
Use of Client-Side Machine Learning
Models for Privacy-Preserving Healthcare
Predictions - A Deployment Case Study

Yacoub Abelard NJIPOUOMBE NSANGOUa,b, Rajib KUMAR HALDERc,
Ashraf UDDINd, Laurenz ENGELa, Fruzsina KOTSISe, Ulla T. SCHULTHEISSe,

Johannes RAFFLERf, Robin KOSCHg,h, Michael ALTENBUCHINGERa,
Helena U. ZACHARIASg,h, Gabi KASTENMÜLLERb and Jürgen DÖNITZ

a,b,1
a

 Dept. of Medical Bioinformatics, University Medical Center Göttingen,Germany
b

 Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
c

 Dept. of CS and Engineering, Jagannath University, Dhaka, Bangladesh
d

 School of Information Technology, Deakin University, Australia
e

 Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of
Medicine and Medical Center, University of Freiburg, Freiburg, Germany

f
 Institute for Digital Medicine, University Hospital Augsburg, Germany

g
 Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig, Germany

hHannover Medical School, Hannover Medical School, Hanover, Germany
ORCiD: Jürgen Dönitz https://orcid.org/0000-0002-8401-8851

Abstract. Introduction Machine learning (ML) and deep learning (DL) models in
healthcare traditionally rely on server-centric architectures, where sensitive patient
data is transmitted to external servers for processing via frameworks like Flask,
raising significant privacy concerns. This work demonstrates a privacy-preserving
approach by executing healthcare prediction models entirely within the web browser.
Methods Our approach leverages existing browser-based machine learning and
deep learning technologies such as TensorFlow.js and ONNX Runtime Web, along
with direct JavaScript implementations, to ensure all computations remain on the
client side. We showcase three implementation strategies based on model
complexity: direct JavaScript implementation for simple equation-based models,
ONNX-based conversion and execution for medium-complexity models like
Random Forest and finally TensorFlow.js deployment for complex deep learning
models such as Optimized Convolutional Neural Networks. Results Our results
indicate that client-side deployment is both feasible and effective for healthcare
prediction models, preserving original performance metrics while offering
substantial privacy benefits. Conclusion This approach guarantees patient data
never leaves the user's device, eliminating risks associated with data transmission
and making it particularly advantageous in healthcare settings where data
confidentiality is critical, while also supporting offline functionality.

Keywords. Machine Learning, Deep Learning, Privacy, Web Browser,
Confidentiality, Decision Support Systems, Clinical

1 Corresponding Author, Jürgen Dönitz, University Medical Center Göttingen (UMG), Goldschmidtstr.

1, 37077 Göttingen, Germany; E-Mail: juergen.doenitz@bioinf.med.uni-goettingen de.

German Medical Data Sciences 2025: GMDS Illuminates Health
R. Röhrig et al. (Eds.)
© 2025 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/SHTI251408

292

1. Introduction

Machine Learning (ML) and Deep Learning (DL) models have advanced healthcare
decision-making by supporting diagnosis, prognosis and treatment planning based on
patient data [1, 2]. Traditionally, these models are deployed in a server-centric
architecture, where patient data is transmitted to servers on the internet. In this setup,
backend frameworks like Flask [3] or Django [4] manage the requests, relay the data to
the predictive model, and return the results to the client [5,6].

However, this approach introduces privacy considerations that remain relevant even
with proper consent mechanisms. While the General Data Protection Regulation (GDPR)
establishes data processing agreements and explicit patient consent as legal frameworks
for server-based processing [7, 8], several scenarios still present challenges: cross-border
data transfers between healthcare systems without established agreements [9],
emergency medical situations where comprehensive consent procedures may be
incomplete [10], research collaborations with strict institutional data governance policies
[11] and international settings where varying regulatory frameworks create compliance
complexities [9]. Additionally, regardless of consent status, minimizing data
transmission provides an extra layer of protection against potential breaches,
unauthorized access or unexpected regulatory changes. Even without demographic
information, unusual combinations of laboratory values (such as extreme creatinine
levels combined with distinctive blood cell counts) can create unique fingerprints that
potentially allow re-identification [12].

This study addresses the research question: How can healthcare machine learning
models be deployed to ensure complete patient data privacy through client-side
execution while maintaining clinical accuracy and usability across different model
complexities?

Several approaches to privacy-preserving ML deployment have been explored.
Federated learning [13] allows models to be trained across multiple devices without
sharing the underlying data, but requires coordination across multiple participants and
may leak information through gradient inversion attacks on shared model updates.
Secure multiparty computation (SMPC) enables collaborative model inference across
multiple parties through cryptographic protocols without revealing individual inputs,
though it involves complex coordination requirements and significant computational and
communication overhead due to cryptographic operations [14]. Homomorphic
encryption permits computations on encrypted data, but its high computational and
memory costs often limit practical deployment [15]. Split learning partitions neural
networks between client and server, with clients computing initial layers locally before
sending intermediate activations to servers for deeper layer processing. While this
approach reduces the computational burden on client devices, it incurs significant
communication overhead from transmitting feature representations at each forward and
backward pass, and remains predominantly suited to neural network-based models [16].
Trusted execution environments (TEEs) provide hardware-based secure enclaves for
privacy-preserving model execution, though they require specialized hardware
infrastructure and remain vulnerable to side-channel attacks [17]. Local differential
privacy (LDP) guarantees privacy by injecting noise into individual data points before
aggregation, though excessive noise can degrade model performance [18].

