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1. Introduction

We study global controllability properties of linear control systems 
on R𝑛 with control restrictions of the form 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑢 ∈  , (1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, and the set of control functions is defined 
by 
 = {𝑢 ∈ 𝐿∞(R,R𝑚) |𝑢(𝑡) ∈ 𝑈 for almost all 𝑡 ∈ R }; (2)

here the control range 𝑈 is a compact and convex neighborhood of 
0 ∈ R𝑚. We denote the solution for initial condition 𝑥(0) = 𝑥0 ∈ R𝑛 and 
control 𝑢 ∈   by 𝜑(𝑡, 𝑥0, 𝑢), 𝑡 ∈ R.

Note that the convexity assumption for 𝑈 is not a restriction since 
for a compact control range 𝑈 the trajectories for controls taking 
values in the convex hull of 𝑈 can, uniformly on bounded intervals, 
be approximated by trajectories for controls with values in 𝑈 (cf. Lee 
and Markus [1, Theorem 1 A, p. 164] for this classical result).

If the Kalman rank condition rank[𝐵 𝐴𝐵⋯𝐴𝑛−1𝐵] = 𝑛 holds, 
there is a unique maximal set 𝐷, where complete controllability holds, 
and 𝐷 contains the origin in the interior. The present paper analyzes 
global controllability properties based on a compactification of R𝑛 by 
a variant of the classical Poincaré compactification from the theory of 
polynomial differential equations.

The basic geometric idea is quite simple. A copy of R𝑛 is attached 
to the sphere S𝑛 in R𝑛+1 at the north pole. Then one takes the central 
projection in R𝑛+1 to the northern hemisphere S𝑛,+ of S𝑛 called the 

∗ Corresponding author.
E-mail address: fritz.colonius@uni-a.de (F. Colonius).

1 Partially supported by CNPq, Brazil grant n. 309409/2023-3.

Poincaré sphere. The equator S𝑛,0 of S𝑛 represents infinity since for 
points in R𝑛 with ‖

‖

𝑥𝑘‖‖ → ∞ the images in S𝑛 approach S𝑛,0. The local
analysis of points on S𝑛,0 allows us to arrive at conclusions about the 
behavior of the original system “near infinity”. In order to work this 
out, the machinery of control flows is helpful: The (open loop) behavior 
of control systems is described by a continuous flow 𝛷 on  × R𝑛

and tools from dynamical systems theory, in particular, the Selgrade 
decomposition can be invoked.

The approach of the present paper is mainly motivated by tech-
niques from Poincaré compactification in the theory of polynomial
differential equations due to Poincaré [2]; cf. Cima and Llibre [3], 
Perko [4], Dumortier, Llibre, and Artes [5], Llibre and Teruel [6]. We 
use the smooth structure and not only the topological properties of 
the associated flows as in the earlier paper Colonius, Santana, and 
Viscovini [7]. We expect that some of these techniques will also be 
useful when applied to affine control systems and to polynomial control 
systems.

The theory of control flows, control sets, and chain control sets is 
developed in Colonius and Kliemann [8] and Kawan [9]. For further 
contributions we refer to Ayala, da Silva, and Mamani [10], da Silva 
[11], Boarotto and Sigalotti [12], Tao, Huang, and Chen [13]. Cannarsa 
and Sigalotti [14] show that approximate controllability for bilinear 
control systems is equivalent to exact controllability. The Selgrade de-
composition for linear flows on vector bundles is due to Selgrade [15]; 
cf. Salamon and Zehnder [16] and Colonius and Kliemann [8,17]. 
For linear flows with chain transitive base space, Selgrade’s theorem 
provides a Whitney decomposition of the vector bundle into subbundles
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such that the projections of the subbundles to the projective bundle 
yield the maximal chain transitive sets of the induced projective flow;
cf. e.g. [17, Theorem 9.2.5]. We will lift linear control systems of 
the form (1) to bilinear control systems on R𝑛+1 and derive Selgrade
decompositions for the lifted linear control flow 𝛷1 on  × R𝑛+1 as
well as for the linearization of the projected control flow 𝜋𝛷1 on 
 × S𝑛. Furthermore, corresponding invariant manifolds in S𝑛 and R𝑛
are constructed. For some pertinent references concerning invariant 
manifolds, see the introduction of Section 5.

The main results of this paper are Corollary  1 clarifying the limit
behavior for time tending to infinity of trajectories on the Poincaré 
sphere S𝑛. Theorem  7 determines the Lyapunov exponents for the 
induced control flow and Corollary  3 describes stable manifolds on S𝑛.
Consequences for the original linear control system in R𝑛 are drawn in 
Theorem  9.

The contents of this paper are as follows. Section 2 contains prelim-
inary results on control sets, chain control sets, and control flows for 
control-affine systems on manifolds. Results from Colonius, Santana, 
and Viscovini [7] for linear control systems are recalled. Section 3 uses 
the Selgrade decomposition of the lifted control flow 𝛷1 on  × R𝑛+1

to characterize the limit behavior of trajectories on the Poincaré sphere 
S𝑛 by the chain control sets. There are one or two chain control sets
which are not subsets of the equator S𝑛,0. Each Lyapunov space 𝐿(𝜆𝑖)
of the matrix 𝐴 yields one or two chain control sets S𝐿(𝜆𝑖)∞ contained
in the equator S𝑛,0. In Section 4 the induced control flow 𝜋𝛷1 on
 × S𝑛 is linearized. When the base space of the linearized flow 𝑇𝜋𝛷1

is restricted to  × S𝐿(𝜆𝑖0 )
∞, 𝜆𝑖0 ≠ 0, the corresponding Selgrade

decomposition and the Lyapunov exponents are determined. Section 5 
contains results on stable manifolds and Section 6 presents several
examples.

Notation. The closure of a set 𝐴 in a metric space is denoted by 𝐴. 
The origin in R𝑛 is 0𝑛 and 01 is abbreviated by 0. The projection from
R𝑛0 = R𝑛 ⧵ {0𝑛} to the sphere S𝑛−1 is 𝜋𝑥 = 𝑥

‖𝑥‖  for 𝑥 ∈ R𝑛0.

2. Preliminaries

For general nonlinear control systems, control sets, chain control 
sets, and control flows are defined and some of their properties are 
recalled. Then, for linear control systems, control sets and chain control 
sets are characterized.

2.1. Control sets, chain control sets, and control flows

Consider control-affine systems of the form 

𝑥̇(𝑡) = 𝑋0(𝑥(𝑡)) +
𝑚
∑

𝑖=1
𝑢𝑖(𝑡)𝑋𝑖(𝑥(𝑡)), 𝑢 ∈  , (3)

where 𝑋0, 𝑋1,… , 𝑋𝑚 are smooth (𝐶∞-)vector fields on a smooth man-
ifold 𝑀 and
 = {𝑢 ∈ 𝐿∞(R,R𝑚) |𝑢(𝑡) ∈ 𝑈 for almost all 𝑡 ∈ R } ;

here 𝑈 is a compact convex neighborhood of 0 ∈ R𝑚. We assume that 
for every control 𝑢 ∈   and every initial state 𝑥0 ∈ 𝑀 there exists a 
unique (Carathéodory) solution 𝜑(𝑡, 𝑥0, 𝑢), 𝑡 ∈ R, with 𝜑(0, 𝑥0, 𝑢) = 𝑥0.
Background on linear and nonlinear control systems is provided by the 
monographs Sontag [18], Jurdjevic [19].

For 𝑥 ∈ 𝑀 the controllable set 𝐂(𝑥) and the reachable set 𝐑(𝑥) are
defined as
𝐂(𝑥) = {𝑦 ∈𝑀 |∃𝑢 ∈  ∃𝑇 > 0 ∶ 𝜑(𝑇 , 𝑦, 𝑢) = 𝑥 } ,

𝐑(𝑥) = {𝑦 ∈𝑀 |∃𝑢 ∈  ∃𝑇 > 0 ∶ 𝑦 = 𝜑(𝑇 , 𝑥, 𝑢) } .

The following definition introduces sets of complete approximate con-
trollability.
2 
Definition 1.  A nonvoid set 𝐷 ⊂ 𝑀 is called a control set of system 
(3) if it has the following properties: (i) for all 𝑥 ∈ 𝐷 there is a control
𝑢 ∈   such that 𝜑(𝑡, 𝑥, 𝑢) ∈ 𝐷 for all 𝑡 ≥ 0, (ii) for all 𝑥 ∈ 𝐷 one has 
𝐷 ⊂ 𝐑(𝑥), and (iii) 𝐷 is maximal with these properties, that is, if 𝐷′ ⊃ 𝐷
satisfies conditions (i) and (ii), then 𝐷′ = 𝐷.

Next we introduce a notion of controllability in infinite time allow-
ing for (small) jumps between pieces of trajectories. We fix a metric 𝑑
compatible with the topology of 𝑀 .

Definition 2.  Let 𝑥, 𝑦 ∈𝑀 . For 𝜀, 𝜏 > 0 a controlled (𝜀, 𝜏)-chain 𝜁 from
𝑥 to 𝑦 is given by 𝑘 ∈ N, 𝑥0 = 𝑥, 𝑥1,… , 𝑥𝑘 = 𝑦 ∈ 𝑀, 𝑢0,… , 𝑢𝑘−1 ∈  ,
and 𝑇0,… , 𝑇𝑘−1 ≥ 𝜏 with
𝑑(𝜑(𝑇𝑗 , 𝑥𝑗 , 𝑢𝑗 ), 𝑥𝑗+1) < 𝜀 for all 𝑗 = 0,… , 𝑘 − 1.

If for every 𝜀, 𝜏 > 0 there is a controlled (𝜀, 𝜏)-chain from 𝑥 to 𝑦, the 
point 𝑥 is chain controllable to 𝑦.

The chain reachable set is 
𝐑𝑐 (𝑥) = {𝑦 ∈𝑀 |𝑥 is chain controllable to 𝑦 } . (4)

In analogy to control sets, we define chain control sets as maximal chain 
controllable sets.

Definition 3.  A nonvoid set 𝐸 ⊂ 𝑀 is called a chain control set of 
system (3) if for all 𝑥, 𝑦 ∈ 𝐸 and 𝜀, 𝜏 > 0 there is a controlled (𝜀, 𝜏)-chain 
from 𝑥 to 𝑦, and 𝐸 is maximal with this property.

The control flow associated with control system (3) is the flow on
 ×𝑀 defined by 

𝛷 ∶ R × ×𝑀 →  ×𝑀,𝛷𝑡(𝑢, 𝑥) = (𝜃𝑡𝑢, 𝜑(𝑡, 𝑥, 𝑢)), (5)

where 𝜃𝑡𝑢 = 𝑢(𝑡 + ⋅) is the right shift on  . Note that 𝛷𝑡+𝜏 = 𝛷𝑡◦𝛷𝜏 for 
𝑡, 𝜏 ∈ R, due to the cocycle property 𝜑(𝑡+𝜏, 𝑥, 𝑢) = 𝜑(𝑡, 𝜑(𝜏, 𝑥, 𝑢), 𝑢(𝜏+ ⋅)). 
The space   is a compact metrizable space with respect to the weak∗
topology of 𝐿∞(R,R𝑚) (we fix such a metric) and the shift flow 𝜃 is 
continuous; cf. Kawan [9, Proposition 1.15]. Furthermore, the flow 𝛷
is continuous; cf. [9, Proposition 1.17].

A chain transitive set of the control flow is a subset  of  × 𝑀
such that for all (𝑢, 𝑥), (𝑣, 𝑦) ∈  and all 𝜀, 𝜏 > 0 there is an (𝜀, 𝜏)-
chain 𝜁 for 𝛷 from (𝑢, 𝑥) to (𝑣, 𝑦) given by 𝑘 ∈ N, 𝑇0,… , 𝑇𝑘−1 ≥
𝜏, and (𝑢0, 𝑥0) = (𝑢, 𝑥), (𝑢1, 𝑥1),… , (𝑢𝑘, 𝑥𝑘) = (𝑣, 𝑦) ∈  × 𝑀 with 
𝑑(𝛷(𝑇𝑖, 𝑢𝑖, 𝑥𝑖), (𝑢𝑖+1, 𝑥𝑖+1)) < 𝜀 for 𝑖 = 0,… , 𝑘 − 1. The relation between 
chain control sets and the control flow 𝛷 defined in (5) has been proved 
in Colonius and Kliemann [8, Theorem 4.3.11]. In Colonius, Santana, 
and Viscovini [7, Theorem 2.15] it is explained why the assumptions 
on invariance and compactness are not necessary.

Theorem 1.  Let  ⊂  × 𝑀 be a maximal chain transitive set for
the control flow 𝛷. Then it follows that {𝑥 ∈𝑀 |∃𝑢 ∈  ∶ (𝑢, 𝑥) ∈  } is 
a chain control set. Conversely, if 𝐸 ⊂ 𝑀 is a chain control set, then 

 ∶= {(𝑢, 𝑥) ∈  ×𝑀 |𝜑(𝑡, 𝑥, 𝑢) ∈ 𝐸 for all 𝑡 ∈ R } (6)

is a maximal chain transitive set.

2.2. The control sets and chain control sets of linear control systems

First we consider the uncontrolled equation 𝑥̇ = 𝐴𝑥. Let 𝜓(𝑡, 𝑥0) =
e𝐴𝑡𝑥0, 𝑡 ∈ R, be the generated linear flow on R𝑛. The Lyapunov
exponents 𝜆(𝑥0) ∶= lim𝑡→±∞

1
𝑡 log

‖

‖

𝜓(𝑡, 𝑥0)‖‖ are equal to the real parts 
of the eigenvalues of 𝐴 and the Lyapunov spaces 𝐿(𝜆𝑖) are the sums 
of the (real) generalized eigenspaces for eigenvalues with real parts 𝜆𝑖. 
The following theorem characterizes the Lyapunov spaces of 𝑥̇ = 𝐴𝑥
by the maximal chain transitive sets of the induced flow on projective
space.
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Theorem 2.  Let P𝜓 be the projection onto P𝑛−1 of the linear flow 𝜓(𝑡, 𝑥) =
e𝐴𝑡𝑥 on R𝑛 and denote the Lyapunov exponents by 𝜆1 > ⋯ > 𝜆𝓁 , 1 ≤ 𝓁 ≤ 𝑛.

(i) Then the state space R𝑛can be decomposed into the Lyapunov spaces 
𝐿(𝜆𝑖), 
R𝑛 = 𝐿(𝜆1)⊕⋯⊕𝐿(𝜆𝓁). (7)

(ii) The projections P𝐿(𝜆𝑖) to P𝑛−1 of the Lyapunov spaces 𝐿(𝜆𝑖) are the 
maximal chain transitive sets of the induced flow P𝜓 on P𝑛−1.

