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A B S T R A C T

The potential of seasonal climate forecasts (SCFs) within machine learning models to forecast crop yields remains 
unexplored. We propose a workflow for integrating SCF data into a long short-term memory (LSTM) network to 
forecast wheat yield at the county level across the Great Plains in the United States. Each month, past predictors 
were filled with observations and future weather predictors were forecasted using the seasonal climate model of 
the European Centre for Medium-Range Weather Forecasts (SCF approach). This approach was benchmarked 
with the truncate approach that only used observed predictors. Using all observed predictors at harvest, the 
model achieved an R2 of 0.46, an NRMSE of 0.24, and an MSE of 0.46 t/ha on the test set. The SCF approach and 
truncate approach performed poorly from January to March. The SCF approach outperformed the truncate 
approach in April and May. At the beginning of May, three months before harvest, the SCF approach achieved an 
MSE of 0.6 t/ha, improving the truncate approach by 10 %. In June, the SCF approach further improved but did 
not outperform the truncate approach. Predictor importance analysis revealed the critical role of SCF data at the 
beginning of May for the latter half of May. This study suggests that weather forecasts issued at the right time, 
when both crop development and forecast skill align, could be as short as 16 days and still significantly improve 
the accuracy of sub-national wheat yield forecasts over other approaches.

1. Introduction

Climate change increases interannual crop yield variabilities that 
challenge global food security. To navigate these uncertainties, crop 
yield models that provide timely estimates are crucial for stakeholders 
such as policymakers, food traders, food processors, NGOs and farmers 
(Basso and Liu, 2019). Crop yield models can be employed for both in- 
season forecasts and end-of-season estimations. The challenges of in- 
season forecasts are the unknown growth conditions for the remainder 
of the crop season from the forecast date to harvest. This lack of infor
mation on growth conditions hinders crop yield projections, as data 
about crucial development stages that affect yield formation are missing. 
Among the many factors influencing crop yield, weather conditions are 
most important, and advancements in forecasting methodologies have 

primarily targeted these variables (Schauberger et al., 2020). Weather 
conditions can be forecasted several months in advance using seasonal 
climate forecasts (SCFs) (Johnson et al., 2019). The application of SCFs 
to forecast crop yield has been assessed for process-based crop models 
and statistical crop models. However, for machine learning crop models, 
in-season crop yield forecasts rely on observed predictors from the start 
of the season to the forecast date (truncate approach) without using 
forecasted information from the forecast date until harvest (Paudel 
et al., 2022). This approach demonstrates the ability of machine learning 
models to leverage information from key crop development stages. 
Typically, the model’s performance is evaluated by using data from the 
entire season and is then re-evaluated while successively excluding the 
latest time steps. When time steps around critical development stages 
are removed, a drop in performance suggests that the model has learned 
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to link these stages to crop yield outcomes. While this is valuable for 
making machine learning models more interpretable, in-season crop 
yield forecasts that rely solely on observed predictors are not suited for 
early-season forecasts because they miss most of the key phenological 
stages and they may overlook potential improvements that could be 
achieved using SCFs. Without SCFs, the implicit assumption is that 
weather conditions between the forecast date and harvest will not 
impact final crop yields. This simplification may limit the crop yield’s 
forecast accuracy. Our study proposes a machine learning approach to 
forecast administrative unit-level wheat yield before harvest by 
combining forecasted weather predictors from a seasonal climate model 
and observed static and sequential predictors of soil properties, vege
tation indices and weather variables. This approach directly addresses 
the limitation of the conventional truncate method, which disregards 
the impact of future weather conditions. We selected wheat as our model 
crop due to its high global significance for food security and substantial 
nutritional value. Our study targeted the U.S. Great Plains. The Great 
Plains is a major breadbasket region, and winter wheat yield in the Great 
Plains has been affected by severe droughts (Rippey, Dec. 2015) and 
compound hot-dry-windy events (Zhao et al., 2022), suggesting the 
potential usefulness of SCF data. We relied on a long short-term memory 
(LSTM) network (Hochreiter and Schmidhuber, Nov. 1997), which is 
designed to capture sequential input data interactions and has previ
ously been used for regional crop yield models (Cunha et al., 2018). 
Yield data as well as static and sequential observed predictor data were 
obtained from the “Crop Yield Benchmark Dataset” (Paudel et al., 2024), 
while forecasted weather information was obtained from the European 
Centre of Medium-Range Weather Forecast’s (ECMWF) fifth-generation 
seasonal forecast system (SEAS5) (Johnson et al., 2019). By incorpo
rating forecasted weather conditions into a machine learning model, our 
study advances in-season crop yield forecasting for mitigating risks to 
food security, particularly in the face of climate change. This newly 
proposed SCF approach of making in-season crop yield forecasts was 
compared to the more popular truncate approach and benchmarked 
with a 3-year average model whose yield forecasts consisted of the mean 
yield from the previous three years.

2. Material and methods

A high-level overview of each forecasting approach is given in Fig. 1. 
Yield and predictor data were retrieved from the “Crop Yield Benchmark 
Dataset” (CY-Bench) (Paudel et al., 2024), a subnational crop yield 
forecasting database, which offers open-source access to analysis-ready 
data covering a range of meteorological and environmental variables as 
well as crop yield statistics. The various data sources included in CY- 
Bench are publicly available and were gathered based on the proven 

suitability of the variables for crop yield modeling.