Beyond these cryptographic and distributed approaches, healthcare organizations
commonly employ local deployment strategies. These include Python frameworks such
as scikit-learn for statistical analysis and machine learning, R environments for statistical

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 293

computing, containerized solutions using Docker and virtual machine deployments
within institutional infrastructure, including hospital infrastructure [19]. While these
local deployment approaches provide excellent computational performance and are well-
suited for research environments with dedicated IT support, they present specific
implementation requirements: Python and R frameworks require specialized
programming expertise and environment setup, Docker containerization needs
orchestration knowledge and infrastructure management, virtual machines demand
significant hardware resources and face compatibility challenges across different clinical
systems and traditional local deployments may lack the cross-platform compatibility and
ease of distribution that web-based approaches provide.

Recent advancements in web technologies offer a complementary approach that
addresses different deployment scenarios. ML frameworks for browsers such as
TensorFlow.js [20], Brain.js [21], Open Neural Network Exchange (ONNX) Runtime
Web [22] and WebDNN [23], now allow sophisticated models to run directly in web
browsers. This approach particularly benefits individual clinicians who need accessible
decision-support tools without requiring IT infrastructure setup or specialized technical
expertise. Compared to Python scikit-learn or R-based local implementations, browser-
based deployment offers distinct advantages: immediate cross-platform accessibility
without environment setup, elimination of dependency management issues and
simplified distribution to end-users lacking programming expertise. However, local
Python and R frameworks maintain advantages in computational performance, access to
specialized libraries and integration with existing research workflows. Goh et al. [24]
comprehensively reviewed front-end deep learning technologies, highlighting the
potential of browser-based machine learning in addressing privacy concerns while
providing interactive, accessible solutions.

Unlike traditional privacy-preserving methods that primarily focus on secure data
transmission or processing, our client-side approach eliminates data transmission entirely
during the inference phase. This provides a complementary privacy solution that operates
independently of consent frameworks, institutional agreements or regulatory compliance
mechanisms.

In this work, we implement and evaluate a fully client-side approach to healthcare
model deployment across different model complexities, focusing on kidney disease
prediction models as a case study. We chose to focus on kidney disease prediction models
due to the significant public health burden of chronic kidney disease (CKD), which
affects approximately 10% of the global population [25] and is the 11th leading cause of
death globally with 1.2 million annual deaths from kidney failure [26]. Moreover, as
highlighted in recent surveys of nephrologist end-users, there is a growing need for
reliable and accessible clinical decision support tools in this domain [27]. Additionally,
several well-documented models of varying complexity exist in this domain, making it
an ideal test case for evaluating different client-side implementation strategies.

2. Methods

2.1. Materials and Tools

We used for client-side deployment ONNX (version 1.17.0) [22] with skl2onnx for
model conversion and TensorFlow.js (version 4.22.0) [20] with its conversion tool. For
user interface development, we utilized standard web technologies (JS, HTML and CSS).

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models294

Data visualization was handled using D3.js (version 7.8.5) [28]. Deployment was
managed using Nginx [29] as a static web server and GitLab pages for hosting.

2.2. Model Selection and Acquisition

Rationale for Model Selection: We selected three kidney disease prediction models to
systematically evaluate client-side deployment feasibility across different model
complexities. Our selection criteria prioritized: (1) computational diversity – from simple
equations to medium-complexity random forests and compute-intensive CNNs – to
systematically test browser performance limits, (2) implementation reproducibility –
availability of executable formats (published equations, .pkl weights, trainable .ipynb)
ensured fair comparison without reimplementation bias and (3) deployment
methodology coverage – models requiring distinct browser technologies (native
JavaScript, ONNX conversion, TensorFlow.js) to demonstrate the spectrum of available
frameworks.

The three selected models, each representing a different level of complexity, are:
1. Equation-based Linear Models / Mathematical Equations (Zacharias et al. [30]):

These minimal-complexity clinical calculators predict the probability of kidney
failure requiring replacement therapy within four years. The Z6 equation (6
clinical variables) is specifically recommended in the 2024 KDIGO Clinical
Practice Guideline for CKD evaluation and management as an externally
validated risk equation for predicting kidney failure [26], making it an ideal
candidate for demonstrating clinical-grade browser deployment. The Z14
equation uses these 6 variables plus 8 additional clinical parameters. We
retrieved formulas along with all necessary coefficients and parameter values
from the published literature.

2. Random Forest Model (RF) (Halder et al. [31]): This medium-complexity
machine learning model was obtained as a ready-to-use .pkl file from the
authors' published code repository. The model achieved 100% accuracy in
predicting chronic kidney disease status based on laboratory and clinical
parameters. We specifically selected this model because the authors provided
both trained weights and a Flask-based server deployment, enabling direct
comparison between traditional server-side approaches and our browser-based
implementation.