Assertion (i) is clear. A proof of assertion (ii) is contained in Colo-
nius and Kliemann [17, Section 4.1]. A simpler proof can be given, 
when one uses that the center Lyapunov space 𝐿(0) of 𝑥̇ = 𝐴𝑥 is a 
maximal chain transitive set if 0 is a Lyapunov exponent; cf. Colonius, 
Santana, and Viscovini [7, Theorem 3.2]. The other Lyapunov spaces 
𝐿(𝜆𝑖) are maximal chain transitive sets for the shifted systems 𝑥̇ =
(𝐴−𝜆𝑖𝐼)𝑥. Then also the projections P𝐿(𝜆𝑗 ) to P𝑛−1 are chain transitive.

It is convenient to introduce the following notation. Define 𝐿0 as
the Lyapunov space 𝐿(0) if 0 is a Lyapunov exponent and 𝐿0 ∶=
{0} otherwise. The space R𝑛 can be decomposed into the sum of the 
unstable, center, and stable subspaces of 𝐴 given by 
R𝑛 = 𝐿+ ⊕𝐿0 ⊕𝐿−, (8)

where 𝐿+ =
⨁

𝜆𝑖>0 𝐿(𝜆𝑖) and 𝐿− =
⨁

𝜆𝑖<0 𝐿(𝜆𝑖). Denote the associated 
projections by 𝜋0 ∶ R𝑛 → 𝐿0 and 𝜋ℎ ∶ R𝑛 → 𝐿+ ⊕𝐿−.

Consider the differential equation induced on the hyperbolic sub-
space 𝐿+ ⊕𝐿−, 
𝑦̇(𝑡) = 𝐴𝜋ℎ𝑦(𝑡) + 𝜋ℎ𝐵𝑢(𝑡). (9)

It is well known that, for every 𝑢 ∈ 𝐿∞(R,R𝑚), this inhomogeneous hy-
perbolic differential equation has a unique bounded solution 𝑒(𝑢, 𝑡), 𝑡 ∈
R. (For example, the unique bounded solution of an equation on 𝐿− is 
𝑒(𝑢, 𝑡) = ∫ 𝑡−∞ 𝑒𝐴(𝑡−𝑠)𝜋−𝐵𝑢(𝑠)𝑑𝑠, 𝑡 ∈ R, where 𝜋− is the projection to 𝐿−.)
Note that 𝑒(𝑢, 𝑡) = 𝑒(𝑢(𝑡 + ⋅), 0) for 𝑡 ∈ R and 𝑢 ∈ 𝐿∞(R,R𝑚).

The following theorem characterizes the control set containing 0 ∈
R𝑛 and the unique chain control set of a linear control system.

Theorem 3.  Consider the linear control system (1).
(i) There is a control set 𝐷0 with 0 ∈ 𝐷0. It is convex and satisfies

𝐷0 =
(

𝐂(0) ∩ 𝐿+)⊕
(

𝐿0 ∩ Im[𝐵 𝐴𝐵⋯𝐴𝑛−1𝐵]
)

⊕ (𝐑(0) ∩ 𝐿−).

The sets 𝐂(0)∩𝐿+ and 𝐑(0)∩𝐿− are bounded. If Im[𝐵 𝐴𝐵⋯𝐴𝑛−1𝐵] = R𝑛, 
then there is a unique control set 𝐷 with nonvoid interior, and 𝐷 = 𝐷0.

(ii) There exists a unique chain control set 𝐸. It is given by
𝐸 = 𝐷0 + 𝐿0 = (𝐂(0) ∩ 𝐿+)⊕𝐿0 ⊕ (𝐑(0) ∩ 𝐿−)

=
{

𝑒(𝑢, 𝑡) + 𝑦 ||
|

𝑢 ∈  , 𝑡 ∈ R, and 𝑦 ∈ 𝐿0
}

.

Proof.  Assertion (i) is Colonius, Santana, and Viscovini [7, Corollary 
2.17]. The first two equalities in (ii) hold by [7, Theorem 4.8]. Fi-
nally, [7, Lemma 2.18(iii)] shows that (𝐂(0) ∩ 𝐿+)⊕ (𝐑(0) ∩ 𝐿−) is the 
chain control set of system (9) with 𝑢 ∈   and hence bounded. Thus it
consists of the points 𝑒(𝑢, 𝑡) with 𝑡 ∈ R and 𝑢 ∈  . □

3. Selgrade decomposition for the lifted control flow

In this section, we embed linear control systems of the form (1) 
into bilinear control systems on R𝑛 × R, which can be projected to the 
Poincaré sphere S𝑛 ⊂ R𝑛+1. The associated control flow 𝛷1 is a linear 
flow on the vector bundle  ×R𝑛+1. It admits a Selgrade decomposition 
into invariant subbundles and we determine the exponential growth 
rates of solutions. The subbundles yield the chain control sets of the
projected control system on S𝑛, which are the possible limit sets for 
time tending to infinity.

Recall from Colonius, Santana, and Viscovini [7] the following 
construction. Linear control systems of the form (1) on R𝑛 can be lifted 
3 
to bilinear control systems with states (𝑥(𝑡), 𝑥𝑛+1(𝑡)) in R𝑛 ×R = R𝑛+1 by 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑥𝑛+1(𝑡)𝐵𝑢(𝑡), 𝑥̇𝑛+1(𝑡) = 0, 𝑢 ∈  . (10)

The solutions for initial condition (𝑥(0), 𝑥𝑛+1(0)
)

=
(

𝑥0, 𝑟
)

∈ R𝑛×R, may 
be written as 

𝜑1(𝑡, 𝑥0, 𝑟, 𝑢) =
(

𝑒𝐴𝑡𝑥0 + 𝑟∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑟

)

, 𝑡 ∈ R. (11)

Observe that, for 𝑟 = 0, one has 𝜑1(𝑡, 𝑥, 0, 𝑢) = (𝜓(𝑡, 𝑥), 0) and, for 𝑟 = 1, 
one has 𝜑1(𝑡, 𝑥, 1, 𝑢) = (𝜑(𝑡, 𝑥, 𝑢), 1) for all 𝑡 ∈ R, 𝑥 ∈ R𝑛, 𝑢 ∈  . Hence, on
the hyperplane R𝑛 ×{0} one obtains a copy of the differential equation 
𝑥̇ = 𝐴𝑥 and on the affine hyperplane R𝑛 × {1} one obtains a copy of 
control system (1).

Control system (10) is a bilinear control system on R𝑛+1 which, with 
𝑏𝑖, 𝑖 = 1,… , 𝑚, denoting the 𝑖th column of 𝐵, may be written as 
(

𝑥̇(𝑡)
𝑥̇𝑛+1(𝑡)

)

=

[

(

𝐴 0
0 0

)

+
𝑚
∑

𝑖=1
𝑢𝑖(𝑡)

(

0 𝑏𝑖
0 0

)

]

(

𝑥(𝑡)
𝑥𝑛+1(𝑡)

)

.

(12)

Define subsets of projective space P𝑛 and of the unit sphere S𝑛 by
P𝑛,0 = {P(𝑥, 0) ||

|

𝑥 ∈ R𝑛0 }, P
𝑛,1 = {P(𝑥, 𝑟) |𝑥 ∈ R𝑛, 𝑟 ≠ 0 }, (13)

S𝑛,+ ∶= {(𝑥, 𝑟) ∈ S𝑛 |𝑥 ∈ R𝑛, 𝑟 > 0 } , S𝑛,0 = {(𝑥, 0) ∈ S𝑛 ||
|

𝑥 ∈ R𝑛0 },

respectively. The northern hemisphere S𝑛,+ can be identified with P𝑛,1
via (𝑥,1)

‖(𝑥,1)‖ ∼ P(𝑥, 1). Furthermore, we call P𝑛,0 the projective equator 
since it is the projection of the equator S𝑛,0. Define the map 
ℎ1 ∶ R𝑛 → P𝑛,1, ℎ1(𝑥) = P(𝑥, 1), 𝑥 ∈ R𝑛. (14)

Control system (10) induces a control flow 𝛷1 on  ×R𝑛+1 defined by 
𝛷1
𝑡 (𝑢, 𝑥, 𝑟) = (𝑢(𝑡 + ⋅), 𝜑1(𝑡, 𝑥, 𝑟, 𝑢)), 𝑡 ∈ R, (𝑥, 𝑟)∈ R𝑛+1, 𝑢 ∈  . (15)

The maps between the fibers {𝑢} × R𝑛+1 are linear, hence 𝛷1 is a 
linear flow. The projection of system (10) to projective space yields a 
projective control flow P𝛷1 on the projective Poincaré bundle  × P𝑛. 
The subsets  ×P𝑛,0 and  ×P𝑛,1 are invariant under the flow P𝛷1. The 
following proposition (cf. [7, Proposition 4.2]) shows some properties 
of the flows on the projective Poincaré bundle.

Proposition 1.  (i) The projectivized flow P𝜓(𝑡, 𝑝), 𝑝 ∈ P𝑛−1, of the 
uncontrolled system 𝑥̇ = 𝐴𝑥 and the flow P𝜑1(𝑡, 𝑝, 0), 𝑝 ∈ P𝑛, restricted 
to the projective equator P𝑛,0 ⊂ P𝑛 are conjugate by the analytical isometry 
𝑒P(𝑝) = P(𝑥, 0) for 𝑝 = P𝑥 ∈ P𝑛−1.

(ii) The map 
(

id , ℎ1
)

∶  × R𝑛 →  × P𝑛,1, (𝑢, 𝑥) ↦ (𝑢,P(𝑥, 1)), (16)

is a conjugacy of the flows 𝛷 on  × R𝑛 and P𝛷1 restricted to  × P𝑛,1.

Recall that, for every 𝑢 ∈ 𝐿∞(R,R𝑚), the induced differential Eq. (9) 
on 𝐿+ ⊕ 𝐿− has a unique bounded solution 𝑒(𝑢, 𝑡), 𝑡 ∈ R. Note the 
following lemma.

Lemma 1.  For 𝑢 ∈ 𝐿∞(R,R𝑚) and 𝑦 ∈ 𝐿0, one obtains the exponential
growth rate 

lim
𝑡→±∞

1
𝑡
log

‖

‖

‖

‖

‖

𝑒𝐴𝑡(𝑒(𝑢, 0) + 𝑦) + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎

‖

‖

‖

‖

‖

= 0. (17)

Proof.  Since 𝑒(𝑢, 𝑡), 𝑡 ∈ R, is a solution of (9) it satisfies

𝑒(𝑢, 𝑡) = 𝑒𝐴𝜋
ℎ𝑡𝑒(𝑢, 0) + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝜋ℎ𝐵𝑢(𝜎)𝑑𝜎 ∈ 𝐿+ ⊕𝐿−.

We compute

𝑒𝐴𝑡(𝑒(𝑢, 0) + 𝑦) +
𝑡
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎
∫0
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= 𝑒𝐴𝜋
ℎ𝑡𝑒(𝑢, 0) + 𝑒𝐴𝜋

0𝑡𝑦 + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝜋ℎ𝐵𝑢(𝜎)𝑑𝜎 + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝜋0𝐵𝑢(𝜎)𝑑𝜎

= 𝑒(𝑢, 𝑡) + 𝑒𝐴𝜋
0𝑡𝑦 + ∫

𝑡

0
𝑒𝐴𝜋

0𝜎𝐵𝑢(𝑡 − 𝜎)𝑑𝜎.

Here 𝑒(𝑢, 𝑡) is bounded and the components of 𝑒𝐴𝜋0𝑡 are polynomials in
𝑡. Since 𝑢 ∈ ̌∞(R,R𝑚) also the components of ∫ 𝑡0 𝑒𝐴𝜋

0𝜎𝐵𝑢(𝑡 − 𝜎)𝑑𝜎 can
be estimated by polynomials. This implies the claim. □

The following theorem determines the Selgrade decomposition of 
the associated linear control flow 𝛷1 on  × R𝑛+1. Denote 𝐿(𝜆𝑖)∞ ∶=
𝐿(𝜆𝑖) × {0} ⊂ R𝑛+1.

Theorem 4.  Consider the linear control flow 𝛷1 on  × R𝑛+1 associated 
to the lift (12) of a linear control system of the form (1).

(i) Then 𝛷1 has the Selgrade decomposition 
 × R𝑛+1 =

⨁

𝜆𝑖>0

(

 × 𝐿(𝜆𝑖)∞
)

⊕ 𝑐 ⊕
⨁

𝜆𝑖<0

(

 × 𝐿(𝜆𝑖)∞
)

, (18)

where 𝑐 is the central Selgrade bundle 
𝑐 =

{

(𝑢, 𝑟𝑒(𝑢, 0) + 𝑦, 𝑟) ||
|

𝑢 ∈  , 𝑦 ∈ 𝐿0, 𝑟 ∈ R
}

. (19)

(ii) The dimensions of the subbundles of  ×R𝑛+1 are dim( ×𝐿(𝜆𝑖)∞) =
dim𝐿(𝜆𝑖) for all 𝑖 and dim𝑐 = 1 + dim𝐿0.

(iii) For all 𝜆𝑖 ≠ 0 and every (𝑢, 𝑥, 0) ∈  × 𝐿(𝜆𝑖)∞ the Lyapunov
exponent is 𝜆𝑖 and for every (𝑢, 𝑥, 𝑟) ∈ 𝑐 the Lyapunov exponent is 0.

Proof.  (i), (ii) By Colonius, Santana, and Viscovini [7, Theorem 4.3],
the lifted flow 𝛷1 has the Selgrade decomposition
 × R𝑛+1 =

(

 × 𝐿(𝜆1)∞
)

⊕⋯⊕
(

 × 𝐿(𝜆𝓁+ )∞
)

⊕ 𝑐⊕
⊕

(

 × 𝐿(𝜆𝓁++𝓁0+1)
∞)

⊕⋯⊕
(

 × 𝐿(𝜆𝓁)∞
)

with 𝜆𝓁+ > 0 and 𝜆𝓁++𝓁0+1 < 0 (we use a different numbering of the 
yapunov exponents). The assertion on the dimension of  × 𝐿(𝜆𝑖)∞
s obvious. For general affine flows on vector bundles and their lifts 
o linear flows, the central Selgrade bundle 𝑐 has been described 
n Colonius and Santana [20, Theorem 25]. This is specialized in [7,
Theorem 5.3] for the case of linear control systems providing also
the formula for the dimension. A sign mistake in [20, Theorem 25] is
corrected in Colonius and Santana [21]. The result is formula (19). It
follows that 𝓁0 = 0 and 𝐿0 is trivial, if 0 is not a Lyapunov exponent,
and 𝓁0 = 1 otherwise. This proves assertions (i) and (ii). In (iii), the
assertion for  × 𝐿(𝜆𝑖)∞ is clear. For (𝑢, 𝑟𝑒(𝑢, 0) + 𝑦, 𝑟) ∈ 𝑐 we may
replace 𝑦 by 𝑟𝑦. Eq. (11) yields
1
𝑡
log ‖‖

‖

𝜑1(𝑡, 𝑟𝑒(𝑢, 0) + 𝑟𝑦, 𝑟, 𝑢)‖‖
‖

= 1
𝑡
log |𝑟| + 1

𝑡
log

‖

‖

‖

‖

‖

(

𝑒𝐴𝑡(𝑒(𝑢, 0) + 𝑦) + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 1

)

‖

‖

‖

‖

‖

.

