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We establish discrete Korn type inequalities for particle systems within the general 
class of objective structures that represents a far reaching generalization of crystal 
lattice structures. For space filling configurations whose symmetry group is a general 
space group we obtain a full discrete Korn inequality. For systems with non-trivial 
codimension our results provide an intrinsic rigidity estimate within the extended 
dimensions of the structure. As their continuum counterparts in elasticity theory, 
such estimates are at the core of energy estimates and, hence, a stability analysis 
for a wide class of atomistic particle systems.
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r é s u m é

Nous établissons des inégalités discrètes de type Korn pour des systèmes de 
particules appartenant à la classe générale des structures objectives, qui constituent 
une généralisation étendue des structures cristallines. Pour des configurations 
remplissant l’espace dont le groupe de symétrie est un groupe d’espace général, nous 
obtenons une inégalité discrète de Korn complète. Pour des systèmes à codimension 
non triviale, nos résultats fournissent une estimation de rigidité intrinsèque dans 
les dimensions étendues de la structure. À l’instar de leurs équivalents continus en 
théorie de l’élasticité, ces estimations sont au cœur des estimations d’énergie et, par 
conséquent, de l’analyse de stabilité pour une large classe de systèmes de particules 
atomistiques.

© 2025 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The classical Korn inequality provides a quantitative rigidity estimate for H1 functions in terms of their 
symmetrized gradient: If Ω ⊂ Rd is bounded, connected and sufficiently regular (e.g., Lipschitz), then for 
all u ∈ H1(Ω,Rd)

min
{︁∥∇u−A∥L2(Ω)

⃓⃓
A ∈ Skew(d)

}︁ ≤ C∥(∇u)T + ∇u∥L2(Ω),

cf., e.g., [9]. This inequality is of paramount importance in linear elasticity theory since the elastic energy of 
an infinitesimal displacement u : Ω → Rd dominates the L2 norm of the symmetrized gradient 12 ((∇u)T +∇u)
but not the full gradient ∇u. As a consequence, the elastic energy controls the deviation of ∇u from a single 
skew symmetric matrix A and hence the deviation of u from an infinitesimal rigid motion of the form 
x ↦→ Ax + c. An immediate corollary is the corresponding qualitative rigidity result which states that 
(∇u)T + ∇u = 0 a.e. on Ω implies that u(x) = Ax + c for some A ∈ Skew(d), c ∈ Rd.

For our purposes it turns out to be useful to re-write Korn’s inequality in terms of projection-induced 
seminorms as follows. Denoting by πrot : Rd×d → Rd×d, πrotM = 1

2 (MT + M) the orthogonal projection of 
d× d matrices onto their symmetric part (whose kernel is the set of infinitesimal rotations Skew(d)) and by 
Πrot : L2(Ω,Rd×d) → L2(Ω,Rd×d), F ↦→ ΠrotF the orthogonal projection whose kernel is the set of constant 
linearized rotations {x ↦→ A | A ∈ Skew(d)}, Korn’s inequality reads

∥Πrot∇u∥L2(Ω) ≤ C∥πrot∇u∥L2(Ω).

In terms of Πiso : L2(Ω,Rd) → L2(Ω,Rd), u ↦→ Πisou, the orthogonal projection whose kernel is the set of 
linearized isometries {x ↦→ Ax + c | A ∈ Skew(d), c ∈ Rd}, it can also be rephrased as

∥∇Πisou∥L2(Ω) ≤ C∥πrot∇u∥L2(Ω)

(see (A.1) below). In particular, on H1
0 (Ω) or H1

per(Ω) (in case Ω is a cuboid) one even has

∥∇u∥L2(Ω) ≤ C∥πrot∇u∥L2(Ω).

The reverse estimates being trivial, an equivalent form is to say that the seminorms ∥∇Πiso · ∥L2(Ω) and 
∥πrot∇ · ∥L2(Ω), respectively, ∥∇ · ∥L2(Ω) and ∥πrot∇ · ∥L2(Ω) are equivalent.

In fact, numerous generalizations of Korn’s basic inequality have been established, in particular, over the 
last years, including settings in more general function spaces (Orlicz spaces, functions of bounded variation), 
estimates for incompatible fields (that cannot be written as a gradient), and nonlinear rigidity inequalities. 
For a comprehensive summary, we refer the reader to the recent paper [26] and the references cited therein.

In more direct connection with the subject of the present contribution are discretized versions of the 
continuum Korn inequality that, motivated by the analysis of numerical approximation schemes, have been 
obtained in various settings. By way of example we mention [6,29,12,8,27,3,28]. More recently, discrete 
versions of the Korn inequality have been developed that apply to systems of interacting particles and 
provide rigidity estimates for crystals in terms of their configurational energy. Such estimates are at the 
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basis of the stability analysis of lattice systems: If a configuration is a critical point of the configurational 
energy, i.e., the forces within the particle system are in balance, one is interested in criteria that guarantee 
that such a configuration is stable, see, e.g., [14,23,33,5]. It bears emphasis that, in comparison to pure 
continuum models, such atomistic systems are considerably more delicate as not only continuum (and 
hence long wave length) perturbations but also possible disorder at the atomistic scale has to be taken 
into account. From a technical point of view this amounts to additional degrees of freedom in possibly high 
dimensional discrete gradients (cp. [19,10,34,35]) that need to be controlled in terms of energy estimates so 
that eventually (a suitable version of) a Cauchy-Born rule can be established.

There are two principal features that are at the core of a discrete Korn inequality for a lattice system (cf. 
[23,5]): 1. Periodicity: The periodic arrangement of particles allows for the application of Fourier transform 
methods to establish ‘phonon stability’; and 2. Exhaustion of the full space: In bulk systems there are no 
soft modes due to buckling type deformations.

The central aim of the present contribution is to investigate the validity of Korn type inequalities beyond 
the periodic setting and, to some extend, also beyond the bulk regime. It lies at the heart our endeavor 
to examine the stability behavior of such generalized structures, cf. [37,36,38]. The main motivation for 
such an analysis are possible applications to objective structures. These particle systems, introduced by 
James in [24], constitute a far reaching generalization of lattice systems and have been successfully applied 
to a remarkable number of important structures, ranging from biology (to describe parts of viruses) to 
nanoscience (to model carbon nanotubes), see, e.g., [16,13,11,17]. They are characterized by the fact that, 
up to rigid motions of the surrounding space, any two points ``see'' an identical environment of other points. 
(In a lattice this would be true even up to translations.) As a consequence, objective structures correspond 
to orbits of a single point under the action of a general discrete group of Euclidean isometries, cf. [24,25]. As 
the symmetry of these objects in general is considerably more complex than that of a lattice, the adaption 
of methods and results on lattices has only been achieved in a few cases so far. As notable examples we 
mention an algorithm for solving the Kohn-Sham equations for clusters [1] and the X-ray analysis of helical 
structures set forth in [18].

Within an appropriate coordinate system for an objective structure, such a group might be assumed to 
embed into a subgroup of O(d1)⊕S for a crystallographic spacegroup S acting on Rd2 , where d1 + d2 = d, 
with surjective projection onto S. In particular, for bulk structures with d2 = d the particles invade the 
whole space Rd, whereas lower dimensional structures invade a tubular neighborhood of {0} ×Rd2 .

A major difficulty in obtaining Korn type inequalities then results from the general structure and the non
commutativity of these groups. Whereas in principle a Fourier transform is defined on their dual spaces, 
the consideration of periodic mappings with significant ``long wave-length'' contributions turns out non
trivial. Yet, uniform estimates on such quantities that are stable in the limit of infinitely large periodicity 
(corresponding to infinitely many particles, respectively, vanishing interparticle distances in a rescaled set
up) are essential for a discrete Korn inequality to hold. However, as objective structures need not be periodic, 
even the definition of quantities that can serve the role of a wave vector is not obvious.

In [37], by exploiting the special structure of discrete subgroups of the group of Euclidean isometries on Rd, 
we provided an efficient and extensive description of the dual space of a general discrete group of Euclidean 
isometries. In particular, we identified a finite union of convex ‘wave vector domains’ reflecting the existence 
of an underlying part of translational type of finite index. This structure is indeed tailor-made for our 
investigations on Korn inequalities. Due to the discrete nature of the underlying particle system, we consider 
finite difference stencils of (finite) interaction range and associate to them suitable seminorms measuring 
the (local) distances to the set of infinitesimal rigid motions and certain subsets thereof, respectively, in 
terms of ℓ2 norms of projections onto these sets. Our main results are then formulated in terms of such 
seminorms and state generic conditions for their equivalence, the main result being Theorem 3.32. At the 
core of our proof lies the technical Lemma 3.20 in which we utilize a classical minimax theorem of Turán on 
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generalized power sums in order to obtain control on a general skew symmetric matrix in terms of certain 
oscillatory perturbations.

In more detail, for a given interaction range R we consider the three seminorms ∥ · ∥R, ∥ · ∥R,0, ∥ · ∥R,0,0. 
For bulk systems there is a direct connection to the above mentioned continuum setting, for then ∥ · ∥R is 
a discrete version of the continuum seminorm ∥πrot∇ · ∥L2(Ω) discussed above, whereas in this special case 
∥ · ∥R,0 = ∥ · ∥R,0,0 is a discrete version of ∥∇ · ∥L2(Ω). For general structures the interpretation is more 
subtle as their continuum counterpart might correspond to a subspace {0} ×Rd2 which is of strictly lower 
dimension than the discrete system. We are thus led to estimate how close the local patches of the structure 
are to rigid motions in the larger space Rd. Here the variants ∥ · ∥R, ∥ · ∥R,0 and ∥ · ∥R,0,0 allow to trace the 
different d1- and d2-dimensional components of such rigid motions. More precisely, ∥ · ∥R measures the local 
distances from the set of all infinitesimal rigid motions, characterized by generic skew symmetric matrices

S =
(︃

S1 S2
−ST

2 S3

)︃
∈ Skew(d),

where S1 ∈ Skew(d1), S2 ∈ Rd1×d2 , S3 ∈ Skew(d2). ∥·∥R,0 measures the local distances to those rigid motions 
that fix {0}×Rd2 intrinsically, corresponding to S ∈ Skew(d) as above with S3 = 0, and ∥ · ∥R,0,0 measures 
the local distances to those rigid motions that fix {0} × Rd2 in Rd, corresponding to S ∈ Skew(d) with 
S2 = 0 and S3 = 0. In particular, ∥ · ∥R ≤ ∥ · ∥R,0 ≤ ∥ · ∥R,0,0.

In Theorems 3.13 and 4.3 we observe that each of these seminorms does -- up to equivalence -- not depend 
on the particular choice of R as long as R is rich enough. Our main Theorem 3.22 then states that indeed 
∥ · ∥R and ∥ · ∥R,0 are equivalent. In particular, for bulk structures with d1 = 0 we thereby obtain a full Korn 
inequality for objective structures generated by a general space group. For d1 ≥ 1 it can be interpreted 
as an ‘intrinsic rigidity’ estimate within the extended dimensions of the structure. We summarize these 
findings in Theorem 3.32. In Propositions 5.1 and 5.2 we will also see that in general ∥ · ∥R,0 and ∥ · ∥R,0,0
are not equivalent. In view of possible buckling modes, this is in fact not to be expected and indeed long 
wave-length modulations of the extended dimensions within the surrounding space impede a strong Korn 
type inequality.

In fact, in applications to the stability analysis of objective structures both seminorms ∥·∥R (equivalently, 
∥ ·∥R,0) and ∥ ·∥R,0,0 will be of relevance. There the question is addressed if an objective structure is a stable 
configuration when the particles at different sites are assumed to interact. Despite its importance, little 
appears to be known beyond bulk lattice systems. (See, e.g., [23,5] for lattice systems subject to very generic 
interaction potentials.) Indeed, stability estimates for homogeneous structures are not only of intrinsic value 
but may also serve as a fundamental step towards a quantitative description of the effect of a dislocation in 
such structures, cp. [15,30,31,4]. In [36] we provide a stability analysis in the general framework of objective 
structures and, in particular, establish characterizations of stability constants for objective structures in 
terms of the seminorms ∥ · ∥R and ∥ · ∥R,0,0. Here ∥ · ∥R,0,0 applies to bulk systems and might also be used 
in lower dimensional tensile regimes in which pre-stresses have a stabilizing effect. The weaker seminorm 
∥ · ∥R appropriately describes lower dimensional systems in their ground state even at the onset of (buckling 
type) instabilities. Based on these results, we will be able to provide a numerical algorithm for determining 
the stability of a given structure. By way of example we will also show that indeed novel stability results 
for nanotubes can be obtained.

Outline

In Section 2 we discuss the kinematics of objective structures. We begin by collecting some fundamental 
results on discrete subgroups of the Euclidean group in Subsection 2.1 including a characterization up to 
conjugacy and basic notions of Fourier analysis on periodic mappings for such structures. In the following 
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Subsection 2.2 we draw some conclusions on the geometry of objective structures which are orbits of a point 
under such discrete Euclidean groups.

Section 3 is the core section of our paper featuring our main Korn type Theorems 3.22 and 3.32. In 
Subsection 3.1 we first define seminorms ∥ · ∥R on deformations in terms of local finite differences with 
interaction range R. The following Subsection 3.2 serves to prove that these seminorms are essentially 
independent of the particular choice of R. In Subsection 3.3 we then define the above-mentioned seminorms 
∥ · ∥R,0. Having successfully established our main technical Lemma 3.20, we prove our main Theorem 3.22
stating that ∥ · ∥R and ∥ · ∥R,0 are equivalent. In the last Subsection 3.4 of the present section we explicitly 
describe the kernels of the previously defined seminorms.

In Section 4 we briefly discuss two naturally arising seminorms including the above-mentioned ∥ · ∥R,0,0
which turn out to be stronger than ∥ · ∥R and ∥ · ∥R,0.

The final Section 5 discusses two basic examples which allow for amenable descriptions of the above 
studied seminorms, both in real and in Fourier space. They also serve as an explicit example showing that 
∥ · ∥R,0,0 and ∥ · ∥R are not equivalent.

Notation

We denote by ei the ith standard coordinate vector in Rd and by Id ∈ Rd×d the identity matrix of size d
and by id the identity function Rd → Rd, x ↦→ x. If x ∈ Cm, y ∈ Cn we write x⊗yT = xyT = (xiyj) ∈ Cm×n. 
Cm×n is equipped with the usual Frobenius inner product ⟨ · , · ⟩ and induced norm ∥ · ∥. For a group G
and A,A1,A2 ⊂ G, g ∈ G and n ∈ Z we denote by

A1A2 := {a1a2 | a1 ∈ A1, a2 ∈ A2} ⊂ G and gA := {ga | a ∈ A} ⊂ G,

the product of subsets, respectively, an element and a subset of a group, while we reserve

An := {an | a ∈ A} ⊂ G

for the set of n-th powers of elements of A. Finally, ⟨A⟩ is the subgroup generated by A.

Acknowledgments

This work was partially supported by project 285722765 of the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation).

2. Objective structures

Objective structures are orbits of a point under the action of a discrete subgroup of the Euclidean group. 
For an efficient description, in Subsection 2.1 we first describe the structure of these groups in some detail. 
We then present a number of basic results on the Fourier analysis of such groups. In Subsection 2.2 we 
introduce the atomic reference configurations and study their geometry in the ambient space.

2.1. Discrete subgroups of the Euclidean group

We collect some basic material on discrete subgroups of the Euclidean group acting on Rd from [37]. For 
proofs of the results in this subsection we refer to [37].

The Euclidean group E(d) in dimension d ∈ N is the set of all Euclidean distance preserving trans
formations of Rd into itself, their elements are called Euclidean isometries. It may be described as 
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E(d) = O(d) ⋉ Rd, the (outer semidirect) product of Rd and the orthogonal group O(d) in dimension 
d with group operation given by

(A1, b1)(A2, b2) = (A1A2, b1 + A1b2)

for (A1, b1), (A1, b2) ∈ E(d). We set

L : E(d) → O(d), (A, b) ↦→ A and

τ : E(d) → Rd, (A, b) ↦→ b

and for (A, b) ∈ E(d) we call L((A, b)) the linear component and τ((A, b)) the translation component of 
(A, b) so that

g = (Id, τ(g))(L(g), 0)

for each g ∈ E(d). An Euclidean isometry (A, b) is called a translation if A = Id. The set Trans(d) :=
{Id}⋉Rd of translations forms an abelian subgroup of E(d). E(d) acts on Rd via

(A, b) · x := Ax + b for all (A, b) ∈ E(d) and x ∈ Rd.

For a group G < E(d) the orbit of a point x ∈ Rd under the action of the group is

G · x := {g · x | g ∈ G}

and the stabilizer subgroup of G with respect to x ∈ Rd is

Gx := {g ∈ G | g · x = x}.

In the following we will consider discrete subgroups of the Euclidean group, which are those G < E(d) for 
which every orbit G · x, x ∈ Rd, is discrete.

Particular examples of discrete subgroups of E(d) are the so-called space groups. These are those discrete 
groups G < E(d) that contain d translations whose translation components form a basis of Rd. Their 
subgroup of translations is generated by d such linearly independent translations and forms a normal 
subgroup of G which is isomorphic to Zd.

