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Abstract—5G networks expand the wireless infrastructure
attack surface while concurrently limiting data streams through
in-your-face privacy regulations. Centralized traffic aggregation-
based traditional intrusion-detection pipelines, thus, are plagued
with bottlenecks, sole points of failure, and regulatory in-
surrection. This paper uses PA-CoL, a Parallel Asynchronous
Consensus-based Learning framework in which multi-agent base
stations train a shared deep neural model without ever exporting
raw traffic records. Each agent performs local mini-batches on
5G-NIDD flow features and intermittently averages parameters
with a randomly chosen neighbor; no parameter server or global
synchrony is required. Experiments across three overlay graphs
(Complete, Ring, Small-World), two data Types (IID and non-
IID), and three federation sizes (5, 8, 10 agents) show that the
newly developed scheme reaches F1 ≥ 0.99 under IID data and
F1 ≥ 0.93 under severe non-IID skew. These results indicate
that a lightweight, peer-to-peer consensus can deliver carrier-
grade intrusion detection for privacy-sensitive 5G edge clouds
and can pave the way toward 6G self-defending networks.

Index Terms—5G Network, Federated Learning (FL) , Multi-
Agent Systems (MAS), Intrusion Detection.

I. INTRODUCTION

Fifth-generation (5G) mobile networks are a wireless com-
munications paradigm shift that provides greater bandwidth,
ultra-reliable low-latency (URLLC), and massive machine-
type communications (mMTC). This results in new capabilities
like autonomous vehicles, smart manufacturing, and remote
medicine. But with these capabilities comes the price tag of
an exponentially increased attack surface. Use of encrypted
network traffic, pervasive use of network slicing, and the
inherent dynamic nature of 5G topologies introduce high
degrees of complexity for threat detection and security mon-
itoring. Conventional security analytics, having a dependency
on centralized data aggregation and correlation, become less
effective in such cases [1]. Centralized solutions have critical
drawbacks, including bottlenecks, single points of failure, and
lack of end-to-end visibility in highly segmented virtualized
environments [4], [10].

An additional level of intricacy arises from stricter data
sovereignty and privacy regulations, such as the General Data
Protection Regulation (GDPR) within the European Union.

These regulations mandate that organizations maintain sen-
sitive user data within local or national borders, effectively
excluding unregulated trafficking of raw data to distant cloud
servers for processing. Security products, therefore, relying on
packet capture and aggregation of all traffic across the network,
are not only technologically infeasible but also most likely
to be non-compliant with global privacy standards. There is
therefore a pressing need for threat detection and response
capabilities without losing data locality in the security archi-
tectures [28], [29], [31].

Federated Learning (FL) [2] proves to be a viable paradigm
to overcome privacy and locality of data concerns. FL fa-
cilitates training machine learning models in a decentralized
manner through enabling local nodes or edge devices to hold
their data locally and send model updates (e.g., parameters
or gradients) to a coordination agent. This paradigm reduces
risk to privacy and restricts exposure of sensitive data to an
absolute minimum. But the traditional FL architecture usually
depends on a parameter server in the middle to collect model
updates and scatter the updated global model. This server-
based architecture creates new threats, such as communication
bottlenecks and single points of failure, which are undesirable
in the case of large-scale, mission-critical 5G networks. In
addition, centralized FL presumes synchronized and consistent
participation of all the nodes that, in reality, cannot be ensured
due to heterogeneity and dynamic connectivity of mobile
devices [9], [16], [18].

Decentralized Federated Learning (DFL) has been sug-
gested to bypass the downsides of centralized servers. Peer-
to-peer cooperation in DFL substitutes the central aggregation
node such that nodes are able to train models jointly in an un-
supervised way without a coordinator node. The distributed ap-
proach improves robustness and scalability but typically comes
with the cost of rigorous synchronization among cooperating
nodes. 5G real-world scenarios are proven to be challenging
in device capability, network state, and participation rates
shifting unpredictably [5]. Multi-Agent Systems (MAS) [3]
offer the natural paradigm for distributed decision-making and
intelligence for advanced environments. Autonomous agents



and local sensing and knowledge-directed agents interact with
each other in MAS to achieve common goals. Translated to 5G
security, MAS enable localized discovery and quick response
to emerging threats, allowing the requirements of adaptive,
distributed defenses [32].

