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A B S T R A C T

Modern sorting plants for lightweight packaging waste (mainly plastics, metals and compounds) can operate with 
up to 50 sensor-based sorters (SBS), generating large volumes of material flow data. This study presents the first 
systematic evaluation of SBS data for real-time, inline monitoring of throughput (0.1–17.5 t/h) and input 
composition (eject shares 5–50%). Two fractions were examined: larger polyethylene “chips” sorted by color via 
visible light (VIS) cameras, and smaller “flakes” of various polymers sorted by near-infrared (NIR) technology. 
Formulas converting pixel counts to mass-based metrics were developed, while artificial intelligence was 
deliberately avoided to highlight the inherent potential of pixel data. Monitoring accuracy depended strongly on 
particle overlap, measured by the superposition factor (fsp). For fsp<1.05, median throughput deviations were 
+0.3% (chips) and −11.6% (flakes); composition deviations were +3.9% and +2.4%, respectively. If the out
lined challenges are considered, the technology can be used in realistic conditions of plant operation (fsp<1.25).

1. Introduction

The global warming potential and cumulative energy demand of 
recycled packaging material made from plastic, steel or aluminium is 
lower than the impact of virgin material (Metal Packaging Europe 2022; 
Volk et al., 2021). Thus, there are great efforts to enhance recycling rates 
within but also outside the European Union. To generate recycled 
products from waste, three key steps are required: collection, sorting, 
and material recovery. Material that has been littered is lost for the 
recycling chain. Similarly, in the sorting stage, recyclable materials that 
are not successfully separated end up in incineration instead of reaching 
the material recovery level. This outlines the importance of improving 
collection schemes, sorting technology and plant performance to maxi
mize resource recovery (Pomberger 2020).

Lightweight packaging waste sorting plants (LWP plants) are a spe
cific type of material recovery facilities (MRFs) or “sorting centers”. 
Their primary objective is to separate mixed packaging waste of the so- 
called “lightweight packaging” to create various categories of re
cyclables, like polyethylene (PE), polypropylene (PP), polyethylene 

terephthalate (PET), beverage cartons (BC), ferrous metals (Fe) and non- 
ferrous metals like aluminum (NE), besides others (Antonopoulos et al. 
2021, Stadler Anlagenbau 2025a). “Lightweight packaging” refers to 
packaging materials composed predominantly, but not exclusively, of 
plastics, metals, and composite materials, which are collected in sepa
rate bags or bins from other waste streams (e.g. in Austria, Germany or 
Spain). They do not include heavier packaging like glass bottles 
(European Environment Agency, 2025). To improve both the amount 
and quality of generated recyclable fractions in LWP plants an increasing 
number of sensor-based sorters (SBS) is used. Modern LWP plants 
operate with up to fifty SBS, mainly using near-infrared (NIR) technol
ogy to separate different types of plastics as well as beverage cartons and 
paper (Kusch et al., 2021; Küppers et al. 2022). Some fractions are 
further separated by colour (e.g. Polyethylene terephthalate (PET): blue, 
green, clear, etc.) using SBS based on the visible spectrum of light (VIS). 
Depending on the waste management structure of a country, this can 
happen directly in the LWP plant as unshredded objects and/or in a 
subsequent processing plant as flakes (Lubongo et al. 2024; Wahab et al. 
2006).
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E-mail addresses: sabine.schloegl@stud.unileoben.ac.at (S. Schlögl), bastian.kueppers@w-stadler.de (B. Küppers), daniel.vollprecht@uni-a.de (D. Vollprecht), 

roland.pomberger@unileoben.ac.at (R. Pomberger), alexia.tischberger-aldrian@unileoben.ac.at (A. Tischberger-Aldrian). 

Contents lists available at ScienceDirect

Resources, Conservation & Recycling

journal homepage: www.sciencedirect.com/journal/resources-conservation-and-recycling

https://doi.org/10.1016/j.resconrec.2025.108570
Received 19 May 2025; Received in revised form 10 August 2025; Accepted 22 August 2025  