Now the assertion follows by Lemma  1. □

The chain control sets in the projective Poincaré sphere are deter-
mined by [7, Corollary 4.4 and Corollary 5.4] and Theorem  2 . Recall
from (14) that ℎ1(𝑥) = P(𝑥, 1), 𝑥 ∈ R𝑛.

Theorem 5.  (i) For the induced system on the projective Poincaré sphere 
P𝑛 there is a unique chain control set P𝐸𝑐 with P𝐸𝑐 ∩ P𝑛,1 ≠ ∅. It is given 
by ℎ1(𝐸), where 𝐸 is the unique chain control set of (1).

(iii) The other chain control sets on P𝑛 are contained in the projective 
equator P𝑛,0 and are given by P(𝐿(𝜆𝑖)∞) for 𝜆𝑖 ≠ 0.

Any bilinear control system can be projected to the unit sphere. For 
ystem (12) on R𝑛+1 abbreviate

𝐴0 ∶=
(

𝐴 0
0 0

)

 and 𝐴𝑖 =
(

0 𝑏𝑖
0 0

)

 for 𝑖 = 1,… , 𝑚.

Then the induced system on S𝑛 is described by 

𝑠̇(𝑡) = ℎ0(𝑠(𝑡)) +
𝑚
∑

𝑢𝑖(𝑡)ℎ𝑖(𝑠(𝑡)), 𝑢 ∈  , (20)

𝑖=1

t

4 
where ℎ𝑖(𝑠) =
[

𝐴𝑖 − 𝑠⊤𝐴𝑖𝑠 ⋅ 𝐼𝑛
]

𝑠 for 𝑖 = 0, 1,… , 𝑚.
Denote by 𝜋 ∶ R𝑛+10 = R𝑛+1 ⧵ {0} → S𝑛, 𝑦 ↦ 𝑦∕ ‖𝑦‖, the canonical

projection. Note that the cocycle 𝜑1 defined in (15) satisfies 

𝜋𝜑1(𝑡, 𝜋(𝑥, 𝑟), 𝑢) =
𝜑1(𝑡, 𝑥, 𝑟, 𝑢)

‖

‖

𝜑1(𝑡, 𝑥, 𝑟, 𝑢)‖
‖

. (21)

The relations between the chain control sets on projective space and 
on the sphere are described by Colonius and Santana [22, Theorem 8]. 
This yields the following.

Theorem 6.  Consider the bilinear control system (12) on R𝑛+1 and the 
chain control set P𝐸𝑐 of the induced control system on P𝑛.

(i) The set S𝐸0
𝑐 ∶= {𝑠 ∈ S𝑛 |

|

P𝑠 ∈ P𝐸𝑐 } is the unique chain control set
in S𝑛 which projects onto P𝐸𝑐 if and only if there is 𝑠0 ∈ S𝑛 with P𝑠0 ∈ P𝐸𝑐
and −𝑠0 ∈ 𝐑𝑐 (𝑠0).

(ii) There are two chain control sets S𝐸1
𝑐 = − S𝐸2

𝑐  projecting onto P𝐸𝑐
with

S𝐸
1
𝑐 ∪ S𝐸

2
𝑐 = {𝑠 ∈ S𝑛 |

|

P𝑠 ∈ P𝐸𝑐 },

if and only if for all 𝑠0 ∈ S𝑛 with P𝑠0 ∈ P𝐸𝑐 it holds that −𝑠0 ∉ 𝐑𝑐 (𝑠0).
(iii) Define for 𝑗 ∈ {0, 1, 2} and 𝑢 ∈ 

𝐹 𝑗 (𝑢) ∶=
{

𝑥 ∈ R𝑛+1 |
|

𝑥 = 0 or ı𝜑(𝑡, 𝑥, 𝑢) ∈ S𝐸
𝑗
𝑐  for all 𝑡 ∈ R

}

.

 In case (i) it follows that 𝐹 0(𝑢) is a linear subspace. In case (ii) it follows 
for 𝑗 = 1, 2 that 𝐹 𝑗 (𝑢) is a convex cone.

Thus there are one or two chain control sets S𝐸𝑗𝑐 , 𝑗 = 0 or 𝑗 = 1, 2, on 
the Poincaré sphere S𝑛 projecting onto the central chain control set P𝐸𝑐
in P𝑛. They are not subsets of the equator S𝑛,0 and can also be obtained 
by 

S𝑛 ∩
{

(𝑥, 𝑟) ∈ R𝑛+1 |
|

∃𝑢 ∈  ∶ (𝑢, 𝑥, 𝑟) ∈ 𝑐
}

. (22)

Furthermore, the maximal chain transitive sets P(𝐿(𝜆𝑖)), 𝜆𝑖 ≠ 0, of the
flow P(𝜓, 0) yield the chain transitive sets  × P(𝐿(𝜆𝑖)∞) of the flow 
P𝛷1 restricted to the projective equator P𝑛,0. By [22, Theorem 8], each 
of them gives one or two maximal chain transitive sets  × S𝐿(𝜆𝑖)∞𝑗 ⊂
 × S𝑛,0, 𝑗 = 0 or 𝑗 = 1, 2. Here S𝐿(𝜆𝑖)∞0  is the unique subset of S𝑛,0 that 
projects to P(𝐿(𝜆𝑖)∞) or else S𝐿(𝜆𝑖)∞1  and S𝐿(𝜆𝑖)∞2  are two subsets of S𝑛,0
that project to P(𝐿(𝜆𝑗 )∞). If, for example, 𝜆𝑖 is a simple real eigenvalue,
the first case occurs, if 𝜆𝑖 is the real part of a complex conjugate pair 
of eigenvalues, the second case occurs.

We note the following corollary which clarifies the limit behavior of 
rajectories on the Poincaré sphere. The 𝛼- and 𝜔-limit sets for a point 
0 ∈ S𝑛 and a control 𝑢 ∈   are

𝛼(𝑠0, 𝑢) ∶=
{

𝑠 ∈ S𝑛 ||
|

∃𝑡𝑘 → −∞ ∶ 𝜋𝜑1(𝑡𝑘, 𝑠0, 𝑢) → 𝑠 for 𝑘→ ∞
}

, (23)

𝜔(𝑠0, 𝑢) ∶=
{

𝑠 ∈ S𝑛 ||
|

∃𝑡𝑘 → ∞ ∶ 𝜋𝜑1(𝑡𝑘, 𝑠0, 𝑢) → 𝑠 for 𝑘 → ∞
}

.

Corollary 1.  Consider the control system induced on the Poincaré sphere 
S𝑛 by a linear control system of the form (1). For all 𝑢 ∈   and 𝑠0 =
(𝑥0 ,1)

‖

‖

(𝑥0 ,1)‖‖
∈ S𝑛,+, 𝑥0 ∈ R𝑛, the limit sets 𝛼(𝑠0, 𝑢) and 𝜔(𝑠0, 𝑢) of the trajectory 

𝜋𝜑1(𝑡, 𝑠0, 𝑢) =
(𝜑(𝑡,𝑥0 ,𝑢),1)

‖

‖

(𝜑(𝑡,𝑥0 ,𝑢),1)‖‖
 are contained in one of the central chain control 

sets S𝐸𝑗𝑐 , 𝑗 = 0 or 𝑗 = 1, 2, or in one of the sets S𝐿(𝜆𝑖)∞𝑗 ⊂ S𝑛,0, 𝑗 = 0 or 
𝑗 = 1, 2, 𝜆𝑖 ≠ 0.

Proof.  For any flow on a compact metric space, it is well known 
that the 𝛼- and 𝜔-limit sets are contained in the chain recurrent set
defined as the set of points 𝑥 such that for all 𝜀, 𝜏 > 0 there is 
n (𝜀, 𝜏)-chain from 𝑥 to 𝑥; cf. e.g. Alongi and Nelson [23, Corol-
ary 2.7.15] or Colonius and Kliemann [17, Proposition 3.1.12]. For 
he control flow associated with the control system on P𝑛 the chain 
ecurrent set is the union of the sets  × P𝐿(𝜆𝑖)∞, 𝜆𝑖 ≠ 0, with 
he projected central subbundle P , which coincides with the lift of 
𝑐
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the central chain control set P𝐸𝑐 to the chain transitive set P𝑐 =
{

(𝑢, 𝑝) ∈  × P𝑛 ||
|

P𝜑1(𝑡, 𝑝, 𝑢) ∈ P𝐸𝑐 for 𝑡 ∈ R
}

. Define

S 𝑗𝑐 ∶=
{

(𝑢, 𝑠) ∈ ×S𝑛 ||
|

𝜋𝜑1(𝑡, 𝑠, 𝑢) ∈ S𝐸
𝑗
𝑐  for all 𝑡 ∈ R

}

, (24)

 × S𝐿(𝜆𝑖)∞𝑗 ∶=
{

(𝑢, 𝑠) ∈ ×S𝑛 ||
|

𝜋𝜑1(𝑡, 𝑠, 𝑢) ∈ S𝐿(𝜆𝑖)∞𝑗  for all 𝑡 ∈ R
}

.

(25)

Thus, for the control flow associated with the control system on S𝑛,
the chain recurrent set is the union of the sets  × S𝐿(𝜆𝑖)∞𝑗 , 𝑗 = 0 or
𝑗 = 1, 2, 𝜆𝑖 ≠ 0, with S 𝑗𝑐 , 𝑗 = 0 or 𝑗 = 1, 2. Since the limit sets (23) 
are the projections of the limit sets of the control flow the assertion
follows. □

Corollary  1 shows that the possible limit sets of controlled trajec-
tories are the central chain control sets S𝐸𝑗𝑐  and the chain control sets
S𝐿(𝜆𝑖)∞𝑗  on the equator. On the level of control flows, the possible limit
sets are the lifts of these chain control sets to ×S𝑛. In the next section, 
we will determine the linearization about the sets (25).

4. Selgrade decomposition on the sphere

In this section we determine the Selgrade decomposition and the 
corresponding exponential growth rates for the linearization of the 
control flow induced by a linear control system on the Poincaré sphere.
Since this is a Riemannian manifold, we have to be more careful con-
cerning the tangent spaces. Some arguments are taken from Crauel [24,
Section 3], who considers random differential systems.

It is convenient to endow R𝑛 with a scalar product, which makes the 
yapunov spaces pairwise orthogonal, i.e., ⟨𝑥, 𝑦⟩ = 0 for 𝑥 ∈ 𝐿(𝜆𝑖), 𝑦 ∈
(𝜆𝑗 ) with 𝜆𝑖 ≠ 𝜆𝑗 . On R𝑛+1 we use the scalar product

⟨

(𝑥, 𝑥𝑛+1), (𝑦, 𝑦𝑛+1)
⟩′ = ⟨𝑥, 𝑦⟩ + 𝑥𝑛+1 ⋅ 𝑦𝑛+1,  for 𝑥, 𝑦 ∈ R𝑛 and 𝑥𝑛+1, 𝑦𝑛+1 ∈ R.

This does not change the Lyapunov exponents since they are indepen-
dent of the norm. In the following, we write also the scalar product
in R𝑛+1 as ⟨⋅, ⋅⟩ since it will be clear from the context what is meant.
The tangent bundle 𝑇R𝑛+10  of R𝑛+10  is trivial and is identified with
R𝑛+10 × R𝑛+1. Similarly, we identify the projective bundle 𝑃R𝑛+10  with 
R𝑛+10 × P𝑛. We consider the sphere S𝑛 as an embedded compact 𝑛-
dimensional submanifold of R𝑛+10  and identify the tangent bundle 𝑇S𝑛
with the subset of 𝑇R𝑛+10  given by 

𝑇S𝑛 =
{

(𝑠, 𝑣) ∈ S𝑛 × R𝑛+1 |𝑠 ∈ S𝑛 and ⟨𝑣, 𝑠⟩ = 0
}

. (26)

Fix the Riemannian metric on S𝑛 induced by this identification. Note
that 𝑇S𝑛 can be written as a set of pairs (𝑠, 𝑣𝑠) where 𝑠 ∈ S𝑛 and 
𝑣𝑠 ∈ 𝑇𝑠S𝑛. With 𝜋 ∶ R𝑛+10 → S𝑛, 𝜋(𝑥, 𝑥𝑛+1) ∶=

(𝑥,𝑥𝑛+1)
‖

‖

(𝑥,𝑥𝑛+1)‖‖
, the points 𝑠 ∈ S𝑛

may be written as 𝑠 = 𝜋(𝑥, 𝑥𝑛+1), ‖‖(𝑥, 𝑥𝑛+1)‖‖ = 1.
The induced control system on the Poincaré sphere S𝑛 generates the 

control flow 𝜋𝛷1 ∶ R × × S𝑛 →  × S𝑛 given by 

𝜋𝛷1
𝑡 (𝑢, 𝑠) = (𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑠, 𝑢)), 𝑡 ∈ R, 𝑠 = 𝜋(𝑥, 𝑥𝑛+1), 𝑢 ∈  . (27)

This flow can be linearized with respect to the component in S𝑛, which
yields the following continuous flow 𝑇𝜋𝛷1 ∶ R × × 𝑇S𝑛 →  × 𝑇S𝑛
given by 

𝑇 |

|𝑠 𝜋𝛷
1
𝑡 (𝑢, 𝑠)(𝑣, 𝑣𝑛+1) =

(

𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝐷𝑠𝜋𝜑
1(𝑡, 𝑠, 𝑢)(𝑣, 𝑣𝑛+1)

)

, (28)

where 𝑢 ∈  , 𝑠 ∈ S𝑛, and 𝐷𝑠𝜋𝜑1(𝑡, 𝑠, 𝑢)(𝑣, 𝑣𝑛+1) means the derivative of
𝜋𝜑1(𝑡, 𝑠, 𝑢) with respect to the second variable at the point 𝑠 applied to 
(𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛 as a linear map.