In general, discrete subgroups of E(d) can be characterized as follows. (Also cp. [7, A.4 Theorem 2].) 
Recall that two subgroups G1,G2 < E(d) are conjugate in E(d) if there exists some g ∈ E(d) such that 
g−1G1g = G2. (This corresponds to a rigid coordinate transformation in Rd.)

Theorem 2.1. Let G < E(d) be discrete, d ∈ N. There exist d1, d2 ∈ N0 such that d = d1 + d2, a d2
dimensional space group S and a discrete group G′ < O(d1) ⊕ S such that G is conjugate under E(d) to G′

and π(G′) = S, where π is the natural epimorphism O(d1) ⊕ E(d2) → E(d2), A⊕ g ↦→ g.

Here ⊕ is the group homomorphism

⊕ : O(d1) × E(d2) → E(d1 + d2)

(A1, (A2, b2)) ↦→ A1 ⊕ (A2, b2) :=
(︃(︃

A1 0
0 A2

)︃
,

(︃
0
b2

)︃)︃

and O(d1) ⊕ S is understood to be O(d) if d1 = d and to be S if d1 = 0. The theorem allows us to assume 
that G from now on is of the form G′ with no loss of generality.
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Such a discrete group G < E(d) can be efficiently described in terms of the range S, the kernel F of 
π|G and a section T ⊂ G of the translation group TS of S, i.e., a set T ⊂ G such that the map T → TS, 
g ↦→ π(g) is bijective. We remark that the quantities d, d1, d2, F , S and TS are uniquely defined by G. 
However, in general there is no canonical choice for T , it might not a be group and the elements of T might 
not commute. Yet, a main result of [37] states that there is an m0 ∈ N such that TN = {tN | t ∈ T } is a 
normal subgroup of G if and only if N is a multiple of m0:

TN ◁ G ⇐⇒ N ∈ M0 := m0N.

For each N ∈ M0, TN is isomorphic to Zd2 and of finite index in G. In this sense, G is a finite extension of 
the lattice Tm0 ∼ = Zd2 .

This observation allows us to introduce a notion of periodicity for functions defined on G as those functions 
which are invariant under TN for some multiple N of m0. More precisely, for a set S and N ∈ M0 we say 
that a function u : G→ S is TN -periodic if

u(g) = u(gt) for all g ∈ G and t ∈ TN .

It is called periodic if there exists some N ∈ M0 such that u is TN -periodic. We also set

L∞
per(G,Cm×n) := {u : G→ Cm×n | u is periodic}.

(Recall that Cm×n is equipped with the usual Frobenius inner product and induced norm.) We notice that 
the above definition of periodicity is independent of the choice of T and that L∞

per(G,Cm×n) is a vector 
space. In fact, one has

L∞
per(G,Cm×n) =

{︂
G→ Cm×n, g ↦→ u(gTN ) ⃓⃓⃓ N ∈ M0, u : G/TN → Cm×n

}︂
.

For each N ∈ M0 we now fix a representation set CN of G/TN and we equip L∞
per(G,Cm×n) with the inner 

product ⟨ · , · ⟩ given by

⟨u, v⟩ := 1 
|CN |

∑︂
g∈CN

⟨u(g), v(g)⟩ if u and v are TN -periodic

for all u, v ∈ L∞
per(G,Cm×n). The induced norm is denoted by ∥ · ∥2.

We denote by ˆ︃Tm0 the dual space of the abelian group Tm0 , which consists of all homomorphisms from 
Tm0 to the complex unit circle. Observe that a homomorphism χ ∈ ˆ︃Tm0 is TN -periodic, N ∈ M0, if and 
only if χ|TN = 1. Let 𝔈 be the set {χ ∈ ˆ︃Tm0 | χ is periodic}.

Remark 2.2. Suppose Tm0 ∼ = Zd2 is generated by {t1, . . . , td2}. Then we have ˆ︃Tm0 = {χk | k ∈ [0, 1)d2}, 
where χk : Tm0 → C is given by

χk(tn1
1 · · · tnd2

d2
) = e2πi⟨n,k⟩

for all n ∈ Zd2 . (Here kj is determined by the condition χ(tj) = e2πikj , j = 1, . . . , d2.) Such χk is periodic 
if and only if k ∈ Qd2 , whence 𝔈 = {χk | k ∈ [0, 1)d2 ∩Qd2}.

Note that Tm0 ∩CN is a representation set of Tm0/TN for all N ∈ M0. We define the Fourier transform 
as follows.
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Definition 2.3. If u ∈ L∞
per(Tm0 ,Cm×n) and χ ∈ 𝔈, we set

u
⋀︁
(χ) := 1 

|Tm0 ∩ CN |
∑︂

g∈Tm0∩CN
χ(g)u(g) ∈ Cm×n,

where N ∈ M0 is such that u and χ are TN -periodic.

Proposition 2.4 (The Plancherel formula). The Fourier transformation

·⋀︁: L∞
per(Tm0 ,Cm×n) →

⨁︂
χ∈𝔈

Cm×n, u ↦→ (u
⋀︁
(χ))χ∈𝔈

is well-defined and bijective. Moreover, the Plancherel formula

⟨u, v⟩ =
∑︂
χ∈𝔈

⟨u⋀︁(χ), v
⋀︁
(χ)⟩ for all u, v ∈ L∞

per(Tm0 ,Cm×n)

holds true.

We remark that for all u : Tm0 → Cm×n and N ∈ M0 such that u is TN -periodic, one gets

{χ ∈ 𝔈 | u⋀︁(χ) ̸= 0} ⊂ {χ ∈ 𝔈 | χ is TN -periodic}.

The following lemma provides the Fourier transform of a translated function.

Lemma 2.5. Let f ∈ L∞
per(Tm0 ,Cm×n), g ∈ G and τgf denote the translated function f( · g). Then we have 

τgf ∈ L∞
per(Tm0 ,Cm×n) and

τgf
⋀︁

(χ) = χ(g−1)f
⋀︁

(χ)

for all χ ∈ 𝔈.

2.2. Orbits of discrete subgroups of the Euclidean group

As a far reaching generalization of a lattice, James [24] defines an objective (atomic) structure as a discrete 
point set S in Rd such that for any x1, x2 ∈ S there is an Euclidean isometry g ∈ E(d) with g · S = S and 
g · x1 = x2. Equivalently, S is an orbit of a point under the action of a discrete subgroup of E(d), see, e.g., 
[25, Proposition 3.14]:

Definition 2.6. A subset S of Rd is called an objective structure if there exist a discrete group G < E(d) and 
a point x ∈ Rd such that S = G · x.

For a wealth of examples, we refer to the original contribution [24]. Here we limit ourselves to two simple 
concrete examples that will serve to illustrate the results to be discussed below.

Example 2.7. Elementary illustrative examples are given by atomic chains such as

(i) G1 = ⟨t1⟩ < E(2), where t1 = (I2, e2) ∈ E(2), and with x1,0 = 0 ∈ R2,
(ii) G2 = ⟨t2⟩ < E(2), where t2 =

(︁(︁−1 0
0 1

)︁
, e2

)︁ ∈ E(2), and with x2,0 = e1 ∈ R2,



B. Schmidt, M. Steinbach / J. Math. Pures Appl. 204 (2025) 103779 9

x1

x2

Fig. 1. G1 · x1,0 (left) and G2 · x2,0 (right). 

cf. Fig. 1. Here we have d1 = d2 = 1 in both cases.

We proceed with a couple of lemmas implying that without loss of generality objective structures lie 
in {0d−daff} × Rdaff where daff is their a�ine dimension and, moreover, the associated discrete group of 
isometries acts trivially on Rd−daff × {0daff}.

Lemma 2.8. Let S ⊂ Rd be an objective structure. Then for every a ∈ E(d) the set {a · x | x ∈ S} is also an 
objective structure.

Proof. This follows directly from the observation that, if for a subgroup G < E(d) and x0 ∈ Rd the map 
G→ S, g ↦→ g · x0 is surjective, then, for every a ∈ E(d) the map aGa−1 → {a · x | x ∈ S}, g ↦→ g · (a · x0) is 
surjective. □

We denote the a�ine hull of a set A ⊂ Rd by aff(A) and write dim(A) := dim(aff(A)) for its a�ine 
dimension. Recall that this is the dimension of the vector space span({x− x0 | x ∈ A}) for any x0 ∈ A.

Lemma 2.9. Let G < E(d) be discrete and x0 ∈ Rd. Let daff = dim(G · x0). Then there exists some a ∈ E(d)
such that for the discrete group G′ = aGa−1 and x′

0 = a · x0 it holds

aff(G′ · x′
0) = {0d−daff} ×Rdaff

and G′ · x′
0 = a · (G · x0).

Proof. There exists some daff-dimensional vector space V such that aff(G ·x0) = x0 +V . Choosing A ∈ O(d)
such that {Ax | x ∈ V } = {0d−daff} ×Rdaff and setting a = (A,−Ax0) ∈ E(d) implies the assertion. □

Note that in Example 2.7 G1 · x1,0 has daff = 1 and G2 · x2,0 has daff = 2.

Lemma 2.10. Let G < E(d) be discrete and x0 ∈ Rd such that aff(G · x0) = {0d−daff} × Rdaff , where 
daff = dim(G · x0). Then we have G < O(d− daff) ⊕ E(daff).

Proof. Set V = {0d−daff}×Rdaff = aff(G · x0). For given g ∈ G we define the map φ : Rd → Rd, x ↦→ L(g)x. 
First we show that V is invariant under φ. Let x ∈ V . Since V = aff(G · x0) − x0, there exist some n ∈ N, 
x1, . . . , xn ∈ G · x0 and α1, . . . , αn ∈ R such that x =

∑︁n
i=1 αixi and 

∑︁n
i=1 αi = 0. It holds

L(g)x =
n ∑︂

i=1 
αiL(g)xi =

n ∑︂
i=1 

αi(g · xi) ∈ V.

Thus we have {L(g)x̃ | ̃x ∈ V } ⊂ V . Since L(g) is invertible, it holds {L(g)x̃ | ̃x ∈ V } = V .
Since L(g) is orthogonal, also the complement V ⊥ = Rd−daff × {0daff} is invariant under φ. This implies 

L(g) ∈ O(d− daff) ⊕ O(daff). It holds τ(g) = g · x0 − L(g)x0 ∈ V and thus, g ∈ O(d− daff) ⊕ E(daff). □
Lemma 2.11. Let G < E(d) be discrete and x0 ∈ Rd such that aff(G · x0) = {0d−daff} × Rdaff , where 
daff = dim(G · x0). Let G′ = {Id−daff ⊕ g | g ∈ E(daff),∃A ∈ O(d− daff) : A⊕ g ∈ G} and
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φ : G→ G′

A⊕ g ↦→ Id−daff ⊕ g if A ∈ O(d− daff), g ∈ E(daff) and A⊕ g ∈ G.

Then G′ is a discrete subgroup of E(d), φ is an epimorphism and G · x0 = G′ · x0.

Proof. By Lemma 2.10 we have G < O(d−daff)⊕E(daff). It is clear that φ is an epimorphism. If x = x1+x2

with x1 ∈ Rd−daff × {0daff} and x2 ∈ {0d−daff} ×Rdaff , then it holds φ(g) · x = x1 + g · x2 for all g ∈ G and 
thus G′ ·x = x1 +G ·x2. This shows that G′ is discrete and, for x = x0 in particular, that G′ ·x0 = G ·x0. □

Remark 2.12. 

(i) Let G < E(d) be discrete, x0 ∈ Rd and A = aff(G · x0). For all g ∈ G it holds {g · x | x ∈ A} = A.
(ii) Let G < E(d) be discrete and x0 ∈ Rd. Let V be the vector space such that aff(G · x0) = x0 + V . Then 

for all g ∈ G it holds {L(g)x | x ∈ V } = V .

We close this section with some general remarks on the representation of objective structures.

Remark 2.13. 

(i) The representation of an objective structure by a discrete subgroup of E(d) and a point in Rd is not 
unique. Indeed, let S = {±e1,±e2} ⊂ R2. Denote by R be the rotation matrix by the angle π/2 and 
by P the reflection with Pe1 = e2 and Pe2 = e1. The cyclic group G1 =

⟨︁
(R, 0)

⟩︁
< E(2) and the Klein 

four-group G2 =
⟨︁
(P, 0), (−P, 0)

⟩︁
< E(2) are not isomorphic. Yet, S = G1 ·e1 = G2 ·e1. And both maps 

G1 → S, g ↦→ g · x and G2 → S, g ↦→ g · x are even bijective.
(ii) Generically, an objective structure S can be faithfully represented as the orbit of a point x ∈ Rd under 

the action of a discrete subgroup of G of E(d), i.e., such that G → S, g ↦→ g · x is bijective, see the 
following point. However, there are counterexamples:
Let be given a regular icosahedron centered at the origin. Let S be the set of the 30 centers of the 
edges of the icosahedron (i.e. S is the set of the vertices of the rectified icosahedron and moreover, S
is the set of the vertices of an icosidodecahedron). The rotation group I < SO(3) of the icosahedron 
has order 60, see, e.g., [20, Section 2.4] and we have S = (I × {03}) · x0 for every point x0 ∈ S. Now 
we suppose that there exist a discrete group G < E(3) and a point x ∈ R3 such that the map G→ S, 
g ↦→ g · x is injective. Then we have |G| = |S| = 30. Moreover, the group G is isomorphic to a finite 
subgroup of O(3), see, e.g., [32, Section 4.12]. The finite subgroups of O(3) are classified, see, e.g., [20, 
Theorem 2.5.2], and since every discrete subgroup of O(3) of order 30 contains an element of order 15, 
the group G contains an element g of order 15. Since the order of g is odd, we have L(g) ∈ SO(3), i.e.
g is a rotation. Thus, the set S contains 15 points which lie in the same plane. This implies that S
cannot be the orbit of G, and we have a contradiction.

(iii) For each discrete group G < E(d), a.e. x ∈ Rd is such that the map G → Rd, g ↦→ g · x is injective. 
Indeed, if g, h ∈ G, g ̸= h, then the a�ine space {x ∈ Rd | g ·x = h ·x} has codimension at least 1. Since 
G is at most countable, the claim follows.

(iv) For each discrete group G < E(d) and all x ∈ Rd the stabilizer group Gx = {g ∈ G | g · x = x} is finite. 
To see this, one may use the previous point to choose x′ ∈ Rd with ∥x − x′∥ < 1 such that G → Rd, 
g ↦→ g · x′ is injective. Then the discrete set Gx · x′ lies in the ball of radius 1 centered at x so that 
Gx · x′ and hence Gx is finite.
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3. A discrete Korn type inequality

This is the core section of our contribution. In particular, for a given interaction range R we introduce 
the two seminorms ∥ · ∥R and ∥ · ∥R,0. They measure the distance of a deformation of an objective structure 
to the set of (infinitesimally) rigid motions locally and, respectively, (intrinsically) globally. Our main result 
will be that -- under suitable conditions -- ∥ · ∥R and ∥ · ∥R,0 are equivalent.

We begin by introducing the seminorms ∥ · ∥R in Subsection 3.1 and show in Subsection 3.2 that they 
are essentially independent of the particular choice of R. In Subsection 3.3 we first define the seminorms 
∥ · ∥R,0. We then provide the main preparatory technical step by proving the analytical Lemma 3.20 and 
finally establish our main Theorem 3.22. We close this section by explicitly computing the kernel of the 
relevant seminorms in Subsection 3.4.

More precisely, given a finite interaction range R, one considers finite patches of a configuration by 
restricting to suitable neighborhoods of particles and averages the deviations from the set of rigid body 
motions (or a subclass thereof) over all such patches. The first seminorm ∥ · ∥R is local in the sense that 
the full set of rigid motions is considered and so different finite patches can be close to completely different 
rigid motions, see Definition 3.1. The second seminorm ∥ · ∥R,0 is ‘intrinsically global’ as the set of rigid 
motions is restricted to those that vanish when both preimage and target space are projected to the subspace 
that is invaded by the objective structure, see Definition 3.16 for a precise statement. (For bulk structures 
defined in terms of a space group this is the whole space and the kernel of the resulting seminorm consists 
of translations only.)

Our main result is Theorem 3.22 (see also Theorem 3.32) which states that these two seminorms are 
equivalent as long as the interaction range is sufficiently rich. We thus establish a Korn-type estimate 
for objective structures. For bulk structures we indeed obtain a full discrete Korn inequality. For lower 
dimensional structures this is in fact not to be expected as the structure might show buckling exploring the 
ambient space. Still, Theorem 3.22 shows that intrinsically also such structures are rigid.

3.1. Deformations and local rigidity seminorms

Let G < E(d) be a discrete group of Euclidean isometries and x0 ∈ Rd. The set G · x0 is an objective 
structure and Gx0 is the stabilizer subgroup. Recalling the discussion directly after Theorem 2.1, without 
loss of generality we assume in the following that G < O(d1) ⊕ S, d = d1 + d2, that T ⊂ G and CN (for 
N ∈ M0) have been chosen and that G · x0 ⊂ {0d−daff} × Rdaff and G acts trivially on Rd−daff × {0daff}, 
daff = dim(G · x0).