3. Deep Learning Model (Mondol et al. [32]): This Optimized Convolutional
Neural Network (OCNN) was specifically selected to demonstrate browser
feasibility for complex deep learning architectures. The model was not available
as a pre-trained file, so we re-executed the original Jupyter notebook (.ipynb
file) provided through the authors’ GitHub repository without modifying the
parameters to generate a usable .h5 file. This model achieved 98.75% accuracy
in binary CKD classification using 24 variables.

2.3. Framework Evaluation and Selection

We systematically evaluated available browser-based ML frameworks based on three
primary criteria: hardware acceleration capabilities, active development status and robust
model conversion tools.

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 295

Selection Criteria and Process: TensorFlow.js was chosen as it has emerged as the
leading framework for browser-based deep learning [24], offering WebGL and
WebAssembly hardware acceleration support along with comprehensive model
conversion tools (tensorflowjs_converter). ONNX Runtime Web was selected for its
framework-agnostic model representation, efficient WebAssembly runtime and robust
conversion pipeline through skl2onnx for scikit-learn models.

Alternative Frameworks Considered: We evaluated but rejected several alternatives:
Brain.js was excluded due to lack of hardware acceleration; Keras.js was deprecated in
favor of TensorFlow.js; WebDNN was not selected due to different technical
requirements for our use case. PyTorch models could follow similar deployment
approaches through ONNX export or conversion to TensorFlow format, but were not
required for our selected models.

2.4. Client-Side Processing Architecture

Our privacy-preserving architecture keeps all data processing local to the user's device.
Unlike traditional approaches that rely on server-side frameworks such as Flask or
Django, our applications consist entirely of static files (HTML, JavaScript, CSS and
model files) served via a web server (e.g., Nginx) or static hosting service (e.g., GitLab
Pages). When users interact with the application, their input remains on their device and
is processed locally using JavaScript equations for the risk prediction models, ONNX
Runtime for the random forest model, or TensorFlow.js for the OCNN model. Results
are visualized directly in the browser using D3.js. The application uses localStorage to
persist user input and sessionStorage to store temporary results, thereby enhancing
usability while ensuring that sensitive healthcare data never leaves the user's device.

2.5. Implementation strategy

We developed three distinct implementation approaches tailored to the selected models,
each optimized for different computational requirements while maintaining our core
privacy-preserving architecture:

• Simple models (Equation-based linear models - Zacharias et al. [30]): For the
two risk prediction equations (Z6 and Z14) from Zacharias et al. [30], we
implemented a direct JS solution. These linear models use a deterministic Cox
proportional hazards structure requiring basic mathematical operations
available in JavaScript's native Math library. The implementation organizes
essential parameters as arrays of JavaScript objects, with each object containing
metadata including parameter labels, model coefficients, valid input ranges and
unit conversion factors. This structured approach enables comprehensive unit
conversion capabilities for different clinical measurement units.

• Medium-complexity models (RF - Halder et al. [31]): For the RF model from
Halder et al. [31], we used the ONNX format as an intermediate representation.
The pre-trained .pkl file, which is Python's native serialization format for storing
trained ML models, was converted to ONNX using skl2onnx [33], a specialized
converter that transforms scikit-learn models into the ONNX format. This
conversion process preserves the model's structure and learned parameters
while making it compatible with browser-based execution environments. The
ONNX Runtime JS API was used for model inference in the browser and we

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models296

implemented custom error handling to manage potential issues during inference
such as missing outputs or runtime errors.

• Complex Deep Learning model (OCNN - Mondol et al. [32]): For the OCNN
developed by Mondol et al. [32], we employed TensorFlow.js. The pre-trained
model was converted using the tensorflowjs_converter tool, producing a JSON
file for the model architecture and a binary file for the weights and biases.
Custom components were registered using TensorFlow.js's serialization API.
Input data underwent pre-processing, including min-max scaling and
standardization to match the original training conditions.

The implementation of these three different approaches follows a common workflow
pattern illustrated in Figure 1. Our process consists of four key stages: (1) starting with
different model types (Simple models, RF model and DL model), (2) converting each
into a browser-compatible format (JavaScript Arrays, ONNX Format, and TensorFlow.js
Format), (3) deploying them as static files (simple models via Nginx server and the
RF/DL models via GitLab pages) and (4) executing them within the browser through a
user interface that processes data locally and displays results. This unified workflow
ensures that despite the varying complexity of models and deployment platforms, all
implementations share the same privacy-preserving foundation where computations
occur entirely within the client's browser.

Figure 1. Client-side model deployment workflow. Models (equation-based, RF, Deep learning) are converted
to browser-compatible formats (JavaScript Arrays, ONNX, TensorFlow.js) and deployed via Nginx server. All
processing occurs locally in the browser, keeping patient data on-device.

2.6. Performance Analysis and Network Behavior Verification

To validate both performance characteristics and privacy guarantees, we implemented
comprehensive monitoring across all three model deployments. Our evaluation
methodology focused on quantifying real-world performance metrics and confirming
complete absence of external data transmission during model operation. Testing was
conducted across multiple browsers (Chrome v134, Firefox v137 and Edge v135) on
Windows 10 systems with 16GB RAM, with multiple execution cycles to account for
environmental variability.

