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Abstract—Machine learning-based network intrusion detection
systems (ML-NIDS) are increasingly enhanced with explainable
Al (XAI) techniques to support transparency and trust in
automated security decisions. However, recent studies have shown
that different post-hoc XAI methods often yield inconsistent
explanations. These variations depended on the dataset and
underlying model, and were possibly caused by training the
ML models on correlated features. In this work, we investigate
the hypothesis that feature selection prior to model training can
influence the level of consensus among XAI methods. Through
a comprehensive evaluation across multiple datasets, we analyze
the impact of different feature selection strategies on explanation
agreement. While we found that feature selection can improve
XAI consistency in controlled synthetic settings, its effects on
real-world NIDS data are mixed: occasionally enhancing, but
sometimes reducing consensus, while offering only modest gains
over using all features. These insights highlight the importance
of thoughtful feature selection to improve interpretability and
consistency in XAI-driven network intrusion detection systems.

Index Terms—Machine Learning, Intrusion Detection, Ex-
plainable AI, Disagreement Problem, Feature Selection.

I. INTRODUCTION

The rapid evolution of data networks has revolutionized
modern life by enabling seamless communication, automa-
tion, and large-scale data exchange. However, this increased
connectivity has also expanded the attack surface, offering
more opportunities for cyber adversaries. According to the
European Union Agency for Cybersecurity (ENISA), there
has been a marked increase in the frequency, diversity, and
impact of cyber attacks [1]. Adversaries are now exploiting
automation and artificial intelligence (AI) to design more
evasive attack strategies [2], [3]. These developments have
exposed the limitations of traditional security mechanisms,
especially signature-based detection methods, which depend
on predefined patterns and struggle with evolving threats [4],
thereby prompting the emergence of machine learning (ML)-
based network intrusion detection systems (NIDS) as promis-
ing tools to identify malware and network attacks [3], [5]-[7].

Despite these advances, the integration of ML into computer
security still often encounters mistrust and skepticism [8], [9],
not least due to the lack of explainability [10]. The opaque
nature of many Al models limits their practical deployment,
as security analysts must be able to interpret and trust the
decisions made by automated systems [3], [7], [10]. In cyber-
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Fig. 1: Feature selection for decorrelation.

security, errors or blind trust in automated decisions can have
severe consequences, potentially endangering infrastructure,
privacy, and even human safety [3], [11]. While explainable
Al (XAI) has emerged to demystify ML behavior, current XAI
methods often produce divergent explanations, which creates
confusion rather than clarity [10], [12], [13]. Thus, to ensure
actionable insights for security professionals, it is essential to
establish consensus among different explanation techniques.
Furthermore, the European Union’s General Data Protection
Regulation (GDPR) reinforces this through its “right to expla-
nation” for decisions made by algorithms [14].

A detailed analysis on the consensus of XAI methods for
ML-NIDS [13] revealed that the level of agreement between
different post-hoc XAI approaches, varied significantly de-
pending on the dataset and, in some cases, the underlying
model. Disagreements might stem from the selection of related
or correlated features, indicating that multiple, seemingly
divergent explanations could still be valid. Figure 1 exemplifies
this phenomenon, where two explainers, f; and f,, select
different features, X and Y, to explain the same decision.
Although these features encode similar characteristics, their
disagreement results in a lack of consensus. When applying
feature selection (FS), both explainers may agree on the same
feature. This suggests that FS before model training might
play a crucial role w.r.t. consensus, and that we can potentially
improve the consensus by using the right FS method.

In this work, we conduct extensive experiments on both
synthetic and real-world NIDS datasets, using six different FS
strategies and two widely used post-hoc XAI methods. To the
best of our knowledge, this is the first systematic analysis
of the relationship between FS and XAI disagreement by
bringing the disagreement problem into the context of NIDS.
We highlight both the potential and limitations of improving



explanation consistency, and more broadly, the challenges of
relying on post-hoc XAI for trustworthy interpretations.

The remainder of this paper is structured as follows: Sec-
tion II provides information on intrusion detection, XAlI, FS,
and related works. Section III outlines the used datasets and
ML workflow for analyzing consensus. Section IV presents
the obtained results, and finally, Section V summarizes the
key findings and contributions of this study.