This is a linear flow on the vector bundle  × 𝑇S𝑛 with base space 
 ×S𝑛. For a Lyapunov space 𝐿(𝜆𝑖0 ), 𝜆𝑖0 ≠ 0, of the matrix 𝐴, recall that
𝐿(𝜆𝑖0 )

∞ = 𝐿(𝜆𝑖0 )×{0} ⊂ R𝑛+1. By the remarks following Theorem  6, the 
set 𝐿(𝜆 )∞ ∩ S𝑛 consists of one or two chain transitive sets denoted by
𝑖0  

5 
 × S𝐿(𝜆𝑖0 )
∞
𝑗 ⊂  × S𝑛,0, 𝑗 = 0 or 𝑗 = 1, 2. We choose one of these sets 

and denote it, for some notational simplification, by S𝐿(𝜆𝑖0 )
∞. Define 

𝑇
S𝐿(𝜆𝑖0 )

∞S𝑛 ∶=
⋃

𝑠∈S𝐿(𝜆𝑖0 )
∞
𝑇𝑠S𝑛 and 𝑃 S𝐿(𝜆𝑖0 )

∞S𝑛 ∶=
⋃

𝑠∈S𝐿(𝜆𝑖0 )
∞
P𝑠S𝑛, (29)

where P𝑠S𝑛 ∶= {𝑠} ×
{

P(𝑣, 𝑣𝑛+1) ||(𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛
}

.

Proposition 2.  For the linearized flow (28), the base space can be
restricted to the compact invariant set  × S𝐿(𝜆𝑖0 )

∞. This results in the
following flow defined on  × 𝑇

S𝐿(𝜆𝑖0 )
∞S𝑛 given by

𝑇 |

|

|

𝜋(𝑥,0) 𝜋𝛷
1
𝑡 (𝑢, 𝑠)(𝑣, 𝑣𝑛+1) =

(

𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑥, 0, 𝑢), 𝐷𝑠𝜋𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 𝑣𝑛+1)

)

,

for 𝑡 ∈ R, 𝑢 ∈  , 𝑠 = 𝜋(𝑥, 0) = (𝑥, 0) ∈ S𝐿(𝜆𝑖0 )
∞, and (𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛. 

This is a linear flow again denoted by 𝑇𝜋𝛷1 on a vector bundle with chain
transitive base space  × S𝐿(𝜆𝑖0 )

∞ and Selgrade decomposition in the form 


S𝐿(𝜆𝑖0 )

∞ ∶=  × 𝑇
S𝐿(𝜆𝑖0 )

∞S𝑛 = S1 ⊕⋯⊕ S𝑘. (30)

Here the S𝑖 are invariant subbundles and their projections to  ×𝑃
S𝐿(𝜆𝑖0 )

∞

S𝑛 are the maximal chain transitive sets of the flow induced by 𝑇𝜋𝛷1.

Proof.  The flows on the compact metric spaces   and S𝐿(𝜆𝑖0 )∞ are 
chain transitive. By Alongi and Nelson [23, Theorem 2.7.18], for both
flows, it suffices to consider chains with all jump times equal to 1.
This implies that the product flow on  × S𝐿(𝜆𝑖0 )

∞ is chain transitive
noting that the flow on S𝐿(𝜆𝑖0 )∞ does not depend on the element in  .
(Alternatively, this also holds by the remarks following Theorem  6.) 
By Selgrade’s theorem (cf. e.g. Colonius and Kliemann [17, Theorem 
9.2.5]), every linear flow with chain transitive base space admits a
Selgrade decomposition. □

In the following, we will determine the Selgrade bundles in (30).

Remark 1.  For the linear flow 𝑇𝜋𝛷1 on  × 𝑇S𝑛 the base space can
also be restricted to S 𝑗𝑐 ⊂  × S𝑛 instead of  × S𝐿(𝜆𝑖0 )

∞. Here also a 
Selgrade decomposition is valid since the flow on the compact metric
space S 𝑗𝑐  is chain transitive. However, the Selgrade bundles will have a 
more complicated structure and it would be more difficult to determine
their stability properties; cf. Theorem  7.

Since 𝜋 is a submersion, 𝑇𝜋 ∶ 𝑇R𝑛+10 → 𝑇S𝑛 acts as a projection
along ker(𝑇𝜋). By (26) and, with the particular choice of the Rie-
mannian metric, 𝑇𝜋 becomes an orthogonal projection, and hence, for
𝑦 ∈ R𝑛+10  and 𝑣 ∈ 𝑇𝑦R𝑛+10 , 

(𝑇𝑦𝜋)(𝑦, 𝑣) =
(

𝜋𝑦, ‖𝑦‖−1 (𝑣 − ‖𝑦‖−2 ⟨𝑣, 𝑦⟩ 𝑦)
)

∈ 𝑇𝜋𝑦S𝑛. (31)

For ‖𝑦‖ = 1, this simplifies to (𝑇𝑦𝜋)(𝑦, 𝑣) = (𝑦, 𝑣−⟨𝑣, 𝑦⟩ 𝑦). The geometric
interpretation of formula (31) is the following: Project 𝑦 ∈ R𝑛+10  to 
𝑠 = 𝜋𝑦 = 𝑦

‖𝑦‖ ∈ S𝑛. Then the tangent vector 𝑣 ∈ 𝑇𝑦R𝑛+10  is mapped 
to ‖𝑦‖−1 𝑣 minus ‖𝑦‖−1 times the projection 

⟨

𝑣, 𝑦
‖𝑦‖

⟩

𝑦
‖𝑦‖  to the radial

component.
Note that ker(𝑇𝑦𝜋) = span(𝑦). In fact, (𝑇𝑦𝜋)𝑣 = 0 is equivalent to

𝑣 =
⟨

𝑣, 𝑦
‖𝑦‖

⟩

𝑦
‖𝑦‖  and hence 𝑣 ∈ span(𝑦). The converse follows by taking 

in 𝑣 = 𝛼𝑦, 𝛼 ∈ R  the scalar product with 𝑦.
The spaces 𝐿(𝜆𝑖)∞ = 𝐿(𝜆𝑖) × {0} are subspaces of R𝑛+1 and {𝑦} ×

𝐿(𝜆𝑖)∞ are subspaces of the tangent spaces 𝑇𝑦R𝑛+10 ≅ {𝑦} × R𝑛+1. 
Consider the map (id , 𝑇(𝑥,0)𝜋) ∶  × 𝑇(𝑥,0)R𝑛+1 →  × 𝑇𝑠S𝑛. In the
following, we write the points in S𝑛,0 as 𝑠 = 𝜋(𝑥, 0) with 𝑥 ∈ R𝑛
satisfying ‖𝑥‖ = 1.

Lemma 2.  Let 𝑠 = 𝜋(𝑥, 0) ∈ S𝐿(𝜆𝑖0 )
∞ ⊂ S𝑛,0 with (𝑥, 0) ∈ 𝐿(𝜆𝑖0 )

∞ ⊂ R𝑛+10
and ‖𝑥‖ = 1. Then one obtains
(id , 𝑇(𝑥,0)𝜋)( × {(𝑥, 0)} × 𝐿(𝜆𝑖)∞) =  ×

{

(𝑠, 𝑣, 0) |
|

(𝑣, 0) ∈ 𝐿(𝜆𝑖)∞
}

, 𝜆𝑖 ≠ 𝜆𝑖0 ,

(id , 𝑇 𝜋)( × (𝑥, 0) × 𝐿(𝜆 )∞) =  ×
{

𝑠, 𝑣 − ⟨𝑣, 𝑥⟩ 𝑥, 0 (𝑣, 0) ∈ 𝐿(𝜆 )∞
}

,
 (𝑥,0) { } 𝑖0
( ( ))| 𝑖0
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(id , 𝑇(𝑥,0)𝜋)({(𝑥, 0)} × 𝑐 ) =
{

(𝑢, 𝑠, (𝑤 − ⟨𝑤, 𝑥⟩ 𝑥, 𝑟))| (𝑢,𝑤, 𝑟) ∈ 𝑐
}

.

The kernel of 𝑇(𝑥,0)𝜋 restricted to {(𝑥, 0)} ×𝐿(𝜆𝑖0 ) equals the span of (𝑥, 0).

Proof.  For (𝑥, 0) ∈ 𝐿(𝜆𝑖0 )
∞, ‖𝑥‖ = 1, and (𝑣, 𝑣𝑛+1) ∈ R𝑛 ×R ≅ 𝑇(𝑥,0)R𝑛+10 ,

formula (31) implies
(𝑇(𝑥,0)𝜋)(𝑥, 0)(𝑣, 𝑣𝑛+1) =

(

𝜋(𝑥, 0), ((𝑣, 𝑣𝑛+1) −
⟨

(𝑣, 𝑣𝑛+1), (𝑥, 0)
⟩

(𝑥, 0))
)

=
(

𝑠,
(

(𝑣, 𝑣𝑛+1) − ⟨𝑣, 𝑥⟩ (𝑥, 0)
))

=
(

𝑠,
(

𝑣 − ⟨𝑣, 𝑥⟩ 𝑥, 𝑣𝑛+1
))

.

This proves the formula above for 𝑖 = 𝑖0. For 𝑖 ≠ 𝑖0 and (𝑣, 0) ∈ 𝐿(𝜆𝑖)∞, 
rthogonality of 𝐿(𝜆𝑖0 ) and 𝐿(𝜆𝑖) implies that ⟨𝑣, 𝑥⟩ = 0, and hence

(𝑇(𝑥,0)𝜋)
(

(𝑥, 0), 𝐿(𝜆𝑖)∞
)

=
{

(𝑠, (𝑣 − ⟨𝑣, 𝑥⟩ 𝑥, 0))| (𝑣, 0) ∈ 𝐿(𝜆𝑖)∞
}

=
{

(𝑠, 𝑣, 0) |
|

(𝑣, 0) ∈ 𝐿(𝜆𝑖)∞
}

.

Concerning the central Selgrade bundle, recall that 𝑐 is given by (19) 
nd again by (31)

(𝑇(𝑥,0)𝜋) ((𝑥, 0), (𝑤, 𝑟)) = (𝑠,𝑤 − ⟨𝑤, 𝑥⟩ 𝑥, 𝑟) . □

Next we determine the derivative of the cocycle 𝜋𝜑1(𝑡, 𝑥, 0, 𝑢) in a 
point 𝑠0 ∈ S𝑛,0 in direction (𝑣, 𝑣𝑛+1).

Lemma 3.  The derivative of the map 𝜋𝜑1(𝑡, ⋅, 𝑢) ∶ S𝑛 → S𝑛 in the point 
= 𝜋(𝑥, 0) ∈ S𝑛, ‖𝑥‖ = 1, in direction (𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛 is the element of 
𝜋𝜑1(𝑡,𝑠,𝑢)S𝑛 given by

𝐷𝑠𝜋𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 𝑣𝑛+1)

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
(

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑣𝑛+1

)

(32)

− ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−3 (
𝑒𝐴𝑡𝑥, 0

)

⟨

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

⟩

.

Proof.  By (21), the cocycle on S𝑛 satisfies

𝜋𝜑1(𝑡, 𝜋(𝑥, 0), 𝑢) =
𝜑1(𝑡, 𝑥, 0, 𝑢)

⟨

𝜑1(𝑡, 𝑥, 0, 𝑢), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩1∕2

.

We compute for the derivatives in (𝑥, 0) in direction (𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛

𝐷𝑠𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 𝑣𝑛+1) =

(

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑣𝑛+1

)

and

𝐷𝑠
⟨

𝜑1(𝑡, 𝑥, 0, 𝑢), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩1∕2 (𝑣, 𝑣𝑛+1)

=

⟨

(𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫
𝑡
0 𝑒

𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑣𝑛+1), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩

⟨

𝜑1(𝑡, 𝑥, 0, 𝑢), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩1∕2

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
⟨

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

⟩

.

This yields
𝐷𝑠𝜋𝜑

1(𝑡, 𝑥, 0, 𝑢)(𝑣, 𝑣𝑛+1)

= ‖

‖

‖

𝜑1(𝑡, 𝑥, 0, 𝑢)‖‖
‖

−2 [
𝐷𝑠𝜑

1(𝑡, 𝑥, 0, 𝑢)(𝑣, 𝑣𝑛+1)
⟨

𝜑1(𝑡, 𝑥, 0, 𝑢), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩1∕2

− 𝜑1(𝑡, 𝑥, 0, 𝑢)𝐷𝑠
⟨

𝜑1(𝑡, 𝑥, 0, 𝑢), 𝜑1(𝑡, 𝑥, 0, 𝑢)
⟩1∕2 (𝑣, 𝑣𝑛+1)

]

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−2
[(

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑣𝑛+1

)

‖

‖

‖

(

𝑒𝐴𝑡𝑥, 0
)

‖

‖

‖

−
(

𝑒𝐴𝑡𝑥, 0
)

‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
⟨

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

⟩]

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
(

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1 ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑣𝑛+1

)

− ‖

‖𝑒𝐴𝑡𝑥‖‖
−3 (

𝑒𝐴𝑡𝑥, 0
)

⟨

𝑒𝐴𝑡𝑣 + 𝑣𝑛+1
𝑡
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

⟩

. □

‖ ‖ ∫0

6 
For the control flow 𝜋𝛷1 defined in (27) with linearization 𝑇𝜋𝛷
defined in (28), the Lyapunov exponent of a point 𝑠 = (𝑥, 𝑥𝑛+1) ∈ S𝑛 ⊂
𝑛+1 and control 𝑢 ∈   in direction (0, 0) ≠ (𝑣, 𝑣𝑛+1) ∈ 𝑇𝑠S𝑛 ⊂ R𝑛 ×R is 
iven by

𝜆(𝑠, 𝑢; 𝑣, 𝑣𝑛+1) ∶= lim
|𝑡|→∞

1
𝑡
log ‖‖

‖

𝐷(𝑥,𝑥𝑛+1)𝜋𝜑
1(𝑡, 𝑥, 𝑥𝑛+1, 𝑢)(𝑣, 𝑣𝑛+1)

‖

‖

‖

,

where (𝑢, 𝑠, 𝑣, 𝑣𝑛+1) ∈  × 𝑇𝑠S𝑛. The following theorem describes the 
Selgrade bundles and their Lyapunov exponents.

Theorem 7.  Consider the projected linear control flow 𝜋𝛷1 on  × S𝑛
associated with the lift (12) of a linear control system of the form (1) and 
the linearized flow 𝑇𝜋𝛷 with base space restricted to  × S𝐿(𝜆𝑖0 )

∞, as 
described in Proposition  2.

(i) Then the Selgrade bundles in (30) have the following form:

S𝑐 = (id , 𝑇 𝜋)𝑐 with dim S𝑐 = dim𝐿0 + 1;

S𝑖 = (id , 𝑇 𝜋)
(

 × 𝐿(𝜆𝑖)∞
)

=  × S𝐿(𝜆𝑖0 )
∞ × 𝐿(𝜆𝑖)∞

 with dim S𝑖 = dim𝐿(𝜆𝑖),

for 𝜆𝑖 ≠ 0, 𝜆𝑖0 . If dim𝐿(𝜆𝑖0 ) > 1 there is an additional Selgrade bundle given
by

S𝑖0 = (id , 𝑇 𝜋)( × 𝐿(𝜆𝑖0 )
∞) with dim S𝑖0 = dim𝐿(𝜆𝑖0 ) − 1.

