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Abstract. Introduction Machine learning (ML) and deep learning (DL) models in 
healthcare traditionally rely on server-centric architectures, where sensitive patient 
data is transmitted to external servers for processing via frameworks like Flask, 
raising significant privacy concerns. This work demonstrates a privacy-preserving 
approach by executing healthcare prediction models entirely within the web browser. 
Methods Our approach leverages existing browser-based machine learning and 
deep learning technologies such as TensorFlow.js and ONNX Runtime Web, along 
with direct JavaScript implementations, to ensure all computations remain on the 
client side. We showcase three implementation strategies based on model 
complexity: direct JavaScript implementation for simple equation-based models, 
ONNX-based conversion and execution for medium-complexity models like 
Random Forest and finally TensorFlow.js deployment for complex deep learning 
models such as Optimized Convolutional Neural Networks. Results Our results 
indicate that client-side deployment is both feasible and effective for healthcare 
prediction models, preserving original performance metrics while offering 
substantial privacy benefits. Conclusion This approach guarantees patient data 
never leaves the user's device, eliminating risks associated with data transmission 
and making it particularly advantageous in healthcare settings where data 
confidentiality is critical, while also supporting offline functionality. 
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1. Introduction 

Machine Learning (ML) and Deep Learning (DL) models have advanced healthcare 
decision-making by supporting diagnosis, prognosis and treatment planning based on 
patient data [1, 2]. Traditionally, these models are deployed in a server-centric 
architecture, where patient data is transmitted to servers on the internet. In this setup, 
backend frameworks like Flask [3] or Django [4] manage the requests, relay the data to 
the predictive model, and return the results to the client [5,6]. 

However, this approach introduces privacy considerations that remain relevant even 
with proper consent mechanisms. While the General Data Protection Regulation (GDPR) 
establishes data processing agreements and explicit patient consent as legal frameworks 
for server-based processing [7, 8], several scenarios still present challenges: cross-border 
data transfers between healthcare systems without established agreements [9], 
emergency medical situations where comprehensive consent procedures may be 
incomplete [10], research collaborations with strict institutional data governance policies 
[11] and international settings where varying regulatory frameworks create compliance 
complexities [9]. Additionally, regardless of consent status, minimizing data 
transmission provides an extra layer of protection against potential breaches, 
unauthorized access or unexpected regulatory changes. Even without demographic 
information, unusual combinations of laboratory values (such as extreme creatinine 
levels combined with distinctive blood cell counts) can create unique fingerprints that 
potentially allow re-identification [12]. 

This study addresses the research question: How can healthcare machine learning 
models be deployed to ensure complete patient data privacy through client-side 
execution while maintaining clinical accuracy and usability across different model 
complexities? 

Several approaches to privacy-preserving ML deployment have been explored. 
Federated learning [13] allows models to be trained across multiple devices without 
sharing the underlying data, but requires coordination across multiple participants and 
may leak information through gradient inversion attacks on shared model updates. 
Secure multiparty computation (SMPC) enables collaborative model inference across 
multiple parties through cryptographic protocols without revealing individual inputs, 
though it involves complex coordination requirements and significant computational and 
communication overhead due to cryptographic operations [14]. Homomorphic 
encryption permits computations on encrypted data, but its high computational and 
memory costs often limit practical deployment [15]. Split learning partitions neural 
networks between client and server, with clients computing initial layers locally before 
sending intermediate activations to servers for deeper layer processing. While this 
approach reduces the computational burden on client devices, it incurs significant 
communication overhead from transmitting feature representations at each forward and 
backward pass, and remains predominantly suited to neural network-based models [16]. 
Trusted execution environments (TEEs) provide hardware-based secure enclaves for 
privacy-preserving model execution, though they require specialized hardware 
infrastructure and remain vulnerable to side-channel attacks [17]. Local differential 
privacy (LDP) guarantees privacy by injecting noise into individual data points before 
aggregation, though excessive noise can degrade model performance [18]. 

