
3RD WORKSHOP ON
MACHINE LEARNING IN
NETWORKING
PROCEEDINGS

CO-LOCATED WITH
THE 6TH INTERNATIONAL CONFERENCE ON
NETWORKED SYSTEMS (NETSYS 2025)
ILMENAU, GERMANY

SEPTEMBER 1,
2025

(MaLeNe)

3rd Workshop on Machine Learning in Networking (MaLeNe)

The Third International Workshop on Machine Learning in Networking (MaLeNe, https://www.uni-

augsburg.de/en/fakultaet/fai/informatik/prof/netcom/events/malene2025/) was a successful half

day event held at Technical University of Ilmenau on September 1, 2025, where it was co-located with

the Conference on Networked Systems (NetSys 2025). It follows the history of MaLeNe KuVS

workshops (Fachgespräch) and MaLeNe NetSys workshops as the 6th edition of the MaLeNe series,

and was organized by workshop co-chairs Michael Seufert (University of Augsburg, Germany), Andreas

Blenk (Siemens AG, Germany), and Björn Richerzhagen (Siemens AG, Germany). The workshop

accepted 7 full papers for presentation.

On the day of the workshop, the co-chairs welcomed 34 registered participants. The workshop started

with an industry keynote given by Philippe Buschmann (Siemens AG, Germany) who elaborated on

“Recent AI Trends in Industrial Network Environments”. He explored industrial AI and its application in

smart mobility, smart infrastructure, and manufacturing. He especially highlighted the challenges and

opportunities of AI adoption in these settings through the perspective of Siemens.

Afterwards, the first technical session started. Katharina Dietz (University of Würzburg, Germany)

evaluated the consensus of XAI -based network intrusion detection and how to improve consensus

with feature selection methods. Nasim Nezhadsistani (University of Zurich, Switzerland) presented an

asynchronous consensus-driven multi-agent approach to decentralized federated learning for

intrusion detection in 5G networks. Zineddine Bettouche (Deggendorf Institute of Technology,

Germany) discussed spatiotemporal machine learning techniques for cellular traffic forecasting with a

particular focus on Mamba deep learning architectures.

After the coffee break, Christian Maier (Salzburg Research, Austria) elaborated on predicting

performance metrics in edge-cloud networks using GNNs. Timothy Harrison (University of Hagen,

Germany) presented work on state cloning for high order Markov chains with the GraphLearner.

Yanakorn Ruamsuk (University of Hagen, Germany) talked about emotion-controlled communication

in agent networks. Finally, Alexander Niedermayer (Karlsruhe University of Applied Sciences, Germany)

presented an approach for client-agnostic continuous authentication via keystroke-induced traffic

patterns.

The workshop co-chairs closed the day with a short recap and thanked all speakers and participants

who engaged in the fruitful discussions. As the workshop has proven to foster active collaborations in

the research community, another edition will be considered in the future.

We would like to thank all the authors, reviewers, and attendants for their precious contributions

towards the successful organization of the workshop!

Michael Seufert, Andreas Blenk, Björn Richerzhagen

MaLeNe 2025 Workshop Co-Chairs

https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/netcom/events/malene2025/
https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/netcom/events/malene2025/

Program

Welcome and Workshop Opening

Keynote
Recent AI Trends in Industrial Network Environments, Philippe Buschmann (Siemens AG)

Session 1: Machine Learning for Intrusion Detection and Traffic Forecasting
1. I Choose You: Evaluating the Impact of Feature Selection on XAI Consensus for ML-NIDS

Katharina Dietz (University of Würzburg), Johannes Schleicher (University of Augsburg), Nikolas

Wehner (University of Würzburg), Mehrdad Hajizadeh (Technical University of Chemnitz), Pedro

Casas (AIT Austrian Institute of Technology), Stefan Geißler (University of Würzburg), Michael Seufert

(University of Augsburg) and Tobias Hossfeld (University of Würzburg)

2. Decentralized Federated Learning for Intrusion Detection in 5G Networks: An Asynchronous

Consensus driven Multi-Agent Approach

Nasim Nezhadsistani (University of Zurich), Francisco Enguix (Polytechnic University of Valencia),

Carlos Carrascosa (Polytechnic University of Valencia) and Burkhard Stiller (University of Zurich)

3. HiSTM: Hierarchical Spatiotemporal Mamba for Cellular Traffic Forecasting

Zineddine Bettouche, Khalid Ali, Andreas Fischer and Andreas Kassler (Deggendorf Institute of

Technology)

Session 2: Novel Machine Learning Approaches and Applications in Networking
4. Predicting Performance Metrics in Edge-Cloud Networks using Graph Neural Networks

Christian Maier, Nina Großegesse and Felix Strohmeier (Salzburg Research)

5. State Cloning with the GraphLearner

Timothy Harrison and Herwig Unger (University of Hagen)

6. Emotion-Controlled Communication in Agent Networks

Yanakorn Ruamsuk and Herwig Unger (University of Hagen)

7. Client-Agnostic Continuous Authentication via Keystroke-Induced Traffic Patterns

Alexander Niedermayer, David Monschein and Oliver Waldhorst (Karlsruhe University of Applied

Sciences)

Wrap-up and Closing Remarks

I Choose You: Evaluating the Impact of Feature
Selection on XAI Consensus for ML-NIDS

Katharina Dietz∗, Johannes Schleicher§, Nikolas Wehner∗, Mehrdad Hajizadeh†,
Pedro Casas‡, Stefan Geißler∗, Michael Seufert§, Tobias Hoßfeld∗

∗University of Würzburg, Germany, †Technical University of Chemnitz, Germany
‡AIT Austrian Institute of Technology, Vienna, Austria, §University of Augsburg, Germany

∗{katharina.dietz, nikolas.wehner, stefan.geissler, tobias.hossfeld}@uni-wuerzburg.de,
†mehrdad.hajizadeh@etit.tu-chemnitz.de, ‡pedro.casas@ait.ac.at, §{johannes.schleicher, michael.seufert}@uni-a.de

Abstract—Machine learning-based network intrusion detection
systems (ML-NIDS) are increasingly enhanced with explainable
AI (XAI) techniques to support transparency and trust in
automated security decisions. However, recent studies have shown
that different post-hoc XAI methods often yield inconsistent
explanations. These variations depended on the dataset and
underlying model, and were possibly caused by training the
ML models on correlated features. In this work, we investigate
the hypothesis that feature selection prior to model training can
influence the level of consensus among XAI methods. Through
a comprehensive evaluation across multiple datasets, we analyze
the impact of different feature selection strategies on explanation
agreement. While we found that feature selection can improve
XAI consistency in controlled synthetic settings, its effects on
real-world NIDS data are mixed: occasionally enhancing, but
sometimes reducing consensus, while offering only modest gains
over using all features. These insights highlight the importance
of thoughtful feature selection to improve interpretability and
consistency in XAI-driven network intrusion detection systems.

Index Terms—Machine Learning, Intrusion Detection, Ex-
plainable AI, Disagreement Problem, Feature Selection.

I. INTRODUCTION

The rapid evolution of data networks has revolutionized
modern life by enabling seamless communication, automa-
tion, and large-scale data exchange. However, this increased
connectivity has also expanded the attack surface, offering
more opportunities for cyber adversaries. According to the
European Union Agency for Cybersecurity (ENISA), there
has been a marked increase in the frequency, diversity, and
impact of cyber attacks [1]. Adversaries are now exploiting
automation and artificial intelligence (AI) to design more
evasive attack strategies [2], [3]. These developments have
exposed the limitations of traditional security mechanisms,
especially signature-based detection methods, which depend
on predefined patterns and struggle with evolving threats [4],
thereby prompting the emergence of machine learning (ML)-
based network intrusion detection systems (NIDS) as promis-
ing tools to identify malware and network attacks [3], [5]–[7].

Despite these advances, the integration of ML into computer
security still often encounters mistrust and skepticism [8], [9],
not least due to the lack of explainability [10]. The opaque
nature of many AI models limits their practical deployment,
as security analysts must be able to interpret and trust the
decisions made by automated systems [3], [7], [10]. In cyber-

Fig. 1: Feature selection for decorrelation.

security, errors or blind trust in automated decisions can have
severe consequences, potentially endangering infrastructure,
privacy, and even human safety [3], [11]. While explainable
AI (XAI) has emerged to demystify ML behavior, current XAI
methods often produce divergent explanations, which creates
confusion rather than clarity [10], [12], [13]. Thus, to ensure
actionable insights for security professionals, it is essential to
establish consensus among different explanation techniques.
Furthermore, the European Union’s General Data Protection
Regulation (GDPR) reinforces this through its “right to expla-
nation” for decisions made by algorithms [14].

A detailed analysis on the consensus of XAI methods for
ML-NIDS [13] revealed that the level of agreement between
different post-hoc XAI approaches, varied significantly de-
pending on the dataset and, in some cases, the underlying
model. Disagreements might stem from the selection of related
or correlated features, indicating that multiple, seemingly
divergent explanations could still be valid. Figure 1 exemplifies
this phenomenon, where two explainers, f1 and f2, select
different features, X and Y , to explain the same decision.
Although these features encode similar characteristics, their
disagreement results in a lack of consensus. When applying
feature selection (FS), both explainers may agree on the same
feature. This suggests that FS before model training might
play a crucial role w.r.t. consensus, and that we can potentially
improve the consensus by using the right FS method.

In this work, we conduct extensive experiments on both
synthetic and real-world NIDS datasets, using six different FS
strategies and two widely used post-hoc XAI methods. To the
best of our knowledge, this is the first systematic analysis
of the relationship between FS and XAI disagreement by
bringing the disagreement problem into the context of NIDS.
We highlight both the potential and limitations of improving

explanation consistency, and more broadly, the challenges of
relying on post-hoc XAI for trustworthy interpretations.

The remainder of this paper is structured as follows: Sec-
tion II provides information on intrusion detection, XAI, FS,
and related works. Section III outlines the used datasets and
ML workflow for analyzing consensus. Section IV presents
the obtained results, and finally, Section V summarizes the
key findings and contributions of this study.

II. BACKGROUND AND RELATED WORK

A. ML-NIDS

In network security, an intrusion implies that the confiden-
tiality, integrity, or availability of network resources (e. g.,
devices, data) is being compromised [15]. Thus, intrusion
detection systems (IDS) are employed to detect such attacks
and enable further steps for their containment. IDS can be
deployed at different vantage points, e. g., in global locations to
monitor the network traffic on a large scale (NIDS) or directly
on the host (HIDS) to locally investigate malicious programs,
files, etc. The former is often based on features extracted from
coarse-grained flows (i. e., aggregates based on the 5-tuple of
IPs, ports, and protocol such as NetFlow) or directly on the
packets for more fine-grained monitoring.

Research has shifted towards ML-NIDS, since recent trends
such as 5G/6G, Internet of Things (IoT), and Industry 4.0
have increased attack surfaces, necessitating more sophisti-
cated countermeasures. Though, ML-based solutions are often
perceived as more complex than traditional solutions (e. g.,
based on signatures or rules) [16] and deemed less trust-
worthy, particularly in sensitive areas such as cybersecurity.
So, techniques that provide model insights should be adopted,
especially regarding the GDPR [14] and European AI Act [17].

B. Explainable AI

The aforementioned challenges have led to the development
of XAI to provide insights into the decisions of ML models,
either by utilizing white-box models that are interpretable
by design or by utilizing post-hoc explainers, which explain
the output of black-box models [10]. XAI methods can be
classified in various ways, e. g., w.r.t. model compatibility or
algorithm type [18]. In this work, we focus on two of the
most prominent post-hoc XAI representatives: LIME (Local
Interpretable Model-agnostic Explanations) [19] and SHAP
(SHapley Additive exPlanations) [20]. Generally, both of them
are compatible with any ML model and work via perturbation,
i. e., masking or obfuscating input features of a data sample
to determine their influence on the model’s decision. That is,
LIME builds a linear (therefore interpretable) surrogate model
by learning the output of the original model by adding noise
to each input feature. SHAP, on the other hand, is based on
Shapley values [21] from game theory. This concept assigns
feature contributions by evaluating all possible feature subsets.

Even though XAI has gained increasing popularity, new
challenges arise, e. g., in form of the disagreement prob-
lem [12]. This problem stems from the fact that produced
explanations by the various explainers often differ, sometimes

even contradict. This has been observed for use cases like
network security [10], [13], [22]–[24], but also areas outside of
communication networks [12], [25], [26]. Feature interactions,
such as correlation or other relationships, are often cited to be
a contributing factor to this phenomenon [13], [25]–[30]. Nat-
urally, redundant features enable multiple valid explanations.

C. Feature Selection

Selecting only a relevant feature subset is a standard process
in many ML workflows, since fewer features not only improve
training and inference time, but also reduce overfitting [18].
They also improve interpretability, since less features have to
be interpreted. Here, reducing the number of features may help
improve XAI consensus twofold. One, the explainers have less
choices to choose from in general, and two, depending on the
FS mechanism, feature interactions may be reduced.

Similar to XAI, FS aims to identify the top features. This
is a preprocessing step (i. e., before model training), while
post-hoc XAI is applied after model training. Stańczyk [31]
(as well as Khani et al. [18]) groups FS into three groups:
filters, wrappers, and embedded techniques, many of which are
implemented in scikit-learn [32]. One of the most well-known
selection techniques is impurity-based FS that leverages the
structure of tree-based models. This is an embedded technique,
since it makes use of the internals of a pretrained model. It
quantifies how much a feature reduces the “impurity” at each
split across all trees w.r.t. the mix of class labels.

Instead of making use of model internals, wrappers utilize
a classifier to evaluate different feature (sub)sets and their
“usefulness in classification” [31, p. 32]. That is, they observe
how the model’s performance (e. g., accuracy) changes under
different conditions. For example, permutation importance
shuffles the value of a feature. Alternatively, recursive fea-
ture elimination starts with a full feature set and iteratively
prunes the feature with the least impact. Similarly, backward
sequential FS works accordingly, while the forward variant
starts from an empty feature set.

Lastly, filters work separately from any ML model and
observe the relationship between a feature and the class label,
e. g., via ANOVA F-values [18], as implemented by default by
sklearn’s SelectKBest(). Another approach clusters correlated
features together by treating correlation as a similarity mea-
sure, before simply choosing one feature from each group [33].

D. Related Work

Many works on XAI-driven NIDS have already shifted
their focus to a quantitative comparison of different explainers
instead of merely using XAI to explain a decision, e. g., regard-
ing an explanation’s robustness or faithfulness to the ground
truth [22], [34]–[38], and/or conduct qualitative studies with
security admins to gain insights from practitioners [24]. Some
works leverage XAI itself for FS (e. g., [18], [39]), whereas
we view this as two separate steps in the ML pipeline. The
disagreement problem is sometimes a partial factor in these
works, but rarely a focal point. In contrast, our work focuses
on investigating the XAI consensus in a more detailed manner.

Our goal goes beyond stating the existence of the disagreement
problem, which we explored ourselves previously [13].

Besides works on XAI-NIDS, other research areas have put
a more in-depth emphasis on the disagreement problem by
investigating the impact of varying model parameters or steps
in the ML workflow. One approach is limiting the scope of
the explanation to regional areas [40], [41], i. e., adjusting
the background datasets of explainers to be more locally
relevant to the instance to explain. Instead of restricting the
reference data, other works limit the actual input features
via dimensionality reduction to reduce multicollinearity [13],
[26], [42]. Lastly, other works analyze the reasons of the
disagreement problem by controlling dataset parameters (e. g.,
features, samples, labels, noise, redundancy) [27], [28], while
others explore the impact of different preprocessing techniques
(e. g., scaling, encoding) [43], or influence of model param-
eters (e. g., training duration and loss functions) [30], [44].
Often, these works also make use of synthetic data, which is
easier to configure. While there exist some works that make
use of FS, as well as investigating feature interactions, our
work specifically zeroes in on the differences between various
selection methods. To the best of our knowledge, we are also
the first to bring the disagreement problem into the NIDS
domain in-depth (or monitoring in general).

III. METHODOLOGY

A. NIDS Datasets

In this work, we use three NIDS datasets of varying com-
plexity and feature granularity: CICIDS2017 [45], CIDDS-
001 [46], and Edge-IIoTset [47]. CICIDS2017, one of the
most popular NIDS datasets in state-of-the-art literature [7],
provides 77 flow-based features1, e. g., statistical moments
of packet sizes and IATs. We use the Wednesday subset
with almost 700k samples and DoS/DDoS attacks. CIDDS-
001 offers 14 features based on NetFlow, which is one of
the most commonly used protocols in practice for traffic
monitoring. We use the first week of the dataset (over 8M
samples), which includes Pingscan, Portscan, Bruteforce, and
DoS attacks. Note that we additionally derived flow IATs
and number of parallel flows to enrich the feature set. Edge-
IIoTset covers diverse IoT/IIoT protocols (e. g., TCP, MQTT,
MODBUS) with 35 features for over 2M samples, including
DDoS, Portscan, and other attacks. While we generally follow
the authors’ proposed preprocessing steps, we remove further
features with limited generalizability (e. g., IPs, checksums,
ACK numbers). Our code is available for reproducibility2.

B. XAI Workflow

To ensure temporally coherent splits, we use sklearn’s Strat-
ifiedGroupKFold(), where groups are defined as 30s time inter-
vals w.r.t. each dataset’s timestamp column3, instead of simply
shuffling the entire dataset randomly before splitting. We use
three folds, ensuring that each sample appears during testing.

1Before encoding, filtering etc. (for all datasets).
2https://github.com/lsinfo3/malene2025-xai-nids-feature-selection
3Edge-IIoTset has >100k samples with invalid timestamps, which we drop.

Categorical features are one-hot-encoded, zero-variance fea-
tures are filtered out, and features are minmax-scaled. The
top ten features are selected via the six selection methods
described in Section II-C: impurity-based, permutation-based,
recursive, (forward) sequential, and correlation-based FS, as
well as SelectKBest(). Similar subsets have been found useful
in related work on NIDS [18], [39]. For FS methods that
require a classifier, we utilize a lightweight Random Forest
(RF; 10 trees, max. depth 10). After encoding and filtering,
we balance the training data by selecting 250k samples of
each class (benign, malign). For the actual classification task,
we also use an RF (50 trees, max. depth 20) and a Multi-
Layer-Perceptron with two layers (MLP; 64 neurons per
layer, followed by ReLU). Both are commonly used in recent
XAI [12], [30] and NIDS literature [7], giving insights for
shallow ML and Deep Learning (DL).

For our explainers, we utilize the aforementioned LIME and
SHAP. For the latter, we use the more efficient, model-specific
implementations (TreeSHAP, DeepSHAP). To calculate the
consensus between pairs of explanations (i. e., SHAP vs.
LIME-based explanations), we use metrics similar to Krishna
et al. [12]. We focus on two types: unordered (UC) and ordered
consensus (OC) of the top 5 features. For the UC, we simply
calculate the intersection of features. For the OC, we take the
actual order of importance into account. In detail, we compute
how many of the top features match in order until the first
mismatch. Consequently, we are not interested if, e. g., only
the fifth feature matches if previous features do not. We only
count features as matching if their sign also matches.

C. Synthetic Data

We also utilize synthetic data to analyze the effect of FS in
a configurable manner, for which we make use of sklearn’s
make classification(), adapted from a benchmark data gen-
erator for a FS competition [48]. The algorithm has four
feature types: informative, redundant, repeated, and useless.
The informative features are the ones actually relevant to the
prediction target, and the informativeness is split among all of
them. The redundant features are linear combinations of other
features, while repeated features are simple duplications. Last,
useless features are just noise. For all feature types, we add
new features (up to 50 extra, in increments of 10), select the
top 10, and calculate the XAI consensus. Each experiment
starts with five informative features. For each combo of type
and number, we generate 250 balanced synthetic datasets of
1k samples, which we split in a 80:20 ratio.

IV. EVALUATION

A. Preliminary Experiments on Synthetic Data

Before diving into the experiments of the NIDS datasets, we
first want to analyze the impact of FS in a controllable fashion.
Figure 2 illustrates the results of various experiments described
previously. Each row of subfigures illustrates the four different
feature types, while the columns of subfigures represent the
two consensus metrics for all 200 test set samples, as well
as the accuracy. Since the synthesized datasets are balanced,

https://github.com/lsinfo3/malene2025-xai-nids-feature-selection

10 20 30 40 50
Extra Informative Features

0.50

0.60

0.70

0.80
Si

gn
ed

 U
C

10 20 30 40 50
Extra Informative Features

0.00

0.10

0.20

0.30

Si
gn

ed
 O

C

10 20 30 40 50
Extra Informative Features

0.75

0.80

0.85

0.90

0.95

AC
C

10 20 30 40 50
Extra Repeated Features

0.50

0.60

0.70

0.80

Si
gn

ed
 U

C

10 20 30 40 50
Extra Repeated Features

0.00

0.10

0.20

0.30

Si
gn

ed
 O

C

10 20 30 40 50
Extra Repeated Features

0.75

0.80

0.85

0.90

0.95

AC
C

10 20 30 40 50
Extra Redundant Features

0.50

0.60

0.70

0.80

Si
gn

ed
 U

C

10 20 30 40 50
Extra Redundant Features

0.00

0.10

0.20

0.30
Si

gn
ed

 O
C

None
Random
Impurity
Permutation

Recursive
Sequential
SelectKBest
Correlation

10 20 30 40 50
Extra Redundant Features

0.75

0.80

0.85

0.90

0.95

AC
C

10 20 30 40 50
Extra Useless Features

0.50

0.60

0.70

0.80

Si
gn

ed
 U

C

10 20 30 40 50
Extra Useless Features

0.00

0.10

0.20

0.30

Si
gn

ed
 O

C

10 20 30 40 50
Extra Useless Features

0.75

0.80

0.85

0.90

0.95

AC
C

Fig. 2: Comparison of FS methods across feature types (rows) and (un)ordered consensus+accuracy (columns; UC/OC, ACC).

using accuracy is adequate here. The x-axis represents the
extra added features (in addition to the five starting features),
and the y-axis the respective metric. The different linestyles
depict the different FS methods as well as results with all
features (“None”) and a random FS. Errorbars depict the 95%
confidence intervals of the 250 runs. For the sake of brevity,
results are shown for the RF as underlying model.

For the informative features in the first row, the UC stays
almost constant for all FS methods, but drops significantly
when no FS is applied. We can also observe a slight edge
of the correlation-based and the sequential approach over the
others. Since informative features are generated in a way so
they do indeed contain covariance, taking this into account
may help slightly. For the OC, we see a similar trend, though
the difference between no FS and the rest is less severe and
the consensus is generally lower. Interestingly, the random
baseline comes out on top here. For the actual accuracy,
however, we see that only keeping all features maintains model
performance. This is expected, as we increase the number of
informative features, which are all relevant to the classification,
retaining only the top 10 is not sufficient anymore. We also
see that while the correlation-based approach has a slight
edge for the consensus, it slightly underperforms. We also
see that, despite being best for the OC, the random baseline
drastically underperforms, too. Our hypothesis is, that the

OC may be increased since the random approach might have
chosen one feature that may be most import, while the rest is
not as descriptive (as reflected by the accuracy), making the
explainers agree on that feature. In other words, the FS is so
suboptimal, that it makes explainers agree on the top feature.

For the repeated features in the second row, we see more
distinct trends. For the UC, the correlation-based selection
outshines the rest, since it is able to determine that in total
only five features are relevant, since it can only establish five
clusters, because all features are perfect duplicates. This is
followed by the three wrapper-based methods. Interestingly,
even the permutation-based approach is able to keep the UC
constant. Although permutation is prone to correlation, this
effect is negated here since all initial features have the same
chance to be duplicated. In other words, while correlated fea-
tures dampen each other’s importance, this effect happens for
all features uniformly. This is also the reason why the random
baseline performs decent, as on average, it will choose each
original feature at least once. The impurity-based approach
and SelectKBest(), however, are both biased towards the top
feature. Especially the latter even drops its consensus below
the baseline. In the worst-case scenario, the selected features
only contain a single feature and its replicates, thus making
it hard for SHAP and LIME to determine which is most
important. For the OC, we generally see a similar trend to

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(a) CICIDS

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(b) CIDDS

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(c) Edge-IIoT
Fig. 3: Signed UC (top) and Signed OC (bottom) on NIDS data with MLP as underlying model.

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(a) CICIDS

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(b) CIDDS

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 U

C

Benign
Malign

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

None
Random

Impurity

Permutation
Recursiv

e

Sequential

SelectKBest

Correlation
0.0
0.2
0.4
0.6
0.8
1.0

Si
gn

ed
 O

C

0.75
0.80
0.85
0.90
0.95
1.00

F1
 M

ac
ro

 (
)

(c) Edge-IIoT
Fig. 4: Signed UC (top) and Signed OC (bottom) on NIDS data with RF as underlying model.

the UC. Though, since it is generally lower, the baseline and
SelectKBest() cannot drop as steep numerically. The accuracy
also shows the suboptimal FS of SelectKBest().