Resources, Conservation & Recycling 224 (2026) 108570 

Available online 3 September 2025 
0921-3449/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0001-6457-9865
https://orcid.org/0000-0001-6457-9865
https://orcid.org/0000-0003-1809-5223
https://orcid.org/0000-0003-1809-5223
mailto:sabine.schloegl@stud.unileoben.ac.at
mailto:bastian.kueppers@w-stadler.de
mailto:daniel.vollprecht@uni-a.de
mailto:roland.pomberger@unileoben.ac.at
mailto:alexia.tischberger-aldrian@unileoben.ac.at
www.sciencedirect.com/science/journal/09213449
https://www.sciencedirect.com/journal/resources-conservation-and-recycling
https://doi.org/10.1016/j.resconrec.2025.108570
https://doi.org/10.1016/j.resconrec.2025.108570
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resconrec.2025.108570&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The sensor data created from those SBS was not used for sensor-based 
material flow monitoring (SBMM) or plant control in the past (Kroell 
et al. 2022; Curtis et al. 2021). With the rising awareness for the po
tential of digitalization in the waste management sector, there is a trend 
to collect and store all kinds of data in LWP sorting plants. The long-term 
vision is to use this data not only for first level support but also for 
(automated) plant optimization. In preparation for this, SBS data is 
currently being stored in many sorting plants, without a specific use case 
or need. Depending on the storage method, this requires considerable 
storage capacity for long-term monitoring: When storing the raw data of 
a hyperspectral NIR-camera at an acquisition rate of 300 frames per 
second about 137 GB/h is generated, assuming all spectral channels are 
recorded by the SBS (Maghmoumi et al. 2025). In contrast, if classified 
pixel data with the respective time stamp and position on the conveyor 
belt is stored as comma-separated values (CSV) the required storage 
quantity is reduced to 1 GB/h. Using an optimized storage format (e.g. 
parquet), this can further be reduced to 20 MB/h (Kamleiter, 2023). For 
most applications an aggregation to 1-minute-values might be sufficient, 
which further decreases storage demand (Schlögl et al. 2024). By 
following this approach, the supplier TOMRA reduces the storage de
mand of one SBS to 700 – 900 per month while processing up to five 
billion data points per day from multiple SBS using Azure Data Explorer 
(ADX) analytics (TOMRA Recycling, 2022a, 2022b).

The acquired data is often stored in cloud systems and is criticized of 
potentially being so-called "digital waste". Digital waste is data which is 
not used, yet it causes avoidable energy consumption through necessary 
power supply and cooling of servers (Gäth 2022). Therefore, not all 
available data should be stored and even useful data might not be 
needed in the highest possible resolution. An assessment on the impor
tance of specific parameters is necessary to define what data streams are 
usable for specific use cases and if an aggregation of the data is possible 
to reduce the required storage capacity (Schlögl et al. 2024).

To the best of our knowledge there have not been publications 
outside of this research project concerning the systematic evaluation of 
the potential of SBS data for plant optimization, the challenges of the 
implementation of such systems and relevant parameters within SBS 
data sets for the implementation. The premises for the presented study 
are based on research using “external sensors”, which have to be pur
chased in addition to sensors already existing within the SBS. There have 
been multiple studies investigating the use of data of different types of 
external sensors (NIR, VIS, volume flow sensors, etc.), which are 
mounted over conveyer belts to obtain data with fully known conditions 
(e.g. Chen et al. 2023; Feil et al. 2019; Hernández Parrodi 2021; 
Kandlbauer et al. 2021; Küppers et al. 2022; Kroell 2023; Roming et al. 
2023; Schlögl et al. 2022b). Alongside those research approaches, 
several commercial monitoring solutions have emerged: On the one 
hand, there are products using sensors mounted directly on conveyor 
belts in sorting plants (e.g., EVK Monitoring, EverestLabs, greyparrot, 
PolyPerception, StadlerConnect). On the other hand, there are manu
facturers offering dedicated machines for material flow characterization 
(e.g. EagleVizion, RTT Flakeanalyser, Sesotec,). These systems typically 
analyze shredded material, either inline within the material stream or 
separately from the sorting line for quality control purposes (EVK 2025; 
EverestLabs 2025; Greyparrot 2024; PolyPerception 2025; RTT 2025, 
Sesotec, 2025, Stadler Anlagenbau 2025b).

While such systems can provide valuable insights in material flow 
characteristics, they entail extra investment and risk generating avoid
able “digital waste” if the same information could be extracted from 
existing SBS sensors (“internal sensor data”). We want to emphasize that 
plants of the future will likely use a combination of internal and external 
sensor data, as the SBS data can only be collected where SBSs are 
positioned in the plant. An example of the effective use of additional 
sensors would be to place them before the baler. This underlines both the 
value of ongoing monitoring product development and the potential 
benefits of leveraging already installed SBS infrastructure.

