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Unified Framework for an A Posteriori Error Analysis of
Non-Standard Finite Element Approximations of H(curl)-
Elliptic Problems

C. CARSTENSEN∗ and R. H. W. HOPPE†‡

22nd April 2009

Abstract — A unified framework for a residual-based a posteriori error analysis of standard confor-
ming finite element methods as well as non-standard techniques such as nonconforming and mixed
methods has been developed in [20]-[24]. This paper provides such a framework for an a posteriori
error control of nonconforming finite element discretizations of H(curl)-elliptic problems as they
arise from low-frequency electromagnetics. These nonconforming approximations include the inter-
ior penalty discontinuous Galerkin (IPDG) approach considered in [33,34], and mortar edge element
approximations studied in [10], [28]-[31], [41,48].

Keywords: a posteriori error analysis, unified framework, non-standard finite element methods,
H(curl)-elliptic problems

Dedicated to the Sixtieth Anniversary of Rolf Rannacher

1. INTRODUCTION

The a posteriori error control and the design of adaptive mesh-refining algorithms
is key to the actual scientific computing with any standard or nonstandard finite ele-
ment method. The unifying theory of a posteriori error analysis [20]-[24] illustrates
that all finite element methods allow for some a posteriori error control in energy
norms for the Laplace, the Stokes, or the Lamé equations. This paper concerns the
particular case of an H(curl)-elliptic problem

curl µ−1 curl u + σ u = f

in a bounded polyhedral domain Ω ⊂ R3 as it arises from a semi-discretization in
time of the eddy current equations [35]. The idea is to rewrite the second-order PDE
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as a system of two first-order PDEs in weak form

A (u,p) = `1 + `2 .

Here, the operator A is given by

(A (u,p))(v,q) := a(p,q)−b(u,q)+b(v,p)+ c(u,v)

in terms of bilinear forms a,b,c and the linear functionals `1, `2 associated with the
data of the problem (see Section 3 for details).

We prove in Proposition 3.1 that A is linear, bounded and bijective with boun-
ded inverse. Therefore, the natural norms of any error is equivalent to the respective
dual norms of the residuals.

Given some approximations ũh of u and p̃h of p, in the general analysis of
residuals

Res1(q) := `1(q)−a(p̃h,q)+b(ũh,q) ,

Res2(v) := `2(v)−b(v, p̃h)− c(ũh,v)

we rediscover the error estimators of [7,8,32,43] for the curl-conforming edge ele-
ments of Nédélec’s first family and those of [34] for an interior penalty disconti-
nuous Galerkin method. In comparison with [34], the general framework even re-
sults in sharper estimates. In particular, with regard to the existing estimates with
mesh-depending norms on the jumps, it is an innovative new feature of this paper
(and of [21]) that those terms are obtained as known upper bounds while the consis-
tency errors are actually smaller.

The remaining parts of this paper are organized as follows. Section 2 is devoted
to the Sobolev spaces H(curl;Ω) and H(div;Ω) and various trace spaces thereof.
The unified framework in Section 3 provides the details for the aforementioned
operator A and the associated errors and residuals. Sections 4 and 5 recast the
interior penalty discontinuous Galerkin method and the mortar edge element method
in the above format and provide a new proof of the estimates in [34] and [31].

2. H(CURL;Ω), H(DIV;Ω), AND THEIR TRACES

Let Ω⊂R3 be a simply connected polyhedral domain with boundary Γ = ∂Ω which
can be split into J open faces Γ1, . . . , ΓJ with Γ = ∪J

j=1Γ j. We denote by D(Ω) the
space of all infinitely often differentiable functions with compact support in Ω and
by D ′(Ω) its dual space referring to < ·, ·> as the dual pairing between D ′(Ω) and
D(Ω). We further adopt standard notation from Lebesgue and Sobolev space theory.
We refer to H(curl;Ω) as the linear space

H(curl;Ω) := {u ∈ L2(Ω) | curl u ∈ L2(Ω)},
which is a Hilbert space with respect to the inner product

(u,v)curl,Ω := (u,v)0,Ω + (curl u,curl v)0,Ω for all u,v ∈ H(curl;Ω)
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and associated norm ‖ · ‖curl,Ω. We further refer to H(curl0;Ω) as the subspace of
irrotational vector fields

H(curl0;Ω) = {u ∈H(curl;Ω) | curl u = 0} ,

which admits the characterization H(curl0;Ω) = grad H1(Ω). Its orthogonal com-
plement