Beyond these cryptographic and distributed approaches, healthcare organizations 
commonly employ local deployment strategies. These include Python frameworks such 
as scikit-learn for statistical analysis and machine learning, R environments for statistical 
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computing, containerized solutions using Docker and virtual machine deployments 
within institutional infrastructure, including hospital infrastructure [19]. While these 
local deployment approaches provide excellent computational performance and are well-
suited for research environments with dedicated IT support, they present specific 
implementation requirements: Python and R frameworks require specialized 
programming expertise and environment setup, Docker containerization needs 
orchestration knowledge and infrastructure management, virtual machines demand 
significant hardware resources and face compatibility challenges across different clinical 
systems and traditional local deployments may lack the cross-platform compatibility and 
ease of distribution that web-based approaches provide. 

Recent advancements in web technologies offer a complementary approach that 
addresses different deployment scenarios. ML frameworks for browsers such as 
TensorFlow.js [20], Brain.js [21], Open Neural Network Exchange (ONNX) Runtime 
Web [22] and WebDNN [23], now allow sophisticated models to run directly in web 
browsers. This approach particularly benefits individual clinicians who need accessible 
decision-support tools without requiring IT infrastructure setup or specialized technical 
expertise. Compared to Python scikit-learn or R-based local implementations, browser-
based deployment offers distinct advantages: immediate cross-platform accessibility 
without environment setup, elimination of dependency management issues and 
simplified distribution to end-users lacking programming expertise. However, local 
Python and R frameworks maintain advantages in computational performance, access to 
specialized libraries and integration with existing research workflows. Goh et al. [24] 
comprehensively reviewed front-end deep learning technologies, highlighting the 
potential of browser-based machine learning in addressing privacy concerns while 
providing interactive, accessible solutions. 

Unlike traditional privacy-preserving methods that primarily focus on secure data 
transmission or processing, our client-side approach eliminates data transmission entirely 
during the inference phase. This provides a complementary privacy solution that operates 
independently of consent frameworks, institutional agreements or regulatory compliance 
mechanisms. 

In this work, we implement and evaluate a fully client-side approach to healthcare 
model deployment across different model complexities, focusing on kidney disease 
prediction models as a case study. We chose to focus on kidney disease prediction models 
due to the significant public health burden of chronic kidney disease (CKD), which 
affects approximately 10% of the global population [25] and is the 11th leading cause of 
death globally with 1.2 million annual deaths from kidney failure [26]. Moreover, as 
highlighted in recent surveys of nephrologist end-users, there is a growing need for 
reliable and accessible clinical decision support tools in this domain [27]. Additionally, 
several well-documented models of varying complexity exist in this domain, making it 
an ideal test case for evaluating different client-side implementation strategies. 

2. Methods 

2.1. Materials and Tools 

We used for client-side deployment ONNX (version 1.17.0) [22] with skl2onnx for 
model conversion and TensorFlow.js (version 4.22.0) [20] with its conversion tool. For 
user interface development, we utilized standard web technologies (JS, HTML and CSS). 
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Data visualization was handled using D3.js (version 7.8.5) [28]. Deployment was 
managed using Nginx [29] as a static web server and GitLab pages for hosting. 
 

2.2. Model Selection and Acquisition 

Rationale for Model Selection: We selected three kidney disease prediction models to 
systematically evaluate client-side deployment feasibility across different model 
complexities. Our selection criteria prioritized: (1) computational diversity – from simple 
equations to medium-complexity random forests and compute-intensive CNNs –  to 
systematically test browser performance limits, (2) implementation reproducibility – 
availability of executable formats (published equations, .pkl weights, trainable .ipynb) 
ensured fair comparison without reimplementation bias and (3) deployment 
methodology coverage – models requiring distinct browser technologies (native 
JavaScript, ONNX conversion, TensorFlow.js) to demonstrate the spectrum of available 
frameworks. 