These studies and products show that sensor data can indeed be used 

for monitoring material flow characteristics. Nevertheless, they do not 
investigate the challenges when using built-in sensors of SBS. These 
challenges result from the fact that the primary purpose remains sorting 
and not the analysis of material flow properties. Data of SBS is based on 
teach-ins and sorting algorithms, which are built for obtaining the best 
sorting results. However, this might impair the quality of data for 
monitoring purposes: One example for a consequence of pre-processing 
is weighting certain material classes to enhance the ejection of the target 
fraction. For example, weighting is set from 1 to 2 for PET pixels, every 
PET pixel will be counted twice. The advantage is that it makes it easy to 
quickly influence the sorting results, without changing the teach-in or 
the set-up. The disadvantage is, that it results in an overrepresentation of 
these material classes when using the data for SBMM. Furthermore, the 
type of algorithm for ejection can affect the gathered data: With object- 
based ejection, a bottle consisting of a PET body, a multilayer label, and 
a polyethylene cap, might be classified as 100 % PET to ensure targeting 
the whole object for ejection. If these influencing parameters remain 
unidentified and the data is only accessible in pre-processed form, this is 
a constraint on the use and interpretation of SBS data both with and 
without the use of machine learning (Schlögl et al. 2022a; Schlögl et al. 
2023; Schlögl et al. 2024).

This paper examines whether SBS data can be used for monitoring 
the most relevant material flow metrics in LWP plants: throughput and 
material composition. These parameters have been investigated sys
tematically in sensor-based sorting trials by Küppers et al. (2020a, 
2020b). However, the VIS and NIR data generated during the sorting 
processes has not been analysed yet. The data includes results of two 
different test conditions: 

(1) VIS cameras for sorting Low-Density-Polyethylen (LDPE) chips by 
colour (red, white)

(2) NIR cameras for sorting flakes by material (Polyolefins (PO) and 
PET).

The innovative approach of the presented study is to use this inline 
SBS data for sensor-based material flow monitoring (SBMM) and 
examine its potential for automated sensor-based plant control tackling 
the challenges of using data which was not optimized for the purpose of 
monitoring. Although the material analysed was smaller than typical 
lightweight packaging waste due to the limitations of the experimental 
setup, the findings remain relevant for real waste sorting plants because 
the central question investigated is whether pixel data captured by 
sensor-based sorters during the sorting process can be effectively uti
lized for material flow monitoring. It is beneficial that the authors of this 
study have created the teach-ins of the presented sorting experiments 
and can therefore interpret the impairing factors on the data. The 
following research questions (RQs) are addressed within this study: 

RQ I: Is the monitoring of throughput possible for both test 
conditions?
RQ II: Is the monitoring of input composition possible for both test 
conditions?
RQ III: Are the results affected by the level of superposition caused by 
higher throughputs?

2. Material and methods

To access the accuracy and reliability of SBMM based on data created 
during a sorting task a thorough analysis was conducted within this 
study. The used data for this analysis originates from sorting experi
ments with different input material and sensor technology to evaluate 
whether SBMM based on SBS data is possible under different conditions. 
Those sorting experiments were conducted with a combination of 
different throughputs and material compositions. The generated data of 
both sorting tasks was not altered before doing the presented analysis.
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2.1. Material

2.1.1. Experiments were conducted with mixtures of two types of materials

1. Chips: LDPE red and LDPE white
2. Flakes: PO and PET

The chip material (see Fig. 1a) was custom-made for the sorting 
experiments of Küppers et al. (2020a, 2020b) and thus only differed in 
colour (red/white). The flake material (see Fig. 1b) was a processed LPW 
shredder fraction, only consisting of PO and PET. The chips are on 
average of bigger particle size (approx. 30 × 60 mm) and higher 
thickness (3.1 – 3.5 mm), while flakes are smaller (< 30 mm) and 
thinner (0.2 – 2.8 mm), with a higher variation in dimensions due to the 
shredding process. For each sorting experiment with chips exactly 1 000 
particles with a total mass of approx. 4.85 kg were used. More particles 
were used in the experiments with flakes: Between 18 500 and 34 500, 
depending on the generated input composition. This was not constant, as 
more PET material was added to the mixture to create higher shares of 
PET material. The resulting input mass of the flake material was ranging 
from 5.95 – 11.04 kg.

With each material different mixtures were created, representing 
specific input compositions and therefore possible effects of differing 
eject shares. In this context, eject refers to the material fraction that 
represents the target fraction of the sorting process (Therefore, all ma
terial supposed to end up in the eject container (See Fig. 1c), if sorting 
was faultlessly). In the first set of trials LDPE was sorted by colour, in 
which white particles were defined as eject, while red particles were 
defined as drop. In the second set of trials PET flakes were defined as 
eject, while PO flakes were drop. Six different mixing ratios were created 
for each set of trials: The generated eject shares in the input material 
were 5 %, 10 %, 20 %, 30 %, 40 % and 50 %. The notation of the 
mixtures in this paper is "Drop/Eject". Thus, in a mixing ratio of 95/5 the 
dominant proportion is drop (95 % LDPE_red or PO) and the smaller 
proportion is eject (5 % LDPE_white or PET). It is important to note, that 
this designation does not describe the outcome of the sorting process, 
but the input composition. The sorting results are not relevant in this 
context, as this paper evaluates the accuracy of monitoring the material 
flow characteristics (e.g. material shares) using data generated during 
the sorting process.