We consider deformation mappings y : G · x0 → Rd. One can describe such a mapping by the induced 
‘deformation’ v : G/Gx0 → Rd on left cosets which is given by v(g) = y(g ·x0). In order to describe the action 
of a deformation at g · x0 in relation to its position within the whole structure G · x0 in its environment 
(cf. (4) below), it turns out useful, see, e.g., Remark 3.2(iii), to define an associated ‘group displacement 
mapping’ u : G→ Rd such that

v(g) = 1 
|Gx0 |

∑︂
g′∈g

g′ · (x0 + u(g′)) for all g ∈ G/Gx0 ,

e.g. by choosing u(g′) = L(g′)T (v(g′Gx0) − g′ · x0). More generally, for any mapping u : R → Rd on R =
RGx0 ⊂ G we define the averaged mapping ū : R→ Rd by

ū(g′) = 1 
|Gx0 |

∑︂
h∈Gx0

L(h)u(g′h) for all g′ ∈ R. (1)
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So L(g′)ū(g′) = v(g′Gx0) − g′ · x0 only depends on g = g′Gx0 ∈ R/Gx0 and we may write this expression as 
L(g)ū(g) with no ambiguity. In particular, v is the translation v(g) = g · x0 + a for all g ∈ G/Gx0 and an 
a ∈ Rd if and only if L(g)ū(g) = a for all g ∈ G and v is the rotation v(g) = R(g · x0) for all g ∈ G/Gx0 and 
an R ∈ SO(d) if and only if L(g)ū(g) = (R − Id)(g · x0) for all g ∈ G. In case Gx0 = {id} we simply have 
ū = u.

As G · x0 is typically infinite and we want to allow for deformations of long wave-length, we consider 
deformations v corresponding to a periodic displacement u. A crucial point in the following is then to provide 
estimates that do not depend on the characteristics of the periodicity.

Let R be a finite subset of G such that RGx0 = R. Suppose u : G→ Rd is TN -periodic for some N ∈ M0. 
A natural quantity to measure the size of the associated deformation v locally ‘modulo isometries’ is

(︃
1 

|CN |
∑︂
g∈CN

dist2
(︂
(v(h))h∈gR/Gx0

,
{︂

(a · (h · x0))h∈gR/Gx0

⃓⃓⃓
a ∈ E(d)

}︂)︂)︃ 1
2

, (2)

where dist is the induced metric of the Euclidean norm on (Rd)gR/Gx0 . With the aim to consider small 
displacements u ≈ 0, for every g ∈ CN we linearize by observing that, for U ⊂ E(d) a sufficiently small open 
neighborhood of id, the set

{︂
(a · (h · x0))h∈gR/Gx0

⃓⃓⃓
a ∈ U

}︂
is a manifold whose tangent space at the point (h · x0)h∈gR/Gx0

is

Viso(gR) =
{︂(︁

b + S(h · x0)
)︁
h∈gR/Gx0

⃓⃓⃓
b ∈ Rd, S ∈ Skew(d)

}︂
.

(This follows from the fact that the tangent space of E(d) at id is given by Skew(d)×Rd.) A Taylor expansion 
shows that, in terms of ū as defined in (1),

dist
(︂
(v(h))h∈gR/Gx0

,
{︂

(a · (h · x0))h∈gR/Gx0

⃓⃓⃓
a ∈ E(d)

}︂)︂
≈ dist

(︂
(L(h)ū(h))h∈gR/Gx0

, Viso(gR)
)︂

= dist
(︂
(L(h)ū(gh))h∈R/Gx0

, Viso(R)
)︂
, (3)

where in the second step we have used that b + S(h · x0) = L(g)(b̃ + S̃(h̃ · x0)) for b̃ = L(g)T (b + Sτ(g)), 
S̃ = L(g)TSL(g) and h̃ = g−1h. Similar to Viso(R) we define

Uiso(R) =
{︂
u : R→ Rd

⃓⃓⃓
∃ b ∈ Rd ∃ S ∈ Skew(d) ∀g ∈ R : L(g)ū(g) = b + S(g · x0)

}︂
and with (3) it follows that

dist
(︂
(v(h))h∈gR/Gx0

,
{︂

(a · (h · x0))h∈gR/Gx0

⃓⃓⃓
a ∈ E(d)

}︂)︂

≈ min
{︃ ∑︂

h∈R/Gx0

∥L(h)ū(gh) − (b + S(h · x0))∥2
⃓⃓⃓
⃓ b ∈ Rd, S ∈ Skew(d)

}︃ 1
2

= 1 √︁|Gx0 |
min

{︃∑︂
h′∈R

∥L(h′)u(gh′) − L(h′)uiso(h′)∥2
⃓⃓⃓
⃓uiso ∈ Uiso(R)

}︃ 1
2
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= 1 √︁|Gx0 |
dist(u(g · )|R, Uiso(R)). (4)

Here we have used that the optimal uiso satisfies

L(h′)u(gh′) − L(h′)uiso(h′) = L(h′′)u(gh′′) − L(h′′)uiso(h′′)

for each h ∈ R/Gx0 and h′, h′′ ∈ h. By (4) and dividing (2) by |Gx0 |, we are led to introduce the seminorm 
∥ · ∥R by

∥u∥R =
(︃

1 
|CN |

∑︂
g∈CN

dist2
(︁
u(g · )|R, Uiso(R)

)︁)︃ 1
2

.

More precisely and in agreement with these definitions we have the following general definition. Recall the 
definition of L∞

per(G,Cm×n) from Section 2.1.

Definition 3.1. We define the vector spaces

Uper,C := L∞
per(G,Cd×1) = {u : G→ Cd | u is periodic}

and

Uper := {u : G→ Rd | u is periodic} ⊂ Uper,C.

For all R ⊂ G such that RGx0 = R we define the vector spaces

Utrans(R) :=
{︂
u : R→ Rd

⃓⃓⃓
∃ a ∈ Rd ∀g ∈ R : L(g)ū(g) = a

}︂
,

Urot(R) :=
{︂
u : R→ Rd

⃓⃓⃓
∃ S ∈ Skew(d) ∀g ∈ R : L(g)ū(g) = S(g · x0 − x0)

}︂
with ū as defined in (1) and

Uiso(R) := Utrans(R) + Urot(R).

For all finite sets R ⊂ G such that RGx0 = R we define the norm

∥ · ∥ : {u : R→ Rd} → [0,∞), u ↦→
(︃∑︂

g∈R 
∥u(g)∥2

)︃ 1
2

and the seminorm

∥ · ∥R : Uper → [0,∞),

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUiso(R)(u(g · )|R)∥2
)︂ 1

2 if u is TN -periodic,

where πUiso(R) is the orthogonal projection on {u : R → Rd} with respect to the scalar product induced by 
the norm ∥ · ∥ with kernel Uiso(R).
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Remark 3.2. 

(i) The definition of ∥ · ∥R is independent of the choice of CN .
(ii) Instead of Urot(R) one could alternatively consider the vector space

{︂
u : R→ Rd

⃓⃓⃓
∃ S ∈ Skew(d) ∀g ∈ R : L(g)ū(g)

}︂
= S(g · x0),

whose sum with Utrans(R) is also Uiso(R). We prefer Urot(R) in view of Definition 3.5.
(iii) The seminorm ∥ · ∥R is left-translation invariant. Thus it can also be represented by means of a convo

lution operator, see, e.g., [36, Lemma 5.4].

It is worth noticing that, in view of the discrete nature of the underlying objective structure, the seminorm 
∥·∥R is equivalent to a seminorm acting on a ‘discrete derivative’ in form of a suitable finite difference stencil 
of u.

Definition 3.3. For all u ∈ Uper and finite sets R ⊂ G such that RGx0 = R we define the discrete derivative

∇Ru : G→ {v : R→ Rd}
g ↦→ (∇Ru(g) : R→ Rd, h ↦→ ū(gh) − L(h)T ū(g)).

Remark 3.4. Let R ⊂ G be finite such that RGx0 = R and assume that u ∈ Uper is induced by an associated 
deformation mapping such that v : G/Gx0 → Rd, g ↦→ g ·x0 +L(g)ū(g). Then ∇Ru encodes finite differences 
of v via the relation

v(ghGx0) − v(gGx0) = (gh) · x0 − g · x0 + L(gh)((∇Ru(g))(h))

for all g ∈ G and h ∈ R.

If u ∈ Uper is TN -periodic for some N ∈ M0 and R ⊂ G is finite, then also the discrete derivative ∇Ru is 
TN -periodic.

Definition 3.5. For each finite set R ⊂ G we define the seminorm

∥ · ∥R,∇ : Uper → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUrot(R)(∇Ru(g))∥2
)︂ 1

2 if u is TN -periodic,

where πUrot(R) is the orthogonal projection on {u : R → Rd} with respect to the norm ∥ · ∥ with kernel 
Urot(R).

Remark 3.6. 

(i) We have ∥ · ∥R,∇ = ∥ · ∥R\Gx0 ,∇ for all finite sets R ⊂ G such that RGx0 = R.
(ii) Let ti = (Id, ei) for i = 1, . . . , d. If G = ⟨t1, . . . , td⟩ and R = {t1, . . . , td}, then ∥πUrot(R)(∇Ru(g))∥ =

∥(∇Ru(g) + (∇Ru(g))T )/2∥ for all u ∈ Uper and g ∈ G.

Proposition 3.7. Let R ⊂ G be finite such that RGx0 = R and Gx0 ⊂ R. Then the seminorms ∥ · ∥R and 
∥ · ∥R,∇ are equivalent.
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Proof. Let R ⊂ G be finite such that RGx0 = R and Gx0 ⊂ R. Let u ∈ Uper and N ∈ M0 such that u is 
TN -periodic.

We have

∥u∥2
R,∇ = 1 

|CN |
∑︂
g∈CN

⃦⃦
πUrot(R)(∇Ru(g))

⃦⃦2

= 1 
|CN |

∑︂
g∈CN

⃦⃦
πUrot(R) ◦ π(u(g · )|R)

⃦⃦2
,

where the mapping π : {v : R → Rd} → {v : R → Rd}, v ↦→ ∇Rv(id) is a projection with kernel Utrans(R). 
Thus we have

∥u∥2
R,∇ = 1 

|CN |
∑︂
g∈CN

⃦⃦
u(g · )|R

⃦⃦2
1, (5)

where

∥ · ∥1 : {v : R→ Rd} → R, v ↦→ ⃦⃦
πUrot(R) ◦ π(v)

⃦⃦
is a seminorm with the kernel Urot(R) + Utrans(R) = Uiso(R). Moreover, we have

∥u∥2
R = 1 

|CN |
∑︂
g∈CN

⃦⃦
πUiso(R)(u(g · )|R)

⃦⃦2
. (6)

By (5), (6) and since the two seminorms ∥ · ∥1 and ∥πUiso(R)( · )∥ have the same kernel Uiso(R) and are thus 
equivalent, the seminorms ∥ · ∥R,∇ and ∥ · ∥R are equivalent. □
3.2. Equivalence of local rigidity seminorms

Our aim is to show that, up to equivalence, ∥ · ∥R does not depend on the particular choice of R as long 
as R is rich enough. We begin with some elementary preliminaries.

Definition 3.8. R ⊂ G is an admissible neighborhood range of id if R is finite, RGx0 = R and there exist two 
sets R′,R′′ ⊂ G with R′R′′ ⊂ R such that id ∈ R′ ∩ R′′, R′ generates G and

aff(R′′ · x0) = aff(G · x0).

Admissibility of a neighborhood range R of id can be interpreted as a second order property of the stencil 
R: it contains a product of two subsets which themselves are rich enough so that the orbit of the first one 
spans the same a�ine space as G · x0 and the second one generates G. This will be crucial in Lemma 3.12
below.

Example 3.9. For the atomic chains introduced in Example 2.7 in terms of the groups G1 = ⟨t1⟩ and 
G2 = ⟨t2⟩ admissible neighborhood ranges of id are given by, e.g., {id, t1, t21} ⊂ G1 and {id, t2, t22, t32} ⊂ G2, 
respectively.

Lemma 3.10. Suppose that R ⊂ G is finite and such that id ∈ R and aff(R · x0) = aff(G · x0). Then there 
exists some A ∈ Rdaff×|R| of rank daff such that in (Rd)R ∼ = Rd×|R|

(g · x0 − x0)g∈R =
(︃

0d−daff ,|R|
A

)︃
.
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Proof. Since G · x0 ⊂ {0d−daff} ×Rdaff , there exists some A ∈ Rdaff×|R| such that

(g · x0 − x0)g∈R =
(︃

0
A

)︃
.

It holds

dim(span({g · x0 − x0 | g ∈ R})) = dim(aff(R · x0)) = dim(aff(G · x0)) = daff

and thus, rank(A) = daff . □
Below we will estimate ∥·∥R by summing over local contributions. To this end, we introduce two auxiliary 

seminorms that will be needed only in Lemma 3.12 and the proof of Theorem 3.13.

Definition 3.11. For all finite sets R ⊂ G such that RGx0 = R we define the seminorm

pR : {u : R→ Rd} → [0,∞), u ↦→ ∥πUiso(R)(u)∥

on (Rd)R whose kernel is Uiso(R) (see Definition 3.1). Moreover, for all finite sets R1,R2 ⊂ G such that 
R2Gx0 = R2 we define the seminorm

qR1,R2
: {u : R1R2 → Rd} → [0,∞), u ↦→

(︃∑︂
g∈R1

p2
R2

(︁
u(g · )|R2

)︁)︃ 1
2

on (Rd)R1R2 .

We remark that qR1,R2
itself is defined by summing the local contributions p2

R2

(︁
u(g · )|R2

)︁
over g ∈ R1.

Lemma 3.12. Suppose that R1 ⊂ G is finite and R2 ⊂ G is an admissible neighborhood range of id. Then 
there exists a finite set R3 ⊂ G such that R1 ⊂ R3R2 and the seminorms pR3R2

and qR3,R2
are equivalent.

This lemma is crucial: Any admissible neighborhood range R2 can be modified to a set R3R2 which is 
rich enough to cover R1 and such that pR3R2

is still controlled by qR3,R2
and hence ultimately in terms of 

local contributions with respect to the original pR2
.

Proof. Since (Rd)R3R2 is finite dimensional, it suffices to show that there exists a finite set R3 ⊂ G with 
R1 ⊂ R3R2 and

ker(qR3,R2
) = Uiso(R3R2).

First we show that Uiso(R3R2) ⊂ ker(qR3,R2
) for all finite sets R3 ⊂ G with R1 ⊂ R3R2: Let u ∈ Uiso(R3R2). 

As there are a ∈ Rd and S ∈ Skew(d) such that for all h ∈ R2 and g ∈ R3

L(h)ū(gh) = L(g)Ta + L(g)TS((gh) · x0 − x0)

= L(g)Ta + L(g)TS(g · x0 − x0) + L(g)TSL(g)(h · x0 − x0),

we see that u(g · )|R2 ∈ Uiso(R2) for every g ∈ R3. Since pR2
vanishes on Uiso(R2), it follows

q2
R3,R2

(u) =
∑︂
g∈R3

p2
R2

(u(g · )|R2) = 0.
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Hence, we have Uiso(R3R2) ⊂ ker(qR3,R2
).

Now we show that there exists some finite set R3 ⊂ G such that ker(qR3,R2
) ⊂ Uiso(R3R2). By admissibility 

of R2 there exist finite sets R′2,R′′2 ⊂ G such that id ∈ R′2∩R′′2 , R′2 generates G, R′′2 is such that aff(R′′2 ·x0) =
aff(G · x0) and

R′2R′′2 ⊂ R2.

Without loss of generality we may assume that R′′2Gx0 = R′′2 . Since R′2 generates G, there exists some n0 ∈ N

such that

R1 ⊂ {id} ∪
n0⋃︂
k=1

{︂
g1 . . . gk

⃓⃓⃓
g1, . . . , gk ∈ R′2 ∪ (R′2)−1

}︂
.

Let

R3 = {id} ∪
n0⋃︂
k=1

{︂
g1 . . . gk

⃓⃓⃓
g1, . . . , gk ∈ R′2 ∪ (R′2)−1

}︂
.

Let u ∈ ker(qR3,R2
). By Definition 3.11 and Definition 3.1 for all g ∈ R3 there exist some a(g) ∈ Rd and 

S(g) ∈ Skew(d) such that

L(h)ū(gh) = a(g) + S(g)(h · x0 − x0) for all h ∈ R2. (7)

Since G · x0 ⊂ {0d−daff} ×Rdaff , we have h · x0 − x0 ∈ {0d−daff} ×Rdaff for all h ∈ R2. Hence, for all g ∈ R3
we may assume

S(g) =
(︃

0 S1(g)
−S1(g)T S2(g)

)︃

for some S1(g) ∈ R(d−daff)×daff and S2(g) ∈ Skew(daff). We prove inductively that for n = 0, 1, . . . , n0 for 
all g ∈ {id} ∪⋃︁n

k=1

{︂
g1 . . . gk

⃓⃓⃓
g1, . . . , gk ∈ R′2 ∪ (R′2)−1

}︂
it holds

L(g)a(g) = a(id) + S(id)(g · x0 − x0) and S(g) = L(g)TS(id)L(g). (8)

For n = 0 the induction hypothesis is true.
We assume the induction hypothesis holds for arbitrary but fixed 0 ≤ n < n0. Let g ∈ {id} ∪⋃︁n

k=1

{︂
g1 . . . gk

⃓⃓⃓
g1, . . . , gk ∈ R′2 ∪ (R′2)−1

}︂
and r ∈ R′2 ∪ (R′2)−1.

