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Abstract—How can we continuously verify the identity of
users without modifying their devices? We introduce a client—
agnostic method that leverages keystroke—induced network traffic
patterns to passively authenticate users. It can be deployed on
infrastructure already common in network environments. By
applying contrastive learning to Web—Socket packet traces, we
compare new traffic against previously seen patterns from the
same user. In an experiment with 75 users, our method achieved
87 % accuracy—improving over a statistical baseline by 27.7 per-
centage points (pp). These results demonstrate that network
traffic captures meaningful behavioral signatures and can serve
as a foundation for practical, continuous user authentication.

Index Terms—Continuous Authentication, Network Monitor-
ing, Network Security.

I. INTRODUCTION

Nowadays, many people use web—systems ranging from
streaming services, over online games, to highly sensitive
online banking applications. Even though authentication is
such an important aspect, many applications solely rely on
knowledge-based approaches like passwords. These have been
found susceptible to different kinds of attack vectors. Some
examples are dictionary attacks and heat analysis [14].

The impact of these attacks can be reduced by continuously
authenticating the user’s identity. An easy approach would be
to request the user’s credentials in short intervals. While being
effective, this strongly decreases the usability of the applica-
tion. Based on this issue, the field of behavioral authentication
tries to offer a solution and provide an additional layer of
security without sacrificing usability.

Recent behavioral authentication approaches are based on
metrics derived from the user interacting with the device [20].
These have been proven to be an effective way of matching
users to their behavior, but rely heavily on client-sided mod-
ifications [22, 26]. These modifications are needed to capture
keyboard or touch—screen inputs. This can be an obstacle for
two main reasons. First, the client needs to be modified to
collect the necessary user behavior. Second, the collection and
sending of the user behavior might have negative impact on
the battery life of the device and use additional mobile data.

We propose a new approach, relying on the continuous
authentication of users based on their network traffic generated
by using an application. The system takes a time series of
the exchanged packets as input for a machine learning model.
This eliminates the need for client-sided modifications and
thus does not have any impact on battery life or used mobile
data. Our approach can be injected inside an existing system

with minimal changes, as seen in Fig. 1. The contributions of
this paper are, therefore:

¢ An approach for continuous authentication without appli-
cation changes on the client side.

o An evaluation of the proposed approach using a dataset,
generated from keyboard inputs.

o Empirical evidence that network traffic captures non—
trivial human behavior and can be used for continuous
authentication.

We evaluated our approach in an experiment with 75 users.
The results show an improvement in accuracy of 27.7 pp com-
pared to a statistical baseline approach and 37 pp compared
to a random guess. Another finding is the strong association
between the user’s typing behavior and the generated web—
socket packets, which further supports the claim of using
network traffic for user authentication.

This paper is structured as follows. In Section II we provide
an overview of the foundation and related work in the field
of behavioral authentication and network traffic analysis. Sec-
tion III describes our approach for continuous authentication
based on network traffic. The experiment setup and results
are presented in Section IV-B. Finally, we discuss possible
limitations of our approach in Section V and conclude our
work in Section VI

II. RELATED WORK

In this section, we will give an overview of the two main
fields, that are the foundation for our work. The first one is a
brief summary of behavioral authentication. The second one
covers the basics of network traffic analysis using machine
learning approaches.

A. Behavioral Authentication

Behavioral authentication offers a supporting way of au-
thenticating users. The main goal is, to make knowledge-
based approaches more secure, by collecting and analyzing
user behavior. Currently a lot of focus lies on the analysis of
the users physical interaction with the device.

The device interaction can be captured in different
ways [14]. One of the most common ways is to capture
the users typing behavior. This approach has been shown by
multiple publications [1, 4], to be a reliable method of using
the user behavior for additional authentication information.

The rise of the Internet of Things (IoT) devices has also
brought up new methods of capturing user behavior. For
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Fig. 1. Overview of our network—traffic—based continuous authentication approach.

example, a smartphone offers many different sensors like
touchscreens, accelerometers, gyroscopes and more [3]. Ad-
ditionally smartwatches even offer the possibility of capturing
the user’s heartbeat, breathing rhythm or other health related
data [14]. These behavior metrics have also been shown, to be
usable for user authentication [12].