H⊥(curl;Ω) = {u ∈H(curl;Ω) | (u,u0)0,Ω = 0 , u0 ∈H(curl0;Ω)}

can be interpreted as the subspace of weakly solenoidal vector fields. The Hilbert
space H(curl;Ω) admits the following Helmholtz decomposition

H(curl;Ω) = H(curl0;Ω)⊕H⊥(curl;Ω) . (2.1)

Likewise, the space H(div;Ω) is defined by

H(div;Ω) := { q ∈ L2(Ω) | div q ∈ L2(Ω) }

which is a Hilbert space with respect to the inner product

(u,v)div,Ω := (u,v)0,Ω + (div u,div v)0,Ω for all u,v ∈ H(div;Ω)

and associated norm ‖ · ‖div,Ω. For vector fields u ∈D(Ω̄)3 := {ϕ |Ω | ϕ ∈D(R3)},
the normal component trace reads

ηn(u)|Γ j := n j ·u|Γ j for j = 1, . . . ,J

with the exterior unit normal vector n j on Γ j. The normal component trace mapping
can be extended by continuity to a surjective, continuous linear mapping (cf. [26];
Thm. 2.2)

ηn : H(div;Ω) → H−1/2(Γ) .

We define H0(div;Ω) as the subspace of vector fields with vanishing normal com-
ponents on Γ

H0(div;Ω) := {u ∈H(div;Ω) | ηn(u) = 0} .

In order to study the traces of vector fields q ∈ H(curl;Ω), following [16,17,18],
we introduce the spaces

L2
t (Γ) := {u ∈ L2(Ω) | ηn(u) = 0},

H1/2
− (Γ) := {u ∈ L2

t (Γ) | u|Γ j ∈H1/2(Γ j) for all j = 1, . . . ,J}.
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For Γ j,Γk ⊂ Γ with j 6= k and E jk := Γ̄ j∩ Γ̄k ∈ Eh, the set of edges, we denote by t j
and tk the tangential unit vectors along Γ j and Γk and by t jk the unit vector parallel
to E jk such that Γ j is spanned by t j, t jk and Γk by tk, t jk. Let

Ik := { j ∈ {1, ...,N} | Γ̄ j ∩ Γ̄k = E jk ∈ Eh}

and define

H1/2
|| (Γ) := {u ∈H1/2

− (Γ)|(t jk ·u j)|E jk = (t jk ·uk)|E jk for k = 1, . . . ,N and j ∈Ik},
H1/2
⊥ (Γ) := {u ∈H1/2

− (Γ)|(t j ·u j)|E jk = (tk ·uk)E jk for k = 1, . . . ,N and j ∈Ik}.

We refer to H−1/2
|| (Γ) and H−1/2

⊥ (Γ) as the dual spaces of H1/2
|| (Γ) and H1/2

⊥ (Γ)
with L2

t (Γ) as the pivot space. For u ∈D(Ω̄)3 we further define the tangential trace
mapping

γ t|Γ j := u∧n j|Γ j for = 1, . . . ,n

and the tangential components trace

π t|Γ j := n j ∧ (u∧n j)|Γ j for = 1, . . . ,n.

Moreover, for a smooth function u ∈D(Ω̄) we define the tangential gradient opera-
tor ∇Γ = grad|Γ as the tangential components trace of the gradient operator ∇

∇Γu|Γ j := ∇Γ j u = π t, j(∇u) = n j ∧ (∇u∧n j) for = 1, . . . ,n,

which leads to a continuous linear mapping ∇Γ : H3/2(Γ)→H1/2
|| (Γ). The tangential

divergence operator

div|τ : H−1/2
|| (Γ) → H−3/2(Γ)

is defined, with the respective dual pairings 〈·, ·〉, as the adjoint operator of −∇Γ

〈div|Γu,v〉 = − 〈u,∇Γv〉 for all v ∈ H3/2(Γ) and u ∈H−1/2
|| (Γ).

Finally, for u ∈D(Ω) we define the tangential curl operator curl|τ as the tangential
trace of the gradient operator

curlτu|Γ j = curl|Γ j u = γ t, j(∇u) = ∇u∧n j for j = 1, . . . ,n. (2.2)

The vectorial tangential curl operator is a linear continuous mapping

curlτ : H3/2(Γ) → H1/2
⊥ (Γ) .
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The scalar tangential curl operator

curlτ : H−1/2
⊥ (Γ) → H−3/2(Γ)

is defined as the adjoint of the vectorial tangential curl operator via curl|τ , i.e.,

< curl|τu,v > = < u,curl|Γv > for all v ∈ H3/2(Γ) and u ∈H−1/2
⊥ (Γ) .

