
Impact of regularization in optimizing distance-encoding 
biomorphic-informational neural networks for small nuclear 
medicine datasets

Boglarka Ecsedi a,b, Amine Boukhari a,c, Clemens P. Spielvogel d,k, David Haberl d,  
Zsombor Ritter e, Ralph A. Bundschuh f,g,h,i, Constantin Lapa j, Marcus Hacker d, Mathieu Hatt c,  
Laszlo Papp a,k,*

a Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
b Georgia Institute of Technology, Atlanta, GA, USA
c LaTIM, INSERM, UMR, 1101, Univ Brest, Brest, France
d Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
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A B S T R A C T

Introduction: To date, small, imbalanced datasets are considered challenging to efficiently train deep learning 
(DL) models, especially in the medical domain. Consistently, most Artificial Intelligence (AI) approaches in 
conjunction with small datasets rely on shallow radiomics where traditional machine learning (ML) is utilized for 
analysing image-derived features. In this study, we evaluate a recently introduced spatial neural network scheme 
called Distance-Encoding Biomorphic-Informational Neural Network (DEBI-NN), which trains spatial coordinates 
of artificial neuron coordinates instead of weights, that are then calculated from neuron distances. This technique 
dramatically reduces the number of parameters to train, thereby making DEBI-NN eligible for the analysis of 
small, imbalanced datasets. We refer to this property as spatial plasticity. We hypothesized that DEBI-NNs could 
systematically outperform baseline NN models in small clinical datasets while requiring less regularizations to be 
implemented, as spatial plasticity may have self-regularization properties. To test our hypothesis, we aimed to 
compare DEBI-NNs with baseline NNs while relying on various regularization techniques to investigate how 
DEBI-NNs perform in the presence of regularizers in small multi-centric medical imaging datasets.
Methods: Three multi-centric datasets were collected including diffuse large B-cell lymphoma (DLBCL) [18F]FDG 
positron emission tomography (PET)/computed tomography (CT) with clinical parameters to predict 2-years 
event-free survival; the head and neck [18F]FDG PET/CT dataset from the 2022 MICCAI challenge (HECK
TOR), predicting human papillomavirus status; and [68Ga]Ga-PSMA-11 (PSMA-11) PET/CT as well as PSMA-11 
PET/magnetic resonance imaging (MRI) cases to predict histopathology-provided International Society of Uro
logical Pathology (ISUP) grades as low (ISUP ≤ 2) and high (ISUP > 2) risk. Per cohort, 5 different network 
configurations having 1, 2 and 3 hidden layers and neuron count configurations were defined. Per configuration, 
DEBI-NNs had 7 regularization techniques and baseline NNs had 6 regularization configurations, totalling 27 

=

128 and 26 = 64 regularization variants per network scheme to train and evaluate. Test balanced accuracy 
(BACC) was measured for each model and correlation of the test BACC in the presence of regularization tech
niques was evaluated in DEBI-NN and baseline NN models.
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Results: The best-performing DEBI-NN models yielded 84.5 %, 80 % and 80.5 % BACC in DLBCL, HECKTOR and 
PROSTATE datasets, respectively. In contrast, the highest-performing baseline NN models yielded 71.9 %, 77.3 % 
and 77.3 % BACC in the same cohorts, respectively. In addition, baseline NNs required the implementation of 
more regularization techniques to increase test BACC from an average test BACC of 53 % (no regularization) to 
60 % (6 regularizations), while DEBI-NNs needed no regularization to achieve 62 % BACC. In return, DEBI-NN 
BACC monotonously fell down to 56 % BACC as the number of regularizations increased.
Conclusions: DEBI-NNs exhibit a significantly simpler training complexity compared to baseline NNs, while they 
also outperform baseline NNs with the presence of minimal or no regularization techniques. Our results strongly 
imply that DEBI-NNs have a potential to pave the way for the utilization of neural networks in small and 
imbalanced medical datasets, which the field of medical imaging research routinely operates with.

1. Introduction

To date, small datasets are considered challenging to efficiently train 
deep learning (DL) models, especially in the medical domain [1,2]. 
Medical imaging datasets readily available for DL development tend to 
be small compared to other domains within computer vision. In addi
tion, medical imaging datasets are often collected from multiple sites to 
ensure generalizability and to increase the overall sample size. This 
often leads to a large domain shift across various imaging centers, time, 
machines, acquisition protocols, or reconstruction settings, introducing 
additional complexity for machine learning (ML) models [3], making 
them difficult to yield consistent, reliable predictions in new unseen 
data. Furthermore, these datasets tend to be highly imbalanced which 
can result in ML algorithms failing to correctly detect rare cases of in
terest. Despite previous efforts to harmonize both medical imaging data 
and extracted features [4], it remains a challenge to successfully train 
efficient and generalizable DL models on small medical imaging datasets 
[1].