Case 1: r ∈ R′2.
Since g ∈ R3 and rR′′2 ⊂ R2, by (7) we have

L(rh)ū(grh) = a(g) + S(g)((rh) · x0 − x0) for all h ∈ R′′2 . (9)

Since gr ∈ R3 and R′′2 ⊂ R2, by (7) we have

L(h)ū(grh) = a(gr) + S(gr)(h · x0 − x0) for all h ∈ R′′2 . (10)

By (9) and (10) we have

L(r)a(gr) + L(r)S(gr)(h · x0 − x0) = a(g) + S(g)((rh) · x0 − x0) (11)
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for all h ∈ R′′2 . Since id ∈ R′′2 , by (11) we have

L(r)a(gr) = a(g) + S(g)(r · x0 − x0) (12)

and with the induction hypothesis follows

L(gr)a(gr) = a(id) + S(id)(g · x0 − x0) + S(id)L(g)(r · x0 − x0)

= a(id) + S(id)((gr) · x0 − x0).

By (11) and (12) we have

L(r)S(gr)(h · x0 − x0) = S(g)((rh) · x0 − r · x0)

= S(g)L(r)(h · x0 − x0) (13)

for all h ∈ R′′2 . By Lemma 3.10 there exists some A ∈ Rdaff×|R′′2 | of rank daff such that

(h · x0 − x0)h∈R′′2 =
(︃

0daff ,|R′′2 |
A

)︃
.

By (13) and the induction hypothesis we have

(S(gr) − L(gr)TS(id)L(gr))
(︃

0
A

)︃
= 0. (14)

By Lemma 2.10 there exist some Bgr ∈ O(d − daff) and Cgr ∈ O(daff) such that L(gr) = Bgr ⊕ Cgr. 
Equation (14) is equivalent to

(︃
(S1(gr) −BT

grS1(id)Cgr)A
(S2(gr) − CT

grS2(id)Cgr)A

)︃
= 0.

Since the rank of A is equal to the number of its rows, we have S1(gr) = BT
grS1(id)Cgr and S2(gr) =

CT
grS2(id)Cgr which is equivalent to S(gr) = L(gr)TS(id)L(gr).

Case 2: r−1 ∈ R′2.
Since g ∈ R3 and R′′2 ⊂ R2, by (7) we have

L(h)ū(gh) = a(g) + S(g)(h · x0 − x0) for all h ∈ R′′2 . (15)

Since gr ∈ R3 and r−1R′′2 ⊂ R2, by (7) we have

L(r−1h)ū(gh) = a(gr) + S(gr)((r−1h) · x0 − x0) for all h ∈ R′′2 . (16)

By (15) and (16) we have

a(gr) + S(gr)((r−1h) · x0 − x0) = L(r)Ta(g) + L(r)TS(g)(h · x0 − x0) (17)

for all h ∈ R′′2 . Since id ∈ R′′2 , by (17) we have

a(gr) + S(gr)(r−1 · x0 − x0) = L(r)Ta(g). (18)

By (17) and (18) we have
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S(gr)((r−1h) · x0 − x0) = S(gr)(r−1 · x0 − x0) + L(r)TS(g)(h · x0 − x0)

for all h ∈ R′′2 . This is equivalent to

S(gr)L(r)T (h · x0 − x0) = L(r)TS(g)(h · x0 − x0) (19)

for all h ∈ R′′2 . By Lemma 3.10 there exists some A ∈ Rdaff×|R′′2 | of rank daff such that

(h · x0 − x0)h∈R′′2 =
(︃

0daff ,|R′′2 |
A

)︃
.

By (19) and the induction hypothesis we have

(S(gr) − L(gr)TS(id)L(gr))L(r)T
(︃

0
A

)︃
= 0. (20)

By Lemma 2.10 there exist Br, Bgr ∈ O(d − daff) and Cr, Cgr ∈ O(daff) such that L(r) = Br ⊕ Cr and 
L(gr) = Bgr ⊕ Cgr. Equation (20) is equivalent to

(︃
(S1(gr) −BT

grS1(id)Cgr)CT
r A

(S2(gr) − CT
grS2(id)Cgr)CT

r A

)︃
= 0.

Since Cr is invertible and the rank of A is equal to the number of its rows, we have S1(gr) =
BT

grS1(id)Cgr and S2(gr) = CT
grS2(id)Cgr which is equivalent to S(gr) = L(gr)TS(id)L(gr). Since 

S(gr) = L(gr)TS(id)L(gr), we have by (18) and the induction hypothesis that

L(gr)a(gr) = L(g)a(g) − L(gr)S(gr)(r−1 · x0 − x0)

= a(id) + S(id)(g · x0 − x0) − S(id)L(gr)(r−1 · x0 − x0)

= a(id) + S(id)((gr) · x0 − x0).

By (7) and (8) we have that

L(g)u(g) = L(g)a(g) = a(id) + S(id)(g · x0 − x0) for all g ∈ R3R2

and thus, u ∈ Uiso(R3R2). □
Theorem 3.13. Suppose that R1,R2 ⊂ G are admissible neighborhood ranges of id. Then the two seminorms 
∥ · ∥R1

and ∥ · ∥R2
are equivalent.

Proof. It is sufficient to show that there exists a constant C > 0 such that ∥·∥R1
≤ C∥·∥R2

. Since R1 is finite, 
by Lemma 3.12 there exists a finite set R3 ⊂ G such that R1 ⊂ R3R2 and some C > 0 with pR3R2

≤ CqR3,R2
. 

Let u ∈ Uper. There exists some N ∈ M0 such that u is TN -periodic. We have

∥u∥2
R1

≤ ∥u∥2
R3R2

= 1 
|CN |

∑︂
g∈CN

p2
R3R2

(u(g · )|R3R2)

≤ C2

|CN |
∑︂
g∈CN

q2
R3,R2

(u(g · )|R3R2)
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= C2

|CN |
∑︂
g∈CN

∑︂
g̃∈R3

p2
R2

(︁
u(gg̃ · )|R2

)︁

= C2

|CN |
∑︂
g̃∈R3

∑︂
g∈CN g̃

p2
R2

(︁
u(g · )|R2

)︁
= C2|R3|∥u∥2

R2
,

where we used that CN g̃ is a representation set of G/TN for all g̃ ∈ R3 in the last step. Hence, we have 
∥ · ∥R1

≤ C|R3|
1
2 ∥ · ∥R2

. □
Remark 3.14. In Theorem 3.13 the premise that R1 and R2 are admissible neighborhood ranges of id cannot 
be weakened to the premise that for both i = 1 and i = 2 one has RiGx0 = Ri, aff(Ri · x0) = aff(G · x0) and 
Ri is a generating set of G, see Example 3.31.

3.3. Intrinsic seminorms and their equivalence to local seminorms

We now define the seminorm ∥ · ∥R,0 which measures the local distance of a deformation to the subset 
of those isometries that vanish if both the preimage and target space are projected to Rd2. Thus ∥u∥R,0
controls the size of the corresponding part of the discrete gradient of the displacement u globally.

Definition 3.15. For all R ⊂ G such that RGx0 = R we define the vector spaces

Urot,0(R) :=
{︃
u : R→ Rd

⃓⃓⃓
⃓ ∃ S ∈ Skew0,d2(d) ∀g ∈ R : L(g)ū(g) = S(g · x0 − x0)

}︃
⊂ Urot(R)

and

Uiso,0(R) := Utrans(R) + Urot,0(R) ⊂ Uiso(R),

where

Skew0,d2(d) :=
{︃(︃

S1 S2
−ST

2 0

)︃ ⃓⃓⃓
⃓S1 ∈ Skew(d1), S2 ∈ Rd1×d2

}︃
⊂ Skew(d).

Definition 3.16. For all finite sets R ⊂ G such that RGx0 = R we define the seminorms

∥ · ∥R,0 : Uper → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUiso,0(R)(u(g · )|R)∥2
)︂ 1

2 if u is TN -periodic,

and

∥ · ∥R,∇,0 : Uper → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUrot,0(R)(∇Ru(g))∥2
)︂ 1

2 if u is TN -periodic,

where πUiso,0(R) and πUrot,0(R) are the orthogonal projections on {u : R→ Rd} with respect to the norm ∥ · ∥
with kernels Uiso,0(R) and Urot,0(R), respectively.
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Remark 3.17. We have ∥ · ∥R,∇,0 = ∥ · ∥R\Gx0 ,∇,0 for all finite sets R ⊂ G.

Proposition 3.18. Let R ⊂ G be finite and id ∈ R. Then the seminorms ∥ · ∥R,0 and ∥ · ∥R,∇,0 are equivalent.

Proof. The proof is analogous to the proof of Proposition 3.7. □
As a final preparation we state the following elementary lemma, which is well-known, and include its 

short proof.

Lemma 3.19. There exists a constant c > 0 such that for every n ∈ N it holds

⃦⃦
x⊗ yT + A

⃦⃦ ≥ c(
⃦⃦
x⊗ yT

⃦⃦
+
⃦⃦
A
⃦⃦
) for all x, y ∈ Cn, A ∈ Skew(n,C).

Proof. Let x, y ∈ Cn and A ∈ Skew(n,C). Since Cn×n = Sym(n,C) ⊕ Skew(n,C) we have

⃦⃦
x⊗ yT + A

⃦⃦2 ≥
⃦⃦⃦1

2
(︁
x⊗ yT + y ⊗ xT

)︁⃦⃦⃦2

= 1
2
⃦⃦
x⊗ yT

⃦⃦2 + 1
2

⃓⃓⃓
⃓

n ∑︂
i=1 

xiyi

⃓⃓⃓
⃓2

≥ 1
2
⃦⃦
x⊗ yT

⃦⃦2
.

If ∥A∥ ≤ 2∥x⊗ yT ∥, then

⃦⃦
x⊗ yT + A

⃦⃦ ≥ 1 √
2
⃦⃦
x⊗ yT

⃦⃦ ≥ 1 

3
√

2
(︁⃦⃦

x⊗ yT
⃦⃦

+ ∥A∥)︁.
If ∥A∥ ≥ 2∥x⊗ yT ∥, then

⃦⃦
x⊗ yT + A

⃦⃦ ≥ ∥A∥ − ⃦⃦
x⊗ yT

⃦⃦ ≥ 1
3
(︁⃦⃦

x⊗ yT
⃦⃦

+ ∥A∥)︁. □
The following lemma provides a technical core estimate on which the proof of our main Theorem 3.22

hinges.

Lemma 3.20. Let n ∈ N, q ∈ N0 and β1, . . . , βq ∈ R. Then there exists an integer N ∈ N such that

max 
m∈{1,...,N}

⃦⃦⃦
⃦a⊗ (sin(mα1), . . . , sin(mαn)) +

q∑︂
k=1

sin(mβk)Bk + mS

⃦⃦⃦
⃦ ≥ ∥S∥

for all a ∈ Cn, α1, . . . , αn ∈ R, B1, . . . , Bq ∈ Cn×n and S ∈ Skew(n,C).

Remark 3.21. If q = 0, then the term 
∑︁q

k=1 sin(mβk)Bk is the empty sum.

Proof. It suffices to prove that there exists a constant c > 0 such that for all n ∈ N, q ∈ N0 and β1, . . . , βq ∈
R there exists an integer N ∈ N such that

max 
m∈{1,...,N}

⃦⃦⃦
⃦a⊗ (sin(mα1), . . . , sin(mαn)) +

q∑︂
k=1

sin(mβk)Bk + mS

⃦⃦⃦
⃦ ≥ c∥S∥
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for all a ∈ Cn, α1, . . . , αn ∈ R, B1, . . . , Bq ∈ Cn×n and S ∈ Skew(n,C). Indeed, applying this inequality 
with Ñ , (⌈ 1

c ⌉αi)1≤i≤n, (⌈ 1
c ⌉βk)1≤k≤q and ⌈1

c ⌉S and setting N = ⌈1
c ⌉Ñ we obtain the original claim from

max 
m∈{1,...,N}

⃦⃦⃦
⃦a⊗ (sin(mα1), . . . , sin(mαn)) +

q∑︂
k=1

sin(mβk)Bk + mS

⃦⃦⃦
⃦

≥ max 
m∈{︁

1,...,Ñ
}︁
⃦⃦⃦
a⊗ (sin(m(⌈1

c ⌉α1)), . . . , sin(m(⌈ 1
c ⌉αn)))

+
q∑︂

k=1

sin(m(⌈1
c ⌉βk))Bk + m(⌈1

c ⌉S)
⃦⃦⃦
.

Since

∥M∥ ≥ 1 
n2

∑︂
i,j∈{1,...,n}

i<j

⃦⃦⃦(︁mii mij

mji mjj

)︁⃦⃦⃦

for all M = (mij) ∈ Cn×n, it suffices to prove the assertion for n = 2. 
Let q ∈ N0 and β1, . . . , βq ∈ R. Without loss of generality we assume β1, . . . , βq ∈ R \ (πQ): Let n0 ∈ N be 
such that n0βk ∈ πZ for all k ∈ {1, . . . , q} with βk ∈ πQ. Then we have

max 
m∈{1,...,n0N}

⃦⃦⃦
⃦a⊗ (sin(mα1), sin(mα2)) +

q∑︂
k=1

sin(mβk)Bk + mS

⃦⃦⃦
⃦ ≥

max 
m∈{1,...,N}

⃦⃦⃦
⃦a⊗ (sin(m(n0α1)), sin(m(n0α2))) +

q∑︂
k=1

βk / ∈πQ

sin(m(n0βk))Bk + m(n0S)
⃦⃦⃦
⃦

for all N ∈ N, a ∈ C2, α1, α2 ∈ R, B1, . . . , Bq ∈ C2×2 and S ∈ Skew(2,C). 
For all a > 0 we define the function

| · |a : R → [0,∞), x ↦→ dist(x, aZ).

Moreover, without loss of generality we may assume |βk − βl|2π > 0 for all k ̸= l and since

sin(mβ) = − sin(m(2π − β))

also |βk + βl|2π ̸= 0 for all k ̸= l. For the definition of a suitable integer N ∈ N and the following proof we 
define some positive constants. By Lemma 3.19 there exists a constant cL > 0 such that

∥x⊗ yT + S∥ ≥ cL∥x∥(|y1| + |y2|) + cL∥S∥

for all x, y ∈ C2 and S ∈ Skew(2,C). In particular, this inequality implies the assertion for q = 0. Hence we 
may assume q ̸= 0, i.e. q ∈ N. Let

δ1 = min 
γ1,γ2∈{±β1,...,±βq}

γ1 ̸=γ2

|γ1 − γ2|2π, μ1 = 1 
2q

(︂ δ1
2π

)︂2q−1
,

C1 = 4(2q + 1)
μ1

, C2 = 6q 
μ1

and C3 = max
{︂4q + 2

μ1
,
32πC2

δ1

}︂
.
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By Kronecker’s approximation Theorem A.3, for all k ∈ {1, . . . , q} there exists an integer qk such that 
2C3 + 2 < qk and

⃓⃓⃓
qk · βk

π
+ 1

2

⃓⃓⃓
1
≤ 1 

3πC3
.

Let

N1 = max
{︃⌈︃

2C1

cL

⌉︃
, 2q, 1 +

⌈︃
16πC2

δ1

⌉︃
, q1, . . . , qq

}︃
∈ N.

For all α ∈ R we define (α)2π ∈ R by {(α)2π} = [−π, π) ∩ (α + 2πZ). We have |(α)2π| = |α|2π. By Taylor’s 
Theorem we have for all α, β ∈ R and n ∈ N

sin(nα) = sin(n(β + (α− β)2π)) = sin(nβ) + n(α− β)2π cos(nβ) + R(n, α, β)

where R(n, α, β) is the remainder term. Let δ2 > 0 be so small that

|R(n, α, β)| ≤ 1
2n|α− β|2π|cos(nβ)| (21)

for all n ∈ {1, . . . , N1}, α ∈ R with |α− β|2π < δ2 and β ∈ {0, π, β1, . . . , βq}. Let

δ3 = min{δ1, δ2}, μ2 = 1 
2q + 2

(︂ δ3
2π

)︂2q+1
and C4 = 2q + 3

μ2
.

Let

N = max
{︁
N1, 1 + ⌈C4⌉

}︁ ∈ N.

Now, let a = (a1, a2)T ∈ C2, α1, α2 ∈ R, Bk =
(︂

b
(k)
11 b

(k)
12

b
(k)
21 b

(k)
22

)︂
∈ C2×2 for all k ∈ {1, . . . , q} and S =

(︁ 0 −s
s 0

)︁ ∈
Skew(2,C). We denote

LHS = max 
m∈{1,...,N}

⃦⃦⃦
⃦a⊗ (sin(mα1), sin(mα2)) +

q∑︂
k=1

sin(mβk)Bk + mS

⃦⃦⃦
⃦.