II. BACKGROUND AND RELATED WORK
A. ML-NIDS

In network security, an intrusion implies that the confiden-
tiality, integrity, or availability of network resources (e.g.,
devices, data) is being compromised [15]. Thus, intrusion
detection systems (IDS) are employed to detect such attacks
and enable further steps for their containment. IDS can be
deployed at different vantage points, e. g., in global locations to
monitor the network traffic on a large scale (NIDS) or directly
on the host (HIDS) to locally investigate malicious programs,
files, etc. The former is often based on features extracted from
coarse-grained flows (i. e., aggregates based on the 5-tuple of
IPs, ports, and protocol such as NetFlow) or directly on the
packets for more fine-grained monitoring.

Research has shifted towards ML-NIDS, since recent trends
such as 5G/6G, Internet of Things (IoT), and Industry 4.0
have increased attack surfaces, necessitating more sophisti-
cated countermeasures. Though, ML-based solutions are often
perceived as more complex than traditional solutions (e.g.,
based on signatures or rules) [16] and deemed less trust-
worthy, particularly in sensitive areas such as cybersecurity.
So, techniques that provide model insights should be adopted,
especially regarding the GDPR [14] and European Al Act [17].

B. Explainable Al

The aforementioned challenges have led to the development
of XAI to provide insights into the decisions of ML models,
either by utilizing white-box models that are interpretable
by design or by utilizing post-hoc explainers, which explain
the output of black-box models [10]. XAI methods can be
classified in various ways, e.g., w.r.t. model compatibility or
algorithm type [18]. In this work, we focus on two of the
most prominent post-hoc XAl representatives: LIME (Local
Interpretable Model-agnostic Explanations) [19] and SHAP
(SHapley Additive exPlanations) [20]. Generally, both of them
are compatible with any ML model and work via perturbation,
i.e., masking or obfuscating input features of a data sample
to determine their influence on the model’s decision. That is,
LIME builds a linear (therefore interpretable) surrogate model
by learning the output of the original model by adding noise
to each input feature. SHAP, on the other hand, is based on
Shapley values [21] from game theory. This concept assigns
feature contributions by evaluating all possible feature subsets.

Even though XAI has gained increasing popularity, new
challenges arise, e.g., in form of the disagreement prob-
lem [12]. This problem stems from the fact that produced
explanations by the various explainers often differ, sometimes

even contradict. This has been observed for use cases like
network security [10], [13], [22]-[24], but also areas outside of
communication networks [12], [25], [26]. Feature interactions,
such as correlation or other relationships, are often cited to be
a contributing factor to this phenomenon [13], [25]-[30]. Nat-
urally, redundant features enable multiple valid explanations.

C. Feature Selection

Selecting only a relevant feature subset is a standard process
in many ML workflows, since fewer features not only improve
training and inference time, but also reduce overfitting [18].
They also improve interpretability, since less features have to
be interpreted. Here, reducing the number of features may help
improve XAI consensus twofold. One, the explainers have less
choices to choose from in general, and two, depending on the
FS mechanism, feature interactions may be reduced.

Similar to XAI, FS aims to identify the top features. This
is a preprocessing step (i.e., before model training), while
post-hoc XAI is applied after model training. Staficzyk [31]
(as well as Khani et al. [18]) groups FS into three groups:
filters, wrappers, and embedded techniques, many of which are
implemented in scikit-learn [32]. One of the most well-known
selection techniques is impurity-based FS that leverages the
structure of tree-based models. This is an embedded technique,
since it makes use of the internals of a pretrained model. It
quantifies how much a feature reduces the “impurity” at each
split across all trees w.r.t. the mix of class labels.

Instead of making use of model internals, wrappers utilize
a classifier to evaluate different feature (sub)sets and their
“usefulness in classification” [31, p. 32]. That is, they observe
how the model’s performance (e. g., accuracy) changes under
different conditions. For example, permutation importance
shuffles the value of a feature. Alternatively, recursive fea-
ture elimination starts with a full feature set and iteratively
prunes the feature with the least impact. Similarly, backward
sequential FS works accordingly, while the forward variant
starts from an empty feature set.

