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Understanding patterns in financial time series is crucial for improving prediction accuracy in algorithmic trading 
and risk management. This paper presents a novel AI-based computer vision approach for classifying financial 
time series. Historical price sequences are transformed into Gramian Angular Difference Field (GADF) images and 
fed into a convolutional neural network (CNN) for pattern recognition. To interpret the CNN’s decision-making 
process, we apply Spectral Relevance Analysis (SpRAy), enabling the identification of distinct clusters based on 
relevance maps. Clustering the images according to their relevance profiles reveals groups with significantly 
higher predictive performance compared to the full dataset. The corresponding relevance patterns highlight 
favorable price movement structures and are identified via the associated clusters.

1.  Introduction

Technical analysis and fundamental analysis are two widely rec-
ognized approaches in trading. Both methods are employed by active 
traders in financial markets, although they contradict the assumptions 
of the efficient market hypothesis. In essence, both approaches assume 
that a publicly traded asset is temporarily mispriced - either underval-
ued or overvalued. Traders use these techniques to estimate the “fair” 
value of an asset and capitalize on the discrepancy. When an asset is 
perceived to be undervalued, traders may take a long position, antici-
pating price increases. Conversely, when an asset appears overvalued, 
they might take a short position, expecting the price to fall.

While fundamental analysis has demonstrated its effectiveness in 
various scenarios, the validity of technical analysis remains a subject of 
debate. Only a slight majority of studies have shown that technical anal-
ysis methods lead to consistent outperformance. For instance, Gerrit-
sen (2016) argues that most commonly used technical trading rules fail 
to produce excess returns. Furthermore, Hoffmann and Shefrin (2014) 
highlights that excessive trading, driven by high turnover rates, dimin-
ishes returns. However, in contrast, Dourra and Siy (2002) suggests that 
technical trading rules can indeed generate extraordinary returns - but 
only when applied by traders with advanced mathematical expertise.

In technical analysis, traders typically rely on pre-defined indica-
tors or patterns to predict price movements. However, the rapid ad-
vancements in machine learning have enabled the use of algorithms to
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identify the most profitable patterns. For example, Miller et al. (2019) 
apply smoothing splines to high-frequency Bitcoin (BTC) price data and 
demonstrated that regression splines can effectively identify profitable 
technical analysis patterns and trading strategies for BTC time series 
data. Similarly, Bose et al. (2021) propose a hybrid model combining 
multivariate adaptive regression splines (MARS) with a deep neural net-
work (DNN) to predict stock closing prices, achieving an impressive 
92% accuracy in predictions. Another hybrid model is propsed by Ku 
et al. (2023), who present a flexible LSTM-based model for stock fore-
casting that integrates domain knowledge from investors into the fea-
ture selection process. Their model allows investors to specify preferred 
indicators, resulting in significantly better predictive accuracy and risk-
adjusted returns. Their findings suggest that informed indicator selec-
tion, combined with LSTM’s ability to model temporal dependencies, 
leads to more robust and actionable predictions in financial markets. As 
is typical in time series prediction, features are fed into the models as 
numeric sequences. Alternatively, data can be transformed into images, 
as demonstrated by Li et al. (2020). Modern image analysis techniques, 
particularly computer vision models (Chai et al., 2021), yield superior 
performance, not only in image recognition and classification, but also 
in financial applications. For instance, Jiang et al. (2023) uses convolu-
tional neural networks (CNNs) to predict stock-market trends based on 
price charts, including open-high-low-close bars, moving average lines, 
and trading volume bars. This approach outperforms traditional price 
trend models. Chen et al. (2016) developed the mean average mapping 
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Fig. 1. Three-step framework of the proposed method.

method to convert financial time series data into 2-dimensional plots, 
preserving all relevant information from the time series. These plots are 
then used as features to train a CNN, which predicts future price trends. 
In trading simulations, the CNN demonstrates robust results and strong 
predictive performance. Cohen et al. (2020) employ candlestick charts 
as inputs to train CNNs for price prediction, yielding similarly strong 
results. They also argue that treating financial time series classification 
as a computer vision problem can be particularly useful for technical 
analysis. Finally, Barra et al. (2020) use an ensemble of CNNs to predict 
future trend of the S&P 500 index. They input Gramian Angular Fields
(GAF), which preserve time series information, and compare their ap-
proach against a buy-and-hold strategy, random guessing, and a 1-D 
CNN that uses numerical data. Their results indicate that the ensemble 
model outperforms the benchmark strategies, providing robust predic-
tive results.

The aforementioned studies indicate that representing time series 
data as images can offer advantages over purely numerical formats. Ac-
cording to Jiang et al. (2023), this is primarily because images serve 
as the default input for CNNs, which are particularly well-suited for 
pattern recognition in visual data. The authors argue that CNNs can 
leverage their intrinsic capabilities, such as automatic feature extrac-
tion, to identify complex structures more effectively. This is especially 
relevant in financial markets, where underlying patterns are often in-
tricate, making it beneficial to extract features directly from raw data 
rather than relying on manual feature engineering. Beyond financial 
forecasting, hybrid deep learning models have also shown strong per-
formance in other domains: He et al. (2024) propose a hybrid model for 
epileptic seizure detection based on EEG signals, combining wavelet-
based signal decomposition, CNNs, and an attention-based transformed 
LSTM. Their results demonstrate that such integrated models outper-
form conventional baselines, underscoring the potential of advanced 
deep learning pipelines for time series classification. Similarly, Yang 
et al. (2025) present a novel method for detecting malicious HTTP re-
quests by combining an autoencoder with a transductive LSTM and a 
GAN architecture. Their approach achieves state-of-the-art performance 
on multiple benchmark datasets, highlighting the adaptability and ro-
bustness of LSTM-based hybrid models beyond the financial and medical
domains.

In this paper, we propose an approach that utilizes a CNN to au-
tomatically extract relevance patterns for time series forecasting and 
demonstrate how to identify the patterns with the highest predictive per-
formance. Our approach follows a three-step procedure, as illustrated in 
Fig. 1.

In the second step, we use the GADF matrices as input data for a 
ResNet50 CNN to predict the direction of BTC price movements. While 
the trained models achieve reasonable forecasting performace, they do 
not exhibit extraordinary predictive accuracy. We hypothesize that cer-
tain subsamples within the dataset yield higher predictive power com-
pared to the overall performance across the full dataset. In the final 
step, we identify these high-performing subsamples by clustering the 
GADF matrix observations based on the importance of individual val-
ues for prediction. To achieve this, we apply spectral relevance analysis 
(SpRAy). Specifically, We compute relevance scores for each value in the 
input data using the layer-wise relevance propagation (LRP) method, a 
widely used approach eXplainable Artificial Intelligence. The resulting 
relevance score matrices for each GADF matrix are then clustered using 

spectral clustering (SC) (Anders et al., 2022; Lapuschkin et al., 2019; von 
Luxburg, 2007). This relevance-based clustering approach allows us to 
identify clusters that outperform the overall CNN model in predictive 
accuracy and to investigate the underlying pattern in the relevance ma-
trices associated with superior predictive performance. In doing so, we 
detect specific patterns within the relevance matrices that correspond 
to enhanced forecastability.

Our study contributes to the literature on time series classification 
and pattern recognition in two key ways:

• Forecastability of BTC price movements using computer vision mod-
els: We demonstrate that BTC price movements can be forecasted us-
ing CNNs when the lagged price movements sequences are encoded 
as GADF matrices. We validate this approach on minute-level high-
frequency time series data across five different forecasting horizons.