(ii) The Lyapunov exponents are

𝜆(𝑠, 𝑢; 𝑣, 0) = 𝜆𝑖 − 𝜆𝑖0  for all (𝑢, 𝑠, 𝑣, 0) ∈ S𝑖 with 𝜆𝑖 ≠ 0, 𝜆𝑖0 ,

𝜆(𝑠, 𝑢; 𝑣, 𝑣𝑛+1) = −𝜆𝑖0  for (𝑢, 𝑠, 𝑣, 𝑣𝑛+1) ∈ S𝑐 .

For dim𝐿(𝜆𝑖0 ) > 1

𝜆(𝑠, 𝑢; 𝑣, 0) = 0 for all (𝑢, 𝑠, 𝑣, 0) ∈ S𝑖0 . (33)

Proof.  (i) Recall that 𝑇𝑠S𝑛 = {𝑠}×
{

𝑣 ∈ R𝑛+1 |⟨𝑣, 𝑠⟩ = 0
} and 𝑇 (

R𝑛0 × R
)

⊂ 𝑇R𝑛+10 . The Selgrade decomposition for the linear control flow 𝛷1

associated with the lifted control system (12) is given in (18). Let 
𝑠 = 𝜋(𝑥, 0) ∈ S𝐿(𝜆𝑖0 )

∞ with ‖𝑥‖ = 1. By Lemma  2, the surjection

(id , 𝑇 𝜋) ∶  × 𝑇
S𝐿(𝜆𝑖0 )

∞R𝑛+10 →  × 𝑇
S𝐿(𝜆𝑖0 )

∞S𝑛,

maps  × 𝐿(𝜆𝑖0 )
∞ × 𝐿(𝜆𝑖)∞ ⊂  × 𝑇𝐿(𝜆𝑖0 )∞R𝑛+10 , 𝑖 ≠ 0, 𝑖0, onto  ×

𝐿(𝜆𝑖0 )
∞ × 𝐿(𝜆𝑖)∞. Furthermore,  × S𝐿(𝜆𝑖0 )

∞ × 𝑐 is mapped onto

S𝑐 =
{

(𝑢, 𝑠, 𝑤 − ⟨𝑤, 𝑥⟩ 𝑥, 𝑟) ||
|

𝑠 ∈ S𝐿(𝜆𝑖0 )
∞ and (𝑢,𝑤, 𝑟) ∈ 𝑐

}

.

Finally,  × 𝐿(𝜆𝑖0 )
∞ × 𝐿(𝜆𝑖0 )

∞ is mapped onto

(id , 𝑇 𝜋)
(

 × 𝐿(𝜆𝑖0 )
∞ × 𝐿(𝜆𝑖0 )

∞
)

=  ×
{

(𝑠, 𝑣 − ⟨𝑣, 𝑥⟩ 𝑥, 0) ||
|

𝑠 ∈ S𝐿(𝜆𝑖0 )
∞ and (𝑣, 0) ∈ 𝐿(𝜆𝑖0 )

∞
}

.

Let

𝑃𝐿(𝜆𝑖0 )∞R𝑛+10 ∶=
⋃

(𝑥,0)∈𝐿(𝜆𝑖0 )
∞
𝑃(𝑥,0)R𝑛+10 =

⋃

(𝑥,0)∈𝐿(𝜆𝑖0 )
∞
{(𝑥, 0)} × P𝑛.

In the projective bundle  × 𝑃𝐿(𝜆𝑖0 )∞R𝑛+10 , the images of the Selgrade 
bundles 𝑐 and  ×𝐿(𝜆𝑖)∞ are the maximal chain transitive sets. Their 
mages in ×𝑃

S𝐿(𝜆𝑖0 )
∞S𝑛 (cf. (29) are also chain transitive since they

are the continuous images of chain transitive sets in a compact metric
space. The same arguments show that the image of the Selgrade bundle
× S𝐿(𝜆𝑖0 )

∞×𝐿(𝜆𝑖0 )
∞ is chain transitive. It follows that the subbundles

defined in assertion (i) are the Selgrade bundles. The kernel of 𝑇(𝑥,0)𝜋
restricted to 𝐿(𝜆𝑖0 )∞ equals the span of (𝑥, 0). Hence

dim  = dim
(

𝑇 𝜋
)

𝐿(𝜆 )∞ = dim𝐿(𝜆 )∞ − 1 = dim𝐿(𝜆 ) − 1.
S 𝑖0 (𝑥,0) 𝑖0 𝑖0 𝑖0
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The dimensions of the subbundles S𝑐 and S𝑖, 𝑖 ≠ 𝑖0 are preserved 
nder (id , 𝑇 𝜋) and
∑

𝑖≠0
dim S𝑖 + dim S𝑐 =

∑

𝜆𝑖≠0,𝜆𝑖0

dim𝐿(𝜆𝑖) + dim𝐿(𝜆𝑖0 ) − 1 + dim𝐿0 + 1

= 𝑛 = dim 𝑇𝑠S𝑛.

(ii) By Lemma  2, any direction in (𝑇(𝑥,0)𝜋)𝐿(𝜆𝑖)∞ satisfies (𝑣, 𝑣𝑛+1) =
(𝑣, 0) ∈ 𝐿(𝜆𝑖)∞. Thus Lemma  3 implies that
𝐷𝑠𝜋𝜑

1(𝑡, 𝑥, 0, 𝑢)(𝑣, 0) (34)

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1 (
𝑒𝐴𝑡𝑣, 0

)

− ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−3 (
𝑒𝐴𝑡𝑥, 0

) ⟨

𝑒𝐴𝑡𝑣, 𝑒𝐴𝑡𝑥
⟩

.

For 𝑖 ≠ 𝑖0, the 𝐴-invariant subspaces 𝐿(𝜆𝑖) and 𝐿(𝜆𝑖0 ) are orthogonal, 
and hence ⟨𝑒𝐴𝑡𝑣, 𝑒𝐴𝑡𝑥⟩ = 0 implying

𝐷𝑠𝜋𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 0) = ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1 (
𝑒𝐴𝑡𝑣, 0

)

.

For the Lyapunov exponent in direction (𝑣, 0) ∈ 𝐿(𝜆𝑖)∞, 𝑖 ≠ 𝑖0, this 
implies

lim
𝑡→±∞

1
𝑡
log ‖‖

‖

𝐷𝑠𝜋𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 0)‖‖

‖

= lim
𝑡→±∞

1
𝑡
log

‖

‖

(𝑒𝐴𝑡𝑣, 0)‖
‖

‖

‖

𝑒𝐴𝑡𝑥‖
‖

= lim
𝑡→±∞

1
𝑡
log ‖‖

‖

𝑒𝐴𝑡𝑣‖‖
‖

− lim
𝑡→±∞

1
𝑡
log ‖‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

= 𝜆𝑖 − 𝜆𝑖0 .

Next consider the Lyapunov exponents for (𝑢, 𝑠, 𝑣, 0) ∈ (id , 𝑇(𝑥,0)𝜋)𝑖0 . 
34) yields

𝐷𝑠𝜋𝜑
1(𝑡, 𝑥, 0, 𝑢)(𝑣, 0) =

(

𝑒𝐴𝑡𝑣
‖

‖

𝑒𝐴𝑡𝑥‖
‖

𝑣, 0
)

−
(

𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 0
)⟨

𝑒𝐴𝑡𝑣
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

⟩

.

Since 𝑥, 𝑣 ∈ 𝐿𝑖0  it follows that this term has exponential growth 0 for 
→ ±∞. This proves (33). Finally, we compute the Lyapunov exponents 
or (𝑢, 𝑠, 𝑣, 𝑣𝑛+1) ∈ S𝑐 = (id , 𝑇(𝑥,0)𝜋)𝑐 . Lemma  2 and Eq.  (19) imply
(𝑣, 𝑣𝑛+1) = (𝑤 − ⟨𝑤, 𝑥⟩ 𝑥, 𝑟) for (𝑢,𝑤, 𝑟) = (𝑢, 𝑟𝑒(𝑢, 0) + 𝑟𝑦, 𝑟) ∈ 𝑐 .

Inserting this into formula (32), we obtain
𝐷𝑠𝜋𝜑

1(𝑡, 𝜋(𝑥, 0), 𝑢)(𝑣, 𝑣𝑛+1)

= ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
(

𝑒𝐴𝑡𝑤 + 𝑟∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑟

)

− ⟨𝑤, 𝑥⟩
(

𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 0
)

+ ‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−1
‖

‖

‖

𝑒𝐴𝑡𝑥‖‖
‖

−2 (
𝑒𝐴𝑡𝑥, 0

)

⟨

𝑒𝐴𝑡𝑤 + 𝑟∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

⟩

−
(

𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 0
)

⟨𝑤, 𝑥⟩
⟨

𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

⟩

.

First note that we may omit the summands with bounded norms which 
o not contribute to the exponential growth rate. Then the remaining 
terms may be written as 𝑓 (𝑡)𝑔(𝑡), where 𝑓 (𝑡) ∶= ‖

‖

𝑒𝐴𝑡𝑥‖
‖

−1 and

𝑔(𝑡) ∶= 𝑟
(

𝑒𝐴𝑡(𝑒(𝑢, 0) + 𝑦) + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 1

)

+ 𝑟
(

𝑒𝐴𝑡𝑥
‖

‖

𝑒𝐴𝑡𝑥‖
‖

, 0
)⟨

𝑒𝐴𝑡(𝑒(𝑢, 𝑡) + 𝑦) + ∫

𝑡

0
𝑒𝐴(𝑡−𝜎)𝐵𝑢(𝜎)𝑑𝜎, 𝑒𝐴𝑡𝑥

‖

‖

𝑒𝐴𝑡𝑥‖
‖

⟩

.

We have 𝑓 (𝑡)−1 = ‖

‖

𝑒𝐴𝑡𝑥‖
‖

, and hence

lim
𝑡→±∞

1
𝑡
log 𝑓 (𝑡) = −𝜆𝑖0 , lim

𝑡→±∞
1
𝑡
log 𝑓 (𝑡)−1 = 𝜆𝑖0 .

By Lemma  2, the exponential growth rate of 𝑔 is lim𝑡→±∞
1
𝑡 log ‖𝑔(𝑡)‖ =

. By Cesari [25, (3.12.v)] it follows that

lim
𝑡→±∞

1
𝑡
log [𝑓 (𝑡)‖𝑔(𝑡)‖] = −𝜆𝑖0 .

This concludes the proof. □

For 𝑠 ∈ S𝑛 and 𝑢 ∈   a direction is called stable, if the correspond-
ing Lyapunov exponents for 𝑡 → ±∞ are negative and unstable if they 
are positive. An immediate corollary of Theorem  7 is the following.

Corollary 2.  In the situation of Theorem  7, for 𝜆𝑖0 ≠ 0, the subbundles 
 , 𝑖 > 𝑖 , and  , 𝑖 < 𝑖 , consist for all 𝑢 ∈   of stable and unstable 
S 𝑖 0 S 𝑖 0

7 
directions, respectively. The directions in S𝑐  are stable for 𝜆𝑖0 > 0 and 
unstable for 𝜆𝑖0 < 0.

(i) Define

for 𝜆𝑖0 > 0, S− ∶=
⨁

𝑖>𝑖0 ,𝜆𝑖≠0
S𝑖 ⊕ S𝑐 and S+ ∶=

⨁

𝑖<𝑖0
S𝑖, (35)

for 𝜆𝑖0 < 0, S− ∶=
⨁

𝑖>𝑖0
S𝑖 and S+ ∶= S𝑐 ⊕

⨁

𝑖<𝑖0 ,𝜆𝑖≠0
S𝑖. (36)

Then


S𝐿(𝜆𝑖0 )

∞ =  × 𝑇
S𝐿(𝜆𝑖0 )

∞S𝑛 = S− ⊕ S𝑖0 ⊕ S+

is a decomposition into the stable, center, and unstable subbundles.
(ii) For the stable subbundle S−, the supremal exponential growth rate 

(

S−) ∶= sup{𝜆(𝑢, 𝑥, 𝑣−)| (𝑢, 𝑥, 𝑣−) ∈ S−} satisfies

for 𝜆𝑖0 > 0, 𝜅(S−) = 𝜆𝑖1 − 𝜆𝑖0  where 𝜆𝑖1 = max{𝜆𝑖 ||𝜆𝑖 > 0 and 𝑖 ≥ 𝑖0 },

for 𝜆𝑖0 < 0, 𝜅
(

S−) = 𝜆𝓁 − 𝜆𝑖0  if 𝑖0 < 𝓁 and if 𝑖0 = 𝓁 then S− is trivial.

Proof.  Recall that 𝜆1 > ⋯ > 𝜆𝓁 . Theorem  7 (iii) shows that 

𝜅( S𝑖) = 𝜆𝑖 − 𝜆𝑖0 < 0 for 0 ≠ 𝜆𝑖 < 𝜆𝑖0 , i.e., 𝑖 > 𝑖0. (37)

For 𝜆𝑖0 > 0, it follows that 𝜅(S𝑐 ) = −𝜆𝑖0 < 0. This implies that
S− defined in (35) satisfies 𝜅(S−) = 𝜆𝑖1 − 𝜆𝑖0 < 0, where 𝜆𝑖1 ∶=
max{𝜆𝑖 ||𝜆𝑖 > 0 and 𝑖 ≥ 𝑖0 }. If 𝜆𝑖 < 0 for all 𝑖 > 𝑖0 then 𝜅(S−) = −𝜆𝑖0 . 
For 𝜆𝑖0 < 0 it holds that 𝜅(S𝑐 ) = −𝜆𝑖0 > 0 and (37) implies that S−

defined in (36) satisfies 𝜅(S−) = 𝜆𝓁 − 𝜆𝑖0 < 0 if 𝑖0 < 𝓁. Hence the 
assertions follow. □

Remark 2.  Note that 𝜆𝑖 − 𝜆𝑖0 ≠ 0 for 𝑖 ≠ 𝑖0 and 𝜆𝑖0 ≠ 0. It follows that 
the linear flow 𝑇𝜋𝛷1 is uniformly hyperbolic, if dim𝐿(𝜆𝑖0 ) = 1, i.e., if 
𝜆𝑖0  is a simple real eigenvalue of 𝐴.

Remark 3.  The Selgrade bundles S𝑖, S𝑐 , and S𝑖0  actually are 
Sacker-Sell bundles since their spectral intervals (which degenerate to 
points) do not overlap; cf. Johnson, Palmer, and Sell [26].

