using the test set, with bins defined in 50 mmHg inter-
vals. Values below 100 mmHg and above 450 mmHg were 
grouped into single bins at each extreme (Fig. 6). Infor-
mation about means and standard deviations for each bin 
is provided in table 2 (appendix J).

The tuned SGD overestimated paO2 values smaller 
than 100 mmHg and underestimated those larger than 
450 mmHg.

We calculated SHAP values to see the contribution of 
each feature to the prediction, shown in Fig. 7. The fea-
ture with the highest SHAP value was pAO2, followed by 
age and BMI. They were followed by respiratory compli-
ance, Gadrey’s paO2 values, temperature values, whether 
the ABG analysis was drawn intraoperatively, whether 
the patient was mechanically ventilated before surgery 
and the respiratory minute volume. The remaining 13 
features were summed up, as their impact was considered 
low.

Percentage errors were calculated for all predicted 
paO2 values; the median was 1.09%. Q1 and Q3 were 
−9.99% and 10.69%, respectively, resulting in an IQR of 
20.68%. We investigated all features for the predicted 
paO2 values that were identified as outliers based on their 
percentage errors (PE < −41.01%, PE > 41.71%). A total of 
234 observations in 137 patients were highly overesti-
mated, 20 observations in 19 patients were highly under-
estimated (Fig. 8). Among those, significant differences 
were found in two features.

Most of the underestimated values occurred between 
the second and third blood samples, but were closer to 
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the second (mean index: 2.2). In contrast, overestimated 
values appeared later, near the time of the fourth blood 
sample (mean index: 3.8). A similar pattern was observed 
with respect to the timing of measurement: 77% of over-
estimated values occurred intraoperatively, whereas 55% 
of underestimated values were recorded during the peri-
operative period.

In the last step, we included the first measured p/F 
ratios in the best model. It improved further: In the 
test set, the adjusted R2 increased from 0.77 to 0.81, the 
MAPE decreased by almost two points to 14.5% and the 
RMSE decreased by four points to 40.3 mmHg. Addition-
ally, the correlation coefficient was now 0.90 [0.90; 0.91], 
which was significantly better compared to all previously 
used proxies (FiO2, pAO2, and Gadrey’s paO2). Only the 
MAE increased by one point to 89.0 mmHg, while σae 
remained almost the same (86.8 mmHg).

Discussion
This study presents a machine learning algorithm for 
intraoperative live prediction of paO2 values in lung-
healthy patients. Although the use of machine learning 
models in the medical context is not new at all, compar-
ing different algorithms and applying them in a periop-
erative setting to predict arterial blood gas values is a 
novel and challenging approach, whose feasibility could 
be proven with satisfying results. From the selected algo-
rithms, the tuned linear model fitted by minimizing a reg-
ularized empirical loss with stochastic gradient descent 

performed best. Its paO2 predictions were substantially 
better than the abilities of known proxies or calculation 
rules to extrapolate on paO2 values. These results allow a 
closer monitoring of administered oxygen without addi-
tional ABG analyses in lung-healthy patients.

To the best of our knowledge, this is the first study to 
present a machine learning algorithm for intraoperative 
live prediction of paO2 values in lung-healthy patients. 
The continuous assessment of paO2 is currently impos-
sible. Frequent ABG analyses are time-consuming and 
potentially harmful for the patient due to the risk of infec-
tion and blood loss; in our data, they were collected every 
1.7 hours (after applying exclusion criteria), providing 
many minutes for additional monitoring with live paO2 
predictions. Therefore, FiO2 or paO2 have been used in 
the past to extrapolate to corresponding paO2 values 
[11–14, 18, 41]. In our dataset, the correlation between 
these values and the actual measured paO2 values was 
below 0.75, which was considerably worse than the tested 
algorithms. As paO2 does not directly correlate with the 
inspiratory fraction of oxygen but paO2 serves as one of 
the limited tools available to estimate a patient’s degree of 
hyperoxygenation, we aimed to develop a robust method 
for estimating perioperative paO2 values based on read-
ily available input parameters. To construct this model, 
we collected routine data from intracranial neurosurgical 
operations. These surgeries are particularly well-suited 
for testing various algorithms for the prediction of intra-
operative paO2 for several reasons: First, there is usually 