The range spaces of the tangential trace mapping γt and the tangential components
trace mapping πt on H(curl;Ω) can be characterized by means of the spaces

H−1/2(div|Γ,Γ) := { λ ∈H−1/2
|| (Γ) | div|Γλ ∈ H−1/2(Γ) } ,

H−1/2(curl|Γ,Γ) := { λ ∈H−1/2
⊥ (Γ) | curl|Γλ ∈ H−1/2(Γ) } ,

which are dual to each other with respect to the pivot space L2
t (Γ). We refer to

‖ · ‖−1/2,divΓ,Γ and ‖ · ‖−1/2,curlΓ,Γ as the respective norms and denote by 〈·, ·〉−1/2,Γ
the dual pairing (see, e.g., [18] for details).
It can be shown that the tangential trace mapping is a continuous linear mapping

γ t : H(curl;Ω) → H−1/2(div|Γ,Γ) ,

whereas the tangential components trace mapping is a continuous linear mapping

π t : H(curl;Ω) → H−1/2(curl|Γ,Γ) .

The previous results imply that the tangential divergence of the tangential trace
and the scalar tangential curl of the tangential components trace coincide: For u ∈
H(curl;Ω) it holds

div|Γ (u∧n) = curl|Γ (n∧ (u∧n)) = n · curl u .

We define H0(curl;Ω) as the subspace of H(curl;Ω) with vanishing tangential
traces on Γ

V := H0(curl;Ω) := {u ∈H(curl;Ω) | γ t(u) = 0} .

3. THE UNIFIED FRAMEWORK

As a model problem, for given f ∈ H(div;Ω) and µ > 0,σ > 0, we consider the
following elliptic boundary-value problem (BVP)

curl µ−1 curl u+σ u = f in Ω, (3.1a)
γ t(u) = 0 on Γ. (3.1b)
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This BVP can be interpreted as the stationary form of the 3D eddy currents equa-
tions with µ,σ being related to the magnetic permeability and electric conductivity,
respectively, and f standing for a current density. The weak formulation of (3.1a)-
(3.1b) amounts to the computation of u ∈H0(curl;Ω) such that

∫

Ω

(
µ−1 u · curl v+σ u ·v

)
dx =

∫

Ω

f ·v dx for all v ∈H0(curl;Ω). (3.2)

With p := µ−1 curl u ∈ L2(Ω), (3.1a) can be recast as the first-order system

µp− curl u = 0, (3.3a)
curl p+σ u = f. (3.3b)

The fundamental Hilbert spaces

V := H0(curl;Ω) and Q := L2(Ω)

allow for the definition of the bilinear forms

a(·, ·) : Q×Q→ R, b(·, ·) : V×Q→ R, and c(·, ·) : V×V→ R

as well as functionals `1 ∈Q∗ and `2 ∈ V∗ according to

a(p,q) :=
∫

Ω

µ p ·q dx for all p,q ∈Q, (3.4a)

b(u,q) :=
∫

Ω

curlh u ·q dx for all u ∈ V , q ∈Q, (3.4b)

c(u,v) :=
∫

Ω

σ u ·v dx for all u,v ∈ V, (3.4c)

`1(q) := 0 for all q ∈Q, (3.4d)

`2(v) :=
∫

Ω

f ·v dx for all v ∈ V. (3.4e)

Here and throughout the paper, curlh refers to the piecewise action of the curl-
operator used later for discrete vector-valued functions (note that curlh u = curl u
for u ∈ V) and `1 ∈Q∗ has been formally introduced for later purposes as well.
The weak formulation of (3.3a)-(3.3b) is to find (u,p) ∈ V×Q such that

a(p,q)−b(u,q) = `1(q) for all q ∈Q, (3.5a)
b(v,p)+ c(u,v) = `2(v) for all v ∈ V. (3.5b)

The operator-theoretic framework involves the operator A : (V×Q) → (V×Q)∗
defined, for all (u,p),(v,q) ∈ V×Q, by

(A (u,p))(v,q) := a(p,q)−b(u,q)+b(v,p)+ c(u,v) . (3.6)
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Then, the system (3.5a)-(3.5b) is recast in compact form as

A (u,p) = `1 + `2 . (3.7)

Proposition 3.1. For positive µ,σ , the operator A is a continuous, linear, and
bijective and, hence, A has a bounded inverse.