Case 1: ∀ i ∈ {1, 2} : ((|αi|2π < δ2) ∨ (|αi − π|2π < δ2)).
Case 1.1: 

∑︁q
k=1∥Bk∥ ≥ C1(∥a∥(|α1|π + |α2|π) + ∥S∥).

Let i, j ∈ {1, 2} with 
∑︁q

k=1|b(k)
ij | ≥ 1

4
∑︁q

k=1∥Bk∥. By the definition of δ1 we have

min 
γ1,γ2∈{±β1,...,±βq}

γ1 ̸=γ2

|eiγ1 − eiγ2 | ≥ min 
γ1,γ2∈{±β1,...,±βq}

γ1 ̸=γ2

|γ1 − γ2|2π
π

≥ δ1
π
.

By Turán’s Minimax Theorem A.4 there exist an integer ν ∈ {1, . . . , 2q} such that

⃦⃦⃦
⃦

q∑︂
k=1

sin(νβk)Bk

⃦⃦⃦
⃦ ≥

⃓⃓⃓
⃓

q∑︂
k=1

b
(k)
ij sin(νβk)

⃓⃓⃓
⃓
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=
⃓⃓⃓
⃓

q∑︂
k=1

(︃ ib(k)
ij

2 
e−iνβk +

−ib(k)
ij

2 
eiνβk

)︃⃓⃓⃓
⃓

≥ μ1

q∑︂
k=1

⃓⃓
b
(k)
ij

⃓⃓

≥ μ1

4 

q∑︂
k=1

∥Bk∥.

We have

LHS ≥
⃦⃦⃦
⃦

q∑︂
k=1

sin(νβk)Bk

⃦⃦⃦
⃦− ∥a⊗ (sin(να1), sin(να2))∥ − ∥νS∥

≥ μ1

4 

q∑︂
k=1

∥Bk∥ − 2q∥a∥(|α1|π + |α2|π) − 2q∥S∥

≥ ∥S∥.

Case 1.2: 
∑︁q

k=1∥Bk∥ ≤ C1(∥a∥(|α1|π + |α2|π) + ∥S∥).
We have

LHS ≥ ∥a⊗ (sin(N1α1), sin(N1α2)) + N1S∥ −
⃦⃦⃦
⃦

q∑︂
k=1

sin(N1βk)Bk

⃦⃦⃦
⃦

≥ cL∥a∥(|sin(N1α1)| + |sin(N1α2)|) + cL∥N1S∥ −
q∑︂

k=1

∥Bk∥

(21)
≥ 

cLN1

2 
∥a∥(|α1|π + |α2|π) + cLN1∥S∥ −

q∑︂
k=1

∥Bk∥

≥ cLN1

2 

(︁∥a∥(|α1|π + |α2|π) + ∥S∥)︁ + cL
2 
∥S∥ −

q∑︂
k=1

∥Bk∥

≥ cL
2 
∥S∥.

Case 2: ∃ i ∈ {1, 2}, ∃ k ∈ {1, . . . , q} : ((|αi − βk|2π < δ2) ∨ (|αi + βk|2π < δ2)).
Without loss of generality let i = 1 and k = 1. Without loss of generality we may assume |α1−β1|2π < δ2

since

a⊗ (sin(mα1), sin(mα2)) = (−a) ⊗ (sin(m(−α1)), sin(m(−α2))) for all m ∈ N.

Let δk be equal to 1 if k = 0 and equal to 0 otherwise.
Case 2.1: 

∑︁q
k=1|a2δk−1+b

(k)
21 | ≥ C2|a2||α1−β1|2π and max{|a2||α1−β1|2π,

∑︁q
k=1|a2δk−1+b

(k)
21 |} ≥ C3|s|.

Since C2 ≥ 1 the condition is equivalent to

q∑︂
k=1

|a2δk−1 + b
(k)
21 | ≥ C2|a2||α1 − β1|2π and 

q∑︂
k=1

|a2δk−1 + b
(k)
21 | ≥ C3|s|.

By Turán’s minimax theorem (analogously to Case 1.1) there exists an integer ν ∈ {1, . . . , 2q} such that



B. Schmidt, M. Steinbach / J. Math. Pures Appl. 204 (2025) 103779 25

⃓⃓⃓
⃓

q∑︂
k=1

(︁
a2δk−1 + b

(k)
21

)︁
sin(νβk)

⃓⃓⃓
⃓

=
⃓⃓⃓
⃓

q∑︂
k=1

(︃
i(a2δk−1 + b

(k)
21 )

2 
e−iνβk + −i(a2δk−1 + b

(k)
21 )

2 
eiνβk

)︃⃓⃓⃓
⃓

≥ μ1

q∑︂
k=1

⃓⃓
a2δk−1 + b

(k)
21

⃓⃓
.

We have

LHS
(21)
≥ 

⃓⃓⃓
⃓

q∑︂
k=1

(︁
a2δk−1 + b

(k)
21

)︁
sin(νβk)

⃓⃓⃓
⃓− 3

2 |a2|ν|α1 − β1|2π|cos(νβ1)| − ν|s|

≥
(︂μ1

2 
+ μ1

2 

)︂ q∑︂
k=1

⃓⃓
a2δk−1 + b

(k)
21

⃓⃓− 3q|a2||α1 − β1|2π − 2q|s|

≥ |s|
= 1 √

2
∥S∥.

Case 2.2: 
∑︁q

k=1|a2δk−1 + b
(k)
21 | ≤ C2|a2||α1 − β1|2π and max{|a2||α1 − β1|2π,

∑︁q
k=1|a2δk−1 + b

(k)
21 |} ≥ C3|s|.

By Turán’s minimax theorem there exists an integer ν ∈ {N1 − 1, N1} such that

|cos(νβ1)| =
⃓⃓⃓
1
2eiνβ1 + 1

2e−iνβ1
⃓⃓⃓
≥ δ1

4π .

We have

LHS
(21)
≥ 

1
2 |a2||cos(νβ1)|ν|α1 − β1|2π −

⃓⃓⃓
⃓

q∑︂
k=1

(a2δk−1 + b
(k)
21 ) sin(νβk)

⃓⃓⃓
⃓− ν|s|

≥
(︃
δ1(N1 − 1)

16π + δ1ν 
16π

)︃
|a2||α1 − β1|2π −

q∑︂
k=1

⃓⃓
a2δk−1 + b

(k)
21

⃓⃓− ν|s|

≥ ν|s|
≥ 1 √

2
∥S∥.

Case 2.3: max{|a2||α1 − β1|2π,
∑︁q

k=1|a2δk−1 + b
(k)
21 |} ≤ C3|s|.

By Definition of q1 we have

|cos(q1β1)| = |sin(q1β1 + π
2 )| ≤ |q1β1 + π

2 |π = π| q1β1
π + 1

2 |1 ≤ 1 
3C3

.

So we have

LHS
(21)
≥ q1|s| − 3

2 |a2||cos(q1β1)|q1|α1 − β1|2π −
⃓⃓⃓
⃓

q∑︂
k=1

(︁
a2δk−1 + b

(k)
21

)︁
sin(q1βk)

⃓⃓⃓
⃓

≥
(︂
1 + q1

2 
+ C3

)︂
|s| − q1

2C3
|a2||α1 − β1|2π −

q∑︂
k=1

⃓⃓
a2δk−1 + b

(k)
21

⃓⃓

≥ 1 √
2
∥S∥.
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Case 3: ∃ i ∈ {1, 2} : (|αi − β|2π ≥ δ2 ∀ β ∈ {0, π,±β1, . . . ,±βq}).
Without loss of generality let i = 1.
Case 3.1: |a2| +

∑︁q
k=1|b(k)

21 | ≥ C4|s|.
By Definition of δ3 we have

min 
γ1,γ2∈{±α1,±β1,...,±βq}

γ1 ̸=γ2

⃓⃓
eiγ1 − eiγ2

⃓⃓ ≥ min 
γ1,γ2∈{±α1,±β1,...,±βq}

γ1 ̸=γ2

|γ1 − γ2|2π
π

≥ min{δ1, δ2}
π

= δ3
π
.

By Turán’s minimax theorem there exists an integer ν ∈ {1, . . . , 2q + 2} such that

⃓⃓⃓
⃓a2 sin(να1) +

q∑︂
k=1

b
(k)
21 sin(νβk)

⃓⃓⃓
⃓

=
⃓⃓⃓
⃓ ia2

2 
e−iνα1 + −ia2

2 
eiνα1 +

q∑︂
k=1

(︃
ib(k)

21
2 

e−iνβk + −ib(k)
21

2 
eiνβk

)︃⃓⃓⃓
⃓

≥ μ2

(︃
|a2| +

q∑︂
k=1

⃓⃓
b
(k)
21

⃓⃓)︃
.

We have

LHS ≥
⃓⃓⃓
⃓a2 sin(να1) +

q∑︂
k=1

b
(k)
21 sin(νβk)

⃓⃓⃓
⃓− ν|s|

≥ μ2

(︃
|a2| +

q∑︂
k=1

⃓⃓
b
(k)
21

⃓⃓)︃− (2q + 2)|s|

≥ |s|
= 1 √

2
∥S∥.

Case 3.2: |a2| +
∑︁q

k=1|b(k)
21 | ≤ C4|s|.

We have

LHS ≥ N |s| − |a2 sin(Nα1)| −
⃓⃓⃓
⃓

q∑︂
k=1

b
(k)
21 sin(Nβk)

⃓⃓⃓
⃓

≥ N |s| −
(︃
|a2| +

q∑︂
k=1

⃓⃓
b
(k)
21

⃓⃓)︃

≥ |s|
= 1 √

2
∥S∥.

Since Case 2 and Case 3 include the case that

∃ i ∈ {1, 2} : ((|αi|2π ≥ δ2) ∧ (|αi − π|2π ≥ δ2)),
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the assertion is proven. □
Theorem 3.22 (A discrete Korn inequality). Suppose that R ⊂ G is an admissible neighborhood range of id. 
Then the two seminorms ∥ · ∥R and ∥ · ∥R,0 are equivalent.

Proof. First we show the trivial inequality ∥ · ∥R ≤ ∥ · ∥R,0: 
Let u ∈ Uper. Let N ∈ M0 be such that u is TN -periodic. Since Uiso,0(R) ⊂ Uiso(R), we have

∥u∥2
R = 1 

|CN |
∑︂
g∈CN

∥πUiso(R)(u(g · )|R)∥2

≤ 1 
|CN |

∑︂
g∈CN

∥πUiso,0(R)(u(g · )|R)∥2

= ∥u∥2
R,0.

Now we show with the aid of the Plancherel formula that there exists a constant c > 0 such that ∥ · ∥R ≥
c∥ · ∥R,0: 
We choose m = m0 such that M0 = mN and the group Tm is isomorphic to Zd2 , see Section 2.1. In 
particular, there exist t1, . . . , td2 ∈ Tm such that {t1, . . . , td2} generates Tm. Since L(Tm) is a subgroup 
of {Id−daff} ⊕ O(daff − d2) ⊕ {Id2} and the elements t1, . . . , td2 commute, by Theorem A.1 we may without 
loss of generality (by a coordinate transformation) assume that for all i ∈ {1, . . . , d2} there exist an integer 
qi ∈ {0, . . . , ⌊(daff − d2)/2⌋}, a vector vi ∈ {±1}daff−d2−2qi and angles θi,1, . . . , θi,qi ∈ [0, 2π) such that

L(ti) = Id−daff ⊕ diag(vi) ⊕R(θi,qi) ⊕ · · · ⊕R(θi,1) ⊕ Id2 .

By Lemma 3.20 there exists an integer N0 ∈ N such that

max 
n∈{1,...,N0}

⃦⃦⃦
⃦a⊗ (sin(nα1), . . . , sin(nαd2)) −

d2∑︂
i=1 

qi∑︂
j=1 

sin(nθi,j)Bi,j − nS

⃦⃦⃦
⃦ ≥ ∥S∥ (22)

for all a ∈ Cd2 , α1, . . . , αd2 ∈ [0, 2π), B1,1, . . . , Bd2,qd2
∈ Cd2×d2 , and S ∈ Skew(d2,C). Let R0 = {tni | i ∈

{1, . . . , d2}, n ∈ {±1, . . . ,±N0}} ⊂ Tm. Since ∥ · ∥R∪R0Gx0 ,0 ≥ ∥ · ∥R,0 and by Theorem 3.13, we may without 
loss of generality assume that R0Gx0 ⊂ R. For all finite sets R′ ⊂ G we define the map

gR′ : Skew(d,C) → Cd×|R′|

S ↦→ (L(h)TS(h · x0 − x0))h∈R′ .

Recall the definition of the dual space ˆ︃Tm from Section 2.1. Now we show that there exists a constant 
c0 > 0 such that

⃦⃦(︁
χ(h)−1v − L(h)T v

)︁
h∈R0

− gR0(S)
⃦⃦ ≥ c0∥S3∥ (23)

for all χ ∈ ˆ︃Tm, v ∈ Cd and S =
(︂

S1 −ST
2

S2 S3

)︂
∈ Skew(d1 + d2,C).

Writing v =
(︂
v1
v2

)︂
∈ Cd1+d2 we have

LHS :=
⃦⃦⃦(︂

χ(h)−1v − L(h)T v
)︂
h∈R0

− gR0(S)
⃦⃦⃦
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≥
⃦⃦⃦(︂

χ(h−1)v2 − v2 − (S2, S3)(h · x0 − x0)
)︂
h∈R0

⃦⃦⃦

≥ 1 √
2

(︃⃦⃦⃦(︂
χ(t−n

i )v2 − v2 − (S2, S3)(tni · x0 − x0)
)︂
i∈{1,...,d2}

⃦⃦⃦

+
⃦⃦⃦(︂

χ(tni )v2 − v2 − (S2, S3)(t−n
i · x0 − x0)

)︂
i∈{1,...,d2}

⃦⃦⃦)︃

≥ 1 √
2

⃦⃦⃦(︂
(χ(tni ) − χ(t−n

i ))v2 + (S2, S3)(tni · x0 − t−n
i · x0)

)︂
i∈{1,...,d2}

⃦⃦⃦
(24)

for all n ∈ {1, . . . , N0}. For all j ∈ {1, . . . , d2} we define αj ∈ [0, 2π) by eiαj = χ(tj). Let x0,1 ∈ Rd1

and x0,2 ∈ Rd2 be such that x0 =
(︂
x0,1
x0,2

)︂
. For all j ∈ {1, . . . ,max{q1, . . . , qd2}} we define nj = d1 − 2j, 

mj = 2j − 2 and

bj = S2(0nj ,nj
⊕ ( 0 −2

2 0 ) ⊕ 0mj ,mj
)x0,1 ∈ Cd2 .

Let τ2 : Tm → Rd2 be uniquely defined by the condition τ(t) =
(︂ 0d1
τ2(t)

)︂
for all t ∈ Tm. Then for all 

i ∈ {1, . . . , d2} and n ∈ {1, . . . , N0} we have

(S2, S3)(tni · x0 − t−n
i · x0)

= S2
(︁
0d1−2qi,d1−2qi ⊕ (R(nθi,qi) −R(−nθi,qi)) ⊕ · · · ⊕ (R(nθi,1) −R(−nθi,1))

)︁
x0,1

+ 2nS3τ2(ti)

=
qi∑︂

j=1 
sin(nθi,j)S2

(︁
0nj ,nj

⊕ ( 0 −2
2 0 ) ⊕ 0mj ,mj

)︁
x0,1 + 2nS3τ2(ti)

=
qi∑︂

j=1 
sin(nθi,j)bj + 2nS3τ2(ti).

For all i ∈ {1, . . . , d2} and j ∈ {1, . . . , qi} we define Bi,j = −bj ⊗ eTi ∈ Cd2×d2 . Let T =
2
(︁
τ2(t1), . . . , τ2(td2)

)︁ ∈ GL(d2). By equation (24) for all n ∈ {1, . . . , N0} we have

LHS ≥ 1 √
2

⃦⃦⃦
2iv2 ⊗ (sin(nα1), . . . , sin(nαd2)) −

d2∑︂
i=1 

qi∑︂
j=1 

sin(nθi,j)Bi,j + nS3T
⃦⃦⃦

≥ c1

⃦⃦⃦
(2iTT v2) ⊗ (sin(nα1), . . . , sin(nαd2)) −

d2∑︂
i=1 

qi∑︂
j=1 

sin(nθi,j)TTBi,j + nTTS3T
⃦⃦⃦
,

where c1 = σmin(T−T )/
√

2 > 0, σmin(M) denotes the minimum singular value of a matrix M and we used 
Theorem A.2 in the last step. With equation (22) it follows

LHS ≥ c1∥−TTS3T∥ ≥ c0∥S3∥,

where c0 = σmin(T )2c1 > 0.
By Propositions 3.7 and 3.18 it suffices to show that there exists a constant c > 0 such that ∥ · ∥R,∇ ≥

c∥ · ∥R,∇,0. Let u ∈ Uper. Let N ∈ M0 be such that u is TN -periodic. In particular, m divides N . Let 
v : G→ Skew(d) be TN -periodic such that πUrot(R)(∇Ru(g)) = ∇Ru(g) − gR ◦ v(g) for all g ∈ G. Let



B. Schmidt, M. Steinbach / J. Math. Pures Appl. 204 (2025) 103779 29

v1 : G→
{︃(︃

S1 S2
−ST

2 0

)︃ ⃓⃓⃓
⃓S1 ∈ Skew(d1), S2 ∈ Rd1×d2

}︃

and

v2 : G→ {0d1,d1 ⊕ S | S ∈ Skew(d2)}

such that v = v1 + v2. For all g ∈ Cm we define the functions

ug : Tm → Cd, t ↦→ ū(gt)

vg : Tm → Skew(d,C), t ↦→ v(gt)

v1,g : Tm → Skew(d,C), t ↦→ v1(gt) and

v2,g : Tm → Skew(d,C), t ↦→ v2(gt).