Since the early days of machine learning research, radiomics com
bined with traditional ML approaches have been one of the most 
commonly utilized techniques to process medical imaging data and to 
support clinical decision-making for their interpretability, low cost and 
ease of training compared to their deep learning counterparts. Radio
mics involves semi-automatically extracting a large number of quanti
tative features from medical images which then can be analysed along 
with other clinically relevant data using traditional ML algorithms, 
including e.g., extreme gradient boosting (XGBoost), random forests 
(RF) or support vector machines (SVMs). Research indicates that relying 
solely on these models with small sample sizes often yields unreliable 
results and falls short in capturing complex patterns within the data [1].

Following the success of DL models in other domains, the clinical 
community has increasingly sought to leverage their representational 
power and hone their advantages for medical image analysis as well. The 
convolutional neural network (CNN) [5] was one of the first revolu
tionary model families in computer vision research which was then 
followed by the residual neural network and the attention-based vision 
transformer (ViT) [6,7], quickly making breakthroughs in classical 
computer vision tasks including classification, detection, and segmen
tation, starting to replace traditional methods in many fields and ap
plications. However, DL methods typically require large, representative 
and balanced datasets to achieve optimal performance. In the absence of 
such high-quality, abundant data, performance deficiencies can be 
mitigated with techniques such as data augmentation, transfer learning 
and carefully-designed initialization [8], or customized loss functions. 
Scarce, imbalanced, yet highly complex datasets still impose a huge 
constraint to all of the newer DL approaches. Another concern is that DL 
methods often lack by-design explainability and require complex 
interpretability techniques, which limit their acceptance and actual use 
in highly safety-critical domains like healthcare where interpretability 
and reliability are of vital importance.

To counterbalance the effects of data scarcity and/or high internal 
variability, prior work has suggested the use of regularization to 
improve the model’s generalization ability [9,10]. Regularization refers 

to techniques that reduce overfitting and constrain the complexity of a 
ML model. They result in a more stable learning process, smoothen the 
loss surface and can help to balance the bias-variance trade-off to opti
mize the model’s performance. However, the fundamental issue of 
having orders of magnitudes higher number of trainable parameters in 
NNs compared to the number of training samples remained a bottleneck, 
not properly addressed in the field of DL.

Recently, a novel, parameter-efficient neural network approach has 
been introduced by Papp et al. [11] called the Distance-Encoding Bio
morphic-Informational Neural Network (DEBI-NN) exhibiting prom
ising results in processing small medical datasets while consolidating 
deep neural networks. Instead of optimizing weights, DEBI-NNs train 
spatial positions of their neurons consisting of soma-axon pairs, where 
weights are derived from the spatial distances of connected neurons. We 
refer to this property as spatial plasticity. DEBI-NNs are 
three-dimensional, spatial neural networks where the soma-axon pairs 
have both x,y,z coordinates (unknown parameters to train) in the 
Euclidean space. Every time a DEBI-NN is modified in terms of its neural 
coordinates, distances are recalculated to weights. This construct allows 
the network to linearly scale with the number of trainable parameters. In 
addition, the effect of modifying DEBI-NN coordinates is higher than 
modifying the same number of weights in a conventional NN, as a soma 
or axon modification in the Euclidean space affects all connected neu
rons and their calculated weights. In Ref. [11], the initial version of this 
architecture demonstrated performance on par with neural networks 
(NN), albeit, with significantly less parameters to train. Additionally, it 
appeared to handle class imbalance more successfully without explicit 
regularization. However, due to the novelty of the approach, the optimal 
configurations and regularizing behaviour of this network are yet to be 
explored. Hence, in this study, we aimed to conduct a follow-up evalu
ation involving a wide-range of regularization approaches to compare 
their effect on predictive performance in DEBI-NNs and conventional 
NNs.