The redundant features in the third row generally show a
more “noisy” trend compared to the previous feature types.
That is, while this feature type still contains redundancies, they
are more obfuscated. In other words, choosing a different fea-
ture set other than the initial features still holds value. For both
the UC and OC we still see the correlation-based approach
having an edge over the others, though far less significant than
for the repeated features. Additionally, SelectKBest() and the
impurity-based approach also do not diverge as strongly. For
the accuracy, all methods are able to keep up the performance,
since there is no issue of choosing (perfect) duplications.

Lastly, the useless features in the fourth row show a con-
trasting trend to the previous features. For the UC, we now
see that the correlation-based approach performs significantly
worse then the others, as well as illustrating why random FS
is a bad idea. Even no FS is better here. The same can be
observed for the OC, and is also reflected in the accuracy
dropping. Since the correlation-based approach clusters the
features first, it may choose a handful of noise. Similarly,
the random FS will choose noise. Since this noise actually
has no meaning for the explanations, it makes it increasingly
hard for the explainers to decide which of these noisy features
are actually more relevant, similar to the perfectly correlated
features. Contrary to the previous feature types, the baseline

without FS performs worse since it also uses the noise to train.
Discussion: The synthetic experiments validate our core as-

sumptions: FS can improve consensus, particularly when fea-
ture interactions such as correlation or redundancy are present.
Selection methods that respect such interactions outperform
simpler approaches like SelectKBest(). However, when the
added features are purely noisy, correlation-based selection
may actually reduce consensus and accuracy by mistakenly
prioritizing irrelevant features. Overall, sequential selection
proved to be a balanced choice across all feature types.

B. Final Experiments on NIDS Datasets

We now shift our focus to more realistic NIDS data, which
may not contain perfectly (un)correlated features, but more
complex feature relationships. For this, Figures 3 and 4 show
the consensus for all three previously described NIDS datasets
as a barplot, for MLP and RF, respectively. The top row depicts
the UC and the bottom row shows the OC. The x-axis depicts
the selection method, while the left y-axis holds the consensus.
The consensus is the average of 100 random samples from
the test set for all three splits, i. e., each bar is made up
by 3 · 100 values. We divide the consensus analysis between
our two classes, as the datasets are imbalanced. The errorbars
contain the 95% confidence intervals. The right y-axis marks
the average macro F1 to take into account imbalances via stars.
We also utilize the macro F1 for FS for performance scoring
here where applicable, as the default is accuracy.

Starting with the MLP as underlying model in Figure 3
and the UC (top row), we see that no selection method really
stands out, whether it is w.r.t. consensus or performance.
The only method that consistently has similar performance
to the baseline with no filtering is the recursive selection.
For CICIDS, the majority of the methods are able to at
least slightly boost the consensus, though only marginally in
most cases. Features are reduced from around 70 features to
only 10, but the consensus increase is nowhere near drastic.
This also comes at a performance loss in some cases. For
example, the impurity-based approach increases the consensus
the most, but performance drops by roughly 5%. Interestingly,
even a random FS performs better accuracy-wise. For CIDDS,
results are similar concerning the UC boost. For Edge-IIoT,
the consensus is already quite high, so any further filtering
does not actually have a great impact. Interestingly, Select-
KBest() and the impurity-based approach are the only ones
that increase the UC here, which may seem counterintuitive
compared to the synthetic data. For the OC (bottom row), we
see similar observations. While the FS is able to establish some
consensus in some cases, the improvement is not as drastic as
desired. Again, for Edge-IIoT, consensus is higher and filtering
can actually have a significant negative effect.

The results for the RF as underlying model are depicted
in Figure 4. How the selection methods perform w.r.t. F1
follows similar trends as for the MLP, though the score
is consistently higher. While the consensus is in a similar
range compared to before, there are some nuanced differences.
Which method improves the consensus most for the datasets is
partially inconsistent with the results from the MLP, i. e., not
following a noticeable pattern. For the UC, filtering features
may have a positive effect for CICIDS and CIDDS, while for
Edge-IIoT the baseline already reaches near perfect consensus,
despite using much more features. For the OC, the consensus
of CICIDS is only slightly improved by filtering and for
CIDDS filtering has no huge impact either. For Edge-IIoT,
SelectKBest() and impurity-based FS are the only methods that
increases the consensus meaningfully here.

Discussion: Results on real-world NIDS datasets show that
the impact of FS on consensus is less predictable. While
consensus can improve over using all features, the gains are
generally modest. CICIDS generally responded the best to FS.
Some of its features are various statistical moments of packet
sizes, IATs etc., which are naturally more correlated. CIDDS
is also contains flow-based data, but already has very few
features, thus FS will not have as much of an impact. For
Edge-IIoT, SelectKBest() and impurity-based FS performed
best, which is in stark contrast to the previous analyses. We
hypothesize this is due to a few highly indicative (and likely
related) features. More sophisticated methods may discard
these in favor of spreading importance across weaker (thus
noisier) features, reducing consensus. This is supported by the
fact that random FS dropped performance the most drastically
here for both MLP and RF. In other words, the other datasets
contain more related features in terms of informativeness, i. e.,
random FS is partially feasible. Overall, the impact of FS is

TABLE I: MSE ± 95% CI for the toy example, 2.5k trials.
X1 X2 Both

LR 0.53± 0.01 69.8± 0.61 0.00± 0.00
RF 0.60± 0.01 0.62± 0.01 0.56± 0.01

harder to assign for NIDS data, since it is composed of a more
mixed set of features w.r.t. noise and correlation, so effects
supposedly counteract each other.

To illustrate the impact of removing correlated features on
the actual model performance, we trained a linear regression
(LR) and RF on two highly correlated inputs (one linear
and one exponential feature, X1 and X2), and defined the
regression target as their sum. Using both features yielded
lower errors than only one (see Table I). Thus, unless a feature
is an identical copy of another, correlated features might still
carry information. These findings emphasize that reducing
features to minimize potential correlations does not always
help, both in terms of consensus as well as performance, and
is highly dependent on dataset and model.

To summarize the findings of this work in a more practical
context, post-hoc explanations and their resulting consensus
are highly sensitive to slight changes in the ML pipeline. Fil-
tering can help by removing totally irrelevant noise or avoiding
actual duplicates (e. g., analogous to radius vs. diameter of
a circle), but it is not a cure for all problems by simple
application and still requires critical thinking. It also raises
the need for interpretable consensus metrics, which can be
misleading when inflated by highly indicative, but correlated
features (as potentially seen with the Edge-IIoT dataset).

V. CONCLUSION

In this work, we analyzed how feature selection influences
the disagreement problem between post-hoc XAI methods in
ML-NIDS. On synthetic datasets, where we could control
redundancy and noise, feature selection behaved as expected
by improving explanation consistency in a predictable manner.
However, results on real-world NIDS datasets were less consis-
tent. While in some cases feature selection modestly improved
agreement between explainers, it sometimes actually reduced
consensus, particularly when selection methods emphasized
noisy features. Overall, the improvement over the full-feature
baseline was often smaller than maybe desired. If aligning ex-
plainers remains unreliable, it hinders the practical adoption of
these methods, and they risk becoming “rebranded” standard
feature importance metrics. Our results suggest a need for
stronger emphasis on inherently interpretable models, rather
than reliance on post-hoc techniques that struggle to produce
consistent and trustworthy explanations.

ACKNOWLEDGMENT

This work has been partly funded by the Bavarian Ministry of
Economics, Regional Development and Energy (StMWI) as part of
the project VIPNANO (DIK-2307-0006), by Deutsche Forschungsge-
meinschaft (DFG) under grant SE 3163/3-1, project nr.: 500105691
(UserNet), and by the German Federal Ministry of Research, Tech-
nology and Space (BMFTR) under grant 18KIS2282 (SUSTAINET-
Advance). The authors alone are responsible for the content.

REFERENCES

[1] C. Ardagna, S. Corbiaux, K. Van Impe, and R. Ostadal, “ENISA threat
landscape 2023,” European Union Agency for Cybersecurity, 2023.

[2] F. N. Motlagh et al., “Large language models in cybersecurity: State-
of-the-art,” arXiv:2402.00891, 2024.

[3] Z. Zhang et al., “Explainable artificial intelligence applications in cyber
security: State-of-the-art in research,” IEEE Access, vol. 10, 2022.

[4] L. Caviglione et al., “Tight arms race: Overview of current malware
threats and trends in their detection,” IEEE Access, vol. 9, 2020.

[5] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Comput. Secur., vol. 81, 2019.

[6] M. A. Talib et al., “APT beaconing detection: A systematic review,”
Comput. Secur., vol. 122, 2022.

[7] K. Dietz et al., “The missing link in network intrusion detection: Taking
AI/ML research efforts to users,” IEEE Access, vol. 12, 2024.

[8] G. Apruzzese, P. Laskov, and J. Schneider, “SoK: Pragmatic assessment
of machine learning for network intrusion detection,” in IEEE Eur. Symp.
Secur. Priv. (EuroS&P), 2023.

[9] S. Oesch et al., “An assessment of the usability of machine learning
based tools for the security operations center,” in Proc. Int. Conf. Internet
Things (iThings), 2020.

[10] A. Nadeem et al., “SoK: Explainable machine learning for computer
security applications,” in IEEE Eur. Symp. Secur. Priv. (EuroS&P), 2023.

[11] G. Jaswal, V. Kanhangad, and R. Ramachandra, AI and Deep Learning
in Biometric Security: Trends, Potential, and Challenges. CRC, 2021.

[12] S. Krishna et al., “The disagreement problem in explainable ma-
chine learning: A practitioner’s perspective,” Trans. Mach. Learn. Res.
(TMLR), 2024.

[13] K. Dietz et al., “Agree to disagree: Exploring consensus of XAI methods
for ML-based NIDS,” in Workshop Netw. Secur. Oper. (NeSecOr), 2024.

[14] B. Goodman and S. Flaxman, “European union regulations on algorith-
mic decision-making and a ‘right to explanation’,” AI Mag., vol. 38,
no. 3, 2017.

[15] T. Grance et al., “Guide to information technology security services,”
NIST Special Publication 800-35, 2003.

[16] J. Mink et al., “Everybody’s got ML, tell me what else you have:
Practitioners’ perception of ML-based security tools and explanations,”
in IEEE Symp. Secur. Priv. (S&P), 2023.

[17] https://eur-lex.europa.eu/eli/reg/2024/1689, accessed: 2025-05-03.
[18] P. Khani, E. Moeinaddini, N. D. Abnavi, and A. Shahraki, “Explainable

artificial intelligence for feature selection in network traffic classifica-
tion: A comparative study,” Trans. Emerg. Telecommun. Technol. (ETT),
vol. 35, no. 4, 2024.

[19] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’:
Explaining the predictions of any classifier,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD), 2016.

[20] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NeurIPS),
2017.

[21] L. Shapley, “A value for n-person games,” Contrib. Theory Games,
vol. 2, 1953.

[22] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, “Evaluating
explanation methods for deep learning in security,” in IEEE Eur. Symp.
Secur. Priv. (EuroS&P), 2020.

[23] L. Rui and O. Gadyatskaya, “Position: The explainability paradox-
challenges for XAI in malware detection and analysis,” in IEEE Eur.
Symp. Secur. Priv. Workshops (EuroS&PW), 2024.

[24] D. Bhusal et al., “SoK: Modeling explainability in security analytics for
interpretability, trustworthiness, and usability,” in Proc. 18th Int. Conf.
Availab. Reliab. Secur. (ARES), 2023.

[25] M. Flora, C. Potvin, A. McGovern, and S. Handler, “Comparing
explanation methods for traditional machine learning models part 1:
an overview of current methods and quantifying their disagreement,”
arXiv:2211.08943, 2022.

[26] ——, “Comparing explanation methods for traditional machine learn-
ing models part 2: Quantifying model explainability faithfulness and
improvements with dimensionality reduction,” arXiv:2211.10378, 2022.

[27] Z. Carmichael and W. Scheirer, “How well do feature-additive explainers
explain feature-additive predictors?” in Workshop XAI Action: Past
Present Future Appl. (NeurIPS XAIA), 2023.

[28] A. F. Markus et al., “Understanding the size of the feature importance
disagreement problem in real-world data,” in ICML 3rd Workshop
Interpret. Mach. Learn. Healthc. (IMLH), 2023.

[29] F. Fumagalli et al., “Unifying feature-based explanations with functional
ANOVA and cooperative game theory,” in Proc. 28th Int. Conf. Artif.
Intell. Stat. (AISTATS), 2025.

[30] A. Schwarzschild et al., “Reckoning with the disagreement problem:
Explanation consensus as a training objective,” in Proc. 2023 AAAI/ACM
Conf. AI Ethics Soc. (AIES), 2023.

[31] U. Stańczyk, “Feature evaluation by filter, wrapper, and embedded
approaches,” in Feature Sel. Data Pattern Recognit., 2014.

[32] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res. (JMLR), vol. 12, 2011.

[33] https://scikit-learn.org/stable/auto examples/inspection/plot
permutation importance multicollinear.html, accessed: 2025-05-29.

[34] O. Arreche, T. R. Guntur, J. W. Roberts, and M. Abdallah, “E-XAI:
Evaluating black-box explainable AI frameworks for network intrusion
detection,” IEEE Access, vol. 12, 2024.

[35] A. N. Gummadi, O. Arreche, and M. Abdallah, “A systematic evaluation
of white-box explainable AI methods for anomaly detection in IoT
systems,” Internet of Things, vol. 30, 2025.

[36] J. Tritscher et al., “Evaluation of post-hoc XAI approaches through
synthetic tabular data,” in Found. Intell. Syst.: 25th Int. Symp. (ISMIS),
2020.

[37] J. Tritscher, M. Wolf, A. Hotho, and D. Schlör, “Evaluating feature
relevance XAI in network intrusion detection,” in World Conf. Explain.
Artif. Intell. (xAI), 2023.

[38] O. Lukás and S. Garcı́a, “Bridging the explanation gap in AI security:
A task-driven approach to XAI methods evaluation.” in Proc. 16th Int.
Conf. Agents Artif. Intell. (ICAART), 2024.

[39] O. Arreche, T. Guntur, and M. Abdallah, “XAI-based feature selection
for improved network intrusion detection systems,” arXiv:2410.10050,
2024.

[40] G. Laberge, Y. B. Pequignot, M. Marchand, and F. Khomh, “Tackling the
XAI disagreement problem with regional explanations,” in Proc. 27th
Int. Conf. Artif. Intell. Stat. (AISTATS), 2024.

[41] S. Aswani and S. D. Shetty, “Explainable news summarization–analysis
and mitigation of disagreement problem,” arXiv:2410.18560, 2024.

[42] P. Alves et al., “Comparing LIME and SHAP global explanations for
human activity recognition,” in Intell. Syst.: 34th Braz. Conf. (BRACIS),
2024.

[43] N. Koenen and M. N. Wright, “Toward understanding the disagreement
problem in neural network feature attribution,” in World Conf. Explain.
Artif. Intell. (xAI), 2024.

[44] P. Silva, C. T. Silva, and L. G. Nonato, “Exploring the relationship
between feature attribution methods and model performance,” in Proc.
2024 AAAI Conf. Artif. Intell., 2024.

[45] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
Proc. 4th Int. Conf. Inf. Syst. Secur. Priv. (ICISSP), 2018.

[46] M. Ring et al., “Flow-based benchmark data sets for intrusion detection,”
in Proc. 16th Eur. Conf. Cyber Warf. Secur. (ECCWS), 2017.

[47] M. A. Ferrag et al., “Edge-IIoTset: A new comprehensive realistic
cyber security dataset of IoT and IIoT applications for centralized and
federated learning,” IEEE Access, vol. 10, 2022.

[48] I. Guyon, “Design of experiments of the NIPS 2003 variable selection
benchmark,” in NIPS Workshop Feature Extr., 2003.

https://eur-lex.europa.eu/eli/reg/2024/1689
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html

Decentralized Federated Learning for Intrusion
Detection in 5G Networks: An Asynchronous

Consensus-driven Multi-Agent Approach
Nasim Nezhadsistani1, Francisco Enguix2, Carlos Carrascosa2, Burkhard Stiller1

1Communication Systems Group, Department of Informatics, University of Zürich, Switzerland
Email: {nezhadsistani, stiller}@ifi.uzh.ch

2Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València (UPV),
Camino de Vera s/n, 46022, Valencia, Spain

Email: fraenan@upv.es, carrasco@dsic.upv.es

Abstract—5G networks expand the wireless infrastructure
attack surface while concurrently limiting data streams through
in-your-face privacy regulations. Centralized traffic aggregation-
based traditional intrusion-detection pipelines, thus, are plagued
with bottlenecks, sole points of failure, and regulatory in-
surrection. This paper uses PA-CoL, a Parallel Asynchronous
Consensus-based Learning framework in which multi-agent base
stations train a shared deep neural model without ever exporting
raw traffic records. Each agent performs local mini-batches on
5G-NIDD flow features and intermittently averages parameters
with a randomly chosen neighbor; no parameter server or global
synchrony is required. Experiments across three overlay graphs
(Complete, Ring, Small-World), two data Types (IID and non-
IID), and three federation sizes (5, 8, 10 agents) show that the
newly developed scheme reaches F1 ≥ 0.99 under IID data and
F1 ≥ 0.93 under severe non-IID skew. These results indicate
that a lightweight, peer-to-peer consensus can deliver carrier-
grade intrusion detection for privacy-sensitive 5G edge clouds
and can pave the way toward 6G self-defending networks.

Index Terms—5G Network, Federated Learning (FL) , Multi-
Agent Systems (MAS), Intrusion Detection.

I. INTRODUCTION

Fifth-generation (5G) mobile networks are a wireless com-
munications paradigm shift that provides greater bandwidth,
ultra-reliable low-latency (URLLC), and massive machine-
type communications (mMTC). This results in new capabilities
like autonomous vehicles, smart manufacturing, and remote
medicine. But with these capabilities comes the price tag of
an exponentially increased attack surface. Use of encrypted
network traffic, pervasive use of network slicing, and the
inherent dynamic nature of 5G topologies introduce high
degrees of complexity for threat detection and security mon-
itoring. Conventional security analytics, having a dependency
on centralized data aggregation and correlation, become less
effective in such cases [1]. Centralized solutions have critical
drawbacks, including bottlenecks, single points of failure, and
lack of end-to-end visibility in highly segmented virtualized
environments [4], [10].

An additional level of intricacy arises from stricter data
sovereignty and privacy regulations, such as the General Data
Protection Regulation (GDPR) within the European Union.

These regulations mandate that organizations maintain sen-
sitive user data within local or national borders, effectively
excluding unregulated trafficking of raw data to distant cloud
servers for processing. Security products, therefore, relying on
packet capture and aggregation of all traffic across the network,
are not only technologically infeasible but also most likely
to be non-compliant with global privacy standards. There is
therefore a pressing need for threat detection and response
capabilities without losing data locality in the security archi-
tectures [28], [29], [31].

Federated Learning (FL) [2] proves to be a viable paradigm
to overcome privacy and locality of data concerns. FL fa-
cilitates training machine learning models in a decentralized
manner through enabling local nodes or edge devices to hold
their data locally and send model updates (e.g., parameters
or gradients) to a coordination agent. This paradigm reduces
risk to privacy and restricts exposure of sensitive data to an
absolute minimum. But the traditional FL architecture usually
depends on a parameter server in the middle to collect model
updates and scatter the updated global model. This server-
based architecture creates new threats, such as communication
bottlenecks and single points of failure, which are undesirable
in the case of large-scale, mission-critical 5G networks. In
addition, centralized FL presumes synchronized and consistent
participation of all the nodes that, in reality, cannot be ensured
due to heterogeneity and dynamic connectivity of mobile
devices [9], [16], [18].

Decentralized Federated Learning (DFL) has been sug-
gested to bypass the downsides of centralized servers. Peer-
to-peer cooperation in DFL substitutes the central aggregation
node such that nodes are able to train models jointly in an un-
supervised way without a coordinator node. The distributed ap-
proach improves robustness and scalability but typically comes
with the cost of rigorous synchronization among cooperating
nodes. 5G real-world scenarios are proven to be challenging
in device capability, network state, and participation rates
shifting unpredictably [5]. Multi-Agent Systems (MAS) [3]
offer the natural paradigm for distributed decision-making and
intelligence for advanced environments. Autonomous agents

and local sensing and knowledge-directed agents interact with
each other in MAS to achieve common goals. Translated to 5G
security, MAS enable localized discovery and quick response
to emerging threats, allowing the requirements of adaptive,
distributed defenses [32].

To take advantage of the strong points of DFL and MAS
and handle synchrony and heterogeneity problems, this paper
uses Parallel Asynchronous Consensus-based Learning (PA-
CoL) [8]. PA-CoL facilitates the convergence of the models
of decentralized agents without the need for global synchro-
nization. Agents instead update and exchange their models
asynchronously with neighbors in such a way that the network
converges as an aggregate under delays, network partition, or
stragglers. This asynchrony is particularly suited for variable
conditions under 5G networks. The key contributions of this
paper are as follows:

1) This paper constructs an entirely distributed intrusion de-
tection system (IDS) using PA-CoL over a MAS overlay
specially designed for the distinctive nature and needs of
5G networks.

2) This paper applies the developed framework using the
PyTorch deep learning framework and performs an exten-
sive experiment on the 5G-NIDD dataset [1], with specific
emphasis on non-IID (non-identically and independently
distributed) data scenarios.

3) This paper compares our detection performance, com-
munication cost, and scalability with conventional FL
benchmarks and shows its performance benefits in real-
world 5G scenarios.

The remainder of the paper is organized as follows. Sec-
tion II provides related work on intrusion detection for 5G
networks, FL, decentralized training algorithms, and multi-
agent systems. Section III offers the proposed framework
architecture, such as system model, dataset preprocessing,
learning algorithm, and comparisons with baseline methods.
Section IV provides a description of the experimental setup
and results focusing on performance measures, communica-
tion efficiency, and resilience with non-IID scenarios. Finally,
Section V summarizes the paper and presents future directions
of work.

II. RELATED WORK

A. Federated Learning for Network Security

FL has become an attractive paradigm for cooperative,
privacy-aware intrusion detection. The initial FedAvg algo-
rithm [2] proved that distributed devices could perform local
model learning on their own data in parallel and then exchange
model updates with a central server to collect. This work
motivated diverse research on privacy-preserving machine
learning for network security. The latest developments also
involve the use of advanced models like BERT, which has
made remarkable discoveries of up to 97.8% accuracy for
intrusion detection based on datasets [6]. However, most recent
FL solutions still rely on a central server to handle the
learning process. This reliance is accompanied by a cluster of

weaknesses: the master server is a point of contention, a target
for denial-of-service or poisoning attacks, and a single point
of failure, which compromises the resilience and scalability
needed for 5G network security.

B. Multi-Agent Systems in 5G Security

MAS provides an adaptive and agile answer to distributed
security in 5G networks. In MAS, autonomous heterogeneous
agents with local knowledge and goals interact and collaborate
to detect, respond to, and pursue threats. This distributed
approach is most applicable to the dynamic, partitioned, and
large-scale environment of 5G. The combination of MAS
with FL was even investigated recently to further improve
system resilience and fault tolerance to allow agents the
capability to collaboratively train and improve security models
in the absence of a central controller [7]. Although these are
promising directions, existing research in these directions has
been mainly theoretical models or simulations, with extremely
few being based on real 5G datasets like 5G-NIDD. Therefore,
there is an urgent need for experimental investigations that
assess the efficiency and usability of MAS-FL hybrids in real-
world 5G deployment environments.

C. From Centralized to Decentralized FL in 5G IDS

Early 5G intrusion detection research used the standard Fe-
dAvg framework, where edge devices provide gradient updates
to a parameter server; the framework attains high accuracy
on IIoT data but suffers from a single point of failure and
is still susceptible to model-poisoning attacks [12], [14].
Server-side bandwidth constraints also reduce scalability when
thousands of gNBs transmit traffic features every few seconds.
A number of studies find that server-centrism is antithetical
to the URLLC aspirations of 5G and support peer-to-peer
aggregation instead [11], [13]. There exists a taxonomy of
decentralized forms with security in focus as well [5]. They
collectively induce a turn towards topologically fully decen-
tralized or at least hierarchically organized training structures.