Let 𝔈 = {χ ∈ ˆ︃Tm | χ is periodic}. For all g ∈ Cm and χ ∈ 𝔈 it holds

vg
⋀︁

(χ) = v1,g
⋀︁

(χ) + v2,g
⋀︁

(χ),

v1,g
⋀︁

(χ) ∈
{︃(︃

S1 S2
−ST

2 0

)︃ ⃓⃓⃓
⃓S1 ∈ Skew(d1,C), S2 ∈ Cd1×d2

}︃

and

v2,g
⋀︁

(χ) ∈ {0d1,d1 ⊕ S | S ∈ Skew(d2,C)}.

We have

∥u∥2
R,∇ = 1 

|CN |
∑︂

(g,t)∈Cm×(Tm∩CN )

∥πUrot(R)(∇Ru(gt))∥2

= 1 
|CN |

∑︂
g∈Cm

∑︂
t∈Tm∩CN

∥∇Ru(gt) − gR ◦ v(gt)∥2

≥ 1 
|CN |

∑︂
g∈Cm

∑︂
t∈Tm∩CN

∥∇R0Gx0
u(gt) − gR0Gx0

◦ v(gt)∥2

≥ 1 
|CN |

∑︂
g∈Cm

∑︂
t∈Tm∩CN

⃦⃦(︁
ug(th) − L(h)Tug(t)

)︁
h∈R0

− gR0 ◦ vg(t)
⃦⃦2

= 1 
|CN |

∑︂
g∈Cm

|Tm ∩ CN |
∑︂
χ∈𝔈

⃦⃦(︁
χ(h)−1ug

⋀︁
(χ) − L(h)Tug

⋀︁
(χ)

)︁
h∈R0

− gR0 ◦ vg
⋀︁

(χ)
⃦⃦2

≥ c20
|CN |

∑︂
g∈Cm

|Tm ∩ CN |
∑︂
χ∈𝔈

∥v2,g
⋀︁

(χ)∥2

= c20
|CN |

∑︂
g∈Cm

∑︂
t∈Tm∩CN

∥v2,g(t)∥2

= c20
|CN |

∑︂
(g,t)∈Cm×(Tm∩CN )

∥v2(gt)∥2

= c20∥v2∥2
2. (25)
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In the first and last step we used that the set 
⋃︁

(g,t)∈Cm×(Tm∩CN ){gt} is a representation set of G/TN . 
In the fifth and seventh step we used Proposition 2.4 for the group Tm and TN -periodic functions and 
Lemma 2.5. Note that Tm ∩ CN is a representation set of Tm/TN . In the sixth step we used (23). Let 
C = |R|max{∥h · x0 − x0∥ | h ∈ R}. We have

∥u∥2
R,∇ = 1 

|CN |
∑︂
g∈CN

∥∇Ru(g) − gR ◦ v(g)∥2

≥ 1 
|CN |

∑︂
g∈CN

(︃
1
2∥∇Ru(g) − gR ◦ v1(g)∥2 − ∥gR ◦ v2(g)∥2

)︃

≥ 1 
|CN |

∑︂
g∈CN

(︃
1
2∥πUrot,0(R)(∇Ru(g)))∥2 − C∥v2(g)∥2

)︃

= 1
2∥u∥

2
R,∇,0 − C∥v2∥2

2, (26)

where in the second step we used that (a− b)2 ≥ a2/2− b2 for all a, b ≥ 0. Let c2 = min{1/2, c20/(2C)}. By 
(25) and (26) we have

∥u∥2
R,∇ ≥ 1

2∥u∥
2
R,∇ + c2∥u∥2

R,∇

≥ c20
2 
∥v2∥2

2 + c2

(︂1
2∥u∥

2
R,∇,0 − C∥v2∥2

2

)︂
≥ c2

2 
∥u∥2

R,∇,0.

Thus, we have ∥ · ∥R,∇ ≥ √︁
c2/2∥ · ∥R,∇,0. □

3.4. Seminorm kernels

It is interesting to explicitly describe the kernel of the seminorms that measure the rigidity of deformations 
as this entails a characterization of fully rigid deformations.

Recall from Definition 3.1 that Utrans is the vector space of displacements corresponding to translations. 
We now introduce the vector space Urot,0,0 which corresponds to infinitesimal rotations of G · x0 about the 
a�ine subspace x0 + {0d1} ×Rd2 .

Definition 3.23. For all R ⊂ G such that RGx0 = R we define the vector spaces

Urot,0,0(R)

:=
{︂
u : R→ Rd

⃓⃓⃓
∃ S ∈ Skew(d1) ∀g ∈ R : L(g)ū(g) = (S ⊕ 0d2,d2)(g · x0 − x0)

}︂
⊂ Urot,0(R) ∩ L∞(G,Rd1 × {0d2})

and

Uiso,0,0(R) := Utrans(R) + Urot,0,0(R) ⊂ Uiso,0(R) ∩ L∞(G,Rd)

with Utrans(R) as in Definition 3.1. In case R = G we suppress the argument R for brevity and simply write 
Utrans, Urot,0,0 and Uiso,0,0, respectively.
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Remark 3.24. We have Urot,0,0 ⊂ Urot,0(G). If d1 ≥ 1 and d2 ≥ 1, then we have Urot,0,0 ⊊ Urot,0(G). 
Moreover, in general we have Utrans ̸⊂ Uper and Urot,0,0 ̸⊂ Uper. For example let α ∈ R \ (2πQ), R(α) be the 
rotation matrix by the angle α, G = ⟨R(α)⊕ (I1, 1)⟩ < E(3) and x0 = e1. Then we have dim(Urot,0(G)) = 3, 
dim(Urot,0,0) = 1 and dim(Urot,0,0∩Uper) = 0. Moreover, we have dim(Utrans) = 3 and dim(Utrans∩Uper) = 1.

Example 3.25. Suppose that Gx0 is trivial. If d1 = 1 or daff = d2, then we have Urot,0,0 = {0}. In particular, 
if G is a space group, then we have Urot,0,0 = {0}.

The following proposition characterizes the vector spaces Utrans(R), Urot(R), Urot,0(R), Urot,0,0(R), 
Uiso(R), Uiso,0(R) and Uiso,0,0(R) for appropriate R ⊂ G. In particular, the proposition characterizes Utrans, 
Urot,0,0 and Uiso,0,0.

In the following two results we write π : {u : R → Rd} → {u : R → Rd}, π(u) = ū for the projection 
defined by (1). Note that, by construction, all the sets Utrans(R), Urot(R), Urot,0(R), Urot,0,0(R), Uiso(R), 
Uiso,0(R) and Uiso,0,0(R) are invariant under π.

Proposition 3.26. Suppose that R ⊂ G is such that RGx0 = R, id ∈ R and aff(R · x0) = aff(G · x0). Then the 
maps

φ1 : Rd → π(Utrans(R))

a ↦→ (︁
R→ Rd, g ↦→ L(g)Ta

)︁
,

φ2 : Rd3×daff × Skew(daff) → π(Urot(R))

(A1, A2) ↦→
(︂
R→ Rd, g ↦→ L(g)T

(︂
0 A1

−AT
1 A2

)︂
(g · x0 − x0)

)︂
,

φ3 : Rd3×d4 ×Rd3×d2 × Skew(d4) ×Rd4×d2 → π(Urot,0(R))

(A1, A2, A3, A4) ↦→
(︃
R→ Rd, g ↦→ L(g)T

(︃ 0 A1 A2
−AT

1 A3 A4

−AT
2 −AT

4 0

)︃
(g · x0 − x0)

)︃
,

and

φ4 : Rd3×d4 × Skew(d4) → π(Urot,0,0(R))

(A1, A2) ↦→
(︂
R→ Rd, g ↦→ L(g)T

(︂(︂
0 A1

−AT
1 A2

)︂
⊕ 0d2,d2

)︂
(g · x0 − x0)

)︂
are isomorphisms, where d3 = d− daff , d4 = daff − d2. In particular, we have

dim(π(Utrans(R))) = d

dim(π(Urot(R))) = daff(d− 1
2daff − 1

2 ),

dim(π(Urot,0(R))) = d3daff + 1
2d4(daff + d2 − 1) and

dim(π(Urot,0,0(R))) = d4(d3 + d1 − 1)/2.

Moreover we have

π(Uiso(R)) = π(Utrans(R)) ⊕ π(Urot(R)),

π(Uiso,0(R)) = π(Utrans(R)) ⊕ π(Urot,0(R)) and

π(Uiso,0,0(R)) = π(Utrans(R)) ⊕ π(Urot,0,0(R)).

We include the elementary proof for the sake of completeness.
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Proof. Since L(id) = Id, the map φ1 is injective and thus, an isomorphism.
Now we prove that φ3 is an isomorphism. The map φ3 is well-defined and linear. First we show that φ3

is surjective. Let u ∈ π(Urot,0(R)). There exist some A1 ∈ Skew(d1) and A2 ∈ Rd1×d2 such that

L(g)u(g) =
(︂

A1 A2
−AT

2 0

)︂
(g · x0 − x0) for all g ∈ G.

Let A3 ∈ Skew(d3), A4 ∈ Rd3×d4 , A5 ∈ Skew(d4), A6 ∈ Rd3×d2 and A7 ∈ Rd4×d2 be such that

A1 =
(︂

A3 A4
−AT

4 A5

)︂
and A2 =

(︂
A6
A7

)︂
.

Since G · x0 ⊂ {0d3} ×Rdaff , we have φ3(A4, A6, A5, A7) = u.
Now we show that φ3 is injective. Let A1, B1 ∈ Rd3×d4 , A2, B2 ∈ Rd3×d2 , A3, B3 ∈ Skew(d4) and 

A4, B4 ∈ Rd4×d2 be such that φ3(A1, A2, A3, A4) = φ3(B1, B2, B3, B4). Let R′ ⊂ R be finite with id ∈ R′
and aff(R′ · x0) = aff(G · x0). By Lemma 3.10 there exists some C ∈ Rdaff×|R′| of rank daff such that

(g · x0 − x0)g∈R′ =
(︂

0
C

)︂
.

The identity φ3(A1, A2, A3, A4) = φ3(B1, B2, B3, B4) implies

(︃ 0 A1 A2
−AT

1 A3 A4

−AT
2 −AT

4 0

)︃
(g · x0 − x0) =

(︃ 0 B1 B2
−BT

1 B3 B4

−BT
2 −BT

4 0

)︃
(g · x0 − x0)

for all g ∈ R and in particular, we have(︂
(A1 A2 )C
(A3 A4 )C

)︂
=

(︂
(B1 B2 )C
(B3 B4 )C

)︂
.

Since the rank of C is equal to the number of its rows, we have Ai = Bi for all i ∈ {1, . . . , 4}.
The proofs that φ2 and φ4 are isomorphisms are analogous.
For all u ∈ π(Urot(R)) we have u(id) = 0 and for all u ∈ π(Utrans(R)) and g ∈ R we have L(g)u(g) = u(id). 

This implies π(Utrans(R))∩π(Urot(R)) = {0} and thus π(Uiso(R)) = π(Utrans(R))⊕π(Urot(R)). Analogously, 
we have π(Uiso,0(R)) = π(Utrans(R)) ⊕ π(Urot,0(R)) and π(Uiso,0,0(R)) = π(Utrans(R)) ⊕ π(Urot,0,0(R)). □
Lemma 3.27. If the group L(G) is finite, then we have π(Uiso,0,0) ⊂ Uper.

Proof. Suppose that L(G) is finite. Let n = |L(G)|. For all g ∈ G we have

L(g)n = Id. (27)

Choose N = m0n. Let u ∈ π(Uiso,0,0). By definition there exist some a ∈ Rd and S ∈ Skew(d1) such that

L(g)u(g) = a + (S ⊕ 0)(g · x0 − x0) for all g ∈ G.

For all g ∈ G and t ∈ T we have

u(gtN ) = L(gtN )−1(︁a + (S ⊕ 0)((gtN ) · x0 − x0)
)︁

= L(t)−NL(g)−1(︁a + (S ⊕ 0)(g · (L(t)Nx0) − x0) + (S ⊕ 0)L(g)τ(tN )
)︁

= L(g)−1(︁a + (S ⊕ 0)(g · x0 − x0)
)︁

= u(g),
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where we used (27), that L(G) < O(d1) ⊕ O(d2) and that τ(G) ⊂ {0d1} × Rd2 in the second to last step. 
Thus, u is TN -periodic and we have u ∈ Uper. □

The following theorem characterizes the kernel of the seminorm ∥ · ∥R.

Theorem 3.28. Suppose that R ⊂ G is an admissible neighborhood range of id. Then we have

ker(∥ · ∥R) = Uiso,0,0 ∩ Uper.

Proof. First we show that Uiso,0,0 ∩ Uper ⊂ ker(∥ · ∥R): 
Let u ∈ Uiso,0,0 ∩ Uper. There exist some a ∈ Rd and S ∈ Skew(d) such that

L(g)ū(g) = a + S(g · x0 − x0) for all g ∈ G.

Let g ∈ G. For all h ∈ R it holds

L(h)ū(gh) = L(g)Ta + L(g)TS((gh) · x0 − x0)

= L(g)Ta + L(g)TS(g · x0 − x0) + L(g)TSL(g)(h · x0 − x0).

Since L(g)TSL(g) ∈ Skew(d), we have u(g · )|R ∈ Uiso(R).
Let N ∈ M0 be such that u is TN -periodic. Since g ∈ G was arbitrary, we have

∥u∥2
R = 1 

|CN |
∑︂
g∈CN

∥πUiso(R)(u(g · )|R)∥2 = 0.

Thus, we have u ∈ ker(∥ · ∥R).
Now we show that ker(∥ · ∥R) ⊂ Uiso,0,0 ∩ Uper: 

Let u ∈ ker(∥ · ∥R). By definition of ∥ · ∥R we have u ∈ Uper. Let g ∈ G. By Theorem 3.13 we have 
u ∈ ker(∥ · ∥R∪gGx0

) and thus u|R∪gGx0
∈ Uiso(R ∪ gGx0). There exist some a ∈ Rd and S ∈ Skew(d) such 

that

L(h)ū(h) = a + S(h · x0 − x0) for all h ∈ R ∪ gGx0 . (28)

Since R is admissible, it holds Gx0 ⊂ R and thus, a = ū(id). In particular, the vector a is independent of g.
By Lemma 3.10 there exists some A ∈ Rdaff×|R| of rank daff such that

(h · x0 − x0)h∈R/Gx0
=

(︃
0d−daff ,|R|

A

)︃
.

Since G · x0 ⊂ {0d−daff} ×Rdaff , without loss of generality we may assume that

S =
(︃

0 S1
−ST

1 S2

)︃

for some S1 ∈ R(d−daff)×daff and S2 ∈ Skew(daff). By equation (28) we have
(︃
L(h)ū(h) − a

)︃
h∈R/Gx0

=
(︃

0 S1
−ST

1 S2

)︃(︃
0
A

)︃
=

(︃
S1A
S2A

)︃
. (29)

Since the rank of A is equal to the number of its rows, by (29) the matrix S is independent of g.
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Since g ∈ G was arbitrary, we have

L(g)ū(g) = a + S(g · x0 − x0) for all g ∈ G. (30)

Let C = sup{∥u(g)∥ | g ∈ G}. Since u is periodic, we have C < ∞. Let t ∈ T . By (30) for all n ∈ N we have

n∥Sτ(t)∥ = ∥Sτ(tn)∥ =
⃦⃦⃦
⃦L(tn)ū(tn) − a− SL(tn)x0 + Sx0

⃦⃦⃦
⃦ ≤ 2C + 2∥S∥∥x0∥

and thus, Sτ(t) = 0. Since t ∈ T was arbitrary, we have

Sx = 0 for all x ∈ span({τ(t) | t ∈ T }) = {0d1} ×Rd2 ,

and thus, S ∈ Skew(d1) ⊕ {0d2,d2}. By (30) we have u ∈ Uiso,0,0. □
Corollary 3.29. Suppose that L(G) is finite, Gx0 is trivial, and R ⊂ G is an admissible neighborhood range 
of id. Then we have

ker(∥ · ∥R) = Uiso,0,0.

Moreover, the map

Rd ×Rd3×d4 × Skew(d4) → ker(∥ · ∥R)

(a,A1, A2) ↦→
(︃
G→ Rd, g ↦→ L(g)T

(︂
a +

(︂(︂
0 A1

−AT
1 A2

)︂
⊕ 0d2,d2

)︂
(g · x0 − x0)

)︂)︃

is an isomorphism and in particular we have

dim(ker(∥ · ∥R)) = d + d4(d3 + d1 − 1)/2,

where d3 = d− daff and d4 = daff − d2.