Lastly, filters work separately from any ML model and
observe the relationship between a feature and the class label,
e.g., via ANOVA F-values [18], as implemented by default by
sklearn’s SelectKBest(). Another approach clusters correlated
features together by treating correlation as a similarity mea-
sure, before simply choosing one feature from each group [33].

D. Related Work

Many works on XAl-driven NIDS have already shifted
their focus to a quantitative comparison of different explainers
instead of merely using XAl to explain a decision, e. g., regard-
ing an explanation’s robustness or faithfulness to the ground
truth [22], [34]-[38], and/or conduct qualitative studies with
security admins to gain insights from practitioners [24]. Some
works leverage XAl itself for FS (e.g., [18], [39]), whereas
we view this as two separate steps in the ML pipeline. The
disagreement problem is sometimes a partial factor in these
works, but rarely a focal point. In contrast, our work focuses
on investigating the XAl consensus in a more detailed manner.



Our goal goes beyond stating the existence of the disagreement
problem, which we explored ourselves previously [13].

Besides works on XAI-NIDS, other research areas have put
a more in-depth emphasis on the disagreement problem by
investigating the impact of varying model parameters or steps
in the ML workflow. One approach is limiting the scope of
the explanation to regional areas [40], [41], i.e., adjusting
the background datasets of explainers to be more locally
relevant to the instance to explain. Instead of restricting the
reference data, other works limit the actual input features
via dimensionality reduction to reduce multicollinearity [13],
[26], [42]. Lastly, other works analyze the reasons of the
disagreement problem by controlling dataset parameters (e. g.,
features, samples, labels, noise, redundancy) [27], [28], while
others explore the impact of different preprocessing techniques
(e.g., scaling, encoding) [43], or influence of model param-
eters (e.g., training duration and loss functions) [30], [44].
Often, these works also make use of synthetic data, which is
easier to configure. While there exist some works that make
use of FS, as well as investigating feature interactions, our
work specifically zeroes in on the differences between various
selection methods. To the best of our knowledge, we are also
the first to bring the disagreement problem into the NIDS
domain in-depth (or monitoring in general).

III. METHODOLOGY
A. NIDS Datasets

In this work, we use three NIDS datasets of varying com-
plexity and feature granularity: CICIDS2017 [45], CIDDS-
001 [46], and Edge-lloTset [47]. CICIDS2017, one of the
most popular NIDS datasets in state-of-the-art literature [7],
provides 77 flow-based features!, e. g., statistical moments
of packet sizes and IATs. We use the Wednesday subset
with almost 700k samples and DoS/DDoS attacks. CIDDS-
001 offers 14 features based on NetFlow, which is one of
the most commonly used protocols in practice for traffic
monitoring. We use the first week of the dataset (over 8M
samples), which includes Pingscan, Portscan, Bruteforce, and
DoS attacks. Note that we additionally derived flow IATs
and number of parallel flows to enrich the feature set. Edge-
IloTset covers diverse [oT/IloT protocols (e. g., TCP, MQTT,
MODBUS) with 35 features for over 2M samples, including
DDoS, Portscan, and other attacks. While we generally follow
the authors’ proposed preprocessing steps, we remove further
features with limited generalizability (e.g., IPs, checksums,
ACK numbers). Our code is available for reproducibility?.

B. XAI Workflow

To ensure temporally coherent splits, we use sklearn’s Strat-
ifiedGroupKFold(), where groups are defined as 30s time inter-
vals w.r.t. each dataset’s timestamp column?, instead of simply
shuffling the entire dataset randomly before splitting. We use
three folds, ensuring that each sample appears during testing.

Before encoding, filtering etc. (for all datasets).

Zhttps://github.com/Isinfo3/malene2025- xai-nids-feature-selection
3Edge-TloTset has >100k samples with invalid timestamps, which we drop.