Another approach would be, to combine user behavior
and device attributes, by correlating user behavior to internal
device timing characteristics. This has been done in [19]. The
key insight is, that when users interact with a device—through
typing, mouse movements, or gestures—the resulting input
events are not only shaped by the user’s behavior but also
by the device’s internal processing and sampling mechanisms.
Specifically, many human-interface devices (like keyboards
and touchpads) sample inputs at fixed intervals determined
by hardware clocks. These clocks introduce subtle, device-
specific timing patterns into the recorded input stream. When
analyzing the timing of these events, the fixed sampling rates
can create distinct frequency peaks in the input data, which
then can be used to identify the device and, by extension,
the user. In the mentioned work, the authors demonstrate a
rank—1 accuracy of 84.6 % for 10,000 devices when using
this approach.

B. Network Traffic Analysis with Machine Learning

Currently, the most common use—case for network traffic
analysis is the detection of anomalies and attacks [2]. This
is often done by implementing so called Intrusion Detection
Systems (IDS). A frequent use—case for machine learning in
the field of IDS, is the recognition of Distributed Denial of
Service (DDoS) attacks [11, 5]. Overall the scope of IDS
extends far beyond DDoS attacks and can also focus on
common exploits and malware [10, 29].

For this task different algorithms ranging from simple rule—
based approaches to deep learning models have been used [6].

In recent deep learning publications, contrastive learning has
shown to be a promising approach for network traffic analy-
sis. Although results exceeded 90 % balanced accuracy, the
classification tasks were limited to binary classification (nor-
mal/malicious traffic) [13, 16, 28] or application identification
(video streaming, file download...) [17].

C. Contrastive Learning

The main idea behind contrastive learning is to learn a
vector representation of the input data, that has a short distance
for similar inputs and a long distance for dissimilar inputs [9,
27]. A loss function for this optimization problem can be
defined as:
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With z; being an example input and z; = f(z;), the function
j (i) delivering a index where x;(;) is from the same class as
x;. The function K (i) delivers a set of indices, where ¢ i (3
is from a different class than x;. Furthermore S(i) C K (i).
There exist different strategies to sample S(i), for example
random sampling or hard negative sampling [8].

This formulation makes contrastive learning particularly
well-suited for our user recognition task, as it does not require
a fixed number of classes. Unlike traditional n—class classi-
fication, contrastive learning operates on similarity between
samples, allowing the model to scale to an arbitrary number
of users.

III. METHODOLOGY

The following section describes the methodology of our
continuous authentication system. We start by introducing the
main idea behind our approach. Afterwards, we describe the
implementation of our system.



A. Main Idea

The main idea is, that during event—based communications
between client and server, the characteristics of user interaction
are causally connected to the network traffic. This offers the
possibility for behavior being represented in network metrics,
especially packet frequency, packet inter—arrival time and
packet size.

For example, consider a web application with a typing
input. If every typing input triggers a packet exchange, the
packet frequency can be correlated to the typing speed. Also
different patterns, when typing key combinations might be
represented in the data stream. Stragapede et al. [25] have
already successfully identified users based on typing events,
so the transfer to causally connected network events is a logical
step.

B. User Recognition with Web—Socket Packets

The architecture of our approach is shown in Fig. 2. As
input, we receive a list of web—socket packets that were sent
between the client and the server. The web—socket packets
are timestamped on arrival and contain the payload of the
message. We calculate the difference between the receive time
of two consecutive packets, giving us the packet inter—arrival
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Fig. 2. Architecture of the user recognition on the packet level.

time as first time series. The second time series in our approach
is the effective change a packet has on the text input. Having
access to the payload of the message, we can extract, whether
the packet adds a sequence of characters to the text input or
deletes a sequence of characters. Both of these time series are
normalized, using the minimum and maximum value, derived
from the respective training data.

For better processing, the resulting time series are split into
chunks of a fixed size N = 2¥ € N. For each chunk we also
calculate the discrete fourier transform (DFT) of the packet
inter—arrival times and the number of character changes per
package. This leaves us with a final 2—dimensional array with
the shape N x 4.

For the contrastive learning method, these chunks are then
combined into matching and non—matching pairs. Every chunk
for a user is randomly matched with another chunk of the same
user. The same is done for non—-matching pairs. Every chunk
of a user is randomly matched with a chunk of another user. A
dataset with S € N samples will then produce S matching and
S non-matching pairs, resulting in a dataset with 25 samples.

Our system is based on a siamese neural network architec-
ture [18]. Siamese networks are composed of two identical
sub—networks, that share the same parameters and weights.
They are used for comparing two inputs. Each input is being
forwarded through a sub—network, that extracts important
features, represented in the embedding space. Afterwards, a
distance metric is being applied to the embeddings, which will
output a similarity score.