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 297

Test Data Specification: For performance evaluation, we used realistic clinical data
profiles based on the original model development datasets. For the Zacharias models, we
conducted performance testing using representative clinical parameter values derived
from the German Chronic Kidney Disease (GCKD) study population characteristics as
reported in the original publication [30], which included 4,915 patients with variables
such as age, sex, eGFR, UACR, hemoglobin, and serum laboratory values. For both the
Halder Random Forest model [31] and the Mondol OCNN model [32], we utilized
clinical test profiles derived from the UCI machine learning repository's chronic kidney
disease dataset - the same dataset both authors used for training their respective models.
This dataset contains 400 instances with 24 clinical attributes including laboratory values
(such as serum creatinine, blood urea, hemoglobin, blood pressure) and clinical
indicators (such as diabetes, hypertension, coronary artery disease), among others. We
verified that all test parameter values remained within the original training variable
ranges and conducted multiple test iterations across different parameter combinations to
evaluate computational consistency, execution timing, and browser performance
characteristics under varying computational loads.

Our monitoring approach specifically focused on:
• Network activity verification: Custom middleware was implemented to

intercept all outgoing network requests by overriding the browser's native fetch
and XMLHttpRequest APIs. This approach enabled monitoring of network
activity during model execution, with particular emphasis on distinguishing
prediction requests from those related to model loading.

• Performance timing: We used high-precision timestamps via the browser's
Performance API to measure four critical intervals: model loading time
(initialization to ready state), pre-processing time (input transformation prior to
inference), inference time (actual model execution), and total prediction time
(end-to-end user experience).

• Resource utilization: We tracked memory consumption using framework-
specific APIs (TensorFlow.memory() for OCNN) and browser performance
monitoring (for ONNX Runtime and JS implementations). Model size was
measured through content-length headers and file size analysis.

3. Results

3.1. Successful Model Deployment Outcomes

The implementation strategies described in Methods resulted in three fully functional,
privacy-preserving web applications, each demonstrating successful client-side
deployment across different model complexity levels.

Deployment Outcomes: The equation-based Kidney Failure Risk Calculator
(Zacharias et al.) is accessible at https://ckdn.app/tools/eskdcalc/, providing immediate
risk predictions through direct JavaScript implementation. The ONNX-based Random
Forest Model (Halder et al.) is available at https://kidneypredict-rf-
93614a.pages.gwdg.de/, offering CKD classification with complete source code at
https://gitlab.gwdg.de/MedBioinf/metabolomics/ckdmodels/kidneypredict-rf. The
TensorFlow.js implementation of the OCNN Model (Mondol et al.) operates at

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models298

https://kidneypredict-ocnn-bc08ba.pages.gwdg.de/ with source code available at
https://gitlab.gwdg.de/MedBioinf/metabolomics/ckdmodels/kidneypredict-ocnn.

Functional Verification: All deployed applications successfully maintained their
original performance metrics through systematic cross-platform validation. We validated
model accuracy by comparing outputs between the original model implementations and
our browser-based deployments using identical clinical input datasets. For the Zacharias
equations, browser calculations matched reference implementations using published
coefficients. For the Random Forest model, we confirmed concordant results across three
platforms: the original Python .pkl implementation, our browser ONNX deployment and
the authors' Flask-based server application. For the OCNN model, our browser
TensorFlow.js implementation produced identical classification results compared to the
original Python model implementation. This validation process confirmed that client-
side deployment preserved computational accuracy across all model complexity levels.

3.2. Privacy Protection Verification Results

Our comprehensive network monitoring confirmed complete privacy protection across
all implementations. The monitoring framework successfully intercepted and analyzed
all network requests during model operation phases.

Network Isolation Results: After initial model loading, network monitoring
detected zero instances of outbound data transmission during prediction phases across
all three implementations. The custom middleware confirmed that patient input data,
intermediate calculations, and prediction results remained entirely within the browser
environment.

Offline Functionality Validation: The applications are standard static web
applications composed of HTML, CSS, JavaScript and model files. They can be
deployed locally by downloading all necessary files to a protected machine and
launching them directly from a local hard disk using a modern web browser. This setup
enables full functionality (including data input, prediction and result visualization)
without requiring any connection to external servers. As such, the applications are well
suited for use in regulated healthcare environments where internet access is restricted or
prohibited. Browser storage mechanisms (localStorage for input persistence and
sessionStorage for temporary results) enhanced usability while maintaining complete
local data processing.

3.3. Performance Analysis Results

Table 1 presents performance metrics across all implementations, with all metrics
reported for Google Chrome v134 as the reference browser. Performance testing was
conducted using clinical test profiles as detailed in Methods section 2.6. Server-side
deployment metrics are included for comparison.

Performance Variability Analysis: Performance metrics demonstrated 10-15%
variation across multiple test runs due to browser optimization states and system resource
availability. ONNX memory usage showed fluctuation due to browser garbage collection
timing, while TensorFlow.js measurements remained more consistent due to its
integrated memory management API. Initial model executions consistently showed 15-
20% slower performance due to JS engine warm-up effects. Despite these performance
variations, privacy protection remained absolute - network monitoring confirmed no data

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 299

transmission occurred during predictions after initial asset loading, ensuring patient data
never left the device.

