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Abstract—Communication within agent networks involves mul-
tiple input and output parameters, making adaptive control
and interpretation difficult. Existing systems typically rely on
fixed rules or reactive behavior, lacking mechanisms for self-
regulation or proactive engagement. This paper proposes an
emotion-controlled communication framework, where internal
emotional states act as an intermediate layer between input stim-
uli and output generation. Emotions are modeled using analog
circuits to simulate continuous accumulation, decay, and inter-
emotional feedback. Simulations with two agents—one active, one
passive—demonstrate how internal states evolve in response to
input and influence communication behavior over time.

Index Terms—agent communication, emotion modeling, analog
circuits, affective systems, internal regulation

I. INTRODUCTION

Modern agent networks—such as those built from
cooperating platform interfaces or decentralized service
agents—require robust mechanisms to manage communication
across multiple participants [1], [2]. These agents often operate
through rule-based systems, fixed turn-taking logic, or event-
driven APIs, limiting their ability to adapt, self-regulate, or
behave meaningfully in dynamic environments. This con-
straint becomes particularly pronounced when communication
needs to reflect varying levels of urgency, engagement, or
response depth over time. Despite an increasing reliance
on natural language interfaces, most chatbot systems remain
reactive—responding only to direct input without internal
modulation or context-aware initiative [4].

Recent developments in large language models (LLMs)
[3], such as ChatGPT, offer a promising solution for plat-
form integration. By enabling communication through natural
language, LLM-based interfaces simplify interaction across
heterogeneous systems, bypassing the need for rigid APIs
or centralized control hubs. However, while LLMs improve
interoperability and usability, they do not inherently address
the problem of communication regulation within multi-agent
networks. Dialogue remains reactive and externally driven,
lacking an internal mechanism for adjusting output based on
sustained engagement or shifting priorities. Thus, a higher-
level control structure is still needed to modulate agent be-
havior contextually.

In human networks, internal emotional states often govern
how individuals initiate, sustain, or inhibit communication.
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These states evolve in response to both external input and
internal regulation, enabling humans to adapt their behav-
ior fluidly across social contexts [5] [7]. Inspired by this
mechanism, the proposed framework introduces emotion as
an intermediate control layer in artificial agents. Rather than
mapping input metrics—such as message frequency, delay, or
length—directly to output, incoming signals are first encoded
into abstract emotional states. These states evolve continuously
over time through analog circuit [8] [9] [10] dynamics such
as accumulation, decay, and mutual influence. Output behavior
is then generated in response to these internal states, allowing
agents to modulate their actions based on internal readiness or
inhibition. This emotion-driven structure simplifies coordina-
tion, enhances interpretability, and supports adaptive, context-
sensitive communication. The framework is validated through
simulations in which two agents—alternating between ac-
tive and passive roles—demonstrate how emotional dynamics
shape message behavior and internal regulation over time.

II. MODEL DESIGN

This section presents the computational framework of the
agent’s emotional system, illustrated in Figure 1, which is
structured into four interconnected modules: External Input,
Sensory Processing, Internal Emotional State Modeling, and
External Output. These components form a closed-loop archi-
tecture that continuously transforms external communication
stimuli into internal emotional states, which in turn drive adap-
tive behavioral expressions. The figure outlines the information
flow between modules, emphasizing how emotion acts as an
intermediary layer between perception and action.

The framework operates by first interpreting environmental
signals X;, where each X; represents a normalized and en-
coded feature derived from raw communication input. These
signals are routed through a set of temporal filters F'(X) in the
sensory processing stage, producing processed stimuli Z. The
filtered outputs Z drive changes in internal emotional states S,
which evolve continuously over time based on both external
stimuli and internal feedback mechanisms G/(.S). The resulting
emotional states y = f(S) ultimately determine how the agent
behaves through observable outputs.

At the heart of the framework lies the Internal Emotional
State Modeling module, where three primary emotional sig-
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nals—satisfaction, ambition, and fear—are maintained as
analog voltage states. These emotions interact dynamically to
reflect both the agent’s current affective experience and its
longer-term motivational tendencies.

A. External Input

The External Input module captures raw signals from the
agent’s communication environment, such as message length
or message frequency. These signals are continuously sampled
and normalized into a bounded range to produce stable,
comparable values suitable for emotional interpretation. The

X (t) - X min

normalization follows a standard form:
X(t) =cli 0, 1
() <P <Xmax_Xmin+E’ ’ >

where X (t) is the raw input at time ¢, Xy, and Xpax
define expected feature bounds, and e prevents division by
ZEero.