Based on the above initial findings, we hypothesize that DEBI-NN 
models can achieve increased generalizability due to spatial plasticity 
combined with significantly fewer trainable parameters compared to 
their conventional fully-connected NN counterparts. We further hy
pothesize that DEBI-NNs have inherent regularization properties due to 
spatial plasticity, thus, they can further simplify model building in small 
medical imaging cohorts compared to conventional NNs. In order to test 
our hypotheses, we aimed to conduct a multi-centric comparative study 
involving various datasets, network layouts and regularization combi
nations. Therefore, we established the following objectives: (a) to collect 
a wide-range of cancer cohorts having variations in the type or modality 
of data, sample size and class imbalance ratio where data is originated 
from at least two sites; (b) to measure the predictive performance of 
multiple model configurations in both DEBI-NN and conventional NN 
models, considering all combinations of a set of conventional and 
DEBI–NN–specific regularization techniques; and (c) to assess the 
benefit of regularization techniques regarding predictive performance in 
an independent test setting in both DEBI-NN and conventional NN 
models.
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2. Methods

For the CONSORT figure of the study, see Fig. 1. For the Checklist for 
Artificial Intelligence in Medical Imaging table, see Appendix E.

2.1. Datasets

All cohorts were generated by studies that were previously reviewed 
and approved by the appropriate local institutional research ethics 
committees to be involved in retrospective AI analyses. Whenever 
appropriate, written consents were obtained. For details regarding 
ethical approvals, refer to the publications of the original studies, 
providing the data this study utilized (see below).

2.2. Diffuse large B-cell lymphoma dataset (DLBCL)

This radiomic and clinical dataset includes data collected from 85 
high-risk patients with histologically proven diffuse large B-cell lym
phoma (DLBCL) with the goal of predicting two-year event-free survival. 
The [18F]FDG PET/CT scans and relevant clinical parameters were 
retrospectively collected between 2014 and 2019 from two centers: 41 
patients from the University of Pécs, Department of Medical Imaging 
(Center 1) and 44 patients from University of Kaposvár, Hungary 
(Center 2), which populate the train and test sets, respectively. The 
patient population’s median age was 59 years (23–81 years) with 48.20 
% (n = 41) of patients older than 60. The ratio of male to female patients 
in the cohort was 47 % (n = 40) and 53 % (n = 45), respectively. 
Comprehensive clinical characteristics of these patients, including 
treatments and biomarkers, have been described in the original study 
[12]. This dataset was used to evaluate predictive models for survival 
outcomes predicting 2-year survival (yes/no), leveraging in vivo 
radiomics data derived from baseline [18F]FDG PET/CT and clinical 
parameters. For specific dataset characteristics, see Table 1.

2.3. Head and neck tumor dataset (HECKTOR)

This head and neck [18F]FDG PET/CT dataset was collected and 
curated within the context of the 2022 MICCAI challenge (HECKTOR) 
[13]. The patients in the dataset were labelled as Human Papillomavirus 
(HPV) status positive or negative. The input data combined 8 clinical 
variables (age, gender, stage, treatment, etc.) and 28 image biomarker 
standardization initiative (IBSI) - compliant 3D radiomic features 
extracted from the delineated tumour volumes in both the FDG PET and 
CT scans. The dataset is heterogeneous, with images provided by several 
centers that were split into 158 training and 74 test samples.

2.4. Prostate cancer dataset (PROSTATE)

This dataset includes data from two centers including Augsburg (DE), 
supplying 50 [68Ga]Ga-PSMA-11 (PSMA-11) PET/CT cases and 28 
PSMA-11 PET/MRI cases from Vienna (AT) [14], respectively serving as 
train and independent test sets (see Table 1). Both sets underwent 
automated prostate detection (in CT and in MRI) relying on the seg
mentation component of the Dedicaid service (Telix Pharmaceuticals, 
IN, USA) hosted at MedUni Wien. This was followed by primary 
prostate-based IBSI radiomic feature extraction [15] from PSMA PET 
images relying on the IBSI-conform radiomics component of the Dedi
caid service, where features having “strong” or “very strong” 
multi-centric consensus according to IBSI were extracted. All cases were 
labelled by whole-mount histopathology-provided International Society 
of Urological Pathology (ISUP) grades as low (ISUP ≤2) and high (ISUP 
>2) risk.

2.5. Data preprocessing

Data preprocessing was performed on the training set. The test set 

was solely used for performance evaluation and did not influence the 
modelling process. Constant features were removed before applying 
feature redundancy removal. Features were additionally removed if they 
had more than 20 % missing values. Samples were removed if labels 
were missing. Subsequently, z-score standardization was performed 
[11], followed by k-nearest neighbour feature imputation. Lastly, 
minimum-Redundancy Maximum-Relevance (mRMR) feature redun
dancy ranking and selection was done by pairwise correlation with 
Spearman ranking and then the feature with the lower variance was 
discarded for pairs with correlation coefficient >0.8 [16]. The final 
selected features and the z-score coefficients were also applied to the 
corresponding test sets.