Proof. The assertion is clear by Theorem 3.28, Lemma 3.27 and Proposition 3.26. □
Corollary 3.30. Suppose that G is a space group, Gx0 is trivial, and R ⊂ G is an admissible neighborhood 
range of id. Then we have

ker(∥ · ∥R) = Utrans.

Proof. This is clear by Corollary 3.29 and Example 3.25. □
Example 3.31. We present an example which shows that in Theorem 3.13 the premise that R1 and R2 are 
admissible neighborhood ranges of id cannot be weakened to the premise that for both i ∈ {1, 2} one has 
RiGx0 = Ri, aff(Ri · x0) = aff(G · x0) and Ri is a generating set of G.

We consider the simple atomic chain from Example 2.7(i) with d = 2, d1 = 1, d2 = 1, t = (I2, e2), 
G = ⟨t⟩ and x0 = 0. The set R1 = {id, t} generates G and satisfies aff(R1 · x0) = aff(G · x0) but is not an 
admissible neighborhood range of id. The set R2 = {id, t, t2} is admissible. Using that the seminorms ∥ · ∥R
and ∥ · ∥R\{id},∇ are equivalent by Proposition 3.7, it follows

ker(∥ · ∥R1
) = {u ∈ Uper | ∃ a ∈ R ∀ g ∈ G : u2(g) = a}.
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By Corollary 3.29 and Example 3.25 we have

ker(∥ · ∥R2
) = Uiso,0,0 = Utrans.

Since the kernels of ∥ · ∥R1
and ∥ · ∥R2

are not equal, the seminorms ∥ · ∥R1
and ∥ · ∥R2

are not equivalent.

The following theorem summarizes the main results of this section.

Theorem 3.32. Suppose that R1,R2 ⊂ G are admissible neighborhood ranges of id. Then the seminorms 
∥ · ∥R1

, ∥ · ∥R2
, ∥ · ∥R1,0, ∥ · ∥R2,0, ∥ · ∥R1,∇, ∥ · ∥R2,∇, ∥ · ∥R1,∇,0 and ∥ · ∥R2,∇,0 are equivalent and their kernel 

is Uiso,0,0 ∩ Uper.

Proof. This is clear by Theorem 3.13, Proposition 3.7, Proposition 3.18, Theorem 3.22 and Theo
rem 3.28. □
4. Stronger seminorms

In this section we introduce two stronger seminorms. First we consider ∥ · ∥R,0,0 and its variant ∥ · ∥R,∇,0,0
that are defined as the averaged local distance to the spaces Uiso,0,0, respectively, Urot,0,0, introduced in 
Definition 3.23. They thus measure rigidity up to local rotations about {0d1} × Rd2 . Then we define the 
even stronger seminorm ∥∇R · ∥2 as a discrete H1 norm. Again we show that these seminorms are essentially 
independent of R if R is rich enough. In Corollary 4.7 we observe that for bulk structures all seminorms 
(and in particular the weakest ∥ · ∥R and strongest ∥∇R · ∥2) are equivalent.

Definition 4.1. For all finite sets R ⊂ G such that RGx0 = R we define the seminorms

∥ · ∥R,0,0 : Uper → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUiso,0,0(R)(u(g · )|R)∥2
)︂ 1

2 if u is TN -periodic,

and

∥ · ∥R,∇,0,0 : Uper → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥πUrot,0,0(R)(∇Ru(g))∥2
)︂ 1

2 if u is TN -periodic,

where πUiso,0,0(R) and πUrot,0,0(R) are the orthogonal projections on {u : R → Rd} with respect to the norm 
∥ · ∥ with kernels Uiso,0,0(R) and Urot,0,0(R), respectively.

Remark 4.2. For all finite sets R ⊂ G such that RGx0 = R we have ∥ · ∥R ≤ ∥ · ∥R,0,0, but the seminorms 
∥ · ∥R and ∥ · ∥R,0,0 need not be equivalent, see Proposition 5.1.

Theorem 4.3. Suppose that R1,R2 ⊂ G are admissible neighborhood ranges of id. Then the seminorms 
∥ · ∥R1,0,0, ∥ · ∥R2,0,0, ∥ · ∥R1,∇,0,0, and ∥ · ∥R2,∇,0,0 are equivalent and their kernel is Uiso,0,0 ∩ Uper.

Proof. The proof that the seminorms ∥ · ∥R1,0,0 and ∥ · ∥R2,0,0 are equivalent is analogous to the proof of 
Theorem 3.13: For all finite sets R ⊂ G such that RGx0 = R we define the seminorm

p0,R : {u : R→ Rd} → [0,∞), u ↦→ ∥πUiso,0,0(R)(u)∥



36 B. Schmidt, M. Steinbach / J. Math. Pures Appl. 204 (2025) 103779 

on (Rd)R whose kernel is Uiso,0,0(R). Moreover, for all finite sets R1,R2 ⊂ G such that RGx0 = R we define 
the seminorm

q0,R1,R2
: {u : R1R2 → Rd} → [0,∞) u ↦→

(︃∑︂
g∈R1

p2
0,R2

(︁
u(g · )|R2

)︁)︃ 1
2

on (Rd)R1R2 . Analogously to Lemma 3.12 for all R1,R2 ⊂ G such that R1 is finite and R2 is an admissible 
neighborhood range of id there exists a finite set R3 ⊂ G such that R1 ⊂ R3R2 and the seminorms p0,R3R2

and q0,R3,R2
are equivalent. As in the proof of Theorem 3.13 this implies that the seminorms ∥ · ∥R1,0,0 and 

∥ · ∥R2,0,0 are equivalent.
Analogously to the proof of Proposition 3.7, the seminorms ∥ · ∥R,0,0 and ∥ · ∥R,∇,0,0 are equivalent for all 

finite sets R ⊂ G such that RGx0 = R and Gx0 ⊂ R. In particular, if R ⊂ G is admissible, then ∥ · ∥R,0,0 and 
∥ · ∥R,∇,0,0 are equivalent.

Finally, suppose that R ⊂ G is an admissible neighborhood range of id. Analogously to the proof of 
Theorem 3.28, we have Uiso,0,0 ∩ Uper ⊂ ker(∥ · ∥R,0,0). Since ∥ · ∥R ≤ ∥ · ∥R,0,0, by Theorem 3.28 we have 
ker(∥ · ∥R,0,0) ⊂ Uiso,0,0 ∩ Uper. □

For the second seminorm to be discussed in this section we first slightly extend our notion of the ℓ2 norm 
∥ · ∥2.

Definition 4.4. For all finite sets R ⊂ G we define the norm

∥ · ∥2 :
{︁
u : G→ {v : R→ Rd} ⃓⃓ u is periodic

}︁ → [0,∞)

u ↦→
(︂ 1 
|CN |

∑︂
g∈CN

∥u(g)∥2
)︂ 1

2 if u is TN -periodic.

Theorem 4.5. Let R1,R2 ⊂ G be finite generating sets of G such that R1Gx0 = R1 and R2Gx0 = R2. Then 
the seminorms ∥∇R1 · ∥2 and ∥∇R2 · ∥2 on Uper are equivalent and their kernel is Utrans ∩ Uper.

Proof. First we show that the seminorms ∥∇R1 · ∥2 and ∥∇R2 · ∥2 are equivalent. It suffices to show that 
there exists a constant C > 0 such that ∥∇R1 · ∥2 ≤ C∥∇R2 · ∥2. Since R2 generates G, for every r ∈ R1 there 
exist some nr ∈ N and sr,1, . . . , sr,nr

∈ R2 ∪ R−1
2 such that r = sr,1 . . . sr,nr

. Let u ∈ Uper. Let N ∈ M0 be 
such that u is TN -periodic. Then we have

∥∇R1u∥2
2 = 1 

|CN |
∑︂
g∈CN

∥∇R1u(g)∥2

= 1 
|CN |

∑︂
g∈CN

∑︂
r∈R1

∥L(r)ū(gr) − ū(g)∥2

= 1 
|CN |

∑︂
g∈CN

∑︂
r∈R1

⃦⃦⃦
⃦

nr∑︂
i=1 

L(sr,1 . . . sr,i−1)
(︁
L(sr,i)ū(gsr,1 . . . sr,i) − ū(gsr,1 . . . sr,i−1)

)︁⃦⃦⃦⃦2

≤ 1 
|CN |

∑︂
g∈CN

∑︂
r∈R1

(︃ nr∑︂
i=1 

∥L(sr,i)ū(gsr,1 . . . sr,i) − ū(gsr,1 . . . sr,i−1)∥
)︃2

≤ 1 
|CN |

∑︂
g∈CN

∑︂
r∈R1

nr

nr∑︂
i=1 

∥L(sr,i)ū(gsr,1 . . . sr,i) − ū(gsr,1 . . . sr,i−1)∥2
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≤ C

|CN |
∑︂
g̃∈CN

∑︂
s∈R2

∥L(s)ū(g̃s) − ū(g̃)∥2

= C∥∇R2u∥2
2,

where C =
∑︁

r∈R1
n2
r. In the fifth step we used that the arithmetic mean is lower or equal than the root mean 

square. In the sixth step, if sr,i ∈ R2, we substituted gsr,1 . . . sr,i−1 by g̃, and if sr,i ∈ R−1
2 , we substituted 

gsr,1 . . . sr,i by g̃.
Let R = R1. Now we show that ker(∥∇R · ∥2) = Utrans∩Uper. It is clear that Utrans∩Uper ⊂ ker(∥∇R · ∥2). 

If u ∈ ker(∥∇R · ∥2), then for all g ∈ G we have

0 = ∥∇R∪gGx0
u∥2 ≥ ∥L(g)ū(g) − ū(id)∥, (31)

where we used that the seminorms ∥∇R · ∥2 and ∥∇R∪gGx0
· ∥2 are equivalent. By (31) we have L(g)ū(g) =

ū(id) for all g ∈ G and thus u ∈ Utrans. □
Remark 4.6. For all finite sets R ⊂ G such that RGx0 = R we have ∥ · ∥R,0,0 ≤ ∥∇R · ∥2, but the semi
norms ∥ · ∥R,0,0 and ∥∇R · ∥ need not be equivalent since their kernels are not equal, see Theorem 4.3 and 
Theorem 4.5.

Theorem 3.22 yields the following corollary.

Corollary 4.7. (A discrete Korn inequality for space groups) Suppose that G is a space group and R ⊂ G is 
an admissible neighborhood range of id. Then the seminorms ∥ · ∥R, ∥ · ∥R,0,0 and ∥∇R · ∥2 are equivalent.

Proof. Under the assumptions made we have Urot,0(R) = Urot,0,0(R) ⊂ Utrans(R) and ∥ · ∥R,∇,0 =
∥ · ∥R,∇,0,0 = ∥∇R · ∥2. With Theorem 3.32 and Theorem 4.3 the assertion follows. □
5. Two basic examples in real and Fourier space

We finally work out explicitly equivalent descriptions of the seminorms ∥ · ∥R and ∥∇R · ∥2 (respectively, 
∥ · ∥R,0,0) in terms of their Fourier transform for the two basic examples of atomic chains introduced in 
Example 2.7: the simple one-dimensional atomic chain in R2 with daff = d2 = d1 = 1 is considered in 
Proposition 5.1, the atomic chain with non-trivial bond angles and daff = 2, d2 = d1 = 1 in Proposition 5.2. 
While the seminorms ∥ · ∥R,0,0 and ∥∇R · ∥2 will be equivalent as d1 = 1, in both examples we will see that 
∥ · ∥R and ∥ · ∥R,0,0 are not equivalent.

Proposition 5.1. Suppose that t = (I2, e2) ∈ E(2), G = ⟨t⟩ < E(2), x0 = 0 ∈ R2 and R ⊂ G is an admissible 
neighborhood range of id, e.g. R = {id, t, t2}. Then the seminorms ∥ · ∥R,0,0 and ∥∇R · ∥2 are equivalent and 
there exist constants C, c > 0 such that for all u ∈ Uper we have

c∥∇Ru∥2
2 ≤

∑︂
k∈[0,1)∩Q

|k|21∥u
⋀︁
(χk)∥2 ≤ C∥∇Ru∥2

2

and

c∥u∥2
R ≤

∑︂
k∈[0,1)∩Q

(︃
|k|41|u

⋀︁

1(χk)|2 + |k|21
⃓⃓
u
⋀︁

2(χk)
⃓⃓2)︃ ≤ C∥u∥2

R,

where | · |1 : R → [0,∞), k ↦→ dist(k,Z) is the distance to nearest integer function.
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Proof. As noted in Example 3.9, the set {id, t, t2} is an admissible neighborhood range of id and by Theo
rem 4.5 and Theorem 3.32 without loss of generality we let R = {id, t, t2}. Since Urot,0,0(R) = {0}, we have 
∥ · ∥R,∇,0,0 = ∥∇R · ∥2 and thus the seminorms ∥ · ∥R,0,0 and ∥∇R · ∥2 are equivalent by Theorem 4.3.

Remark 2.2 shows that ˆ︁G = {χk | k ∈ [0, 1)}, where χk : G→ C is given by χk(tn) = e2πink for all n ∈ Z

with k such that χ(t) = e2πik and that 𝔈 = {χk | k ∈ [0, 1) ∩Q}.
There is a constant cT ∈ (0, 1) such that for all k ∈ [0, 1) and n ∈ {1, 2} we have

cT |k|1 ≤ ⃓⃓
e−2πik − 1

⃓⃓
, (32)

cT
⃓⃓
e−2πink − 1

⃓⃓ ≤ |k|1, (33)

and

cT
⃓⃓
e−2πink − 1 + 2πink

⃓⃓ ≤ |k|21. (34)

Indeed, this is clear on compact subintervals of (0, 1) since |e−2πik − 1|, |k|1 > 0 for k ∈ (0, 1) and it follows 
from a Taylor expansion of k ↦→ e−2πink in a neighborhood of {0, 1}. For all u ∈ Uper we have

∥∇Ru∥2
2 =

∑︂
χ∈𝔈

⃦⃦∇Ru⋀︁(χ)
⃦⃦2

=
∑︂

k∈[0,1)∩Q

⃦⃦
(χk(h)−1u

⋀︁
(χk) − u

⋀︁
(χk))h∈R

⃦⃦2

=
∑︂

k∈[0,1)∩Q

2 ∑︂
n=1

⃓⃓
e−2πink − 1

⃓⃓2⃦⃦
u
⋀︁
(χk)

⃦⃦2
, (35)

where we used Proposition 2.4 in the first step and Lemma 2.5 in the second step. Equations (32), (33) and 
(35) imply the first assertion.

Now we show the second assertion. Let R′ = {t, t2}. By Proposition 3.7 the seminorms ∥ · ∥R and ∥ · ∥R′,∇
are equivalent, i.e. there exist some constants C, c > 0 such that

c∥ · ∥R ≤ ∥ · ∥R′,∇ ≤ C∥ · ∥R. (36)

We define the linear map

gR′ : Skew(2,C) → C2×|R′|

S ↦→ (︁
S(h · x0 − x0)

)︁
h∈R′ .

For all u ∈ Uper we have

∥u∥2
R′,∇ = inf

{︂
∥∇R′u− gR′ ◦ v∥2

2

⃓⃓⃓
v ∈ L∞

per(G,Skew(2,C))
}︂

= inf
{︃∑︂

χ∈𝔈

⃦⃦∇R′u⋀︁(χ) − gR′ ◦ ṽ(χ)
⃦⃦2

⃓⃓⃓
⃓ ṽ ∈

⨁︂
χ∈𝔈

Skew(2,C)
}︃

=
∑︂
χ∈𝔈

inf
{︂⃦⃦∇R′u⋀︁(χ) − gR′(S)

⃦⃦2
⃓⃓⃓
S ∈ Skew(2,C)

}︂

=
∑︂

k∈[0,1)∩Q
inf

{︃⃦⃦(︁
χk(h)−1u

⋀︁
(χk) − u

⋀︁
(χk) −

(︁ 0 −s
s 0

)︁
(h · x0 − x0)

)︁
h∈R′

⃦⃦2
⃓⃓⃓
⃓ s ∈ C

}︃
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=
∑︂

k∈[0,1)∩Q
inf

{︃ 2 ∑︂
n=1

⃦⃦
(e−2πink − 1)u

⋀︁
(χk) + nse1

⃦⃦2
⃓⃓⃓
⃓ s ∈ C

}︃
, (37)

where we used Proposition 2.4 in the second step and Lemma 2.5 in the fourth step.
It holds

n ∑︂
i=1 

a2
i ≤

(︃ n ∑︂
i=1 

ai

)︃2

≤ n
n ∑︂

i=1 
a2
i (38)

for all n ∈ N and a1, . . . , an ≥ 0.
We define the functions

f1 : [0, 1) ×C2 ×C → [0,∞), (k, v, s) ↦→
2 ∑︂

n=1

⃦⃦
(e−2πink − 1)v + nse1

⃦⃦
and

f2 : [0, 1) ×C2 → [0,∞), (k, v) ↦→ |k|21|v1| + |k|1|v2|.

