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Abstract. Introduction: Mitotic figure (MF) density has been established as a key 
biomarker for certain tumors. Recently, the differentiation between atypical MFs 
(AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs 
density could be an independent biomarker. This results in the challenge of finding 
an automated, deterministic way to differentiate between AMFs and NMFs. 
Methods: In this study, the AUCMEDI deep learning framework is applied to the 
recently published AMi-Br dataset to get a first bearing on the complexity of the 
task at hand. The dataset includes eight mitotic subclasses derived from breast 
cancer samples, four for NMFs and four for AMF. Using a patient-level cross-
validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an 
eight-class subtype classification model. Results: Our results show high specificity 
across all classes (≥ 90%), but sensitivity varies significantly between mitotic 
subclasses (0–82%), reflecting the dataset's inherent challenges. The mean AUC of 
85.90% outperforms the binary classification baseline (69.8%). Conclusion: The 
results highlight the promise of progress in subclass-level mitotic analysis while 
pointing to areas for further model refinement. 
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1. Introduction 

In the histopathological assessment of some tumors, mitotic figure (MF) quantification 
plays a central role in evaluating tumor proliferation and predicting patient outcomes 
[1,2]. As with many aspects in pathology, this process traditionally relies on expert visual 
inspection of hematoxylin and eosin-stained slides, which is time-consuming and subject 
to inter-observer variability [3]. In recent years, automated image analysis tools powered 
by deep learning have demonstrated promising results in standard MF detection and 
classification [4,5]. 
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While most studies focus on the identification of mitotic figures in pathological 

images, recent evidence suggests that atypical mitotic figures (AMFs) may serve as a 

valuable prognostic marker [6]. However, distinguishing AMFs from normal mitoses 

(NMFs) is a significantly more complex task due to overlapping morphological features 

and the rarity of atypical cases. 

To facilitate research on AMF classification, the AMi-Br dataset was recently 

introduced [7] offering a foundation for developing and evaluating novel approaches, as 

well as providing a baseline for comparison and validation. It combines mitotic figure 

samples from the revised TUPAC [8] and MIDOG 2021 [9] and 2022 [10] datasets. It is 

the first dataset that includes a fine-grained eight-class label scheme distinguishing both 

normal and atypical subtypes. In this work, we [11]developed a deep learning based 

model for performing subtype MF classification on the AMi-Br dataset. Our primary 

objective is to assess the model’s performance across these fine-grained classes and 

provide baseline insights on the complexity of the challenge for future work in this 

domain. 

2. Material and Methods 

The study is based on the AMi-Br dataset containing 3,720 annotated image patches of 

MF [7]. The patches are split into 832 AMFs and 2,888 cases of NMFs. Each type of 

MFs has four subtypes additionally labeled, namely for typical MFs: prometaphase 

(1,527 tiles), metaphase (1,349 tiles), ring shape (52 tiles), and ana- & telophase 

(253 tiles). AMFs are separated into bipolar asymmetry (59 tiles), tri-/multipolar 

asymmetry (71 tiles), segregation abnormalities (154 tiles), and a fourth group “other” 

(255 tiles) for all remanning cases. This data setup allows multiple possible ML-tasks on 

the dataset. In this work the focus is on the subtype classification task, therefore, a total 

of eight possible classes are to be considered. Figure 1 shows example images for each 

of the 8 different classes. 

 

Figure 1. Overview of the eight different Classes in the AMi-Br dataset. 
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The dataset is split into training and testing data using an 80/20 patient-wise split. 
With this approach patients are either in the test or training set, but images from the same 
patient cannot be in both. While this results in worse results as showcased by the original 
work [7], the resilience of the model is increased and the risk of overfitting decreased. 
As preprocessing, image resolutions were scaled to 224×224 pixel and intensity values 
were zero-centered using Z-score normalization, with the mean and standard deviation 
derived from the ImageNet dataset [12].The subtype-classification of the data was 
performed using the AUCMEDI framework [11], allowing the creation of a deep learning 
based streamlined pipeline . Based on a ConvNeXt model architecture [13], a three-fold 
cross-validation approach was used to train a model ensemble for the classification task. 
The batch size was defined as 42 with a fixed  amount of 180 batches per epoch. A 
transfer learning strategy was employed, beginning with training only the head layers of 
the network for the first 10 epochs using a fixed learning rate of 1e−4. After this initial 
phase, the entire network was fine-tuned using a dynamic learning rate that gradually 
decreased from 1e−4 to 1e−7 over a maximum of 1000 epochs. To avoid overfitting, early 
stopping was used, halting training if the validation loss did not improve for 10 
consecutive epochs. Additionally, the learning rate was reduced by a factor of 0.1 after 
every 10 epochs without improvement. The three models stopped their training after 16, 
24, and 14 epochs, respectively. 

To handle the large imbalance in data, both between AMFs and NMFs, as well as 
the subclasses, a class-weighted categorical focal loss was employed. The class weights 
were computed based on the class distributions of the corresponding training subsets of 
the cross-validation splits. 

During training online augmentations like flip, rotate, and gaussian noise were used. 
During testing no augmentations were applied. 

