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Abstract—This paper explores the application of Graph Neural
Networks (GNNs) for predicting performance metrics in edge-
cloud networks. By modeling the edge-cloud network as a graph,
where nodes represent devices, and edges represent communica-
tion links, GNNs effectively capture the complex interdependen-
cies and interactions within the network. We demonstrate that
GNNs can accurately predict key performance metrics such as
latency and jitter, using data from real network conditions. Our
findings highlight the potential of GNNs to enhance performance
monitoring and optimization in edge-cloud environments, paving
the way for more efficient resource management and energy-
efficiency.

Index Terms—Graph Neural Networks, Edge-Cloud-Networks,
Performance Prediction

I. INTRODUCTION

Machine learning models as digital twins in network man-
agement take the state of the network as input and produce
predictions of performance metrics in the network as output.
In the context of edge-cloud networks, important metrics are
end-to-end latency, jitter and packet-loss of packet flows. This
performance prediction is intended to replace measurements
or estimation by simulations, as these are usually associated
with considerable effort (in terms of network overhead or
computing time).

The prediction of performance metrics can be done with
a variety of different machine learning models, like decision
trees or artificial neural networks. A common approach in the
literature is the prediction of network performance metrics
using Graph Neural Networks. GNNs have emerged as a
powerful tool for predicting performance metrics in com-
munication networks due to their ability to model complex
relationships and dependencies among network components.
By representing the network as a graph, where nodes cor-
respond to devices or network elements and edges represent
connections or interactions, GNNs can effectively capture the
topological structure and dynamic behaviour of the network.

Recent studies have demonstrated that GNNs can predict
various performance metrics, such as latency, throughput, and
packet loss, by learning from historical data and network
configurations. Their capacity to incorporate both node fea-
tures (e.g., bandwidth, processing power) and edge features
(e.g., link quality, distance) allows for a more nuanced un-
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derstanding of how different factors influence overall network
performance.

Additionally, GNNs can generalize well to unseen network
topologies, making them suitable for real-time applications
where network conditions may change frequently. This adapt-
ability, combined with their ability to process large-scale
data efficiently, positions GNNs as a promising approach for
enhancing the performance prediction capabilities in modern
communication networks, particularly in scenarios involving
dynamic and heterogeneous environments (which is particu-
larly the case for edge cloud networks).

Training a GNN to predict performance metrics in commu-
nication networks typically involves several steps. First, the
network is represented as a graph, where nodes correspond
to network elements (such as routers and switches) and edges
represent the connections between them. Each node and edge
is associated with features that capture relevant information,
such as bandwidth and traffic load. For GNNs, it is not relevant
to have a complete picture of the underlying network including
all components, but only for those nodes and links that shall
be analysed.

The training process begins with the collection of historical
performance data, which serves as the ground truth for the
metrics to be predicted. This data is used to create labelled
training samples, where the input consists of the graph struc-
ture and associated features, while the output corresponds to
the performance metrics (e.g., latency, throughput).

During training, the GNN learns to aggregate information
from neighbouring nodes and edges through multiple layers
of message passing. This process allows the model to capture
both local and global patterns in the graph. The GNN is
typically trained using supervised learning techniques, where
a loss function (such as mean squared error) measures the
difference between the predicted metrics and the actual values
from the training data. Optimization algorithms, such as Adam
or stochastic gradient descent, are employed to minimize this
loss function by adjusting the model parameters.

Once trained, the GNN can be evaluated on a separate vali-
dation dataset to assess its predictive performance. Fine-tuning
may be performed to improve accuracy, and the model can be
deployed for real-time predictions in dynamic communication
environments, adapting to changes in network conditions as
new data becomes available. Overall, the training of GNNs
for performance metric prediction leverages the unique graph
structure of communication networks to enhance prediction



accuracy and efficiency.
The remainder of the paper is structured as follows. Sec-

tion II surveys related work on performance prediction with
machine learning approaches. Section III gives an overview
of the background (both on the used measurement framework
and on GNNs), Section IV provides a detailed description
of the methodology and Section V presents the results of
our evaluation. Finally, Section VI concludes the paper and
provides an outlook to future work.

