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Abstract—This paper introduces the Cloned GraphLearner,
a neuromorphic sequence generation model that mitigates state
aliasing in high-order Markov chains through a lightweight,
iterative state cloning procedure. Starting from the original
GraphLearner, which stores variable length histories in a Graph
Structured Bloom Filter, the algorithm successively creates layers
of cloned states whose identity and inter-clone edges index
increasingly long context windows while an oblivion rule bounds
growth. When trained with action-observation sequences the
resulting Cloned GraphLearner acts as a topographic schema
with individual clones firing in context specific patterns that
resemble hippocampal place cell activity.

Index Terms—Bloom Filters, Neuromorphic Computing, Place
Cells, Markov Models, Transfer Learning

I. INTRODUCTION

The GraphLearner is a neuromorphic machine learning
algorithm for sequence generation inspired by Hawkins and
Mountcastle’s studies of the neocortex [1] [12]. Its behavior is
readily human-explainable and it can be trained in an online
manner. The GraphLearner works by estimating high order
Markov Chains, using Counting Bloom Filters to dynamically
weight first order edges of a sequence graph with higher order
sequences [5] [6]. However it suffers from issues of state
aliasing when observed states are ambiguous. To alleviate
this a process of state cloning is introduced, where nodes
of the GraphLearner are cloned based on context provided
by the state sequences stored on their edges. The resulting
Cloned GraphLearner is capable of learning spacial and net-
work topologies, with individual clones mapping to consistent
spacial ranges even in novel environments.

This behavior is notably neuromorphic, with clone behavior
resembling that of place cells in the brain. To demonstrate this
the 1996 rodent place cell experiments of O’Keefe and Burgess
[14] are simulated with the Cloned GraphLearner. These
simulations demonstrate the topographic learning capabilities
of the Cloned GraphLearner.

II. RELATED WORK
A. Bloom Filters

Bloom Filters are designed to store sets which are too
large to store in memory, such as usernames on social media
websites [3] [4]. They can test for set occupancy with a
guarantee of no false negatives and a controllable false positive
rate. A Bloom Filter consists of a bit array of m bits, initially
all set to 0, and k unique hash functions, which map to
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locations on the array [3] [4]. This array can be stored on the
harddrive and still accessed in O(1) time. When an element
is added to the filter it is passed through the k hash functions
mapping it to k locations on the array all of which are set to
1. To test if an element exists in a set this process is reversed
with an element existing in the set only if all k of its hash
mappings return a 1. It is possible for the k hash mappings of
an element to be assigned a 1 from other elements. In such a
case a false positive occurs where the element is incorrectly
considered part of the set. The chance of a false positive
occurring depends on m, k, and the number of elements stored
into the filter n.

If the Bloom Filter stores integer values instead of bits and
iterates hashmappings by 1 every time an element is added
then it becomes a Counting Bloom Filter [5]. Such filters
provide an estimated count of each item added to the filter
with a risk of false counts similar to the false positive risk.

B. The GraphLearner

The GraphLearner can be characterized as a Graph Struc-
tured Counting Bloom Filter where the first order edges of a
sequence graph structure the filter. In other words each edge
of the sequence graph has its own associated filter. This is
depicted in Figure 1. These edge filters store training histories
which then provide a dynamic edge weights based on the
stored count of a given sequence. This means a high order
Markov chain probability can be calculated by searching only
the first order edges of the last element of an input sequence.
In other words the probability of choosing an edge e for an
input sequence S is:
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Where B¢(S) is the count returned by the Bloom Counter
associated with edge e and F is the set of all edges of the last
element of S.

During training sequences of length h, the maximum history
length, are stored in appropriate edge filter. For added flexi-
bility padded or shortened sequences are also stored. Thus
the GraphLearner can estimate a Markov Chain distribution
for any input sequence of h or shorter, with a sequence of
length 1 defaulting to a first order probability. When generating
new elements for an input sequence the GraphLearner initially
searches with the h most recent elements of the input and

P(e) = (D



iteratively shortens the search until a non-zero P(e) can be
calculated, i.e. when at least one edge matches the search.