2.1. Dataset and predictors

2.1.1. Yield data
Winter wheat (hereafter called wheat) is grown in various states 

across the United States. However, the Great Plains, comprising South 
Dakota, Nebraska, Colorado, Kansas, Oklahoma, and Texas, are often 
considered the heartland of U.S. wheat cultivation. This region con
tributes approximately 50 % of the 40 million tons of wheat produced 
annually in the United States (USDA/NASS, xxxx). In addition, the 
average wheat-harvested area constitutes a significant part of each 
county’s size in the Great Plains (Fig. 2a), highlighting the importance of 
wheat farming in this region. County-level wheat yield data for the Great 
Plains was extracted from CY-Bench alongside the corresponding set of 
predictors, as shown in Table 1. The data spans a 21-year period 
(2003–2023) for each of the 540 counties in the study region. The wheat 
season begins with planting in the fall of the previous year and concludes 
with harvesting in the summer of the following year. Therefore, the first 
harvest year for which predictors are available for the entire season from 
planting until harvest is the harvest of 2004. In addition, there were 
counties with missing records for some years. Eventually, there were 
6,789 yield records available for the final yield dataset with harvests 
from the 20-year period of 2004–2023. The average yield at the county 
level ranges from 1 t/ha in some parts of Texas to 4 t/ha in South Dakota 
(Fig. 2b). We forecasted absolute wheat yield at the county level, 
treating each season independently.

2.1.2. Observed predictor data
An initial assessment across the sequential predictors available in 

CY-Bench was performed to obtain our final set of predictors, indicated 
in Table 1. Namely three variables available in CY-Bench were not 
considered in our study. The normalized difference vegetation index was 
removed due to its high correlation with the fraction of absorbed 
photosynthetically active radiation, which has been found to provide 
better information for crop yield modeling (Kolotii, 2015). Surface soil 
moisture was removed as it is highly correlated with root zone soil 
moisture, which we considered the more important variable for our 
study (Deines et al., Sep. 2024). Lastly, potential evapotranspiration was 
discarded, which is the difference between precipitation and climatic 
water balance (both kept). The non-linear data-driven model used here 
could easily derive such a difference if it is relevant for wheat yield 
estimation. In addition to sequential predictors, static predictors are also 
presented. Sequential predictors were obtained in different temporal 
resolutions for each year from 2003 to 2023. Predictors from 2003 were 
needed because the earliest available yield data was for harvest in 2004, 

Fig. 1. Flow chart. The chart consists of three horizontal streams, each representing a different approach. It displays the input data and steps for forecasting yield. 
Actions are in white squares, and data is in colored rounded rectangles. For details, see section 2.1 and 2.2.
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with the season starting in the fall of 2003. To harmonize the different 
temporal resolutions (daily, 10-day) of the predictors indicated in 
Table 1, an alignment was required. We chose 16-day time steps as a 
balance between capturing temporal dynamics and avoiding too much 
noise from very short time intervals. Daily data was averaged into 16- 
day time steps, while the FPAR data, originally available at 10-day in
tervals, was linearly interpolated to match the 16-day time steps. The 
final set of predictors included 8 sequential variables (listed under the 
variable column in Table 1), each aligned to 16-day intervals, resulting 
in 23 time steps per year. In addition, we designed 10 static predictors 
based on the original data sources summarized in Table 1. These static 
predictors comprised available water capacity, bulk density, two soil 
drainage classes represented as dummy variables (well-drained and 
excessively drained), end-of-season day, centroid latitude and longitude 
of each county and the yield values from the previous three years. This 
combination of sequential and static features was chosen to capture both 
temporal crop development patterns and location-specific agro-envi
ronmental characteristics relevant for yield prediction.

2.1.3. Seasonal climate forecast data
We studied the application of forecasted weather predictors from 

seasonal climate models to forecast wheat yield in-season. We used the 
fifth-generation seasonal forecast system (SEAS5) (Johnson et al., 2019) 
from the European Centre for Medium-Range Weather Forecasts 
(ECMWF). The data is readily accessible through the Copernicus Climate 
Change Service (dataset, , 2018). The SEAS5 forecasts are initialized on 
the first of each month and made available shortly after, on the fifth. To 
train and test the in-season performance of the SCF approach, we 
collected historical forecasts from 2004 to 2023. The features retrieved 
were daily mean, maximum and minimum temperature as well as daily 
accumulated precipitation. Forecasted weather conditions for 7 months 
ahead were collected at each initialization date. To account for un
certainties in initial conditions, seasonal climate models generate en
sembles of forecasts at each initialization date. SEAS5 provided 25 
ensemble members for the hindcast period from 2004 to 2016 and 50 
members for the forecast period from 2017 to 2023. To ensure consis
tency across the full 2004–2023 period, we truncated the ensemble size 
of the forecast period to the first 25 members. While truncating from 50 
to 25 members may alter the original statistical properties of the 50- 
member ensemble, 25 members are still considered sufficient to pro
vide reliable estimates of both mean and forecast uncertainty. This 
choice follows the approach of the ECMWF to standardize their hindcast 
archive at 25 members, a size that balances computational cost while 
still providing assessments that are sufficiently robust to calibrate 
forecasts from the 50-member ensemble. The daily outputs of the 25 
ensemble members for each of the four weather variables were averaged 
into 16-day time steps, as outlined in section 2.1.2. The raw SCF outputs 
were then bias-adjusted to align with observational data using normal 
quantile mapping for all four variables (Jakob, pp., 2011), in accordance 
with recommendations for SEAS5 usage within climate services (Crespi, 
2021). The bias was learned using the training years to avoid informa
tion leakage, and then the bias was adjusted for all years in the training, 
validation and test split. The bias-adjusted SCF data were then assigned 
to the counties. The SCF data is available at a spatial resolution of 1◦, and 
the assignment of the grid cells to the counties was done by matching the 
centroid of each county’s polygon shape to the closest SCF grid cell, 
potentially assigning two counties to the same SCF grid. The SCF data 
consists of outlooks up to 7 months into the future and can offer valuable 
insights into variables such as temperature and precipitation anomalies 
in certain regions. However, the skill of seasonal forecasts depends on 
several factors, including initialization date, forecast variable, region, 
spatial and temporal resolution, and lead time. Based on a review of the 
literature (Ardilouze et al., 2019; Klemm and McPherson, Sep. 2018; 
Peings et al., 2025), we determined that incorporating forecasts beyond 
a 2-month lead time would not provide useful information for our study 