II. RELATED WORK

Performance metrics in edge cloud networks have attracted
a lot of attention in recent years due to the increasing demand
for low latency applications and the proliferation of Internet
of Things (IoT) devices. Various studies have investigated
different aspects of performance measurement, focusing on
latency, bandwidth, reliability and resource utilization.

One of the pioneering works in the domain of predicting
performance metrics of communication networks by a machine
learning model which takes the graph structure of the network
into account is by Rusek et al. [12]. They introduced a GNN-
based framework called RouteNet for network performance
prediction and demonstrated that GNNs could effectively
capture the spatial and temporal dependencies in network
data, leading to improved accuracy in predicting latency
and throughput compared to traditional machine learning ap-
proaches. Their experiments showed that GNNs outperformed
baseline models by leveraging the graph structure to learn
from both node features and connectivity patterns. Building
on this, there is a lot of further work that refine the RouteNet
model (e.g. [5], [4]) and thus further improve accuracy of
the predictions. In another significant contribution, Dai et
al. [3] explored the use of GNNs for multi-task learning
in communication networks. However, all these studies use
simulation data and do not consider edge cloud networks in
particular.

Furthermore, recent advancements have focused on integrat-
ing GNNs with reinforcement learning techniques to optimize
network performance dynamically. For instance, Li et al. [8]
developed a GNN-based reinforcement learning model that
predicts performance metrics while simultaneously optimizing
routing decisions in real-time. Their approach showcased the
potential of combining predictive modelling with decision-
making processes, leading to enhanced network efficiency and
reduced latency. Li et al. [9] propose a distributed scheduler
based on GNNs an reinforcement learning for edge clusters
that minimizes the total completion time of ML tasks through
co-optimizing task placement and fine-grained multi-resource
allocation

III. BACKGROUND

This section provides background information about the
used performance measurement framework and about GNNs.

A. Performance Measurement Framework

Measuring performance on the network (IP) and transport
(TCP/UDP) level can be done by various available tools (e.g.
iperf3 [7], wireshark [6], ping [10]) and according to various
metrics, such as IP performance metrics (IPPM), round-trip
time (RTT), round-trips per minute (RPM), throughput or
topology. Our approach to performance measurement is to
use the MINER infrastructure as programmable orchestration
framework [2]. MINER is a distributed Java application, where
so-called ”Toolproxies” are passively waiting for execution
orders from a centralised measurement application. Com-
munication between the nodes may be secured by a VPN.
All configuration parameters are defined by the measurement
application, which schedules the execution as soon as all the
involved measurement tools are ready to run. Measurement
tools can be standard tools integrated by the Toolproxy, or
Miner-specific tools, such as the ”IPPMTool”. During and/or
after the measurement execution, the results are collected,
so that follow-up measurement analytics can take place cen-
tralised after the run.

After investigating different performance metrics and study-
ing the related work in Section II, we considered latency,
jitter, packet loss and throughput as the most relevant metrics
in the edge-cloud continuum. For the analyses performed
in this paper we measured latency, jitter on application and
packet level, as well as packet loss by generating active UDP
measurement flows with constant bitrates, using the Miner
IPPMTool [2]. To receive a proper variation of measurement
results, different packet sizes and rates are selected before
starting the measurement flows.