• Relevance-based clustering to identify predictive patterns: We intro-
duce a novel methodology for identifying patterns associated with 
excess returns using SpRAy. By clustering observations based on the 
relevance scores of GADF matrix values, we uncover distinct deci-
sion patterns within the CNN’s relevance matrices. Several identified 
clusters exhibit higher accuracy scores than the overall CNN model, 
demonstrating the potential of relevance-based clustering for finan-
cial time series prediction.

To highlight the novelty of our approach, Table 1 provides a schematic 
comparison with related studies that combine image-encoded time se-
ries data with CNN models and, in some cases, XAI techniques. To the 
best of our knowledge, no prior study has combined image-encoding, 
CNNs, LRP, and subsequent clustering of relevance matrices to identify 
highly forecastable patterns.

The table shows that several studies have explored individual com-
ponents of our approach - particularly the combination of image en-
coding and CNNs has received considerable attention in financial
forecasting research. However, only very few studies incorporate ex-
plainability techniques such as LRP, and none to our knowledge com-
bine all four elements: image-encoded time series, CNN architectures, 
LRP-based relevance extraction, and clustering of relevance maps. Our 
method thus represents a novel contribution that builds upon existing 
components but introduces a new pipeline for identifying and exploiting 
high-predictive structures in financial time series data.

The remainder of this paper is organized as follows: Section 2 out-
lines the research design and empirical approach, providing an overview 
of image encoding, CNNs, LRP, and SC. Section 3 presents the exper-
imental study and Section 4 discusses the key empirical findings. Fi-
nally, Section 5 concludes the paper and highlights avenues for future 
research.

2.  Methodology

We investigate the presence of recurring patterns in high-frequency 
financial time series with the goal of identifying structures that exhibit 
robust predictive power for the direction of future price movements. 
Specifically, we aim to determine whether certain patterns are particu-
larly reliable in forecasting the direction of asset price changes.

As a necessary preprocessing step, we construct partially overlap-
ping subsequences from the original time series, and accordingly define 
binary target variables.
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Table 1 
Methodological comparison with related GAF-CNN-LRP studies.
 Study Focus and Method  Methodological overlap
Jiang et al. (2023) Use CNNs to predict stock market trends based on image-encoded price charts. Focuses on outperforming 

traditional trend models using visual inputs.
 **

Barra et al. (2020) Employ an ensemble of CNNs on GAF to forecast the S&P 500 index. Benchmarked against buy-and-hold, random 
guessing, and 1D CNNs on numerical input.

 **

Chen et al. (2016) Propose the Mean Average Mapping method to convert financial time series into 2D plots for CNN-based trend 
prediction. Demonstrate robust simulation performance.

 **

Xu and Lin (2023) Develop a quantum-enhanced federated learning model using quantum GAFs as input features for CNN-based 
stock forecasting.

 **

Singh and Singh (2024) Compare the performance of CNN and CNN-LSTM hybrids in predicting Indian stock prices, focusing on model 
architecture rather than data encoding or explainability.

 *

Kumar et al. (2025) Integrate XAI (SHAP) into LSTM-based and Prophet forecasting models. Emphasize interpretability in classical 
time series contexts.

 **

Carta et al. (2022) Apply XAI-based feature selection techniques for next-day stock return prediction. Combine explainability with 
classical indicators rather than deep visual models.

 **

Huang et al. (2023) Propose a hybrid model combining fuzzy C-means clustering and CNNs to forecast corporate financial 
performance. Use entropy-based feature weighting and correlation filtering.

 **

Arratia and Sepúlveda (2020) Convert financial time series into image representations to leverage CNNs’ pattern recognition for forecasting. 
Emphasize the visual structure of time-dependent data.

 **

 This study Introduce a GADF-based CNN model for BTC forecasting, enhanced by spectral clustering on relevance maps. 
Identify high-performing prediction patterns through cluster analysis.

 ****

Note: Stars indicate methodological overlap with our proposed approach. One star (*) denotes that a study employs one of the core components used in our 
method (i.e., image-encoding, CNN architecture, XAI methods, or clustering). Two stars (**) indicate the use of two components, and so on.

Let the time series be given by 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑆}, where 𝑆 denotes 
the number of real-valued observations. This series is segmented into 
overlapping subsequences 𝑋(𝑖), each of length 𝑚, such that: 
𝑋(𝑖) = {𝑥𝑖−(𝑚−1), 𝑥𝑖−(𝑚−2),… , 𝑥𝑖}, (1)

with 𝑖 = 𝑚,… , (𝑆 − ℎ), and ℎ representing the prediction horizon. For 
each sequence 𝑋(𝑖) , we define a binary target variable 𝑐(𝑖)ℎ  indicating 
whether the average price over the next ℎ minutes exceeds the current 
price 𝑥𝑖: 

𝑐(𝑖)ℎ =

{

1 if 𝑋̄(𝑖+1)
ℎ > 𝑥𝑖,

0 otherwise,
(2)

where the average is given by 𝑋̄(𝑖+1)
ℎ = 1

ℎ

ℎ
∑

𝑗=1
𝑥𝑖+𝑗 . This formulation yields 

a total of 𝑀 = (𝑆 − ℎ) − 𝑚 labeled subsequences per prediction horizon 
ℎ. Due to the binary nature of the target variable, the forcasting task is 
framed as a binary classification problem.

The classification problem is set as a multi-step procedure. First, 
each price sequence is transformed into a GADF matrices, enabling a 
3-dimensional representation of temporal dynamics. Second, the result-
ing GADF matrices serve as inputs for training a ResNet-50 CNN model, 
which is tasked with predicting the binary target variables. Third, to en-
hance interpretability, the decision-making process of the deep neural 
network is analyzed through the generation of relevance maps, which 
are subsequently clustered using SpRAy. The following sections provide 
a detailed description of each step.

2.1.  Image encoding

In this section, we describe the process of encoding time series se-
quences as GADF matrices. This encoding framework was introduced 
by Wang and Oates (2015a), on which the following explanations are 
based. For simplicity, we omit the sequence index 𝑖 and the index for 
the time horizon ℎ.

First, each generic time series sequence 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑚)′ is 
rescaled in the interval [−1, 1]. The scaled observations are denoted as 
𝑥̃𝑗 with 𝑗 = 1,… , 𝑚:

𝑥̃𝑗 =
(𝑥𝑗 −max(𝑋)) + (𝑥𝑗 −min(𝑋))

max(𝑋) −min(𝑋)
. (3)

By scaling the time series sequences, we can utilize the inverse co-
sine function to represent 𝑋̃ = (𝑥̃1, 𝑥̃2,… , 𝑥̃𝑚)′ in polar coordinates. The 

rescaled observations are encoded as the angular cosine 𝜙𝑗 , while the 
timestamp 𝑡𝑗 ∈ {1,… , 𝑚} serves as the radius 𝑟𝑗 . The polar transforma-
tion is defined as follows, where 𝑚 regulates the span of the polar coor-
dinate system:
{

𝜙𝑗 = arccos(𝑥̃𝑗 )
𝑟𝑗 =

𝑡𝑗
𝑚 .