Categorical features are one-hot-encoded, zero-variance fea-
tures are filtered out, and features are minmax-scaled. The
top ten features are selected via the six selection methods
described in Section II-C: impurity-based, permutation-based,
recursive, (forward) sequential, and correlation-based FS, as
well as SelectKBest(). Similar subsets have been found useful
in related work on NIDS [18], [39]. For FS methods that
require a classifier, we utilize a lightweight Random Forest
(RF; 10 trees, max. depth 10). After encoding and filtering,
we balance the training data by selecting 250k samples of
each class (benign, malign). For the actual classification task,
we also use an RF (50 trees, max. depth 20) and a Multi-
Layer-Perceptron with two layers (MLP; 64 neurons per
layer, followed by ReLU). Both are commonly used in recent
XAI [12], [30] and NIDS literature [7], giving insights for
shallow ML and Deep Learning (DL).

For our explainers, we utilize the aforementioned LIME and
SHAP. For the latter, we use the more efficient, model-specific
implementations (TreeSHAP, DeepSHAP). To calculate the
consensus between pairs of explanations (i.e., SHAP vs.
LIME-based explanations), we use metrics similar to Krishna
et al. [12]. We focus on two types: unordered (UC) and ordered
consensus (OC) of the top 5 features. For the UC, we simply
calculate the intersection of features. For the OC, we take the
actual order of importance into account. In detail, we compute
how many of the top features match in order until the first
mismatch. Consequently, we are not interested if, e.g., only
the fifth feature matches if previous features do not. We only
count features as matching if their sign also matches.

C. Synthetic Data

We also utilize synthetic data to analyze the effect of FS in
a configurable manner, for which we make use of sklearn’s
make_classification(), adapted from a benchmark data gen-
erator for a FS competition [48]. The algorithm has four
feature types: informative, redundant, repeated, and useless.
The informative features are the ones actually relevant to the
prediction target, and the informativeness is split among all of
them. The redundant features are linear combinations of other
features, while repeated features are simple duplications. Last,
useless features are just noise. For all feature types, we add
new features (up to 50 extra, in increments of 10), select the
top 10, and calculate the XAI consensus. Each experiment
starts with five informative features. For each combo of type
and number, we generate 250 balanced synthetic datasets of
1k samples, which we split in a 80:20 ratio.

1V. EVALUATION
A. Preliminary Experiments on Synthetic Data

Before diving into the experiments of the NIDS datasets, we
first want to analyze the impact of FS in a controllable fashion.
Figure 2 illustrates the results of various experiments described
previously. Each row of subfigures illustrates the four different
feature types, while the columns of subfigures represent the
two consensus metrics for all 200 test set samples, as well
as the accuracy. Since the synthesized datasets are balanced,
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Fig. 2: Comparison of FS methods across feature types (rows) and (un)ordered consensus+accuracy (columns; UC/OC, ACC).

using accuracy is adequate here. The x-axis represents the
extra added features (in addition to the five starting features),
and the y-axis the respective metric. The different linestyles
depict the different FS methods as well as results with all
features (“None”) and a random FS. Errorbars depict the 95%
confidence intervals of the 250 runs. For the sake of brevity,
results are shown for the RF as underlying model.

For the informative features in the first row, the UC stays
almost constant for all FS methods, but drops significantly
when no FS is applied. We can also observe a slight edge
of the correlation-based and the sequential approach over the
others. Since informative features are generated in a way so
they do indeed contain covariance, taking this into account
may help slightly. For the OC, we see a similar trend, though
the difference between no FS and the rest is less severe and
the consensus is generally lower. Interestingly, the random
baseline comes out on top here. For the actual accuracy,
however, we see that only keeping all features maintains model
performance. This is expected, as we increase the number of
informative features, which are all relevant to the classification,
retaining only the top 10 is not sufficient anymore. We also
see that while the correlation-based approach has a slight
edge for the consensus, it slightly underperforms. We also
see that, despite being best for the OC, the random baseline
drastically underperforms, too. Our hypothesis is, that the

OC may be increased since the random approach might have
chosen one feature that may be most import, while the rest is
not as descriptive (as reflected by the accuracy), making the
explainers agree on that feature. In other words, the FS is so
suboptimal, that it makes explainers agree on the top feature.