The three selected models, each representing a different level of complexity, are: 
1. Equation-based Linear Models / Mathematical Equations (Zacharias et al. [30]):  

These minimal-complexity clinical calculators predict the probability of kidney 
failure requiring replacement therapy within four years. The Z6 equation (6 
clinical variables) is specifically recommended in the 2024 KDIGO Clinical 
Practice Guideline for CKD evaluation and management as an externally 
validated risk equation for predicting kidney failure [26], making it an ideal 
candidate for demonstrating clinical-grade browser deployment. The Z14 
equation uses these 6 variables plus 8 additional clinical parameters. We 
retrieved formulas along with all necessary coefficients and parameter values 
from the published literature. 

2. Random Forest Model (RF) (Halder et al. [31]): This medium-complexity 
machine learning model was obtained as a ready-to-use .pkl file from the 
authors' published code repository. The model achieved 100% accuracy in 
predicting chronic kidney disease status based on laboratory and clinical 
parameters. We specifically selected this model because the authors provided 
both trained weights and a Flask-based server deployment, enabling direct 
comparison between traditional server-side approaches and our browser-based 
implementation. 

3. Deep Learning Model (Mondol et al. [32]): This Optimized Convolutional 
Neural Network (OCNN) was specifically selected to demonstrate browser 
feasibility for complex deep learning architectures. The model was not available 
as a pre-trained file, so we re-executed the original Jupyter notebook (.ipynb 
file) provided through the authors’ GitHub repository without modifying the 
parameters to generate a usable .h5 file. This model achieved 98.75% accuracy 
in binary CKD classification using 24 variables. 

2.3. Framework Evaluation and Selection 

We systematically evaluated available browser-based ML frameworks based on three 
primary criteria: hardware acceleration capabilities, active development status and robust 
model conversion tools. 
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Selection Criteria and Process: TensorFlow.js was chosen as it has emerged as the 
leading framework for browser-based deep learning [24], offering WebGL and 
WebAssembly hardware acceleration support along with comprehensive model 
conversion tools (tensorflowjs_converter). ONNX Runtime Web was selected for its 
framework-agnostic model representation, efficient WebAssembly runtime and robust 
conversion pipeline through skl2onnx for scikit-learn models. 

Alternative Frameworks Considered: We evaluated but rejected several alternatives: 
Brain.js was excluded due to lack of hardware acceleration; Keras.js was deprecated in 
favor of TensorFlow.js; WebDNN was not selected due to different technical 
requirements for our use case. PyTorch models could follow similar deployment 
approaches through ONNX export or conversion to TensorFlow format, but were not 
required for our selected models. 

2.4. Client-Side Processing Architecture 

Our privacy-preserving architecture keeps all data processing local to the user's device. 
Unlike traditional approaches that rely on server-side frameworks such as Flask or 
Django, our applications consist entirely of static files (HTML, JavaScript, CSS and 
model files) served via a web server (e.g., Nginx) or static hosting service (e.g., GitLab 
Pages). When users interact with the application, their input remains on their device and 
is processed locally using JavaScript equations for the risk prediction models, ONNX 
Runtime for the random forest model, or TensorFlow.js for the OCNN model. Results 
are visualized directly in the browser using D3.js. The application uses localStorage to 
persist user input and sessionStorage to store temporary results, thereby enhancing 
usability while ensuring that sensitive healthcare data never leaves the user's device. 

2.5. Implementation strategy 

We developed three distinct implementation approaches tailored to the selected models, 
each optimized for different computational requirements while maintaining our core 
privacy-preserving architecture: 

• Simple models (Equation-based linear models - Zacharias et al. [30]): For the 
two risk prediction equations (Z6 and Z14) from Zacharias et al. [30], we 
implemented a direct JS solution. These linear models use a deterministic Cox 
proportional hazards structure requiring basic mathematical operations 
available in JavaScript's native Math library. The implementation organizes 
essential parameters as arrays of JavaScript objects, with each object containing 
metadata including parameter labels, model coefficients, valid input ranges and 
unit conversion factors. This structured approach enables comprehensive unit 
conversion capabilities for different clinical measurement units. 