Fig. 2. Study region. (a) Average relative harvested area for wheat per county from wheat harvests 2004–2023 for the United States. (b) Average absolute wheat 
yield per county from wheat harvests 2004–2023 for the main wheat-producing states. South Dakota (SD), Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma 
(OK) and Texas (TX).

Table 1 
Details of the data retrieved from CY-Bench. Crop calendar information guides 
our selection of the start and end of the wheat season. Data sources are indicated 
in the CY-Bench repository (Paudel et al., 2024).

Category Name Temporal 
resolution

Variable (unit)

Weather temperature daily tmean, tmax, 
tmin (◦C)

Weather precipitation daily prec (mm)
Weather solar radiation daily rad (J m−2)
Soil root zone soil moisture daily rsm (kg m-2)
Soil available water capacity constant awc (cm m-1)
Soil drainage class constant drainage class 

(category)
Soil bulk density constant bulk density 

(kg dm-3)
Crop fraction of absorbed 

photosynthetically active 
radiation

10 days fpar (%)

Crop crop calendar constant eos (day of 
year)

Crop crop yield yearly yield (t/ha)
Crop climatic water balance daily cwb (mm)
Geometry latitude/longitude Constant lat, lon (◦)
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area. Hence, for each of the 25 ensemble members, we only kept the first 
4 time steps for each initialization date, which roughly corresponds to 
the first 2 months (4 periods of 16 days each).

2.2. Modeling workflow

2.2.1. Three-year average model
Our baseline approach was a 3-year average model, where forecasts 

were based on historical yield. For each county, the average yield from 
the three previous years was used as the forecast for the current year. 
The three-year period gives a realistic estimate of the current yield trend 
level. The mean yield of periods longer than three years would have 
likely been too low, given that yield levels consistently increase due to 
technology improvements (USDA/NASS, xxxx), while extreme years 
could have affected periods shorter than three years. The 3-year average 
model forecasted yield as soon as the new season began and did not 
adjust it throughout the season. A model that does not outperform the 3- 
year average model is considered unskillful.

2.2.2. Truncate approach
The interaction of predictors and their impact on crop yield can be 

captured by a long short-term memory network (LSTM) (Hochreiter and 
Schmidhuber, Nov. 1997). The primary advantage of LSTMs lies in their 
ability to understand sequential relationships in the feature space. In the 
context of crop yield modeling, this capability allows for the analysis of 
how current growth conditions affect yield while also taking into ac
count the influence of previous conditions. By doing so, LSTMs are able 
to capture important temporal dependencies in yield development. For 
instance, the impact of a dry spell on crop yield depends, among other 
factors, on the amount of precipitation received prior to that dry spell. 
Numerous studies conducted across various crops and regions have 
demonstrated the potential of LSTMs in crop yield modeling (Cunha 
et al., 2018).

Our machine learning workflow for the truncate approach began by 
aligning the observed feature set described in section 2.1.2 with the 
historical yield data from section 2.1.1. For our study region, the end of 
the wheat season typically falls around the end of July (Fig. 3a). 
Therefore, predictor time steps were reorganized such that time step one 
was at the beginning of August of the previous year and time step 23 at 
the end of July of the harvest year. For each yield record, the predictors 
from August of the previous year until July of the harvest year were 
provided to estimate yield. The samples were then divided into the train 
(2004–2017), validation (2018–2020) and test set (2021–2023) with 

5222, 793 and 774 samples, respectively. The distribution of states 
within each split was relatively constant (Fig. 3b). Wheat harvests of 
2022 and 2023 have been especially challenging in the study region due 
to drought events (USDA/NASS), suggesting a realistic assessment for 
years with extreme conditions when crop yield forecasts are most 
needed. An alternative strategy that involves a (nested) leave-one-year- 
out evaluation has been used in previous studies (Meroni et al., 2021). 
This involves evaluating model performance in a year whose previous 
and subsequent data is already present in the training set. Our setup was 
selected because it closely mirrors an operational scenario, where a 
model that is trained on historical data is fine-tuned with data from 
recent years and then applied to make predictions for future years 
(Paudel et al., 2022).