For the repeated features in the second row, we see more
distinct trends. For the UC, the correlation-based selection
outshines the rest, since it is able to determine that in total
only five features are relevant, since it can only establish five
clusters, because all features are perfect duplicates. This is
followed by the three wrapper-based methods. Interestingly,
even the permutation-based approach is able to keep the UC
constant. Although permutation is prone to correlation, this
effect is negated here since all initial features have the same
chance to be duplicated. In other words, while correlated fea-
tures dampen each other’s importance, this effect happens for
all features uniformly. This is also the reason why the random
baseline performs decent, as on average, it will choose each
original feature at least once. The impurity-based approach
and SelectKBest(), however, are both biased towards the top
feature. Especially the latter even drops its consensus below
the baseline. In the worst-case scenario, the selected features
only contain a single feature and its replicates, thus making
it hard for SHAP and LIME to determine which is most
important. For the OC, we generally see a similar trend to
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Fig. 4: Signed UC (top) and Signed OC (bottom) on NIDS data with RF as underlying model.

the UC. Though, since it is generally lower, the baseline and
SelectKBest() cannot drop as steep numerically. The accuracy
also shows the suboptimal FS of SelectKBest().

The redundant features in the third row generally show a
more “noisy” trend compared to the previous feature types.
That is, while this feature type still contains redundancies, they
are more obfuscated. In other words, choosing a different fea-
ture set other than the initial features still holds value. For both
the UC and OC we still see the correlation-based approach
having an edge over the others, though far less significant than
for the repeated features. Additionally, SelectKBest() and the
impurity-based approach also do not diverge as strongly. For
the accuracy, all methods are able to keep up the performance,
since there is no issue of choosing (perfect) duplications.

Lastly, the useless features in the fourth row show a con-
trasting trend to the previous features. For the UC, we now
see that the correlation-based approach performs significantly
worse then the others, as well as illustrating why random FS
is a bad idea. Even no FS is better here. The same can be
observed for the OC, and is also reflected in the accuracy
dropping. Since the correlation-based approach clusters the
features first, it may choose a handful of noise. Similarly,
the random FS will choose noise. Since this noise actually
has no meaning for the explanations, it makes it increasingly
hard for the explainers to decide which of these noisy features
are actually more relevant, similar to the perfectly correlated
features. Contrary to the previous feature types, the baseline

without FS performs worse since it also uses the noise to train.
Discussion: The synthetic experiments validate our core as-
sumptions: FS can improve consensus, particularly when fea-
ture interactions such as correlation or redundancy are present.
Selection methods that respect such interactions outperform
simpler approaches like SelectKBest(). However, when the
added features are purely noisy, correlation-based selection
may actually reduce consensus and accuracy by mistakenly
prioritizing irrelevant features. Overall, sequential selection
proved to be a balanced choice across all feature types.

B. Final Experiments on NIDS Datasets

We now shift our focus to more realistic NIDS data, which
may not contain perfectly (un)correlated features, but more
complex feature relationships. For this, Figures 3 and 4 show
the consensus for all three previously described NIDS datasets
as a barplot, for MLP and RF, respectively. The top row depicts
the UC and the bottom row shows the OC. The x-axis depicts
the selection method, while the left y-axis holds the consensus.
The consensus is the average of 100 random samples from
the test set for all three splits, i.e., each bar is made up
by 3 - 100 values. We divide the consensus analysis between
our two classes, as the datasets are imbalanced. The errorbars
contain the 95% confidence intervals. The right y-axis marks
the average macro F1 to take into account imbalances via stars.
We also utilize the macro F1 for FS for performance scoring
here where applicable, as the default is accuracy.



Starting with the MLP as underlying model in Figure 3
and the UC (top row), we see that no selection method really
stands out, whether it is w.r.t. consensus or performance.
The only method that consistently has similar performance
to the baseline with no filtering is the recursive selection.
For CICIDS, the majority of the methods are able to at
least slightly boost the consensus, though only marginally in
most cases. Features are reduced from around 70 features to
only 10, but the consensus increase is nowhere near drastic.
This also comes at a performance loss in some cases. For
example, the impurity-based approach increases the consensus
the most, but performance drops by roughly 5%. Interestingly,
even a random FS performs better accuracy-wise. For CIDDS,
results are similar concerning the UC boost. For Edge-IIoT,
the consensus is already quite high, so any further filtering
does not actually have a great impact. Interestingly, Select-
KBest() and the impurity-based approach are the only ones
that increase the UC here, which may seem counterintuitive
compared to the synthetic data. For the OC (bottom row), we
see similar observations. While the FS is able to establish some
consensus in some cases, the improvement is not as drastic as
desired. Again, for Edge-I1oT, consensus is higher and filtering
can actually have a significant negative effect.