2.2. Methods

The experiments were conducted on a set-up consisting of a feeding 
hopper, a vibrating conveyor and chute sorter with a working width and 
length of 500 × 455 mm (see Fig. 1c). In the first set of trials the chip 
material was sorted by colour using a linescan VIS camera (AViiVA SC2, 
teledyne e2v) with an image resolution of 1365 × 1 px and a spectral 
response of 400 – 700 nm. In the second set of trials the flake material 
was sorted based on the type of material using a hyperspectral NIR 
camera (EVK Helios NIR G2–320, EVK DI Kerschhaggl GmbH) with an 
image resolution of 312 × 1 px and a spectral response of 1000 – 1700 
nm.

For both materials similar sorting experiments were conducted with 
different input compositions (5 – 50 % eject shares) and varying 
throughput rates (Chips: 0.3 – 17.5 t/h; flakes: 0.1 – 5.4 t/h). First, a 
material mixture with a certain input composition was created and the 
masses of the components were documented. Second, the mixture was 
sorted by discharging the eject fractions. Third, the data generated 
during the sorting process was exported. This data included the number 
of pixels per material class (eject, drop, not classified (NC) and back
ground) and the trial time. Both output fractions were then mixed and 
used again for the next sorting trial with the same input composition at a 
different throughput rate. After sorting this input mixture at different 
throughput rates another mixture with a different eject share was 
created. In total 109 experiments with chip material and 63 experiments 
with flake material were analysed in this study.

The basis for using SBS data for SBMM is correct classification, which 
was ensured in preliminary tests. The teach-ins were created with a 
focus on optimal differentiation between eject and drop, as this is the 
priority of a SBS. More details on the methodologies for the sorting tasks 
can be gathered from Küppers et al. (2020a) for flake material and 
Küppers et al. (2020b) for chip material.

2.3. Data analysis

To evaluate the potential of using SBS data for monitoring the ac
quired data was analysed regarding inherent information on two key 
characteristics: throughput and input composition. The correlation be
tween pixel data and those characteristics depends on the monitoring 
conditions (e.g. camera setup and characteristics of material flow), thus 
different approaches are presented for the investigated scenarios.

Fig. 1. Materials and Experimental set-up. (a) Chips: LDPE red/white (using VIS camera), (b) Flakes: PO/PET (using NIR camera), (c) Scheme of experimental set-up 
using a chute sorter with VIS and NIR camera and correspoding light sources.
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Concerning the monitoring of sensor-based throughput the ground 
truth was the mass-based throughput (tpmb), calculated as the ratio of 
input mass and trial time (see Eq. (1)). 

tpmb =
minput

t
(1) 

To visualize the influence of overlapping particles on the calculation 
of pixel-based throughput, as well as pixel-based eject shares, a new 
parameter was introduced: The superposition factor (fsp). It is the ratio of 
the measured pixels per trial (

∑
pxi) and the maximum number of pixels 

of a material mixture (
∑

pxmax), which was measured during very low 
throughputs, resulting in no overlapping of particles (“perfect singu
larisation”). Thus, it quantifies the average superposition of particles 
during a trial. A value of fsp=2.0 represents on average two pixels of the 
particles being on top of each other (See Fig. 2). The optimum in plant 
operation would be fsp=1, realistically values of fsp=1–1.25 are aimed 
for. Values greater than fsp=1.5 are not suitable for a sorting process, as 
the severe overlap hinders both detection and ejection of particles. 

fsp =

∑
pxi

∑
pxmax

(2) 

The sensor-based throughput was calculated by converting the 
detected pixels per time using a correlation formula. This correlation 
formula depends on both the input material and the detection system 
used (sensor, algorithm, etc.) and was determined iteratively with the 
aim of minimising the difference between sensor-based and mass-based 
throughput. The sensor-based throughput (tpsb) of chips was calculated 
according to Eq. (3), while for flakes according to Eq. (4). The relative 
deviation concerning throughput monitoring (RDtp) was calculated in 
relation to the ground truth (See Eq. (5)). 

tpsb, chips =

∑
px
t

∗

(

1+2.8 ∗

∑
pxNC

∑
px

)

∗
1

360 000
(3) 

tpsb, flakes = 0.00109 ∗

∑
px
t

+

(∑
px
t

∗
1

170 000

)3

(4) 

RDtp =
tpsb − tpmb

tpmb
(5) 

A pixel is detected as NC, if the spectra neither fits the requirements 
of the material classes of eject or drop. The share of NC is given ac
cording to Eq. (6): 

cNC,total =

∑
pxNC

∑
px

(6) 