Proof. The mapping properties are straightforward and the proof here focuses
on the bijectivity which essentially follows from the inf-sup condition. In fact, given
any (u,p) ∈ V×Q one calculates

(A (u,p))(3u,2p−µ−1curlh u) = (A (3u,2p+ µ−1curlh u))(u,p)

= 2µ‖p‖2
L2(Ω) +3σ‖u‖2

L2(Ω) + µ−1‖curlhu‖2
L2(Ω).

This implies the inf-sup condition and the remaining degeneracy condition which
leads to bijectivity. ¤

As an immediate consequence, given any `1 ∈Q∗, `2 ∈V∗, there exists a unique
solution (u,p) ∈ V×Q of (3.7). Moreover, given any (ũh, p̃h) ∈ V×Q, it holds

‖(u− ũh,p− p̃h)‖V×Q ≈ ‖Res1‖Q∗ +‖Res2‖V∗ (3.8)

with residuals Res1 ∈Q∗ and Res2 ∈ V∗,

Res1(q) := `1(q)−a(p̃h,q)+b(ũh,q) for all q ∈Q , (3.9a)
Res2(v) := `2(v)−b(v, p̃h)− c(ũh,v) for all v ∈ V . (3.9b)

The first residual Res1(q) equals the function p̃h−µ−1 curlhũh times the test func-
tion q in the scalar product of L2(Ω). The corresponding dual norm is therefore the
L2(Ω) norm of p̃h−µ−1curlhũh, i.e.,

‖Res1‖Q∗ = ‖p̃h−µ−1curlhũh‖0,Ω.

The analysis of the second residual Res2 involves an integration by parts and some
dual norm with test functions in V. Therefore, the analysis of ‖Res2‖V∗ is more
involved and requires additional properties from the weak form and the discrete
solutions.

We assume Th to be a regular simplicial triangulation with Eh(D) and Fh(D)
denoting the sets of edges and faces of Th in D ⊂ Ω. The curl-conforming edge
elements of Nédélec’s first family with respect to T ∈Th read

Nd1(T ) := {v|∃a,b ∈ R3 ,∀x ∈ T, v(x) := a+b∧x} (3.10)

with degrees of freedom given by the zero-order moments of the tangential compo-
nents along the edges E ∈ Eh(T ) and

Nd1(Ω;Th) := { vh ∈ V |∀T ∈Th, vh|T ∈ Nd1(T )}.
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Under the condition
Nd1(Ω;Th)⊂ Ker Res2, (3.11)

reliability holds for the explicit residual-based error estimator which, for each T ∈
Th and with tangential and normal jumps across interior faces F ∈Fh(Ω), reads

ηT := hT‖f−σ ũh− curlhp̃h‖0,T +hT‖div(f−σ ũh)‖0,T , (3.12a)

ηF := h1/2
F ‖[π t(p̃h)]‖0,F +h1/2

F ‖nF · [σ ũh]‖0,F . (3.12b)

Proposition 3.2 [32,43]. Using the notation before and under the condition
(3.11) it holds

‖Res2‖2
V∗ . η2 := ∑

T∈Th

η2
T + ∑

F∈Fh(Ω)
η2

F . (3.13)

Proof. Given any v∈V, Theorem 1 of [43] shows that there exist vh ∈Nd1(Ω;Th),
ϕ ∈ H1

0 (Ω), and z ∈ H1
0 (Ω)3 with

v−vh = ∇ϕ + z

plus approximation and stability properties. The proof then follows that of Corol-
lary 2 of [43] for

Res2(v) = Res2(v−vh) = Res2(∇ϕ + z)

and employs integration by parts followed by trace inequalities and approximation
estimates of ∇ϕ and z. Since the proof in [43] is quite explicit, details are dropped
here. ¤

The converse estimate holds up to data oscillations [8,32].

4. INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS

Let Th be a geometrically conforming, shape-regular simplicial triangulation of Ω.
The discrete spaces Vh and Qh are chosen as elementwise polynomials of degree
6 p,

Vh := Πp(Th;R3) and Qh := Πp(Th;R3).