The input to an LSTM was provided as a three-dimensional array (N 
× T × C) corresponding to the number of samples N, time steps T, and 
predictors C. Here, we provided an array containing both sequential and 
static predictors, with static predictors repeated for each time step 
(Leontjeva and Kuzovkin, 2016). The hyperparameters of the LSTM 
were determined using the validation set and fully observed predictors 
for a theoretical end-of-season estimation model. We found that the best 
results for the end-of-season model were achieved with information 
from time step 3 to time step 23, corresponding to the period from mid- 
September to the end of July. The model configuration was character
ized by a hidden dimension of 64, a stack of 4 LSTM layers and a dropout 
rate of 0.5. For training, we found optimal performance using the Adam 
optimizer (Kingma et al., 2017) with a batch size of 64, a learning rate of 
1 × 10−4 and an early stopping patience of 20 epochs. The hyper
parameters found in the end-of-season experiments were fixed for the 
subsequent truncate and SCF approach experiments. To investigate in- 
season wheat yield forecast performance of the truncate approach, 
time steps starting from the season’s end were successively removed by 
trimming the input array, and a new model was trained and evaluated 
on the test set. This procedure was repeated until the beginning of 
January, corresponding to a temporal truncation from time step 3 to 
time step 9.

2.2.3. SCF approach
Some studies have suggested training an LSTM model using weather 

observations and switching to weather forecasts during testing without 
retraining the model (Cunha et al., 2018). Alternatively, an LSTM can be 
trained with forecasted weather data (Zhao et al., 2024). We chose the 
latter approach and provided SCF data during training to allow the 
LSTM to emphasize SCF data based on its reliability.

Fig. 3. Crop calendar and distribution of available data points. (a) The histogram of the end-of-season dates for the counties within the six states of our study 
region. (b) The number of data points per state is shown separately for the training, validation, and test splits, with values normalized within each split. That is, for 
each split, the bars across all states sum to 100%, allowing for direct comparison of the relative distribution across states, regardless of the overall size of the split. 
Although the training set covers a longer period (2004–2017) than the validation (2018–2020) and test (2021–2023) sets, the bar heights for states such as Texas are 
still comparable across splits. This indicates that there is no major distribution shift between them, and that the regional distribution of data remains consistent across 
the splits.
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When newly forecasted daily weather data became available at the 
beginning of each month, we trained and tested new SCF-based wheat 
yield forecasts using an updated three-dimensional input array. The 
modification of the three-dimensional input array to the LSTM was as 
follows (Fig. 4). First, we determined the last time step for which 
observed features are used and the first time step for which SCF data is 
available by looking at the time step in which the SCF initialization date 
falls. All time steps before remained unchanged and used observed 
predictor data. Four future time steps were provided from SCF data, and 
all time steps beyond that were dropped from the array. For example, a 
new SCF on 1 April falls into time step 16, which spans from 30 March to 
14 April. Until time step 15, the three-dimensional array contained 
observed features. For time steps 16–19, we replaced the observed tavg, 
tmax, tmin and prec with SCF data. In addition, we set all other 
sequential features for the time steps 16–19 to 0 (we assumed there were 
no observations for these predictors) and kept the static features un
changed (Fig. 4). All days within the first SCF time step up to the SCF 
initialization were ignored (30 March − 1 April) when calculating the 
time step average such that only SCF data from 2 April to 14 April was 
considered. This procedure was applied to all other months, from 
January to June.

The SCF approach consists of two sub-experiments. In the first sub- 
experiment, we calculated the mean of the ensemble from the 25 SCF 
predictors, which resulted in one new input array for the LSTM, along 
with one yield forecast. In the second sub-experiment, we created 25 
modified input arrays, one for each ensemble member, and ran 25 yield 
forecasts. In the second experiment, we calculated the mean and stan
dard deviation of the resulting wheat yield forecasts to analyze forecast 
accuracy and uncertainty.

2.3. Permutation-based predictor importance

Machine learning models have achieved remarkable performance 
across various tasks, including image recognition, natural language 
processing and predictive analysis. Despite their success, these models 
are often criticized for their lack of transparency. This black-box nature 
challenges the understanding of how models arrive at specific pre
dictions raising concerns about trust. As a result, research has increas
ingly focused on developing explainability techniques to gain insight 
into a model’s decision-making process. Permutation feature impor
tance (PFI) is a simple yet widely used feature attribution technique that 
evaluates the sensitivity of the model to changes in its predictors. While 
there are many ways to conduct this kind of sensitivity analysis, PFI 
focusses on shuffling predictor values. This process disrupts their orig
inal relationship with a target variable. A predictor is deemed important 
by measuring the deterioration in model performance due to the 
perturbation. Table 2 describes how we applied PFI in our study.

2.4. Evaluation metrics

The performance of the models presented in section 2.2 was evalu
ated by comparing mean squared error (MSE), normalized root mean 
square error (NRMSE), and the coefficient of determination (R2). In the 
equations below, yi and ŷi represent the observed and predicted yield, 
respectively. Further, y is the mean of the observed wheat yield an n is 
the number of data points. 