Since a multivariate time series can be seen as a grayscale
image, we take a similar approach to image recognition tasks.
We use a deep learning model as backbone, that is trained
to generate an embedding of the input data. This is done
for each of the two input time series. The embeddings are
then multiplied and the result is passed through a multi-layer
perceptron (MLP), that outputs the similarity score of the two
input time series.

IV. EVALUATION

This section starts by presenting the experimental setup,
developed for creating a dataset of network traffic, generated
by user inputs. We then evaluate our method from the previous
section, using this dataset. We also compare our approach to
a baseline method, as evidence for substantial user behavior
being captured in the network traffic.

A. Generation of User—behavior driven Network Traffic

To generate a dataset of network traffic, we are using
the popular web—service Overleaf'. Overleaf is an online
LaTeX editor that allows users to collaborate on documents
in real-time. The service uses a web—socket connection, to
send updates to the server, whenever a user interacts with
the document. This results in network traffic that is heavily
influenced by the users typing behavior.

Thttps://github.com/overleaf/overleaf



For capturing the exchanged network traffic, we use the
open—source tool mitmproxy?. Mitmproxy is modified, to store
every forwarded web—socket packet in a log file. The log
file contains the timestamp of the packet and the respective
payload. The payload of the packet is then used to extract
the transmitted character changes in the text. Furthermore,
we also remove the acknowledgements (ACKs) from the
packet stream, since they do not contain any user behavior
information.

The dataset is generated, by using recorded keystrokes from
the Keystroke Verification Challenge dataset [23]. We take
every user data that spans over a time period of 15 minutes
for desktop and one hour for mobile devices. Afterwards, a
script is used, to control the browser and simulate the typing
behavior of the given user. The script inputs the keystrokes
into the Overleaf editor, which then generates the network
traffic. The keystrokes are replayed in real-time, to get an
accurate representation of the corresponding network traffic.
An overview of the experiment can be seen in Fig. 3.

For our evaluation, we are using a ResNetl8 [7] model
that is trained on the generated dataset. The dataset consists
of traffic generated from 75 different users. The dataset is
balanced, so that every user maps to the same amount of traffic.
This leaves us with a total time of 18 hours and 45 minutes
of recorded network traffic.

The optimization problem is solved using the AdamW [15]
optimizer with the standard learning rate of 0.001 and standard
weight decay of 0.01. The model is trained for 100 epochs with
a batch size of 256. Our loss function for the classification task
is the binary cross—entropy loss.

B. Results

We use a 5—fold cross—validation to evaluate the model with
specific dataset splits. Metrics are always given as mean over
the best score from the 5—folds with a standard deviation.
We select the best score as epoch with the highest accuracy.
Precision, Recall and F1-Score are also given from this epoch.

As additional metric, we provide a baseline using a decision
tree classifier. The classifier is trained using the mean, standard
deviation, maximum and minimum value of each feature time

Zhttps://mitmproxy.org/
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Fig. 3. Overview of our dataset generation setup we used for evaluating our
continuous authentication approach.

series. The evaluation for the decision tree is done using the
same 5—fold cross—validation.

In Table I we present the results of our evaluation for
different chunk sizes N. With a chunk size of 64 records, we
achieve an average accuracy of 87 % with a standard deviation
of 1 pp. Furthermore, the results show, as expected, that a
longer observation time results in a higher accuracy. For both
models, we observed, that this difference can lie in the range
of up to 11 pp for classification accuracy, when going from a
chunk size of 16 to 64. The area under the curve (AUC) of the
receiver operating characteristics (ROC) curve gives a value of
93.19 % =+ 1.74%. This high score should be taken with a grain
of salt, since as seen in Table I, the measured precision value is
at 82.5 %. The ROC curve is displayed in Fig. 4, representing
the average performance over a 5—fold cross-validation. The
shaded area around the curve indicates the standard deviation,
providing a measure of variability across the folds.

Figure 5 evaluates the impact of different preprocessing
methods on the accuracy of our approach. The x—axis repre-
sents different chunk sizes N and the y—axis shows the clas-
sification accuracy in percent. The best results were achieved,
when having full access to the packet body. Removing the

TABLE I

METRICS OF THE USER RECOGNITION BASED ON NETWORK TRAFFIC. RELATIVE TO CHUNK SIZE N.