Table 1  Performance matrix of tuned algorithms
GBR KNN MLP MLR RFR SGD SVR

σae BM 86.64 88.2 86.71 86.25 86.93 83.94 88.64
TM 88.05 86.17 85.82 87.65 79.88 86.39 85.84

# 7 4 2 6 1 5 3
MAPE in % BM 19.25 18.33 20.02 19.32 19.58 16.73 17.88

TM 19.24 17.77 19.77 19.75 21.65 16.15 17.7
# 4 3 6 5 7 1 2
Adjusted R2 BM 0.7175 0.7197 0.7155 0.718 0.6962 0.7618 0.7426

TM 0.7213 0.7396 0.7086 0.7093 0.6498 0.7742 0.7029
# 3 2 5 4 7 1 6
RMSE in mmHg BM 49.45 49.17 49.58 49.41 51.26 45.32 47.16

TM 49.11 47.4 50.18 50.16 55.04 44.13 50.68
# 3 2 5 4 7 1 6
MAE in mmHg BM 84.63 85.2 86.5 85.03 85.63 85.22 86.76

TM 85.55 82.18 85.28 86.21 76.3 87.66 82.04
# 5 3 4 6 1 7 2
Spearman’s ρ BM 0.7528 0.7836 0.7653 0.7491 0.742 0.8224 0.7826

[0.74; 0.7651] [0.7722; 0.7946] [0.753; 0.777] [0.7361; 0.7616] [0.7287; 0.7548] [0.8127; 0.8315] [0.7711; 0.7936]
TM 0.7536 0.8014 0.7352 0.7345 0.7151 0.8337 0.7844

[0.7408; 0.7658] [0.7907; 0.8115] [0.7216; 0.7483] [0.7208; 0.7476] [0.7006; 0.729] [0.8247; 0.8424] [0.773; 0.7953]
# 4 2 5 6 7 1 3
Sum of ranks 26 16 27 31 30 16 22
σae, adjusted R2, MAPE, RMSE, MAE, and Spearman’s ρ [95% CI] for each algorithm with default parameter values (Base Model (BM)) and tuned parameter values 
(Tuned Model (TM)) based on the test data set. The rank of the regressor for the considered performance metric is indicated in the column
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an isolated pathology in the neurocranium, and surgical 
procedures do not impact the thorax, ensuring that gas 
remains unaffected. Second, arterial catheters are part of 
the standard monitoring for patients undergoing crani-
otomy at our clinic. Thirdly, craniotomies typically span 
three to five hours of surgical time, during which multi-
ple ABG analyses are drawn, providing a substantial and 
rich dataset for analysis.

Gadrey et al. were the first to introduce a new equa-
tion of paO2 calculation, based on two constant values 
and the SpO2 value [30]. With SpO2 being the only mea-
sured variable, the outcome has a natural maximum of 
132.8 mmHg. Thus, the equation is not suitable to model 
hyperoxemia. Although others used it for predicting 

arterial partial pressure of oxygen which might only be 
applicable for a physiological range [42, 43]. Additionally, 
the correlation coefficient was relatively low at 0.26 and 
smaller than the correlation coefficient of FiO2 or pAO2 
to the measured paO2 value.

We used machine learning algorithms to model the 
relatively complex interactions between perioperative 
and sociodemographic values. The model using a sto-
chastic gradient descent performed best. Two of its main 
advantages are its computational efficiency and its many 
options for hyperparameter tuning to fit a specific prob-
lem. One of its drawbacks is the sensitivity to feature 
scaling, requiring all input features to be scaled equally.