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (1) 

Fig. 4. Input array by approach and month of initialization. From January a) to June f), the difference in the input arrays between the truncate and seasonal 
climate forecast (SCF) approaches is shown. Each cell represents one 16-day time step. The months in the plot titles correspond to the month the SCF is initialized. For 
example, in a), the SCF is initialized on the 1st of January, which falls into the 16-day time step that starts on the 26th of December. Four time steps of weather data 
(copper color) are calculated using SCF data until the end of February. All other sequential data for these four time steps is set to 0 (blue color), while the four static 
time steps remain unmodified (grey color). Time steps beyond the 25th of February are ignored. The truncate approach uses time steps with information until the 
26th of December. All future information is ignored. This procedure is applied equally to all other months of SCF initialization.
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NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(yi − ŷi)

2

√

y
(2) 

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3) 

3. Results

With predictors available as observations for all time steps until the 
end of the season, the LSTM estimates absolute wheat yield across all 
states with a mean R2 of 0.46, mean NRMSE of 0.24 and MSE of 0.46 t/ 
ha (Fig. 5a-f). The performance was assessed on county-level yield data 
from 2021 to 2023, which covers 774 samples that were previously not 
seen during training or validation. When plotting estimated yield versus 
actual yield for each state (Fig. 5a-f), it can be seen that the model 
generally tends to underestimate the magnitude of high- and low-yield 
samples, except for Colorado (CO, Fig. 5b). This is indicated by the 
colored dashed regression lines being less steep than the black identity 
lines, representing the theoretical best fit. No spatial performance 
gradient exists when the NRSME is plotted per county (Fig. 5g). How
ever, there is a difference in average NRMSE per state. South Dakota 
(SD, Fig. 5a) and Kansas (KS, Fig. 5c) have the best average performance 
across their counties, with 0.19 and 0.21 NRMSE, respectively. Texas 
(TX, Fig. 5e) has the highest NRMSE, with 0.3, while Nebraska (NE, 
Fig. 5f), Colorado (CO, Fig. 5b) and Oklahoma (OK, Fig. 5d) have good to 

Table 2 
Grouped permutation predictor importance (PFI).

Demonstrating a PFI procedure for a predictor group (a subset of predictors available 
at all time steps). For this analysis, our predictors are categorized into static features, 
sequential weather features and other sequential features. The following terms are 
pre-defined: trained model f, predictor vector X and target vector (ground truth) y

1: timesteps ← number of timesteps ​
2: idx ← indices corresponding to a 

group of predictors
​

3: importance_matrix (imp) ← zeros 
(timesteps)

// Initialize an empty array to store PFI 
values

4: ŷ ← f(X) // Generate baseline score on initial 
predictors

5: scorebaseline←MSE(y, ŷ) ​
6: for timestep (t) = 1 to timesteps do ​
7: ​ l ← [] ​
8: ​ for iteration in number of 

repeats do
​

9: ​ ​ Xpermuted ← PFI
(
Xt,idx) // Shuffle values at time step and 

predictor indices only

10: ​ ​ ŷpermuted←f
(
Xpermuted

) ​
11: ​ ​ scorepermuted←MSE

(
y,

ŷpermuted

)

​

12: ​ ​ l. insert(scorepermuted) ​
13: ​ end for ​
14: ​ impt←scorebaseline −mean(l) // Calculate change in MSE
15: end for ​
16: return imp // Return time-wise scores

Fig. 5. Analysis of end-of-season model on test years. a-f) Actual county-level yield versus estimated yield on the test data from 2021 to 2023 per state. Yield 
estimates come from the LSTM model using fully observed data for all time steps until the end of the season (no truncation). Each plot shows the point cloud’s 
regression line (colored dashed line) and the theoretical best fit’s 1–1 identity line (black line). g) Spatial analysis of the normalized root mean square error (NRMSE) 
at the county level. The abbreviations of the states are given within each polygon. South Dakota (SD), Nebraska (NE), Kansas (KS), Colorado (CO), Oklahoma (OK), 
and Texas (TX).
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medium performance with 0.25, 0.25, and 0.26 NRMSE, respectively. 
The end-of-season wheat yield estimation model was compared to the 3- 
year average model for each year from the test set (Table 3). In 2021, the 
3-year average model and the LSTM have similar performance. In 2022 
and 2023, the LSTM noticeably outperforms the 3-year average model, 
improving the NRMSE by 21–29 % and the R2 from −0.02 to 0.39 in 
2021 and from 0.17 to 0.27 in 2023.

The model of the end-of-season yield estimation was re-trained with 
all 5222 samples of the training data set to forecast wheat yield before 
harvest with the modified input arrays from the truncate or SCF 
approach (Fig. 6). Performance was again assessed on the unseen test 
data from 2021 to 2023, containing 774 samples. The in-season forecast 
approaches were compared to the 3-year average model. The 3-year 
average model did not update its forecasts as the season progressed 
(as per the definition of the 3-year average model), indicated through a 
constant performance with a grey horizontal line at 0.67 t/ha MSE. The 
truncate approach does not consistently outperform the 3-year average 
model early in the season and remains close to it until the beginning of 
May. As predictor information from May and June becomes available, 
the truncate approach improves by 28 % from 0.65 t/ha MSE with in
formation until 16 May to 0.47 t/ha MSE with information until 03 July. 
Further improvements to the truncate approach with information from 
July are minimal. The two sub-experiments of the SCF approach (orange 
and green line, Fig. 6) show a similar result with a consistent decline in 
MSE from January until June, before the SCF approach becomes 
equivalent to the truncate approach in July when no SCF were used 
anymore. Early in the season, from January until the end of February, 
the SCF approach does not perform better than the 3-year average model 
or the truncate approach. From 29 March (SCF initialized on 01 April) to 
30 April (SCF initialized on 01 May), the SCF approach outperforms both 
the 3-year average model and the truncate approach. The SCF approach 
(yield forecast mean, green line) in May achieves 0.6 t/ha MSE, 10 % 
better than the truncate approach. The SCF approach falls slightly 
behind the truncate approach in June. The sub-experiment where each 
SCF ensemble member ran its wheat yield forecast was used to plot the 
performance variance (green shaded area, Fig. 6). It can be seen that the 
variance changes with the forecast month. For example, 29 March (April 
forecast) has less variance than 01 June (June forecast). In addition, 
some SCF members outperform or remain similar to the truncate 
approach when the SCF ensemble mean (green line) fails to do so (e.g., 
01 June).