D. Asynchronous Decentralized FL

Weighted-average consensus on an overlay graph eliminates
the server bottleneck, while the synchronous one continues to
assume uniform compute speed [27]. Multilayer consensus and
dynamic-average consensus enable all agents to update when-
ever resources become available and thus eliminate stragglers
[16], [18]. The pull-based protocol generalizes the concept
further by allowing nodes to pull the latest neighbor model on
demand [9], while the latency-compensated scheduler rewinds
stale gradients [17]. All such systems, though, broadcast each
update across the network and thereby flood low-power radios.

E. Security, Privacy, and Verifiability

Consensus ledger verifiable computation prevents tampering
but adds additional latency [15]; end-to-end correctness proofs
add even more integrity [21]. Update-level trust scoring and
the proof-of-data system, which is cryptographic, prevents
decentralized FL poisoning but has not yet been tested with

2

real 5G traffic [19], [20]. Communication-saving methods
like locally differentially private updates indicate privacy and
efficiency can be pursued in tandem [25].

F. Parallel Asynchronous Consensus-based Learning

Consensus-Based Learning approaches make fusion into an
iterated averaging problem with no kind of global coordi-
nator [30]. The most recent evolution, PA-CoL, features an
explicit coalition layer [8]. Agents sharing similar semantics
or geographically co-located agents in PA-CoL organize intra-
coalition clusters that reach consensus in frequent rounds;
models aggregated from each coalition leader engage in the
slower inter-coalition exchange. Experiments across a non-
IID image data set reduce total bytes transferred by about
35 % without affecting accuracy compared to single-coalition
baselines, and message-direction analysis validates that most
traffic is local between coalitions [8]. Since 5G slices natively
map to trust domains, we generalize the coalition concept to
slice-aware security monitoring [8], [33].

G. Graph and Self-Supervised Models for Network Data

Graph neural networks improve representation of host-to-
host relationships and protocol hierarchies: Edge-based Graph-
SAGE in [26], DIGNN-A in [22], and feature-rearranged
(GNNs in [23] all see double-digit F1 gains over multilayer
perceptrons. Self-supervised pretext tasks like TS-IDS in [24]
see comparable large gains when labelled data is limited.
Nevertheless, parameter counts are an order of magnitude
greater than for lightweight MLPs, increasing the communi-
cation overhead decentralized FL already needs to cope with.
Compression methods like the autoencoder pipeline in [29]
and hierarchical clustering in [30] mitigate this expense in
part.

III. EXPERIMENTAL DESIGN

A. Data Set and Pre-processing

The evaluation relies on the public 5G-NIDD dataset [1],
which captures network traffic across nine behaviour classes.
Each record carries forty-eight normalised numerical features.
Rows with missing values less than 0.1% of the file are
discarded to avoid introducing noise. A stratified hold-out
split reserves 20% of the cleaned data for testing so every
class preserves its prior. Feature scales are already aligned;
therefore, no extra standardisation is applied.

B. Neural Architecture and Local Optimisation

Both agents have the same feed-forward MLP depicted in
Fig. 1. There are two hidden widths 128 layers with ReLU
activations and dropout rate 0.3 to prevent over-fitting. The
output layer provides nine logits. Training uses the Adam
optimiser with a step size of 0.001 and categorical cross-
entropy loss. A training iteration is a single forward-and-
backward pass over a mini-batch of 32 samples.

Input (48) Fully Connected (FC) (128) ReLU Dropout (p=0.3)

FC (128)ReLUDropout (p=0.3)Output Fully Connected (9)

Fig. 1: Architecture of the MLP model with two hidden layers
of size 128 and dropout.

C. Data Partitioning Strategy

To examine the impact of statistical bias, two placement
modes are considered. IID mode: The fold employed for
training is shuffled and divided equally into shards, and each
agent gets an equal amount of samples and class distribution.
Non-IID mode: sampling indices are sampled from Dirichlet
concentration α = 0.3. Biases samples class proportions
such that some agents have labels unobservable elsewhere,
simulating true edge drift.

D. Round Structure and Consensus Rule

Agents transfer information along static undirected graphs
of five, eight, or ten nodes. The considered topologies are
complete, small-world (rewiring probability 0.3), and ring. The
largest node degree degmax fixes the mixing rate

ϵ =
1

degmax

(1)

During each round, an agent first performs one local epoch,
then selects one neighbor at random and updates its weights
via

θi ← (1− ϵ) θi + ϵ θj , (2)

where θi and θj are the agent’s parameter vector and the
selected neighbor’s parameter vector, respectively. There is
one such exchange in each round. The protocol is executed
for 500 rounds for each {graph, partition mode}.

E. Hardware and Software stack

All experiments were conducted on a computing envi-
ronment equipped with an Intel Core i7 13650HX CPU,
featuring 20 logical processors, and 32 GB of RAM. The
graphics processing was managed by an NVIDIA GeForce
RTX 4070 Laptop GPU. The system used an NVMe SSD
storage solution, ensuring rapid data read and write speeds.
The operating system for this setup was Windows 11 Pro 64-
bit.

IV. EXPERIMENTAL RESULTS

Table I reports the maximum mean-over-agent performance
metrics obtained by the parallel Asynchronous Consensus-
based Learning framework. This paper evaluates three com-
munication topologies (Complete, Ring, and Small-World),
two data distributions (IID and non-IID), and three network
sizes (5, 8, and 10 agents). Under IID conditions, different
topologies perform almost the well as they can and show
very few differences in all metrics and network sizes. This
is because, with IID, each agent can access data that is

3

equally representative, which leads to steady and consistent
convergence no matter what the network structure is. For
example, accuracies and F1 scores often get close to 0.995,
which confirms that topology does not matter much in this
ideal situation. On the other hand, the non-IID setting (with
Dirichlet skew) is more realistic and difficult, as agents have
very different and biased local data distributions. In this
case, the topology choice becomes a very important design
consideration that impacts convergence and the final result.

Under non-IID conditions, the Complete topology exhibits
significant performance degradation. For example, with 8
agents, the accuracy drops dramatically to 0.6973, and the F1
score decreases to 0.5908. This highlights the vulnerability
of fully connected graphs to bias amplification, as global
averaging may allow agents with extreme local distributions to
disproportionately influence the consensus model. Increasing
the number of agents from 8 to 10 slightly improves perfor-
mance (accuracy rising to 0.8558), suggesting that increased
diversity among agents can partially counteract individual
biases, but overall, the Complete topology remains the most
sensitive to non-IID data.

The ring topology shows greater strength in non-IID setups.
By restricting each agent’s interactions to close neighbors, it
lessens the spread of strong local biases. As shown in Table I,
the ring topology keeps high accuracy and F1 scores (for
example, an accuracy of 0.9677 and an F1 score of 0.9370 with
eight agents), which points to more consistent and dependable
model behavior. Also, the ring topology’s behavior stays even
and less jumpy across varied network sizes, showing it can
scale with data differences.

The small-world topology has middle-of-the-road behavior
in non-IID settings. While it gains from shortcuts that allow
quicker information spread than a simple ring, it also struggles
with the impact of highly linked hub nodes, which can make
local biases worse if these hubs have slanted data. This is clear
in the fairly low precision and F1 scores (like a precision of
0.8341 and an F1 score of 0.7919 with eight agents), which
shows a give-and-take between quicker mixing and flexibility
to differences.

In considering how scaling impacts performance, merely
adding more agents does not assure better results in non-
IID setups. For instance, the Complete topology improves
somewhat with ten agents. But the Ring and Small-World
topologies are more stable, without big drops in performance.
This suggests that just increasing the number of agents isn’t
enough to fix data differences.

The network structure must be carefully thought out. From
a real-world use point, these results point to using sparse,
structured overlays like the Ring topology when data is
inherently non-IID. Situations include edge networks in 5G
and distributed intrusion detection systems. Keeping high F1
scores (above 0.93) even with few communication links per
agent gives a good balance. This balance is between detection
quality and communication costs, which is key for privacy and
places with limited bandwidth.

Fig.2 (a)-(i) illustrates the per-round evolution of accuracy,

TABLE I: Maximum of the mean-over-agents metrics.

Nodes Topology Dirichlet (non-IID) IID

Accuracy Precision F1 Accuracy Precision F1

5
Complete 0.9687 0.9571 0.9545 0.9959 0.9929 0.9916
Ring 0.9621 0.9591 0.9383 0.9963 0.9943 0.9937
Small-World 0.9410 0.8642 0.7990 0.9959 0.9929 0.9918

8
Complete 0.6973 0.6647 0.5908 0.9943 0.9883 0.9845
Ring 0.9677 0.9519 0.9370 0.9949 0.9875 0.9833
Small-World 0.7191 0.8341 0.7919 0.9945 0.9882 0.9838

10
Complete 0.8558 0.6964 0.6406 0.9934 0.9859 0.9822
Ring 0.9547 0.9300 0.9066 0.9944 0.9869 0.9831
Small-World 0.8938 0.7209 0.6881 0.9948 0.9862 0.9828

F1 score, and precision for networks consisting of 10, 8, and 5
agents, each evaluated across six configurations. These config-
urations combine three communication topologies (Complete,
Ring, and Small-World) with two data distributions (IID and
Dirichlet-skewed, α = 0.3).

In the IID setting (indicated by blue, orange, and green
curves), all topologies achieve rapid and smooth convergence.
Accuracy, precision, and F1 score all exceed 0.95 within ap-
proximately 10 to 20 communication rounds, regardless of the
number of agents. The Complete topology exhibits the steepest
initial improvement, typically saturating in as few as 5 rounds.
Ring and Small-World topologies follow slightly slower but
still very close trajectories. This behavior confirms that when
data is balanced and fully representative at each agent, the
effect of communication topology becomes negligible. Thus,
these IID results act merely as an upper bound on possible
performance.

Under non-IID conditions (Dirichlet, α = 0.3), the conver-
gence patterns change dramatically and reveal the true impact
of topology. The Ring topology (purple curves) shows the most
robust and stable performance. For example, in the 8-agent
configuration, accuracy surpasses 0.95 by around round 40,
and F1 score exceeds 0.90 by about round 60, with minimal
oscillations in subsequent rounds. This stability arises because
each agent exchanges information only with local neighbors,
which helps prevent global consensus from being dominated
by agents with highly skewed local data.

The Complete topology (red curves) shows high initial insta-
bility with non-IID data. Initial F1 scores may fall below 0.60
in the first 50 rounds, and the trajectory has clear oscillations
before gradually stabilizing. Even after 500 rounds, final F1
scores only stabilize around 0.75 to 0.78, highlighting the
vulnerability of global averaging to local bias amplification.
Nevertheless, as the number of agents increases, the added
diversity among peers slightly mitigates these effects, as
observed by a final accuracy increase from approximately 0.70
(8 agents) to 0.86 (10 agents).

The Small-World topology (brown curves) presents an inter-
mediate behavior. Its shortcut edges enable a faster initial rise,
for instance, with 10 agents, accuracy approaches 0.90 already
by round 30. However, these same shortcut links can allow
certain highly connected ”hub” agents to propagate biased or
noisy updates more broadly. This leads to convergence settling
at intermediate final scores (e.g., around 0.78 accuracy for 8

4

0 100 200 300 400 500
Algorithm Round

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
Accuracy for 10 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(a) Accuracy for 10 agents.

0 100 200 300 400 500
Algorithm Round

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy for 8 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(b) Accuracy for 8 agents.

0 100 200 300 400 500
Algorithm Round

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy for 5 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(c) Accuracy for 5 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

F1 Score for 10 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(d) F1-score for 10 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

F1 Score for 8 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(e) F1-score for 8 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

F1 Score for 5 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(f) F1-score for 5 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision for 10 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(g) Precision for 10 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision for 8 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(h) Precision for 8 agents.

0 100 200 300 400 500
Algorithm Round

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision for 5 Agents

IID Complete
IID Ring
IID SW
Dirichlet (=0.3) Complete
Dirichlet (=0.3) Ring
Dirichlet (=0.3) SW

(i) Precision for 5 agents.

Fig. 2: Accuracy, F1-score, and precision; across all agent configurations.

agents), reflecting a trade-off between accelerated mixing and
robustness against local skew. When considering the effect
of network size, increasing the number of agents from 5 to
10 slightly increases early-stage variance, especially in the
Complete topology, where more potential sources of skew
exist. However, in the Complete graph, this added diversity
can also support moderate recovery in later stages. Meanwhile,
the Ring topology stays very consistent no matter the network
size, which points to strong resilience and scalability. Small-
world topologies only gain a little from more agents.

From an engineering perspective, these observations high-
light that in practical distributed environments such as 5G
edge networks, where non-IID data is common and agents
often operate with limited communication bandwidth, sparse
and structured overlays like the Ring topology provide the
most favorable balance between convergence stability and

communication overhead. The Ring topology achieves high
final F1 scores (above 0.93), stable learning curves, and
minimal susceptibility to local data skew, even with mini-
mal connectivity. In contrast, higher-density topologies like
Complete or Small-World can be justified only under ultra-
tight convergence requirements of application-level latency
demands at favorable (IID) conditions. In addition, the in-
sensitivity of terminal performance to the number of agents
under IID conditions indicates that neighborhood edge clusters
can scale relatively adaptively with minimal hyperparameter
readjustment, a desirable aspect in dynamic and fast-expanding
5G FL scenarios.

V. SUMMARY AND FUTURE WORK

This paper proposes a distributed intrusion detection sys-
tem for 5G networks, based on the synergetic combination

5

of FL and MAS with the Asynchronous Consensus-based
Learning protocol. The proposed solution meets the new re-
quirements of 5G environments in terms of data heterogeneity,
latency, and privacy-preserving and scalable threat detection.
Our system proves excellent performance in various aspects
through rigorous experimentation on the 5G-NIDD dataset.
It obtains outstanding detection performance, lowers commu-
nication overhead, and retains robustness even in the case of
non-IID data distribution and asynchronous update conditions.
These results verify the feasibility of employing decentralized
collaborative intelligence at the edge of the network to protect
next-generation 5G infrastructures. Future work will explore
integrating graph neural networks for richer modelling of inter-
slice and inter-node traffic relationships and adding trusted
execution environments to harden local training and update
integrity.

VI. ACKNOWLEDGMENT

This work was supported partially by (a) the University
of Zürich UZH, Switzerland, (b) the Horizon Europe
Framework Program’s project NATWORK, Grant
Agreement No. 101139285, funded by the Swiss State
Secretariat for Education, Research, and Innovation
SERI, under Contract No. 23.00642, and (c) the grant
PID2021-123673OB-C31, PRE2022-101563, funded by
MICIU/AEI/10.13039/501100011033 and by “ERDF A way
of making Europe”.

REFERENCES

[1] S. Samarakoon, Y. Siriwardhana, P. Porambage, M. Liyanage, S.-
Y. Chang, J. Kim, J. Kim, and M. Ylianttila, “5G-NIDD: A Comprehen-
sive Network Intrusion Detection Dataset Generated over 5G Wireless
Network,” arXiv preprint arXiv:2212.01298, 2022.

[2] H. B. McMahan and D. Ramage, “Federated Learning:
Collaborative Machine Learning without Centralized Training
Data,” Google AI Blog, 6 Apr. 2017. [Online]. Available:
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

[3] M. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory
and Practice,” The Knowledge Engineering Review, vol. 10, no. 2,
pp. 115–152, 1995.

[4] C. Carrascosa, A. Pico, M. M. Matagne, M. Rebollo, and J. A. Rincón,
“Asynchronous Consensus for Multi-Agent Systems and Its Application
to Federated Learning,” Engineering Applications of Artificial Intelli-
gence, vol. 135, Art. 108840, 2024.

[5] E. Hallaji, R. Razavi-Far, M. Saif, B. Wang, and Q. Yang, “Decentralized
Federated Learning: A Survey on Security and Privacy,” arXiv preprint
arXiv:2401.17319, 2024.

[6] F. Adjewa, M. Esseghir, and L. Merghem-Boulahia, “Efficient Federated
Intrusion Detection in 5G Ecosystem Using Optimized BERT-Based
Model,” arXiv preprint arXiv:2409.19390, 2024.

[7] N. Latif, W. Ma, and H. B. Ahmad, “Advancements in Securing
Federated Learning with IDS: A Comprehensive Review of Neural
Networks and Feature Engineering Techniques for Malicious Client
Detection,” Artificial Intelligence Review, vol. 58, Art. 91, Jan. 2025.

[8] F. Enguix, J. A. Rincón, and C. Carrascosa, “Introducing Coalitions
to Improve the Performance of Federated Learning Consensus-Based
Algorithms (ACoL),” in Proc. Int. Conf. Practical Applications of Agents
and Multi-Agent Systems (PAAMS), CCIS 2149, pp. 28–39, 2025.

[9] B. Wang, Z. Tian, J. Ma, W. Zhang, W. She, and W. Liu, “A decentralized
asynchronous federated learning framework for edge devices,” Future
Generation Computer Systems, vol. 166, Art. 107683, 2025.

[10] S. Chennoufi, G. Blanc, H. Jmila, and C. Kiennert, “SoK: Federated
Learning based Network Intrusion Detection in 5G: Context, State of
the Art and Challenges,” in Proc. 19th Int. Conf. Availability, Reliability
and Security (ARES), Vienna, Austria, 2024.

[11] J. Wu, F. Dong, H. Leung, Z. Zhu, and J. Zhou, “Topology-aware
Federated Learning in Edge Computing: A Comprehensive Survey,”
ACM Computing Surveys, vol. 56, no. 10, pp. 1–41, 2024.

[12] A. Karunamurthy, K. Vijayan, P. R. Kshirsagar, and K. T. Tan, “An op-
timal federated learning-based intrusion detection for IoT environment,”
Scientific Reports, vol. 15, Art. 8696, 2025.

[13] A. Belenguer, J. A. Pascual, and J. Navaridas, “A review of federated
learning applications in intrusion detection systems,” Computer Net-
works, vol. 258, Art. 111023, 2025.

[14] S. M. S. Bukhari et al., “Enhancing cybersecurity in Edge IIoT networks:
An asynchronous federated learning approach with a deep hybrid
detection model,” Internet of Things, vol. 27, Art. 101252, 2024.

[15] F. Zhang, Y. Zhang, S. Ji, and Z. Han, “Secure and decentralized
federated learning framework with non-IID data based on blockchain,”
Heliyon, vol. 10, no. 5, e27176, 2024.

[16] M. Rebollo and C. Carrascosa, “Multilayered Asynchronous Consensus-
Based Federated Learning (MACoFL),” in Intelligent Data Engineering
and Automated Learning – IDEAL 2024, LNCS 14452, pp. 386–396.

[17] Y. Xu, Z. Ma, H. Xu, S. Chen, and J. Liu, “FedLC: Accelerating asyn-
chronous federated learning in edge computing,” IEEE Trans. Mobile
Computing, vol. 23, pp. 5327–5343, 2024.

[18] Z. Chen, D. Li, J. Zhu, and S. Zhang, “DACFL: Dynamic aver-
age consensus-based federated learning in decentralized sensor net-
works,” Engineering Applications of Artificial Intelligence, vol. 135,
Art. 108840, 2024.

[19] Z. Alsulaimawi, “Enhancing security in federated learning through
adaptive consensus-based model update validation,” arXiv:2403.04803,
2024.

[20] H. Liu, F. Zhu, and L. Cheng, “Proof-of-Data: A consensus protocol for
collaborative intelligence,” arXiv:2501.02971, 2025.

[21] X. Zhao, A. Wu, Y. Pei, Y.-C. Liang, and D. Niyato, “End-to-end
verifiable decentralized federated learning,” arXiv:2404.12623, 2024.

[22] J. Liu and M. Guo, “DIGNN-A: Real-time network intrusion detection
with integrated neural networks based on dynamic graph,” Computers,
Materials & Continua, vol. 82, no. 1, pp. 817–842, 2025.

[23] H.-D. Le and M. Park, “Enhancing multi-class attack detection in graph
neural networks through feature rearrangement,” Electronics, vol. 13,
no. 12, Art. 2404, 2024.

[24] H. Nguyen and R. Kashef, “TS-IDS: Traffic-aware self-supervised learn-
ing for IoT network intrusion detection,” Knowledge-Based Systems,
vol. 279, Art. 110966, 2023.

[25] L. Li, X. Zhang, Y. Wang, and C. Chen, “Locally differen-
tially private online federated learning with limited communication,”
arXiv:2411.18752, 2024.

[26] W. W. Lo et al., “E-GraphSAGE: A graph neural network-based in-
trusion detection system for IoT,” in Proc. IEEE/IFIP NOMS, 2022,
pp. 1–9.

[27] A. Giuseppi, S. Manfredi, and A. Pietrabissa, “A weighted average
consensus approach for decentralized federated learning,” Machine In-
telligence Research, vol. 19, no. 4, pp. 319–330, 2022.

[28] M. Chahoud, S. Otoum, and A. Mourad, “On the feasibility of federated
learning towards on-demand client deployment at the edge,” Information
Processing & Management, vol. 60, no. 1, Art. 103150, 2023.

[29] A. S. M. Tayeen et al., “CAFNet: Compressed autoencoder-based
federated network for anomaly detection,” in Proc. IEEE MILCOM,
2023, pp. 325–330.

[30] X. Sáez-de-Cámara et al., “Clustered federated learning architecture for
network anomaly detection in large-scale heterogeneous IoT networks,”
arXiv:2303.15986, 2023.

[31] M. Nivaashini et al., “FEDDBN-IDS: Federated deep belief network-
based wireless network intrusion detection system,” EURASIP J. Infor-
mation Security, vol. 2024, Art. 22.

[32] E. Gelenbe, B. C. Gül, and M. Nakıp, “DISFIDA: Distributed self-
supervised federated intrusion detection algorithm with online learning
for health Internet of Things and Internet of Vehicles,” Internet of Things,
vol. 28, Art. 101340, 2024.

[33] P. Kumar, J. Liu, A. S. Md Tayeen, S. Misra, H. Cao, J. Harikumar, and
O. Perez, “FLNET2023: Realistic Network Intrusion Detection Dataset
for Federated Learning,” in Proc. IEEE Military Communications Con-
ference (MILCOM), 2023, pp. 345–350.

6

HiSTM: Hierarchical Spatiotemporal Mamba
for Cellular Traffic Forecasting
Zineddine Bettouche, Khalid Ali, Andreas Fischer, Andreas Kassler

Deggendorf Institute of Technology
Dieter-Görlitz-Platz 1, 94469 Deggendorf

{zineddine.bettouche, khalid.ali, andreas.fischer, andreas.kassler}@th-deg.de

Abstract—Cellular traffic forecasting is essential for network
planning, resource allocation, or load-balancing traffic across
cells. However, accurate forecasting is difficult due to intricate
spatial and temporal patterns that exist due to the mobility of
users. Existing AI-based traffic forecasting models often trade-off
accuracy and computational efficiency. We present Hierarchical
SpatioTemporal Mamba (HiSTM), which combines a dual spatial
encoder with a Mamba-based temporal module and attention
mechanism. HiSTM employs selective state space methods to
capture spatial and temporal patterns in network traffic. In
our evaluation, we use a real-world dataset to compare HiSTM
against several baselines, showing a 29.4% MAE improvement
over the STN baseline while using 94% fewer parameters. We
show that the HiSTM generalizes well across different datasets
and improves in accuracy over longer time-horizons.

Index Terms—Time series forecasting, spatiotemporal model-
ing, 5G network traffic prediction, deep learning, state space
models, Mamba architecture, attention mechanisms, convolu-
tional neural networks (CNNs), hierarchical modeling, AI for
telecommunications.

I. INTRODUCTION

Accurate traffic forecasting plays a critical role in enabling
predictive network resource allocation, network planning and
network optimization, directly influencing the operational ex-
penditure of telecom providers [1]. Traditional time series
forecasting methods such as ARIMA [2] and AI-based models
such as LSTM [3] often treat each base station indepen-
dently and fail to account for spatial dependencies among
neighboring cells. To address this challenge, recent work
focused on employing AI-based models jointly with data pre-
processing and feature engineering techniques to incorporate
spatial knowledge in the training procedure [4], [5].

A key challenge in spatiotemporal modeling is the trade-off
between using a single global model and multiple cell-specific
models. While cell-specific models can capture local dynamics
with higher fidelity, they are costly to train (as they require one
model per cell), validate, deploy, and maintain, especially at
the scale of modern cellular networks. Conversely, global mod-
els may benefit from exploiting shared patterns across cells but
often underperform due to distributional heterogeneity [1].

Alternatively, a global model can be trained to cover the
entire spatial grid while incorporating the spatial dependencies
as features, formulating the forecasting task as a multivariate
timeseries forecasting problem. However, such global models
often marginally improve performance due to their limited

ability to capture the intricate spatiotemporal dynamics ef-
fectively. In 5G networks, user mobility and overlapping
coverage areas introduce non-trivial spatial correlations [6],
making standalone temporal modeling insufficient as they may
introduce large forecasting errors.