For the server-side comparison, we examined the Flask implementation by Halder
et al. [31], which uses Python's time module to measure execution time between
prediction start and end. While server-side implementations require the same total
prediction time for every request due to network communication overhead, our client-
side approach eliminates this network dependency: after an initial model loading phase,
subsequent predictions execute significantly faster with complete privacy protection.

Cross-Browser Compatibility Results: Testing across Chrome, Firefox and Edge
revealed execution speed variations up to 20% while maintaining consistent prediction
accuracy. All browsers successfully executed all model types, confirming broad
compatibility across major browser engines

Table 1. Performance Metrics for Client-Side Deployment

Metric Risk prediction
(Z6)

ONNX (RF) TensorFlow.js
(OCNN)

Server-Side
(Flask)†

Inference Time
(ms)

0.10 17.10 94.40 10‡

Total Prediction
Time (ms)

0.20 557.70 148.00 250.00‡

Preprocessing
Time (ms)

0.10 0.20 0.10 -

Model Loading
Time (ms)

43.00 534.80 45.70 -

Model Size (KB) 22 101.93 7.62 -

Memory Usage
(MB)

0.965 0.92 0.02 -

†For comparative purposes, we include metrics from the Flask-based server deployment of a Random Forest
model for CKD prediction developed by Halder et al. [31]. ‡These values represent observations from direct
testing of the server-side application. Inference time is based on the execution time measured in their code,
while total prediction time includes network latency and round-trip communication. Missing values (-) indicate
metrics that are not directly comparable between client and server architectures: model size does not impact
client resources in server deployments; memory usage occurs on the server rather than user devices and model
loading typically happens once at server start-up rather than per user request.

3.4. Comprehensive Deployment Approach Comparison

To directly address the innovation achieved through our browser-based approach
compared to traditional Python, R and server-based frameworks, Table 2 presents a
comprehensive comparison across key deployment factors from the perspective of
clinical end-users.

Deployment Innovation: Traditional Python/R frameworks require environment
setup, dependency management and technical expertise, creating significant barriers for
clinical adoption. Our approach eliminates these requirements through simple web
browser access while maintaining equivalent prediction accuracy and superior privacy
protection through local processing. This represents a fundamental shift from execution
speed optimization to accessibility-focused innovation in healthcare ML deployment.

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models300

Table 2. Comprehensive Comparison of ML Deployment Approaches in Healthcare

Factor Browser-based (Our
Approach)

Local Statistical
Environment
(Python/R)

Server-based
(Flask/Django)

Setup Requirements None (web browser
only)

Language installation,
required packages,
model files

None (web browser
only)

Programming Expertise
Required

Basic web interaction Basic scripting
commands for model
loading and prediction

Basic web interaction

Cross-platform
Deployment

Immediate (any modern
browser)

Platform-specific
installations on clinical
workstations

Immediate (any modern
browser)

End-user Technical
Barriers

Minimal (URL access) Moderate to High
(statistical environment
setup, dependency
management)

Minimal (URL access)

Data Privacy Model Complete isolation
(never leaves device)

Local processing
(device-dependent
security)

Data transmission
required (compliance
dependent)

Offline Capability Yes (after initial
loading)

Yes (post-installation) No (required server
connectivity)

Performance
Characteristics

JavaScript engine
dependent (0.10-94ms)

Native performance
(1-50 ms depending on
model complexity)

Network latency +
server processing (200
ms+ typical)

Model Update
Mechanism

Static file replacement Manual file updates on
each workstation

Centralized server
deployment

Clinical Integration
Complexity

Low (web-based
workflow integration)

High (local IT
infrastructure required
on all workstations)

Low (web-based
workflow integration)

scalability Limited by client
device resources

Limited by individual
workstation resources

High (server resources
can be scaled)

Regulatory Compliance Simplified (no data
transmission, reduced
GDPR/HIPAA
complexity)

Simplified (local
processing, standard
workstation
compliance)

Complex (data
transmission
agreements, server
security compliance)

4. Discussion

Our work demonstrates the feasibility of deploying ML and DL models entirely within
the client browser, using technologies such as TensorFlow.js, ONNX Runtime Web and
direct JS implementations. By shifting model execution from the server-side (e.g., using
frameworks like Flask or Django) to the client device, we eliminate data transmission
entirely during the inference phase while providing significant deployment and usability
advantages.

A critical consideration for client-side deployment is understanding where it
provides the greatest value relative to existing alternatives. Healthcare ML applications

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 301

commonly appear to operate within university networks and critical infrastructure
hospital environments [19] using locally installed systems with Python scikit-learn, R or
containerized solutions. However, client-side browser deployment offers complementary
advantages even in these environments.

While local installations using Python or R frameworks provide excellent
computational performance and are commonly used in research environments, they
require significant IT infrastructure, ongoing maintenance and specialized technical
expertise. Users must install Python or R software, manage library dependencies, handle
version conflicts and maintain model file updates across individual machines. Container-
based solutions using Docker offer improved isolation but necessitate container
orchestration knowledge, dedicated hosting infrastructure and specialized IT staff to
manage container runtime environments, networking configurations and security updates.