To take advantage of the strong points of DFL and MAS
and handle synchrony and heterogeneity problems, this paper
uses Parallel Asynchronous Consensus-based Learning (PA-
CoL) [8]. PA-CoL facilitates the convergence of the models
of decentralized agents without the need for global synchro-
nization. Agents instead update and exchange their models
asynchronously with neighbors in such a way that the network
converges as an aggregate under delays, network partition, or
stragglers. This asynchrony is particularly suited for variable
conditions under 5G networks. The key contributions of this
paper are as follows:

1) This paper constructs an entirely distributed intrusion de-
tection system (IDS) using PA-CoL over a MAS overlay
specially designed for the distinctive nature and needs of
5G networks.

2) This paper applies the developed framework using the
PyTorch deep learning framework and performs an exten-
sive experiment on the 5G-NIDD dataset [1], with specific
emphasis on non-IID (non-identically and independently
distributed) data scenarios.

3) This paper compares our detection performance, com-
munication cost, and scalability with conventional FL
benchmarks and shows its performance benefits in real-
world 5G scenarios.

The remainder of the paper is organized as follows. Sec-
tion II provides related work on intrusion detection for 5G
networks, FL, decentralized training algorithms, and multi-
agent systems. Section III offers the proposed framework
architecture, such as system model, dataset preprocessing,
learning algorithm, and comparisons with baseline methods.
Section IV provides a description of the experimental setup
and results focusing on performance measures, communica-
tion efficiency, and resilience with non-IID scenarios. Finally,
Section V summarizes the paper and presents future directions
of work.

II. RELATED WORK

A. Federated Learning for Network Security

FL has become an attractive paradigm for cooperative,
privacy-aware intrusion detection. The initial FedAvg algo-
rithm [2] proved that distributed devices could perform local
model learning on their own data in parallel and then exchange
model updates with a central server to collect. This work
motivated diverse research on privacy-preserving machine
learning for network security. The latest developments also
involve the use of advanced models like BERT, which has
made remarkable discoveries of up to 97.8% accuracy for
intrusion detection based on datasets [6]. However, most recent
FL solutions still rely on a central server to handle the
learning process. This reliance is accompanied by a cluster of

weaknesses: the master server is a point of contention, a target
for denial-of-service or poisoning attacks, and a single point
of failure, which compromises the resilience and scalability
needed for 5G network security.

B. Multi-Agent Systems in 5G Security

MAS provides an adaptive and agile answer to distributed
security in 5G networks. In MAS, autonomous heterogeneous
agents with local knowledge and goals interact and collaborate
to detect, respond to, and pursue threats. This distributed
approach is most applicable to the dynamic, partitioned, and
large-scale environment of 5G. The combination of MAS
with FL was even investigated recently to further improve
system resilience and fault tolerance to allow agents the
capability to collaboratively train and improve security models
in the absence of a central controller [7]. Although these are
promising directions, existing research in these directions has
been mainly theoretical models or simulations, with extremely
few being based on real 5G datasets like 5G-NIDD. Therefore,
there is an urgent need for experimental investigations that
assess the efficiency and usability of MAS-FL hybrids in real-
world 5G deployment environments.

C. From Centralized to Decentralized FL in 5G IDS

Early 5G intrusion detection research used the standard Fe-
dAvg framework, where edge devices provide gradient updates
to a parameter server; the framework attains high accuracy
on IIoT data but suffers from a single point of failure and
is still susceptible to model-poisoning attacks [12], [14].
Server-side bandwidth constraints also reduce scalability when
thousands of gNBs transmit traffic features every few seconds.
A number of studies find that server-centrism is antithetical
to the URLLC aspirations of 5G and support peer-to-peer
aggregation instead [11], [13]. There exists a taxonomy of
decentralized forms with security in focus as well [5]. They
collectively induce a turn towards topologically fully decen-
tralized or at least hierarchically organized training structures.

D. Asynchronous Decentralized FL

Weighted-average consensus on an overlay graph eliminates
the server bottleneck, while the synchronous one continues to
assume uniform compute speed [27]. Multilayer consensus and
dynamic-average consensus enable all agents to update when-
ever resources become available and thus eliminate stragglers
[16], [18]. The pull-based protocol generalizes the concept
further by allowing nodes to pull the latest neighbor model on
demand [9], while the latency-compensated scheduler rewinds
stale gradients [17]. All such systems, though, broadcast each
update across the network and thereby flood low-power radios.