• Medium-complexity models (RF - Halder et al. [31]): For the RF model from 
Halder et al. [31], we used the ONNX format as an intermediate representation. 
The pre-trained .pkl file, which is Python's native serialization format for storing 
trained ML models, was converted to ONNX using skl2onnx [33], a specialized 
converter that transforms scikit-learn models into the ONNX format. This 
conversion process preserves the model's structure and learned parameters 
while making it compatible with browser-based execution environments.  The 
ONNX Runtime JS API was used for model inference in the browser and we 
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implemented custom error handling to manage potential issues during inference 
such as missing outputs or runtime errors. 

• Complex Deep Learning model (OCNN - Mondol et al. [32]): For the OCNN 
developed by Mondol et al. [32], we employed TensorFlow.js. The pre-trained 
model was converted using the tensorflowjs_converter tool, producing a JSON 
file for the model architecture and a binary file for the weights and biases. 
Custom components were registered using TensorFlow.js's serialization API. 
Input data underwent pre-processing, including min-max scaling and 
standardization to match the original training conditions. 

The implementation of these three different approaches follows a common workflow 
pattern illustrated in Figure 1. Our process consists of four key stages: (1) starting with 
different model types (Simple models, RF model  and DL model), (2) converting each 
into a browser-compatible format (JavaScript Arrays, ONNX Format, and TensorFlow.js 
Format), (3) deploying them as static files (simple models via Nginx server and the 
RF/DL models via GitLab pages)  and (4) executing them within the browser through a 
user interface that processes data locally and displays results. This unified workflow 
ensures that despite the varying complexity of models and deployment platforms, all 
implementations share the same privacy-preserving foundation where computations 
occur entirely within the client's browser. 

 

 
Figure 1. Client-side model deployment workflow. Models (equation-based, RF, Deep learning) are converted 
to browser-compatible formats (JavaScript Arrays, ONNX, TensorFlow.js) and deployed via Nginx server. All 
processing occurs locally in the browser, keeping patient data on-device. 

2.6. Performance Analysis and Network Behavior Verification 

To validate both performance characteristics and privacy guarantees, we implemented 
comprehensive monitoring across all three model deployments. Our evaluation 
methodology focused on quantifying real-world performance metrics and confirming 
complete absence of external data transmission during model operation. Testing was 
conducted across multiple browsers (Chrome v134, Firefox v137 and Edge v135) on 
Windows 10 systems with 16GB RAM, with multiple execution cycles to account for 
environmental variability. 
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Test Data Specification: For performance evaluation, we used realistic clinical data 
profiles based on the original model development datasets. For the Zacharias models, we 
conducted performance testing using representative clinical parameter values derived 
from the German Chronic Kidney Disease (GCKD) study population characteristics as 
reported in the original publication [30], which included 4,915 patients with variables 
such as age, sex, eGFR, UACR, hemoglobin, and serum laboratory values. For both the 
Halder Random Forest model [31] and the Mondol OCNN model [32], we utilized 
clinical test profiles derived from the UCI machine learning repository's chronic kidney 
disease dataset - the same dataset both authors used for training their respective models. 
This dataset contains 400 instances with 24 clinical attributes including laboratory values 
(such as serum creatinine, blood urea, hemoglobin, blood pressure) and clinical 
indicators (such as diabetes, hypertension, coronary artery disease), among others. We 
verified that all test parameter values remained within the original training variable 
ranges and conducted multiple test iterations across different parameter combinations to 
evaluate computational consistency, execution timing, and browser performance 
characteristics under varying computational loads. 

Our monitoring approach specifically focused on: 
• Network activity verification: Custom middleware was implemented to 

intercept all outgoing network requests by overriding the browser's native fetch 
and XMLHttpRequest APIs. This approach enabled monitoring of network 
activity during model execution, with particular emphasis on distinguishing 
prediction requests from those related to model loading. 