Since both SCF approach experiments perform similarly, we 
analyzed predictor importance using the predictor mean SCF approach 
with one input array to the LSTM per instance. The importance of pre
dictor groups of the SCF approach was estimated per forecast month and 
time step (Fig. 7) using permutation importance analysis. From January 
to March (Fig. 7a-c), the analysis indicated that static predictors are 

unimportant for the model. Furthermore, during these first three 
months, sequential weather and other sequential predictors, such as soil 
moisture and vegetation indices, are important across most time steps. 
Lastly, from January to March, the model relies on forecasted weather 
predictors from the SCF. In April (Fig. 7d), other sequential predictors 
from early time steps are most important, followed by static predictors, 
while forecasted sequential weather predictors are unimportant. In May 
(Fig. 7e), all feature groups are important. Static predictors are mostly 
relied on from early time steps. In June (Fig. 7f), no feature group or 
time step has high importance as their magnitude is distributed across 
the time steps.

The skill of the SCF for the four time steps of weather features was 
analyzed in Fig. 8. Skill was calculated as R2 with the squared error of 
the SCF predictors over the test set as numerator and the squared error of 
using mean historical weather (2004–2017) as a forecast method over 
the test set as denominator. Temperature forecasts in January and 
February are only skillful in South Dakota (SD) and generally worsen 
from January to April. In March and April, no state has skillful tem
perature forecasts. In May and June, temperature forecasts improve, 
with almost all states showing skill with a R2 greater than 0, except for 
Kansas (KS) and Nebraska (NE) in June. Precipitation forecast skill is 
given in the second row. Skill is poor in January, except for Oklahoma 
(OK). For the remainder of the season, no trend is observable, and there 
is a lot of variance regarding skill from one month to the other. For 
example, Texas (TX) has skillful precipitation forecasts in February (h), 
March (i) and May (k) and unskillful precipitation forecasts in January 
(a), April (j) and June (l). Most skillful states for both temperature and 
precipitation forecasts are found with SCFs made at the beginning of 
May (Fig. 8 e, k) except for precipitation forecasts in Colorado (CO) and 
Nebraska (NE), all quantities were skillfully forecasted.

4. Discussion

We proposed an approach to forecast county-level wheat yield across 
the U.S. Great Plains before harvest using an LSTM with forecasted 
weather features from the seasonal climate model of the ECMWF. This is 
the first machine learning approach that integrates data from a SCF to 
make timely forecasts while also relying on observed static and dynamic 
features about weather, soil and vegetation conditions. Traditionally, 
machine learning models forecast crop yields before harvest by only 
relying on observed features until the forecast date (Paudel et al., 2022). 
At the end of the season, with all predictors being available as obser
vation, our model achieved an R2 of 0.46, an NRMSE of 0.24, and an 
MSE of 0.46 t/ha. At the beginning of May, three months before harvest, 
wheat yield forecasts with the SCF approach were possible with an MSE 
of 0.6 t/ha, improving the truncate approach, which only relies on 
observed data, by 10 %. Predictor permutation analysis showed that 
forecasted predictors from the SCF data were important for yield fore
casts throughout the season. When the SCF approach most notably 
outperformed the truncate approach in May, the LSTM demonstrated the 
strongest dependence on SCF data. This dependence on SCF data in May 
was especially high for the first time step (16 days), suggesting that long- 
range climate forecast could be replaced by other weather forecast 
products that target medium or sub-seasonal time scales up to 4-6 weeks.

At the beginning of the season, from January to March, the SCF 
approach did not outperform the truncate approach or the 3-year 
average model. In April, the SCF approach performed marginally bet
ter, and in May, the SCF approach showed the largest improvement 
compared to the other approaches before falling slightly behind the 
truncate approach in June. The development of the performance of the 
SCF approach can be explained in several ways. First, the model cannot 
provide skillful forecasts if the available information on observed and 
forecasted time steps does not cover the most crucial crop development 
stages. Winter wheat transitions from booting to the heading stage in 
May and reaches maturity in June. Forecasts from January to March did 
not include information from May or June, explaining why no skillful 

Table 3 
Annual performance compared to the benchmark model. The normalized 
root mean square error (NRMSE), mean squared error (MSE) and coefficient of 
determination (R2) are shown for the end-of-season long short-term memory 
(LSTM) approach that uses observed predictors for all time steps until harvest 
and for the 3-year average model (3YA) that always estimates subsequent yield 
to be the mean yield from the previous three years. Performance is separated 
row-wise for each year in the test set from 2021 to 2023. The NRMSE is 
normalized by state using mean state-wise yield of that year and then averaged 
across all states to obtain the yearly NRMSE. The R2 is calculated using the 
variance of each state per year in the denominator. Since R2 can be infinitely 
negative but has an upper limit of 1, we take the median R2 across all states to 
obtain the final yearly metric.