(4)

The observation at timestamp 𝑡1 is positioned closest to the pole, with 
subsequent timestamps moving outward. The arccosine function maps 
values to the interval [0, 𝜋], ensuring a bijective transformation. A key 
advantage of this mapping is the preservation of absolute temporal re-
lationships. In Cartesian coordinates, the area between two timestamps 
𝑡𝑠 and 𝑡𝑗 depends on |𝑥𝑡𝑠 − 𝑥𝑡𝑗 |, whereas in polar coordinates, the sec-
tor area is determined by the absolute values of the timestamps 𝑡𝑠 and 
𝑡𝑗 . The area in Cartesian coordinates is given by 𝐴𝑠,𝑗 = ∫ 𝑗

𝑠 𝑓 (𝑥)𝑑𝑥, en-
suring that if 𝑓 (𝑥) on [𝑠, 𝑠 + 𝑧] is identical to 𝑓 (𝑥) on [𝑗, 𝑗 + 𝑧], then 
𝐴𝑠,𝑠+𝑧 = 𝐴𝑗,𝑗+𝑧. However, in polar coordinates, the corresponding area 
is defined as 𝐴′

𝑠,𝑗 = ∫ 𝜙𝑗
𝜙𝑠

𝑟2𝑑𝜙, meaning that the area is independent on 
the time interval |𝑠 − 𝑗| and 𝐴′

𝑠,𝑠+𝑧 ≠ 𝐴′
𝑗,𝑗+𝑧.

To complete the encoding process, we define the GADF matrix. Let 𝐈
denote the unit vector of length 𝑚, i.e. (1, 1,… , 1)′. The GADF matrix 𝐺
is computed as follows:
𝐺 = {𝐺𝑗𝑠}𝑗,𝑠=1,…,𝑚 = {sin(𝜙𝑗 − 𝜙𝑠)}𝑗,𝑠=1,…,𝑚

=
(

𝐈 − 𝑋̃◦𝑋̃
)◦1∕2

⋅ 𝑋̃′ − 𝑋̃ ⋅
(

𝐈 − 𝑋̃◦𝑋̃
)◦1∕2 ′, (5)

where ◦ denotes the Hadamard product and ◦1∕2 the Hadamard root, 
i.e. the element-wise square root. The elements of the resulting 𝑚 × 𝑚
matrix 𝐺 lie within the interval [−1, 1]. The GADF matrix provides two 
key advantages:
i) Temporal dependency is preserved. The first value of the time series 
sequence 𝑥1 corresponds to the top-left pixel 𝐺11, and subsequent val-
ues are mapped progressively toward the bottom-right corner 𝐺𝑚𝑚.

ii) Reconstruction of the rescaled time series sequence is possible. The 
diagonal elements 𝐺𝑗𝑗 contain the rescaled observations, enabling 
full reconstruction (Wang & Oates, 2015a,b).

The preservation of temporal structure is particularly relevant for our 
empirical approach. Fig. 2 illustrates the GADF generation process and 
visualizes the transformation using a conventional heatmap. The GADF 
matrices serves as input data for the classification task in the subsequent 
step.
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Fig. 2. Illustration of the GADF encoding process from normalized BTC prices.

2.2.  Classification

The encoded time series {𝐺(𝑖)} is used as input data for predicting our 
target variables 𝑐(𝑖)ℎ  using CNNs. In this subsection, we use the sequence 
index 𝑖, but omit the time horizon index ℎ for simplicity.

CNNs are designed to process data with a grid-like topology, such as 
images, and are well-suited for capturing both local patterns and tem-
poral dependencies through learnable filters. They reduce image dimen-
sions while preserving essential features, resulting in a lower number 
of parameters compared to traditional feed-forward neural networks. 
CNNs are also inherently robust to shifts and transformations in the in-
put data, making them highly effective for pattern recognition tasks. A 
basic CNN architecture typically consists of four main components:
i) Input layer. This layer contains the input data represented as a matrix. 
For RGB images, the input is a tensor with three channels, each con-
taining values for a respective color (red, green, or blue). A grayscale 
image, on the other hand, is a two-dimensional matrix, representing 
pixel intensity. In our case, we use GADF matrices as inputs, which 
are treated like grayscale images.

ii) Convolutional layers. These layers use kernel functions, or filters, to 
extract local features and create feature maps. Multiple kernels can 
be applied to detect different patterns, as the choice of kernel deter-
mines which features are extracted. A node in the convolutional layer 
is computed as a spatial convolution between neighboring pixels of 
the input layer and a set of kernel weights. Let 𝑑 ∈ ℕ and 𝑑 ≤ 𝑚. For 
a filter of size 2𝑑 × 2𝑑, the matrix of filter weights is defined as

𝛀(1) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜔(1)
−𝑑 −𝑑 𝜔(1)

−𝑑 −(𝑑−1) … 𝜔(1)
−𝑑 𝑑

𝜔(1)
−(𝑑−1) −𝑑 𝜔(1)

−(𝑑−1) −(𝑑−1) … 𝜔(1)
−(𝑑−1) 𝑑

… … ⋱ ⋮
𝜔(1)

𝑑 −𝑑 𝜔(1)
𝑑 −(𝑑−1) … 𝜔(1)

𝑑 𝑑

⎞

⎟

⎟

⎟

⎟

⎠(2𝑑+1)×(2𝑑+1).

Then the convolution operation is performed as follows: 

𝑧(1)𝑖𝑗 = 𝛀(1) ∗ 𝐺 =
𝑑
∑

𝑠=−𝑑

𝑑
∑

𝑠′=−𝑑
𝜔(1)
𝑠𝑠′𝐺(𝑖+𝑑)+𝑠, (𝑗+𝑑)+𝑠′

where 𝑖, 𝑗 = 1,… , 𝑚′ with 𝑚′ = 𝑚 − 2𝑑.
iii) Pooling layers. After each convolutional layer, a pooling layer reduces 

dimensionality, increases spatial invariance, and eliminates redun-
dant pixels. Pooling is performed by partitioning a feature map into 
small regions and replacing all elements in each region with a sin-
gle value. Three common pooling methods are average pooling, max 
pooling, and Euclidean pooling. The maxpooling operation is defined 
as:

𝐺(∗)
𝑖𝑗 = max

𝑠,𝑠′=1,…,𝑚∗
(𝐺(𝑖−1)𝑚∗+𝑠,(𝑗−1)𝑚∗+𝑠′ ),

𝑖 = 1,… , 𝑚
𝑚∗ , 𝑗 = 1,… , 𝑚

𝑚∗ ,

where 𝑚∗ is the pooling region size.

iv) Fully connected layers and output. Extracted features are passed into 
fully connected layers, leading to the final classification output 𝐿. 
The number of neurons in the output layer, 𝑑𝐿, corresponds to the 
number of classes. Here, the probability of an image belonging to a 
specific class is determined by applying the softmax activation func-
tion. It maps the outputs of the last layer to multinomial probabilities 
by using the normalized exponent of the input values. This guaran-
tees that 𝑦̂(𝑖) ∈ [0, 1] and 𝑦̂(𝑖) + (1 − 𝑦̂(𝑖)) = 1, where 𝑦̂(𝑖) denotes the 
predicted probability for class 1 and (1 − 𝑦̂(𝑖)) denotes the probability 
for class 0 in our case of binary classification. The discrete binary 
class prediction 𝑐(𝑖) is obtained as follows:

𝑐(𝑖) =

{

1 if 1 − 𝑦̂(𝑖) < 𝑦̂(𝑖),
0 else.

(6)

Instead of building a CNN architecture from scratch, we use the well-
established ResNet-50 model (He et al., 2015), which is widely used 
for image classification. Compared to conventional CNNs, ResNet-50 
introduces skip connections, intensive batch normalization, and iden-
tity mappings. Identity mappings add the original input to the output of 
operations within the residual model:
𝐻(𝑥) = 𝐹 (𝑥) + 𝑥, (7)

where 𝐹 (𝑥) is the transformation performed by convolutional layers, and 
𝑥 is the input to the residual block. These skip connections mitigate the 
vanishing gradient problem in deep neural networks, improving training 
stability. For further details on residual networks, see He et al. (2015).