Browser-based deployment offers several unique advantages: (1) Zero installation
requirements – users can access applications immediately through standard web
browsers without software installation, IT approval processes or dependency
management; (2) Cross-platform compatibility – applications function identically across
Windows, macOS, Linux and mobile platforms without platform-specific modifications;
(3) Integration with web-based health systems – seamless integration with existing web-
based electronic health records and clinical workflows through standard web
technologies; (4) Regulatory simplification – data never leaves the user's device,
simplifying compliance with data protection regulations regardless of consent status or
institutional agreements.

Browser-based deployment proves most valuable in scenarios requiring rapid
deployment without IT infrastructure setup, integration with web-based clinical systems
or additional privacy layers beyond traditional consent mechanisms. In contrast to
university networks and critical infrastructure hospital environments [19] where local
installation may be preferred for maximum computational performance, browser-based
deployment excels in outpatient settings, patient self-monitoring applications, multi-
institutional collaborations and emergency medical situations.

The practical success of healthcare ML deployment depends heavily on user
acceptance and integration with existing clinical workflows. Browser-based deployment
provides immediate accessibility and consistent behavior across different devices
without requiring specialized software training or IT support. Loading times remained
within acceptable ranges for clinical decision-making: equation-based models (e.g.
0.2ms total prediction time) provided instantaneous feedback comparable to traditional
clinical calculators, medium-complexity models (557ms total time including model
loading) remained acceptable for clinical decisions, while complex deep learning models
(148ms inference time) exceeded expectations for real-time clinical use. These response
times align with clinician expectations for decision support tools and suggest that our
browser-based implementations would be well-received in practical clinical
environments.

Modern browsers implement privacy protection through process isolation, same-
origin policy enforcement and automatic memory management that provides security
isolation comparable to Docker containers and virtual machines while requiring no
specialized infrastructure setup. Our monitoring confirmed that after initial model
loading, no network communication occurs during prediction phases, eliminating
vulnerabilities such as man-in-the-middle attacks, DNS poisoning and server-side data
breaches. This approach provides the security benefits of traditional sandboxing

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models302

solutions while significantly reducing deployment complexity and maintenance
overhead.

Testing across different device form factors using browser developer tools revealed
excellent performance for equation-based models, with our random forest (ONNX) and
OCNN models (TensorFlow.js) also demonstrating good performance on mobile devices
due to their lightweight architectures.

Browser environments operate within computational resource limitations compared
to dedicated servers or high-performance local installations. While modern desktop
computers provide sufficient resources for our deployed model complexities, mobile
devices may encounter performance bottlenecks for much larger or more complex
architectures. Very large models such as transformer-based language models (e.g., BERT,
GPT variants), deep convolutional neural networks with hundreds of layers or ensemble
models requiring extensive memory allocation may be unsuitable for mobile browser
deployment due to weaker CPUs, thermal throttling and restricted memory capacities.

Client-side deployment depends on consistent web standards implementation across
browsers. While our testing across Chrome, Firefox and Edge demonstrated consistent
functionality, older browsers or restrictive institutional configurations may lack required
capabilities. Network bandwidth constraints restrict model size – while our largest model
(101.93KB) loaded efficiently, significantly larger models (>10MB) may encounter
loading delays, particularly on mobile devices or slow networks. Additionally, browsers
cannot match the computational performance of specialized ML hardware such as
dedicated Graphics Processing Units (GPU) or Tensor Processing Units (TPU), limiting
deployment of very large language models or computationally intensive healthcare AI
applications.

Advanced WebAssembly implementations promise substantial performance
improvements while maintaining security isolation and cross-platform compatibility.
Implementing adaptive model complexity selection based on real-time device capability
detection could optimize performance across diverse hardware environments,
automatically selecting appropriate model complexity levels based on detected device
capabilities and user preferences.

This work focuses on implementing the discussed models rather than evaluating
clinical utility. While the Zacharias et al. equation-based model (specifically Z6) [30] is
an externally validated risk equation for predicting kidney failure recommended by
KDIGO in their Clinical Practice Guideline for CKD Evaluation and Management [26],
we are not evaluating the clinical utility of the Halder et al. random forest and Mondol
et al. OCNN implementations in real-world settings. While our work demonstrates
technical feasibility and performance characteristics for browser-based deployment,
broader clinical validation of the RF and OCNN models remains necessary for
widespread adoption. Future work should include prospective clinical studies comparing
browser-based prediction accuracy and clinical workflow integration with traditional
decision-making processes, assessing impact on clinical efficiency, user satisfaction and
patient outcomes across different clinical specialties.

5. Conclusion

This study demonstrates the feasibility and practical advantages of deploying healthcare
ML models entirely within client browsers, eliminating data transmission during
inference while maintaining clinical accuracy across different model complexities.

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 303

Our key findings include:
1. Cross-Platform Deployment Success: Browser-based implementation

successfully deployed three kidney disease prediction models of varying
complexity (equation-based, Random Forest and deep learning) with identical
performance to original implementations, requiring no software installation or
IT infrastructure setup.