If stored with traditional transition matrices these High
Order Markov Chains would require O(n"*!) worst case
space complexity, where n is the number of unique states. This
becomes prohibitively large for higher values of &. By contrast
the GraphLearner can estimate the same Markov Chains with
just O(n) references in RAM.
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Fig. 1. The original GraphLearner: a Graph Structured Bloom Filter. Edge
colors correspond to sections of the structured filter, equivalent to having a
filter on each edge. Padded histories of max length h are stored in these filters.
The counts returned by the filters for a given A or shorter input then provide
dynamic weights which can estimate an h-order Markovian P(e).

C. State Aliasing and Dynamic Markov Modeling

Markov Models like the GraphLearner suffer from problems
of state aliasing where a single observable state results from
multiple distinct states. For example, in natural language
homonyms like “mouse” or “bark” have multiple meanings
which can only be distinguished with further context.

Dynamic Markov Modeling [11] resolves this issue by cre-
ating clones of states from first order information. However the
greedy, first order nature of Dynamic Markov Modeling often
results in an unsustainable explosion of clones. To resolve this
Cloned Hidden Markov Models (CHMM) [18] dynamically
merge clones of a given state. In the context of action-state
sequence modeling CHMMs are know as Clone Structured
Cognitive Graphs (CSCG) [10] due to their similarity to
schema networks [17]. The clones of CSCGs are accessed or
fired in patterns resembling those of place cells in the brain.
However to achieve efficiency CHMMs and CSCGs must fix
an upper bound on the number of possible clones of each state.

D. Place Cells and Cognitive Mapping

To perform complex tasks the brain forms cognitive maps
[16]. One of the key components of these maps are place
cells [13]. Place cells are hippocampal cells which trigger
at specific locations in an environment given appropriate
observations. As such the firing patterns of place cells encode

for spacial topography. Importantly they can fire ahead of time
in anticipation of future observations, enabling hippocampal
replay. As such, they are important in the planning of actions
and complex behaviors.

Place cells specifically occur in the hippocampus but similar
structures have been discovered across the brain, including in
the neocortex [15].

O’Keefe and Burgess’ expanding box experiment [14]
demonstrated that place cell firing patterns corresponded to en-
vironmental topographic features, even in novel environments.
In this experiment rats were placed in a small square box and
given time to learn this environment. The sides of the box were
then extended to form three additional environments, a vertical
and horizontal rectangle, and a larger square. Place cells which
fired at given locations in the small square continued to fire
at similar locations in the morphed environments, however
in some cases their firing fields were stretched or distorted.
However even with these distortions they continue to provide
meaningful spacial information, enabling generalization across
common environments.

III. THE CLONED GRAPHLEARNER

The GraphLearner was originally developed for natural
language, generating new words and characters from inputs.
However it can also be used to control agents when used with
action-observation sequences. In this case the GraphLearner is
trained on an alternating series of actions and their correspond-
ing observations from a chosen environment. Observations and
actions are both treated as states of this sequence. As a result
the trained GraphLearner can take an action-observation input
ending in an observation and chose an appropriate next action
for the agent it controls. Similarly if fed a sequence ending in
an action the GraphLearner can predict the next observation,
providing a feedback measure of how well it understands its
environment.

If trained correctly the GraphLearner forms a simple,
transferable schema describing its environment. Unfortu-
nately if that environment has multiple unaliased states the
GraphLearner will treat them all identically. In theory a large
enough h value can distinguish these states but this method
fails when exploring modified environments. Even when those
modifications are minor they force the GraphLearner to match
shortened sequence histories. In other words the GraphLearner
struggles to generalize across common environments because
it can no longer rely on precise training histories in these
cases. This problem inspired the creation of the Cloned
GraphLearner, one layer of which is depicted in Figure 2.

Ideally clones are formed for each distinct state of the
training environment, however even when they are not so
precise the path taken through successive clones preserves
contextual information which might otherwise be lost, such
as when the exploration environment is not a precise copy of
the training environment.

Creating these clones follows a simple process:

1) Train the GraphLearner as before with a given training
sequence 7' and history length hg.
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Fig. 2. Part of a Cloned GraphLearner with 1 layer of clones. In (Squares) the
original GraphLearner nodes. In (Circles) their clones. Intuitively the paths
through these clones can represent more complex historical context than the
first order edges of the original nodes. Note: edge (A, C) of the original
GraphLearner is not depicted but is implied by the edges connecting clones
of A to clones of C. The number of clones implies the existence of other
edges.

2) Iterate through T a second time, creating clones with
identity edges linking them to original node storing hg
length sequences.