For the analysis of sensor-based monitoring of eject shares the 
ground truth was the manually generated eject shares (ceject; 5 – 50 %). 
These were compared to the pixel-based eject shares (csb) calculated by 
the number of pixels of eject and drop gathered during one trial (See Eq. 
(7) and Eq (8)). As the relative deviation concerning monitoring of eject 
shares (RDceject ) was too high, a material specific correction formula was 
determined iteratively to improve the results. The resulting formula for 
chips is presented in Eq. (9) and for flakes in Eq. (10). The resulting 
relative deviation concerning eject shares (RDc, eject) was calculated in 
relation to the ground truth ceject (See Eq. (11)). 

csb, chips =

∑
pxwhite

∑
pxwhite +

∑
pxred

(7) 

csb, flakes =

∑
pxPET

∑
pxPET +

∑
pxPO

(8) 

csb,chipscorr = csb, chips ∗

(

1+

∑
px
t

∗
1

1 900 000

)

(9) 

csb,flakescorr = csb, chips +

∑
px
t

∗
0.8

50 000 000
(10) 

RDceject =
csb − ceject

ceject
(11) 

3. Results and discussion

The data recorded during the sorting trials was analysed for its 
suitability for SBMM. Two key parameters were monitored: the 
throughput of each trial and the respective eject fraction in the mixture.

3.1. Monitoring of throughput

The hypothesis “the mass-based throughput can be determined by 
the level of overlapping of particles, which is detected by sensors” was 
made for the evaluation of throughput monitoring. Thus, a higher 
throughput results in more superposition than a lower throughput. The 
data presented in Fig. 3 confirms this assumption for both test series, as 
they always show a positive correlation between mass-based throughput 
and pixel-based superposition factor. Within one test series, neither for 
the flake material nor for the chip material a systematic dependency on 
the mixing ratio (e.g. “95/5”: 95 % eject, 5 % drop) can be seen. Rather, 
both materials show overlapping areas of the 95 % confidence bands, in 
particular in the range which is of relevance for applications in LWP 
sorting plants (fsp=1–1.5). This leads to the conclusion that the super
position factor is a suitable reference parameter, regardless of the 
different conditions in both test series. These differences include 
different cameras (different sensors, framerates, algorithms, etc.) and 
different input compositions (differences of material, bulk density, 
particle size and thickness, shape, etc.).

A relevant detail is noticeable in the marked areas of the zoomed 
sections in the graphs: At fsp=1, which represents a singularisation of 
100 %, the range of mass-based throughput values of the chip material 
(Fig. 3a) is about double of those of the flake material (Fig. 3b). Overall, 
higher values for throughput and superposition factor occurred within 
the chip material. This can be explained by the larger thickness of the 
chips, as the same occupied area results in a higher weight if the material 
is thicker.

For the realisation of sensor-based throughput monitoring, the 
collected pixel data (px/h) of each trial was converted to t/h by using a 
correlation formula (Eq. (3) and Eq. (4)). In Fig. 4 the accuracy of the 
mass-based throughput (=ground truth) compared to the resulting 
sensor-based throughput for both test series is presented. Fig. 4a shows a 
high correlation between mass-based and sensor-based throughput. 
Within the zoomed section (0 – 2 t/h) a trend of slight underestimation 
of the model for flakes (PO/PET) is visible, whereas the data points for 
chips (Red/White) are close to the diagonal. For higher throughputs, 
starting at about 2.5 t/h, flakes present opposite behaviour: The 
throughput is systematically slightly overestimated. To further investi
gate these effects, the relative deviation (see Eq. (5)) between the actual 

Fig. 2. Visualisation of different superposition factors by the example of two particles with the same number of pixels.
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mass-based throughput and the calculated sensor-based throughput in 
relation to the superposition factor is presented in Fig. 4b and 4c. While 
the chip material is less affected by the level of superposition (apart from 
the outlier at fsp = 3.22), both visualisations show the described effects 
for flakes: Low superposition results in underestimation, high super
position results in overestimation.

Nevertheless, for ideal singularisation and therefore low superposi
tions (fsp<1.05) the relative deviation for both chip and flake material is 
within a small range (Chips: 10.3pp and flakes: 9.1pp, with pp abbre
viating “percentage points”) for all mixing ratios. This indicates a good 
reliability of the model over a wide range of material compositions at 
good singularisation. For trials with frequent superpositions (fsp>1.25) 
the calculated values had higher fluctuation (Chips: 26.7pp and flakes: 
28.8pp). However, since the aim in plant operation is to achieve good 
singularisation before sensor-based sorters, these extreme cases of very 
frequent superposition are rare and therefore less relevant for the 
evaluation of the potential of SBS data.