Once normalized, each signal is passed through an Emotion
Encoding Function that transforms it into three emotion-
specific analog values: satisfaction, ambition, and fear. These
mappings are based on heuristic interpretations of how differ-
ent input magnitudes influence each emotion—for example,
high satisfaction may correlate with longer messages, while
fear may rise in response to unusually rapid or large input
changes. The output is an emotional stimulus vector:

6]

X (1) = {X:(1), Xu(1), Xe(D)},

which represents the raw emotional relevance of the external
environment and serves as input to the subsequent Sensory
Processing module.

B. Sensory Processing

The Sensory Processing module is responsible for con-
verting raw external input signals—such as message length
or frequency—into structured, emotion-specific stimuli [11].
These raw inputs are first normalized and mapped to corre-
sponding emotional channels, resulting in intermediate signals
X = {X;, X,, X1}, where each X; represents the perceptual
input related to satisfaction, ambition, or fear. To capture both
the persistent intensity and transient dynamics of these signals
[6], the module applies a dual-pathway structure consisting
of tonic and phasic receptors. These pathways operate in
parallel to extract complementary temporal features, ultimately

producing the processed outputs Z = {Z, Z,, Z¢}, which
drive changes in the agent’s emotional state. The circuit
implementation of this dual-pathway architecture is illustrated
in Figure 2.
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Fig. 2. Sensory Processing Circuit: each input X; is filtered to produce a
time-sensitive output Z;.

o Tonic Receptors simulate the system’s sustained atten-
tion to environmental input. In the circuit model, they
are implemented as low-pass filters using summing inte-
grator op-amp circuits. These circuits allow continuous
accumulation of input over time, producing outputs that
rise gradually with sustained input and decay slowly
when input ceases. Mathematically, this behavior can be
expressed as a first-order low-pass filter:

t
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where 7; is the tonic time constant controlling the rate of
integration and decay.

« Phasic Receptors are responsible for detecting rapid
transitions in the input signal. They are realized in the
circuit as high-pass filters, specifically using leaky dif-
ferentiator op-amp configurations. These circuits produce
sharp, transient outputs in response to sudden increases
or decreases in input and decay rapidly to baseline.
Their dynamic behavior is captured by the high-pass filter
equation:

dXi(t)
fast _ 7

where 74 is the phasic time constant that controls the
responsiveness to fast changes.

To ensure biologically plausible, excitatory-only re-
sponses, the phasic signal is passed through a rectifier
circuit that clips negative values. This operation can be
modeled mathematically as:

— U™\(t), 3)

0ifast(t) — max (O7 Uifast(t)) . 4)

The rectifier mimics neural mechanisms that primarily
transmit excitatory transients while suppressing inhibitory
or negative responses.



Finally, the tonic and rectified phasic signals are combined
using a weighted summation, forming the final processed
signal:

Z; (t) = Wslow * UZSIOW (t) + Wyt - UifaSt(t); (5)

K2

where wyjow and wr,g are tunable weights that determine the
influence of tonic and phasic pathways. This fused signal Z;(t)
encodes both the sustained intensity and temporal dynamics
of the stimulus, ensuring temporally aware emotional reac-
tions—capturing both how strong and how suddenly a stimulus
occurs.

C. Internal Emotional State Modeling

The Internal Emotional State Modeling module governs the
evolution of emotional states S based on the filtered stimuli
Z. Each emotional variable—satisfaction (Ss), ambition (.S,),
and fear (Sy)—is implemented as an analog signal in an
independent circuit, and each evolves continuously according
to its input and internal feedback. The structure of these
emotional circuits, including inter-emotional connections and
analog implementations, is shown in Figure 3.
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Fig. 3. Emotion Circuit

Satisfaction and ambition are realized using summing
integrator circuits, which accumulate their respective input
signals Z; and Z, over time. Their voltage dynamics follow:

dsit) 1 [ 2@
a G zj: Ry

where S; € {S;,S,}, C; is the integrator capacitor for
emotion i, R;; is the resistance from input Z;, and G;(S)
represents inter-emotional feedback.

Fear, in contrast, is modeled using a leaky differentiator
circuit. It reacts sharply to sudden input changes in Z;, with
its output governed by:

i) = st = 1)+ 3 2 (2t - Zet- 1) (D)
k

where o = e~ %/(FsCs) s the exponential decay factor, and

C}, Ry, are the differentiator’s capacitors and resistors for each
input Zj.

The emotional system is further modulated by inter-
emotional feedback terms G(S), where outputs from one
emotion affect others. For example:

o An increase in fear Sy may suppress ambition: G,(S) =
—k1.5¢(¢)
o A drop in satisfaction Ss may increase ambition: G,(S) =
k(1 = 54(t))
The final internal emotional state vector y = f(S) captures
the momentary affective configuration of the agent and serves
as the basis for behavioral output modulation.

D. External Output

The External Output module translates the internal emo-
tional state vector y = {ys, ¥a, yr} into a single behavioral
parameter: message length. This parameter represents the
richness or expressiveness of the agent’s communication and
is shaped by the interaction of emotional drives.