E. Security, Privacy, and Verifiability

Consensus ledger verifiable computation prevents tampering
but adds additional latency [15]; end-to-end correctness proofs
add even more integrity [21]. Update-level trust scoring and
the proof-of-data system, which is cryptographic, prevents
decentralized FL poisoning but has not yet been tested with
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real 5G traffic [19], [20]. Communication-saving methods
like locally differentially private updates indicate privacy and
efficiency can be pursued in tandem [25].

F. Parallel Asynchronous Consensus-based Learning

Consensus-Based Learning approaches make fusion into an
iterated averaging problem with no kind of global coordi-
nator [30]. The most recent evolution, PA-CoL, features an
explicit coalition layer [8]. Agents sharing similar semantics
or geographically co-located agents in PA-CoL organize intra-
coalition clusters that reach consensus in frequent rounds;
models aggregated from each coalition leader engage in the
slower inter-coalition exchange. Experiments across a non-
IID image data set reduce total bytes transferred by about
35 % without affecting accuracy compared to single-coalition
baselines, and message-direction analysis validates that most
traffic is local between coalitions [8]. Since 5G slices natively
map to trust domains, we generalize the coalition concept to
slice-aware security monitoring [8], [33].

G. Graph and Self-Supervised Models for Network Data

Graph neural networks improve representation of host-to-
host relationships and protocol hierarchies: Edge-based Graph-
SAGE in [26], DIGNN-A in [22], and feature-rearranged
(GNNs in [23] all see double-digit F1 gains over multilayer
perceptrons. Self-supervised pretext tasks like TS-IDS in [24]
see comparable large gains when labelled data is limited.
Nevertheless, parameter counts are an order of magnitude
greater than for lightweight MLPs, increasing the communi-
cation overhead decentralized FL already needs to cope with.
Compression methods like the autoencoder pipeline in [29]
and hierarchical clustering in [30] mitigate this expense in
part.

III. EXPERIMENTAL DESIGN

A. Data Set and Pre-processing

The evaluation relies on the public 5G-NIDD dataset [1],
which captures network traffic across nine behaviour classes.
Each record carries forty-eight normalised numerical features.
Rows with missing values less than 0.1% of the file are
discarded to avoid introducing noise. A stratified hold-out
split reserves 20% of the cleaned data for testing so every
class preserves its prior. Feature scales are already aligned;
therefore, no extra standardisation is applied.

B. Neural Architecture and Local Optimisation

Both agents have the same feed-forward MLP depicted in
Fig. 1. There are two hidden widths 128 layers with ReLU
activations and dropout rate 0.3 to prevent over-fitting. The
output layer provides nine logits. Training uses the Adam
optimiser with a step size of 0.001 and categorical cross-
entropy loss. A training iteration is a single forward-and-
backward pass over a mini-batch of 32 samples.

Input (48) Fully Connected (FC) (128) ReLU Dropout (p=0.3)

FC (128)ReLUDropout (p=0.3)Output Fully Connected (9)

Fig. 1: Architecture of the MLP model with two hidden layers
of size 128 and dropout.

C. Data Partitioning Strategy

To examine the impact of statistical bias, two placement
modes are considered. IID mode: The fold employed for
training is shuffled and divided equally into shards, and each
agent gets an equal amount of samples and class distribution.
Non-IID mode: sampling indices are sampled from Dirichlet
concentration α = 0.3. Biases samples class proportions
such that some agents have labels unobservable elsewhere,
simulating true edge drift.

D. Round Structure and Consensus Rule

Agents transfer information along static undirected graphs
of five, eight, or ten nodes. The considered topologies are
complete, small-world (rewiring probability 0.3), and ring. The
largest node degree degmax fixes the mixing rate

ϵ =
1

degmax

(1)

During each round, an agent first performs one local epoch,
then selects one neighbor at random and updates its weights
via

θi ← (1− ϵ) θi + ϵ θj , (2)

where θi and θj are the agent’s parameter vector and the
selected neighbor’s parameter vector, respectively. There is
one such exchange in each round. The protocol is executed
for 500 rounds for each {graph, partition mode}.

E. Hardware and Software stack

All experiments were conducted on a computing envi-
ronment equipped with an Intel Core i7 13650HX CPU,
featuring 20 logical processors, and 32 GB of RAM. The
graphics processing was managed by an NVIDIA GeForce
RTX 4070 Laptop GPU. The system used an NVMe SSD
storage solution, ensuring rapid data read and write speeds.
The operating system for this setup was Windows 11 Pro 64-
bit.