• Performance timing: We used high-precision timestamps via the browser's 
Performance API to measure four critical intervals: model loading time 
(initialization to ready state), pre-processing time (input transformation prior to 
inference), inference time (actual model execution), and total prediction time 
(end-to-end user experience). 

• Resource utilization: We tracked memory consumption using framework-
specific APIs (TensorFlow.memory() for OCNN) and browser performance 
monitoring (for ONNX Runtime and JS implementations). Model size was 
measured through content-length headers and file size analysis. 

3. Results 

3.1. Successful Model Deployment Outcomes 

The implementation strategies described in Methods resulted in three fully functional, 
privacy-preserving web applications, each demonstrating successful client-side 
deployment across different model complexity levels. 

Deployment Outcomes: The equation-based Kidney Failure Risk Calculator 
(Zacharias et al.) is accessible at  https://ckdn.app/tools/eskdcalc/, providing immediate 
risk predictions through direct JavaScript implementation. The ONNX-based Random 
Forest Model (Halder et al.) is available at https://kidneypredict-rf-
93614a.pages.gwdg.de/, offering CKD classification with complete source code at 
https://gitlab.gwdg.de/MedBioinf/metabolomics/ckdmodels/kidneypredict-rf. The 
TensorFlow.js implementation of the OCNN Model (Mondol et al.) operates at 
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https://kidneypredict-ocnn-bc08ba.pages.gwdg.de/ with source code available at 
https://gitlab.gwdg.de/MedBioinf/metabolomics/ckdmodels/kidneypredict-ocnn. 

Functional Verification: All deployed applications successfully maintained their 
original performance metrics through systematic cross-platform validation. We validated 
model accuracy by comparing outputs between the original model implementations and 
our browser-based deployments using identical clinical input datasets. For the Zacharias 
equations, browser calculations matched reference implementations using published 
coefficients. For the Random Forest model, we confirmed concordant results across three 
platforms: the original Python .pkl implementation, our browser ONNX deployment and 
the authors' Flask-based server application. For the OCNN model, our browser 
TensorFlow.js implementation produced identical classification results compared to the 
original Python model implementation. This validation process confirmed that client-
side deployment preserved computational accuracy across all model complexity levels. 

3.2. Privacy Protection Verification Results 

Our comprehensive network monitoring confirmed complete privacy protection across 
all implementations. The monitoring framework successfully intercepted and analyzed 
all network requests during model operation phases. 

Network Isolation Results: After initial model loading, network monitoring 
detected zero instances of outbound data transmission during prediction phases across 
all three implementations. The custom middleware confirmed that patient input data, 
intermediate calculations, and prediction results remained entirely within the browser 
environment. 

Offline Functionality Validation: The applications are standard static web 
applications composed of HTML, CSS, JavaScript and model files. They can be 
deployed locally by downloading all necessary files to a protected machine and 
launching them directly from a local hard disk using a modern web browser. This setup 
enables full functionality (including data input, prediction and result visualization) 
without requiring any connection to external servers. As such, the applications are well 
suited for use in regulated healthcare environments where internet access is restricted or 
prohibited. Browser storage mechanisms (localStorage for input persistence and 
sessionStorage for temporary results) enhanced usability while maintaining complete 
local data processing. 

3.3. Performance Analysis Results 

Table 1 presents performance metrics across all implementations, with all metrics 
reported for Google Chrome v134 as the reference browser. Performance testing was 
conducted using clinical test profiles as detailed in Methods section 2.6. Server-side 
deployment metrics are included for comparison. 