3) Optionally remove clones which fall under some obliv-
ion threshold.

4) Iterate through 7" once more connecting clones to clones,
creating clone edges which store longer padded histories
of max length h;.

5) Repeat steps 2 through 4 with increasing history lengths,
h, and h, 1, creating new layers of clones from previ-
ous layers.

Alternatively it is possible for steps 2 and 4 to be merged, with
clones identified and connected to their successors during the
same pass of 7', followed by oblivion thresholding. However
this complicates the oblivion process as all clone to clone
edges connecting a deleted clone must also be removed.

Once clones are created and connected the new Cloned
GraphLearner generates new sequence elements by following
clone to clone edges in the highest possible layer. The cloning
and generation processes are described in detail in the follow-
ing sections.

A. The First Layer of Clones

The following section details the first round of cloning
and connecting where clones are created from the nodes of
the original GraphLearner and then connected. These layer 1
clones will be indexed with hg-length sequences, stored on
identity edges, and the edges between these clones will store
h1 max length padded histories. Since this process is repeated
at each round of cloning Figure 4 refers to h,, and h,,_; the
history and indexing lengths of the n-th round of cloning.

1) Creating Clones: During cloning each hg-length sub-
sequence S from the training sequence 7' is matched to an
appropriate clone. For a given S ending in state A the subset

of A’s edges which match S defines the appropriate clone of
A: ag. This is depicted in Figure 3. An identity edge, with
associated Bloom Filter, links A to ag. Sequence S is stored
on this identity edge (A4, ag), along with all other sequences
which match ag’s edge subset. Subsequences which match on
all edges of A will also have a clone.

In theory 7' can be a different sequence from the original
training sequence so long as it comes from the same underly-
ing distribution, e.g. a separate random walk through the same
environment.

as
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Fig. 3. Clone ag (Red) is created when a given input sequence only occurs
on a subset of A’s edges (Red), in this case (A, B) and (A, C). A will have
an identity edge from it to ag which stores all hg-length sequences matching
this edge subset.

2) Connecting Clones: Once clones have been created they
must be connected. This process requires two history lengths,
hg the length of sequences stored on identity edges, and h, the
maximum length of sequences to be stored on clone to clone
edges. The cloning sequence T is traversed again, connected
clones are identified from successive hg-length sequences
and hp-length histories are trained onto their edges. As with
the original GraphLearner these h; histories are padded so
appropriate sequences of length hy — 1, hy — 2, ... ,1 are also
stored. Figure 4 depicts the clone connecting process for a
section of 7.

B. Clones of Clones

Once one layer of clones has been created and connected
a new layer can be created. This process can be repeated
as desired, following the same cloning rules outlined the
previous sections, now using subsets of clone to clone edges
to define new clones of clones. The edges between these
clones of clones then store new longer sequence histories
with each successive layer increasing the stored history length.
Importantly identity edges will always link from the original,
observed states of the GraphLearner to their respective clone.

If clone layer n was accessed with identity edges storing
sequences of length h,,_; and contained clone to clone edges
storing max histories of length h,, then layer n 4+ 1 will be
indexed with identity edges containing sequences of length h,,
and the edges in layer n + 1 will store max histories of length
hp+1, and so on.

The only major difference from the first round of clone
creation is that clones of layer n — 1 must first be identified
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Fig. 4. The connecting process for two layer n clones of A and B: a and b,
depicting edges and their corresponding state subsequences for a section of
the training sequence. In (Blue) the h,,_1-length sequence which matches on
the identity edge (A, a) also in (Blue). In (Green) the h,—1-length sequence
which matches on the identity edge (B, b) again in (Green). In (Red) the hy,-
length sequence which is trained onto edge (a, b) in (Red). Here the clones a
and b are identified from their respective subsequences CDEA and DEAB
and the longer history XY ZCDEA is stored on the edge between them,
along with padded or shortened histories Y ZCDFEA, ZCDEA, etc.

by searching the appropriate identity edges before they can be
used to create the clones of layer n.

To avoid a potential explosion in the number of clones an
appropriate oblivion threshold must be used when creating
each new layer.