Consequently, a single spatiotemporal model capturing both
temporal dynamics and latent spatial interactions may ex-
ploit correlations among neighboring cells better, leading to
increased forecasting accuracy. Indeed, recent advancements
using graph neural networks (GNNs) and transformers have
shown promise in learning complex spatiotemporal dependen-
cies [7]. However, these architectures typically suffer from
high computational cost, making them less viable for real-time
or large-scale deployments.

To address these challenges, we propose HiSTM, a novel
spatiotemporal forecasting model based on the Mamba archi-
tecture [8], leveraging a hierarchical structure that captures
both local variability and global patterns. Unlike graph-based
or attention-heavy models, HiSTM demonstrates promising
performance with reduced resource requirements, offering a
favorable trade-off between accuracy and computational effi-
ciency. Our contributions are summarized as follows:

• We propose HiSTM, a novel spatiotemporal forecasting
architecture that leverages the standard Mamba model
combined with optimized data processing—applying spa-
tial CNNs per frame, temporal modeling over spatial
patches via Mamba, and temporal attention to aggregate
time-step features for improved representation.

• We apply HiSTM on real-world open-source cellular traf-
fic datasets, demonstrating improved forecasting accuracy
(Milan dataset) and consistent generalization ability when
evaluated on unseen dataset of a different city (Trentino
dataset).

• We show that HiSTM achieves a 29.4% MAE reduction
compared to the STN baseline and competitive perfor-
mance against other methods.

• HiSTM achieves better accuracy over longer forecasting
horizons, with a 58% slower error accumulation rate
than STN, highlighting its ability to capture long-term
temporal dependencies.

The rest of this paper is structured as follows: Section II
reviews 5G traffic prediction methods. Section III formalizes
the forecasting problem, introduces HiSTM and baselines

we compare against. Section IV describes the datasets and
experimental setup. Section V presents results and analysis.
Section VI concludes the study and outlines directions for
future work.

II. RELATED WORK

Traditionally, 5G traffic forecasting is treated as a purely
temporal forecasting task, relying on recurrent neural net-
works. AI-based models such as vanilla RNNs, LSTMs [3],
and GRUs [9] were applied to learn sequential traffic patterns,
often achieving gains over classical time-series methods such
as ARIMA [2]. However, these approaches inherently ignore
spatial correlations. Prior studies note that while RNN-based
methods can capture long-term dependencies, they neglect
spatial context, reducing their effectiveness [10] [11]. For ex-
ample, Chen et al. proposed a multivariate LSTM (MuLSTM)
using dual streams for traffic and handover sequences, but the
model remains fundamentally temporal [12]. Temporal models
employ hybrid or preprocessing strategies for improved accu-
racy. For instance, Hachemi et al. [4] applied an FFT filter
before LSTM to separate periodic signals, while Wang and
Zhang [5] used Gaussian Process Regression alongside LSTM
to manage bursty patterns. These methods often operate at
hourly aggregation levels and improve accuracy in long-term
forecasts, though they still lack spatial awareness and incur
higher computational cost.

Recently, spatial models have become popular as they can
exploit spatial correlations within the data. For example, grid-
based methods apply ConvLSTM [13] or 3D-CNNs to traffic
maps [14], though these require regular cell layouts. Graph-
based architectures, such as STCNet and its multi-component
variant A-MCSTCNet, combine CNNs or GRUs with atten-
tion mechanisms [15]. STGCN-HO uses graph convolutions
based on handover-derived adjacency to model spatial links
across base stations, with Gated Linear Units (GLUs) for
time dependencies [16]. Many of these models supplement
deep networks with auxiliary features, such as weekday labels
or slice-specific parameters, to improve generalization. More
advanced spatiotemporal architectures, such as DSTL, adopt a
dual-step transfer learning scheme that clusters gNodeBs and
fine-tunes shared RNN models per group [17]. It forecasts
at a 10-minute interval while reducing training overhead. To
the best of our knowledge, Mehrabian et al. [18] published
the first model to incorporate the Mamba framework into a
spatiotemporal graph-based predictor for 5G traffic. It adapts
a dynamic graph structure within a bidirectional Mamba block
to model complex spatial and temporal dependencies.

In contrast, our model, HiSTM, uses the Mamba framework
and adapts data input and output processing to work directly
on spatial grids with temporal attention layers. This design
improves accuracy and efficiency, especially for long-term
forecasts and generalization to unseen data.

III. METHODOLOGY

This section formalizes the spatiotemporal forecasting prob-
lem, describes the proposed model architectures, and outlines

the baseline models that we compare against.

A. Problem Formulation

Cellular network traffic forecasting aims to predict fu-
ture traffic volume based on historical observations. We
formulate this task as a spatiotemporal sequence prediction
problem. Given a sequence of traffic measurements M =
{M1,M2, ...,MT } where each Mt ∈ RH×W represents a
spatial grid of H×W cells at time step t, our goal is to predict
the next traffic volume grid MT+1. Each grid cell contains
a scalar value representing the traffic volume. This volume
correlates with resource demands in the cellular network.

We define our input tensor as X
(i,j)
t ∈ RT×K×K , where

T is the sequence length (window of observation time steps),
K ×K represents the spatial dimensions of the input kernel,
and (i, j) are the spatial coordinate in the grid Mt. The
prediction target is x

(i,j)
t+1 ∈ R, representing the traffic volume

at the center cell of the kernel for the next time step. Formally,
we aim to learn a function f : RT×K×K → R that minimizes
the prediction error minθ L(fθ(X), x

(i,j)
t+1), where L is the loss

function (i.e., Mean Absolute Error), and θ represents the
learnable parameters of the model. The spatiotemporal nature
of the data introduces a unique challenge: capturing both
spatial correlations between neighboring cells and temporal
dependencies across the sequence.

B. Proposed Architecture: HiSTM

We propose the Hierarchical SpatioTemporal Mamba
(HiSTM), an architecture that combines hierarchical spa-
tiotemporal processing with attention-based temporal aggrega-
tion (Figure 1). Given an input tensor X ∈ RT×K×K (where
T is the number of time steps and K×K is the spatial kernel),
the model predicts target values through three key components:

1) Hierarchical Spatiotemporal Encoding: The input X is
first augmented with an initial channel dimension (i.e., Din =
1), then passes through N stacked Encoder Layers. Each
Encoder Layer l transforms its input X(l−1) (where X(0) is the
initial augmented input) into an output X(l) ∈ RT×K×K×C .
The operations within each layer are:

• Spatial Convolution: Input features are first reshaped ap-
propriately (e.g., to T×D′

in×K×K). A 2D convolution
followed by a ReLU activation is applied. The first layer
up-projects D′

in to C channels. Subsequent layers take
D′

in = C channels and output C channels.
• Temporal Mamba Processing: The C-channel output

from the convolution is reshaped to Xflat ∈ R(K2)×T×C .
A Mamba SSM [8] then models the temporal depen-
dencies for each of the K2 spatial locations treated as
sequences of length T , with dmamba = C.

We use Mamba for its state space foundation, which mod-
els sequences through continuous-time dynamics rather than
attention. This enables precise control over temporal structure
and inductive bias, making it suitable for forecasting tasks
where long-range temporal dependencies interact with fine-
grained spatial patterns. Its ability to selectively retain and

Figure 1. HiSTM Architecture

propagate information aligns with the demands of spatiotem-
poral modeling.

The Mamba output is reshaped back to RT×K×K×C , form-
ing X(l). The output of this encoding stage is Xencoded =
X(N).

2) Temporal Attention-Based Aggregation: From the en-
coded features Xencoded ∈ RT×K×K×C , features correspond-
ing to the center spatial cell are extracted across all T time
steps. This yields a sequence Xcenter ∈ RT×C . An atten-
tion mechanism then computes an aggregated context vector
c ∈ RB×C :

et = Linearatt(ht), αt =
exp(et)∑T
j=1 exp(ej)

, c =

T∑
t=1

αtht

(1)
where ht ∈ RC is the feature vector from Xcenter (for a given
batch instance) at time step t. The Linearatt layer maps from
RC → R, producing a scalar energy et. The softmax function
normalizes these energies across all T time steps to obtain
attention weights αt.

3) Prediction Head: Finally, the aggregated context vector
c ∈ RC is fed into a Multilayer Perceptron (MLP) head. This
MLP consists of two linear layers with a ReLU activation in
between, passing the dimensionality from C to MLPin, and
then to 1, to produce the final prediction ŷ ∈ R1.

C. Baseline Models

We benchmark HiSTM against the following baselines:
• STN [14]: A deep neural network capturing spatiotempo-

ral correlations for long-term mobile traffic forecasting.
• xLSTM [19]: A scalable LSTM variant with exponential

gating and novel memory structures (sLSTM/mLSTM)
designed as Transformer alternatives. For fair compar-
ison, our implementation uses only one mLSTM layer
(denoted as xLSTM[1:0] in their paper) to prioritize
computational efficiency while retaining its parallelizable
architecture.

• STTRE [20]: A Transformer-based architecture lever-
aging relative embeddings to model dependencies in
multivariate time series.

0 20 40 60 80

0

20

40

60

80

Milan Traffic Heatmap

0 20 40 60 80 100

0

20

40

60

80

100

Trentino Traffic Heatmap

200

400

600

800

1000

1200

Tr
af

fic
 In

te
ns

ity

0

200

400

600

800

1000

1200

1400

Tr
af

fic
 In

te
ns

ity
 (p

ow
er

 sc
al

e
=0

.5
)

Figure 2. Spatial distribution of traffic flow intensity across Milan and
Trentino regions.

• VMRNN-B & VMRNN-D [21]: Vision Mamba-LSTM
hybrids addressing CNN’s limited receptive fields and
ViT’s computational costs. VMRNN-B (basic) and
VMRNN-D (deep) use Mamba’s selective state-space
mechanisms for compact yet competitive performance.

IV. DATASETS & EXPERIMENTAL SETUP

This section outlines the datasets, preprocessing steps, train-
ing configuration, and evaluation process used to assess model
performance in spatiotemporal data forecasting.

A. Datasets

We use the dataset introduced by Barlacchi et al. [22],
which contains two sub-datasets from Milan and Trentino with
10,000 and 11,466 spatial cells, respectively. Both datasets
record SMS-in/out, Call-in/out, and Internet Traffic Activity
in 10-minute intervals. The data exhibits spatial heterogeneity
(see Figure 2), with higher activity in central regions and
localized clusters elsewhere, adding complexity to forecasting
tasks. To better visualize these differences, the Milan heatmap
uses a linear scale, while the Trentino heatmap employs a
logarithmic scale to highlight the dense urban center against
its sparsely populated surroundings.

Lag plot analysis (Figure 3) reveals that both datasets
maintain correlation at higher lag values. Individual cell traffic
demonstrates higher volatility (Approximate Entropy [23] of

Figure 3. Lag plot for the autocorrelation of the dataset for the entire grid.

1.386 for a single cell) compared to spatially aggregated
traffic (0.196), with the latter exhibiting enhanced cyclical
patterns and passing the Augmented Dickey Fuller test [24]
for stationarity. It is evident that the aggregated series is more
correlated with itself for different lags; hence, it is easier
to predict. Consequently, incorporating the spatial element in
the prediction can help the model to capture the distribution
more effectively, reduce the influence of individual events and
magnify predictable cyclical patterns. This makes the series
more predictable in a spatiotemporal context compared to
when using individual per-cell series.

B. Data Preprocessing

To ensure robust spatiotemporal feature extraction, chrono-
logical integrity, and leakage-free normalization for model
training and evaluation, we preprocess the raw 100×100 spatial
grid as follows. We set K = 11, with boundary effects
mitigated by cropping. Temporal sequences are constructed
by aggregating six consecutive time steps. For the training
set, input sequences are generated using a temporal stride of
6 between consecutive samples, minimizing temporal overlap
from a single grid to promote feature diversity. During testing,
a stride of 1 is used to ensure exhaustive evaluation across all
temporal segments. The model is trained to predict the central
value of the 11×11 kernel at the seventh (subsequent) time
step. The preprocessed dataset is chronologically partitioned
into training (70%), validation (15%), and test (15%) sets to
preserve temporal order and prevent information leakage from
future to past. Input features and target values are normalized
to the [0, 1] range via Min-Max scaling, where scaling
parameters are derived from the training data. Validation and
test sets are transformed using these parameters, and out-of-
range values are clipped to maintain the bounds.

C. Implementation and Training Configuration

We implement the HiSTM model in PyTorch, leveraging
GPU-optimized operations for its Mamba and Conv2D mod-
ules to ensure computational efficiency. For reproducability,

we release the complete source code for our HiSTM imple-
mentation in a public repository [25]. For training and infer-
ence, we use an AI-server with a single NVIDIA A100 80GB
GPU with 64 CPU cores and 512 GB RAM, using CUDA
12.4 and PyTorch 2.6.0+cu124. HiSTM and baseline models
were trained with a batch size of 128 for up to 40 epochs,
using early stopping with a patience of 15 and saving the best
model based on validation loss. We use Adam optimizer with a
learning rate of 10−4 and ReduceLROnPlateau scheduler
(patience: 7, factor: 0.5).

D. Evaluation Metrics

We evaluate prediction accuracy using four complementary
metrics. Mean Absolute Error (MAE) measures the average
absolute difference between predictions and ground truth. Root
Mean Squared Error (RMSE) penalizes large errors more
heavily. The coefficient of determination (R²) quantifies the
proportion of variance explained by the model. Structural
Similarity Index (SSIM) assesses the visual quality of spatial
predictions. All metrics are computed after reversing the
normalization to original scale.

V. RESULTS AND ANALYSIS

This section evaluates forecast accuracy, cross-dataset gen-
eralization, and computational efficiency, comparing our pro-
posed HiSTM model against baselines.

A. Prediction Accuracy

1) Single-step Prediction Results: HiSTM achieves the best
single-step forecasting performance on the Milan dataset,
with an MAE of 5.2196 and SSIM of 0.9925 (see Table I).
Numbers are averaged across all spatial cells. This corresponds
to a 29.4% MAE reduction over STN and a 2.3% SSIM
gain, while outperforming other architectures such as STTRE
(MAE: 5.5558) and parameter-intensive models like VMRNN-
D (MAE: 6.4151). HiSTM also reports the lowest RMSE
(11.2476) and the highest R2 score (0.9799), indicating both
lower large-error impact and improved variance explanation.

In addition to numerical metrics, Figure 4 provides a
density-based comparison of predicted vs. actual values for
all models. HiSTM shows a tighter concentration of points
along the diagonal, particularly at higher traffic volumes,
indicating improved predictive fidelity across the full dynamic
range. It also exhibits fewer high-error outliers and lower
dispersion compared to other models. STN and VMRNN-B, by
contrast, display broader scatter, especially in the high-traffic
regime, with more frequent large deviations. The distributional
compactness in HiSTM suggests better generalization and
robustness across heterogeneous spatial patterns.

2) Multi-step Autoregressive Forecasting: HiSTM demon-
strates improved stability over extended forecasting horizons
(Table II). While all models accumulate error with each
additional step, HiSTM maintains the lowest MAE and RMSE
across all six steps. At step 6, HiSTM reports an MAE of 6.69,
which is 36.8% lower than STN (10.59) and 11.3% below
STTRE (7.54). The slope of MAE progression is 58% lower

0 1000 2000
Actual Values

0

500

1000

1500

2000

Pr
ed

ict
ed

 V
al

ue
s

STN
MAE: 7.39

0 1000 2000
Actual Values

VMRNN B
MAE: 7.17

0 1000 2000
Actual Values

VMRNN D
MAE: 6.42

0 1000 2000
Actual Values

xLSTM
MAE: 6.47

0 1000 2000
Actual Values

STTRE
MAE: 5.55

0 1000 2000
Actual Values

HiSTM
MAE: 5.22

100

101

102

103

104

105

106

Lo
g1

0(
Co

un
t)

Figure 4. Density comparison of predicted vs. actual values over the entire grid for HiSTM and baseline models, with associated MAE

Table I
SINGLE-STEP PREDICTION PERFORMANCE ON MILAN DATASET. BEST

MODEL INDICATED THROUGH BOLD FONT.

Model MAE ↓ RMSE ↓ R² Score ↑ SSIM ↑

STN 7.3908 16.8824 0.9546 0.9853
VMRNN-B 7.1659 19.0876 0.9420 0.9843
xLSTM 6.4672 15.0901 0.9637 0.9870
VMRNN-D 6.4151 16.3284 0.9575 0.9873
STTRE 5.5558 11.4426 0.9791 0.9917
HiSTM 5.2196 11.2476 0.9799 0.9925

than that of STN, indicating reduced error propagation. SSIM
also degrades more gradually in HiSTM, remaining above 0.95
even at step 6. This suggests that HiSTM better preserves
temporal dependencies and structural consistency across time.

3) Cross-dataset Generalization on Trentino dataset: On
the unseen Trentino dataset, HiSTM achieves a 47.3% MAE
reduction (1.3870 vs. 2.6344) and a 36.9% RMSE improve-
ment (4.8134 vs. 7.6370) over STN (see Table III). It also
yields the highest SSIM (0.9916) and R2 score (0.9649),
confirming strong structural preservation. HiSTM outperforms
all baselines across all evaluation metrics, including STTRE
(MAE: 1.8132), VMRNN-D (MAE: 1.5870), and VMRNN-
B (MAE: 1.9751). This demonstrates HiSTM’s capacity to
generalize to new spatial environments with distinct activity
distributions and scales.

B. Cell-specific Modeling and Spatially-aware Accuracy

To evaluate the spatially-aware accuracy of the model, we
use Milan dataset and select a random 7-day time period (1008
time steps) from the test dataset. We use a 6-step memory
window and an 11-step kernel on a 100×100 sensor grid to
forecast a single next timestep. To analyze spatial performance
across varying traffic conditions, we select four representative
cells, corresponding to (a) urban (b) suburban (c) rural and (d)
the cell with the maximum temporal variance (Figure 5). The
predicted versus actual traffic trajectories for all four cells are
shown in Figure 6.

The model achieved its lowest MAPE (8.49%) for the
urban cell, demonstrating strong performance in dense traffic
zones. Prediction accuracy remained stable for the suburban
cell (11.62% MAPE) with only minor deviations during peak
periods. The rural cell showed higher relative error (24.86%

0 10 20 30 40 50 60 70 80 90 10
0

0
10

20
30

40
50

60
70

80
90

10
0

(a)

(b)

(c)

(d)

200

400

600

800

1000

1200

1400

Tr
af

fic
 In

te
ns

ity

Figure 5. Selected cells from the Milan’s traffic network. The cells represent
different traffic patterns: (a) urban, (b) suburban, (c) rural, and (d) maximum
variance cell.

MAPE), where low absolute traffic volumes magnified per-
centage errors. Notably, the model maintained robust perfor-
mance (15.30% MAPE) for the high-variance cell despite
its extreme fluctuations, highlighting HiSTM’s capacity to
handle volatile temporal patterns while showing expected
limitations in sparse rural conditions where signal-to-noise
ratios are challenging. These performance differences reflect
the interaction between model complexity and regional traffic
characteristics: urban and suburban areas offer rich temporal
patterns and denser signals that align well with the model’s
spatiotemporal structure, whereas rural areas pose challenges
due to sparse activity and fewer recurring patterns. The high-
variance cell underscores the model’s ability to generalize to
non-stationary behavior, though peak underestimation suggests
further headroom for improvement in handling extremes.

C. Computational Efficiency Analysis

HiSTM achieves a better performance while requiring fewer
model parameters (Table IV). At 33.8K parameters (0.13
MB), it requires 18× fewer parameters than VMRNN-D
and 5.4× less than xLSTM while delivering faster inference
(1.19 ms) than all baselines, except xLSTM. Though its
multiply-accumulate operations (MACs, a standard metric
for computational workload) total 1.36 × 107—higher than

Table II
PERFORMANCE COMPARISON OF MODELS OVER MULTIPLE STEPS (AUTOREGRESSIVE FORECASTING). BEST MODEL INDICATED THROUGH BOLD FONT.

Step HiSTM STN STTRE xLSTM VMRNN-B VMRNN-D
MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM

1 3.87 9.54 0.9833 5.28 13.05 0.9742 4.21 9.83 0.9808 4.64 11.86 0.9759 5.11 13.75 0.9745 4.62 12.25 0.9777
2 4.38 10.95 0.9785 6.44 16.29 0.9615 4.88 11.45 0.9739 5.62 14.63 0.9639 5.08 13.85 0.9740 4.61 12.36 0.9772
3 4.85 12.06 0.9735 7.39 18.54 0.9490 5.47 12.73 0.9668 6.47 16.78 0.9509 6.06 16.33 0.9637 5.35 14.30 0.9698
4 5.56 13.42 0.9680 8.59 21.05 0.9335 6.27 14.12 0.9586 7.50 18.95 0.9356 6.83 17.64 0.9561 6.08 15.49 0.9641
5 6.09 14.62 0.9633 9.55 22.94 0.9196 6.88 15.28 0.9513 8.34 20.58 0.9217 7.45 18.91 0.9492 6.59 16.54 0.9591
6 6.69 16.02 0.9578 10.59 25.01 0.9033 7.54 16.60 0.9430 9.23 22.38 0.9064 8.24 20.38 0.9398 7.30 17.87 0.9520

Table III
SINGLE-STEP GENERALIZATION PERFORMANCE ON TRENTINO DATASET.

BEST MODEL INDICATED THROUGH BOLD FONT.

Model MAE ↓ RMSE ↓ R² Score ↑ SSIM ↑

STN 2.6344 7.6370 0.9116 0.9762
xLSTM 2.5974 8.9235 0.8793 0.9615
VMRNN-B 1.9751 6.6270 0.9334 0.9839
STTRE 1.8132 5.0050 0.9620 0.9903
VMRNN-D 1.5870 5.5754 0.9529 0.9885
HiSTM 1.3870 4.8134 0.9649 0.9916

Table IV
MODEL COMPARISON

Model Parameter
Count

Size
(MB)

GPU
(MB)

Inference
(ms) MACs

xLSTM 607,753 2.32 13.69 1.01 5.96× 105

VMRNN-B 137,282 0.52 9.77 8.16 2.06× 107

VMRNN-D 1,506,498 5.75 15.47 18.58 5.52× 107

STTRE 165,380 0.63 58.07 4.54 2.83× 107

STN 576,755 2.20 11.34 2.46 2.31× 106

HiSTM 33,794 0.13 10.63 1.19 1.36× 107

STN’s—HiSTM balances computational cost with accuracy,
achieving a MAC/MAE ratio 2.6× better than STTRE’s. This
efficiency-profile positions HiSTM as a practical solution for
resource-constrained deployment scenarios.

VI. CONCLUSION

In this paper, we presented HiSTM, a hierarchical spa-
tiotemporal model for efficient and accurate cellular traf-
fic forecasting. By combining dual spatial encoders with
a Mamba-based temporal module and an attention mecha-
nism, HiSTM captures complex spatiotemporal patterns with
minimal overhead. Experiments on real-world datasets show
that HiSTM demonstrates competitive performance, reducing
MAE by 29.4% compared to STN baseline while maintaining
computational efficiency. It generalizes well to the unseen
Trentino dataset and sustains lower errors over longer forecast
horizons. These results suggest HiSTM’s potential as an effi-
cient approach for cellular traffic prediction, though broader
validation across diverse network conditions would strengthen
deployment recommendations.

Future work will explore mixture-of-experts approaches to
better model spatially-clustered traffic patterns and kernel-to-
kernel forecasting to capture finer-grained temporal dynamics

100

150

200

250

300

350

400

450 (a)
MAPE: 8.49%

Actual Traffic
Predicted Traffic

20

30

40

50

60

70

80

(b)
MAPE: 11.62%

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(c)
MAPE: 24.86%

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8
Time

0

1000

2000

3000

4000 (d)
MAPE: 15.30%

Figure 6. Week-long traffic predictions from the HiSTM model across four
representative cells in Milan’s traffic network. The cells were selected to
represent different traffic patterns: (a) urban, (b) suburban, (c) rural, and (d)
maximum variance cell. Time is shown in days, with each day containing 144
readings (10-minute intervals)

across service types. We aim to investigate diffusion-based de-
coding strategies to enhance long-range predictive capabilities
and extend the model’s scope through different aggregation
strategies.

To strengthen generalizability, we will evaluate HiSTM on
diverse geographical datasets beyond Italy and implement
attention visualization for improved interpretability. We also
plan to address practical deployment challenges including

missing data handling, concept drift adaptation, and spatial
heterogeneity through adaptive weighting mechanisms.