Year NRMSE 
(LSTM)

NRMSE 
(3YA)

MSE 
(LSTM)

MSE 
(3YA)

R2 

(LSTM)
R2 

(3YA)

2021 0.23 0.22 0.45 0.44 0.07 0.01
2022 0.27 0.38 0.42 0.79 0.39 −0.02
2023 0.26 0.33 0.54 0.92 0.27 0.17
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Fig. 6. In-season yield forecast performance. The wheat yield forecast performance for the 3-year average model (grey horizontal line), the truncate approach 
(blue line) and the two SCF approach experiments are shown. The truncate approach drops future features at a given truncation date (blue line). The 3-year average 
model always estimated the average yield of the last 3 years. The first SCF approach experiment consists of taking the mean of the predictors of its 25 ensemble 
members and running one wheat yield forecast per instance (predictor mean, orange line). The other experiment involved running a separate wheat yield forecast for 
each ensemble member. Then, the mean (yield forecast mean, green line) and the variance (one standard deviation) were plotted (green shaded area). Both ex
periments of the SCF approach use observed features for time steps before the truncation date (x-axis) and forecasted precipitation and temperature features for four 
time steps starting from the truncation date into the future. Performance is measured as the mean squared error in t/ha across all counties and test years from 2021 
to 2023.

Fig. 7. Permutation predictor group importance for seasonal climate forecast approach. The importance of each predictor group (y-axis) used in the seasonal 
climate forecast (SCF) approach is shown for each time step (x-axis) and forecast month (a-f), where larger mean squared error (MSE) increases (color bar) represent 
higher importance. Predictors are grouped into sequential weather predictors (mean, maximum and minimum temperature, precipitation), other sequential pre
dictors (fraction of absorbed photosynthetically active radiation, solar radiation, root zone soil moisture, climatic water balance) and static predictors. The 
importance of predictor groups is calculated using a permutation importance analysis, where values are permuted across samples. If the MSE increases due to the 
permutation, the predictor group at the given time step is important because changing its values affects the model output. In contrast, changing irrelevant predictors 
will not lead to a change in the MSE of the wheat yield forecast. The SCF date is indicated with a vertical grey line for each month from January (a) to June (f). 
Sequential weather time steps beyond that date are coming from SCFs, while other sequential feature time steps are set to zero and static features are kept equal. 
Another vertical grey line is marked four time steps further to the right to indicate the time when future information is ignored.
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wheat yield forecasts were possible. During May and June, rainfall is 
more relevant than during the beginning of the year and yield formation 
processes are most vulnerable to extreme weather conditions (Zhao 
et al., 2022) that can lead to irreversible damages. In contrast, subop
timal weather conditions in months like January or February do not 
have the same impact, as plants can still recover during the remainder of 
the season. Second, the skill of the SCF for sequential weather predictors 
influenced how the SCF approach compared to the truncate approach. 
We calculated SCF skill in Fig. 8, by dividing the squared errors of the 
SCF with the squared errors of using mean historical weather 
(2004–2017) as a forecast method. This approach was chosen because 
the truncate approach of ignoring future weather conditions implicitly 
assumes that average historical conditions will apply. In Fig. 8, we show 
a skill score that directly relates the SCF to the truncate approach. The 
resulting skill score was highest in May (Fig. 8). In May, the permutation 
predictor importance analysis also revealed that SCF predictors are 
important (Fig. 7), and the SCF approach most notably outperformed the 
truncate approach (Fig. 6). In some months (e.g., April), the predictor 
importance analysis (Fig. 7) suggests that other sequential variables, 
such as FPAR or soil moisture, are more important than sequential 
weather predictors. This does not mean that weather conditions are not 
relevant at this stage but that the other sequential predictors already 
capture much of the weather signal and thus act as indirect proxies.

Previous studies using statistical and machine learning methods for 
end-of-season wheat yield forecasting in the U.S. have reported a range 
of results. While direct comparisons to our approach are challenging due 
to differences in geographic scope, predictor variables, and evaluation 
approaches, these studies provide useful context. For instance, one 
machine learning model forecasting winter wheat yields across all U.S. 
states reported an R2 of 0.75 for the 2020 and 2021 test years (Joshi 
et al., 2023). Another statistical model focused on Kansas achieved a 
normalized RMSE of 7 % using cross-validation for the 2000–2008 
period (Becker-Reshef et al., Jun. 2010). We also explored analog-year 
benchmarks as an alternative to the 3-year average or truncate ap
proaches. However, their performance was limited by the small number 
of available historical years (8–17 per county) combined with the high 
dimensionality of the predictor space (Suppl. Fig. S1).