2.6. Regularization techniques

As a baseline, conventional neural networks (NNs) were trained next 
to DEBI-NN models as they are good demonstrators of regularization 
methods utilized in traditional DL models [17].

The regularization techniques for this study were selected based on 
the following criteria: whether they can generally be applied to both 
fully-connected NNs and DEBI-NNs, and their prevalence in the practice 
of NNs regularization. We omitted methods such as Batch Normalization 
[18,19], as they are not used for NNs that are not optimized with 
gradient descent-based methods. Consequently, they were also not uti
lized for DEBI-NNs. Furthermore, we utilize Spatial Dropout (SD) as a 
DEBI–NN–specific regularization technique [20].

The following regularization techniques were implemented in this 
study: L1 or Lasso regression (L1), L2 or Ridge regression (L2), Drop 
Connect (DC), Group Normalization (GN), Weight Standardization 
(WS), Shift-Scale Optimization (SCO), and the DEBI–NN–specific Spatial 
Dropout (SD). For further details about these techniques, see Appendix 
C. Note that applying both L1 and L2 together yields the so-called 
“Elastic Net” regularization [21], but for consistency, we regard it as a 
combination of methods rather than a standalone method. Some other 
techniques, for example WS and GN are often applied together to 
enhance the stability and performance of the training. For this reason, 
we aimed to investigate both the individual merit of the regularization 
techniques as well as their combined effects on the training process. 
Therefore, configurations were built from all possible combinations of 
the above methods for both NNs and DEBI-NNs, resulting in a total of 
26 = 64 and 27 = 128 configurations (since DEBI-NNs additionally have 
SD), respectively. For detailed configurations, see Appendix C.

To isolate the effects of different regularization configurations and to 
ensure a controlled evaluation, other hyperparameters were held con
stant across network architectures and training procedures, as shown in 
Appendix B. In case of the baseline NN models, learning rate and weight 
decay were optimized with grid search, since these parameters signifi
cantly influence predictive performance, as detailed in Appendix B. 
DEBI-NNs employed no hyperparameter optimization. Furthermore, 
early stopping was enabled in all the experiments. Further details on the 
specific training and hyperparameter optimization configurations can be 
found in Appendix B and C.

2.7. Network configurations

The present study examined regularization behaviour across five 
architecture layouts, denoted as “1H”, “2H-Block”, “2H-Hinton”, “3H- 
Block”, and “3H-Hinton”, referring to networks with 1, 2, or 3 hidden 
layers, respectively. “Block” and “Hinton” are different rules of hidden 
layer configurations as defined in Ref. [11] and detailed for each dataset 
in Appendix B. In short, a 1-hidden layer network has 5-times hidden 
neuron counts relative to the input feature counts; Block networks have 
the same neuron counts across hidden layers (2-times the input feature 
count), while Hinton networks reduce the number of neurons in 
consecutive hidden layers 2/3-times of the neuron count relative to the 
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previous layer. Both NNs and DEBI-NNs follow these layer configura
tions, i.e., in a given layout, NNs and DEBI-NNs have the same number of 
neurons in corresponding layers.

A total of 64 and 128 different regularization configurations were 
tested for NNs and DEBI-NNs on 5 different network architecture layouts 
in such a way that all possible combinations of the regularization 
methods were applied on each of the five layouts, yielding a total 
number of 320 and 640 experiments per cohort for NNs and DEBI-NNs, 
respectively.

2.8. Predictive performance estimation

Predictive performance was estimated with both DEBI-NN and 
Baseline NN models on all three datasets, performing binary classifica
tion tasks. Predictive performance was estimated on the independent 
test sets of each cohort. The number of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN) cases was quantified. 
The reported metrics were sensitivity (SNS), specificity (SPC), positive 
predictive value (PPV), negative predictive value (NPV), accuracy 
(ACC), and balanced accuracy (BACC) to compare predictive perfor
mance between the baseline NN and DEBI-NN models, as well as across 
different configurations and layouts.

Our primary performance metric used for the analysis was balanced 
accuracy (BACC) as it is more accurate and comprehensive of the results 
for small, and especially imbalanced datasets than any one of the other 
metrics alone.