IV. EXPERIMENTAL RESULTS

Table I reports the maximum mean-over-agent performance
metrics obtained by the parallel Asynchronous Consensus-
based Learning framework. This paper evaluates three com-
munication topologies (Complete, Ring, and Small-World),
two data distributions (IID and non-IID), and three network
sizes (5, 8, and 10 agents). Under IID conditions, different
topologies perform almost the well as they can and show
very few differences in all metrics and network sizes. This
is because, with IID, each agent can access data that is
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equally representative, which leads to steady and consistent
convergence no matter what the network structure is. For
example, accuracies and F1 scores often get close to 0.995,
which confirms that topology does not matter much in this
ideal situation. On the other hand, the non-IID setting (with
Dirichlet skew) is more realistic and difficult, as agents have
very different and biased local data distributions. In this
case, the topology choice becomes a very important design
consideration that impacts convergence and the final result.

Under non-IID conditions, the Complete topology exhibits
significant performance degradation. For example, with 8
agents, the accuracy drops dramatically to 0.6973, and the F1
score decreases to 0.5908. This highlights the vulnerability
of fully connected graphs to bias amplification, as global
averaging may allow agents with extreme local distributions to
disproportionately influence the consensus model. Increasing
the number of agents from 8 to 10 slightly improves perfor-
mance (accuracy rising to 0.8558), suggesting that increased
diversity among agents can partially counteract individual
biases, but overall, the Complete topology remains the most
sensitive to non-IID data.

The ring topology shows greater strength in non-IID setups.
By restricting each agent’s interactions to close neighbors, it
lessens the spread of strong local biases. As shown in Table I,
the ring topology keeps high accuracy and F1 scores (for
example, an accuracy of 0.9677 and an F1 score of 0.9370 with
eight agents), which points to more consistent and dependable
model behavior. Also, the ring topology’s behavior stays even
and less jumpy across varied network sizes, showing it can
scale with data differences.

The small-world topology has middle-of-the-road behavior
in non-IID settings. While it gains from shortcuts that allow
quicker information spread than a simple ring, it also struggles
with the impact of highly linked hub nodes, which can make
local biases worse if these hubs have slanted data. This is clear
in the fairly low precision and F1 scores (like a precision of
0.8341 and an F1 score of 0.7919 with eight agents), which
shows a give-and-take between quicker mixing and flexibility
to differences.

In considering how scaling impacts performance, merely
adding more agents does not assure better results in non-
IID setups. For instance, the Complete topology improves
somewhat with ten agents. But the Ring and Small-World
topologies are more stable, without big drops in performance.
This suggests that just increasing the number of agents isn’t
enough to fix data differences.

The network structure must be carefully thought out. From
a real-world use point, these results point to using sparse,
structured overlays like the Ring topology when data is
inherently non-IID. Situations include edge networks in 5G
and distributed intrusion detection systems. Keeping high F1
scores (above 0.93) even with few communication links per
agent gives a good balance. This balance is between detection
quality and communication costs, which is key for privacy and
places with limited bandwidth.

Fig.2 (a)-(i) illustrates the per-round evolution of accuracy,

TABLE I: Maximum of the mean-over-agents metrics.

Nodes Topology Dirichlet (non-IID) IID

Accuracy Precision F1 Accuracy Precision F1

5
Complete 0.9687 0.9571 0.9545 0.9959 0.9929 0.9916
Ring 0.9621 0.9591 0.9383 0.9963 0.9943 0.9937
Small-World 0.9410 0.8642 0.7990 0.9959 0.9929 0.9918

8
Complete 0.6973 0.6647 0.5908 0.9943 0.9883 0.9845
Ring 0.9677 0.9519 0.9370 0.9949 0.9875 0.9833
Small-World 0.7191 0.8341 0.7919 0.9945 0.9882 0.9838

10
Complete 0.8558 0.6964 0.6406 0.9934 0.9859 0.9822
Ring 0.9547 0.9300 0.9066 0.9944 0.9869 0.9831
Small-World 0.8938 0.7209 0.6881 0.9948 0.9862 0.9828

F1 score, and precision for networks consisting of 10, 8, and 5
agents, each evaluated across six configurations. These config-
urations combine three communication topologies (Complete,
Ring, and Small-World) with two data distributions (IID and
Dirichlet-skewed, α = 0.3).