2. Complete Privacy Protection: Network monitoring confirmed zero external
data transmission during prediction phases across all implementations, ensuring
patient data never leaves the user's device.

3. Clinical Performance Acceptability: Performance testing revealed response
times ranging from 0.2ms for equation-based models to 148ms for complex deep
learning models for real-time clinical decision support scenarios.

4. Deployment Accessibility Advantages: Compared to traditional local
deployments requiring programming expertise and IT infrastructure, browser-
based deployment offers immediate accessibility through familiar web interfaces,
eliminating technical barriers for clinical adoption.

Declarations

Ethical vote: Not applicable
Conflict of interest: The authors declare that they have no competing interests.
Authors contributions: YANN: Conceptualization, methodology, software

implementation, writing – original draft preparation and visualization; JD:
Conceptualization, methodology, review, editing and supervision; JR contributed to the
deployment of linear models; HUZ, RKU and AU provided the models; all authors
approved the manuscript; LE, RK, MA, UTS, FK, HUZ and GK critical review of
manuscript.

Funding: This work was supported by the German Federal Ministry of Education
and Research (BMBF) within the framework of the e:Med research and funding concept
(grant numbers: 01ZX1912A, 01ZX1912B, 01ZX1912C, and 01ZX1912D). The work
of UTS was also supported by the Collaborative Research Center
(Sonderforschungsbereich, SFB) 1453 (Nephrogenetics; project ID: 431984000).
Funding for open access charge: Open Access Publication Funds, Göttingen University.

References

[1] Ahsan M, Khan A, Khan KR, Sinha BB, Sharma A. Advancements in medical diagnosis and treatment
through machine learning: A review. Expert systems. 2024 Mar;41(3):e13499, doi: 10.1111/exsy.13499

[2] Kabir R, Syed HZ, Vinnakota D, Sivasubramanian M, Hitch G, Okello SA, Pulikkottil AT, Mahmud I,
Dehghani L, Parsa AD. Deep learning for clinical decision-making and improved healthcare outcome.
InDeep Learning in Personalized Healthcare and Decision Support 2023 Jan 1 (pp. 187-201). Academic
Press, doi: 10.1016/B978-0-443-19413-9.00004-7.

[3] Grinberg M. Flask web development. Sebastopol (CA): O'Reilly Media, Inc.; 2018.
[4] Forcier J, Bissex P, Chun WJ. Python web development with Django. Upper Saddle River (NJ): Addison-

Wesley Professional; 2008.
[5] Ahmed N, Ahammed R, Islam MM, Uddin MA, Akhter A, Talukder MA, Paul BK. Machine learning

based diabetes prediction and development of smart web application. International Journal of Cognitive
Computing in Engineering. 2021 Jun 1;2:229-41, doi: 10.1016/j.ijcce.2021.12.001.

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models304

[6] Zhang P, Wang R, Shi N. IgA nephropathy prediction in children with machine learning algorithms. Future
Internet. 2020 Dec 17;12(12):230, doi: 10.3390/fi12120230.

[7] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Article 28. Official
Journal of the European Union. 2016 May 4;L 119:1-88.

[8] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Article 6. Official
Journal of the European Union. 2016 May 4;L 119:1-88.

[9] Xia L, Cao Z, Zhao Y. Paradigm Transformation of Global Health Data Regulation: Challenges in
Governance and Human Rights Protection of Cross-Border Data Flows. Risk Management and
Healthcare Policy. 2024 Dec 31:3291-304, doi: 10.2147/RMHP.S450082.

[10] Dickert NW, Brown J, Cairns CB, Eaves-Leanos A, Goldkind SF, Kim SY, Nichol G, O’Conor KJ, Scott
JD, Sinert R, Wendler D. Confronting ethical and regulatory challenges of emergency care research with
conscious patients. Annals of emergency medicine. 2016 Apr 1;67(4):538-45, doi:
10.1016/j.annemergmed.2015.10.026

[11] Odebrecht C. Research Data Governance. The Need for a System of Cross-organisational Responsibility
for the Researcher’s Data Domain. Data Science Journal. 2025 Apr 11;24, doi: 10.5334/dsj-2025-012

[12] El Emam K, Jonker E, Arbuckle L, Malin B. A systematic review of re-identification attacks on health
data. PloS one. 2011 Dec 2;6(12):e28071, doi: 10.1371/journal.pone.0028071.

[13] Li L, Fan Y, Tse M, Lin KY. A review of applications in federated learning. Computers & Industrial
Engineering. 2020 Nov 1;149:106854, doi: 10.1016/j.cie.2020.106854.

[14] Mohassel P, Zhang Y. Secureml: A system for scalable privacy-preserving machine learning. In2017
IEEE symposium on security and privacy (SP) 2017 May 22 (pp. 19-38). IEEE, doi: 10.1109/SP.2017.12

[15] Pulido-Gaytan B, Tchernykh A, Cortés-Mendoza JM, Babenko M, Radchenko G, Avetisyan A, Drozdov
AY. Privacy-preserving neural networks with homomorphic encryption: C hallenges and opportunities.
Peer-to-Peer Networking and Applications. 2021 May;14(3):1666-91, doi:10.1007/s12083-021-01076-8.