Performance Variability Analysis: Performance metrics demonstrated 10-15% 
variation across multiple test runs due to browser optimization states and system resource 
availability. ONNX memory usage showed fluctuation due to browser garbage collection 
timing, while TensorFlow.js measurements remained more consistent due to its 
integrated memory management API. Initial model executions consistently showed 15-
20% slower performance due to JS engine warm-up effects. Despite these performance 
variations, privacy protection remained absolute - network monitoring confirmed no data 
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transmission occurred during predictions after initial asset loading, ensuring patient data 
never left the device. 

For the server-side comparison, we examined the Flask implementation by Halder 
et al. [31], which uses Python's time module to measure execution time between 
prediction start and end. While server-side implementations require the same total 
prediction time for every request due to network communication overhead, our client-
side approach eliminates this network dependency: after an initial model loading phase, 
subsequent predictions execute significantly faster with complete privacy protection. 

Cross-Browser Compatibility Results: Testing across Chrome, Firefox and Edge 
revealed execution speed variations up to 20% while maintaining consistent prediction 
accuracy. All browsers successfully executed all model types, confirming broad 
compatibility across major browser engines 

 
Table 1. Performance Metrics for Client-Side Deployment 

Metric Risk prediction 
(Z6) 

ONNX (RF) TensorFlow.js 
(OCNN) 

Server-Side 
(Flask)† 

Inference Time 
(ms) 

0.10 17.10 94.40 10‡ 

Total Prediction 
Time (ms) 

0.20 557.70 148.00 250.00‡ 

Preprocessing 
Time (ms) 

0.10 0.20 0.10 - 

Model Loading 
Time (ms) 

43.00 534.80 45.70 - 

Model Size (KB) 22 101.93 7.62 - 

Memory Usage 
(MB) 

0.965 0.92 0.02 - 

†For comparative purposes, we include metrics from the Flask-based server deployment of a Random Forest 
model for CKD prediction developed by Halder et al. [31]. ‡These values represent observations from direct 
testing of the server-side application. Inference time is based on the execution time measured in their code, 
while total prediction time includes network latency and round-trip communication. Missing values (-) indicate 
metrics that are not directly comparable between client and server architectures: model size does not impact 
client resources in server deployments; memory usage occurs on the server rather than user devices and model 
loading typically happens once at server start-up rather than per user request. 

3.4. Comprehensive Deployment Approach Comparison 

To directly address the innovation achieved through our browser-based approach 
compared to traditional Python, R and server-based frameworks, Table 2 presents a 
comprehensive comparison across key deployment factors from the perspective of 
clinical end-users. 

Deployment Innovation: Traditional Python/R frameworks require environment 
setup, dependency management and technical expertise, creating significant barriers for 
clinical adoption. Our approach eliminates these requirements through simple web 
browser access while maintaining equivalent prediction accuracy and superior privacy 
protection through local processing. This represents a fundamental shift from execution 
speed optimization to accessibility-focused innovation in healthcare ML deployment. 
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Table 2. Comprehensive Comparison of ML Deployment Approaches in Healthcare 

Factor Browser-based (Our 
Approach) 

Local Statistical 
Environment 
(Python/R) 

Server-based 
(Flask/Django) 

Setup Requirements None (web browser 
only) 

Language installation, 
required packages, 
model files 

None (web browser 
only) 

Programming Expertise 
Required 

Basic web interaction Basic scripting 
commands for model 
loading and prediction 

Basic web interaction 

Cross-platform 
Deployment 

Immediate (any modern 
browser) 

Platform-specific 
installations on clinical 
workstations 

Immediate (any modern 
browser) 

End-user Technical 
Barriers 

Minimal (URL access) Moderate to High 
(statistical environment 
setup, dependency 
management) 

Minimal (URL access) 

Data Privacy Model Complete isolation 
(never leaves device) 

Local processing 
(device-dependent 
security) 

Data transmission 
required (compliance 
dependent) 

Offline Capability Yes (after initial 
loading) 

Yes (post-installation) No (required server 
connectivity) 

Performance 
Characteristics 

JavaScript engine 
dependent (0.10-94ms) 