By (36), (37) and (38) it suffices so show that there exist some constants C, c > 0 such that for all (k, v) ∈
[0, 1) ×C2 we have

c inf 
s∈C

f1(k, v, s) ≤ f2(k, v) ≤ C inf 
s∈C

f1(k, v, s). (39)

First we show the left inequality of (39). By (33) and (34) for all (k, v) ∈ [0, 1) ×C2 we have

inf 
s∈C

f1(k, v, s) ≤ f1(k, v, 2πikv1)

≤
2 ∑︂

n=1

(︂⃓⃓
e−2πink − 1 + 2πink

⃓⃓|v1| +
⃓⃓
e−2πink − 1

⃓⃓|v2|
)︂

≤ 2 
cT

f2(k, v).

Now we show the right inequality of (39). Let (k, v, s) ∈ [0, 1) ×C2 ×C. By (32) we have

f1(k, v, s) ≥
⃓⃓
e−2πikv1 − v1 + s

⃓⃓
+ 1

2
⃓⃓
e−4πikv1 − v1 + 2s

⃓⃓
≥ 1

2
⃓⃓
2(e−2πikv1 − v1 + s) − (e−4πikv1 − v1 + 2s)

⃓⃓
= 1

2
⃓⃓
e−2πik − 1

⃓⃓2|v1|
≥ c2T

2 |k|21|v1| (40)

and

f1(k, v, s) ≥
⃓⃓
e−2πik − 1

⃓⃓|v2| ≥ cT |k|1|v2|. (41)

By (40) and (41) we have

f1(k, v, s) ≥ c2T
4 f2(k, v). □

Proposition 5.2. Suppose that t =
(︁(︁−1 0

0 1

)︁
, e2

)︁ ∈ E(2), G = ⟨t⟩ < E(2), x0 = e1 ∈ R2 and R ⊂ G is an 
admissible neighborhood range of id, e.g. R = {t0, . . . , t3}. Then the seminorms ∥ · ∥R,0,0 and ∥∇R · ∥2 are 
equivalent and there exist constants C, c > 0 such that for all u ∈ Uper we have
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c∥∇Ru∥2
2 ≤

∑︂
k∈[0,1)∩Q

(︃
|k − 1

2 |21|u
⋀︁

1(χk)|2 + |k|21|u
⋀︁

2(χk)|2
)︃

≤ C∥∇Ru∥2
2

and

c∥u∥2
R ≤

∑︂
k∈[0,1)∩Q

(︃
|k − 1

2 |41|u
⋀︁

1(χk)|2 + |k|21
⃓⃓
2πi(k − 1

2 )u
⋀︁

1(χk) − u
⋀︁

2(χk)
⃓⃓2)︃ ≤ C∥u∥2

R,

where | · |1 : R → [0,∞), k ↦→ dist(k,Z) is the distance to nearest integer function.

Proof. As noted in Example 3.9, the set {t0, . . . , t3} is an admissible neighborhood range of id and by 
Theorem 4.5 and Theorem 3.32 without loss of generality we let R = {t0, . . . , t3}. Since Urot,0,0(R) = {0}, 
we have ∥ · ∥R,∇,0,0 = ∥∇R · ∥2 and thus the seminorms ∥ · ∥R,0,0 and ∥∇R · ∥2 are equivalent by Theorem 4.3.

As in the previous example we have 𝔈 = {χk | k ∈ [0, 1) ∩Q}, where χk ∈ ˆ︁G is given by χk(tn) = e2πink

for all n ∈ Z, cf. Remark 2.2. Since {k ∈ [0, 1) | e−2πik = 1} = {0}, {k ∈ [0, 1) | e−2πik = −1} = {1
2} and by 

Taylor’s theorem, there exists a constant cT ∈ (0, 1) such that for all k ∈ [0, 1) and n ∈ {1, 2, 3} we have

cT |k|1 ≤ ⃓⃓
e−2πik − 1

⃓⃓
, (42)

cT
⃓⃓
k − 1

2
⃓⃓
1 ≤ ⃓⃓

e−2πik + 1
⃓⃓
, (43)

cT
⃓⃓
e−2πink − 1

⃓⃓ ≤ |k|1, (44)

cT
⃓⃓
e−2πink − (−1)n

⃓⃓ ≤ ⃓⃓
k − 1

2
⃓⃓
1, (45)

and

cT
⃓⃓
e−2πink − (−1)n + (−1)n2πin(k − 1

2 )
⃓⃓ ≤ ⃓⃓

k − 1
2
⃓⃓2
1. (46)

For all u ∈ Uper we have

∥∇Ru∥2
2 =

∑︂
χ∈𝔈

⃦⃦∇Ru⋀︁(χ)
⃦⃦2

=
∑︂

k∈[0,1)∩Q

⃦⃦
(χk(h)−1u

⋀︁
(χk) − L(h)Tu

⋀︁
(χk))h∈R

⃦⃦2

=
∑︂

k∈[0,1)∩Q

3 ∑︂
n=1

⃦⃦⃦
e−2πinku

⋀︁
(χk) −

(︁−1 0
0 1

)︁n
u
⋀︁
(χk)

⃦⃦⃦2

=
∑︂

k∈[0,1)∩Q

3 ∑︂
n=1

(︂⃓⃓
e−2πink − (−1)n

⃓⃓2⃓⃓
u
⋀︁

1(χk)
⃓⃓2 +

⃓⃓
e−2πink − 1

⃓⃓2⃓⃓
u
⋀︁

2(χk)
⃓⃓2)︂

, (47)

where we used Proposition 2.4 in the first step and Lemma 2.5 in the second step. Equations (42), (43), 
(44), (45) and (47) imply the first assertion.

Now we show the second assertion. Let R′ = {t1, t2, t3}. By Proposition 3.7 the seminorms ∥ · ∥R and 
∥ · ∥R′,∇ are equivalent, i.e. there exist some constants C, c > 0 such that

c∥ · ∥R ≤ ∥ · ∥R′,∇ ≤ C∥ · ∥R. (48)

We define the linear map
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gR′ : Skew(2,C) → C2×|R′|

S ↦→ (︁
L(h)TS(h · x0 − x0)

)︁
h∈R′ .

For all u ∈ Uper we have

∥u∥2
R′,∇ = inf

{︂
∥∇R′u− gR′ ◦ v∥2

2

⃓⃓⃓
v ∈ L∞

per(G,Skew(2,C))
}︂

= inf
{︃∑︂

χ∈𝔈

⃦⃦∇R′u⋀︁(χ) − gR′ ◦ ṽ(χ)
⃦⃦2

⃓⃓⃓
⃓ ṽ ∈

⨁︂
χ∈𝔈

Skew(2,C)
}︃

=
∑︂
χ∈𝔈

inf
{︂⃦⃦∇R′u⋀︁(χ) − gR′(S)

⃦⃦2
⃓⃓⃓
S ∈ Skew(2,C)

}︂

=
∑︂

k∈[0,1)∩Q
inf 
s∈C

⃦⃦(︁
χk(h)−1u

⋀︁
(χk) − L(h)Tu

⋀︁
(χk) − L(h)T

(︁ 0 −s
s 0

)︁
(h · x0 − x0)

)︁
h∈R′

⃦⃦2

=
∑︂

k∈[0,1)∩Q
inf

{︃ 3 ∑︂
n=1

⃦⃦⃦
e−2πinku

⋀︁
(χk) −

(︁−1 0
0 1

)︁n
u
⋀︁
(χk) −

(︂
(−1)n+1ns

((−1)n−1)s

)︂⃦⃦⃦2
⃓⃓⃓
⃓ s ∈ C

}︃
, (49)

where we used Proposition 2.4 in the second step and Lemma 2.5 in the fourth step.
It holds

n ∑︂
i=1 

a2
i ≤

(︃ n ∑︂
i=1 

ai

)︃2

≤ n
n ∑︂

i=1 
a2
i (50)

for all n ∈ N and a1, . . . , an ≥ 0.
We define the functions

f1 : [0, 1) ×C2 ×C → [0,∞)

(k, v, s) ↦→
3 ∑︂

n=1

⃦⃦⃦
e−2πinkv − (︁−1 0

0 1

)︁n
v −

(︂
(−1)n+1ns

((−1)n−1)s

)︂⃦⃦⃦

and

f2 : [0, 1) ×C2 → [0,∞)

(k, v) ↦→ |k − 1
2 |21|v1| + |k|1|2πi(k − 1

2 )v1 − v2|.

By (48), (49) and (50) it suffices so show that there exist some constants C, c > 0 such that for all (k, v) ∈
[0, 1) ×C2 we have

c inf 
s∈C

f1(k, v, s) ≤ f2(k, v) ≤ C inf 
s∈C

f1(k, v, s). (51)

First we show the right inequality of (51). Let cR > 0 be small enough, e.g. cR = c3T
400 . Let (k, v, s) ∈

[0, 1) ×C2 ×C. By (42) and (43) we have

f1(k, v, s) ≥
⃓⃓
e−2πikv1 + v1 − s

⃓⃓
+ 1

2
⃓⃓
e−4πikv1 − v1 + 2s

⃓⃓
≥ 1

2
⃓⃓
2(e−2πikv1 + v1 − s) + e−4πikv1 − v1 + 2s

⃓⃓
= 1

2
⃓⃓
e−2πik + 1

⃓⃓2|v1|
≥ c2T

2 |k − 1
2 |21|v1| (52)
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and

f1(k, v, s) ≥
∑︂

n∈{1,3}

⃓⃓
e−2πinkv2 − v2 + 2s

⃓⃓
≥ ⃓⃓

e−2πikv2 − v2 + 2s− (e−6πikv2 − v2 + 2s)
⃓⃓

=
⃓⃓
e−2πik + 1

⃓⃓⃓⃓
e−2πik − 1

⃓⃓|v2|
≥ c2T |k|1|k − 1

2 |1|v2|. (53)

Case 1: k ∈ [0, 1
4 ] ∪ [ 34 , 1).

Since k ∈ [0, 1
4 ] ∪ [ 34 , 1), we have |k − 1

2 |1 ≥ 1
4 . By (52) and (53) we have

f1(k, v, s) ≥ cR|k − 1
2 |21|v1| + πcR|v1| + cR|k|1|v2| ≥ cRf2(k, v),

where in the last step we used the triangle inequality.

Case 2: k ∈ (1
4 ,

3
4 ).

Since k ∈ (1
4 ,

3
4 ), we have |k|1 ≥ 1

4 . By (42) and (46) we have

f1(k, v, s) ≥
⃓⃓
(e−4πik − 1)v1 + 2s

⃓⃓
+

⃓⃓
(e−2πik − 1)v2 + 2s

⃓⃓
≥ ⃓⃓

(e−4πik − 1)v1 + 2s− ((e−2πik − 1)v2 + 2s)
⃓⃓

=
⃓⃓
e−2πik − 1

⃓⃓⃓⃓
(e−2πik + 1)v1 − v2

⃓⃓
≥ cT

4 
⃓⃓
(e−2πik + 1)v1 − v2

⃓⃓
≥ cT

4 
⃓⃓
2πi(k − 1

2 )v1 − v2
⃓⃓− cT

4 
⃓⃓
e−2πik + 1 − 2πi(k − 1

2)
⃓⃓|v1|

≥ cT
4 
⃓⃓
2πi(k − 1

2 )v1 − v2
⃓⃓− 1

4
⃓⃓
k − 1

2
⃓⃓2
1|v1|. (54)

By (52) and (54) we have f1(k, v, s) ≥ cRf2(k, v).
Now we show the left inequality of (51). Let CL > 0 be large enough, e.g. CL = 120

cT
. Let (k, v) ∈ [0, 1)×C2. 

We have

f2(k, v) ≥ |k|1
⃓⃓
k − 1

2
⃓⃓
1

⃓⃓
2πi(k − 1

2 )v1 − v2
⃓⃓ ≥ |k|1

⃓⃓
k − 1

2
⃓⃓
1|v2| − π

⃓⃓
k − 1

2
⃓⃓2
1|v1|. (55)

By (55) and the definition of f2, we have

f2(k, v) ≥ 1
5 |k|1

⃓⃓
k − 1

2
⃓⃓
1|v2|. (56)

Case 1: k ∈ [0, 1
4 ] ∪ [ 34 , 1).

Since k ∈ [0, 1
4 ] ∪ [ 34 , 1), we have |k − 1

2 |1 ≥ 1
4 . We have

inf 
s∈C

f1(k, v, s) ≤ f1(k, v, 0)

≤ 6|v1| + |v2|
3 ∑︂

n=1

⃓⃓
e−2πink − 1

⃓⃓

= 6|v1| +
⃓⃓
e−2πik − 1

⃓⃓|v2|
3 ∑︂

n=1

⃓⃓⃓
⃓
n−1 ∑︂
m=0

e−2πimk

⃓⃓⃓
⃓

≤ 6|v1| + 6 
cT

|k|1|v2|
≤ CLf2(k, v),
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where we used (44) in the second to last step and (56) in the last step.

Case 2: k ∈ (1
4 ,

3
4 ).

Since k ∈ (1
4 ,

3
4 ), we have |k|1 ≥ 1

4 . By (46) and (45) we have

inf 
s∈C

f1(k, v, s) ≤ f1(k, v, v2)

≤
3 ∑︂

n=1

(︂⃓⃓
(e−2πink − (−1)n)v1 + (−1)nnv2

⃓⃓
+

⃓⃓
e−2πink − (−1)n

⃓⃓|v2|
)︂

≤
3 ∑︂

n=1

(︂⃓⃓
e−2πink − (−1)n + (−1)n2πin(k − 1

2 )
⃓⃓|v1| + n

⃓⃓
2πi(k − 1

2 )v1 − v2
⃓⃓

+
⃓⃓
e−2πink − (−1)n

⃓⃓|v2|
)︂

≤ 6 
cT

(︂⃓⃓
k − 1

2
⃓⃓2
1|v1| +

⃓⃓
2πi(k − 1

2 )v1 − v2
⃓⃓
+
⃓⃓
k − 1

2
⃓⃓
1|v2|

)︂
. (57)

By (56) and (57) we have

inf 
s∈C

f1(k, v, s) ≤ CLf2(k, v). □
Appendix A. Selected auxiliary results

For easy reference we collect a couple of auxiliary results in this appendix. It is well-known that commut
ing orthogonal matrices are simultaneously quasidiagonalisable, see e.g. [22, Corollary 2.5.11(c), Theorem 
2.5.15]:

Theorem A.1. Let S ⊂ O(n) be a nonempty commuting family of real orthogonal matrices. Then there 
exist a real orthogonal matrix Q and a nonnegative integer q such that, for each A ∈ S, QTAQ is a real 
quasidiagonal matrix of the form

Λ(A) ⊕R(θ1(A)) ⊕ · · · ⊕R(θq(A))

in which each Λ(A) = diag(±1, . . . ,±1) ∈ R(n−2q)×(n−2q), R(θ) = ( cos θ − sin θ
sin θ cos θ ) is the rotation matrix and 

each θj(A) ∈ [0, 2π).

Let σmin(M) and ∥M∥ denote the minimum singular value and the Frobenius norm of a matrix M , 
respectively. We have the following singular value inequality, see Corollary 9.6.7 in [2].

Theorem A.2. Suppose A,B ∈ Cd×d. Then

∥AB∥ ≥ σmin(A)∥B∥ and ∥AB∥ ≥ ∥A∥σmin(B).

Kronecker’s approximation theorem, see e.g. Corollary 2 on page 20 in [21], reads:

Theorem A.3. For each irrational number α the set of numbers {αn reduced modulo 1 | n ∈ N} is dense in 
the whole interval [0, 1).

We also need the following minimax theorem of Turán on generalized power sums, see Theorem 11.1 on 
page 126 in [39].
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Theorem A.4. Let b1, . . . , bn, z1, . . . , zn ∈ C. If m is a nonnegative integer and the zj are restricted by

minμ̸=ν |zμ − zν |
maxj |zj | ≥ δ (> 0), zj ̸= 0

then the inequality

max 
ν=m+1,...,m+n

⃓⃓∑︁n
j=1 bjz

ν
j

⃓⃓
∑︁n

j=1|bj | |zj |ν
≥ 1 

n

(︃
δ

2

)︃n−1

holds.

Finally, we include a short argument showing that the two seminorms ∥Πrot∇ · ∥L2(Ω) and ∥∇Πiso · ∥L2(Ω)
considered in the introduction are equivalent:

∥Πrot∇u∥L2(Ω) ≤ ∥∇Πisou∥L2 ≤ C∥Πrot∇u∥L2(Ω) (A.1)

for all u ∈ H1(Ω,Rd). The first inequality is clear. For the second, if Πisou = u − A · − c and Πrot∇u =
∇u − A′, then Poincaré’s inequality gives ∥u − A · − c∥L2 ≤ ∥u − A′ · − c′∥L2 ≤ C∥∇u − A′∥L2 for some 
c′ ∈ Rd and hence ∥(A′−A) · + c′− c∥L2 ≤ C∥∇u−A′∥L2 , which implies ∥A′−A∥ ≤ C∥∇u−A′∥L2 . Thus, 
∥∇u−A∥L2 ≤ ∥A′ −A∥L2 + ∥∇u−A′∥L2 ≤ C∥∇u−A′∥L2 .
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