2.3.  Pattern recognition

Convolutional Neural Networks are often considered black-box mod-
els due to their complex and non-transparent decision processes (Mol-
nar, 2025). To interpret their predictions, various techniques from the 
field of Explainable AI (XAI) have been developed.

One widely used method for interpreting neural networks at the local 
level is LRP (Bach et al., 2015). LRP decomposes the prediction of a 
CNN by assigning relevance scores to input features, indicating their 
contribution to the model’s decision. This allows for a detailed, instance-
specific understanding of how input values influence the output.

2.3.1.  Local explanations
LRP is commonly used to generate relevance maps for input im-

ages, identifying which pixels contribute most to a model’s prediction
(Bach et al., 2015). In our setting, we apply LRP to GADF matrices and 
aim to quantify the relevance of each value in the matrix for the classi-
fication of the corresponding sequence.

To simplify notation, we omit the sequence index 𝑖 and forecasting 
horizon ℎ in the following. Let 𝐺 ∈ [−1, 1]𝑚×𝑚 denote the GADF matrix, 
and let 𝑦̂𝑐 be the model’s predicted probability for class 𝑐. The goal of 
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LRP is to compute a relevance score 𝑅𝑔(𝐺) for each element 𝐺𝑔 such 
that the total relevance equals the prediction score:
∀ 𝐺 ∶ 𝑦̂𝑐 =

∑

𝑔
𝑅𝑔(𝐺). (8)

The relevance propagation starts at the output layer 𝐿, where is ini-
tialized as the neuron activations: 𝑅(𝐿)

𝑝 = 𝑎(𝐿)𝑝  with 𝑝 = 1,… , 𝑑𝐿. Rel-
evance is then propagated backward layer by layer, redistributing it 
across neurons in earlier layers. Highly activated neurons and strong 
positive weights lead to greater relevance attribution in the lower lay-
ers.

Different propagation rules are applied depending on the network 
layer:

• LRP-0 is used in upper layers and redistributes relevance proportion-
ally to the weighted activations:

𝑅(𝑙)
𝑝 =

𝑑𝑙+1
∑

𝑞∗=1

𝑎(𝑙)𝑝 𝑤𝑝𝑞∗
∑𝑑𝑙

𝑝∗=1 𝑎
(𝑙)
𝑝∗𝑤𝑝∗𝑞∗

𝑅(𝑙+1)
𝑞∗ , (9)

with 𝑝 and 𝑞 denoting two neurons at the consecutive layers 𝑙 and 
𝑙 + 1. The activation of the neuron 𝑝 is denoted as 𝑎(𝑙)𝑝  and the weight 
connecting the two neurons is as 𝑤𝑝𝑞 .

• LRP-𝜖 adds a small stabilizing term 𝜖 to the denominator to reduce 
the influence of weakly activated neurons and noise. LRP-𝜖 is used 
for middle layers, which show more disentangled representations.

• LRP-𝛾, used in lower layers, emphasizes positive contributions by 
modifying weights:

𝑅(𝑙)
𝑝 =

𝑑𝑙+1
∑

𝑞∗=1

𝑎(𝑙)𝑝 (𝑤𝑝𝑞∗ + 𝛾𝑤+
𝑝𝑞∗ )

∑𝑑𝑙
𝑝∗=1 𝑎

(𝑙)
𝑝∗ (𝑤𝑝∗𝑞∗ + 𝛾𝑤+

𝑝∗𝑞∗ )
𝑅(𝑙+1)
𝑞∗ , (10)

where 𝑤+
𝑝𝑞∗  indicates that only positive weights are considered. 

Larger 𝛾 values strengthen the focus on features with a positive in-
fluence on the prediction.
Following these rules, we generate a heatmap for each GADF ma-

trix that visualizes the relevance distribution across its values. These 
local explanations are then grouped using SC to identify common rele-
vance patterns across the entire dataset. LRP is particularly well-suited 
to our setting for two reasons. First, it provides fine-grained, instance-
specific relevance scores, which are essential for analyzing individual 
GADF matrices derived from high-frequency time series. Second, unlike 
perturbation-based methods, LRP does not require repeated model eval-
uations with modified inputs. This makes it computationally efficient 
and well adapted to large-scale, high-resolution image-like representa-
tions such as GADFs.

2.3.2.  Clustering
As outlined above, our objective is to identify clusters of CNN deci-

sion behavior that exhibit higher predictive performance compared to 
the model’s performance on the full dataset. To this end, we first com-
pute local explanations for each GADF matrix using LRP, resulting in 
relevance maps that indicate the contribution of each input feature to 
the classification outcome.

The next step is to cluster these relevance maps such that local ex-
planations within a cluster are highly similar, while those between clus-
ters differ substantially. For this purpose, we adopt the SpRAy frame-
work proposed by Lapuschkin et al. (2019), which combines LRP with 
SC. In SpRAy, LRP is first used to generate instance-specific relevance 
maps, which are then grouped via SC to uncover distinct patterns in 
the model’s decision-making process. SC is particularly well suited for 
this task due to the high dimensionality of the relevance maps (𝑚 × 𝑚
matrices).

SC interprets clustering as a graph partitioning problem: the goal 
is to partition a similarity graph such that intra-cluster edges (within 
subgraphs) have high weights, while inter-cluster edges (between sub-
graphs) have low weights (von Luxburg, 2007). The SC procedure con-
sists of three main stages:

i) Preprocessing. A similarity graph  = (𝑉 ,𝐸) is constructed, where the 
vertex set 𝑉 = {𝑣1,… , 𝑣𝑀} represents the 𝑀 relevance maps, each 
corresponding to a vectorized relevance matrix derived from a GADF 
matrix via LRP. An undirected edge exists between two vertices 𝑣𝑖
and 𝑣𝑙 if they are mutual 𝑘-nearest neighbors, meaning that 𝑣𝑙 is 
among the 𝑘-nearest neighbors of 𝑣𝑖 and vice versa. The resulting 
graph is referred to as a mutual k-nearest neighbor graph (von Luxburg, 
2007). The construction of the similarity matrix is a crucial compo-
nent of SC. Following the recommendation of von Luxburg (2007), 
we set the number of neighbors as 𝑘 = log(𝑀). To determine neigh-
borhood relationships, pairwise similarities are computed using a 
Gaussian (RBF) similarity function:

𝑠𝑖𝑙 = exp
(

−
||𝑣𝑖 − 𝑣𝑙||2

2𝜎2
)

, (11)

where the parameter 𝜎 controls the width of the neighborhood and 
how quickly similarity decays with increasing distance. The optimal 
value of 𝜎 is selected via grid search. Based on these pairwise similar-
ities, we construct the weighted adjacency matrix 𝐴 = (𝑠𝑖𝑙)𝑖,𝑙=1,…,𝑀 .

ii) Spectral representation. In the second step, we compute the normal-
ized graph Laplacian:
𝐿∗ = 𝐷−1∕2(𝐷 − 𝐴)𝐷−1∕2, (12)

where 𝐷 is the degree matrix with diagonal 𝑑𝑖 =
∑𝑀

𝑙=1 𝑠𝑖𝑙.
Next, we compute the first 𝑒 eigenvectors of 𝐿∗, corresponding 

to the 𝑒 smallest eigenvalues, where 𝑒 denotes the desired number 
of clusters. These eigenvectors capture the key structure of the simi-
larity graph in a reduced-dimensional space. The 𝑒 eigenvectors are 
combined column-wise into a matrix 𝑈 ∈ ℝ𝑀×𝑒. To obtain a nor-
malized spectral embedding, each row of 𝑈 is scaled to unit norm, 
resulting in a new set of data points 𝑧1,… , 𝑧𝑀  in ℝ𝑒, which serve as 
the input for the final clustering step.

iii) Clustering. In the final step, we apply the 𝑘-means algorithm to the set 
of points 𝑧1,… , 𝑧𝑀  in the reduced eigenspace to partition the data 
into 𝑒 clusters (Jia et al., 2014; Ng et al., 2001; von Luxburg, 2007).