ACKNOWLEDGEMENT

This work was partly funded by the Bavarian Government
by the Ministry of Science and Art through the HighTech
Agenda (HTA).

REFERENCES

[1] W. Shao, J. Wang, Z. Guo, M. Xu, and Y. Wang, “Spatial-temporal neural
network for wireless network traffic prediction,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 3, pp. 2104–2113, 2020.

[2] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control, 5th ed. Hoboken, New Jersey:
Wiley, 2015.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] H. Hachemi, V. Vidal, and K. Boussetta, “Towards real-time mobile
traffic prediction with fft-lstm,” in 2020 IEEE GLOBECOM, 2020.

[5] J. Wang and T. Zhang, “Gaussian process assisted lstm for 5g traffic
prediction,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2472–2485, 2020.

[6] B. Yu, H. Yin, Z. Zhu, and Q. Zhang, “Spatiotemporal graph neural
network for urban traffic flow prediction,” Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI), 2021.

[7] R. Gu, Q. Liu, X. Li, and Q. Zhu, “Glsttn: A global-local spatial-
temporal transformer network for traffic prediction,” IEEE Access, vol. 9,
pp. 152 323–152 334, 2021.

[8] A. Gu, T. Dao, A. Rudra, B. Recht, and T. B. Hashimoto, “Mamba:
Linear-time sequence modeling with selective state spaces,” arXiv
preprint arXiv:2312.00752, 2024.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1724–1734.

[10] X. Ma, J. Zhang, and X. S. Shen, “Traffic prediction for mobile networks
using machine learning: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2141–2169, 2019.

[11] Y. Li, L. Duan, H. Liu, and X. Wang, “A survey on deep learning
techniques in wireless resource allocation for 5g and beyond,” IEEE
Wireless Communications, vol. 28, no. 5, pp. 152–159, 2021.

[12] L. Chen, T.-M.-T. Nguyen, D. Yang, M. Nogueira, C. Wang, and
D. Zhang, “Data-driven c-ran optimization exploiting traffic and mobility
dynamics of mobile users,” IEEE Transactions on Mobile Computing,
vol. 20, no. 5, pp. 1773–1788, 2021.

[13] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” in Advances in Neural Information Processing
Systems, vol. 28, 2015.

[14] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using deep
spatio-temporal neural networks,” in Proceedings of the 25th Annual
International Conference on Mobile Computing and Networking, 2019,
pp. 1–15.

[15] I. Narmanlioglu and A. Cicek, “Multi-component spatio-temporal mod-
eling for cellular traffic forecasting,” IEEE Access, vol. 10, pp. 12 771–
12 784, 2022.

[16] C. Borcea, J.-M. Gorce, and M. Duflot, “Stgcn-ho: Handover-aware spa-
tiotemporal graph convolutional network for mobile traffic forecasting,”
IEEE Transactions on Mobile Computing, 2023.

[17] S. Aziz, L. Hu, and Z. Han, “Dstl: Dual-step transfer learning for
spatiotemporal 5g traffic forecasting,” IEEE Transactions on Network
and Service Management, 2025, to appear.

[18] S. Mehrabian, L. Jiang, and S. Lee, “A-gamba: Adaptive graph mamba
network for 5g spatiotemporal traffic forecasting,” IEEE Transactions
on Mobile Computing, 2025, to appear.

[19] M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova,
M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter,
“xlstm: Extended long short-term memory,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.04517

[20] A. Deihim, E. Alonso, and D. Apostolopoulou, “Sttre: A spatio-
temporal transformer with relative embeddings for multivariate time
series forecasting,” Neural Networks, vol. 168, pp. 549–559, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608023005361

[21] Y. Tang, P. Dong, Z. Tang, X. Chu, and J. Liang, “Vmrnn: Integrating
vision mamba and lstm for efficient and accurate spatiotemporal
forecasting,” 2024. [Online]. Available: https://arxiv.org/abs/2403.16536

[22] G. Barlacchi, M. D. Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of milan and the province of
trentino,” Scientific Data, vol. 2, p. 150055, 2015. [Online]. Available:
https://www.nature.com/articles/sdata201555

[23] S. M. Pincus, “Approximate entropy as a measure of system complexity,”
Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp.
2297–2301, 1991.

[24] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of the American
Statistical Association, vol. 74, no. 366a, pp. 427–431, 1979.

[25] Z. Bettouche and K. Ali, “Histm: Hierarchical spa-
tiotemporal mamba,” https://github.com/ZineddineBtc/
HiSTM-Hierarchical-Spatiotemporal-Mamba, 2025.

https://arxiv.org/abs/2405.04517
https://www.sciencedirect.com/science/article/pii/S0893608023005361
https://www.sciencedirect.com/science/article/pii/S0893608023005361
https://arxiv.org/abs/2403.16536
https://www.nature.com/articles/sdata201555
https://github.com/ZineddineBtc/HiSTM-Hierarchical-Spatiotemporal-Mamba
https://github.com/ZineddineBtc/HiSTM-Hierarchical-Spatiotemporal-Mamba

Predicting Performance Metrics in Edge-Cloud
Networks using Graph Neural Networks

Christian Maier, Nina Großegesse, Felix Strohmeier
Salzburg Research Forschungsgesellschaft mbH
<firstname.lastname@salzburgresearch.at>

Abstract—This paper explores the application of Graph Neural
Networks (GNNs) for predicting performance metrics in edge-
cloud networks. By modeling the edge-cloud network as a graph,
where nodes represent devices, and edges represent communica-
tion links, GNNs effectively capture the complex interdependen-
cies and interactions within the network. We demonstrate that
GNNs can accurately predict key performance metrics such as
latency and jitter, using data from real network conditions. Our
findings highlight the potential of GNNs to enhance performance
monitoring and optimization in edge-cloud environments, paving
the way for more efficient resource management and energy-
efficiency.

Index Terms—Graph Neural Networks, Edge-Cloud-Networks,
Performance Prediction

I. INTRODUCTION

Machine learning models as digital twins in network man-
agement take the state of the network as input and produce
predictions of performance metrics in the network as output.
In the context of edge-cloud networks, important metrics are
end-to-end latency, jitter and packet-loss of packet flows. This
performance prediction is intended to replace measurements
or estimation by simulations, as these are usually associated
with considerable effort (in terms of network overhead or
computing time).

The prediction of performance metrics can be done with
a variety of different machine learning models, like decision
trees or artificial neural networks. A common approach in the
literature is the prediction of network performance metrics
using Graph Neural Networks. GNNs have emerged as a
powerful tool for predicting performance metrics in com-
munication networks due to their ability to model complex
relationships and dependencies among network components.
By representing the network as a graph, where nodes cor-
respond to devices or network elements and edges represent
connections or interactions, GNNs can effectively capture the
topological structure and dynamic behaviour of the network.

Recent studies have demonstrated that GNNs can predict
various performance metrics, such as latency, throughput, and
packet loss, by learning from historical data and network
configurations. Their capacity to incorporate both node fea-
tures (e.g., bandwidth, processing power) and edge features
(e.g., link quality, distance) allows for a more nuanced un-

This work has been partly funded by the Austrian Federal Ministry of
Innovation, Mobility, and Infrastructure (BMIMI) and the National Austrian
Funding Agency (FFG).

derstanding of how different factors influence overall network
performance.

Additionally, GNNs can generalize well to unseen network
topologies, making them suitable for real-time applications
where network conditions may change frequently. This adapt-
ability, combined with their ability to process large-scale
data efficiently, positions GNNs as a promising approach for
enhancing the performance prediction capabilities in modern
communication networks, particularly in scenarios involving
dynamic and heterogeneous environments (which is particu-
larly the case for edge cloud networks).

Training a GNN to predict performance metrics in commu-
nication networks typically involves several steps. First, the
network is represented as a graph, where nodes correspond
to network elements (such as routers and switches) and edges
represent the connections between them. Each node and edge
is associated with features that capture relevant information,
such as bandwidth and traffic load. For GNNs, it is not relevant
to have a complete picture of the underlying network including
all components, but only for those nodes and links that shall
be analysed.

The training process begins with the collection of historical
performance data, which serves as the ground truth for the
metrics to be predicted. This data is used to create labelled
training samples, where the input consists of the graph struc-
ture and associated features, while the output corresponds to
the performance metrics (e.g., latency, throughput).

During training, the GNN learns to aggregate information
from neighbouring nodes and edges through multiple layers
of message passing. This process allows the model to capture
both local and global patterns in the graph. The GNN is
typically trained using supervised learning techniques, where
a loss function (such as mean squared error) measures the
difference between the predicted metrics and the actual values
from the training data. Optimization algorithms, such as Adam
or stochastic gradient descent, are employed to minimize this
loss function by adjusting the model parameters.

Once trained, the GNN can be evaluated on a separate vali-
dation dataset to assess its predictive performance. Fine-tuning
may be performed to improve accuracy, and the model can be
deployed for real-time predictions in dynamic communication
environments, adapting to changes in network conditions as
new data becomes available. Overall, the training of GNNs
for performance metric prediction leverages the unique graph
structure of communication networks to enhance prediction

accuracy and efficiency.
The remainder of the paper is structured as follows. Sec-

tion II surveys related work on performance prediction with
machine learning approaches. Section III gives an overview
of the background (both on the used measurement framework
and on GNNs), Section IV provides a detailed description
of the methodology and Section V presents the results of
our evaluation. Finally, Section VI concludes the paper and
provides an outlook to future work.

II. RELATED WORK

Performance metrics in edge cloud networks have attracted
a lot of attention in recent years due to the increasing demand
for low latency applications and the proliferation of Internet
of Things (IoT) devices. Various studies have investigated
different aspects of performance measurement, focusing on
latency, bandwidth, reliability and resource utilization.

One of the pioneering works in the domain of predicting
performance metrics of communication networks by a machine
learning model which takes the graph structure of the network
into account is by Rusek et al. [12]. They introduced a GNN-
based framework called RouteNet for network performance
prediction and demonstrated that GNNs could effectively
capture the spatial and temporal dependencies in network
data, leading to improved accuracy in predicting latency
and throughput compared to traditional machine learning ap-
proaches. Their experiments showed that GNNs outperformed
baseline models by leveraging the graph structure to learn
from both node features and connectivity patterns. Building
on this, there is a lot of further work that refine the RouteNet
model (e.g. [5], [4]) and thus further improve accuracy of
the predictions. In another significant contribution, Dai et
al. [3] explored the use of GNNs for multi-task learning
in communication networks. However, all these studies use
simulation data and do not consider edge cloud networks in
particular.

Furthermore, recent advancements have focused on integrat-
ing GNNs with reinforcement learning techniques to optimize
network performance dynamically. For instance, Li et al. [8]
developed a GNN-based reinforcement learning model that
predicts performance metrics while simultaneously optimizing
routing decisions in real-time. Their approach showcased the
potential of combining predictive modelling with decision-
making processes, leading to enhanced network efficiency and
reduced latency. Li et al. [9] propose a distributed scheduler
based on GNNs an reinforcement learning for edge clusters
that minimizes the total completion time of ML tasks through
co-optimizing task placement and fine-grained multi-resource
allocation

III. BACKGROUND

This section provides background information about the
used performance measurement framework and about GNNs.

A. Performance Measurement Framework

Measuring performance on the network (IP) and transport
(TCP/UDP) level can be done by various available tools (e.g.
iperf3 [7], wireshark [6], ping [10]) and according to various
metrics, such as IP performance metrics (IPPM), round-trip
time (RTT), round-trips per minute (RPM), throughput or
topology. Our approach to performance measurement is to
use the MINER infrastructure as programmable orchestration
framework [2]. MINER is a distributed Java application, where
so-called ”Toolproxies” are passively waiting for execution
orders from a centralised measurement application. Com-
munication between the nodes may be secured by a VPN.
All configuration parameters are defined by the measurement
application, which schedules the execution as soon as all the
involved measurement tools are ready to run. Measurement
tools can be standard tools integrated by the Toolproxy, or
Miner-specific tools, such as the ”IPPMTool”. During and/or
after the measurement execution, the results are collected,
so that follow-up measurement analytics can take place cen-
tralised after the run.

After investigating different performance metrics and study-
ing the related work in Section II, we considered latency,
jitter, packet loss and throughput as the most relevant metrics
in the edge-cloud continuum. For the analyses performed
in this paper we measured latency, jitter on application and
packet level, as well as packet loss by generating active UDP
measurement flows with constant bitrates, using the Miner
IPPMTool [2]. To receive a proper variation of measurement
results, different packet sizes and rates are selected before
starting the measurement flows.

B. Graph Neural Networks for Homogeneous Graphs

GNNs are machine learning models, which are made to
process data in the form of graphs appropriately. Here, a graph
is a mathematical object, consisting of nodes and (directed or
undirected) edges between them. A frequently occurring task
is the determination of quantities yv ∈ R which are assigned
to individual nodes v. In the context of a communication
network, the nodes of the graph are typically the devices of
the network, the edges represent communication links and
a common quantity of a node is for example the utilization
of a queue of the represented device. The task of a generic
GNN can then be subdivided into two subtasks: First, a hidden
state vector hv needs to be computed for each node v. This
vector hv lies in some chosen state space Rm of dimension
m and consists of information on the state of v at some
level of granularity. It is computed by an iterative message
passing scheme: After an initialisation of hv with node-level
features related to v, each node sends its state to all of its
neighbours. Hence, each node v receives a certain number
of states hv1 , . . . , hvk , where k is the number of neighbours
of v. These states, together with the state hv of v itself, are
converted into an aggregated message mv:

mv =

k∑
i=1

M(hv, hvi) (1)

by a message function M : Rm × Rm → Rn. The dimension
n of the codomain of M is again a chosen value. Using this
aggregated message, an update function U : Rm ×Rn → Rm

computes a new hidden state U(hv,mv) for each node v. This
message passing is repeated T times until the states of all
nodes have (approximately) reached stationary values. Then,
secondly, a readout function R : Rm → R computes yv for
each node v by applying R to hv .

A generic GNN thus essentially consists of three functions:
M , U and R. The mapping rules of these functions are given
by the application of certain independent neural networks (like
feed forward or recurrent neural networks). This justifies the
name GNN and allows the execution of a training process:
The internal parameters of the neural networks are updated via
supervised learning in order to compute the target quantities yv
accurately. To achieve this, instances of graphs together with
the target quantities yv for all nodes have to be provided. Note
that the way in which such a generic GNN is modelled enables
an application to graphs of different sizes and structures (both
during training and predicting).

Further details on this generic GNN architecture can be
found in the literature [1, 11] and in the references provided
there. Many GNN models deviate from the architecture of
standard GNN models. Particularly, they consider heteroge-
neous graphs as input (i.e. with various types of nodes),
and build a double message-passing phase to exchange the
information between the different element types. In the next
subsection we recall this architecture.

C. Graph Neural Networks for Heterogeneous Graphs

Heterogeneous graphs are graphs which consist of nodes of
different types. For simplicity, we only consider heterogeneous
graphs with nodes of two types A and B. The message passing
explained in the previous subsection is then adapted to a so-
called 2-stage message passing phase: In the first stage, nodes
of type A send their messages to all nodes of type B to which
they are connected. This is done in the same way as explained
above. This results in updates of the hidden state vectors for
all nodes of type B. After that, all nodes of type B send their
messages to the nodes of type A, which the updates the states
of the type A nodes. Notice that the message functions and
update functions can be different for the two stages in the
message passing phase. The readout function is then usually
only applied to the nodes either of type A or of type B. In our
approach (which we outline below), the nodes of the graphs
correspond to links and flows in the physical network. Thus we
will have two types of nodes. The readout function will then
only be applied to nodes which correspond to flows, since we
are eventually interested in calculating performance metrics of
flows (mean latencies, mean jitter and packet loss).

IV. METHODOLOGY

This section describes our hardware testbed, the dataset
which we created from this testbed, the architecture of our
ML model and the approach taken in the training process.

Fig. 1. Hardware testbed

A. Hardware Testbed

An overview diagram of our hardware setup is shown in
Fig. 1. It consists of two local edge networks, one using
5G, the other one using Wi-Fi equipment. The 5G edge
network is built using a 5G indoor base station located in our
laboratory, connected to its 5G core located at the telecom
provider premises. Two measurement endpoints are connected
via wireless access routers to the indoor base station, a third
measurement endpoint is installed in the 5G core. Measure-
ment traffic flows are generated between all three nodes in
both directions. More details on the measurements itself are
available in Section IV-B.

The other edge network built on 5GHz-Wi-Fi-Technology
(”Wi-Fi 5”), which also has three MINER measurement points
installed. All measurement nodes are located in our laboratory,
two on wireless nodes, and one node connected by wire to the
wireless router. Also in this part of the network, measurement
traffic flows are generated between all three nodes in both
directions.

To be more precise, for each ordered pair of measurement
points from the same local network, a packet flow with packets
of constant size and constant inter packet time between two
packets is generated. Each of the local edge networks is
connected to the cloud node via an intermediate on-premise
node.

B. Dataset

To create a dataset in our hardware testbed, we use the fol-
lowing approach: We randomly choose packet sizes and inter
packet times for each packet flow in our local edge networks.
Since there are six packet flows in each local network, this

Fig. 2. An example data sample from a measurement in the local 5G-network.
The nodes of the communication network are the nodes of the graph. The
links of the graph are the packet flows in the communication network. For
each packet flow, the parameters (packet size s and inter-packet-time t) are
summarized in the list fe = [s, t].

results in twelve parameters for each measurement. The packet
sizes are varied from 300 to 1500 Bytes and the packet rates
between 10 and 100 packets per second resulting in bitrates
of 20 to 1200 kbps for the measurement flows. The chosen
packet sizes and inter packet times define the configuration of
the network traffic. For each configuration, we measure the
performance metrics explained in Sec. III (i.e. latency, jitter
and packet loss, where latency and jitter are measured both on
application and on packet level) for a measurement interval of
10 seconds, where we then use the mean value for latency and
jitter. The data set is then saved as a JSON file. An example
data sample is shown in Fig. 2.

Our data set in the 5G network consists of measurements
from February 26, 2024 to December 31, 2024. Every day
between 9 p.m. and 5 a.m., a ten-second measurement was
taken every 4 minutes. We only took measurements at night
and only every four minutes, because other measurements
are taken in this network during the day and in other time
slots (which are not relevant for this paper). As some of the

measurements failed (for various reasons, e.g. power outages
or disruptions in the 5G network), the pre-processed data
does not contain a measurement result for every resulting
measurement time.

For organizational reasons, the measurements in the Wifi-
network ran from 22 May, 2024 to 31 December, 2024. The
time between two measurements was also 4 minutes here (to
be consistent with the 5G measurements), but measurements
were taken throughout the whole day (to obtain a data set
similar in size to that in the 5G network).

For each measurement and each transmitted packet, we
saved the latency and jitter (both at Pcap and application level)
and whether the packet was successfully transmitted. We thus
obtained five time series for each packet flow. From these time
series, we calculate statistical mean values for the latency and
jitter. Fig. 3 and Fig. 4 shows an example of a histogram of
the measurement results both for the 5G network and the WiFi
network. For this calculation, however, we have neglected the
first and last second of the respective time series (in order not
to take into account any transient behaviour)

Since we did not have access to the 5G core, there is a
synchronization issue in our latency measurements in the 5G
network. However, this is irrelevant for our investigations. Syn-
chronization of the computers in the laboratory takes place via
their own network to a local, GPS-synchronized time server,
not via the “network under test”. The core was synchronized
to an external time server. In general, synchronization is only
important for one-way-delay measurements.

C. Architecture

We use a graph neural network model to predict per-
formance metrics of packet flows in edge-cloud networks,
cf. Fig. 5. As already explained, the packet flows consist
of packets of constant size with constant inter-packet times
between two packets.

The structure of the used 2-stage Graph neural network
model is as follows: The nodes of the graph correspond to
links and flows in the data set. This means that the graphs
which we consider consist of nodes of two types: links and
flows. For each link, there is a directed edge to each flow
which uses this link. For each flow, there is a directed edge
to each link which is used by this flow. Observe that the links
of the first type are unordered, while the links of the second
type are ordered (in the order in which the flow passes the
individual links).

The architecture of the graph neural network is based on
a two-stage message passing as described in Sec. III. The
dimension of the hidden state vector space is 16. The message
function is given by M(hv, hw) = hw for both stages, i.e.
nodes simply send their hidden state to the nodes in their
neighbourhood. The update function for updating states of
links is a feed forward neural network with two hidden layers,
each one consisting of 16 neurons with RELU activation
functions. The update function for flow updates is a recurrent
neural network consisting of GRU cells. The message passing
is repeated for T = 4 times. The readout function is a feed

Fig. 3. Histograms of the measurement data of latency on application level in the 5G local network

Fig. 4. Histograms of the measurement data of latency on application level in the WiFi local network

Fig. 5. Overview of the approach

forward neural network as well and with the same structure
as the update function for links.

D. GNN Training

For the implementation of the GNN model, we used the
iGNNition framework. iGNNITION is a TensorFlow-based

framework for fast prototyping of GNNs. It provides a codeless
programming interface, where users can implement their own
GNN models in a YAML file. IGNNITION also incorporates
a set of tools and functionalities that guide users during the
design and implementation process of the GNN.

V. EVALUATION

We evaluated the following scenarios: (A) One GNN model
for each local edge network and (B) a common GNN model
for both edge networks. For scenario (A), each model is only
trained with the data from the corresponding edge network. For
scenario (B), we use the whole data (both from the 5G network

and from the Wifi-Network) to train the model. In both
scenarios, data was scaled in a preprocessing. The training of
the two separate GNN models for each local network reached
a satisfying performance for both latency and jitter prediction.
For example, Fig. 6 shows the training process where the GNN
model is trained to predict the latency on application level in
the 5G network. For the other metrics we achieved similar
results (both in the 5G and in the Wi-Fi network).

Fig. 6. Loss function of the GNN-model trained for predicting latency on
application level in the local 5G network. The GNN-model for the local Wifi
network achieved a similar performance.

However, as soon as we tried to train a joint model for both
networks, we did not achieve sufficient performance (even with
various attempts to tune the hyperparameters). Our explanation
for this is that the distributions of the data in the two networks
are too different (as can be observed for example from the
graphs Fig. 3 and Fig. 4). Even scaling the data has not brought
any improvement so far.

VI. CONCLUSION

This paper illustrates the significant potential of Graph Neu-
ral Networks as a powerful tool for performance prediction and
network management in edge-cloud systems. By leveraging
the inherent graph structure of these networks, GNNs provide
accurate insights into critical metrics like latency and jitter, en-
abling more informed decision-making for resource allocation
and optimization. The results underscore the promise of GNN-
based approaches to advance the efficiency, reliability, and sus-
tainability of edge-cloud infrastructure, ultimately contributing
to more responsive and energy-efficient network environments.
However, so far we have only achieved sufficient performance
in a simple scenario (one machine learning model for each
local network). We will continue to try to train a joint
model for both local networks in the future. It would also be
interesting to consider other metrics (such as energy efficiency)
as well, or to consider more complex network scenarios.

REFERENCES

[1] Guillermo Bernárdez, José Suárez-Varela, Albert López,
Bo Wu, Shihan Xiao, Xiangle Cheng, Pere Barlet-Ros,

and Albert Cabellos-Aparicio. Is machine learning ready
for traffic engineering optimization? IEEE International
Conference on Network Protocols (ICNP), 2021.

[2] Christof Brandauer and Thomas Fichtel. Miner-a mea-
surement infrastructure for network research. In 2009
5th International Conference on Testbeds and Research
Infrastructures for the Development of Networks & Com-
munities and Workshops, pages 1–9. IEEE, 2009.

[3] Yueyue Dai, Xiaoyang Rao, Bruce Gu, Youyang Qu,
Huiran Yang, and Yunlong Lu. Graph learning-based
multi-user multi-task offloading in wireless computing
power networks. IEEE Internet of Things Journal, 2025.

[4] Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-
Varela, Krzysztof Rusek, Shihan Xiao, Xiang Shi, Xi-
angle Cheng, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. Routenet-fermi: Network modeling with graph
neural networks. IEEE/ACM transactions on networking,
31(6):3080–3095, 2023.

[5] Miquel Ferriol-Galmés, Krzysztof Rusek, José Suárez-
Varela, Shihan Xiao, Xiang Shi, Xiangle Cheng,
Bo Wu, Pere Barlet-Ros, and Albert Cabellos-Aparicio.
Routenet-erlang: A graph neural network for network
performance evaluation. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications, pages 2018–
2027. IEEE, 2022.