The models have been evaluated on the same datasets and with 
highly similar configurations. However, their training paradigms are 
fundamentally different and therefore quantitatively comparing their 
performance is a challenging task. To ensure fair cross-architectural 
comparison, we report both absolute and relative (normalized) perfor
mance differences. The absolute difference between DEBI-NN and 
Baseline NN balanced accuracies is denoted as Δ BACC (abs), while the 
mean difference is denoted as Δ Mean BACC (abs) hereafter.

Additionally, a relative performance gain metric was introduced to 
express the scale of the performance difference between DEBI-NN and 
Baseline NN calculated by normalizing gains by the baseline’s perfor
mance referred to as Δ BACC (%), while the mean relative difference is 
referred to as Δ Mean BACC (%) hereafter.

Last, each cohort train-test configuration was used to build 100 
different mixed-stacked ensemble learners (a.k.a. super-learners) auto
matically (AutoML) in the Dedicaid service. The 100 super-learners 
included Bayesian classifiers, Gaussian mixture models, random 

forests and support vector machines [12,22]. These 100 super-learners 
then provided a final prediction on the test cases by a majority vote.

2.9. Evaluation of regularization techniques

Test BACC values of each model were correlated with the presence of 
regularization techniques (on/off) to investigate which of these tech
niques individually and combined affect DEBI-NN and Baseline NN 
predictive performance relying on Spearman correlation. This was done 
per cohort and per network configuration.

Relative BACC changes per regularization and the occurrence of 
those BACC changes were compared between DEBI-NN and baseline NN 
models.

The number of regularizers present vs. test BACC was also investi
gated in DEBI-NNs and Baseline NNs by categorizing BACC values into 
groups having the same number of regularizations active. Trendlines 
regarding test BACC change were analysed in light of number of regu
larizations being on across DEBI-NN and baseline NN models.

3. Results

3.1. Predictive performance evaluation

As shown in Fig. 2, DEBI-NN yielded mean test BACC of 69.15 % 
(±1.44 95 %CI) on DLBCL, 68.33 % (±1.48 95 %CI) on HECKTOR, and 
60.73 % (±1.82 95 %CI) on PROSTATE, respectively. In contrast, 
Baseline NN yielded a mean test BACC of 56.17 % (±1.67 95 %CI) on the 
DLBCL, 62.09 % (±1.83 95 %CI) on the HECKTOR, and 52.75 % (±1.35 
95 %CI) on the PROSTATE datasets across all network architectures. For 
detailed results see Appendix D. For an example DEBI-NN model in 3D, 
see Fig. 3.

Table 2 summarizes the absolute and relative performance im
provements of the DEBI-NN models over the Baseline NNs where relative 
improvement normalizes gains by the Baseline’s performance, enabling 
fair cross-architecture comparisons. On the DLBCL dataset DEBI-NN 
demonstrates +18.1 − 29.3 % relative improvement over Baseline. On 
the HECKTOR dataset, DEBI-NN demonstrates +4.4 − 15.7 % relative 
improvement, on the PROSTATE dataset +10.3 − 21.8 % relative 
improvement. The highest absolute mean performance difference of 
15.9 % occurred in the DLBCL dataset, while the lowest absolute mean 
performance difference of 2.6 % was observed in the HECKTOR dataset. 
The most significant performance gap was observed in the DLBCL 
dataset, with the lowest average variance, and therefore the highest 

Fig. 1. The CONSORT chart of the study. Three cancer cohorts are involved in the study, having different sample counts, imbalance ratios and clinical binary 
endpoints to predict. All data are dual or multi-centric, including imaging and non-imaging (clinical) features to predict from. Data pre-processing ensures that high- 
quality features are selected (without missing data and with high correlation with training labels to predict, while minimizing redundancy). Model training involved 
6 and 7 regularization techniques for Baseline NN and for DEBI-NN, respectively, resulting in 26 

= 64 and 27 
= 128 possible configurations in total. This is combined 

with 5 different network configurations per regularization combination and per cohort. Performance evaluation is done in test datasets by calculating confusion 
matrix analytics and balanced accuracy per model. DEBI-NN, Baseline NN and AutoML models are compared. Regularization evaluation is conducted by correlating 
test balance accuracies and regularization techniques across cohorts and network schemes. DLBCL – Diffuse Large B-cell Lymphoma; 2-YEFS – 2-years event-free 
survival; HECKTOR – Head and Neck tumour cohort; HPV – Human papillomavirus; ISUP – International Society of Urological Pathology; NN – Neural Network; 
DEBI-NN – Distance Encoding Biomorphic NN; BACC – balanced accuracy; PET/CT – Positron Emission Tomography/Computed Tomography; MRI – Magnetic 
Resonance Imaging.