The SC process is described in Algorithm 1, below.  A critical aspect 

Algorithm 1 Normalized spectral clustering.
Input: Weighted adjacency matrix 𝐴 ∈ ℝ𝑀×𝑀 , number 𝑒 of subgraphs.
1: Compute the diagonal degree matrix 𝐷 ∈ ℝ𝑀×𝑀  with diagonal 𝑑𝑖 =

∑𝑀
𝑙=1 𝑠𝑖𝑙.

2: Compute the normalized graph Laplacian 𝐿∗ = 𝐷−1∕2(𝐷 − 𝐴)𝐷−1∕2.
3: Form the matrix 𝑈 ∈ ℝ𝑀×𝑒 containing the first 𝑒 eigenvectors 

𝑢1,… 𝑢𝑒 of 𝐿∗ as columns.
4: Renormalize each row of 𝑈 to norm 1 by 𝑡𝑖𝑙 = 𝑢𝑖𝑙∕(

∑

𝑒 𝑢
2
𝑖𝑒)

1∕2 and 
form matrix 𝑇 ∈ ℝ𝑀×𝑒 with elements 𝑡𝑖𝑙.

5: For 𝑖 = 1,… ,𝑀 , let 𝑧𝑖 ∈ ℝ𝑒 be the vector corresponding to the 𝑖-th 
row of 𝑇 .

6: Cluster the points 𝑧𝑖 with the 𝑘-means algorithm into clusters 
𝐶1,… , 𝐶𝑒.

Output: Clusters 𝐶1,… , 𝐶𝑒. 

of SC is selecting the number of clusters, 𝑒. We employ the eigengap 
heuristic to determine 𝑒, which involves identifying a significant gap be-
tween the first 𝑒 eigenvalues, 𝜆1,… , 𝜆𝑒, and the remaining eigenvalues, 
𝜆𝑒+1,… , 𝜆𝑀 . The first 𝑒 eigenvalues should be relatively small, while 
the subsequent eigenvalues should show a noticeable increase (Mohar, 
1991).

3.  Experimental study

Our empirical analysis is based on the time series of BTC clos-
ing prices. The dataset consists of minute-level data from January 1st, 
2018, to April 1st, 2022, containing a total of 𝑆 = 2, 235, 994 numer-
ical observations. The data are segmented into 2,235,895 sequences, 
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each consisting of 𝑚 = 100 consecutive minute-level prices. Selecting an
appropriate sequence length 𝑚 involved balancing two competing goals: 
capturing sufficient temporal context for meaningful pattern recogni-
tion, and maintaining computational efficiency. A longer sequence al-
lows the model to detect more complex and extended price structures. 
However, the size of both the GADF matrices and the LRP matrices grows 
quadratically with 𝑚, significantly increasing memory and processing 
demands. We chose 𝑚 = 100 as a compromise between expressiveness 
and efficiency. This length surpasses common human-interpretable time 
intervals, such as one hour or 90 minutes, and thus enables the model 
to capture mid-term patterns that might elude shorter windows. At the 
same time, the resulting 100 × 100 GADF matrices (10,000 pixels) re-
main computationally manageable, allowing for efficient training and 
relevance analysis without exceeding memory or storage limitations.

For classification, we define five binary target variables 𝑐(𝑖)ℎ  with dif-
ferent forecasting horizons ℎ ∈ 1, 10, 30, 60, 100. The target variable rep-
resents the direction of BTC price changes by comparing the most recent 
price with the future price, averaged over the next 10, 30, 60, or 100 
minutes. Each sequence is encoded as a GADF matrix.

The dataset is split into training and test set as follows:
• Training set: The first 2,135,895 GADF matrices.
• Test set: The last 100,000 GADF matrices.

Since time sequences are constructed using a one-minute shift, they 
overlap, making conventional cross-validation techniques inappropri-
ate. Instead, we adopt a chronological split, preserving the natural or-
der of the data to avoid information leakage from the future into the 
past. The test set - comprising the most recent 100,000 sequences - 
thus serves as a realistic proxy for evaluating model performance in a 
forward-looking setting. This number offers a substantial and represen-
tative sample size for robust evaluation, while also ensuring that training 
and test data are sufficiently separated in time to minimize autocorre-
lation effects.

The CNN model is trained by minimizing the generalization error, 
optimizing both the weights in the fully connected layers and the kernel 
in the convolutional layers. We use the cross-entropy loss function 𝐽 (⋅)
for binary classification:

𝐽 (𝐜ℎ, 𝐲̂ℎ) = −
𝑀
∑

𝑖=𝑚
𝑐(𝑖)ℎ ⋅ log(ŷ(i)h ) + (1 − c(i)h ) ⋅ log(1 − ŷ(i)h ).

The weights of the five ResNet-50 models, trained for different time 
horizons ℎ, are initialized using PyTorch’s default random weight ini-
tialization and updated via stochastic gradient descent. For more infor-
mation on the kernel sizes of the convolutional layers and other archi-
tectural parameters of the ResNet-50 models see He et al. (2015). The 
training parameters are as follows: We use a learning rate of 0.001, a 
batch size of 64 and a momentum of 0.9. Each model is trained for a 
maximum of 10 epochs, but the minimum out-of-sample loss is always 
reached within the first five epochs. The predictive performance of each 
model is evaluated using in-sample (IS) and out-of-sample (OS) accuracy 
scores, which measures the fraction of correctly classified instances.

For further investigation, we select only the model with the best OS 
accuracy, as training is computationally expensive. For the same rea-
sons, we use a subset of the data for SC. Specifically, we randomly select 
50, 000 GADFs from the IS dataset and generate relevance maps for these 
images. We then apply SC to group the relevance maps, using a mutual 
𝑘-nearest neighbor graph with 𝑘 = ⌈log(50, 000)⌉ = 5. The determination 
of the optimal number of clusters is described in Section 4.2. We aim 
to identify substantial clusters in terms of both size and performance. 
We define a cluster as substantial in size if it contains between 100 and 
10, 000 images. A cluster is substantial in performance if its accuracy 
exceeds the IS accuracy of the overall model.

To assess the robustness and generalizability of our proposed ap-
proach, we conduct four complementary robustness checks.

• First, we benchmark our method against two simpler predictive base-
lines. The first is a previous movement repetition model, which 
naïvely assumes that the next price movement will mirror the most 
recent one. The second is a logistic regression model. These bench-
marks provide a reference point for evaluating the added value of 
our deep learning-based pattern recognition framework.

• Second, we examine the sensitivity of our results to the choice of 
time series encoding. In our main experiments, we employ GADF to 
transform temporal sequences into two-dimensional representations. 
As a robustness test, we replace GADF with Markov Transition Fields 
(MTF) and apply the full pipeline to assess whether our results are 
dependent on the specific encoding method.