In the IID setting (indicated by blue, orange, and green
curves), all topologies achieve rapid and smooth convergence.
Accuracy, precision, and F1 score all exceed 0.95 within ap-
proximately 10 to 20 communication rounds, regardless of the
number of agents. The Complete topology exhibits the steepest
initial improvement, typically saturating in as few as 5 rounds.
Ring and Small-World topologies follow slightly slower but
still very close trajectories. This behavior confirms that when
data is balanced and fully representative at each agent, the
effect of communication topology becomes negligible. Thus,
these IID results act merely as an upper bound on possible
performance.

Under non-IID conditions (Dirichlet, α = 0.3), the conver-
gence patterns change dramatically and reveal the true impact
of topology. The Ring topology (purple curves) shows the most
robust and stable performance. For example, in the 8-agent
configuration, accuracy surpasses 0.95 by around round 40,
and F1 score exceeds 0.90 by about round 60, with minimal
oscillations in subsequent rounds. This stability arises because
each agent exchanges information only with local neighbors,
which helps prevent global consensus from being dominated
by agents with highly skewed local data.

The Complete topology (red curves) shows high initial insta-
bility with non-IID data. Initial F1 scores may fall below 0.60
in the first 50 rounds, and the trajectory has clear oscillations
before gradually stabilizing. Even after 500 rounds, final F1
scores only stabilize around 0.75 to 0.78, highlighting the
vulnerability of global averaging to local bias amplification.
Nevertheless, as the number of agents increases, the added
diversity among peers slightly mitigates these effects, as
observed by a final accuracy increase from approximately 0.70
(8 agents) to 0.86 (10 agents).

The Small-World topology (brown curves) presents an inter-
mediate behavior. Its shortcut edges enable a faster initial rise,
for instance, with 10 agents, accuracy approaches 0.90 already
by round 30. However, these same shortcut links can allow
certain highly connected ”hub” agents to propagate biased or
noisy updates more broadly. This leads to convergence settling
at intermediate final scores (e.g., around 0.78 accuracy for 8
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(a) Accuracy for 10 agents.
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(b) Accuracy for 8 agents.
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(c) Accuracy for 5 agents.
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(d) F1-score for 10 agents.
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(e) F1-score for 8 agents.
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(f) F1-score for 5 agents.
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(g) Precision for 10 agents.
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(h) Precision for 8 agents.
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(i) Precision for 5 agents.

Fig. 2: Accuracy, F1-score, and precision; across all agent configurations.

agents), reflecting a trade-off between accelerated mixing and
robustness against local skew. When considering the effect
of network size, increasing the number of agents from 5 to
10 slightly increases early-stage variance, especially in the
Complete topology, where more potential sources of skew
exist. However, in the Complete graph, this added diversity
can also support moderate recovery in later stages. Meanwhile,
the Ring topology stays very consistent no matter the network
size, which points to strong resilience and scalability. Small-
world topologies only gain a little from more agents.

From an engineering perspective, these observations high-
light that in practical distributed environments such as 5G
edge networks, where non-IID data is common and agents
often operate with limited communication bandwidth, sparse
and structured overlays like the Ring topology provide the
most favorable balance between convergence stability and

communication overhead. The Ring topology achieves high
final F1 scores (above 0.93), stable learning curves, and
minimal susceptibility to local data skew, even with mini-
mal connectivity. In contrast, higher-density topologies like
Complete or Small-World can be justified only under ultra-
tight convergence requirements of application-level latency
demands at favorable (IID) conditions. In addition, the in-
sensitivity of terminal performance to the number of agents
under IID conditions indicates that neighborhood edge clusters
can scale relatively adaptively with minimal hyperparameter
readjustment, a desirable aspect in dynamic and fast-expanding
5G FL scenarios.

V. SUMMARY AND FUTURE WORK

This paper proposes a distributed intrusion detection sys-
tem for 5G networks, based on the synergetic combination
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of FL and MAS with the Asynchronous Consensus-based
Learning protocol. The proposed solution meets the new re-
quirements of 5G environments in terms of data heterogeneity,
latency, and privacy-preserving and scalable threat detection.
Our system proves excellent performance in various aspects
through rigorous experimentation on the 5G-NIDD dataset.
It obtains outstanding detection performance, lowers commu-
nication overhead, and retains robustness even in the case of
non-IID data distribution and asynchronous update conditions.
These results verify the feasibility of employing decentralized
collaborative intelligence at the edge of the network to protect
next-generation 5G infrastructures. Future work will explore
integrating graph neural networks for richer modelling of inter-
slice and inter-node traffic relationships and adding trusted
execution environments to harden local training and update
integrity.
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