5. Invariant manifolds

In this section we determine invariant manifolds on the Poincaré 
sphere S𝑛 and on R𝑛. In order to determine the behavior of linear 
control systems of the form (1) “near infinity” we analyze invariant 
manifolds for points on the equator S𝑛,0 of S𝑛. For the linearization
𝑇𝜋𝛷1 about the invariant sets S𝐿(𝜆𝑖0 )∞ ⊂ S𝑛,0, Theorem  7 determines
the Selgrade bundles and their spectra.

We need stable manifolds for the nonlinear flow 𝜋𝛷1 on  ×
S𝑛. From the vast literature on invariant manifolds, we refer to the
following related versions of stable manifold theorems. Johnson [27] 
proved results on invariant manifolds tangential to Sacker-Sell bundles. 
His main result [27, Theorem 2.25] concerns differential equations in
R𝑛 which are embedded in a flow where the base space is of Bebutov 
type. Chow and Yi [28] consider differential equations in R𝑛 with a
base space which is a compact and connected manifold. Alternatively, 
also invariant manifold theorems for (single) Carathéodory differential
equations are presented in Aulbach and Wanner [29] .

While the methods developed in these (and other) papers presum-
ably can be adapted so that they apply to our situation, the results
are not immediately applicable. Instead we will use a local stable 
manifold theorem in Colonius and Kliemann [8, Theorem 6.4.3], which
is based on an abstract stable manifold theorem due to Bronstein
and Chernii [30] (cf. [8, Theorem 5.6.1] for a detailed proof and
the monograph by Bronstein and Kopanskii [31] for abstract invariant 
manifold theory). We need the following notational preliminaries.
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Consider a control-affine system on a Riemannian manifold 𝑀 of 
the form 

𝑥̇(𝑡) = 𝑋0(𝑥(𝑡)) +
𝑚
∑

𝑖=1
𝑢𝑖(𝑡)𝑋𝑖(𝑥(𝑡)), 𝑢 ∈  , (38)

satisfying the assumptions on system (3). The linearized system on the
tangent bundle 𝑇𝑀 has the form 

𝑑
𝑑𝑡
𝑇 𝑥(𝑡) = 𝑇𝑋0(𝑇𝑥(𝑡)) +

𝑚
∑

𝑖=1
𝑢𝑖(𝑡)𝑇𝑋𝑖(𝑇𝑥(𝑡)), (39)

where for a vector field 𝑋 on 𝑀 its linearization is denoted by 𝑇𝑋.
The control flow 𝛷𝑡(𝑢, 𝑥) = (𝑢(𝑡+ ⋅), 𝜑(𝑡, 𝑥, 𝑢)) on  ×𝑀 for (38) can be
linearized and yields the control flow 𝑇𝛷 on  × 𝑇𝑀 for (39).

The following result is a minor modification of a local stable mani-
old theorem on Riemannian manifolds presented in [8, Theorem 6.4.9]
(a mistake in the formulation is corrected); cf. also the local stable
manifold theorem [8, Theorem 6.4.3] on R𝑛. Instead of the compact 
losure of a control set 𝐷 in 𝑀 , we consider an arbitrary compact set 
⊂ 𝑀 and define the lift of 𝐾 to  ×𝑀 by

 ∶= {(𝑢, 𝑥) ∈  ×𝑀 |𝜑(𝑡, 𝑥, 𝑢) ∈ 𝐾 for all 𝑡 ∈ R }.

Assume that  is nonvoid. Thus  is a compact invariant set for the 
ontrol flow 𝛷, and we assume that the linearized flow 𝑇𝛷 restricted 
o the vector bundle
 = {(𝑢, 𝑥, 𝑣) ∈  × 𝑇𝑀 |(𝑢, 𝑥) ∈  } → 

admits the following decomposition into invariant subbundles, 

 = −⨁+. (40)

Here − and + are exponentially separated meaning that there are
constants 𝑐0 > 0 and 𝜀0 > 0 with 
‖

‖

𝑇𝛷𝑡(𝑢, 𝑥, 𝑣−)‖‖ ≤ 𝑐0𝑒
−𝜀0𝑡 ‖

‖

𝑇𝛷𝑡(𝑢, 𝑥, 𝑣+)‖‖  for 𝑡 ≥ 0, (41)

for all (𝑢, 𝑥, 𝑣−) ∈ −, (𝑢, 𝑥, 𝑣+) ∈ + with ‖𝑣−‖ = ‖

‖

𝑣+‖
‖

= 1, and the 
subbundle − is stable, i.e., it satisfies 

𝜅(−) ∶= sup
{

lim sup
𝑡→∞

1
𝑡
log ‖

‖

𝐷𝑥𝜑(𝑡, 𝑥, 𝑢)𝑣−‖‖ |(𝑢, 𝑥, 𝑣
−) ∈ −

}

< 0. (42)

Note that we do not assume hyperbolicity; that is, we allow that +

includes points with nonpositive Lyapunov exponents. For the Rie-
mannian manifold 𝑀 , the exponential map exp yields a map (𝑥, 𝑣) ↦
(𝑥, exp(𝑥, 𝑣)) from a neighborhood of the zero section in 𝑇𝑀 to 𝑀 ×𝑀 .
Recall the following definitions (cf. e.g. Husemoller [32, p. 15]). A 
bundle is a continuous map 𝜋 ∶ 𝐸 → 𝐵, where 𝐸 and 𝐵 are metric 
spaces. Let 𝜋 ∶ 𝐸 → 𝐵 and 𝜋′ ∶ 𝐸′ → 𝐵′ be two bundles. A bundle 
morphism 𝐹 = (𝑔, ℎ) ∶ 𝐸 → 𝐸′ is a pair of continuous maps 𝑔 ∶ 𝐸 → 𝐸′

and ℎ ∶ 𝐵 → 𝐵′ such that 𝜋′◦𝑔 = ℎ◦𝜋. A bundle morphism is a bundle 
isomorphism if there exists an inverse bundle morphism.

Theorem 8.  Consider control system (38) on 𝑀 with associated control 
low 𝛷 on  ×𝑀 and let 𝐾 ⊂ 𝑀 be compact with lift  to  ×𝑀 . Suppose 
or the linearized control system (39) that the associated linearized control 
low 𝑇𝛷 restricted to the vector bundle  admits the decomposition (40),
(41) into subbundles and the subbundle − satisfies stability condition (42).
Then there are 𝛿 > 0 and a map
𝑆− ∶ {(𝑢, 𝑥, 𝑣−) ∈ −

|‖𝑣−‖ < 𝛿 } →  ×𝑀,

which is a bundle isomorphism onto its image −
𝑙𝑜𝑐 ∶= im𝑆− with the 

following properties:
(i) Every (𝑢, 𝑥0, 𝑥) ∈ −

𝑙𝑜𝑐 satisfies
lim
𝑡→∞

𝑒−𝛼𝑡𝑑(𝜑(𝑡, 𝑥, 𝑢), 𝜑(𝑡, 𝑥0, 𝑢)) = 0 for every 𝛼 ∈
(

𝜅(S−), 0
)

,

where 𝑑 denotes the Riemannian distance on 𝑀 . The set −
𝑙𝑜𝑐 ⊂  ×𝑀 is 

called a local stable manifold corresponding to the stable subbundle −.
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(ii) For every (𝑢, 𝑥0) ∈ , define the local stable manifold for (𝑢, 𝑥0) by

−
𝑙𝑜𝑐 (𝑢, 𝑥0) ∶=

{

𝑥 ∈𝑀 |

|

|

(𝑢, 𝑥0, 𝑥) ∈ −
𝑙𝑜𝑐

}

⊂ 𝑀.

Then the topological dimension of −
𝑙𝑜𝑐 (𝑢, 𝑥0) equals the dimension of −.

(iii) The local stable manifold − is positively invariant under the
control flow 𝛷, i.e., for 𝑥 ∈ −

𝑙𝑜𝑐 (𝑢, 𝑥0) it follows that 𝜑(𝑡, 𝑥, 𝑢) ∈ −
𝑙𝑜𝑐 (𝑢(𝑡+

⋅), 𝜑(𝑡, 𝑥0, 𝑢)) for all 𝑡 ≥ 0.
(iv) The distance of the subbundle −

𝑙𝑜𝑐 to − can be made arbitrarily
small in the following Lipschitz sense by choosing 𝛿 > 0 small: For all ℎ > 0
there is 𝛿 > 0 such that − is contained in the set 𝐶(−, ℎ) of angle ℎ
around − given by
𝐶(−, ℎ) ∶=

{

(𝑢, 𝑥, exp(𝑥, 𝑣+ + 𝑣−)) ∈  ×𝑀 |

|

(𝑢, 𝑥, 𝑣±) ∈ ±, ‖
‖

𝑣+‖
‖

≤ ℎ ‖𝑣−‖
}

.

Remark 4.  Using time reversal, one can also obtain a result on local 
unstable manifolds, cf. [8, Remark 6.4.5].

We will apply Theorem  8 to control system (20) on the Poincaré 
sphere 𝑀 = S𝑛, the associated control flow 𝜋𝛷1 on  × S𝑛, and its 
linearization 𝑇𝜋𝛷1 on  × 𝑇𝑆𝑛. The set 𝐾 ∶= S𝐿(𝜆𝑖0 )

∞ ⊂ S𝑛,0 is
compact and its lift to  × S𝑛 is given by  × S𝐿(𝜆𝑖0 )

∞ since on the
equator S𝑛,0 the controls 𝑢 act trivially. Observe that this also implies
that 𝜋𝜑1(𝑡, 𝑠, 𝑢) = 𝜋𝜑1(𝑡, 𝑠, 0) for 𝑠 ∈ S𝑛,0. Recall that Corollary  2 presents 
decompositions with a stable subbundle S− in the form 


S𝐿(𝜆𝑖0 )

∞ =  × 𝑇
S𝐿(𝜆𝑖0 )

∞S𝑛 = S− ⊕ (S𝑖0 ⊕ S+). (43)

Here S𝑖0  is nontrivial if and only if dim𝐿(𝜆𝑖0 ) > 0. We obtain the 
following corollary to Theorem  8.

Corollary 3.  Consider control system (20) on the Poincaré sphere S𝑛 and 
he associated control flow 𝜋𝛷1 on  ×S𝑛. For the compact set S𝐿(𝜆𝑖0 )∞ ⊂
𝑛,0, 𝜆𝑖0 ≠ 0, and the stable subbundle S− in (43), there are 𝛿 > 0 and a
map

𝑆− ∶
{

(𝑢, 𝑠, 𝑣, 𝑣𝑛+1) ∈ S−
|

|

‖

‖

(𝑣, 𝑣𝑛+1)‖‖ < 𝛿
}

→  × S𝐿(𝜆𝑖0 )
∞ × S𝑛,

which is a bundle isomorphism onto its image −
𝑙𝑜𝑐 ∶= im𝑆−, with the 

following properties:
(i) Every (𝑢, 𝑠0, 𝑠) ∈ −

𝑙𝑜𝑐 satisfies 

lim
𝑡→∞

𝑒−𝛼𝑡𝑑(𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝜋𝜑1(𝑡, 𝑠0, 0)) = 0 for every 𝛼 ∈
(

𝜅(S−), 0
)

, (44)

where 𝑑 denotes the Riemannian distance on S𝑛. The set −
𝑙𝑜𝑐 ⊂  ×

S𝐿(𝜆𝑖0 )
∞×S𝑛 is a local stable manifold corresponding to the stable subbundle 

S−.
(ii) For every (𝑢, 𝑠0) ∈ S𝐿(𝜆𝑖0 )

∞ the local stable manifold for (𝑢, 𝑠0)
efined by

−
𝑙𝑜𝑐 (𝑢, 𝑠0) ∶=

{

𝑠 ∈ S𝑛 ||
|

(𝑢, 𝑠0, 𝑠) ∈ −
𝑙𝑜𝑐

}

⊂ S𝑛

has topological dimension equal to the dimension of S−.
(iii) The local stable manifold −

𝑙𝑜𝑐 is positively invariant under the 
control flow 𝜋𝛷1, i.e., for 𝑠 ∈ −

𝑙𝑜𝑐 (𝑢, 𝑠0) it holds that 𝜋𝜑1(𝑡, 𝑠, 𝑢) ∈
−
𝑙𝑜𝑐 (𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑠0, 0)) for all 𝑡 ≥ 0.
(iv) The distance of the subbundle −

𝑙𝑜𝑐 to S− can be made arbitrarily 
mall by choosing 𝛿 > 0 small: For all ℎ > 0 there is 𝛿 > 0 such that −

𝑙𝑜𝑐
s contained in the set 𝐶(S−, ℎ) of angle ℎ around S− given by

𝐶(S−, ℎ) =
{

(𝑢, 𝑠, exp(𝑠, 𝑣+ + 𝑣−)) ∈  × S𝐿(𝜆𝑖0 )
∞

× S𝑛 |
|

(𝑢, 𝑠, 𝑣±) ∈ ±, ‖
‖

𝑣+‖
‖

≤ ℎ ‖𝑣−‖
}

.

Note that for the sphere S𝑛 the exponential map is exp ∶ 𝑇S𝑛 →

S𝑛 × S𝑛 ∶ (𝑠, 𝑣) ↦ (𝑠, exp(𝑠, 𝑣)) =
(

𝑠, 𝑠+𝑣
‖𝑠+𝑣‖

)

.

Remark 5.  We can apply Theorem  8 also to the flow on S𝑛,0, which
has the form (𝜋𝜓(𝑡, 𝑠), 0), 𝑡 ∈ R, 𝑠 ∈ S𝑛,0 ≃ S𝑛−1 × {0}; here 𝜋 denotes the
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projection 𝜋 ∶ R𝑛0 → S𝑛−1. When the base space of the linearized flow
is restricted to S𝐿(𝜆𝑖0 )∞ and 𝜆𝑖0 < 0, the stable subbundle is
⨁

𝑖>𝑖0

𝑇
S𝐿(𝜆𝑖0 )

∞ (𝑇𝜋)𝐿(𝜆𝑖)∞ = S𝐿(𝜆𝑖0 )
∞ ×

⨁

𝑖>𝑖0

𝐿(𝜆𝑖)∞.

One obtains a corresponding stable manifold in S𝑛,0. If 𝜆𝑖0 > 0 one has 
to add the subbundle (𝑇𝜋)𝐿(𝜆𝑖0 )∞, which has dimension dim𝐿(𝜆𝑖0 )−1.

Consider (𝑢, 𝑠0, 𝑠) ∈ −
𝑙𝑜𝑐 ⊂  × S𝑛,0 × S𝑛. Here only the values 

(𝑡), 𝑡 ≥ 0, are relevant. We can extend −
𝑙𝑜𝑐 to a global stable manifold 

−defined by
− ∶=

{

(𝑢, 𝑠0, 𝑠) ∈  × S𝑛,0

× S𝑛 ||
|

∃𝑇 ≥ 0 ∶ (𝑢(𝑇 + ⋅), 𝜋𝜑1(𝑇 , 𝑠0, 0), 𝜋𝜑1(𝑇 , 𝑠, 𝑢)) ∈ −
𝑙𝑜𝑐

}

.