Native  performance 
(1-50 ms depending on 
model complexity) 

Network latency + 
server processing (200 
ms+  typical) 

Model Update 
Mechanism 

Static file replacement Manual file updates on 
each workstation 

Centralized server 
deployment 

Clinical Integration 
Complexity 

Low (web-based 
workflow integration) 

High (local IT 
infrastructure required 
on all workstations) 

Low  (web-based 
workflow integration) 

scalability Limited by client 
device resources 

Limited by individual 
workstation resources 

High (server resources 
can be scaled) 

Regulatory Compliance Simplified (no data 
transmission, reduced 
GDPR/HIPAA 
complexity) 

Simplified (local 
processing, standard 
workstation 
compliance) 

Complex (data 
transmission 
agreements, server 
security compliance) 

 

4. Discussion 

Our work demonstrates the feasibility of deploying ML and DL models entirely within 
the client browser, using technologies such as TensorFlow.js, ONNX Runtime Web and 
direct JS implementations. By shifting model execution from the server-side (e.g., using 
frameworks like Flask or Django) to the client device, we eliminate data transmission 
entirely during the inference phase while providing significant deployment and usability 
advantages. 

A critical consideration for client-side deployment is understanding where it 
provides the greatest value relative to existing alternatives. Healthcare ML applications 

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 301



commonly appear to operate within university networks and critical infrastructure 
hospital environments [19] using locally installed systems with Python scikit-learn, R or 
containerized solutions. However, client-side browser deployment offers complementary 
advantages even in these environments. 

While local installations using Python or R frameworks provide excellent 
computational performance and are commonly used in research environments, they 
require significant IT infrastructure, ongoing maintenance and specialized technical 
expertise. Users must install Python or R software, manage library dependencies, handle 
version conflicts and maintain model file updates across individual machines. Container-
based solutions using Docker offer improved isolation but necessitate container 
orchestration knowledge, dedicated hosting infrastructure and specialized IT staff to 
manage container runtime environments, networking configurations and security updates. 

Browser-based deployment offers several unique advantages: (1) Zero installation 
requirements – users can access applications immediately through standard web 
browsers without software installation, IT approval processes or dependency 
management; (2) Cross-platform compatibility – applications function identically across 
Windows, macOS, Linux and mobile platforms without platform-specific modifications; 
(3) Integration with web-based health systems – seamless integration with existing web-
based electronic health records and clinical workflows through standard web 
technologies; (4) Regulatory simplification – data never leaves the user's device, 
simplifying compliance with data protection regulations regardless of consent status or 
institutional agreements. 

Browser-based deployment proves most valuable in scenarios requiring rapid 
deployment without IT infrastructure setup, integration with web-based clinical systems 
or additional privacy layers beyond traditional consent mechanisms. In contrast to 
university networks and critical infrastructure hospital environments [19] where local 
installation may be preferred for maximum computational performance, browser-based 
deployment excels in outpatient settings, patient self-monitoring applications, multi-
institutional collaborations and emergency medical situations. 

The practical success of healthcare ML deployment depends heavily on user 
acceptance and integration with existing clinical workflows. Browser-based deployment 
provides immediate accessibility and consistent behavior across different devices 
without requiring specialized software training or IT support. Loading times remained 
within acceptable ranges for clinical decision-making: equation-based models (e.g. 
0.2ms total prediction time) provided instantaneous feedback comparable to traditional 
clinical calculators, medium-complexity models (557ms total time including model 
loading) remained acceptable for clinical decisions, while complex deep learning models 
(148ms inference time) exceeded expectations for real-time clinical use. These response 
times align with clinician expectations for decision support tools and suggest that our 
browser-based implementations would be well-received in practical clinical 
environments. 