Once completed the Cloned GraphLearner will have n
layers of clones. The clones of each layer are indexed by
identity edges containing h,_; length sequences with the
edges between clones in that layer storing padded histories
of max length h,. These identity h values are stored to
allow faster indexing of clones. In this framework the original
GraphLearner effectively forms a zeroth layer, n = 0, which
is indexed by identity sequences of length 1, i.e. the unique
first order states of the training sequence.

C. Oblivion

With each successive round of cloning the number of clones
grows. To avoid explosive growth in the number of clones
of clones a simple oblivion function is introduced [8]. Once
the clone creation process is completed, clones that were
indexed less than some threshold value are deleted. This is
done before clone connecting occurs to avoid creating edges
with deleted clones. The impact of the process can be seen in
Figure 9 where a threshold of 100 keeps the number of clones
manageable.

D. Generation

At generation time a sequence, S, is input into the Cloned
GraphLearner and an appropriate new element is generated for
this sequence. If a clone is currently being tracked then the
edges of this clone are searched to create a P(e) in the same
manner as the original GraphLearner: by recursively searching
shortened or padded slices of S until at least one edge match
is found. A new clone is selected from this P(e), its associated
observation is returned, i.e. the original node-state associated

Fig. 5. The 9 observable states of the small square training environment
obscure 49 aliased states. This coloration process expedites the formation
of meaningful clones by increasing the number of initial edges. The other
environments are colored in a similar manner. The cartoon mouse denotes the
starting point of the agent. Note that the clones in Figures 6, 7, and 8 are all
clones of the white internal state.

with that clone, and the clone tracker updates to track said
clone.

If no clone is currently tracked the last element of S is
used to identify a zeroth layer node and the identity edges of
this node are searched with h-length slices of the most recent
elements of S, starting with the largest possible identity length
hn—1. If a matching identity edge is found then its clone is
used for generating P(e).

If the input is an action-observation sequence, where new
actions are being generated from inputs, then it is possible
the most recent observed state, i.e. the last element of S, will
not match with the currently tracked clone. In these cases the
tracked clone is discarded and a new one must be found.

Given the similarity to place cells, a clone being accessed to
generate new sequence elements is referred to as clone firing.

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

O’Keefe’s place cell experiment is replicated with the
Cloned GraphLearner. The small square room (SS) is repre-
sented by a 7x7 grid, the horizontal rectangle room (HR) with
a 14x7 grid, the verticle rectangle room (VR) with 7x14, and
the large square room (LS) with a 14x14 grid. All of which are
surrounded by impenetrable walls. These rooms are depicted
in Figures 6 7 and 8. A simulated rodent agent performs a
random walk within the SS environment recording a sequence
of actions and observations, T'. The GraphLearner is then
trained on this sequence and successive rounds of cloning
occur, repeatedly using 7T'.

Next the agent performs a new random walk in each of the
four environments with the Cloned GraphLearner generating
new actions and states from the recorded walk. Each time a
clone is accessed during this process the agent’s location in the
environment is recorded, along with the corresponding clone.

Finally these access locations are used to create a heatmap
of where each clone is utilized in the four environments.



The agent’s action space is limited to the four cardinal
directions. Walls and corners of the environment are treated
as distinct states based on the restricted set of actions in each.
This results in 9 unique observational states as depicted in
Figure 5. The Cloned GraphLearner is trained with initial
history length hy = 6, and contains 4 layers of clones, not
including the zeroth layer nodes of the original GraphLearner.
Layer 1 is indexed with a sequences of length hy = 6 and stores
padded histories of maximum length h; = 9. History values
continue growing by size 3 until layer 4 which is indexed with
hs = 15 length sequences and stories padded histories up to
length hy = 18. An oblivion threshold of 100 is used at each
round of cloning. The training sequence, 7', is a 150,000 step
random walk in the small square environment, see Figure 5.

To measure a process known as place cell remapping the
original O’Keefe experiments also considered the directions
in which walls were expanded when creating the 3 addition
environments. That is not considered in this simulation.

B. Results

The following heatmaps depict the firing locations of se-
lected clones across each of the four environments. In Figure
6 a clone behaves like the place cells from O’Keefe. It has
become attached to the left vertical wall and when that wall
is extended its firing field also expands.