Note that, for 𝑡 → −∞, the 𝛼-limit set of 𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝑠 ∈ S𝑛,+, is contained
in one of the central chain control sets S𝐸𝑗𝑐 , 𝑗 = 0 or 𝑗 = 1, 2, or in one
of the sets S𝐿(𝜆𝑖)∞𝑗 ⊂ S𝑛,0, 𝑗 = 0 or 𝑗 = 1, 2, 𝜆𝑖 ≠ 0; cf. Corollary  1.

The following corollary is immediate.

Corollary 4.  In the situation of Corollary  3 the global stable manifold 
− satisfies (44) for every (𝑢, 𝑠0, 𝑠) ∈ − and it is invariant under
the control flow 𝜋𝛷1, i.e., for 𝑠 ∈ −(𝑢, 𝑠0) it holds that 𝜋𝜑1(𝑡, 𝑠, 𝑢) ∈
−(𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑠0, 0)) for all 𝑡 ∈ R.

Next we analyze the consequences for the original linear control 
ystem on R𝑛. Using the stereographic projection from R𝑛+1 → S𝑛,+ and 
(𝑥) =

√

𝑥21 +⋯ + 𝑥2𝑛 + 1 we define

𝜙+ ∶ R𝑛 → S𝑛,+, 𝜙+(𝑥) = 𝛥(𝑥)−1(𝑥1,… , 𝑥𝑛, 1),
(

𝜙+)−1 ∶ S𝑛,+ → R𝑛,
(

𝜙+)−1 (𝑦1,… , 𝑦𝑛+1) =
(

𝑦1
𝑦𝑛+1

,… ,
𝑦𝑛
𝑦𝑛+1

)

. (45)

For a stable manifold −
𝑙𝑜𝑐 and (𝑢, 𝑠0) ∈  × S𝐿(𝜆𝑖0 )

∞, we define

𝑊 −
𝑙𝑜𝑐 (𝑢, 𝑠0) ∶=

(

𝜙+)−1 (−(𝑢, 𝑠0) ∩ S𝑛,+
)

and analogously 𝑊 −(𝑢, 𝑠0). For 𝜆𝑖0 < 0 the stable subbundle S− given
by (36) does not contain S𝑐 , and hence −

𝑙𝑜𝑐 (𝑢, 𝑠0) is Lipschitz close 
to S𝑛,0 (or even contained in S𝑛,0). Since the intersection with S𝑛,+ is 
relevant, we restrict attention to the case 𝜆𝑖0 > 0 where, by (35), the 
subbundle S𝑐 ⊂ S−, and hence −(𝑢, 𝑠0) ∩ S𝑛,+ is nonvoid.

By Corollary  3(i), it follows for (𝑢, 𝑠0, 𝑠) ∈ −
𝑙𝑜𝑐 that 𝜋𝜑1(𝑡, 𝑠, 𝑢) =

𝜑1(𝑡,𝑠,𝑢)
‖

‖

𝜑1(𝑡,𝑠,𝑢)‖
‖

 converges to 𝜋𝜑1(𝑡, 𝑠0, 𝑢) =
𝜑1(𝑡,𝑠0 ,𝑢)

‖

‖

𝜑1(𝑡,𝑠0 ,𝑢)‖‖
. The following example

shows what may be expected for the trajectories in R𝑛.

Example 1.  Consider 𝑢 = 0 and let 𝑧0 ∈ R𝑛 with ‖
‖

𝑧0‖‖ = 1 be an 
igenvector of 𝐴 for an eigenvalue 𝜆𝑖0 > 0. Then 𝑠0 ∶= (𝑧0, 0) ∈ S𝑛,0
s an equilibrium of the induced flow on S𝑛,0. We have
𝜑(𝑡, 𝑥, 0) = 𝑒𝐴𝑡𝑥, 𝑡 ≥ 0, 𝑥 ∈ R𝑛, and 𝑒𝐴𝑡𝑧0 = 𝑒𝜆𝑖0 𝑡𝑧0,

and obtain on S𝑛

𝜋𝜑1(𝑡, 𝜋(𝑧0, 1), 0) = 𝜙+(𝑒𝐴𝑡𝑧0) = 𝛥(𝑒𝐴𝑡𝑧0)−1(𝑒𝐴𝑡𝑧0, 1)

= 𝛥(𝑒𝜆𝑖0 𝑡𝑧0)−1(𝑒
𝜆𝑖0 𝑡𝑧0, 1) → (𝑧0, 0) = 𝑠0.

This shows that 𝜋(𝑧0, 1) ∈ −(0, 𝑠0) ∩ S𝑛,+. Define
𝑠1 = 𝜋(𝑧0, 1) and 𝑠2 = 𝜋𝜑1(𝜏, 𝑠1, 0) for some 𝜏 > 0.

It follows that 𝑠1, 𝑠2 ∈ −(0, 𝑠0) ∩ S𝑛,+ due to invariance of −(0, 𝑠0)
and S𝑛,+. Define 𝑧1 ∶= 𝑧0, 𝑧2 =

(

𝜙+)−1 (𝑠1) = 𝜑(𝜏, 𝑧1, 0). The points 𝑧1
and 𝑧2 satisfy
‖

‖

𝜑(𝑡, 𝑧1, 0) − 𝜑(𝑡, 𝑧2, 0)‖‖ = ‖

‖

‖

𝑒𝐴𝑡𝑧0 − 𝑒𝐴(𝑡+𝜏)𝑧0
‖

‖

‖

= ‖

‖

‖

𝑒𝜆𝑖0 𝑡𝑧0 − 𝑒
𝜆𝑖0 (𝑡+𝜏)𝑧0

‖

‖

‖

= 𝑒𝜆𝑖0 𝑡 ‖‖
‖

𝑧0 − 𝑒
𝜆𝑖0 𝜏𝑧0

‖

‖

‖

.

Thus the distance ‖
‖

𝜑(𝑡, 𝑧1, 0) − 𝜑(𝑡, 𝑧2, 0)‖‖ grows with 𝑒𝜆𝑖0 𝑡. By stability
on S𝑛, it follows for 𝛼 ∈ (𝜅(S−), 0) ⊂ (−∞, 0),

𝑑(𝜋𝜑1(𝑡, 𝑠 , 0), 𝜋𝜑1(𝑡, 𝑠 , 0))
1 2
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≤ 𝑑(𝜋𝜑1(𝑡, 𝑠1, 0), 𝜋𝜑1(𝑡, 𝑠0, 0)) + 𝑑(𝜋𝜑1(𝑡, 𝑠0, 0), 𝜋𝜑1(𝑡, 𝑠2, 0))

≤ 𝑒−𝛼𝑡
[

𝑑(𝑠1, 𝑠0) + 𝑑(𝑠0, 𝑠2)
]

→ 0 for 𝑡→ ∞.

For 𝑡 → ∞, the points on −(0, 𝑠0) ∩S𝑛,+ converge exponentially, while 
the points on the preimage 𝑊 −(0, 𝑠0) =

(

𝜙+)−1 (−(0, 𝑠0) ∩ S𝑛,+
)

⊂ R𝑛

diverge exponentially with 𝑒𝜆𝑖0 𝑡. Note that for 𝑡′(𝑡) ∶= 𝑡 − 𝜏, 𝑡 ≥ 𝜏, one 
obtains ‖

‖

𝜑(𝑡, 𝑧1, 0) − 𝜑(𝑡′(𝑡), 𝑧2, 0)‖‖ = 0.

In the general situation, we obtain the following result.

Theorem 9.  Let the assumptions of Corollary  3 be satisfied and fix 𝑠0 ∈
S𝐿(𝜆𝑖0 )

∞ ⊂ S𝑛,0 with 𝜆𝑖0 > 0.
(i) For every (𝑢, 𝑠0) ∈  × S𝐿(𝜆𝑖0 )

∞, the dimension of 𝑊 −
𝑙𝑜𝑐 (𝑢, 𝑠0) ⊂ R𝑛

atisfies dim𝑊 −
𝑙𝑜𝑐 (𝑢, 𝑠0) ≤ dim S−. For all 𝑧 ∈ 𝑊 −(𝑢, 𝑠0) it holds that 

𝜑(𝑡, 𝑧, 𝑢)‖ → ∞ for 𝑡 → ∞ and the sets 𝑊 −(𝑢, 𝑠0) are invariant in the 
ense that
𝜑(𝑡, 𝑧, 𝑢) ∈ 𝑊 −(𝑢(𝑡 + ⋅), 𝜋𝜑1(𝑡, 𝑠0, 0)) for all 𝑡 ∈ R.

(ii) For 𝑗 = 1, 2, let 𝑧𝑗 ∶=
(

𝜙+)−1 (𝑠𝑗 ) with 𝑠𝑗 ∈ −(𝑢, 𝑠0) ∩ S𝑛,+. Then, 
for 𝑡 > 0 large enough, there is 𝑡′(𝑡) > 0 with 𝑡′(𝑡) → ∞ for 𝑡→ ∞ such that 

‖

‖

𝜑(𝑡, 𝑧1, 𝑢) − 𝜑(𝑡′(𝑡), 𝑧2, 𝑢)‖‖ ≤ ‖

‖

‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡′(𝑡), 𝑠2, 𝑢)).

(46)

Proof.  (i) The invariance property follows from invariance of −(𝑢, 𝑠0)
nd S𝑛,+ and the conjugacy property of 𝜙+. The assertion dim𝑊 −

𝑙𝑜𝑐 (𝑢, 𝑠0)
dim S− holds since 𝜙+ is a diffeomorphism and 𝜙+(𝑊 −

𝑙𝑜𝑐 (𝑢, 𝑠0)) ⊂
−
𝑙𝑜𝑐 (𝑢, 𝑠0). Furthermore, ‖𝜑(𝑡, 𝑧, 𝑢)‖ → ∞ since 𝜙+(𝜑(𝑡, 𝑧, 𝑢)) → 𝑠0 ∈ S𝑛,0. 
ii) Corollary  3 and the inequality
𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡, 𝑠2, 𝑢))

≤ 𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡, 𝑠0, 𝑢)) + 𝑑(𝜋𝜑1(𝑡, 𝑠0, 𝑢), 𝜋𝜑1(𝑡, 𝑠2, 𝑢)),

imply that, for every 𝛼 ∈
(

𝜅(S−), 0
)

, 

lim
𝑡→∞

𝑒−𝛼𝑡𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡, 𝑠2, 𝑢)) = 0. (47)

For 𝑗 = 1, 2, formula (45) shows that the components of 𝜋𝜑1(𝑡, 𝑠𝑗 , 𝑢)
satisfy, for 𝑡 ≥ 0,

𝜑(𝑡, 𝑧𝑗 , 𝑢) =
(

𝜙+)−1 (𝜋𝜑1(𝑡, 𝑠𝑗 , 𝑢)
)

=
(

𝜋𝜑1(𝑡, 𝑠𝑗 , 𝑢)𝑛+1
)−1 (𝜋𝜑1(𝑡, 𝑠𝑗 , 𝑢)𝑖

)𝑛
𝑖=1 .

With 𝜋(𝑧𝑗 , 1) = 𝑠𝑗 , we have

𝜋𝜑1(𝑡, 𝑠𝑗 , 𝑢)𝑛+1 =
𝜑1(𝑡, 𝑧𝑗 , 1, 𝑢)𝑛+1
‖

‖

‖

𝜑1(𝑡, 𝑧𝑗 , 1, 𝑢)
‖

‖

‖

= 1
‖

‖

‖

𝜑1(𝑡, 𝑧𝑗 , 1, 𝑢)
‖

‖

‖

implying 
𝜑(𝑡, 𝑧𝑗 , 𝑢) =

‖

‖

‖

𝜑1(𝑡, 𝑧𝑗 , 1, 𝑢)
‖

‖

‖

(

𝜋𝜑1(𝑡, 𝜋(𝑧𝑗 , 1), 𝑢)𝑖
)𝑛
𝑖=1 . (48)

We claim that, for 𝑡 > 0 large enough, there is 𝑡′(𝑡) > 0 with 
‖

‖

‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

= ‖

‖

‖

𝜑1(𝑡′(𝑡), 𝑧2, 1, 𝑢)
‖

‖

‖

. In fact, we know that ‖‖
‖

𝜑1(𝑡, 𝑧𝑗 , 1, 𝑢)
‖

‖

‖

∞ for 𝑡 → ∞, 𝑗 = 1, 2. This implies that ‖‖
‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

> ‖

‖

(𝑧2, 1)‖‖ for
𝑡 large enough, and hence 𝑡′(𝑡) exists. Thus
‖

‖

𝜑(𝑡, 𝑧1, 𝑢) − 𝜑(𝑡′(𝑡), 𝑧2, 𝑢)‖‖

=
‖

‖

‖

‖

‖

‖

‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

(

𝜋𝜑1(𝑡, 𝑠1, 𝑢)
)𝑛
𝑖=1 −

‖

‖

‖

𝜑1(𝑡′(𝑡), 𝑧2, 1, 𝑢)
‖

‖

‖

(

𝜋𝜑1(𝑡′(𝑡), 𝑠2, 𝑢)
)𝑛
𝑖=1

‖

‖

‖

‖

≤ ‖

‖

‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡′(𝑡), 𝑠2, 𝑢)). □

 □

Remark 6.  In inequality (46), the first factor converges to ∞ for 𝑡 → ∞. 
he second factor satisfies
𝑑(𝜋𝜑1(𝑡, 𝑠1, 𝑢), 𝜋𝜑1(𝑡′(𝑡), 𝑠2, 𝑢))

≤ 𝑑(𝜋𝜑1(𝑡, 𝑠 , 𝑢), 𝜋𝜑1(𝑡, 𝑠 , 𝑢)) + 𝑑(𝜋𝜑1(𝑡, 𝑠 , 𝑢), 𝜋𝜑1(𝑡′(𝑡), 𝑠 , 𝑢)). (49)
1 2 2 2
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We know that lim𝑡→∞ 𝑒𝛼𝑡 ‖‖
‖

𝜋𝜑1(𝑡, 𝑠1, 𝑢) − 𝜋𝜑1(𝑡, 𝑠2, 𝑢)
‖

‖

‖

= 0 for 𝛼 ∈
(

𝜅(S−), 0
)

. If the exponential growth of ‖‖
‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

 is smaller than
−𝜅(S−) one obtains for the first summand in (49) that
lim
𝑡→∞

𝑒𝛼𝑡 ‖‖
‖

𝜑1(𝑡, 𝑧1, 1, 𝑢)
‖

‖

‖

‖

‖

‖

𝜋𝜑1(𝑡, 𝑠1, 𝑢) − 𝜋𝜑1(𝑡, 𝑠2, 𝑢)
‖

‖

‖

= 0.