Metric Model N=16 N =32 N =64
Accuracy Our approach  75.9 % 4+ 4.3 % 828% +3.0% 87.00% +1.0%
Baseline 61.8% +7.3% 64.1% +6.8% 59.3% +3.6%
Precision Our approach  71.2% + 2.4 % 832% +56% 825%+18%
Baseline 58.9% + 5.5 % 61.6% +57% 58.1%+49%
Recall Our approach  87.1 % + 5.3 % 83.0%+82% 94.0% +2.0%
Baseline 79.7% +109% 80.8% +81% 76.0% +12.0%
F1—Score Our approach  78.3 % + 1.6 % 826% +31% 87.85% +0.8%
Baseline 67.4 % + 6.3 % 69.4% +33% 649%+18%
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Fig. 4. Average ROC curve derived from the folds of our siamese—
network approach with N = 64.

ACKs from the packet stream yields a small improvement
compared to working on the raw packet stream. The accuracy
improvement lies in the range of around 3 pp for N € {16, 64}
and 1.5 pp for V = 32. The analysis of the character changes
transmitted in the packet body and removal of ACKs shows
an increased accuracy of 14 pp for N € {32,64} and 8 pp for
N = 16, when comparing to just removing the ACKs.

V. DISCUSSION

Compared to the baseline, our approach shows an improve-
ment in the range of 14 pp to 27 pp in accuracy. We hereby
argue that due to the improvement of our approach over the
baseline, we are able to capture more user behavior inside the
network traffic, than just the average typing speed.

We come to this conclusion, since the baseline model is
trained on the average, standard deviation, maximum and
minimum value of the two time series. The average value
of the character changes per packet and the average typing
speed of the user are correlated. This is also shown in Fig. 6,
where the correlation coefficient » = 0.78 indicates a strong
association between these two variables. This association is
also causally linked, since more keyboard inputs lead to
more transmitted characters. The average typing speed of a
user should therefore be present in the average transmitted
characters. Going further, this metric is also available to the
baseline model. Due to the improvement of our approach over
the baseline, there must be more user behavior captured in the
network traffic, than just the average typing speed.

Nonetheless, when compared to methods that rely on direct
keystroke data, there is still room for improvement. Recent
publications on the same dataset yield results of around 92 %
accuracy [24]. Therefore there might be a loss of information,
when transferring the keystrokes to network traffic.

Besides our contributions there are also two main limitations
in our approach. First, our current method needs access to the
packet body, to extract the required features. This is not always
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Fig. 5. Accuracy comparison of the siamese network using different
preprocessing methods for different chunk sizes V.

possible, for example when using Transport Layer Security
(TLS). A common solution would be to employ a TLS proxy,
which decrypts the traffic for inspection before re-encrypting
it and forwarding it to the destination. The latter is a common
practice in many organizations, with little to no impact on the
user experience [21].

The second limitation of our approach is that it currently
requires a time window of approximately 15 minutes for effec-
tive analysis. This constraint arises from the lower frequency
of network traffic events compared to direct keyboard inputs,
which limits the granularity and immediacy of the captured
behavioral signals. Reducing the required observation time
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KVC dataset [23] and the average character changes per packet from our
dataset.



could significantly enhance the practicality of the method,
especially for real-time applications. This may be achievable
with access to a larger and more diverse dataset containing
longer and more varied user sessions, which would enable
better generalization and potentially allow the model to detect
patterns in shorter time spans.

VI. CONCLUSION

Our work showed, that user recognition based on network
traffic can be possible. While achieving good results of 87 %
accuracy, methods using the direct keystroke data still yield
better results. Additionally our work offers evidence, that more
user behavior is captured in the network traffic, than just the
average transmitted characters. Therefore user—centric network
traffic analysis is a promising approach for continuous user
authentication, without the need for client—sided modifications.

In respect of future work, improvements regarding the
machine learning setup are possible. Our proof of concept
used a siamese—network with a convolutional network. While
achieving good results on comparison to the needed computing
power, we are still curious about the potential of more complex
approaches. This might improve the accuracy and may also
reduce the observation window.

At last there might also be the possibility to achieve similar
results with a more secure and privacy—preserving approach.
Maybe there is enough information hidden in TLS encrypted
network traffic, that can be used for user recognition. Another
common sight in large—scale network is the use of so called
aggregated flows for network traffic analysis. These flows
are a summary of the network traffic and can be used for
anomaly detection. Recognizing users based on these flows
might be another privacy—centric approach for continuous user
authentication.
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