• Third, we assess the importance of the explanation-based preprocess-
ing step by omitting the LRP. Specifically, we apply SC directly to 
the raw CNN output vectors, thereby removing the relevance-based 
transformation. This allows us to evaluate whether the clustering 
performance depends on the interpretability mechanism.

• Finally, we test the cross-asset generalizability of our approach. 
While our primary experiments focus on BTC, we assess whether 
a model trained on BTC can be applied to FX market to predict the 
direction of price changes for the same out-of-sample period. These 
assets differ in market structure and volatility, making them suitable 
test cases for evaluating the robustness of the learned representations 
across financial time series with varying characteristics.

The results of these robustness checks are discussed in Section 4.3.

4.  Results

4.1.  Results: Model training

We summarize the classification results in Table 2, which contains 
the performance measures of the trained CNNs. For each time horizon 
ℎ = 1, 10, 30, 60, 100 the IS and the OS accuracy score, the no-information 
rate (NIR), and the 𝑝-value for the binomial tests with 𝐻𝐴 ∶ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 >
𝑁𝐼𝑅 of the best epoch is shown. We define the best epoch as the one 
with the highest OS accuracy score. Predicting the price change direc-
tion in respect to the average price of the following 60 consecutive

Table 2 
Forecast horizon-wise CNN accuracy and significance relative to NIR.

ℎ  Best Epoch  IS Accuracy  IS NIR  IS 𝑝-Value  OS Accuracy  OS NIR  OS 𝑝-Value
 1min  5  0.511  0.5146  1  0.5026  0.5037  0.7517
 10min  4  0.5524  0.5463 <0.0001***  0.5047  0.5047  0.5038
 30min  2  0.5525  0.5468 <0.0001***  0.5108  0.5108  0.5013
 60min  2  0.5489  0.5445 <0.0001***  0.5148  0.5148  0.5013
 100min  1  0.6297  0.5425 <0.0001***  0.5  0.5167  1

Note: Five CNN models are trained on GADF matrices of past lagged price sequences to predict price 
change directions. The column ℎ lists the forecasting horizon of each model. Best Epoch denotes the 
epoch that yields the best out-of-sample (OS) accuracy. The highest OS accuracy is marked in bold. 
Binomial tests assess whether model accuracy significantly exceeds the NIR (𝐻𝐴: Accuracy > NIR); 
significance is indicated by 𝑝-values, with thresholds at 𝑝 < .1 (*), 𝑝 < .05 (**), and 𝑝 < .01 (***).
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Fig. 3. Aligned visualization of input data, GADF encoding, and relevance attribution.

minutes leads to the best OS accuracy of 51.48%, therefore it is fur-
ther analyzed.

It is interesting to see, that neither the model predicting the longest 
time horizon of 100 minutes, nor the one predicting the shortest time 
horizon of 1 minute, yields the best OS accuracy, but the one predicting 
the 60-minute time horizon. One could imagine the effect of the infor-
mation of the past prices becoming visible immediately or just over a 
longer time. The OS accuracy of 51.48% is admittedly modest and does 
not surpass the NIR, but it still performs slightly better than random 
guessing. This is worth mentioning, since the standard assumption of 
the efficient market hypothesis is, that all public information is priced 
in. This way, past prices should not contain information, that can be 
used successfully for the prediction of future prices. By being better 
than random guessing, the model must have extracted some informa-
tion from the past prices, that were encoded in the GADF matrices. In 
terms of IS prediction, all models, except for the one-minute-horizon 
model, predict well, which can be drawn from the statistically signif-
icant difference between IS accuracy and IS NIR. However, the criti-
cal criterion for the model evaluation is the OS accuracy. Overall, non 
of the models would be considered particularly good in terms of pre-
dictive performance, since the difference between OS accuracy and OS 
NIR is never statistically significant. However, we did not expect the 
model to perform much better than random guessing when predicting 
the complete data set, respectively the training data or test data sets. 
As explained before, we assume there to be patterns, which the CNN 
learns, for which it predicts well. Since these patterns are not present 
all the time, we do not expect the model to predict well for the whole 
data set, but only when the learned patterns that are present in the
data. 

4.2.  Results: Spectral relevance analysis

Rather, we are interested in clustering the data set to find clusters, 
that yield an extraordinarily good predictive performance of the model. 
Since we base the clustering process on the relevance matrices obtained 
from applying LRP, the clusters contain observations with similar de-
cision behavior of the CNN. In other words, the cluster formations are 
build based on what the CNN model thinks is crucial, when making a 
prediction for that very observation.

To better understand this process, an example for a relevance map 
with its associated GADF and time series sequence, is given in Fig. 3. The 
shading of the relevance map (a) reflects the relevance of each pixel for 
the decision process of the CNN. The darker the pixel is coloured, the 
more it contributes to the CNN’s predictive decision for the associated 
observation. The colour gradient of the GADF map (b) runs from dark 
blue to dark red, with red pixels indicating high values and blue pixels 
low values. In the chart of the normalized BTC prices (c), the time stamps 
are plotted on the 𝑥-axis and the normalized prices on the 𝑦-axis. From 
the example in Fig. 3, it can be concluded that the most relevant part 
of the GADF map for the prediction is in the right corner of the image, 
as this is the area with the darkest pixels in the relevance map. For 
the illustrated observation, this is also the part in the GADF that has 
particularly high pixel values. Unfortunately, it is not possible to further 

conclude from this insight, what parts of the BTC price sequence are 
important.

In the process of applying SpRAy to find the aforementioned clus-
ters, we create relevance maps using LRP for a random sample of 50,000 
observations in form of GADFs. In the following step, the SC analysis is 
applied to the relevance maps. To determine the optimal number of clus-
ters, we use the eigengap heuristic, which shows a gap between 𝜆1,298
and 𝜆1,299. Thus, we conclude that the optimal number of clusters in 
the set of relevance maps is 1298 cluster. Analyzing the clusters, we 
find that there is one cluster containing 8129 images (16.26%). Fur-
thermore, 24.11% of the clusters contain less than 10 images. We are 
interested in clusters which contain similar images and which are large 
enough to allow conclusions about their performances. In our data set, 