B. Graph Neural Networks for Homogeneous Graphs

GNNs are machine learning models, which are made to
process data in the form of graphs appropriately. Here, a graph
is a mathematical object, consisting of nodes and (directed or
undirected) edges between them. A frequently occurring task
is the determination of quantities yv ∈ R which are assigned
to individual nodes v. In the context of a communication
network, the nodes of the graph are typically the devices of
the network, the edges represent communication links and
a common quantity of a node is for example the utilization
of a queue of the represented device. The task of a generic
GNN can then be subdivided into two subtasks: First, a hidden
state vector hv needs to be computed for each node v. This
vector hv lies in some chosen state space Rm of dimension
m and consists of information on the state of v at some
level of granularity. It is computed by an iterative message
passing scheme: After an initialisation of hv with node-level
features related to v, each node sends its state to all of its
neighbours. Hence, each node v receives a certain number
of states hv1 , . . . , hvk , where k is the number of neighbours
of v. These states, together with the state hv of v itself, are
converted into an aggregated message mv:

mv =

k∑
i=1

M(hv, hvi) (1)



by a message function M : Rm × Rm → Rn. The dimension
n of the codomain of M is again a chosen value. Using this
aggregated message, an update function U : Rm ×Rn → Rm

computes a new hidden state U(hv,mv) for each node v. This
message passing is repeated T times until the states of all
nodes have (approximately) reached stationary values. Then,
secondly, a readout function R : Rm → R computes yv for
each node v by applying R to hv .

A generic GNN thus essentially consists of three functions:
M , U and R. The mapping rules of these functions are given
by the application of certain independent neural networks (like
feed forward or recurrent neural networks). This justifies the
name GNN and allows the execution of a training process:
The internal parameters of the neural networks are updated via
supervised learning in order to compute the target quantities yv
accurately. To achieve this, instances of graphs together with
the target quantities yv for all nodes have to be provided. Note
that the way in which such a generic GNN is modelled enables
an application to graphs of different sizes and structures (both
during training and predicting).

Further details on this generic GNN architecture can be
found in the literature [1, 11] and in the references provided
there. Many GNN models deviate from the architecture of
standard GNN models. Particularly, they consider heteroge-
neous graphs as input (i.e. with various types of nodes),
and build a double message-passing phase to exchange the
information between the different element types. In the next
subsection we recall this architecture.

C. Graph Neural Networks for Heterogeneous Graphs

Heterogeneous graphs are graphs which consist of nodes of
different types. For simplicity, we only consider heterogeneous
graphs with nodes of two types A and B. The message passing
explained in the previous subsection is then adapted to a so-
called 2-stage message passing phase: In the first stage, nodes
of type A send their messages to all nodes of type B to which
they are connected. This is done in the same way as explained
above. This results in updates of the hidden state vectors for
all nodes of type B. After that, all nodes of type B send their
messages to the nodes of type A, which the updates the states
of the type A nodes. Notice that the message functions and
update functions can be different for the two stages in the
message passing phase. The readout function is then usually
only applied to the nodes either of type A or of type B. In our
approach (which we outline below), the nodes of the graphs
correspond to links and flows in the physical network. Thus we
will have two types of nodes. The readout function will then
only be applied to nodes which correspond to flows, since we
are eventually interested in calculating performance metrics of
flows (mean latencies, mean jitter and packet loss).

IV. METHODOLOGY

This section describes our hardware testbed, the dataset
which we created from this testbed, the architecture of our
ML model and the approach taken in the training process.

Fig. 1. Hardware testbed

A. Hardware Testbed

An overview diagram of our hardware setup is shown in
Fig. 1. It consists of two local edge networks, one using
5G, the other one using Wi-Fi equipment. The 5G edge
network is built using a 5G indoor base station located in our
laboratory, connected to its 5G core located at the telecom
provider premises. Two measurement endpoints are connected
via wireless access routers to the indoor base station, a third
measurement endpoint is installed in the 5G core. Measure-
ment traffic flows are generated between all three nodes in
both directions. More details on the measurements itself are
available in Section IV-B.

The other edge network built on 5GHz-Wi-Fi-Technology
(”Wi-Fi 5”), which also has three MINER measurement points
installed. All measurement nodes are located in our laboratory,
two on wireless nodes, and one node connected by wire to the
wireless router. Also in this part of the network, measurement
traffic flows are generated between all three nodes in both
directions.

To be more precise, for each ordered pair of measurement
points from the same local network, a packet flow with packets
of constant size and constant inter packet time between two
packets is generated. Each of the local edge networks is
connected to the cloud node via an intermediate on-premise
node.