If dim𝐿(𝜆𝑖0 = 1 then 𝑠0 is an equilibrium on S𝑛,0, and the second
summand in (49) converges to 0 for 𝑡 → ∞. If 𝑠0 is not an equilibrium, it
may happen that in the second summand 𝜋𝜑1(𝑡, 𝑠2, 𝑢) and 𝜋𝜑1(𝑡′(𝑡), 𝑠2, 𝑢)
do not converge for 𝑡 → ∞. Furthermore, compactness of S𝐿(𝜆𝑖0 )∞
implies that for every sequence 𝑡𝑘 → ∞ there are 𝑠′2, 𝑠′′2 ∈ S𝐿(𝜆𝑖0 )

∞

and a subsequence 𝑡𝑘𝑖 , 𝑖 ∈ N, such that

𝜋𝜑1(𝑡𝑘𝑖 , 𝑠2, 𝑢) → 𝑠′2 and 𝜋𝜑1(𝑡′(𝑡𝑘𝑖 ), 𝑠2, 𝑢) → 𝑠′′2 .

Remark 7.  Using time reversal, one can show that the results derived 
in this section for stable manifolds have counterparts for unstable man-
ifolds (cf. Remark  4). Thus one obtains invariant manifolds 𝑊 +(𝑢, 𝑠0)
in R𝑛 consisting of points with ‖𝜑(𝑡, 𝑧, 𝑢)‖ → ∞ for 𝑡 → −∞. We omit
the details.

6. Examples

In this section we present several examples illustrating the results
in the previous sections.

The following two-dimensional hyperbolic system has been ana-
lyzed in Colonius, Santana, Setti [33, Example 2] and Colonius, San-
tana, Viscovini [7, Example 6.2], 
(

𝑥̇1
𝑥̇2

)

=
(

1 0
0 −1

)

+
(

1
1

)

𝑢(𝑡) with 𝑢(𝑡) ∈ [−1, 1]. (50)

For the induced system on the northern hemisphere S2,+ of the Poincaré 
sphere S2, one obtains an asymptotically stable equilibrium 𝑠0 =
(1, 0, 0) ⊂ S2,0 ≃ S1 and an unstable equilibrium 𝑠0 = (0, 1, 0). The phase 
portrait on S2,+ is sketched in [33, Fig. 2].

We turn to describe higher dimensional examples, where the matrix 
𝐴 is hyperbolic and given in different Jordan normal forms. In the 
classical treatise Arnol’d [34, § 21] one finds graphical illustrations 
for the corresponding phase portraits in R3. For hyperbolic matrix 𝐴, 
Theorem  3 implies that the unique chain control set 𝐸 in R𝑛 is bounded
and coincides with the closure of the control set 𝐷0 containing the 
origin. The invariant manifolds depend on the control functions 𝑢 ∈  . 
For the points at infinity (i.e. on the equator of the Poincaré sphere), 
the dimensions and the stability properties of the invariant manifolds
only depend on the matrix 𝐴 and not on 𝑢. Thus, in the examples below, 
we do not vary the matrix 𝐵 in front of 𝑢(𝑡).

Example 2.  Consider the system in R3 given by 
⎛

⎜

⎜

⎝

𝑥̇1
𝑥̇2
𝑥̇3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

2 0 0
0 1 0
0 0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥1
𝑥2
𝑥3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

𝑢(𝑡),  with 𝑢(𝑡) ∈ [−1, 1]. (51)

The Lyapunov spaces are, with 𝜆1 = 2, 𝜆2 = 1, and 𝜆3 = −1, given by
𝐿(2) = R × {02}, 𝐿(1) = {0} × R × {0} , and 𝐿(−1) = {02} × R.

For 𝜆𝑖0 = 𝜆2 = 1 > 0 consider the set S𝐿(1)∞ = {(0, 1, 0, 0)} ⊂ S3,0 ≃ S2.
The point 𝑠0 = (0, 1, 0, 0) is an equilibrium at infinity. According to
Theorem  7, for the linearized flow 𝑇𝜋𝛷1 with base space restricted
to  × S𝐿(1)∞, the one-dimensional subbundle S𝑐 ⊂ 𝑇

S𝐿(1)∞S3 =
𝑇(0,1,0,0)S3 is stable with 𝜅(S𝑐 ) = −𝜆𝑖0 = −1. The central subbundle 
𝑐 is determined by the unique bounded solutions 𝑒(𝑢, ⋅), 𝑢 ∈  . The 
table subbundle is S− = S1 ⊕ S𝑐 where

S1 = (id , 𝑇 𝜋)
(

 × 𝐿(𝜆1)∞
)

=  × S𝐿(1)∞ × 𝐿(2)∞

=  × {(0, 1, 0, 0)} ×
(

R × {02}
)

⊂  × 𝑇S3,0.
10 
Fig. 1. Phase portraits for 𝑢(𝑡) ≡ 0 in R3 and S2 ≃ S3,0 in Example  2.

Fig. 2. Phase portraits for 𝑢(𝑡) ≡ 0 in R3 and S2 ≃ S3,0 in Example  3 .

Fig. 3. Phase portraits for 𝑢(𝑡) ≡ 0 in R3 and S2 ≃ S3,0 in Example  4 .

The unstable subbundle is

S2 = (id , 𝑇 𝜋)
(

 × 𝐿(𝜆3)∞
)

=  × {(0, 1, 0, 0)} ×
(

{02} × R2) .

By Corollary  3 for 𝑢 ∈  , the local stable manifold −
𝑙𝑜𝑐 (𝑢, 𝑠0) ⊂ S3 is

two-dimensional and every point 𝑠 ∈ −(𝑢, 𝑠0) satisfies for all 𝛼 > −1

𝑒−𝛼𝑡𝑑
(

𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝜋𝜑1(𝑡, 𝑠0, 𝑢)
)

= 𝑒−𝛼𝑡𝑑
(

𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝑠0
)

→ 0 for 𝑡→ ∞.

For all 𝑢 ∈   and all 𝑥 ∈ 𝑊 −(𝑢, 𝑠0) =
(

𝜙+)−1 (−(𝑢, 𝑠0) ∩ S3,+
) it holds 

that ‖𝜑(𝑡, 𝑥, 𝑢)‖ → ∞ for 𝑡 → ∞.
The local unstable manifold +

𝑙𝑜𝑐 (𝑢, 𝑠0) ⊂ S3 (cf. Remark  7) is one-
dimensional, and for all 𝑢 ∈   and all 𝑥 ∈ 𝑊 +(𝑢, 𝑠0) =

(

𝜙+)−1
(

+(𝑢, 𝑠0) ∩ S3,+
) it holds that ‖𝜑(𝑡, 𝑥, 𝑢)‖ → ∞ for 𝑡→ −∞.

For the system with 𝑢(𝑡) ≡ 0, Fig.  1 sketches the phase portraits 
on R3 and on S2 (we cannot draw the phase portrait on S3). The
sphere S2 is identified with the equator S3,0 of the Poincaré sphere S3, 
hence it represents infinity. There are four equilibria at infinity on the
equator S2,0 of S2 and the poles (0, 0,±1) of S2 are unstable equilibria 
at infinity. The equilibrium 𝑠0 = (0, 1, 0, 0) ∈ S3,0 is identified with 
(0, 1, 0) ∈ S2,0 ⊂ S2. Its stable and unstable manifolds on S2 are the
half circle between (0, 0, 1) and (0, 0,−1) and the half circle between 
(1, 0, 0) and (−1, 0, 0), respectively. The set 𝑊 −(0, 𝑠0) is contained in the
half-space in R3 spanned by (0, 1, 0) and (0, 0, 1).
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In our next example the set S𝐿(1)∞ is not a minimal set for the 
induced flow on S3,0.

Example 3.  Consider 
⎛

⎜

⎜

⎝

𝑥̇1
𝑥̇2
𝑥̇3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 1 0
0 1 0
0 0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥1
𝑥2
𝑥3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

𝑢(𝑡) with 𝑢(𝑡) ∈ [−1, 1]. (52)

The Lyapunov spaces are, with 𝜆1 = 1 and 𝜆2 = −1 given by

𝐿(1) = R2 × {0}  and 𝐿(−1) = {02} × R.

For 𝜆𝑖0 = 𝜆1 = 1 > 0 consider the set

S𝐿(1)∞ =
{

(𝑠1, 𝑠2, 0, 0)
|

|

|

𝑠21 + 𝑠
2
2 = 1

}

⊂ S3,0.

When we again identify the equator S3,0 with S2, the set S𝐿(1)∞ is 
identified with the equator S2,0 ≃ S1 of S2. For the linearized flow 
𝑇𝜋𝛷1 with base space restricted to  × S𝐿(1)∞, the one-dimensional
subbundle S𝑐 ⊂ 𝑇

S𝐿(1)∞S3 is stable with 𝜅(S𝑐 ) = −𝜆𝑖0 = −1. 
Furthermore, also the subbundle S𝑖0 = S1 is one-dimensional and the 
corresponding Lyapunov exponents are 0. The subbundle S2 is stable
with Lyapunov exponents equal to 𝜆2 − 𝜆𝑖0 = −1 − 1 = −2. Hence the
set  × S𝐿(1)∞ is stable. For the system with 𝑢(𝑡) ≡ 0, Fig.  2 sketches 
the phase portraits on R3 and on S2 ≃ S3,0. There are two equilibria 
(±1, 0, 0) at infinity on the equator S2,0 of S2 which correspond to the 
eigenspace R × {0} of 

(

1 1
0 1

)

. Furthermore, the poles (0, 0,±1) of
S2 are unstable equilibria at infinity.

In the following example the matrix 𝐴 has a complex-conjugate pair 
of eigenvalues. Here a periodic solution at infinity is obtained.

Example 4.  Consider 
⎛

⎜

⎜

⎝

𝑥̇1
𝑥̇2
𝑥̇3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 1 0
−1 1 0
0 0 −1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥1
𝑥2
𝑥3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

𝑢(𝑡) with 𝑢(𝑡) ∈ [−1, 1]. (53)

The eigenvalues of the matrix 𝐴 are 𝜇1,2 = 1± 𝚤 and 𝜇3 = −1, hence the 
yapunov exponents are 𝜆1 = 1 and 𝜆2 = −1 with Lyapunov spaces

𝐿(1) = R2 × {0} and 𝐿(−1) = {02} × R.

For 𝜆𝑖0 = 𝜆1 = 1 > 0 consider the set

S𝐿(1)∞ =
{

(𝑠1, 𝑠2, 0, 0)
|

|

|

𝑠21 + 𝑠
2
2 = 1

}

⊂ S3,0.

This set is identified with the equator S2,0 ≃ S1 of S2 ≃ S3,0. Restricted
to S𝐿(1)∞ the orbit 𝜋𝜑1(⋅, 𝑠, 0) corresponds to

𝑥̇1(𝑡) = 𝑥2(𝑡), 𝑥̇2(𝑡) = −𝑥1(𝑡), hence 
(

𝑥1(𝑡), 𝑥2(𝑡)
)

= (sin 𝑡, cos 𝑡).

For the linearized flow 𝑇𝜋𝛷1 with base space restricted to  × S𝐿(1)∞,
the subbundle S𝑐 ⊂ 𝑇

S𝐿(1)∞S3 is stable with 𝜅(S𝑐 ) = −𝜆𝑖0 = −1. The
subbundle S𝑖0 = S1 is one-dimensional and the subbundle S2 is 
stable, hence the set  × S𝐿(1)∞, i.e., the periodic solution at infinity, is 
stable. For the system with 𝑢(𝑡) ≡ 0, Fig.  3 sketches the phase portraits 
on R3 and on S2 ≃ S3,0.

In the next example, the periodic solution at infinity has a nontrivial 
stable manifold.

Example 5.  Consider 

⎛

⎜

⎜

⎜

⎜

⎝

𝑥̇1
𝑥̇2
𝑥̇3
𝑥̇4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

2 0 0 0
0 1 1 0
0 −1 1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎟

⎟

⎠

𝑢(𝑡) with 𝑢(𝑡) ∈ [−1, 1].

(54)
11 
The eigenvalues of the matrix 𝐴 are 𝜇1 = 2, 𝜇2,3 = 1 ± 𝚤, and 𝜇4 = −1,
hence the Lyapunov exponents are 𝜆1 = 2, 𝜆2 = 1, and 𝜆3 = −1 with
Lyapunov spaces
𝐿(2) = R ×

{

03
}

, 𝐿(1) = {0} × R2 × {0} and 𝐿(−1) = {03} × R.

For 𝜆𝑖0 = 𝜆2 = 1 > 0 consider the set

S𝐿(1)∞ =
{

(0, 𝑠2, 𝑠3, 0, 0)
|

|

|

𝑠22 + 𝑠
2
3 = 1

}

⊂ S4,0.

This set is identified with the subset {0} × S2,0 × {0} ≃ S1 of S3 ≃ S4,0. 
Restricted to S𝐿(1)∞ the trajectory 𝜋𝜑1(⋅, 𝑠, 0) corresponds to
𝑥̇2(𝑡) = 𝑥3(𝑡), 𝑥̇3(𝑡) = −𝑥2(𝑡), hence 

(

𝑥2(𝑡), 𝑥3(𝑡)
)

= (sin 𝑡, cos 𝑡).

For the linearized flow 𝑇𝜋𝛷1 with base space restricted to  × S𝐿(1)∞, 
the subbundle S𝑐 ⊂ 𝑇

S𝐿(1)∞S4 is stable with 𝜅(S𝑐 ) = −𝜆𝑖0 = −1. For
points in the subbundles S1 and S3 the Lyapunov exponents are
𝜆1 − 𝜆𝑖0 = 2 − 1 = 1 and 𝜆3 − 𝜆𝑖0 = −1 − 1 = −2,

respectively. Hence the stable subbundle is S𝑐 ⊕ S3 and S1 is 
unstable. Let 𝑠0 ∈ S𝐿(1)∞ and 𝑢 ∈  . The local stable manifold 

−
𝑙𝑜𝑐 (𝑢, 𝑠0) ⊂ S4 is two-dimensional and every point 𝑠 ∈ −(𝑢, 𝑠0)
atisfies for all 𝛼 ∈ (−1, 0)

𝑒−𝛼𝑡𝑑
(

𝜋𝜑1(𝑡, 𝑠, 𝑢), 𝜋𝜑1(𝑡, 𝑠0, 0)
)

→ 0 for 𝑡 → ∞.

For all 𝑥 ∈ 𝑊 ±(𝑢, 𝑠0) =
(

𝜙+)−1 (±(𝑢, 𝑠0) ∩ S4,+
) it holds that ‖𝜑(𝑡, 𝑥, 𝑢)‖

→ ∞ for 𝑡 → ±∞.
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