For this choice and some penalty parameter α > αmin > 0, set

J1(vh,qh) := ∑
F∈Fh(Ω)

∫

F
{π t(qh)} · [γ t(vh)]ds,

J2(uh,vh) := ∑
F∈Fh(Ω)

∫

F

({π t(curl uh)}−α [γ t(uh)]
) · ([γ t(vh)])ds.
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The first formulation of the Interior Penalty Discontinuous Galerkin Method
reads: Find (uh,ph) ∈ Vh×Qh such that

a(ph,qh)−b(uh,qh) = `1(qh)+J1(uh,qh) for all qh ∈Qh, (4.1a)
b(vh,ph)+ c(uh,vh) = `2(vh)+J2(uh,vh) for all vh ∈ Vh. (4.1b)

The second formulation in the primal variable reads: Find uh ∈Vh such that, for
all vh ∈ Vh, it holds

c(uh,vh)+ ∑
T∈Th

(µ−1 curl uh,curl vh)0,T (4.2)

= `1(µ−1 curl vh)+ `2(vh)+J1(uh,µ−1 curl vh)+J2(uh,vh).

Theorem 4.1. The formulations (4.1a)-(4.1b) and (4.2) are formally equivalent
in the following sense. If (uh,ph)∈Vh×Qh solves (4.1a)-(4.1b), then uh ∈Vh solves
(4.2). Conversely, if uh ∈ Vh solves (4.2), then there exists some ph ∈ Qh such that
(uh,ph) solves (4.1a)-(4.1b).

Proof. Suppose that (uh,ph)∈Vh×Qh solves (4.1a)-(4.1b). Since µ is constant
on each element T ∈Th, qh := µ−1 curl vh is a proper test function in (4.1a) for any
vh ∈ Vh. The resulting identity involves

a(ph,µ−1 curl vh) = b(vh,ph).

This and (4.1b) imply (4.2).
Conversely, let uh ∈ Vh solve (4.2). Then, the expression

b(uh,qh)+ `1(qh)+J1(uh,qh)

is a linear and bounded functional as a function of qh ∈Qh. Since a is a scalar pro-
duct on Qh, there exists a unique Riesz representation a(ph, ·) of this linear functio-
nal. Then, (uh,ph)∈Vh×Qh solves (4.1a). Again, qh := µ−1 curl vh is a proper test
function in (4.1a). The resulting expression combined with (4.2) allows the proof of
(4.1b). ¤

Given the solution (uh,ph) ∈Vh×Qh of (4.1a)-(4.1b), consider the consistency
error

ξ := min
ṽh∈V

(‖uh− ṽh‖2
L2(Ω) +‖curlhuh− curl ṽh‖2

L2(Ω))
1/2 (4.3)

and notice that the minimum is attained with a minimiser ũh ∈ V, i.e.,

ξ 2 = ‖uh− ũh‖2
L2(Ω) +‖curlhuh− curl ũh‖2

L2(Ω).

Since there exist computable upper bounds for ξ , it is not necessary to compute the
minimiser ũh ∈ V for error control. For instance, in Proposition 4.1 of [34], it is
shown that

ξ 2 . α ∑
F∈Fh(Ω)

h−1
F ‖[γ t(uh)]‖2

0,F =: ξ̄ 2.
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Since, the jumps are also error terms, e.g.,

h−1
F ‖[γ t(uh)]‖2

0,F = h−1
F ‖[γ t(u−uh)]‖2

0,F ,

they are seen as a contribution to the DG error norm and, at the same time, are
computable a posteriori and so arise in the upper bounds in [34] . However, in this
paper, we consider those jump contributions ξ̄ as one known upper bound of ξ
whose efficiency is less clear to us.

Given the aforementioned minimiser ũh ∈ V in the definition of ξ , we let

p̃h := µ−1curl ũh ∈Q.

Then, the unified approach leads to (3.8) with the residuals (3.9a)-(3.9b). Here,

Res1(q) = 0 for all q ∈Q

and, for all v ∈ V,

Res2(v) :=
∫

Ω
(f ·v−µ−1curlhũh · curl v−σ ũh ·v)dx.

Lemma 4.1. For any vh ∈ Nd1(Ω;Th), it holds

Res2(vh) = c(uh− ũh,vh) .

Proof. Since vh ∈ Nd1(Ω;Th) ⊂ Πp(Th;R3) is an admissible test function for
Res2, the jump contribution

J2(uh,vh) = 0

vanishes. A comparison with (4.2) shows, for vh ∈ Nd1(Ω;Th), that

Res2(vh) = c(uh− ũh,vh)+(µ−1curlh(uh− ũh),curlhvh)0,Ω−J1(uh,µ−1curlhvh).