Table 3 
Predictive performance within substantial relevance-based clusters.
 Cluster  # of images  NIR  Accuracy 𝑝-Value  Precision  Recall  F1-Score
 1  122  0.5164  0.5984 0.0422∗∗  0.6190  0.4407  0.5149
 2  197  0.5381  0.5838  0.1120  0.5714  0.3956  0.4675
 3  121  0.5702  0.5620  0.6100  0.4872  0.3654  0.4176
 4  181  0.5304  0.5746  0.1319  0.5690  0.3882  0.4615
 5  128  0.6016  0.5625  0.8397  0.4194  0.2549  0.3171
 6  1201  0.5362  0.5512  0.1556  0.5230  0.3680  0.4320
 7  136  0.6397  0.5735  0.9539  0.3953  0.3469  0.3696
 8  171  0.5731  0.5789  0.4707  0.5098  0.3562  0.4194
 9  139  0.6043  0.6259  0.3341  0.5349  0.4182  0.4694
 10  109  0.5688  0.6606 0.0320∗∗  0.6250  0.5319  0.5747
 11  441  0.5873  0.5624  0.8669  0.4553  0.3077  0.3672
 12  1245  0.5462  0.5639  0.1104  0.5302  0.3416  0.4155
 13  147  0.5578  0.5850  0.2813  0.5455  0.3692  0.4404
 14  109  0.5138  0.5596  0.1944  0.6667  0.2857  0.4000
 15  179  0.5196  0.5642  0.1308  0.5741  0.3605  0.4429
 16  315  0.6000  0.5587  0.9392  0.4253  0.2937  0.3474
 17  115  0.5043  0.5826 0.0562∗  0.6562  0.3621  0.4667
 18  160  0.5438  0.5750  0.2379  0.5510  0.3699  0.4426
 19  198  0.5505  0.6061 0.0663∗  0.6000  0.3708  0.4583
 20  266  0.5338  0.5602  0.2123  0.5393  0.3871  0.4507
 21  120  0.6500  0.5833  0.9467  0.3947  0.3571  0.3750
 22  152  0.5066  0.5855 0.0308∗∗  0.6200  0.4133  0.4960
 23  341  0.5279  0.5630  0.1060  0.5577  0.3602  0.4377
 24  105  0.6381  0.6000  0.8200  0.4231  0.2895  0.3438
 25  362  0.5497  0.5525  0.4796  0.5040  0.3865  0.4375
 26  117  0.5812  0.6496 0.0790∗  0.6333  0.3878  0.4810
 27  108  0.5833  0.5648  0.7536  0.4688  0.3333  0.3896
 28  122  0.5082  0.5574  0.1596  0.5714  0.4000  0.4706
Note: Clusters are created by applying SC to the relevance matrices of 50,000 
randomly sampled GADF images. The column Cluster assigns an index to each 
substantial cluster. Each row represents a cluster with more than 100 images, 
qualifying it as substantial in size. A cluster is considered substantial in perfor-
mance if its classification accuracy exceeds the in-sample (IS) accuracy bench-
mark of 0.5489. # of images lists the number of observations in each substan-
tial cluster. The Accuracy column shows classification performance within each 
cluster, and values exceeding the corresponding No Information Rate (NIR) are 
highlighted in bold. 𝑝-values stem from one-sided binomial tests testing 𝐻𝐴: Ac-
curacy > NIR. We follow standard thresholds for significance: *𝑝 < .1, **𝑝 < .05, 
***𝑝 < .01. Performance metrics including Precision, Recall, and F1-Score are also 
reported to assess classification quality within each cluster.
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we identify 28 substantial clusters, according to our prior definitions of 
a cluster being substantial in size and performance. As expected, most 
observations do not show important patterns. Instead, only 14.21% of 
the images show patterns that are interesting for future price predic-
tion. In Table 3 the number of images per cluster, the NIR, the accuracy 
and the 𝑝-value for the binomial test is shown for substantial clusters. 
Table 3 also reports precision, recall, and F1-score for each substantial 
cluster.

In total, 28 out of 1298 clusters exhibit accuracy scores above the 
IS accuracy of 0.5489. Of these, 20 clusters also surpass their respective 
NIR. In six cases, the difference between the observed accuracy and the 
NIR is statistically significant - three at the 10% level and three at the 
5% level. The best-performing cluster achieves an accuracy of 66.06% 
and includes 109 observations. Moreover, the table reports precision, 
recall, and F1-score for each substantial cluster. Overall, many clusters 
show solid precision values around 0.55-0.65, indicating that the model 
reliably assigns positive predictions with relatively few false positives. 
Although recall scores are generally lower (around 0.35-0.45), the F1-
scores demonstrate a balanced performance across clusters, with several 
reaching values above 0.50. This suggests that the clustering approach 
enables the model to identify semantically coherent groups in which 
the classifier performs notably better than average - both in terms of 
correctness and consistency.

These results suggest that clustering observations based on their rele-
vance matrices can identify subsets with markedly better predictive per-
formance than the overall model. Each cluster can be interpreted as a 
group of observations that share similar relevance patterns - i.e., similar 
internal model reasoning. We thus identify specific relevance structures 
associated with higher predictive power than those found in the training 
or test set as a whole.

To illustrate this, Figs. 4 and 5 display the heatmaps of the relevance 
matrices, the corresponding GADF representations, and the normalized 

BTC price charts for observations in cluster 7 and cluster 14, respec-
tively.

It is observable that within clusters the relevant pixels of the rele-
vance maps of different observations occur in similar locations, making 
them look quite similar. Between clusters, the observations display very 
little similarity in terms of the relevance matrices. In the seventh cluster 
the relevant patterns appear mainly on the bottom-right side of the map 
and a large part of the area is very bright, symbolizing small values. 
In the 14th cluster the relevance maps are characterized by high values 
of the entire area. In both clusters, the patterns in the heatmaps of the 
relevance matrices are well recognizable. In terms of the GADF maps 
and the time series plots the observations display no obvious similar-
ities within the clusters. By taking a closer look at the actual and the 
predicted values of the targets in the captions above the GADF maps of 
each observation in both figures, it can be observed that the (predicted) 
BTC price directions vary within the clusters. The good performance 
within the clusters is therefore not due to the model simply predicting 
constant upward or downward movements, which then also happen to 
be present in the clusters. The situation is similar in the remaining clus-
ters. Concluding from this, the high predictive power within the clusters 
compared to the overall model speaks for our relevance-based clustering 
approach.

4.3.  Results: Robustness checks

To assess the robustness and generalizability of our proposed frame-
work, we perform four complementary analyses.

First, we compare our model to two benchmark approaches: (1) an 
autoregressive logistic regression model and (2) a naive movement rep-
etition model. For comparability, we use a forecasting horizon of ℎ = 60
across all models. The autoregressive logistic regression predicts - based 
on the past 100 values - whether the price will increase or decrease

Fig. 4. Samples from Cluster 7: Relevance Maps, GADFs, and Input Data.
Note: As an illustrative example of a substantial cluster, eight observations from Cluster 7 are presented. For each observation, the corresponding relevance map, 
GADF image, and normalized BTC price sequence are shown. The captions above the GADF images indicate the true target value 𝑐 and the predicted value 𝑐 for each 
case.
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Fig. 5. Samples from Cluster 14: Relevance Maps, GADFs, and Input Data.
Note: As an illustrative example of a substantial cluster, eight observations from Cluster 14 are presented. For each observation, the corresponding relevance map, 
GADF image, and normalized BTC price sequence are shown. The captions above the GADF images indicate the true target value 𝑐 and the predicted value 𝑐 for each 
case.

within the subsequent 60 time steps. The movement repetition model 
simply predicts that the next value will follow the direction of the most 
recent change. We then dummy-code the prediction as 1 if the predicted 
direction is upward (i.e., price increases), and 0 otherwise. In contrast, 
our model generates predictions only for a subset of time windows-
specifically those assigned to clusters that are classified as substantial. 
This selective strategy results in varying coverage, defined as the pro-
portion of time windows for which a prediction is made. Consequently, 
standard metrics such as overall accuracy can be misleading if not in-
terpreted alongside coverage.