[16] Vepakomma P, Gupta O, Swedish T, Raskar R. Split learning for health: Distributed deep learning
without sharing raw patient data. arXiv preprint arXiv:1812.00564. 2018 Dec 3, doi:
10.48550/arXiv.1812.00564

[17] Geppert T, Deml S, Sturzenegger D, Ebert N. Trusted execution environments: Applications and
organizational challenges. Frontiers in Computer Science. 2022 Jul 7;4:930741, doi:
10.3389/fcomp.2022.930741

[18] Hernandez-Matamoros A, Kikuchi H. Comparative Analysis of Local Differential Privacy Schemes in
Healthcare Datasets. Applied Sciences. 2024 Mar 28;14(7):2864, doi: 10.3390/app14072864.

[19] Bundesamt für Sicherheit in der Informationstechnik. KRITIS - Kritische Infrastrukturen [Internet].
Bonn: BSI; [cited 2025 Jun 18]. Available from: https://www.bsi.bund.de/dok/kritis

[20] Smilkov D, Thorat N, Assogba Y, Nicholson C, Kreeger N, Yu P, Cai S, Nielsen E, Soegel D, Bileschi
S, Terry M. Tensorflow. js: Machine learning for the web and beyond. Proceedings of Machine Learning
and Systems. 2019 Apr 15;1:309-21.

[21] Brain.js: GPU accelerated neural networks in JavaScript for browsers and Node.js [Internet]. 2025 [cited
2025 Mar 7]. Available from: https://brain.js.org/#/

[22] ONNX Runtime Web [Internet]. 2025 [cited 2025 Mar 10]. Available from:
https://onnxruntime.ai/docs/tutorials/web/

[23] Hidaka M, Kikura Y, Ushiku Y, Harada T. Webdnn: Fastest dnn execution framework on web browser.
InProceedings of the 25th ACM international conference on Multimedia 2017 Oct 19 (pp. 1213-1216),
doi: 10.1145/3123266.3129394.

[24] Goh HA, Ho CK, Abas FS. Front-end deep learning web apps development and deployment: a review.
Applied intelligence. 2023 Jun;53(12):15923-45, doi: 10.1007/s10489-022-04278-6.

[25] Francis A, Harhay MN, Ong AC, Tummalapalli SL, Ortiz A, Fogo AB, Fliser D, Roy-Chaudhury P,
Fontana M, Nangaku M, Wanner C. Chronic kidney disease and the global public health agenda: an
international consensus. Nature Reviews Nephrology. 2024 Jul;20(7):473-85, doi: 10.1038/s41581-024-
00820-6

[26] Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, Herrington WG, Hill G, Inker LA,
Kazancıoğlu R, Lamb E. KDIGO 2024 clinical practice guideline for the evaluation and management of
chronic kidney disease. Kidney international. 2024 Apr 1;105(4):S117-314, doi:
10.1016/j.kint.2023.10.018

[27] Kotsis F, Bächle H, Altenbuchinger M, Dönitz J, Njipouombe Nsangou YA, Meiselbach H, Kosch R,
Salloch S, Bratan T, Zacharias HU, Schultheiss UT. Expectation of clinical decision support systems: a

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models 305

survey study among nephrologist end-users. BMC Medical Informatics and Decision Making. 2023 Oct
26;23(1):239, doi: 10.1186/s12911-023-02317-x

[28] Bostock M. D3.js – Data-Driven Documents [Internet]. 2012 [cited 2025 Mar 7]. Available from:
https://d3js.org/

[29] Reese W. Nginx: the high-performance web server and reverse proxy. Linux Journal. 2008 Sep
1;2008(173):2.

[30] Zacharias HU, Altenbuchinger M, Schultheiss UT, Raffler J, Kotsis F, Ghasemi S, Ali I, Kollerits B,
Metzger M, Steinbrenner I, Sekula P. A predictive model for progression of CKD to kidney failure based
on routine laboratory tests. American Journal of Kidney Diseases. 2022 Feb 1;79(2):217-30, doi:
10.1053/j.ajkd.2021.05.018

[31] Halder RK, Uddin MN, Uddin MA, Aryal S, Saha S, Hossen R, Ahmed S, Rony MA, Akter MF. ML-
CKDP: Machine learning-based chronic kidney disease prediction with smart web application. Journal
of Pathology Informatics. 2024 Dec 1;15:100371, doi: 10.1016/j.jpi.2024.100371.

[32] Mondol C, Shamrat FJ, Hasan MR, Alam S, Ghosh P, Tasnim Z, Ahmed K, Bui FM, Ibrahim SM. Early
prediction of chronic kidney disease: A comprehensive performance analysis of deep learning models.
Algorithms. 2022 Aug 29;15(9):308, doi: 10.3390/a15090308.

[33] sklearn-onnx: Convert your scikit-learn model into ONNX [Internet]. 2025 [cited 2025 Mar 14].
Available from: https://onnx.ai/sklearn-onnx/

Y.A. Njipouombe Nsangou et al. / Use of Client-Side Machine Learning Models306