B. Dataset

To create a dataset in our hardware testbed, we use the fol-
lowing approach: We randomly choose packet sizes and inter
packet times for each packet flow in our local edge networks.
Since there are six packet flows in each local network, this



Fig. 2. An example data sample from a measurement in the local 5G-network.
The nodes of the communication network are the nodes of the graph. The
links of the graph are the packet flows in the communication network. For
each packet flow, the parameters (packet size s and inter-packet-time t) are
summarized in the list fe = [s, t].

results in twelve parameters for each measurement. The packet
sizes are varied from 300 to 1500 Bytes and the packet rates
between 10 and 100 packets per second resulting in bitrates
of 20 to 1200 kbps for the measurement flows. The chosen
packet sizes and inter packet times define the configuration of
the network traffic. For each configuration, we measure the
performance metrics explained in Sec. III (i.e. latency, jitter
and packet loss, where latency and jitter are measured both on
application and on packet level) for a measurement interval of
10 seconds, where we then use the mean value for latency and
jitter. The data set is then saved as a JSON file. An example
data sample is shown in Fig. 2.

Our data set in the 5G network consists of measurements
from February 26, 2024 to December 31, 2024. Every day
between 9 p.m. and 5 a.m., a ten-second measurement was
taken every 4 minutes. We only took measurements at night
and only every four minutes, because other measurements
are taken in this network during the day and in other time
slots (which are not relevant for this paper). As some of the

measurements failed (for various reasons, e.g. power outages
or disruptions in the 5G network), the pre-processed data
does not contain a measurement result for every resulting
measurement time.

For organizational reasons, the measurements in the Wifi-
network ran from 22 May, 2024 to 31 December, 2024. The
time between two measurements was also 4 minutes here (to
be consistent with the 5G measurements), but measurements
were taken throughout the whole day (to obtain a data set
similar in size to that in the 5G network).

For each measurement and each transmitted packet, we
saved the latency and jitter (both at Pcap and application level)
and whether the packet was successfully transmitted. We thus
obtained five time series for each packet flow. From these time
series, we calculate statistical mean values for the latency and
jitter. Fig. 3 and Fig. 4 shows an example of a histogram of
the measurement results both for the 5G network and the WiFi
network. For this calculation, however, we have neglected the
first and last second of the respective time series (in order not
to take into account any transient behaviour)

Since we did not have access to the 5G core, there is a
synchronization issue in our latency measurements in the 5G
network. However, this is irrelevant for our investigations. Syn-
chronization of the computers in the laboratory takes place via
their own network to a local, GPS-synchronized time server,
not via the “network under test”. The core was synchronized
to an external time server. In general, synchronization is only
important for one-way-delay measurements.

C. Architecture

We use a graph neural network model to predict per-
formance metrics of packet flows in edge-cloud networks,
cf. Fig. 5. As already explained, the packet flows consist
of packets of constant size with constant inter-packet times
between two packets.

The structure of the used 2-stage Graph neural network
model is as follows: The nodes of the graph correspond to
links and flows in the data set. This means that the graphs
which we consider consist of nodes of two types: links and
flows. For each link, there is a directed edge to each flow
which uses this link. For each flow, there is a directed edge
to each link which is used by this flow. Observe that the links
of the first type are unordered, while the links of the second
type are ordered (in the order in which the flow passes the
individual links).

The architecture of the graph neural network is based on
a two-stage message passing as described in Sec. III. The
dimension of the hidden state vector space is 16. The message
function is given by M(hv, hw) = hw for both stages, i.e.
nodes simply send their hidden state to the nodes in their
neighbourhood. The update function for updating states of
links is a feed forward neural network with two hidden layers,
each one consisting of 16 neurons with RELU activation
functions. The update function for flow updates is a recurrent
neural network consisting of GRU cells. The message passing
is repeated for T = 4 times. The readout function is a feed



Fig. 3. Histograms of the measurement data of latency on application level in the 5G local network

Fig. 4. Histograms of the measurement data of latency on application level in the WiFi local network

Fig. 5. Overview of the approach

forward neural network as well and with the same structure
as the update function for links.