[6] Wireshark Foundation. Wireshark: The world’s foremost
network protocol analyzer. https://www.wireshark.org/,
1998. Accessed: 2025-05-28.

[7] The iPerf Development Team. iperf3: A tcp, udp, and
sctp network bandwidth measurement tool. https://iperf.
fr/, 2014. Accessed: 2025-05-28.

[8] Kai Li, Wei Ni, Xin Yuan, Alam Noor, and Abbas
Jamalipour. Deep-graph-based reinforcement learning for
joint cruise control and task offloading for aerial edge
internet of things (edgeiot). IEEE Internet of Things
Journal, 9(21):21676–21686, 2022.

[9] Yihong Li, Xiaoxi Zhang, Tianyu Zeng, Jingpu Duan,
Chuan Wu, Di Wu, and Xu Chen. Task placement
and resource allocation for edge machine learning: A
gnn-based multi-agent reinforcement learning paradigm.
IEEE Transactions on Parallel and Distributed Systems,
34(12):3073–3089, 2023.

[10] Mike Muuss. The PING program. https://ftp.arl.army.m
il/∼mike/ping.html, 1983. Accessed: 2025-05-28.

[11] David Pujol-Perich, José Suárez-Varela, Miquel Ferriol,
Shihan Xiao, Bo Wu, Albert Cabellos-Aparicio, and Pere
Barlet-Ros. IGNNITION: Bridging the gap between
graph neural networks and networking systems. IEEE
Network, in press, 2021.

[12] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere
Barlet-Ros, and Albert Cabellos-Aparicio. Routenet:
Leveraging graph neural networks for network modeling
and optimization in sdn. IEEE Journal on Selected Areas
in Communications, 38(10):2260–2270, 2020.

https://www.wireshark.org/
https://iperf.fr/
https://iperf.fr/
https://ftp.arl.army.mil/~mike/ping.html
https://ftp.arl.army.mil/~mike/ping.html

State Cloning with the GraphLearner
1st Timothy Harrison

Lehrgebiet Kommunikationsnetze
University of Hagen

Hagen, Germany
timothy.harrison@fernuni-hagen.de

2nd Herwig Unger
Lehrgebiet Kommunikationsnetze

University of Hagen
Hagen, Germany

0000-0002-8818-3600

Abstract—This paper introduces the Cloned GraphLearner,
a neuromorphic sequence generation model that mitigates state
aliasing in high-order Markov chains through a lightweight,
iterative state cloning procedure. Starting from the original
GraphLearner, which stores variable length histories in a Graph
Structured Bloom Filter, the algorithm successively creates layers
of cloned states whose identity and inter-clone edges index
increasingly long context windows while an oblivion rule bounds
growth. When trained with action-observation sequences the
resulting Cloned GraphLearner acts as a topographic schema
with individual clones firing in context specific patterns that
resemble hippocampal place cell activity.

Index Terms—Bloom Filters, Neuromorphic Computing, Place
Cells, Markov Models, Transfer Learning

I. INTRODUCTION

The GraphLearner is a neuromorphic machine learning
algorithm for sequence generation inspired by Hawkins and
Mountcastle’s studies of the neocortex [1] [12]. Its behavior is
readily human-explainable and it can be trained in an online
manner. The GraphLearner works by estimating high order
Markov Chains, using Counting Bloom Filters to dynamically
weight first order edges of a sequence graph with higher order
sequences [5] [6]. However it suffers from issues of state
aliasing when observed states are ambiguous. To alleviate
this a process of state cloning is introduced, where nodes
of the GraphLearner are cloned based on context provided
by the state sequences stored on their edges. The resulting
Cloned GraphLearner is capable of learning spacial and net-
work topologies, with individual clones mapping to consistent
spacial ranges even in novel environments.

This behavior is notably neuromorphic, with clone behavior
resembling that of place cells in the brain. To demonstrate this
the 1996 rodent place cell experiments of O’Keefe and Burgess
[14] are simulated with the Cloned GraphLearner. These
simulations demonstrate the topographic learning capabilities
of the Cloned GraphLearner.

II. RELATED WORK

A. Bloom Filters

Bloom Filters are designed to store sets which are too
large to store in memory, such as usernames on social media
websites [3] [4]. They can test for set occupancy with a
guarantee of no false negatives and a controllable false positive
rate. A Bloom Filter consists of a bit array of m bits, initially
all set to 0, and k unique hash functions, which map to

locations on the array [3] [4]. This array can be stored on the
harddrive and still accessed in O(1) time. When an element
is added to the filter it is passed through the k hash functions
mapping it to k locations on the array all of which are set to
1. To test if an element exists in a set this process is reversed
with an element existing in the set only if all k of its hash
mappings return a 1. It is possible for the k hash mappings of
an element to be assigned a 1 from other elements. In such a
case a false positive occurs where the element is incorrectly
considered part of the set. The chance of a false positive
occurring depends on m, k, and the number of elements stored
into the filter n.

If the Bloom Filter stores integer values instead of bits and
iterates hashmappings by 1 every time an element is added
then it becomes a Counting Bloom Filter [5]. Such filters
provide an estimated count of each item added to the filter
with a risk of false counts similar to the false positive risk.

B. The GraphLearner

The GraphLearner can be characterized as a Graph Struc-
tured Counting Bloom Filter where the first order edges of a
sequence graph structure the filter. In other words each edge
of the sequence graph has its own associated filter. This is
depicted in Figure 1. These edge filters store training histories
which then provide a dynamic edge weights based on the
stored count of a given sequence. This means a high order
Markov chain probability can be calculated by searching only
the first order edges of the last element of an input sequence.
In other words the probability of choosing an edge e for an
input sequence S is:

P (e) =
Be

c (S)∑
e′∈E Be′

c (S)
(1)

Where Be
c (S) is the count returned by the Bloom Counter

associated with edge e and E is the set of all edges of the last
element of S.

During training sequences of length h, the maximum history
length, are stored in appropriate edge filter. For added flexi-
bility padded or shortened sequences are also stored. Thus
the GraphLearner can estimate a Markov Chain distribution
for any input sequence of h or shorter, with a sequence of
length 1 defaulting to a first order probability. When generating
new elements for an input sequence the GraphLearner initially
searches with the h most recent elements of the input and

iteratively shortens the search until a non-zero P (e) can be
calculated, i.e. when at least one edge matches the search.

If stored with traditional transition matrices these High
Order Markov Chains would require O(nh+1) worst case
space complexity, where n is the number of unique states. This
becomes prohibitively large for higher values of h. By contrast
the GraphLearner can estimate the same Markov Chains with
just O(n) references in RAM.

Fig. 1. The original GraphLearner: a Graph Structured Bloom Filter. Edge
colors correspond to sections of the structured filter, equivalent to having a
filter on each edge. Padded histories of max length h are stored in these filters.
The counts returned by the filters for a given h or shorter input then provide
dynamic weights which can estimate an h-order Markovian P (e).

C. State Aliasing and Dynamic Markov Modeling

Markov Models like the GraphLearner suffer from problems
of state aliasing where a single observable state results from
multiple distinct states. For example, in natural language
homonyms like ”mouse” or ”bark” have multiple meanings
which can only be distinguished with further context.

Dynamic Markov Modeling [11] resolves this issue by cre-
ating clones of states from first order information. However the
greedy, first order nature of Dynamic Markov Modeling often
results in an unsustainable explosion of clones. To resolve this
Cloned Hidden Markov Models (CHMM) [18] dynamically
merge clones of a given state. In the context of action-state
sequence modeling CHMMs are know as Clone Structured
Cognitive Graphs (CSCG) [10] due to their similarity to
schema networks [17]. The clones of CSCGs are accessed or
fired in patterns resembling those of place cells in the brain.
However to achieve efficiency CHMMs and CSCGs must fix
an upper bound on the number of possible clones of each state.

D. Place Cells and Cognitive Mapping

To perform complex tasks the brain forms cognitive maps
[16]. One of the key components of these maps are place
cells [13]. Place cells are hippocampal cells which trigger
at specific locations in an environment given appropriate
observations. As such the firing patterns of place cells encode

for spacial topography. Importantly they can fire ahead of time
in anticipation of future observations, enabling hippocampal
replay. As such, they are important in the planning of actions
and complex behaviors.

Place cells specifically occur in the hippocampus but similar
structures have been discovered across the brain, including in
the neocortex [15].

O’Keefe and Burgess’ expanding box experiment [14]
demonstrated that place cell firing patterns corresponded to en-
vironmental topographic features, even in novel environments.
In this experiment rats were placed in a small square box and
given time to learn this environment. The sides of the box were
then extended to form three additional environments, a vertical
and horizontal rectangle, and a larger square. Place cells which
fired at given locations in the small square continued to fire
at similar locations in the morphed environments, however
in some cases their firing fields were stretched or distorted.
However even with these distortions they continue to provide
meaningful spacial information, enabling generalization across
common environments.

III. THE CLONED GRAPHLEARNER

The GraphLearner was originally developed for natural
language, generating new words and characters from inputs.
However it can also be used to control agents when used with
action-observation sequences. In this case the GraphLearner is
trained on an alternating series of actions and their correspond-
ing observations from a chosen environment. Observations and
actions are both treated as states of this sequence. As a result
the trained GraphLearner can take an action-observation input
ending in an observation and chose an appropriate next action
for the agent it controls. Similarly if fed a sequence ending in
an action the GraphLearner can predict the next observation,
providing a feedback measure of how well it understands its
environment.

If trained correctly the GraphLearner forms a simple,
transferable schema describing its environment. Unfortu-
nately if that environment has multiple unaliased states the
GraphLearner will treat them all identically. In theory a large
enough h value can distinguish these states but this method
fails when exploring modified environments. Even when those
modifications are minor they force the GraphLearner to match
shortened sequence histories. In other words the GraphLearner
struggles to generalize across common environments because
it can no longer rely on precise training histories in these
cases. This problem inspired the creation of the Cloned
GraphLearner, one layer of which is depicted in Figure 2.

Ideally clones are formed for each distinct state of the
training environment, however even when they are not so
precise the path taken through successive clones preserves
contextual information which might otherwise be lost, such
as when the exploration environment is not a precise copy of
the training environment.

Creating these clones follows a simple process:
1) Train the GraphLearner as before with a given training

sequence T and history length h0.

A B C

a0

a1

a2

b0

b1

c0

c1

c2

c3

Fig. 2. Part of a Cloned GraphLearner with 1 layer of clones. In (Squares) the
original GraphLearner nodes. In (Circles) their clones. Intuitively the paths
through these clones can represent more complex historical context than the
first order edges of the original nodes. Note: edge (A,C) of the original
GraphLearner is not depicted but is implied by the edges connecting clones
of A to clones of C. The number of clones implies the existence of other
edges.

2) Iterate through T a second time, creating clones with
identity edges linking them to original node storing h0

length sequences.
3) Optionally remove clones which fall under some obliv-

ion threshold.
4) Iterate through T once more connecting clones to clones,

creating clone edges which store longer padded histories
of max length h1.

5) Repeat steps 2 through 4 with increasing history lengths,
hn and hn+1, creating new layers of clones from previ-
ous layers.

Alternatively it is possible for steps 2 and 4 to be merged, with
clones identified and connected to their successors during the
same pass of T , followed by oblivion thresholding. However
this complicates the oblivion process as all clone to clone
edges connecting a deleted clone must also be removed.

Once clones are created and connected the new Cloned
GraphLearner generates new sequence elements by following
clone to clone edges in the highest possible layer. The cloning
and generation processes are described in detail in the follow-
ing sections.

A. The First Layer of Clones

The following section details the first round of cloning
and connecting where clones are created from the nodes of
the original GraphLearner and then connected. These layer 1
clones will be indexed with h0-length sequences, stored on
identity edges, and the edges between these clones will store
h1 max length padded histories. Since this process is repeated
at each round of cloning Figure 4 refers to hn and hn−1 the
history and indexing lengths of the n-th round of cloning.

1) Creating Clones: During cloning each h0-length sub-
sequence S from the training sequence T is matched to an
appropriate clone. For a given S ending in state A the subset

of A’s edges which match S defines the appropriate clone of
A: aS . This is depicted in Figure 3. An identity edge, with
associated Bloom Filter, links A to aS . Sequence S is stored
on this identity edge (A, aS), along with all other sequences
which match aS’s edge subset. Subsequences which match on
all edges of A will also have a clone.

In theory T can be a different sequence from the original
training sequence so long as it comes from the same underly-
ing distribution, e.g. a separate random walk through the same
environment.

A i

B

C

D

aS

Fig. 3. Clone aS (Red) is created when a given input sequence only occurs
on a subset of A’s edges (Red), in this case (A,B) and (A,C). A will have
an identity edge from it to aS which stores all h0-length sequences matching
this edge subset.

2) Connecting Clones: Once clones have been created they
must be connected. This process requires two history lengths,
h0 the length of sequences stored on identity edges, and h1 the
maximum length of sequences to be stored on clone to clone
edges. The cloning sequence T is traversed again, connected
clones are identified from successive h0-length sequences
and h1-length histories are trained onto their edges. As with
the original GraphLearner these h1 histories are padded so
appropriate sequences of length h1 − 1, h1 − 2, ... ,1 are also
stored. Figure 4 depicts the clone connecting process for a
section of T .

B. Clones of Clones

Once one layer of clones has been created and connected
a new layer can be created. This process can be repeated
as desired, following the same cloning rules outlined the
previous sections, now using subsets of clone to clone edges
to define new clones of clones. The edges between these
clones of clones then store new longer sequence histories
with each successive layer increasing the stored history length.
Importantly identity edges will always link from the original,
observed states of the GraphLearner to their respective clone.

If clone layer n was accessed with identity edges storing
sequences of length hn−1 and contained clone to clone edges
storing max histories of length hn then layer n + 1 will be
indexed with identity edges containing sequences of length hn

and the edges in layer n+1 will store max histories of length
hn+1, and so on.

The only major difference from the first round of clone
creation is that clones of layer n − 1 must first be identified

W X Y Z C D E A B

A B

a b

Fig. 4. The connecting process for two layer n clones of A and B: a and b,
depicting edges and their corresponding state subsequences for a section of
the training sequence. In (Blue) the hn−1-length sequence which matches on
the identity edge (A, a) also in (Blue). In (Green) the hn−1-length sequence
which matches on the identity edge (B, b) again in (Green). In (Red) the hn-
length sequence which is trained onto edge (a, b) in (Red). Here the clones a
and b are identified from their respective subsequences CDEA and DEAB
and the longer history XY ZCDEA is stored on the edge between them,
along with padded or shortened histories Y ZCDEA, ZCDEA, etc.

by searching the appropriate identity edges before they can be
used to create the clones of layer n.

To avoid a potential explosion in the number of clones an
appropriate oblivion threshold must be used when creating
each new layer.

Once completed the Cloned GraphLearner will have n
layers of clones. The clones of each layer are indexed by
identity edges containing hn−1 length sequences with the
edges between clones in that layer storing padded histories
of max length hn. These identity h values are stored to
allow faster indexing of clones. In this framework the original
GraphLearner effectively forms a zeroth layer, n = 0, which
is indexed by identity sequences of length 1, i.e. the unique
first order states of the training sequence.

C. Oblivion

With each successive round of cloning the number of clones
grows. To avoid explosive growth in the number of clones
of clones a simple oblivion function is introduced [8]. Once
the clone creation process is completed, clones that were
indexed less than some threshold value are deleted. This is
done before clone connecting occurs to avoid creating edges
with deleted clones. The impact of the process can be seen in
Figure 9 where a threshold of 100 keeps the number of clones
manageable.

D. Generation

At generation time a sequence, S, is input into the Cloned
GraphLearner and an appropriate new element is generated for
this sequence. If a clone is currently being tracked then the
edges of this clone are searched to create a P (e) in the same
manner as the original GraphLearner: by recursively searching
shortened or padded slices of S until at least one edge match
is found. A new clone is selected from this P (e), its associated
observation is returned, i.e. the original node-state associated

Fig. 5. The 9 observable states of the small square training environment
obscure 49 aliased states. This coloration process expedites the formation
of meaningful clones by increasing the number of initial edges. The other
environments are colored in a similar manner. The cartoon mouse denotes the
starting point of the agent. Note that the clones in Figures 6, 7, and 8 are all
clones of the white internal state.

with that clone, and the clone tracker updates to track said
clone.

If no clone is currently tracked the last element of S is
used to identify a zeroth layer node and the identity edges of
this node are searched with h-length slices of the most recent
elements of S, starting with the largest possible identity length
hn−1. If a matching identity edge is found then its clone is
used for generating P (e).

If the input is an action-observation sequence, where new
actions are being generated from inputs, then it is possible
the most recent observed state, i.e. the last element of S, will
not match with the currently tracked clone. In these cases the
tracked clone is discarded and a new one must be found.

Given the similarity to place cells, a clone being accessed to
generate new sequence elements is referred to as clone firing.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

O’Keefe’s place cell experiment is replicated with the
Cloned GraphLearner. The small square room (SS) is repre-
sented by a 7x7 grid, the horizontal rectangle room (HR) with
a 14x7 grid, the verticle rectangle room (VR) with 7x14, and
the large square room (LS) with a 14x14 grid. All of which are
surrounded by impenetrable walls. These rooms are depicted
in Figures 6 7 and 8. A simulated rodent agent performs a
random walk within the SS environment recording a sequence
of actions and observations, T . The GraphLearner is then
trained on this sequence and successive rounds of cloning
occur, repeatedly using T .

Next the agent performs a new random walk in each of the
four environments with the Cloned GraphLearner generating
new actions and states from the recorded walk. Each time a
clone is accessed during this process the agent’s location in the
environment is recorded, along with the corresponding clone.

Finally these access locations are used to create a heatmap
of where each clone is utilized in the four environments.

The agent’s action space is limited to the four cardinal
directions. Walls and corners of the environment are treated
as distinct states based on the restricted set of actions in each.
This results in 9 unique observational states as depicted in
Figure 5. The Cloned GraphLearner is trained with initial
history length h0 = 6, and contains 4 layers of clones, not
including the zeroth layer nodes of the original GraphLearner.
Layer 1 is indexed with a sequences of length h0 = 6 and stores
padded histories of maximum length h1 = 9. History values
continue growing by size 3 until layer 4 which is indexed with
h3 = 15 length sequences and stories padded histories up to
length h4 = 18. An oblivion threshold of 100 is used at each
round of cloning. The training sequence, T , is a 150,000 step
random walk in the small square environment, see Figure 5.

To measure a process known as place cell remapping the
original O’Keefe experiments also considered the directions
in which walls were expanded when creating the 3 addition
environments. That is not considered in this simulation.

B. Results

The following heatmaps depict the firing locations of se-
lected clones across each of the four environments. In Figure
6 a clone behaves like the place cells from O’Keefe. It has
become attached to the left vertical wall and when that wall
is extended its firing field also expands.

Fig. 6. A stretched clone. Firing like a place cell. In the top left, the original
small square room (SS) in which the agent was trained. In the top right: the
horizontal rectangle room (HR), bottom left: vertical rectangle room (VR), and
bottom right: the large square room (LS). Grid locations are colored according
to how often this clone fires in that position. Brighter, yellower coloration
representing more frequent firing at a given location. The clone’s firing pattern
in HR matches its pattern in the original SS environment, yet in the VR
and LS environments it becomes extended. This tracks with the observations
of O’Keefe. Note: This heatmap includes the barrier wall surrounding each
environment.

The ideal case is depicted in Figure 7. Here the clone has
fixed onto a single location in the small square environment
(SS) and continues to fire at that location even in the other
environments.

Fig. 7. A clone which has fixed to a specific location in the environment. This
clone transfers precise topographic knowledge across environments. Rooms
arranged and displayed in the same manner as Figure 6.

A less informative clone is depicted in Figure 8. The
clone fires through much of the interior of each environment.
However it prefers firing at the bottom of its range and strongly
avoids the lower and left most walls.

Fig. 8. An emerging clone. Rooms are again arranged in the same manner
as Figure 6. A few more rounds of cloning and this clone may encode a
unique location. However it already provides partial topographic information
by preferring to fire at the bottom center of its range and away from barrier
walls. This firing pattern is repeated in the novel environments.

To demonstrate the impact of oblivion thresholding the same
4-layer cloning process from the previous section is repeated
without thresholding and compared to the thresholded process
in Figure 9.

Fig. 9. The impact of oblivion. The average clones at each round of cloning
before (Blue) and after (Green) an oblivion threshold is applied. Compared to
the number of clones if no thresholding occurs (Red). From the same training
and cloning process as described in Section 4A. Note the logarithmic scale.

V. DISCUSSION

State cloning allows the GraphLearner to learn spacial
topographies of explored environments. In other words the
Cloned GraphLearner builds a schema representation of its
learned environment. The topographic knowledge from this
schema can be readily transferred to similar environments as
demonstrated by replicating the O’Keefe experiments. This
place cell like behavior is best seen in Figure 6, which closely
follows O’Keefe’s results.

The clones of the Cloned GraphLearner all reflect mean-
ingful spacial information. Some like the clone in Figure 7
correspond to an exact location. Any complex behavior linked
to this clone can be safely expected to always happen at this
location, even in novel environments which resemble the origi-
nal learned environment. In other words these location specific
behaviors can be transferred across common environments.

While the clone in Figure 8 does not provide exact location
its bias is clear. In fact this clone represents a snapshot of
the knowledge gained from the cloning process. Clones of
this clone will have more restricted firing fields, providing
increasingly precise spacial information.

Other algorithmic techniques have already achieved similar
results, such as Clone Structured Cognitive Graphs. However
to be efficiently calculated CSCGs require a predetermined
limit on the number of clones of each observed state. By
contrast the Cloned GraphLearner maintains efficiency by
limiting the depth of its sequence history h. This value can
always be increased with further rounds of cloning. The
Cloned GraphLearner is highly modifiable. Layers of clones
can be deleted and rebuilt as desired, without impacting lower
layers.

While the experiments in Section 4 reused the same training
sequence at all stages of the cloning process this is not
strictly necessary. It is possible for the Cloned GraphLearner

to perform cloning in an online manner, with each successive
round of cloning relying on a new sequence provided that
sequence comes from the same underlying distribution.

As previously noted, the processes of clone creation and
clone connection could be merged to occur during the same
pass of the training sequence. The oblivion thresholding pro-
cess would then need to delete not just clones but also all
edges containing those clones. This is particularly problematic
as the oblivion thresholding used in this paper is only a simple,
greedy method of minimizing clone numbers. More advanced
methods, such as the clone merging technique employed by
CSCGs, must be tested. Keeping clone creation and connection
separate leaves open more developmental paths.

VI. CONCLUSION

The Cloned GraphLearner builds a topographic schema
which can be transferred across environments. It is neuro-
morphic with the firing patterns of clones resembling those
of place cells in the hippocampus. This is demonstrated by
replicating the rodent place cell experiments of O’Keefe and
Burgess. Importantly it does all this while retaining the online-
learning, memory efficient, and explainable characteristics of
the original GraphLearner. It has untapped potential in real
world applications, where topological structures may be too
complex to sample and learn in offline manners or store
in memory. Hopefully the Cloned GraphLearner can aid in
advances both in Neuroscience and in Artificial Intelligence.

REFERENCES

[1] J. Hawkins and S. Blakeslee, On Intelligence. New York, NY, USA:
Macmillan, 2004.

[2] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain,
vol. 120, no. 4, pp. 701–722, Apr. 1997, doi: 10.1093/brain/120.4.701.

[3] B. H. Bloom, “Space/time tradeoffs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[4] J. Blustein and A. El-Maazawi, “Bloom filters: a tutorial, analysis, and
survey,” Dalhousie Univ., Halifax, NS, Canada, Dec. 2002, pp. 1–31.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000, doi: 10.1109/90.851975.

[6] T. Harrison and H. Unger, “The GraphLearner as a high order Markov
chain simulator,” in Proc. 16th Int. Conf. Autonomous Syst., 2024.

[7] A. A. Markov, Extension of the Law of Large Numbers to Quantities
Depending on One Another. St. Petersburg, Russia: Imperial Acad. Sci.,
1906 (in Russian).

[8] R. D. Fields, “Making memories stick,” Sci. Am., vol. 292, no. 2, pp.
74–81, 2005.

[9] T. Harrison and H. Unger, “GraphLearner: An approach to sequence
recognition and generation,” in Proc. Mallorca Workshop Autonomous
Syst., 2023.

[10] D. George et al., “Clone-structured graph representations enable flexible
learning and vicarious evaluation of cognitive maps,” Nat. Commun.,
vol. 12, Art. no. 2392, 2021, doi: 10.1038/s41467-021-22559-5.