Table 1 
Dataset characteristics. Number of samples and features refer to the properties of the datasets after Data Pre-processing. The minority class imbalance ratio describes 
the ratio of the minority class size relative to the total number of samples in the corresponding data. DLBCL – Diffuse Large B-Cell Lymphoma dataset; HECKTOR – Nead 
and Neck dataset; HVP – Human Papillomavirus; ISUP – International Society of Urological Pathology, HPV – Human papillomavirus.

DLBCL HECKTOR PROSTATE

Role Train Test Train Test Train Test
# Samples 41 44 158 74 50 28
# Features 17 36 31
Minority class imbalance (%) 39 % 31.8 % 37.3 % 25.7 % 50 % 39.3 %
Classification output 2-year survival (yes/no) HPV status (±) ISUP grade (≤ 2/> 2)
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Fig. 2. Absolute Mean Balanced Accuracy (BACC (abs)) with 95 % confidence intervals (CI) for DEBI-NN and Baseline NN models across three datasets. Each subplot 
corresponds to a dataset (DLBCL, HECKTOR, and PROSTATE) and displays the absolute mean BACC over different configurations for the given architecture layout 
(1H, 2H–B (Block), 2H–H (Hinton), 3H–B, 3H–H) shown along the x-axis. For the full table displaying mean and CI values, please see Appendix D.

Fig. 3. Example 3D rendering of a PROSTATE DEBI-NN model. The distributions of the artificial somas and axons are centralized around the input somas (large red 
spheres in the middle, overlapping) due to the model being built with the so-called Singularity initialization mode. This initialization mode puts all somas and axons 
to the 0,0,0 Cartesian coordinate in the 3D Euclidean space, from which training iteratively modifies all trainable somas and axons until their distances (and thereby, 
weights) are optimal. Input somas are not trained, as their position is invariant. For the same reason, output axons are also not trained. Hidden somas and axons 
(yellow) as well as output somas (green) are trained. Blue lines correspond to calculated weights. When a feature in the given layer is not important, its axons tend to 
be positioned far from next layer somas. This phenomenon is typically observed through peripheral somas or axons. For more information about DEBI-NN pa
rameters, see the openly-available DEBI-NN Handbook in the GitHub repository (see Access).
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stability (as shown in Fig. 2, Tables 2 and 3). On the HECKTOR and 
PROSTATE datasets, the performance gain was low to moderate. Among 
the five network architectures, 2H-Hinton seems to be the most robust 
with an average absolute improvement of +12.4 % and an average 
relative improvement of +22.3 % across all datasets. 1H models also 
performed particularly well on all datasets, while 3H-Hinton models 
were successful on the DLBCL and HECKTOR datasets.

Table 3 summarizes the separation and precision ratio (PR) corre
sponding to the 95 % Confidence Intervals (CIs). Regarding overall 
performance consistency, DEBI-NN is most decisively superior on the 
DLBCL dataset with a CI separation of ≥ 6.7 % and an overall clear 
advantage on the HECKTOR and PROSTATE datasets (as shown in 
Table 2) but with varying effect sizes. All but one architecture layouts 
exhibit non-overlapping confidence intervals with a separation > 0.0 

(except for HECKTOR 3H-Block models). Most precision ratios in the 
DLBCL and HECKTOR datasets are < 1.0 (except DLBCL 2H-Hinton), 
indicating tighter confidence intervals for the DEBI-NN models. On the 
PROSTATE dataset, the Baseline NN bounds are tighter.

The highest-performing DEBI-NN models with test BACC were 2H- 
Hinton with 84.5 % in DLBCL, 1H and 3H-Hinton with 80 % in HECK
TOR and 3H-Block with 80.5 % in PROSTATE.

In contrast, the highest-performing Baseline NN models were 3H- 
Block with 71.9 % in DLBCL, 2H-Block with 77.3 % in HECKTOR and 
1H with 77.3 % in PROSTATE (Fig. 4).

The reference AutoML evaluations yielded a test BACC of 79 % for 
DLBCL, 75.5 % for HECKTOR and 54.5 % for PROSTATE.

Fig. 2 demonstrates that the highest-performing DEBI-NN model 
instances consistently outperform the highest-performing Baseline NNs 
across all datasets and architecture layouts by an average of 12.0 %, 
3.8 %, and 5.5 % improvement for the DLBCL, HECKTOR, and PROS
TATE datasets, respectively. The highest difference of 15.9 % between 
the best-performing models was exhibited by 2H-Hinton on the DLBCL 
dataset, while the smallest difference of 0.2 % was observed between the 
1H models on the PROSTATE dataset.