For fsp<1.05 the median of the deviation between mass-based and 
sensor-based throughput is +0.3 % for chips and −11.6 % for flakes (See 
Fig. 4c). This indicates an optimising potential for monitoring flake 
material. As visualised in Fig. 4b, both test series follow an almost linear 
trend within the target range for plant applications (fsp < 1.25). This 
indicates that the accuracy of sensor-based throughput monitoring could 
further be improved through linear regression, if needed for the 
respective use case. Notably, even without applying machine learning, 
the underlying pixel data already provide meaningful results (see 
Fig. 4a). This demonstrates that pixel-based monitoring offers a 
straightforward and practical solution for throughput monitoring using 
the built-in VIS or NIR sensors of SBS in LWP sorting plants

3.2. Monitoring of input composition

The hypothesis “An increase in superposition leads to a decline in 
results” was made for the accuracy assessment of input composition 
monitoring. The reasoning for this theory is the obvious effect of missing 
information due to covered material pixels which thus either cannot be 
detected or are misclassified due to mixed spectra. During evaluation of 
the sensor data, another influential factor was noticed: The quantity of 
detected pixels of the material class “not classified (NC)” depends on the 
superposition and therefore on the throughput. In Fig. 5 the correlation 
between superposition factor and NC pixels is presented. As in the 
former presented results, the highest values for the superposition factor 
(x-axis) of the chip material are significantly higher than those for the 
flake material, due to material properties.

The two materials demonstrate a clear difference regarding the NC 

behaviour. The chip material shows an increase of NC pixels at 
increasing superposition factor both in absolute pixel numbers and in 
relative pixel shares. On the contrary, the corresponding graph for the 
flake material (Fig. 5b) shows a decrease of NC pixels. Apart from the 
curve shapes, the results of the analysis differ in the amount of the 
occurring NC pixels as well: Fewer pixels were classified as NC for the 
flake material. The highest values are 1 680 869 px for chips but only 41 
084 px for flakes. Correspondingly, regarding the shares the highest 
values are 79 % for chips and 0.2 % for flakes.

There are multiple reasons for this behaviour: Since the chips are 
quite thick, they are not in the optimal focus area of the VIS camera 
when overlaid, which degrades detection and enhances the chance for 
classification as NC. In addition, the particles are no longer aligned at 
the right angle to the camera when partially overlapping, which can 
further negatively affect the refraction of light, resulting in misclassifi
cation. For the flake material - classified with a NIR camera - the su
perposition appears to have a positive effect. We propose the following 
hypothesis to explain this behaviour: PET particles are transparent and 
are therefore usually classified partially as background when the ma
terial is thin (due to transmitted and thus lost radiation) or as NC (due to 
reflection at shiny spots). In case of superposition, a mixed spectrum of 
PET and PO is scattered back when PET particles are on top. With the 
used teach-in these mixed spectra are classified either as PET or PO. 
Therefore, although the total number of detected pixels is reduced, for 
certain areas the detection can be improved by the superposition, as less 
pixels are misclassified as background. The problem with shiny spots is 
reduced if a PET particle is located below a PO particle. In this case, only 
PO is detected and problems with the detection of PET are thus irrele
vant (Note: The corresponding PET pixels are not detected in this case, 
thus not represented in the pixel data). The detailed effects of super
position are complex, depending on material properties, camera, algo
rithm, and teach-in.

The results lead to the conclusion, that the accuracy of monitoring 
the input composition of chip material is strongly dependent on the 
superposition and thus on the throughput. This finding could be used for 
monitoring input material with similar behaviour: Higher shares of NC 
pixels represent higher throughput. For flake material however, the 
misclassification as NC caused by superposition is negligible. Therefore, 
the use of that parameter for SBMM is not suitable. This comparison 
shows an important finding for full-scale implementation of SBMM: 
Simple monitoring parameters can be found for different use cases, but 
these parameters cannot be applied without restrictions to all other use 
cases. An individual assessment of suitable parameters is necessary.

In Fig. 6 the accuracy of monitoring the eject shares (Chips: LDPE_
white share, flakes: PET share) using SBS data is visualised. Larger 

Fig. 3. Correlation between mass-based throughput [t/h] and pixel-based superposition factor [-] for (a) Chips (LDPE Red/White; VIS) and (b) Flakes (PO/PET; NIR). 
Presented with fitting curves of second order and 95 % confidence band. Data points of fsp=1 marked in red box in associated zoomed sections.
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coloured areas in the graphs correspond to a higher difference between 
sensor-based and mass-based values. There are two main influential 
factors which have been investigated: different throughputs and 
different input compositions, both resulting in different superposition 

factors. The black horizontal lines in Fig. 6–1 show the mass-based eject 
shares (From 5 % to 50 %), representing the ground truth. In Fig. 6–1a 
and 1c the presented data is not altered. In the corresponding graphs on 
the right (1b and 1d) a correction formula (see Eq. (9) and Eq. (10)) is 
used to counteract the distortion due to overlapping of particles with 
higher fsp values.