D. GNN Training

For the implementation of the GNN model, we used the
iGNNition framework. iGNNITION is a TensorFlow-based

framework for fast prototyping of GNNs. It provides a codeless
programming interface, where users can implement their own
GNN models in a YAML file. IGNNITION also incorporates
a set of tools and functionalities that guide users during the
design and implementation process of the GNN.

V. EVALUATION

We evaluated the following scenarios: (A) One GNN model
for each local edge network and (B) a common GNN model
for both edge networks. For scenario (A), each model is only
trained with the data from the corresponding edge network. For
scenario (B), we use the whole data (both from the 5G network



and from the Wifi-Network) to train the model. In both
scenarios, data was scaled in a preprocessing. The training of
the two separate GNN models for each local network reached
a satisfying performance for both latency and jitter prediction.
For example, Fig. 6 shows the training process where the GNN
model is trained to predict the latency on application level in
the 5G network. For the other metrics we achieved similar
results (both in the 5G and in the Wi-Fi network).

Fig. 6. Loss function of the GNN-model trained for predicting latency on
application level in the local 5G network. The GNN-model for the local Wifi
network achieved a similar performance.

However, as soon as we tried to train a joint model for both
networks, we did not achieve sufficient performance (even with
various attempts to tune the hyperparameters). Our explanation
for this is that the distributions of the data in the two networks
are too different (as can be observed for example from the
graphs Fig. 3 and Fig. 4). Even scaling the data has not brought
any improvement so far.

VI. CONCLUSION

This paper illustrates the significant potential of Graph Neu-
ral Networks as a powerful tool for performance prediction and
network management in edge-cloud systems. By leveraging
the inherent graph structure of these networks, GNNs provide
accurate insights into critical metrics like latency and jitter, en-
abling more informed decision-making for resource allocation
and optimization. The results underscore the promise of GNN-
based approaches to advance the efficiency, reliability, and sus-
tainability of edge-cloud infrastructure, ultimately contributing
to more responsive and energy-efficient network environments.
However, so far we have only achieved sufficient performance
in a simple scenario (one machine learning model for each
local network). We will continue to try to train a joint
model for both local networks in the future. It would also be
interesting to consider other metrics (such as energy efficiency)
as well, or to consider more complex network scenarios.
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Varela, Shihan Xiao, Xiang Shi, Xiangle Cheng,
Bo Wu, Pere Barlet-Ros, and Albert Cabellos-Aparicio.
Routenet-erlang: A graph neural network for network
performance evaluation. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications, pages 2018–
2027. IEEE, 2022.

[6] Wireshark Foundation. Wireshark: The world’s foremost
network protocol analyzer. https://www.wireshark.org/,
1998. Accessed: 2025-05-28.

[7] The iPerf Development Team. iperf3: A tcp, udp, and
sctp network bandwidth measurement tool. https://iperf.
fr/, 2014. Accessed: 2025-05-28.

[8] Kai Li, Wei Ni, Xin Yuan, Alam Noor, and Abbas
Jamalipour. Deep-graph-based reinforcement learning for
joint cruise control and task offloading for aerial edge
internet of things (edgeiot). IEEE Internet of Things
Journal, 9(21):21676–21686, 2022.

[9] Yihong Li, Xiaoxi Zhang, Tianyu Zeng, Jingpu Duan,
Chuan Wu, Di Wu, and Xu Chen. Task placement
and resource allocation for edge machine learning: A
gnn-based multi-agent reinforcement learning paradigm.
IEEE Transactions on Parallel and Distributed Systems,
34(12):3073–3089, 2023.

[10] Mike Muuss. The PING program. https://ftp.arl.army.m
il/∼mike/ping.html, 1983. Accessed: 2025-05-28.
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