3.2. Evaluation of regularization techniques

Fig. 5 reveals how different regularization methods impact the 
Baseline NN and DEBI-NN absolute BACC performance measured by the 
Spearman correlation coefficient for each layout and regularization 
technique across all datasets. In general, most correlation values tend to 
be neutral or weakly correlated with performance. The highest positive 
values show a weak to moderate correlation, while the highest negative 
values show a moderate to strong correlation.

In case of DEBI-NN, there are 9/35, 14/35, and 15/35 positively 
correlated cells for the DLBCL, HECKTOR, and PROSTATE datasets 
respectively, yielding a total of 38/105 positively correlated values. In 
case of Baseline NN, there are 3/30, 13/30, 15/30 positively correlated 
cells, yielding a total of 31/90 positively correlated values. See Fig. 6 for 
the distribution of correlations of predictive performances with indi
vidual regularization techniques. Fig. 7 represents the predictive per
formance differences between best regularization vs. no regularization 
models in DEBI-NN and baseline NN models.

Fig. 8 reveals that DEBI-NNs benefit less and less, while baseline NNs 
benefit more and more form the presence of more than one regulariza
tion techniques. However, on average, DEBI-NN models have a higher 
predictive performance than Baseline NN models have even if the latter 
one utilizes a high number of regularizations. In particular, the highest 
average test BACC across all models in DEBI-NNs was 61.67 % (±1.557 
95 %CI) having 1 regularizations active, while the test BACC tendency 
was systematically decreasing down to 56.38 % (±3.71 95 %CI) with 7 
regularizations being active. In contrast, Baseline NNs has a consistent 
test BACC increase starting from 53.06 % (±3.0 95 %CI) with no regu
larization up to 59.93 % (±3.71 95 %CI) with 6 regularizations. For 
details see Appendix D.

4. Discussion

In this study, we conducted a comprehensive investigation into the 
effects of various regularization techniques on the Distance-Encoding 
Biomorphic-Informational Neural Network (DEBI-NN) architecture. 
We compared its performance against Baseline NNs across three distinct, 
multi-centric small medical imaging datasets, utilizing several network 
layouts and combinations of regularization configurations. Our primary 
hypothesis was that DEBI-NN models, owing to their inherent spatial 
plasticity and significantly fewer trainable parameters, would exhibit 
enhanced generalizability and potentially a reduced need for explicit 
regularization compared to conventional NNs.

The results largely support our hypothesis. A key finding is the 
consistent superior predictive performance of DEBI-NN models over 

Table 2 
Performance improvements of DEBI-NN over Baseline NN across various layouts 
and datasets. The table presents absolute (Δ Mean BACC (abs)) and relative (Δ 
Mean BACC (%)) gains in mean Balanced Accuracy (BACC). The mean BACC 
values were calculated for each model layout (1H, 2H-Block, 2H-Hinton, 3H- 
Block, 3H-Hinton) for each dataset (DLBCL, HECKTOR, PROSTATE). Positive 
values indicate that DEBI-NN models have higher performance compared to 
Baseline NNs. For the full table displaying mean values with improvement 
percentages, see Appendix D.

Dataset Layout Δ Mean BACC (abs) Δ Mean BACC (%)

DLBCL 1H 13.1 22.8
2H-Block 12.7 22.7
2H-Hinton 15.9 29.3
3H-Block 10.2 18.1
3H-Hinton 13 22.9

HECKTOR 1H 7.3 11.2
2H-Block 4.4 7.2
2H-Hinton 9.8 15.7
3H-Block 2.6 4.4
3H-Hinton 7 11.5

PROSTATE 1H 8.7 16.3
2H-Block 7.1 13.4
2H-Hinton 11.5 21.8
3H-Block 7.2 13.8
3H-Hinton 5.4 10.3

Table 3 
Comparison between DEBI-NN and Baseline NN 95 % Confidence Interval (CI) 
Separation and Precision Ratio. Values were calculated for each model layout 
(1H, 2H-Block, 2H-Hinton, 3H-Block, 3H-Hinton) for each dataset (DLBCL, 
HECKTOR, PROSTATE). Separation expresses the difference between the lower 
95 % confidence interval (CI) bound of the DEBI-NN and the upper 95 % con
fidence interval bound of the Baseline NN. Positive separation values mean that 
the confidence intervals are non-overlapping, while negative values indicate 
overlapping intervals. Precision Ratio (PR) computes the relative CI widths of 
DEBI-NN and Baseline NN. PR values < 1.0 indicate tighter CI bounds for DEBI- 
NN, while values > 1.0 indicate tighter CI bounds for Baseline NNs. For the full 
table displaying confidence intervals, separations and precision ratios, refer to 
Appendix D.