For evaluation, the test images were provided to the three model ensemble for 
classification and their results were averaged via the mean of their output vectors. 
Standardized evaluation metrics and visualizations were generated based on the 
consensus recommendations for medical imaging classification performance 
measurements [14]. 

The code as well as evaluation data is available at:  https://github.com/hnu-
digihealth/GMDS_Mitotic_Figure_Classification. 

3. Results 

The AUCMEDI trained model achieved varying performance across the different normal 
and abnormal MFs. Table 1 shows the classification evaluation results for all subtypes 
on the training data. Overall, a high Specificity (>=93.76%) can be seen. However, the 
Sensitivity is heterogenous, ranging from 0.0% (AMF Bipolar) up to 82.02% (NMF 
Metaphase). 

Figure 2 shows the confusion matrix for the test data. NMFs show an overall clear 
separation to AMF. With only two outliners. As the smaller outliners, Ana- & telophase 
NMF have a 10.5% rate of being classified as bipolar AMF and a 14.47% chance to be 
classified as NMF Metaphase. Ring shaped NMF being the bigger outliner, being 
classified to the “other” AMF group 43.75% of the time and 18.75% as Prometaphase 
NMF. However, no other confusions besides these two exist for Ring shaped NMFs. 
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With AMFs a more heterogenous image is provided, with all classes showing at least 

one confusion over 20% and only the “other” AMF group classifying correctly with over 

40%. 

 
Table 1. Overview of Area Under the Curve (AUC), Specificity, and Sensitivity for all Classes in the Test 

Dataset. Further, the Number of Images for each Class in the Test Dataset is Reported. 

Class AUC Specificity Sensitivity Numbe

r 

PPV NPV 

AMF – 

Bipolar 

54.83 % 97.50 % 0.00 % 21 0.00 % 98.39 

% 

AMF – 

Multipolar  

94.36 % 99.09 % 13.80 % 29 25 % 98.11 

% 

AMF - 

Segregation 

82.40 % 95.35 % 15.68 % 51 11.76 

% 

96.62 

% 

AMF – 

Other 

89.22 % 94.24 % 43.01 % 93 35.71 

% 

95.69 

% 

NMF – 

Ana- & 

telophase 

89.85 % 93.76 % 60.53 % 79 36.80

% 

97.53 

% 

NMF – 

Metaphase 

93.82 % 90.59 % 82.02 % 534 85.21 

% 

88.40 

% 

NMF – 

Prometapha

se 

95.26 % 94.76 % 78.16 % 522 90.46 87.20 

% 

NMF – 

Ring shape 

87.47 % 98.71 % 0.375 % 16 26.09 

% 

99.24 

% 

 

Figure 2. Confusion Matrix for the eight Subclass Classification Problem. 
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4. Discussion 

The overall mean AUC of the eight-subclass classification model achieved 85.90% 
compared to 69.8% ± 2.6% of the binary classification baseline model by Bertram et al . 
[7]. Furthermore, we were able to achieve a balanced accuracy of 79% for binary 
classification in comparison to 71.3% ± 1.6. While this is a significant improvement, the 
confusion matrix of Figure 1 and the evaluation results in Table 1 show still room for 
improvement. 

While the model overall achieved a good specificity with values over 93% the 
sensitivity is still extremely heterogenous with values between 0.0% and 82.02%. 
Overall, a strong degree of correlation (85.34%**) can be seen between the number of 
available images in the test dataset and the sensitivity for the corresponding class. This 
could be due to the large range of the task in contrast to the small provide dataset. 
Besides the most common solution “increasing the number of available images in the 
dataset“ a model ensemble approach could be used as a first solution approach. As the 
general distinction between AMF and NMF worked well for most subclasses a binary 
classification model could be used to first make the binary distinction between AMF and 
NMF classes and then two specialized subclass classification models (one for AMFs and 
NMF each) could be used to make the subclass classification. This would significantly 
reduce the complexity of the specific subtasks compared to a model doing all in one. 

Approaches besides model tweaks and performance tuning could be the inclusion of 
other (multi-domain) datasets of MFs in model training in a semi-supervised or multiple-
instance learning approach [15]. Moreover, foundation models could be a promising 
solution-approach for this task. Some of those (e.g., Virchow [16]) were already trained 
on MF datasets, which could lead to a solid understanding of the underlaying 
morphological structures.  

Finally, it could be a valid option to build a rule-based approach, using computer 
vision for object detection, but trying the actual classification with hard coded rules  
based on general detection guidelines [17]. 

5. Conclusion 

This work highlights a first classification approach for the AMi-Br MF dataset using a 
deep learning pipeline based on the AUCMEDI framework. With a mean AUC of 
85.90%, we demonstrated that deep learning approaches can be a valuable tool for 
reliable AMF classification. While the presented subclass classification approach was 
able to surpass the binary baseline results, there is still room for improvements. 

Further work on the dataset should focus on dividing the overall problem in smaller 
subtasks and employing an ensemble based of multiple specialized models for each of 
those, namely NMF/AMF-distinction and then AMF/NMF subclass classification. 
Moreover, hyperparameter optimization should be employed to further increase the 
models’ performances.  
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