While the results are promising and encourage an application to 
other crops and regions, there is potential to further improve our 

approach. The predictors used here were obtained from the CY-Bench 
project, in which a static crop land mask from 2021 (Tricht, 2023) 
was utilized to aggregate grid cell data to the county-level. Dynamic in- 
season crop land masks, obtained from high-resolution satellite data, 
such as from Copernicus Sentinel-2, could help to make more targeted 
predictors and better yield forecasts (Ben, et al., 2025). The weather 
across the U.S. Great Plains is difficult to forecast (Peings et al., 2025) 
and SCF-based machine learning yield forecast could be more useful in 
regions with higher SCF skills. Furthermore, our approach suffered from 
the spring predictability barrier (Duan and Wei, Apr. 2013), where SCF 
skill beyond spring (e.g., April) is poor but suddenly recovers for fore
casts made after spring (e.g., May). Our approach could be further 
improved for crops with crucial development stages that are better 
aligned with SCF skills. In addition, it has been shown that averaging the 
output of SCFs from different climate centers, called the Multi-Model 
Ensembles technique, can provide more reliable forecasted weather 
predictors than using the output from a single SCF, like we and others 
have demonstrated elsewhere (Knutti et al., 2010). Future studies on 
machine learning crop yield forecasts could leverage the strength of 
multi-model ensembles of SCFs to have forecasted weather predictors 
available that are more skillful than those coming from a single SCF. The 
spatial resolution of the SCF of the ECMWF used here is 1◦ by 1◦, which 
led to some counties sharing the same SCF grid cell and forecasted 
weather conditions. Forecasted weather predictors in higher spatial 
resolution can be validated for better in-season wheat yield forecasts on 
the county level. Furthermore, SCFs are generally initialized once a 
month, while crop yield forecasts before harvest could benefit from real- 
time forecasts. A possibility would be the application of extended-range 
forecasts, which are initialized daily, but with shorter forecast horizons. 
Here, we applied the standard bias adjustment method quantile map
ping and let the LSTM find meaningful information within the SCF data 
by itself. Alternatively, one could analyze the skill of SCF data during 
data preprocessing and only provide features that are considered skillful 
at providing a shortcut in the learning process of the LSTM. Our study 
lacks detailed information on the spatial distribution of wheat growth 
stages and on how forecasted meteorological factors in May relate to 
actual yield outcomes on the county-level. Addressing this gap in the 
future by linking forecast data, weather conditions and yield impacts 
might improve forecasts. A general statement about the usability of SCF 

Fig. 8. Spatial analysis of seasonal climate forecast skill. Skill is measured as R2, where higher values are better and negative values indicate a lack of skill. The 
top row (a-f) corresponds to the average skill of forecasting temperature features (mean, maximum and minimum). The lower row (g-l) shows precipitation forecast 
skill. Each column represents a forecast initialization month from January to June. Each month, forecasts for four time steps (64 days) ahead are evaluated. The 
abbreviations of the states are given in the first plot within each polygon: South Dakota (SD), Nebraska (NE), Kansas (KS), Colorado (CO), Oklahoma (OK), and 
Texas (TX).
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data to machine learning-based crop yield models is still challenging to 
make. In this study, we only evaluated our approach using an LSTM, 
while other model types may hold other inherent challenges. In addi
tion, the approach’s performance in other breadbasket regions has to be 
explored.

5. Conclusion

We have enhanced in-season wheat yield forecasts by integrating 
seasonal climate forecasts (SCFs) into an LSTM-based prediction system. 
We demonstrated for wheat across the U.S. Great Plains that forecasted 
weather variables, can improve yield forecasts, especially during May, 
leading up to a 10 % reduction in MSE compared to relying solely on 
observed predictors. This mid-season skill is particularly beneficial 
given that wheat transitions through critical developmental stages in 
late spring. By providing more reliable forecasts two to three months 
before harvest, our approach could help farmers, agribusinesses, and 
policymakers make timely and informed decisions regarding resource 
allocation, risk mitigation, and market planning.

However, SCF skills remain low from January to March. Further 
gains in improving forecast skills might also come from using multi- 
model ensembles instead of single-models or incorporating higher- 
resolution seasonal products. Future research should evaluate this 
framework across other major breadbasket regions and for different 
crops to verify its adaptability and robustness. As weather forecasts are 
expected to become increasingly accurate, our findings suggest the po
tential benefits of more integrated climate–crop modeling to strengthen 
food security and foster sustainable agricultural practices.

CRediT authorship contribution statement

Maximilian Zachow: Writing – original draft, Visualization, Vali
dation, Software, Resources, Methodology, Investigation, Formal anal
ysis, Data curation, Conceptualization. Stella Ofori-Ampofo: Writing – 
original draft, Visualization, Validation, Software, Resources, Method
ology, Investigation, Formal analysis, Data curation, Conceptualization. 
Harald Kunstmann: Writing – review & editing, Validation, Supervi
sion, Methodology, Investigation. Rıdvan Salih Kuzu: Writing – review 
& editing, Validation, Supervision, Methodology, Investigation. Xiao 
Xiang Zhu: Writing – review & editing, Validation, Supervision, 
Methodology, Investigation. Senthold Asseng: Writing – original draft, 
Validation, Supervision, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

The work of S. Ofori-Ampofo was funded by the Munich Aerospace e. 
V. scholarship. The results of our study contain modified Copernicus 
Climate Change Service information 2024. Neither the European Com
mission nor ECMWF is responsible for any use that may be made of the 
Copernicus information or data it contains.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compag.2025.110965.

Data availability

Data used is publicly available and indicated in the manuscript. The 
repository with code to reproduce our study is indicated in the 

manuscript.

References
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