[11] G. V. Cormack and R. N. S. Horspool, “Data compression using dynamic
Markov modelling,” Comput. J., vol. 30, no. 6, pp. 541–550, Dec. 1987,
doi: 10.1093/comjnl/30.6.541.

[12] J. Hawkins, D. George, and J. Niemasik, “Sequence memory for
prediction, inference and behaviour,” Philos. Trans. R. Soc. B, vol. 364,
no. 1521, pp. 1203–1209, May 2009, doi: 10.1098/rstb.2008.0322.

[13] R. U. Muller and J. L. Kubie, “The effects of changes in the environment
on the spatial firing of hippocampal complex-spike cells,” J. Neurosci.,
vol. 7, no. 7, pp. 1951–1968, Jul. 1987, doi: 10.1523/JNEUROSCI.07-
07-01951.1987.

[14] J. O’Keefe and N. Burgess, “Geometric determinants of the place fields
of hippocampal neurons,” Nature, vol. 381, no. 6581, pp. 425–428, May
1996, doi: 10.1038/381425a0.

[15] A. Bubic, D. Y. von Cramon, and R. I. Schubotz, “Prediction, cognition
and the brain,” Front. Hum. Neurosci., vol. 4, 2010, doi: 10.3389/fn-
hum.2010.00025.

[16] J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map. Oxford,
U.K.: Clarendon Press, 1978.

[17] K. Kansky et al., “Schema networks: zero-shot transfer with a generative
causal model of intuitive physics,” in Int. Conf. Mach. Learn. (ICML),
2017, pp. 1809–1818.

[18] A. Dedieu et al., “Learning higher-order sequential structure with cloned
HMMs,” arXiv preprint arXiv:1905.00507, 2019. [Online]. Available:
https://arxiv.org/abs/1905.00507

Emotion-Controlled Communication in Agent
Networks

1st Yanakorn Ruamsuk
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
Hagen, Germany

yanakorn.ruamsuk@gmail.com

2nd Herwig Unger
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
Hagen, Germany

herwig.unger@gmail.com

Abstract—Communication within agent networks involves mul-
tiple input and output parameters, making adaptive control
and interpretation difficult. Existing systems typically rely on
fixed rules or reactive behavior, lacking mechanisms for self-
regulation or proactive engagement. This paper proposes an
emotion-controlled communication framework, where internal
emotional states act as an intermediate layer between input stim-
uli and output generation. Emotions are modeled using analog
circuits to simulate continuous accumulation, decay, and inter-
emotional feedback. Simulations with two agents—one active, one
passive—demonstrate how internal states evolve in response to
input and influence communication behavior over time.

Index Terms—agent communication, emotion modeling, analog
circuits, affective systems, internal regulation

I. INTRODUCTION

Modern agent networks—such as those built from
cooperating platform interfaces or decentralized service
agents—require robust mechanisms to manage communication
across multiple participants [1], [2]. These agents often operate
through rule-based systems, fixed turn-taking logic, or event-
driven APIs, limiting their ability to adapt, self-regulate, or
behave meaningfully in dynamic environments. This con-
straint becomes particularly pronounced when communication
needs to reflect varying levels of urgency, engagement, or
response depth over time. Despite an increasing reliance
on natural language interfaces, most chatbot systems remain
reactive—responding only to direct input without internal
modulation or context-aware initiative [4].

Recent developments in large language models (LLMs)
[3], such as ChatGPT, offer a promising solution for plat-
form integration. By enabling communication through natural
language, LLM-based interfaces simplify interaction across
heterogeneous systems, bypassing the need for rigid APIs
or centralized control hubs. However, while LLMs improve
interoperability and usability, they do not inherently address
the problem of communication regulation within multi-agent
networks. Dialogue remains reactive and externally driven,
lacking an internal mechanism for adjusting output based on
sustained engagement or shifting priorities. Thus, a higher-
level control structure is still needed to modulate agent be-
havior contextually.

In human networks, internal emotional states often govern
how individuals initiate, sustain, or inhibit communication.

These states evolve in response to both external input and
internal regulation, enabling humans to adapt their behav-
ior fluidly across social contexts [5] [7]. Inspired by this
mechanism, the proposed framework introduces emotion as
an intermediate control layer in artificial agents. Rather than
mapping input metrics—such as message frequency, delay, or
length—directly to output, incoming signals are first encoded
into abstract emotional states. These states evolve continuously
over time through analog circuit [8] [9] [10] dynamics such
as accumulation, decay, and mutual influence. Output behavior
is then generated in response to these internal states, allowing
agents to modulate their actions based on internal readiness or
inhibition. This emotion-driven structure simplifies coordina-
tion, enhances interpretability, and supports adaptive, context-
sensitive communication. The framework is validated through
simulations in which two agents—alternating between ac-
tive and passive roles—demonstrate how emotional dynamics
shape message behavior and internal regulation over time.

II. MODEL DESIGN

This section presents the computational framework of the
agent’s emotional system, illustrated in Figure 1, which is
structured into four interconnected modules: External Input,
Sensory Processing, Internal Emotional State Modeling, and
External Output. These components form a closed-loop archi-
tecture that continuously transforms external communication
stimuli into internal emotional states, which in turn drive adap-
tive behavioral expressions. The figure outlines the information
flow between modules, emphasizing how emotion acts as an
intermediary layer between perception and action.

The framework operates by first interpreting environmental
signals Xi, where each Xi represents a normalized and en-
coded feature derived from raw communication input. These
signals are routed through a set of temporal filters F (X) in the
sensory processing stage, producing processed stimuli Z. The
filtered outputs Z drive changes in internal emotional states S,
which evolve continuously over time based on both external
stimuli and internal feedback mechanisms G(S). The resulting
emotional states y = f(S) ultimately determine how the agent
behaves through observable outputs.

At the heart of the framework lies the Internal Emotional
State Modeling module, where three primary emotional sig-

Fig. 1. Overall Framework

nals—satisfaction, ambition, and fear—are maintained as
analog voltage states. These emotions interact dynamically to
reflect both the agent’s current affective experience and its
longer-term motivational tendencies.

A. External Input

The External Input module captures raw signals from the
agent’s communication environment, such as message length
or message frequency. These signals are continuously sampled
and normalized into a bounded range to produce stable,
comparable values suitable for emotional interpretation. The
normalization follows a standard form:

X̂(t) = clip
(

X(t)−Xmin

Xmax −Xmin + ε
, 0, 1

)
, (1)

where X(t) is the raw input at time t, Xmin and Xmax

define expected feature bounds, and ε prevents division by
zero.

Once normalized, each signal is passed through an Emotion
Encoding Function that transforms it into three emotion-
specific analog values: satisfaction, ambition, and fear. These
mappings are based on heuristic interpretations of how differ-
ent input magnitudes influence each emotion—for example,
high satisfaction may correlate with longer messages, while
fear may rise in response to unusually rapid or large input
changes. The output is an emotional stimulus vector:

X(t) = {Xs(t), Xa(t), Xf(t)},

which represents the raw emotional relevance of the external
environment and serves as input to the subsequent Sensory
Processing module.

B. Sensory Processing

The Sensory Processing module is responsible for con-
verting raw external input signals—such as message length
or frequency—into structured, emotion-specific stimuli [11].
These raw inputs are first normalized and mapped to corre-
sponding emotional channels, resulting in intermediate signals
X = {Xs, Xa, Xf}, where each Xi represents the perceptual
input related to satisfaction, ambition, or fear. To capture both
the persistent intensity and transient dynamics of these signals
[6], the module applies a dual-pathway structure consisting
of tonic and phasic receptors. These pathways operate in
parallel to extract complementary temporal features, ultimately

producing the processed outputs Z = {Zs, Za, Zf}, which
drive changes in the agent’s emotional state. The circuit
implementation of this dual-pathway architecture is illustrated
in Figure 2.

Fig. 2. Sensory Processing Circuit: each input Xi is filtered to produce a
time-sensitive output Zi.

• Tonic Receptors simulate the system’s sustained atten-
tion to environmental input. In the circuit model, they
are implemented as low-pass filters using summing inte-
grator op-amp circuits. These circuits allow continuous
accumulation of input over time, producing outputs that
rise gradually with sustained input and decay slowly
when input ceases. Mathematically, this behavior can be
expressed as a first-order low-pass filter:

U slow
i (t) =

1

τi

∫ t

0

(
Xi(τ)− U slow

i (τ)
)
dτ, (2)

where τi is the tonic time constant controlling the rate of
integration and decay.

• Phasic Receptors are responsible for detecting rapid
transitions in the input signal. They are realized in the
circuit as high-pass filters, specifically using leaky dif-
ferentiator op-amp configurations. These circuits produce
sharp, transient outputs in response to sudden increases
or decreases in input and decay rapidly to baseline.
Their dynamic behavior is captured by the high-pass filter
equation:

U fast
i (t) = τd

dXi(t)

dt
− U fast

i (t), (3)

where τd is the phasic time constant that controls the
responsiveness to fast changes.
To ensure biologically plausible, excitatory-only re-
sponses, the phasic signal is passed through a rectifier
circuit that clips negative values. This operation can be
modeled mathematically as:

Û fast
i (t) = max

(
0, U fast

i (t)
)
. (4)

The rectifier mimics neural mechanisms that primarily
transmit excitatory transients while suppressing inhibitory
or negative responses.

Finally, the tonic and rectified phasic signals are combined
using a weighted summation, forming the final processed
signal:

Zi(t) = wslow · U slow
i (t) + wfast · Û fast

i (t), (5)

where wslow and wfast are tunable weights that determine the
influence of tonic and phasic pathways. This fused signal Zi(t)
encodes both the sustained intensity and temporal dynamics
of the stimulus, ensuring temporally aware emotional reac-
tions—capturing both how strong and how suddenly a stimulus
occurs.

C. Internal Emotional State Modeling

The Internal Emotional State Modeling module governs the
evolution of emotional states S based on the filtered stimuli
Z. Each emotional variable—satisfaction (Ss), ambition (Sa),
and fear (Sf)—is implemented as an analog signal in an
independent circuit, and each evolves continuously according
to its input and internal feedback. The structure of these
emotional circuits, including inter-emotional connections and
analog implementations, is shown in Figure 3.

Fig. 3. Emotion Circuit

Satisfaction and ambition are realized using summing
integrator circuits, which accumulate their respective input
signals Zs and Za over time. Their voltage dynamics follow:

dSi(t)

dt
=

1

Ci

−
∑
j

Zj(t)

Rij

+Gi(S), (6)

where Si ∈ {Ss, Sa}, Ci is the integrator capacitor for
emotion i, Rij is the resistance from input Zj , and Gi(S)
represents inter-emotional feedback.

Fear, in contrast, is modeled using a leaky differentiator
circuit. It reacts sharply to sudden input changes in Zf, with
its output governed by:

Sf(t) = αSf(t− 1) +
∑
k

Ck

Rk
(Zk(t)− Zk(t− 1)) , (7)

where α = e−dt/(RfCf) is the exponential decay factor, and
Ck, Rk are the differentiator’s capacitors and resistors for each
input Zk.

The emotional system is further modulated by inter-
emotional feedback terms G(S), where outputs from one
emotion affect others. For example:

• An increase in fear Sf may suppress ambition: Ga(S) =
−k1Sf(t)

• A drop in satisfaction Ss may increase ambition: Ga(S) =
k2(1− Ss(t))

The final internal emotional state vector y = f(S) captures
the momentary affective configuration of the agent and serves
as the basis for behavioral output modulation.

D. External Output

The External Output module translates the internal emo-
tional state vector y = {ys, ya, yf} into a single behavioral
parameter: message length. This parameter represents the
richness or expressiveness of the agent’s communication and
is shaped by the interaction of emotional drives.

Message length is computed as a weighted linear combina-
tion of the internal emotional states:

Lmsg = w0 + ws · ys + wa · ya + wf · yf, (8)

where w0 is the baseline message length, and ws, wa, wf are
weights associated with satisfaction, ambition, and fear, re-
spectively. These coefficients are selected to reflect behavioral
tendencies—for example:

• High ambition increases message length.
• High fear suppresses message length.
• Satisfaction may either reduce or slightly regulate length

based on contentment.

To ensure behavioral realism, the final output is clipped to
a valid operational range (e.g., Lmsg ∈ [0, 100]):

Lfinal
msg = clip(Lmsg, 0, 100). (9)

This output signal defines how much information the agent
expresses in a single message and serves as the primary
behavioral channel for emotional expression in the current
model.

III. EXPERIMENTS AND RESULTS

This section presents simulation-based experiments con-
ducted to evaluate the effectiveness and dynamics of the
proposed emotion-driven communication framework. The ex-
periments are divided into progressive layers of analysis,
ranging from subsystem validation to full-agent interaction in
a communication loop.

A. Experiment Setup

The experimental design is structured around three core
modules:

1) Sensory Processing: Tests how raw environmental stim-
uli (e.g., message length) are encoded into emotional sig-
nals using the dual-pathway sensory architecture (tonic
and phasic circuits).

2) Internal Emotional Circuits: Simulates how satisfac-
tion, ambition, and fear evolve over time when stimu-
lated individually. It also examines how inter-emotional
feedback shapes internal dynamics, such as inhibition
and compensation.

3) Emotion-Driven Communication: Integrates all mod-
ules into a two-agent interaction framework, where one
agent is designated as active and the other as passive in
alternating time windows. Agents exchange emotional
signals through generated message lengths to evaluate
behavioral influence and internal adaptation.

In the communication simulation, roles are pre-assigned
and manually switched halfway through the experiment. That
is, the role switch is not triggered autonomously by agent
behavior but defined explicitly in the simulation configuration.

B. Results

1) Sensory Processing Output: Figure 4 shows how a nor-
malized message-length signal is converted into an emotion-
specific stimulus through the sensory processing pipeline.
Three distinct phases—spike, adaptation, and decay—are
clearly visible, confirming that the dual-pathway processing
captures both immediate and sustained components of the
signal.

Three characteristic phases emerge in the processed signal:
• Spike: A sharp and brief increase at the onset of stimula-

tion, primarily generated by the phasic receptor (modeled
as a differentiator). This mirrors biological phasic recep-
tors in humans, such as those found in mechanoreception,
which are known to respond quickly to changes but not
to constant stimuli.

• Adaptation: A gradual rise during the sustained stim-
ulus interval, governed by the tonic receptor’s low-
pass behavior. The system maintains a smoothed signal
while suppressing transient fluctuations. This behavior is
comparable to slowly adapting sensory receptors, which
continue to respond as long as the stimulus is present but
with reduced sensitivity over time.

• Decay: After the input returns to zero, the signal drops
gradually rather than instantly. This is consistent with the

Fig. 4. Sensory processing response to message-length stimulus. Three
distinct temporal phases are marked: spike (rapid onset), adaptation (plateau
during sustained input), and decay (exponential return to baseline).

discharge behavior of capacitive integrators and reflects
how biological systems slowly return to homeostasis
following stimulation.

From the observation, the combined signal reflects both
immediate reactivity and ongoing awareness, capturing the
dual nature of human sensory experience: rapid detection
followed by gradual internalization and recovery. The shape of
the response highlights a dynamic balance between temporal
sensitivity (via phasic channels) and cumulative assessment
(via tonic channels), aligning with how the human nervous sys-
tem modulates attention and emotional readiness in response
to environmental changes.

2) Internal Emotional Circuit Response: To evaluate the
intrinsic behavior of each emotional circuit independently,
this section presents controlled stimulation scenarios in which
external emotional inputs are directly injected. The aim is
to examine how satisfaction, ambition, and fear respond in
isolation and interact through feedback mechanisms.

In Figure 5, a sudden drop in external satisfaction input
induces a gradual decay in the satisfaction voltage. In re-
sponse, the ambition circuit shows a compensatory increase
due to the absence of positive feedback from satisfaction. The
fear signal remains steady, as it is unaffected in this specific
case. This behavior reflects the motivational interplay between
satisfaction and ambition, where lower fulfillment can provoke
increased goal-seeking drive.

Figure 6 depicts the effects of a fear spike. The fear circuit
immediately reacts with a sharp transient peak, characteristic
of differentiator dynamics. As fear increases, both satisfaction
and ambition decrease, demonstrating inhibitory interconnec-
tions. This pattern is consistent with emotion theories where
fear overrides exploratory or goal-driven behavior, prioritizing
inhibition and caution.

Together, these simulations validate the theoretical design of
the emotional circuits, confirming that their output aligns with

Fig. 5. Response to a decrease in satisfaction input at t = 40. Ambition rises
gradually as satisfaction decays, and fear remains neutral.

Fig. 6. Response to a spike in fear input at t = 40. The fear circuit exhibits a
sharp peak followed by decay. Satisfaction and ambition are both suppressed.

both the intended analog behavior and psychological intuition.
3) Emotion-Driven Agent Communication: Figure 7

presents the results from the two-agent simulation. The agents
alternate roles in two fixed phases:

1) Phase 1 (0–50s): Agent 1 is active and generates
message outputs based on its internal emotional state.
Agent 2 remains passive and only receives input.

2) Phase 2 (50–100s): Agent 2 becomes active while Agent
1 switches to passive mode.

During the first phase (0–50s), Agent 1 is active and
generates message-length output modulated by its internal
emotional state. At the start, ambition (Sa) is slightly ele-
vated, initiating moderate message production. As the phase
progresses, ambition gradually decreases, leading to a corre-
sponding decline in message length. Satisfaction (Ss) remains
relatively low due to the lack of incoming input, while fear
(Sf) stays minimal. Meanwhile, Agent 2—acting as the pas-
sive recipient—receives the message stream as external input.

Fig. 7. Bidirectional simulation of emotion-driven agent communication. Top:
External inputs, emotional states, and message length output of Agent 1.
Bottom: External inputs, emotional states, and message length output of
Agent 2.

These signals are processed through tonic and phasic sensory
pathways, resulting in a gradual increase in satisfaction and a
mild rise in fear in response to sustained stimulation. Ambition
in Agent 2 decreases over time, following the increase in
satisfaction due to inverse emotional coupling.

At the 50-second mark, roles reverse: Agent 2 becomes
active, and Agent 1 becomes passive. A similar emotional
pattern unfolds. Agent 2 begins with low ambition and pro-
duces moderate-length messages, but as ambition continues
to decrease, message length steadily drops. Agent 1, now
receiving messages, shows a delayed increase in satisfaction
through tonic accumulation, and a moderate rise in fear
due to continuous stimulation. Its ambition also decreases as
satisfaction builds, replicating the emotional progression seen
earlier in Agent 2.

Across both phases, no sharp spikes in fear are observed.
This is attributed to the smooth, uninterrupted nature of the
input signals—there are no sudden onsets or cessations that
would trigger transient phasic fear responses. As a result, fear
remains stable and subdued throughout the simulation, while
satisfaction and ambition exhibit gradual, inversely coupled
trends.

The simulation reveals a consistent emotional-behavioral
loop: active agents begin output with low ambition, which

decreases further as messages are emitted. Message length
follows this decline closely, reflecting the influence of ambi-
tion on output intensity. Passive agents, on the other hand,
accumulate satisfaction in response to received messages,
which in turn suppresses ambition. Fear rises modestly in
both agents but remains stable due to the absence of abrupt
emotional stimuli.

This interaction results in:
• Emotion-dependent message generation that self-adjusts

based on internal ambition.
• A consistent inverse dynamic between satisfaction and

ambition within each agent.
• Emotional adaptation in passive agents driven by external

input, even without active participation.
• Smooth transitions supported by the tonic-phasic design,

enabling both stability and sensitivity to changes.
Although the switch between active and passive roles is

externally configured, the simulation demonstrates how inter-
nal emotional states evolve naturally based on message flow.
This structure provides a foundation for future implementa-
tions where role transitions may be driven autonomously by
emotional thresholds or interaction dynamics.

IV. CONCLUSION

This paper presented an analog emotion-based framework
for AI agents, incorporating biologically inspired sensory
processing and internal emotional dynamics to modulate com-
munication behavior. Simulations showed that the emotional
states—satisfaction, ambition, and fear—respond appropri-
ately to input stimuli, and that these states influence message
generation in a continuous and interpretable manner.

In the current setup, however, agents follow predefined
active and passive roles to facilitate controlled observation,
rather than exhibiting emergent behaviors such as autonomous
turn-taking. Moreover, each agent’s emotional state is treated
as internally driven, responding only to external message
stimuli without recognizing or adapting to the emotional
state of the other agent. As a result, true emotional interde-
pendence—where one agent’s emotional state influences the
other’s message generation in a feedback loop—is absent.

Future development should address this limitation by inte-
grating mutual emotional awareness. This would allow agents
not only to react to message patterns, but to sense and respond
to the emotional states of others, enabling richer, more socially
intelligent interactions in multi-agent systems.

REFERENCES

[1] T. Chen, Z. Liu, J. Tang, et al., “AgentVerse: Facilitating Multi-
Agent Collaboration through Large Language Models,” arXiv preprint
arXiv:2210.02199, 2022.

[2] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. Chawla, O. Wiest,
and X. Zhang, “Large Language Model Based Multi-agents: A Survey
of Progress and Challenges,” in *Proc. Int. Joint Conf. Artif. Intell.
(IJCAI)*, Aug. 2024, pp. 8048–8057. doi: 10.24963/ijcai.2024/890.

[3] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren,
Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of
large language models,” arXiv preprint arXiv:2303.18223, 2025.

[4] A. Ho, J. Hancock, and A. Miner, “Psychological, relational, and
emotional effects of self-disclosure after conversations with a chatbot,”
Journal of Communication, vol. 68, no. 4, pp. 712–733, 2018.

[5] A. Moors, P. Ellsworth, K. Scherer, and N. Frijda, “Appraisal theories
of emotion: State of the art and future development,” Emotion Review,
vol. 5, no. 2, pp. 119–124, 2013.

[6] I. Dozmorov and D. Dresser, “Immune system as a sensory system,”
Int. J. Biomed. Sci., vol. 6, no. 3, pp. 167–175, 2011.

[7] M. R. Roxo, P. R. Franceschini, C. Zubaran, F. D. Kleber, and J. W.
Sander, “The limbic system conception and its historical evolution,”
Scientific World Journal, vol. 11, pp. 2428–2441, Dec. 2011.

[8] J. Sun, P. Gao, P. Liu, and Y. Wang, “Memristor-based emotion regula-
tion circuit and its application in faulty robot monitoring,” IEEE Internet
of Things Journal, vol. 11, no. 19, pp. 31633–31645, Oct. 1, 2024.

[9] J. Sun, Y. Zhai, P. Liu, and Y. Wang, “Memristor-based neural network
circuit of associative memory with overshadowing and emotion con-
gruent effect,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 36, no. 2, pp. 3618–3630, Feb. 2025.

[10] M. Zhang, C. Wang, Y. Sun, and T. Li, “Memristive PAD three-
dimensional emotion generation system based on D–S evidence theory,”
Nonlinear Dynamics, vol. 112, pp. 1–21, 2024.

[11] D. Julius and J. Nathans, “Signaling by sensory receptors,” Cold Spring
Harbor Perspectives in Biology, vol. 4, no. 1, p. a005991, Jan. 2012.

Client–Agnostic Continuous Authentication via
Keystroke–Induced Traffic Patterns

Alexander Niedermayer, David Monschein, Oliver P. Waldhorst
Institute of Data–Centric Software Systems (IDSS), Karlsruhe University of Applied Sciences

{nial1016, david.monschein, oliver.waldhorst}@h-ka.de

Abstract—How can we continuously verify the identity of
users without modifying their devices? We introduce a client–
agnostic method that leverages keystroke–induced network traffic
patterns to passively authenticate users. It can be deployed on
infrastructure already common in network environments. By
applying contrastive learning to Web–Socket packet traces, we
compare new traffic against previously seen patterns from the
same user. In an experiment with 75 users, our method achieved
87 % accuracy–improving over a statistical baseline by 27.7 per-
centage points (pp). These results demonstrate that network
traffic captures meaningful behavioral signatures and can serve
as a foundation for practical, continuous user authentication.

Index Terms—Continuous Authentication, Network Monitor-
ing, Network Security.

I. INTRODUCTION

Nowadays, many people use web–systems ranging from
streaming services, over online games, to highly sensitive
online banking applications. Even though authentication is
such an important aspect, many applications solely rely on
knowledge-based approaches like passwords. These have been
found susceptible to different kinds of attack vectors. Some
examples are dictionary attacks and heat analysis [14].

The impact of these attacks can be reduced by continuously
authenticating the user’s identity. An easy approach would be
to request the user’s credentials in short intervals. While being
effective, this strongly decreases the usability of the applica-
tion. Based on this issue, the field of behavioral authentication
tries to offer a solution and provide an additional layer of
security without sacrificing usability.