Since curlhcurlhvh = 0 and [γ t(ũh)] = 0, Stokes theorem yields

(µ−1curlh(uh− ũh),curlhvh)0,Ω = ∑
T∈Th

∫

T

µ−1curlh(uh− ũh) · curlhvhdx =

= ∑
F∈Fh(Ω)

π t(µ−1curlhvh) · [γ t(uh)] dσ = J1(uh,µ−1curlhvh) .

This implies the assertion of the lemma. ¤

The unified theory leads to the following result which is stronger that the esti-
mate of [34]. In fact, it implies the estimate [34] if one employs ξ . ξ̄ .
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Proposition 4.1. With volume and face contributions for some new

η2 := ∑
T∈Th

η2
T + ∑

F∈Fh(Ω)
η2

F

defined, for T ∈Th and F ∈Fh(Ω), by

ηT := hT‖f−σuh− curlhµ−1curlhuh‖0,T +hT‖div(f−σuh)‖0,T ,

ηF := h1/2
F ‖[π t(µ−1curlh)uh]‖0,F +h1/2

F ‖nF · [σ uh]‖0,F

it holds that

‖(u− ũh,p− p̃h‖V×Q ≈ ‖Res1‖Q∗ +‖Res2‖V∗ . η +ξ .

Proof. Lemma 4.1 suggests to consider the new functional

Res3 := Res2− c(uh− ũh, ·) = `2−b(·,µ−1curl ũh)− c(uh, ·),
which is the form of the functional Res2 in Proposition 3.2 and indeed satisfies

Nd1(Ω;Th)⊂ Ker (Res3) .

This is (3.11) when Res2 there is replaced by Res3 from this proof. Consequently,
with the new estimators defined in the proposition,

‖Res3‖2
V∗ . η2 := ∑

T∈Th

η2
T + ∑

F∈Fh(Ω)
η2

F .

We thus obtain
‖Res2‖V∗ . η +‖uh− ũh‖0,Ω 6 η +ξ ,

which concludes the proof. ¤

5. MORTAR EDGE ELEMENT APPROXIMATIONS

We consider the so-called macrohybrid formulation of (3.1) in case f ∈ H0(div;Ω)
with respect to a non overlapping decomposition of the computational domain Ω
into N mutually disjoint subdomains

Ω =
N⋃

j=1

Ω j with Ω j ∩Ωk 6= /0 for all 1 6 j < k 6 N . (5.1)

We assume the decomposition to be geometrically conforming, i.e., two adjacent
subdomains either share a face, an edge, or a vertex. The skeleton S of the decom-
position

S =
M⋃

m=1

γm (5.2)
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consists of the interfaces γ1, . . . ,γM between all adjacent subdomains Ω j and Ωk.
We refer to γm( j) as the mortar associated with subdomain Ω j, while the other face,
which geometrically occupies the same place, is denoted by δm( j) and is called the
nonmortar. Based on (5.1) we introduce the product space

X := {u ∈ L2(Ω)|∀ j = 1, . . . ,N, u|Ω j ∈H(curl;Ω j) and γ t(u)|∂Ω j∩∂Ω = 0} (5.3)

equipped with the norm

‖u‖X :=
( N

∑
j=1
‖u‖curl,Ω2

j

)1/2
. (5.4)

A subdomainwise application of Stokes’ theorem shows that vanishing jumps

γ t(u)γm = 0 for all 1 6 m 6 M

of some u ∈ X imply
u ∈ V := H0(curl;Ω) . (5.5)

In general, we cannot expect (5.5) to hold true and need to enforce weak continuity
of the tangential traces across γm by means of Lagrange multipliers in the space

M(S) :=
M

∏
m=1

H−1/2(divτ ;γm) (5.6)

equipped with the norm

‖µ‖M(S) :=
( M

∑
m=1

‖µ|γm‖2
−1/2,divτ ,γm

)1/2
. (5.7)

We introduce the bilinear form A(·, ·) : X×X→ R as the sum of the bilinear forms
associated with the subdomain problems according to

A(u,v) :=
N

∑
j=1

aΩ j(u|Ω j ,v|Ω j) =
N

∑
j=1

∫

Ω j

(
µ−1curlu · curlv +σu ·v)

dx. (5.8)

Furthermore, we define the bilinear form B(·, ·) : X×M(S)→ R by means of

B(u,µ) := < µ, [γ t(u)] >−1/2,S (5.9)

with the abbreviation

< ·, ·>−1/2,S :=
M

∑
m=1

< ·, ·>−1/2,γm . (5.10)
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The macro-hybrid variational formulation of (3.1a),(3.1b) reads: Find (u,λ ) ∈ X×
M(S) such that

A(u,v) + B(u,λ ) = `(v) for all v ∈ X , (5.11)
B(u,µ) = 0 for all µ ∈M(S) .