Modern browsers implement privacy protection through process isolation, same-
origin policy enforcement and automatic memory management that provides security 
isolation comparable to Docker containers and virtual machines while requiring no 
specialized infrastructure setup. Our monitoring confirmed that after initial model 
loading, no network communication occurs during prediction phases, eliminating 
vulnerabilities such as man-in-the-middle attacks, DNS poisoning and server-side data 
breaches. This approach provides the security benefits of traditional sandboxing 
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solutions while significantly reducing deployment complexity and maintenance 
overhead. 

Testing across different device form factors using browser developer tools revealed 
excellent performance for equation-based models, with our random forest (ONNX) and 
OCNN models (TensorFlow.js) also demonstrating good performance on mobile devices 
due to their lightweight architectures. 

Browser environments operate within computational resource limitations compared 
to dedicated servers or high-performance local installations. While modern desktop 
computers provide sufficient resources for our deployed model complexities, mobile 
devices may encounter performance bottlenecks for much larger or more complex 
architectures. Very large models such as transformer-based language models (e.g., BERT, 
GPT variants), deep convolutional neural networks with hundreds of layers or ensemble 
models requiring extensive memory allocation may be unsuitable for mobile browser 
deployment due to weaker CPUs, thermal throttling and restricted memory capacities. 

Client-side deployment depends on consistent web standards implementation across 
browsers. While our testing across Chrome, Firefox and Edge demonstrated consistent 
functionality, older browsers or restrictive institutional configurations may lack required 
capabilities. Network bandwidth constraints restrict model size – while our largest model 
(101.93KB) loaded efficiently, significantly larger models (>10MB) may encounter 
loading delays, particularly on mobile devices or slow networks. Additionally, browsers 
cannot match the computational performance of specialized ML hardware such as 
dedicated Graphics Processing Units (GPU) or Tensor Processing Units (TPU), limiting 
deployment of very large language models or computationally intensive healthcare AI 
applications. 

Advanced WebAssembly implementations promise substantial performance 
improvements while maintaining security isolation and cross-platform compatibility. 
Implementing adaptive model complexity selection based on real-time device capability 
detection could optimize performance across diverse hardware environments, 
automatically selecting appropriate model complexity levels based on detected device 
capabilities and user preferences. 

This work focuses on implementing the discussed models rather than evaluating 
clinical utility. While the Zacharias et al. equation-based model (specifically Z6) [30] is 
an externally validated risk equation for predicting kidney failure recommended by 
KDIGO in their Clinical Practice Guideline for CKD Evaluation and Management [26], 
we are not evaluating the clinical utility of the Halder et al. random forest and Mondol 
et al. OCNN implementations in real-world settings. While our work demonstrates 
technical feasibility and performance characteristics for browser-based deployment, 
broader clinical validation of the RF and OCNN models remains necessary for 
widespread adoption. Future work should include prospective clinical studies comparing 
browser-based prediction accuracy and clinical workflow integration with traditional 
decision-making processes, assessing impact on clinical efficiency, user satisfaction and 
patient outcomes across different clinical specialties. 

5. Conclusion 

This study demonstrates the feasibility and practical advantages of deploying healthcare 
ML models entirely within client browsers, eliminating data transmission during 
inference while maintaining clinical accuracy across different model complexities. 
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Our key findings include: 
1. Cross-Platform Deployment Success: Browser-based implementation 

successfully deployed three kidney disease prediction models of varying 
complexity (equation-based, Random Forest and deep learning) with identical 
performance to original implementations, requiring no software installation or 
IT infrastructure setup. 

2. Complete Privacy Protection: Network monitoring confirmed zero external 
data transmission during prediction phases across all implementations, ensuring 
patient data never leaves the user's device. 

3. Clinical Performance Acceptability: Performance testing revealed response 
times ranging from 0.2ms for equation-based models to 148ms for complex deep 
learning models for real-time clinical decision support scenarios. 

4. Deployment Accessibility Advantages: Compared to traditional local 
deployments requiring programming expertise and IT infrastructure, browser-
based deployment offers immediate accessibility through familiar web interfaces, 
eliminating technical barriers for clinical adoption. 
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