Our model demonstrates substantially improved predictive accuracy 
compared to the two benchmark approaches, particularly in accuracy 
and precision (Table 4). Although it covers only 14.21% of the time 
windows, it achieves statistically significant improvements in accuracy, 
indicating a more targeted and higher-quality prediction on selected 
clusters. The benchmark models’ modest results highlight the inherent 
difficulty of forecasting financial time series. Second, to evaluate the ro-
bustness of our method regarding the choice of time series encoding, we 
conducted our main experiments again, using MTFs instead of GADFs. 
While MTF emphasizes transition dynamics rather than angular rela-
tionships, it retains key temporal structures through a fundamentally

different mechanism (see Wang & Oates, 2015b). The results obtained 
with MTF are comparable to those using GADF across all evaluation 
metrics, including accuracy, precision, and coverage: The overall ac-
curacy of the MTF-trained model is 0.5221 (GADF: 0.5148), which is 
slightly better than the overall model trained with GADFs (𝑎𝑐𝑐 = 0.5148). 
58 substantials cluster were identified, containing 15,843 observations, 
which is 55.14% more observations than when using GADFs. The 
mean accuracy of the substantial clusters is with 0.5727 slightly - but 
not significantly - lower than that using GADFs (𝑝 = .1987, 𝑡 = 1.3076, 
𝑑𝑓 = 39.0554). These findings suggest that our approach is robust to the 
choice of encoding technique, and that its predictive power does not 
rely on GADF-specific characteristics. Rather, it appears to generalize 
well across different types of time series representations.

Third, we examine the role of relevance-based explanations in the 
clustering procedure by applying the spectral clustering directly to the 
raw CNN predictions, thereby omitting the LRP step. This modifica-
tion allows us to assess whether the discovered structure of the clus-
ters is already encoded in the model outputs or whether the relevance 
maps are essential for identifying coherent patterns. When clustering 
the GADF-encoded time series without applying LRP, we observe a sub-
stantial reduction in clustering effectiveness. Specifically, the number of

Table 4 
Benchmark comparison of predictive models across key metrics.
 Modell  NIR  Accuracy 𝑝-value  Precision  Recall  F1-Score  Coverage
 Logistic regression  0.5152  0.5159  0.3754  0.5008  0.4529  0.4791  100%
 Previous movement  0.5152  0.5050  1  0.4799  0.4970  0.4883  100%
 Our approach  0.5600  0.5802 0.0120∗∗  0.5347  0.3658  0.4324  14.21%

Note: The table compares the mean predictive performance of our clustering-based approach to two 
benchmark models - autoregressive logistic regression and previous movement repetition - over a 
forecasting horizon of ℎ = 60. Accuracy values are evaluated against the corresponding NIR, and 𝑝-
values are derived from one-sided binomial tests of the null hypothesis 𝐻0: Accuracy ≤ NIR, using 
standard significance thresholds (*𝑝 < .1, **𝑝 < .05, ***𝑝 < .01). Precision, Recall, and F1-Score measure 
classification quality, while Coverage indicates the percentage of observations for which a prediction 
was made. The results highlight the trade-off between accuracy and selectivity in our approach, which 
significantly outperforms both baselines despite covering only a subset of the data.
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observations assigned to substantial clusters declines from 7107 to 
4,999, corresponding to a 29.66% decrease. This suggests that many 
time series cannot be meaningfully grouped based on raw model outputs 
alone. Moreover, the mean predictive accuracy of the resulting clusters 
decreases from 0.5802 (with LRP) to 0.5571 (without LRP). This differ-
ence is statistically significant (𝑝 = .0319, 𝑡 = 2.2875, 𝑑𝑓 = 22.59), indi-
cating that the inclusion of relevance maps contributes not only to more 
stable cluster assignments but also to improved alignment with future 
price movements. These findings further support the conclusion that the 
LRP transformation plays a crucial role in extracting informative struc-
tures from the data.

Finally, we assess the generalizability of the methodology by apply-
ing it in the FX market. The FX assets differ from BTC in their volatility 
profiles, trading volumes, and historical development, thus providing 
a robust test for methodological transferability. Our framework yields 
an overall performance that is consistent with those obtained for Bit-
coin: The number of observations assigned to substantial clusters is 
6877 for FX compared to 7107 for BTC, corresponding to an increase 
of 3.24%. Moreover, the mean predictive accuracy of the resulting clus-
ters is 0.5802 for BTC and 0.5730 for FX. This difference is not statis-
tically significant (𝑝 = .2558, 𝑡 = 1.1505, 𝑑𝑓 = 47.1255), indicating that 
our approach is not tailored to a single currency, but can be success-
fully extended to other financial time series with similar structure.

Taken together, these robustness checks demonstrate that the effec-
tiveness of our approach hinges on the use of relevance-based feature 
extraction, and that the proposed method exhibits strong generalizabil-
ity across different types of cryptocurrency markets.

5.  Conclusion

This paper aims to explore the potential of AI-based computer vi-
sion techniques, combined with relevance-based clustering, for predict-
ing movements in financial time series. Our research was motivated by 
the exceptional performance of convolutional neural networks (CNNs) 
in the field of computer vision - a domain traditionally distinct from 
finance, as financial data is rarely represented as images.

Recent advancements in time series imaging techniques, such as 
GADF maps, have enabled the application of well-established computer 
vision models to financial forecasting. Additionally, the emerging field 
of interpretable machine learning has introduced methods that harness 
the predictive power of deep learning while maintaining transparency in 
decision-making processes (Adadi & Berrada, 2018). Finally, clustering 
techniques for high-dimensional data provide a means to group images 
or matrices effectively.

In this study, we integrate these three areas to develop a methodol-
ogy for identifying patterns associated with exceptional predictive per-
formance. We encode BTC price time series as GADF matrices and train 
a ResNet-50 CNN to predict price movement direction across different 
time horizons. Our findings demonstrate that BTC price movements ex-
hibit a degree of forecastability. The best-performing model achieves an 
out-of-sample (OS) accuracy of 0.5148 (in-sample (IS) accuracy: 0.5489) 
when predicting whether the average BTC price over the next 60 min-
utes will exceed the most recent price.

To further investigate the model’s decision-making process, we gen-
erate LRP matrices for 50,000 randomly selected samples. We hypothe-
size that patterns exist within these relevance matrices that correspond 
to particularly accurate model predictions. To explore this, we apply 
SC, a method well-suited for high-dimensional data, to the relevance 
matrices. Our results reveal 29 clusters that demonstrate both excep-
tional forecasting accuracy and substantial sample sizes. Each of these 
clusters outperforms the model’s overall in-sample accuracy. The best-
performing cluster achieves an accuracy of 0.6606 and consists of 109 
observations.

These findings suggest that a trading strategy based on cluster mem-
bership could significantly enhance performance. In this approach, a 
trade is executed only when the relevance matrix - corresponding to the 

GADF representation of the most recent 100 prices - belongs to one of 
the identified high-performance clusters. If the relevance matrix does 
not match any cluster, no trade is made. Similarity measures can be 
used to determine cluster membership in real-time.

Beyond demonstrating that BTC price forecasting is feasible using 
CNNs with GADF-encoded input, our study introduces relevance-based 
clustering to the domain of financial time series classification. This 
method identifies meaningful patterns in the relevance maps rather than 
in the raw price data itself. Our findings also suggest that these patterns, 
as exemplified by two clusters, can be visually interpreted by humans. 
To the best of our knowledge, this is the first study to search for patterns 
in relevance maps of historical price data rather than in the price data 
directly.

The findings of this study open several potential avenues for further 
research. While we focused on SpRAy, other clustering methods, such as 
density-based clustering, could be investigated to identify outliers and 
noise within high-dimensional data. The results motivate future work 
that incorporates additional explainability methods such as Grad-CAM 
or SHAP, to enhace the validation of model decisions. Moreover, testing 
ensemble clustering approaches and integrating macroeconomic vari-
ables into multichannel GADF matrices could provide richer represen-
tations and potentially improve predictive accuracy.

Overall, our findings highlight the great potential of relevance-based 
clustering for discovering predictive patterns in price data and empha-
size the effectiveness of encoding time series as images for financial 
forecasting.
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