Fig. 4  Scatterplots of measured vs. predicted paO2 values for different estimators. a. Gradient boosting for regression, b. Regression based on k-nearest 
neighbors, c. Linear model fitted by minimizing a regularized empirical loss with stochastic gradient descent, d. Multi-layer perceptron regressor, e. Ran-
dom Forest regressor, f. Epsilon-support vector regression, g. Multivariable ordinary least squares linear regression
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This study faces some limitations. First, our findings 
are not generalizable to patients with relevant pulmo-
nary dysfunction, such as chronic obstructive pulmonary 
disease, asthma, lung cancer, or acute respiratory dis-
tress syndrome. This cohort was specifically selected to 
exclude these comorbidities, as our first aim was to inves-
tigate which machine learning models would be generally 
suitable for this task and how well they would perform 
predictively. Second, besides the surgical procedure and 
the main diagnosis, we did not consider other comorbidi-
ties when training and fitting the different algorithms. 
The reason for this was the need to develop a general-
izable algorithm, which could be used in a broad range 
of patients with different kinds of comorbidities but the 
same type of surgical procedure. Still, with MAPEs of 16% 
and 14% (when including the first measured p/F ratio), 
our algorithm yielded very accurate results. Third, we 
only included patients with invasive ventilation and gen-
eral anesthesia who received at least two ABG analyses. 
Fourth, the study size might be too small for deep learn-
ing methods to deploy their full potential [44, 45]. Fifth, 

external validation was not possible at the current stage, 
as no independent dataset was available. We are cur-
rently preparing a separate dataset to facilitate validation 
in future work. Sixth, in the range of hypoxic and nor-
moxic paO2 values (up to 100 mmHg), we rather overesti-
mate the paO2 value, whereas in severe hyperoxia (more 
than 450 mmHg) we rather underestimate the true value 
(Fig. 8). In the lower paO2 range, there were insufficient 
data available to effectively train the algorithm, limiting 
the reliability of predictions in this segment. However, 
this also reflects the clinical reality that hypoxemic values 
were rarely observed in this stable cohort with predomi-
nantly healthy lung function, indicating that hypoxemia 
was not a relevant issue in this population. Moreover, 
hypoxemia can typically be detected in clinical prac-
tice through non-invasive pulse oximetry (e.g., fingertip 
sensors), making precise paO2 estimation in this range 
less critical. It is also important to consider the clini-
cal relevance of prediction errors: for instance, an error 
of 40 mmHg may be of little consequence when paO2 is 
400 mmHg but could be clinically significant when paO2 

Fig. 5  Bland-Altman plot for measured vs. predicted paO2 values. mean difference was −0.24 mmHg with limits of agreement (mean ±1.96 standard 
deviation) ranging from −86.74 mmHg to 86.26 mmHg
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is closer to 100 mmHg. However, such borderline or 
hypoxemic values occurred infrequently in this dataset, 
further limiting their impact on clinical decision-making 
in this specific cohort. Seventh, the algorithm predicts 
some serious outliers. They may arise due to various fac-
tors, such as technical variability, mislabeling of blood 

samples, or inaccurate measurements (e.g., temperature 
sensors placed outside the bladder). Since these data are 
collected during routine clinical care, they are inher-
ently subject to error. Therefore, our algorithm should 
be regarded as a conceptual approach for the continuous 

Fig. 7  SHAP values. features are ordered by the mean absolute value of the SHAP values

 

Fig. 6  Confusion matrix for linear model fitted by minimizing a regularized empirical loss with stochastic gradient descent. Aggregated values per bin 
for observed and predicted values
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estimation of paO2, which still requires validation against 
ABG measurements.

Conclusion
In this study, we demonstrate that machine learning 
algorithms can be utilized to predict paO2 values for a 
range between 100 to 450 mmHg. Our SGD did not only 
achieve the highest adjusted R2 of 0.77 and 0.80 (when 
including the first measured p/F ratio), the lowest MAPE 
of 16%, but also the highest correlation coefficient and 
the smallest RMSE. Although some papers exist that 
extrapolate paO2 values, this is the first model for live 
prediction of paO2 values with satisfactory results. Such 
a tool might support medical staff to continuously esti-
mate paO2 values to enhance monitoring and prevention 
of hyperoxemia in a perioperative setting. Continuous 
in-silico prediction of paO2 levels might also enhance 
estimation of the total excess of oxygen during patient 
treatment, allowing researchers to better investigate its 
effects.

Our next study will use these results for a quasi-real 
time prediction in the same patient collective to evaluate 
the effect of excessive oxygen on postoperative compli-
cations. Besides that, future studies are needed to vali-
date our method in other patient collectives and clinical 
scenarios.
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