The bilinear form A(·, ·) is elliptic on the kernel of the operator associated with the
bilinear form B(·, ·) and B(·, ·) satisfies the inf-sup condition

0 < β 6 inf
µ∈M(S)

sup
v∈X

B(v,µ)
‖v‖X ‖µ‖M(S)

.

The macro-hybrid variational formulation (5.11) has a unique solution (u,λ ).

The mortar edge element approximation of (3.2) mimics the macro-hybrid for-
mulation (5.11) in the discrete regime and is based on individual shape-regular sim-
plicial triangulations T1, . . . ,TN of the subdomains Ω1, . . . ,ΩN regardless the situa-
tion on the skeleton S of the decomposition. In particular, the interfaces inherit two
different non-matching triangulations. The discretization of

H0,∂Ωi∩∂Ω(curl;Ω j) := {u ∈H(curl;Ω j) | γ t(u)∂Ω j∩∂Ω = 0}
with curl-conforming edge elements of Nédélec’s first family [36] considers the
edge element spaces Nd1,Γ(Ω j;T j) of vector fields with vanishing tangential trace
on Γ∩ ∂Ω j. For a triangle T ∈ Tδm(k)

of diameter hT with the surface δm(k) ⊂ S,
let RT0(T ) be the lowest order Raviart-Thomas element (cf., e.g., [15]). We de-
note by RT0(δm(k);Tδm(k)

) the associated mixed finite element space, and we refer
to RT0,0(δm(k);Tδm(k)

) as the subspace of vector fields with vanishing normal com-
ponents on δm(k). Based on these definitions, the product space

Xh := { vh ∈ L2(Ω) |∀ j = 1, . . . ,N, vh|Ω j ∈ Nd1,Γ(Ω j;T j)} (5.12)

is equipped with the norm

‖vh‖Xh :=
(
‖vh‖2

X + ‖ [γ t(vh)]|S‖2
+1/2,h,S

)1/2
for all vh ∈ Xh ; (5.13)

where ‖ · ‖+1/2,h,S is given by

‖ [γ t(vh)]|S‖+1/2,h,S :=
( M

∑
m=1

‖[γ t(vh)]|γm‖+1/2,h,γm

)1/2
(5.14)

and ‖ · ‖+1/2,h,γm stands for the mesh-dependent norm

‖ [γ t(vh)]|γm‖+1/2,h,γm := h−1/2 ‖ [γ t(vh)]|γm‖0,γm . (5.15)
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Due to the occurrence of nonconforming edges on the interfaces between adjacent
subdomains, there is a lack of continuity across the interfaces: neither the tan-
gential traces γ t(vh) nor the tangential trace components π t(vh) can be expected
to be continuous. We note that γ t(vh) |δm( j)

∈ RT0(δm( j);Tδm( j)
) and π t(vh) |δm( j)

∈
Nd1(δm( j);Tδm( j)

). Therefore, continuity can be enforced either in terms of the tan-
gential traces or the tangential trace components. If we choose the tangential traces,
the multiplier space Mh(S) can be constructed according to

Mh(S) :=
M

∏
m=1

Mh(δm( j)) (5.16)

with Mh(δm( j)) chosen such that

RT0,0(δm( j);Tδm( j)
)⊂Mh(δm( j)) , (5.17)

dimMh(δm( j)) = dimRT0,0(δm( j);δm( j)) . (5.18)

We refer to [48] for the explicit construction. The multiplier space Mh(S) will be
equipped with the mesh-dependent norm

‖µh‖Mh(S) := (
M

∑
m=1

‖µh|δm( j)
‖−1/2,h,δm( j)

)1/2 , (5.19)

where
‖µh|δm( j)

‖−1/2,h,δm( j)
:= h1/2‖µh|δm( j)

‖0,δm( j)
. (5.20)

The mortar edge element approximation of (3.1a),(3.1b) then requires the solution
of the saddle point problem: Find (uh,λ h) ∈ Xh×Mh(S) such that

Ah(uh,vh) + Bh(vh,λ h) = `(vh) for vh ∈ Xh , (5.21)
Bh(uh,µh) = 0 for µh ∈Mh(S) ,

where the bilinear forms Ah(·, ·) : Xh×Xh → R and Bh(·, ·) : Xh×Mh(S)→ R are
given by the restriction of A(·, ·) and B(·, ·) to Xh×Xh and Xh×Mh(S), respectively.