Message length is computed as a weighted linear combina-
tion of the internal emotional states:

Linsg = wo + ws * Ys + Wa - Ya + wr - Yr, 3

where wy is the baseline message length, and wy, w,, wy are
weights associated with satisfaction, ambition, and fear, re-
spectively. These coefficients are selected to reflect behavioral
tendencies—for example:

« High ambition increases message length.

o High fear suppresses message length.

« Satisfaction may either reduce or slightly regulate length
based on contentment.

To ensure behavioral realism, the final output is clipped to
a valid operational range (e.g., L, € [0, 100]):

L = clip(Limgg, 0, 100). 9)

This output signal defines how much information the agent
expresses in a single message and serves as the primary
behavioral channel for emotional expression in the current
model.



III. EXPERIMENTS AND RESULTS

This section presents simulation-based experiments con-
ducted to evaluate the effectiveness and dynamics of the
proposed emotion-driven communication framework. The ex-
periments are divided into progressive layers of analysis,
ranging from subsystem validation to full-agent interaction in
a communication loop.

A. Experiment Setup

The experimental design is structured around three core
modules:

1) Sensory Processing: Tests how raw environmental stim-
uli (e.g., message length) are encoded into emotional sig-
nals using the dual-pathway sensory architecture (tonic
and phasic circuits).

2) Internal Emotional Circuits: Simulates how satisfac-
tion, ambition, and fear evolve over time when stimu-
lated individually. It also examines how inter-emotional
feedback shapes internal dynamics, such as inhibition
and compensation.

3) Emotion-Driven Communication: Integrates all mod-
ules into a two-agent interaction framework, where one
agent is designated as active and the other as passive in
alternating time windows. Agents exchange emotional
signals through generated message lengths to evaluate
behavioral influence and internal adaptation.

In the communication simulation, roles are pre-assigned
and manually switched halfway through the experiment. That
is, the role switch is not triggered autonomously by agent
behavior but defined explicitly in the simulation configuration.

B. Results

1) Sensory Processing Output: Figure 4 shows how a nor-
malized message-length signal is converted into an emotion-
specific stimulus through the sensory processing pipeline.
Three distinct phases—spike, adaptation, and decay—are
clearly visible, confirming that the dual-pathway processing
captures both immediate and sustained components of the
signal.

Three characteristic phases emerge in the processed signal:

o Spike: A sharp and brief increase at the onset of stimula-
tion, primarily generated by the phasic receptor (modeled
as a differentiator). This mirrors biological phasic recep-
tors in humans, such as those found in mechanoreception,
which are known to respond quickly to changes but not
to constant stimuli.

o Adaptation: A gradual rise during the sustained stim-
ulus interval, governed by the tonic receptor’s low-
pass behavior. The system maintains a smoothed signal
while suppressing transient fluctuations. This behavior is
comparable to slowly adapting sensory receptors, which
continue to respond as long as the stimulus is present but
with reduced sensitivity over time.

o Decay: After the input returns to zero, the signal drops
gradually rather than instantly. This is consistent with the
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Fig. 4. Sensory processing response to message-length stimulus. Three
distinct temporal phases are marked: spike (rapid onset), adaptation (plateau
during sustained input), and decay (exponential return to baseline).

discharge behavior of capacitive integrators and reflects
how biological systems slowly return to homeostasis
following stimulation.

From the observation, the combined signal reflects both
immediate reactivity and ongoing awareness, capturing the
dual nature of human sensory experience: rapid detection
followed by gradual internalization and recovery. The shape of
the response highlights a dynamic balance between temporal
sensitivity (via phasic channels) and cumulative assessment
(via tonic channels), aligning with how the human nervous sys-
tem modulates attention and emotional readiness in response
to environmental changes.

2) Internal Emotional Circuit Response: To evaluate the
intrinsic behavior of each emotional circuit independently,
this section presents controlled stimulation scenarios in which
external emotional inputs are directly injected. The aim is
to examine how satisfaction, ambition, and fear respond in
isolation and interact through feedback mechanisms.

In Figure 5, a sudden drop in external satisfaction input
induces a gradual decay in the satisfaction voltage. In re-
sponse, the ambition circuit shows a compensatory increase
due to the absence of positive feedback from satisfaction. The
fear signal remains steady, as it is unaffected in this specific
case. This behavior reflects the motivational interplay between
satisfaction and ambition, where lower fulfillment can provoke
increased goal-seeking drive.

Figure 6 depicts the effects of a fear spike. The fear circuit
immediately reacts with a sharp transient peak, characteristic
of differentiator dynamics. As fear increases, both satisfaction
and ambition decrease, demonstrating inhibitory interconnec-
tions. This pattern is consistent with emotion theories where
fear overrides exploratory or goal-driven behavior, prioritizing
inhibition and caution.