The results for the RF as underlying model are depicted
in Figure 4. How the selection methods perform w.r.t. F1
follows similar trends as for the MLP, though the score
is consistently higher. While the consensus is in a similar
range compared to before, there are some nuanced differences.
Which method improves the consensus most for the datasets is
partially inconsistent with the results from the MLP, i.e., not
following a noticeable pattern. For the UC, filtering features
may have a positive effect for CICIDS and CIDDS, while for
Edge-1IoT the baseline already reaches near perfect consensus,
despite using much more features. For the OC, the consensus
of CICIDS is only slightly improved by filtering and for
CIDDS filtering has no huge impact either. For Edge-IIoT,
SelectKBest() and impurity-based FS are the only methods that
increases the consensus meaningfully here.

Discussion: Results on real-world NIDS datasets show that
the impact of FS on consensus is less predictable. While
consensus can improve over using all features, the gains are
generally modest. CICIDS generally responded the best to FS.
Some of its features are various statistical moments of packet
sizes, IATs etc., which are naturally more correlated. CIDDS
is also contains flow-based data, but already has very few
features, thus FS will not have as much of an impact. For
Edge-1I0T, SelectKBest() and impurity-based FS performed
best, which is in stark contrast to the previous analyses. We
hypothesize this is due to a few highly indicative (and likely
related) features. More sophisticated methods may discard
these in favor of spreading importance across weaker (thus
noisier) features, reducing consensus. This is supported by the
fact that random FS dropped performance the most drastically
here for both MLP and RF. In other words, the other datasets
contain more related features in terms of informativeness, i.e.,
random FS is partially feasible. Overall, the impact of FS is

TABLE I: MSE + 95% CI for the toy example, 2.5k trials.

X1 Xo Both
LR 0.53£0.01 69.8+£0.61 0.00=+£0.00
RF 0.60 4+ 0.01 0.62 + 0.01 0.56 & 0.01

harder to assign for NIDS data, since it is composed of a more
mixed set of features w.r.t. noise and correlation, so effects
supposedly counteract each other.

To illustrate the impact of removing correlated features on
the actual model performance, we trained a linear regression
(LR) and RF on two highly correlated inputs (one linear
and one exponential feature, X; and X5), and defined the
regression target as their sum. Using both features yielded
lower errors than only one (see Table I). Thus, unless a feature
is an identical copy of another, correlated features might still
carry information. These findings emphasize that reducing
features to minimize potential correlations does not always
help, both in terms of consensus as well as performance, and
is highly dependent on dataset and model.

To summarize the findings of this work in a more practical
context, post-hoc explanations and their resulting consensus
are highly sensitive to slight changes in the ML pipeline. Fil-
tering can help by removing totally irrelevant noise or avoiding
actual duplicates (e.g., analogous to radius vs. diameter of
a circle), but it is not a cure for all problems by simple
application and still requires critical thinking. It also raises
the need for interpretable consensus metrics, which can be
misleading when inflated by highly indicative, but correlated
features (as potentially seen with the Edge-IloT dataset).

V. CONCLUSION

In this work, we analyzed how feature selection influences
the disagreement problem between post-hoc XAI methods in
ML-NIDS. On synthetic datasets, where we could control
redundancy and noise, feature selection behaved as expected
by improving explanation consistency in a predictable manner.
However, results on real-world NIDS datasets were less consis-
tent. While in some cases feature selection modestly improved
agreement between explainers, it sometimes actually reduced
consensus, particularly when selection methods emphasized
noisy features. Overall, the improvement over the full-feature
baseline was often smaller than maybe desired. If aligning ex-
plainers remains unreliable, it hinders the practical adoption of
these methods, and they risk becoming “rebranded” standard
feature importance metrics. Our results suggest a need for
stronger emphasis on inherently interpretable models, rather
than reliance on post-hoc techniques that struggle to produce
consistent and trustworthy explanations.
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