For the chip material the negative influence of superposition 
described above can be clearly seen in the original data (Fig. 6–1a). In all 
mixures of the chip material the measured value at high superposition 
factors is only about half the target value. For example, with the 50/50 
mixture, the largest difference between the target value (50 %) and the 
measured value is 25.4pp. In comparison the monitoring of flake ma
terial (Fig. 6–1c) was more accurate even with the original data. 
Nevertheless, a systematic underestimation of the eject quantity can also 
be observed here. A plausible explenation for this phenomenon is, that 
the mixed spectra detected when PET particles are on top of PO particles 
is likely classified as PO. Further, PO on top of PET is also detected as PO. 
Therefore an over-representation of PO in the original data occurs.

When applying the correction formulas, the sensor-based eject shares 
align better with target values for both materials. This is especially true 
for superposition factors aspired in LWP sorting plants (fsp=1–1.25). For 
fsp<1.05 the monitoring is very precice: The highest difference between 
the target value and the detected eject share is 1.9pp for chips and 2.3pp 
for flakes. Therefore, a clear distinction between different input com
positions is apparent in the data and fluctuations in input composition 
can be detected accordingly. A possible application for this is, for 
example, the early detection of performance reduction or failure of 
upstream aggregates resulting in a change of material composition (e.g. 
failure of wind sifter or another SBS). A certain difference from common 
material shares passing a SBS could therefore be used for an alert system 
or hypothetically even for a plant control system.

A clear dependence on the superposition factor occurs, even after 
applying the correction formula (See Fig. 6–2). The influence of high 
superposition on the monitoring of composition is more pronounced 
than the influence of different mixtures. This emphasizes the importance 
of singularisation for accurate monitoring. An important remark arises 
when comparing absolute and relative deviations: Although relative 
deviations appear to be high, absolute deviation are always lower than 
5pp for fsp<1.25. It is important to acknowledge, that not all applica
tions of monitoring require such precision. Therefore, the appropriate 
selection of key performance indicators (e.g. absolute or relative devi
ation) and corresponding limit values depending on the respective use 
case is of enormous importance. As mentioned before, an individual 
assessment of suitable parameters is necessary.

4. Conclusion

Modern LWP sorting plants are equipped with up to fifty SBS, which 
classify the material continuously to enable the sorting process. In the 
past, the generated data was neither utilized nor stored. There is 
currently a trend towards storing this data, although the specific ap
plications for SBS data have not yet been systematically investigated. In 
this study data gathered during sorting trials with different input com
positions (5 – 50 % eject share) and throughputs (0.1 – 17.5 t/h) is 
evaluated regarding its potential for SBMM. The benefit of using SBS 
data is that it is a cost-effective alternative to installing additional sen
sors for monitoring.

All presented trials were conducted on the same SBS, using different 
materials with suiting sensors and teach-ins (red and white LDPE chips: 
VIS camera; shredded PO and PET flakes: NIR camera). To allow the 
comparability of both test data sets a new parameter was introduced: the 
superposition factor (fsp). This factor quantifies how much particles 
overlap on average and thus expresses negative effects of high 
throughput on detection.

The following findings were obtained: 

Fig. 4. Comparison of mass-based throughput and sensor-based calculated 
throughput. (a) Accuracy visualised as scatter plot, (b) Average deviation from 
mass-based throughput depending on superposition visualised with line plot of 
adjacent-averaging over 10 data points, (c) Associated Box-Whisker plots for 
fsp<1.05, 1.05–1.25 and > 1.25; Red: Chips (LDPE Red/White; VIS), Blue: 
Flakes (PO/PET; NIR).
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• Higher throughputs result in higher superposition. Therefore, the 
superposition factor (fsp) is a suitable parameter to visualise 
throughput dependent effects on SBMM, regardless of input material 
and mixtures.

• Throughput monitoring based on SBS data is possible, as the pixel- 
based throughput (px/h) correlates with the mass-based 
throughput (t/h). For this purpose, the pixel data was converted in 
mass per time unit using material specific formulas.

• The accuracy of throughput monitoring primarily depends on su
perposition. For fsp<1.05 the median of deviation was +0.3 for chips 
and −11.6 % for flakes with a range of deviation always smaller than 
10 %. These results could likely further be improved for the tested 
material by using a regression, as there is a linear correlation of 
deviation and superposition factor for both materials for low super
postion. But even with the simple correlation formula presented, the 
monitoring appears to be feasible for both materials and all mixtures 
in realistic scenarios with fsp<1.25.