Together, these simulations validate the theoretical design of
the emotional circuits, confirming that their output aligns with



Satisfaction External Input
—— Ambition External Input
Fear External Input

External Input
°
o
8

100 satisfaction
—— Ambition
Fear

Emotion State
°
o
8

0 20 40 60 80 100
Time (seconds)

Fig. 5. Response to a decrease in satisfaction input at £ = 40. Ambition rises
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Fig. 6. Response to a spike in fear input at t = 40. The fear circuit exhibits a
sharp peak followed by decay. Satisfaction and ambition are both suppressed.

both the intended analog behavior and psychological intuition.

3) Emotion-Driven Agent Communication: Figure 7
presents the results from the two-agent simulation. The agents
alternate roles in two fixed phases:

1) Phase 1 (0-50s): Agent 1 is active and generates
message outputs based on its internal emotional state.
Agent 2 remains passive and only receives input.

2) Phase 2 (50-100s): Agent 2 becomes active while Agent
1 switches to passive mode.

During the first phase (0-50s), Agent 1 is active and
generates message-length output modulated by its internal
emotional state. At the start, ambition (S,) is slightly ele-
vated, initiating moderate message production. As the phase
progresses, ambition gradually decreases, leading to a corre-
sponding decline in message length. Satisfaction (Ss) remains
relatively low due to the lack of incoming input, while fear
(Sy) stays minimal. Meanwhile, Agent 2—acting as the pas-
sive recipient—receives the message stream as external input.
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Fig. 7. Bidirectional simulation of emotion-driven agent communication. Top:
External inputs, emotional states, and message length output of Agent 1.
Bottom: External inputs, emotional states, and message length output of
Agent 2.

These signals are processed through tonic and phasic sensory
pathways, resulting in a gradual increase in satisfaction and a
mild rise in fear in response to sustained stimulation. Ambition
in Agent 2 decreases over time, following the increase in
satisfaction due to inverse emotional coupling.

At the 50-second mark, roles reverse: Agent 2 becomes
active, and Agent 1 becomes passive. A similar emotional
pattern unfolds. Agent 2 begins with low ambition and pro-
duces moderate-length messages, but as ambition continues
to decrease, message length steadily drops. Agent 1, now
receiving messages, shows a delayed increase in satisfaction
through tonic accumulation, and a moderate rise in fear
due to continuous stimulation. Its ambition also decreases as
satisfaction builds, replicating the emotional progression seen
earlier in Agent 2.

Across both phases, no sharp spikes in fear are observed.
This is attributed to the smooth, uninterrupted nature of the
input signals—there are no sudden onsets or cessations that
would trigger transient phasic fear responses. As a result, fear
remains stable and subdued throughout the simulation, while
satisfaction and ambition exhibit gradual, inversely coupled
trends.

The simulation reveals a consistent emotional-behavioral
loop: active agents begin output with low ambition, which



decreases further as messages are emitted. Message length
follows this decline closely, reflecting the influence of ambi-
tion on output intensity. Passive agents, on the other hand,
accumulate satisfaction in response to received messages,
which in turn suppresses ambition. Fear rises modestly in
both agents but remains stable due to the absence of abrupt
emotional stimuli.
This interaction results in:

« Emotion-dependent message generation that self-adjusts
based on internal ambition.

o A consistent inverse dynamic between satisfaction and
ambition within each agent.

« Emotional adaptation in passive agents driven by external
input, even without active participation.

¢ Smooth transitions supported by the tonic-phasic design,
enabling both stability and sensitivity to changes.

Although the switch between active and passive roles is
externally configured, the simulation demonstrates how inter-
nal emotional states evolve naturally based on message flow.
This structure provides a foundation for future implementa-
tions where role transitions may be driven autonomously by
emotional thresholds or interaction dynamics.

IV. CONCLUSION

This paper presented an analog emotion-based framework
for Al agents, incorporating biologically inspired sensory
processing and internal emotional dynamics to modulate com-
munication behavior. Simulations showed that the emotional
states—satisfaction, ambition, and fear—respond appropri-
ately to input stimuli, and that these states influence message
generation in a continuous and interpretable manner.

In the current setup, however, agents follow predefined
active and passive roles to facilitate controlled observation,
rather than exhibiting emergent behaviors such as autonomous
turn-taking. Moreover, each agent’s emotional state is treated
as internally driven, responding only to external message
stimuli without recognizing or adapting to the emotional
state of the other agent. As a result, true emotional interde-
pendence—where one agent’s emotional state influences the
other’s message generation in a feedback loop—is absent.

Future development should address this limitation by inte-
grating mutual emotional awareness. This would allow agents
not only to react to message patterns, but to sense and respond
to the emotional states of others, enabling richer, more socially
intelligent interactions in multi-agent systems.
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