Higher
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Fig. 6. A stretched clone. Firing like a place cell. In the top left, the original
small square room (SS) in which the agent was trained. In the top right: the
horizontal rectangle room (HR), bottom left: vertical rectangle room (VR), and
bottom right: the large square room (LS). Grid locations are colored according
to how often this clone fires in that position. Brighter, yellower coloration
representing more frequent firing at a given location. The clone’s firing pattern
in HR matches its pattern in the original SS environment, yet in the VR
and LS environments it becomes extended. This tracks with the observations
of O’Keefe. Note: This heatmap includes the barrier wall surrounding each
environment.

The ideal case is depicted in Figure 7. Here the clone has
fixed onto a single location in the small square environment
(SS) and continues to fire at that location even in the other
environments.
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Fig. 7. A clone which has fixed to a specific location in the environment. This

clone transfers precise topographic knowledge across environments. Rooms
arranged and displayed in the same manner as Figure 6.

A less informative clone is depicted in Figure 8. The
clone fires through much of the interior of each environment.
However it prefers firing at the bottom of its range and strongly

avoids the lower and left most walls.

Lower

Fig. 8. An emerging clone. Rooms are again arranged in the same manner
as Figure 6. A few more rounds of cloning and this clone may encode a
unique location. However it already provides partial topographic information
by preferring to fire at the bottom center of its range and away from barrier
walls. This firing pattern is repeated in the novel environments.

To demonstrate the impact of oblivion thresholding the same
4-layer cloning process from the previous section is repeated
without thresholding and compared to the thresholded process
in Figure 9.
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Fig. 9. The impact of oblivion. The average clones at each round of cloning
before (Blue) and after (Green) an oblivion threshold is applied. Compared to
the number of clones if no thresholding occurs (Red). From the same training
and cloning process as described in Section 4A. Note the logarithmic scale.

V. DISCUSSION

State cloning allows the GraphLearner to learn spacial
topographies of explored environments. In other words the
Cloned GraphLearner builds a schema representation of its
learned environment. The topographic knowledge from this
schema can be readily transferred to similar environments as
demonstrated by replicating the O’Keefe experiments. This
place cell like behavior is best seen in Figure 6, which closely
follows O’Keefe’s results.

The clones of the Cloned GraphLearner all reflect mean-
ingful spacial information. Some like the clone in Figure 7
correspond to an exact location. Any complex behavior linked
to this clone can be safely expected to always happen at this
location, even in novel environments which resemble the origi-
nal learned environment. In other words these location specific
behaviors can be transferred across common environments.

While the clone in Figure 8 does not provide exact location
its bias is clear. In fact this clone represents a snapshot of
the knowledge gained from the cloning process. Clones of
this clone will have more restricted firing fields, providing
increasingly precise spacial information.

Other algorithmic techniques have already achieved similar
results, such as Clone Structured Cognitive Graphs. However
to be efficiently calculated CSCGs require a predetermined
limit on the number of clones of each observed state. By
contrast the Cloned GraphLearner maintains efficiency by
limiting the depth of its sequence history h. This value can
always be increased with further rounds of cloning. The
Cloned GraphLearner is highly modifiable. Layers of clones
can be deleted and rebuilt as desired, without impacting lower
layers.

While the experiments in Section 4 reused the same training
sequence at all stages of the cloning process this is not
strictly necessary. It is possible for the Cloned GraphLearner

to perform cloning in an online manner, with each successive
round of cloning relying on a new sequence provided that
sequence comes from the same underlying distribution.

As previously noted, the processes of clone creation and
clone connection could be merged to occur during the same
pass of the training sequence. The oblivion thresholding pro-
cess would then need to delete not just clones but also all
edges containing those clones. This is particularly problematic
as the oblivion thresholding used in this paper is only a simple,
greedy method of minimizing clone numbers. More advanced
methods, such as the clone merging technique employed by
CSCGs, must be tested. Keeping clone creation and connection
separate leaves open more developmental paths.

VI. CONCLUSION

The Cloned GraphLearner builds a topographic schema
which can be transferred across environments. It is neuro-
morphic with the firing patterns of clones resembling those
of place cells in the hippocampus. This is demonstrated by
replicating the rodent place cell experiments of O’Keefe and
Burgess. Importantly it does all this while retaining the online-
learning, memory efficient, and explainable characteristics of
the original GraphLearner. It has untapped potential in real
world applications, where topological structures may be too
complex to sample and learn in offline manners or store
in memory. Hopefully the Cloned GraphLearner can aid in
advances both in Neuroscience and in Artificial Intelligence.
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