Recent behavioral authentication approaches are based on
metrics derived from the user interacting with the device [20].
These have been proven to be an effective way of matching
users to their behavior, but rely heavily on client–sided mod-
ifications [22, 26]. These modifications are needed to capture
keyboard or touch–screen inputs. This can be an obstacle for
two main reasons. First, the client needs to be modified to
collect the necessary user behavior. Second, the collection and
sending of the user behavior might have negative impact on
the battery life of the device and use additional mobile data.

We propose a new approach, relying on the continuous
authentication of users based on their network traffic generated
by using an application. The system takes a time series of
the exchanged packets as input for a machine learning model.
This eliminates the need for client–sided modifications and
thus does not have any impact on battery life or used mobile
data. Our approach can be injected inside an existing system

with minimal changes, as seen in Fig. 1. The contributions of
this paper are, therefore:

• An approach for continuous authentication without appli-
cation changes on the client side.

• An evaluation of the proposed approach using a dataset,
generated from keyboard inputs.

• Empirical evidence that network traffic captures non–
trivial human behavior and can be used for continuous
authentication.

We evaluated our approach in an experiment with 75 users.
The results show an improvement in accuracy of 27.7 pp com-
pared to a statistical baseline approach and 37 pp compared
to a random guess. Another finding is the strong association
between the user’s typing behavior and the generated web–
socket packets, which further supports the claim of using
network traffic for user authentication.

This paper is structured as follows. In Section II we provide
an overview of the foundation and related work in the field
of behavioral authentication and network traffic analysis. Sec-
tion III describes our approach for continuous authentication
based on network traffic. The experiment setup and results
are presented in Section IV-B. Finally, we discuss possible
limitations of our approach in Section V and conclude our
work in Section VI.

II. RELATED WORK

In this section, we will give an overview of the two main
fields, that are the foundation for our work. The first one is a
brief summary of behavioral authentication. The second one
covers the basics of network traffic analysis using machine
learning approaches.

A. Behavioral Authentication

Behavioral authentication offers a supporting way of au-
thenticating users. The main goal is, to make knowledge-
based approaches more secure, by collecting and analyzing
user behavior. Currently a lot of focus lies on the analysis of
the users physical interaction with the device.

The device interaction can be captured in different
ways [14]. One of the most common ways is to capture
the users typing behavior. This approach has been shown by
multiple publications [1, 4], to be a reliable method of using
the user behavior for additional authentication information.

The rise of the Internet of Things (IoT) devices has also
brought up new methods of capturing user behavior. For

 ù � á õ
Keyboard input Websocket traffic

Becomes Similar?

User Browser Service Traffic Database

Adjust authorization based on this similarity.Inter-device communication
Intra-device communication

Fig. 1. Overview of our network–traffic–based continuous authentication approach.

example, a smartphone offers many different sensors like
touchscreens, accelerometers, gyroscopes and more [3]. Ad-
ditionally smartwatches even offer the possibility of capturing
the user’s heartbeat, breathing rhythm or other health related
data [14]. These behavior metrics have also been shown, to be
usable for user authentication [12].

Another approach would be, to combine user behavior
and device attributes, by correlating user behavior to internal
device timing characteristics. This has been done in [19]. The
key insight is, that when users interact with a device—through
typing, mouse movements, or gestures—the resulting input
events are not only shaped by the user’s behavior but also
by the device’s internal processing and sampling mechanisms.
Specifically, many human-interface devices (like keyboards
and touchpads) sample inputs at fixed intervals determined
by hardware clocks. These clocks introduce subtle, device-
specific timing patterns into the recorded input stream. When
analyzing the timing of these events, the fixed sampling rates
can create distinct frequency peaks in the input data, which
then can be used to identify the device and, by extension,
the user. In the mentioned work, the authors demonstrate a
rank–1 accuracy of 84.6 % for 10,000 devices when using
this approach.

B. Network Traffic Analysis with Machine Learning
Currently, the most common use–case for network traffic

analysis is the detection of anomalies and attacks [2]. This
is often done by implementing so called Intrusion Detection
Systems (IDS). A frequent use–case for machine learning in
the field of IDS, is the recognition of Distributed Denial of
Service (DDoS) attacks [11, 5]. Overall the scope of IDS
extends far beyond DDoS attacks and can also focus on
common exploits and malware [10, 29].

For this task different algorithms ranging from simple rule–
based approaches to deep learning models have been used [6].

In recent deep learning publications, contrastive learning has
shown to be a promising approach for network traffic analy-
sis. Although results exceeded 90 % balanced accuracy, the
classification tasks were limited to binary classification (nor-
mal/malicious traffic) [13, 16, 28] or application identification
(video streaming, file download...) [17].

C. Contrastive Learning

The main idea behind contrastive learning is to learn a
vector representation of the input data, that has a short distance
for similar inputs and a long distance for dissimilar inputs [9,
27]. A loss function for this optimization problem can be
defined as:

L =
∑
i∈I

Li = − log

(
ezi·zj(i)∑

k∈S(i) e
zi·zk

)
(1)

With xi being an example input and zi = f(xi), the function
j(i) delivering a index where xj(i) is from the same class as
xi. The function K(i) delivers a set of indices, where xk∈K(i)

is from a different class than xi. Furthermore S(i) ⊆ K(i).
There exist different strategies to sample S(i), for example
random sampling or hard negative sampling [8].

This formulation makes contrastive learning particularly
well–suited for our user recognition task, as it does not require
a fixed number of classes. Unlike traditional n–class classi-
fication, contrastive learning operates on similarity between
samples, allowing the model to scale to an arbitrary number
of users.

III. METHODOLOGY

The following section describes the methodology of our
continuous authentication system. We start by introducing the
main idea behind our approach. Afterwards, we describe the
implementation of our system.

A. Main Idea

The main idea is, that during event–based communications
between client and server, the characteristics of user interaction
are causally connected to the network traffic. This offers the
possibility for behavior being represented in network metrics,
especially packet frequency, packet inter–arrival time and
packet size.

For example, consider a web application with a typing
input. If every typing input triggers a packet exchange, the
packet frequency can be correlated to the typing speed. Also
different patterns, when typing key combinations might be
represented in the data stream. Stragapede et al. [25] have
already successfully identified users based on typing events,
so the transfer to causally connected network events is a logical
step.

B. User Recognition with Web–Socket Packets

The architecture of our approach is shown in Fig. 2. As
input, we receive a list of web–socket packets that were sent
between the client and the server. The web–socket packets
are timestamped on arrival and contain the payload of the
message. We calculate the difference between the receive time
of two consecutive packets, giving us the packet inter–arrival

Websocket traffic

Packet

∆Time [µs] Size [Bytes]

Packet

Min/Max Min/Max

Chunking Chunking

DFT DFT

Archived series

Model Model×

Shared weights

MLP classifier

Prediction ∈ [0, 1]

N

4

Fig. 2. Architecture of the user recognition on the packet level.

time as first time series. The second time series in our approach
is the effective change a packet has on the text input. Having
access to the payload of the message, we can extract, whether
the packet adds a sequence of characters to the text input or
deletes a sequence of characters. Both of these time series are
normalized, using the minimum and maximum value, derived
from the respective training data.

For better processing, the resulting time series are split into
chunks of a fixed size N = 2k ∈ N. For each chunk we also
calculate the discrete fourier transform (DFT) of the packet
inter–arrival times and the number of character changes per
package. This leaves us with a final 2–dimensional array with
the shape N × 4.

For the contrastive learning method, these chunks are then
combined into matching and non–matching pairs. Every chunk
for a user is randomly matched with another chunk of the same
user. The same is done for non–matching pairs. Every chunk
of a user is randomly matched with a chunk of another user. A
dataset with S ∈ N samples will then produce S matching and
S non-matching pairs, resulting in a dataset with 2S samples.

Our system is based on a siamese neural network architec-
ture [18]. Siamese networks are composed of two identical
sub–networks, that share the same parameters and weights.
They are used for comparing two inputs. Each input is being
forwarded through a sub–network, that extracts important
features, represented in the embedding space. Afterwards, a
distance metric is being applied to the embeddings, which will
output a similarity score.

Since a multivariate time series can be seen as a grayscale
image, we take a similar approach to image recognition tasks.
We use a deep learning model as backbone, that is trained
to generate an embedding of the input data. This is done
for each of the two input time series. The embeddings are
then multiplied and the result is passed through a multi–layer
perceptron (MLP), that outputs the similarity score of the two
input time series.

IV. EVALUATION

This section starts by presenting the experimental setup,
developed for creating a dataset of network traffic, generated
by user inputs. We then evaluate our method from the previous
section, using this dataset. We also compare our approach to
a baseline method, as evidence for substantial user behavior
being captured in the network traffic.

A. Generation of User–behavior driven Network Traffic

To generate a dataset of network traffic, we are using
the popular web–service Overleaf 1. Overleaf is an online
LaTeX editor that allows users to collaborate on documents
in real–time. The service uses a web–socket connection, to
send updates to the server, whenever a user interacts with
the document. This results in network traffic that is heavily
influenced by the users typing behavior.

1https://github.com/overleaf/overleaf

For capturing the exchanged network traffic, we use the
open–source tool mitmproxy2. Mitmproxy is modified, to store
every forwarded web–socket packet in a log file. The log
file contains the timestamp of the packet and the respective
payload. The payload of the packet is then used to extract
the transmitted character changes in the text. Furthermore,
we also remove the acknowledgements (ACKs) from the
packet stream, since they do not contain any user behavior
information.

The dataset is generated, by using recorded keystrokes from
the Keystroke Verification Challenge dataset [23]. We take
every user data that spans over a time period of 15 minutes
for desktop and one hour for mobile devices. Afterwards, a
script is used, to control the browser and simulate the typing
behavior of the given user. The script inputs the keystrokes
into the Overleaf editor, which then generates the network
traffic. The keystrokes are replayed in real–time, to get an
accurate representation of the corresponding network traffic.
An overview of the experiment can be seen in Fig. 3.

For our evaluation, we are using a ResNet18 [7] model
that is trained on the generated dataset. The dataset consists
of traffic generated from 75 different users. The dataset is
balanced, so that every user maps to the same amount of traffic.
This leaves us with a total time of 18 hours and 45 minutes
of recorded network traffic.

The optimization problem is solved using the AdamW [15]
optimizer with the standard learning rate of 0.001 and standard
weight decay of 0.01. The model is trained for 100 epochs with
a batch size of 256. Our loss function for the classification task
is the binary cross–entropy loss.

B. Results

We use a 5–fold cross–validation to evaluate the model with
specific dataset splits. Metrics are always given as mean over
the best score from the 5–folds with a standard deviation.
We select the best score as epoch with the highest accuracy.
Precision, Recall and F1–Score are also given from this epoch.

As additional metric, we provide a baseline using a decision
tree classifier. The classifier is trained using the mean, standard
deviation, maximum and minimum value of each feature time

2https://mitmproxy.org/

O ù

KVC Keyboard
Dataset

@
Test Script

�

Automated
Test Browser

MitM–
proxy Overleaf

Collect
user inputs

Replay
inputs

Logging
Component

Provide
packets

Provide user
to packet
mapping

õ
Database

Store current traffic

Fig. 3. Overview of our dataset generation setup we used for evaluating our
continuous authentication approach.

series. The evaluation for the decision tree is done using the
same 5–fold cross–validation.

In Table I we present the results of our evaluation for
different chunk sizes N . With a chunk size of 64 records, we
achieve an average accuracy of 87 % with a standard deviation
of 1 pp. Furthermore, the results show, as expected, that a
longer observation time results in a higher accuracy. For both
models, we observed, that this difference can lie in the range
of up to 11 pp for classification accuracy, when going from a
chunk size of 16 to 64. The area under the curve (AUC) of the
receiver operating characteristics (ROC) curve gives a value of
93.19 % ± 1.74%. This high score should be taken with a grain
of salt, since as seen in Table I, the measured precision value is
at 82.5 %. The ROC curve is displayed in Fig. 4, representing
the average performance over a 5–fold cross-validation. The
shaded area around the curve indicates the standard deviation,
providing a measure of variability across the folds.

Figure 5 evaluates the impact of different preprocessing
methods on the accuracy of our approach. The x–axis repre-
sents different chunk sizes N and the y–axis shows the clas-
sification accuracy in percent. The best results were achieved,
when having full access to the packet body. Removing the

TABLE I
METRICS OF THE USER RECOGNITION BASED ON NETWORK TRAFFIC. RELATIVE TO CHUNK SIZE N .

Metric Model N = 16 N = 32 N = 64

Accuracy
Our approach 75.9 % ± 4.3 % 82.8 % ± 3.0 % 87.00 % ± 1.0 %

Baseline 61.8 % ± 7.3 % 64.1 % ± 6.8 % 59.3 % ± 3.6 %

Precision
Our approach 71.2 % ± 2.4 % 83.2 % ± 5.6 % 82.5 % ± 1.8 %

Baseline 58.9 % ± 5.5 % 61.6 % ± 5.7 % 58.1 % ± 4.9 %

Recall
Our approach 87.1 % ± 5.3 % 83.0 % ± 8.2 % 94.0 % ± 2.0 %

Baseline 79.7 % ± 10.9 % 80.8 % ± 8.1 % 76.0 % ± 12.0 %

F1–Score
Our approach 78.3 % ± 1.6 % 82.6 % ± 3.1 % 87.85 % ± 0.8 %

Baseline 67.4 % ± 6.3 % 69.4 % ± 3.3 % 64.9 % ± 1.8 %

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
Po

si
tiv

e
R

at
e

Mean ROC (A = 0.932 ± 1.74)
Standard deviation
Random guessing

Fig. 4. Average ROC curve derived from the folds of our siamese–
network approach with N = 64.

16 32 64
Chunk Size N

50%

60%

70%

80%

90%

100%

A
cc

ur
ac

y

Payload analyzation
Remove ACKs
No preprocessing

Fig. 5. Accuracy comparison of the siamese network using different
preprocessing methods for different chunk sizes N .

ACKs from the packet stream yields a small improvement
compared to working on the raw packet stream. The accuracy
improvement lies in the range of around 3 pp for N ∈ {16, 64}
and 1.5 pp for N = 32. The analysis of the character changes
transmitted in the packet body and removal of ACKs shows
an increased accuracy of 14 pp for N ∈ {32, 64} and 8 pp for
N = 16, when comparing to just removing the ACKs.

V. DISCUSSION

Compared to the baseline, our approach shows an improve-
ment in the range of 14 pp to 27 pp in accuracy. We hereby
argue that due to the improvement of our approach over the
baseline, we are able to capture more user behavior inside the
network traffic, than just the average typing speed.

We come to this conclusion, since the baseline model is
trained on the average, standard deviation, maximum and
minimum value of the two time series. The average value
of the character changes per packet and the average typing
speed of the user are correlated. This is also shown in Fig. 6,
where the correlation coefficient r = 0.78 indicates a strong
association between these two variables. This association is
also causally linked, since more keyboard inputs lead to
more transmitted characters. The average typing speed of a
user should therefore be present in the average transmitted
characters. Going further, this metric is also available to the
baseline model. Due to the improvement of our approach over
the baseline, there must be more user behavior captured in the
network traffic, than just the average typing speed.

Nonetheless, when compared to methods that rely on direct
keystroke data, there is still room for improvement. Recent
publications on the same dataset yield results of around 92 %
accuracy [24]. Therefore there might be a loss of information,
when transferring the keystrokes to network traffic.

Besides our contributions there are also two main limitations
in our approach. First, our current method needs access to the
packet body, to extract the required features. This is not always

possible, for example when using Transport Layer Security
(TLS). A common solution would be to employ a TLS proxy,
which decrypts the traffic for inspection before re-encrypting
it and forwarding it to the destination. The latter is a common
practice in many organizations, with little to no impact on the
user experience [21].

The second limitation of our approach is that it currently
requires a time window of approximately 15 minutes for effec-
tive analysis. This constraint arises from the lower frequency
of network traffic events compared to direct keyboard inputs,
which limits the granularity and immediacy of the captured
behavioral signals. Reducing the required observation time

1 2 3 4 5 6
Average Character Changes per Packet [Bytes]

0

200

400

600

800

A
ve

ra
ge

D
el

ay
be

tw
ee

n
K

ey
st

ro
ke

s
[m

s]

Data points (r = -0.78)
Trendline (σ = 156.68 ms)
Standard deviation

Fig. 6. Correlation between the average delay between keystrokes from the
KVC dataset [23] and the average character changes per packet from our
dataset.

could significantly enhance the practicality of the method,
especially for real-time applications. This may be achievable
with access to a larger and more diverse dataset containing
longer and more varied user sessions, which would enable
better generalization and potentially allow the model to detect
patterns in shorter time spans.

VI. CONCLUSION

Our work showed, that user recognition based on network
traffic can be possible. While achieving good results of 87 %
accuracy, methods using the direct keystroke data still yield
better results. Additionally our work offers evidence, that more
user behavior is captured in the network traffic, than just the
average transmitted characters. Therefore user–centric network
traffic analysis is a promising approach for continuous user
authentication, without the need for client–sided modifications.

In respect of future work, improvements regarding the
machine learning setup are possible. Our proof of concept
used a siamese–network with a convolutional network. While
achieving good results on comparison to the needed computing
power, we are still curious about the potential of more complex
approaches. This might improve the accuracy and may also
reduce the observation window.

At last there might also be the possibility to achieve similar
results with a more secure and privacy–preserving approach.
Maybe there is enough information hidden in TLS encrypted
network traffic, that can be used for user recognition. Another
common sight in large–scale network is the use of so called
aggregated flows for network traffic analysis. These flows
are a summary of the network traffic and can be used for
anomaly detection. Recognizing users based on these flows
might be another privacy–centric approach for continuous user
authentication.

CODE AND DATA AVAILABILITY

The repository https://doi.org/10.5281/zenodo.15579140
contains the code and data used for this work.

ACKNOWLEDGMENTS

This work was supported by the project bwNET2.0 funded
by the Ministry of Science, Research and the Arts Baden–
Württemberg (MWK).

REFERENCES

[1] Alejandro Acien et al. “TypeNet: Deep learning
keystroke biometrics”. In: IEEE Transactions on Bio-
metrics, Behavior, and Identity Science 4.1 (2021),
pp. 57–70.

[2] Ijaz Ahmad et al. “Machine learning meets communi-
cation networks: Current trends and future challenges”.
In: IEEE access 8 (2020), pp. 223418–223460.

[3] Abdulaziz Alzubaidi and Jugal Kalita. “Authentication
of smartphone users using behavioral biometrics”. In:
IEEE Communications Surveys & Tutorials 18.3 (2016),
pp. 1998–2026.

[4] Salil P Banerjee and Damon L Woodard. “Biometric
authentication and identification using keystroke dy-
namics: A survey”. In: Journal of Pattern recognition
research 7.1 (2012), pp. 116–139.

[5] Narmeen Zakaria Bawany, Jawwad A Shamsi, and
Khaled Salah. “DDoS attack detection and mitigation
using SDN: methods, practices, and solutions”. In: Ara-
bian Journal for Science and Engineering 42 (2017),
pp. 425–441.

[6] Anna L Buczak and Erhan Guven. “A survey of data
mining and machine learning methods for cyber security
intrusion detection”. In: IEEE Communications surveys
& tutorials 18.2 (2015), pp. 1153–1176.

[7] Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–
778.

[8] Yannis Kalantidis et al. “Hard negative mixing for con-
trastive learning”. In: Advances in neural information
processing systems 33 (2020), pp. 21798–21809.

[9] Prannay Khosla et al. “Supervised contrastive learning”.
In: Advances in neural information processing systems
33 (2020), pp. 18661–18673.

[10] Ansam Khraisat et al. “Survey of intrusion detection
systems: techniques, datasets and challenges”. In: Cy-
bersecurity 2.1 (2019), pp. 1–22.

[11] Samuel Kopmann, Hauke Heseding, and Martina Zit-
terbart. “HollywooDDoS: Detecting Volumetric Attacks
in Moving Images of Network Traffic”. In: 2022 IEEE
47th Conference on Local Computer Networks (LCN).
IEEE. 2022, pp. 90–97.

[12] Antwane Lewis, Yanyan Li, and Mengjun Xie. “Real
time motion-based authentication for smartwatch”. In:
2016 IEEE Conference on Communications and Net-
work Security (CNS). IEEE. 2016, pp. 380–381.

[13] Longlong Li et al. “End-to-end network intrusion de-
tection based on contrastive learning”. In: Sensors 24.7
(2024), p. 2122.

[14] Yunji Liang et al. “Behavioral Biometrics for Contin-
uous Authentication in the Internet-of-Things Era: An
Artificial Intelligence Perspective”. In: IEEE Internet
of Things Journal 7.9 (2020), pp. 9128–9143. DOI: 10.
1109/JIOT.2020.3004077.

[15] Ilya Loshchilov, Frank Hutter, et al. “Fixing weight
decay regularization in adam”. In: arXiv preprint
arXiv:1711.05101 5 (2017), p. 5.

[16] Jian Luo et al. “A multi-channel contrastive learning
network based intrusion detection method”. In: Elec-
tronics 12.4 (2023), p. 949.

[17] Yuxiang Ma et al. “A balanced supervised contrastive
learning-based method for encrypted network traffic
classification”. In: Computers & Security 145 (2024),
pp. 104023/1–12.

[18] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu.
“Siamese network features for image matching”. In:

2016 23rd international conference on pattern recog-
nition (ICPR). IEEE. 2016, pp. 378–383.

[19] John V Monaco. “Device fingerprinting with peripheral
timestamps”. In: 2022 IEEE Symposium on Security and
Privacy (SP). IEEE. 2022, pp. 1018–1033.

[20] David Monschein and Oliver P. Waldhorst. mPSAuth:
Privacy-Preserving and Scalable Authentication for
Mobile Web Applications. 2022. arXiv: 2210 . 04777.
URL: https://arxiv.org/abs/2210.04777.

[21] Mark O’Neill et al. “TLS inspection: how often and
who cares?” In: IEEE Internet Computing 21.3 (2017),
pp. 22–29.

[22] Praveen Kumar Rayani and Suvamoy Changder. “Con-
tinuous user authentication on smartphone via behav-
ioral biometrics: a survey”. In: Multimedia Tools and
Applications 82.2 (2023), pp. 1633–1667.

[23] Giuseppe Stragapede et al. “IEEE BigData 2023
Keystroke Verification Challenge (KVC)”. In: 2023
IEEE International Conference on Big Data (BigData).
IEEE. 2023, pp. 6092–6100.

[24] Giuseppe Stragapede et al. “Keystroke verification chal-
lenge (KVC): biometric and fairness benchmark evalu-
ation”. In: IEEE access 12 (2023), pp. 1102–1116.

[25] Giuseppe Stragapede et al. “KVC-onGoing: Keystroke
Verification Challenge”. In: Pattern Recognition 161
(2025), pp. 111287/1–14.

[26] Cheng Wang et al. “Behavioral authentication for se-
curity and safety”. In: Security and Safety 3 (2024),
pp. 2024003/1–36.

[27] Feng Wang and Huaping Liu. “Understanding the be-
haviour of contrastive loss”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 2495–2504.

[28] Yawei Yue et al. “Contrastive learning enhanced intru-
sion detection”. In: IEEE Transactions on Network and
Service Management 19.4 (2022), pp. 4232–4247.

[29] Bruno Bogaz Zarpelão et al. “A survey of intrusion
detection in Internet of Things”. In: Journal of Network
and Computer Applications 84 (2017), pp. 25–37.

	Introduction
	Background and Related Work
	ML-NIDS
	Explainable AI
	Feature Selection
	Related Work

	Methodology
	NIDS Datasets
	XAI Workflow
	Synthetic Data

	Evaluation
	Preliminary Experiments on Synthetic Data
	Final Experiments on NIDS Datasets

	Conclusion
	References
	Introduction
	Related Work
	Methodology
	Problem Formulation
	Proposed Architecture: HiSTM
	Hierarchical Spatiotemporal Encoding
	Temporal Attention-Based Aggregation
	Prediction Head

	Baseline Models

	Datasets & Experimental Setup
	Datasets
	Data Preprocessing
	Implementation and Training Configuration
	Evaluation Metrics

	Results and Analysis
	Prediction Accuracy
	Single-step Prediction Results
	Multi-step Autoregressive Forecasting
	Cross-dataset Generalization on Trentino dataset

	Cell-specific Modeling and Spatially-aware Accuracy
	Computational Efficiency Analysis

	Conclusion
	References
	Introduction
	Related work
	Background
	Performance Measurement Framework
	Graph Neural Networks for Homogeneous Graphs
	Graph Neural Networks for Heterogeneous Graphs

	Methodology
	Hardware Testbed
	Dataset
	Architecture
	GNN Training

	Evaluation
	Conclusion