• Monitoring of input composition using SBS data is primarily 
depending on superposition as well. Three main effects of super
position have been observed: 
(1) Missing information through covered particles, e.g. transparent 

PET covered by non-transparent PO.
(2) Misclassification through mixed spectra, e.g. PO covered by PET.
(3) Misclassification as “not classified” (NC), e.g. overlapping chips 

resulting in up to 79 % NC share.

In examples (1) and (2) PET usually is not classified and thus un
derrepresented in the data. 

• For chips in particular, the deviation between the sensor-based 
calculated eject fraction and the actual mass-based eject fraction 
was too high, particularly at high throughputs with fsp>1.25: The 
reference value was twice the calculated value. These effects were 
corrected by applying a material-specific correction formula, which 
created results suitable for SBMM for all mixtures in both materials 
(Highest differences for fsp<1.25 approx. 2pp). The resulting median 
deviation for fsp<1.05 was +3.9 (chips) and +2.4 (flakes). The 
comparison of the test series shows that whether and to what extent a 
correction is necessary depends on the specific use-case.

• The selection of parameters for SBMM depends strongly on the use- 
case as well. Even with the same test setup and procedure, different 
characteristic values are usable for different sensors, teach-ins and 

materials. For example, NC pixels were characteristic for throughput 
of chips material (VIS), while for flake material (NIR) this parameter 
was not relevant. Another example is the selection of mean value or 
maximum value based on either relative or absolute numbers for the 
assessment of eject shares: The maximum values of the relative de
viation of the eject shares (using the correction formula) seemed to 
be high (Chips: 45 %, flakes: 27 %) and thus the data might be 
interpreted as being not good enough for SBMM. However, the me
dian was always below 10 % and the absolute deviation was always 
lower than 5pp for fsp<1.25. This demonstrates that an assessment 
based on maximum values is often not meaningful for fluctuating 
conditions, which are common in plant operation. Mean values are 
often more suitable.

The results of this study show the potential of sensor-based material 
flow monitoring based on SBS data. If the teach-in is suitable for the 
monitoring objective, irregularities of throughput and input composi
tion can be detected for various materials and material mixtures (RQ I 
and RQ II). The aforementioned findings show that monitoring is 
affected by the degree of superposition (RQ III). However, as material on 
acceleration belts of SBS usually demonstrates minimal overlap, this is 
not a limitation under normal operating conditions.

Since teach-ins are customized for a sorting problem (type of mate
rial classes, spectral processing, definition of background, thresholds, 
weighing, etc.) it might be necessary for the plant operator to find in
dividual correction formulas to make the data suitable for the respective 
use case. Ideally, details of the prevailing settings are known to deter
mine these correction formulas. However, some manufacturers persist in 
keeping the information secret and/or do not grant access to the un
processed data, which results in SBS operating as black boxes for SBMM. 
This lack of cooperation poses further challenges in practice: For 
example, if the teach-in is adjusted, the correction formula applied may 
no longer be appropriate, thus the monitoring results are impaired. To 
prevent a monopoly of data use by machine manufacturers, we therefore 
see the necessity of allowing open access to all relevant information.

The obtained results demonstrate significant potential of SBS data for 
various in-line analysis applications in sorting plants. First, the evalua
tion of up-stream sorting aggregates: This can include the detection of 
total failure, material abrasion, blockages, and other malfunctions. 
Second, if the acquired data is highly reliable: Automated or manual 
sensor-based process control. This can include changing the threshold of 
a SBS to avoid material losses or purity degradation, as well as 

Fig. 5. Influence of superposition factor on the share of material pixels detected as "Not Classified (NC)" presented with fitting curves of second order and 95 % 
confidence bands. (a) Chips (LDPE Red/White; VIS), (b) Flakes (PO/PET; NIR).
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throughput maximization by increasing the load on the machines until 
the product quality limit is reached. Further, an automatic selection of 
teach-ins to generate different products depending on ecological or 
economic parameters or fluctuating input compositions. Lastly, calcu
lation of composition of plant input by modelling the material compo
sition reaching one or multiple SBS. This broad range of promising use- 

cases for SBS data are paving the way for smarter and more efficient 
sorting plant operations.

To further validate and extend the applicability of our findings, 
future studies should investigate data from different SBS in industrial 
sorting plants, with a focus on testing the proposed application scenarios 
for different materials (different mixtures as well as different polymers). 

Fig. 6. Sensor-based monitoring of eject shares in input composition. (I) Sensor-based eject shares with and without the application of correction formula. Left: 
Original data, right: recalculated data with correction formula; top: Chips (LDPE Red/White; VIS), bottom: Flakes (PO/PET; NIR), (II) Absolute and relative deviation 
of corrected data from mass-based eject shares.
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In addition, trials with unshredded packaging material should be con
ducted to verify that the findings are also applicable on a larger scale.
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