Proposition 5.1. The mortar edge element approximation (5.21) admits a unique
solution (uh,λ h) ∈ Xh×Mh(S).

Proof. As has been shown in [48], the bilinear form Ah(·, ·) is elliptic on the
kernel of the operator associated with the bilinear form Bh(·, ·) and that Bh(·, ·)
satisfies the inf-sup condition

0 < β 6 inf
µ h∈Mh(S)

sup
vh∈Xh

Bh(vh,µh)
‖vh‖Xh ‖µh‖Mh(S)

.

This concludes the proof. ¤
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In the framework of Section 3, with the minimizer ũh ∈ V of the consistency
error ξ as given by (4.3) and p̃h := µ−1curl ũh we find

‖(u− ũh,p− p̃h)‖V×Q ≈ ‖Res2‖V∗ , (5.22)

where

Res2(v) =
N

∑
i=1

Res(i)
2 (v) , (5.23)

Res(i)
2 (v) := (f,v)0,Ωi − (µ−1 curl ũh,curl v)0,Ωi − (σ ũh,v)0,Ωi .

Denoting by Nd1,0(Ωi;Thi) the subspace of Nd1(Ωi;Thi) with vanishing tangential
trace on ∂Ωi, a comparison with (5.21) shows that, for vh ∈∏N

i=1 Nd1,0(Ωi;Thi), it
holds

Res2(vh) =
N

∑
i=1

Res(i)
2 (vh) , (5.24)

Res(i)
2 (vh) := (σ(uh− ũh,vh)0,Ωi +(µ−1curlh(uh− ũh),curl vh)0,Ωi .

Proposition 5.2. Let η consist of element residuals ηT and face residuals ηF
according to

η2 :=
N

∑
i=1

(
∑

T∈Ti

η2
T + ∑

F∈Fh(Ωi)
η2

F

)
, (5.25)

where ηT and ηF are given by

ηT := hT‖f− curlµ−1curluh−σuh‖0,T +hT‖div(σuh)‖0,T ,

ηF := h1/2
F ‖[π t(ph)]‖0,F +h1/2

F ‖nF · [σuh]‖0,F .

Then, it holds

‖(u− ũh,p− p̃h)‖V×Q . η + ξ . (5.26)

Proof. In view of (5.24) we define

Res3 :=
N

∑
i=1

Res(i)
3 ,

Res(i)
3 := Res(i)

2 −
(
(σ(uh− ũh, ·)0,Ωi +(µ−1(curlh(uh− ũh),curl ·)0,Ωi

)
.
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Since Nd1,0(Ωi;Thi)⊂ Ker Res(i)
3 , a subdomainwise application of Proposition 3.2

yields

‖Res3‖V∗ . η .

Hence, it follows that

‖Res2‖V∗ . η +‖uh− ũh‖0,Ω +‖curlh uh− curl ũh‖0,Ω = η +ξ .

¤

An upper bound ξ̄ for the consistency error ξ can be derived using the techniques
from [31]. In particular, we obtain

ξ̄ 2 :=
N

∑
j=1

∑
F∈Fh(δm( j))

(
η2

F + η̂2
F

)

with additional face residuals

η̂F := h1/2
F ‖λ h−{π t(ph)}‖0,F +h1/2

F ‖λh−{nF ·σuh}‖0,F +h−1/2
F ‖[γ t(uh)]‖0,F .

Here, λh ∈ H−1/2(γm) satisfies

〈λ h,curlτϕ〉−1/2,γm = −〈λh,ϕ〉−1/2,γm for all ϕ ∈ H1/2(γm) . (5.27)
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43. J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. (2008) 77, 633–
649.

44. B.F. Smith, P.E. Bjørstad, and W.D. Gropp, Domain Decomposition Methods. Cambridge Uni-
versity Press, Cambridge, 1996.

45. A. Toselli and A. Klawonn, A FETI domain decomposition method for edge element approxi-
mations in two dimensions with discontinuous coefficients. SIAM J. Numer. Anal. (2001) 39,
932–956.

46. R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques.
Wiley-Teubner, New York, Stuttgart, 1996.

47. B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.
Lecture Notes in Computational Science and Engineering, Vol. 17. Springer, Berlin-Heidelberg-
New York, 2001.

48. X. Xu and R.H.W. Hoppe, On the convergence of mortar edge element methods in R3. SIAM J.
Numer. Anal. (2005) 43, 1276–1294.