Dataset Layout Separation Precision Ratio

DLBCL 1H 10.3 0.7
2H-Block 9.9 0.8
2H-Hinton 12.9 1.1
3H-Block 6.7 0.8
3H-Hinton 9.6 0.8

HECKTOR 1H 5.1 0.8
2H-Block 0.6 0.8
2H-Hinton 6.7 0.7
3H-Block −1.2 0.9
3H-Hinton 3.4 0.9

PROSTATE 1H 5.4 1
2H-Block 3.9 1.5
2H-Hinton 8.4 1.6
3H-Block 4.1 1.4
3H-Hinton 2.1 1.4
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Fig. 4. Comparison of best performing DEBI-NN and Baseline NN models across five architecture layouts and three datasets measured by absolute balanced accuracy 
(BACC). Each column corresponds to the highest performing model instance for the given layout (1H, 2H-Block, 2H-Hinton, 3H-Block, 3H-Hinton) and dataset: 
DLBCL, HECKTOR, PROSTATE. The BACC values are presented as percentages. For full tables containing the five best and worst performing DEBI-NN and Baseline 
NN models for DLBCL, HECKTOR, and PROSTATE datasets, refer to Appendix D.

Fig. 5. Spearman correlation coefficients between various regularization techniques active and the balanced accuracy (BACC) metric for DEBI-NN and Baseline NN 
models across three datasets showing the general effect of regularization techniques on performance. Each heatmap row represents a distinct model architecture 
layout (1H, 2H-Block, 2H-Hinton, 3H-Block, 3H-Hinton), while each column corresponds to a specific regularization technique. Red tones are indicating positive 
(regularization increases predictive performance), while blue tones are indicating negative correlations (regularization decreases predictive performance). L1 – Lasso 
regression; L2 – Ridge regression; DC – Drop Connect; GN – Group Norm; WS – Weight Standardization; SCO – Shift-Scale Optimization; SD – Spatial Dropout (DEBI- 
NN specific).
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Baseline NNs. As demonstrated in Fig. 2 and Table 2, DEBI-NNs achieved 
higher mean Balanced Accuracy (BACC) across all tested network ar
chitectures and datasets. Specifically, DEBI-NNs showed an average 
absolute BACC improvement of 9.1 % and relative BACC improvement 
of 16.1 % over Baseline NNs, with the most substantial gains observed in 
the DLBCL dataset (Fig. 2). This dataset also showed the highest stability 
and CI separation for DEBI-NN performance (Table 3). The DLBCL 
dataset’s characteristics – being the smallest in terms of training sam
ples, having the fewest number of features, and exhibiting significant 
class imbalance (especially in the test set with 31.8 %) – create a 
particularly challenging task for conventional DL models, and an op
portunity to demonstrate the key strengths of DEBI-NNs, such as effi
ciency with small data, reduced parameter space, and robustness to 
imbalance. At the same time, we observed minor variability in average 
performance across datasets (Appendix D). We believe these discrep
ancies primarily reflect differences in the underlying classification tasks, 
including the degree of class imbalance, label noise, and overlapping 
feature distributions, all of which inherently affect discriminability. 

Importantly, DEBI-NNs consistently outperformed Baseline NNs, even if 
the magnitude of the improvement varied depending on dataset-specific 
properties.

Furthermore, the best-performing individual DEBI-NN model in
stances consistently surpassed their Baseline NN counterparts across all 
configurations (Fig. 4) without explicit hyperparameter tuning. This 
suggests that DEBI-NNs demonstrate significantly lower sensitivity to 
hyperparameter configurations compared to Baseline NNs where 
hyperparameter search was performed on learning rate and weight 
decay. This observation is consistent with machine learning literature 
stating that gradient descent-based methods are generally more sensi
tive to hyperparameter tuning than genetic algorithm-based ones 
[23–25]. Furthermore, the highest-performing DEBI-NN models also 
systematically outperformed the AutoML super-learner models, 
demonstrating that DEBI-NNs can be viable DL alternatives of such 
methods in future studies, operating in small, imbalanced medical data. 
Given the generic trends within the field of AI that aim to increase model 
complexity, currently, there is no known similar work which intends to 

Fig. 6. The histogram of test predictive performance changes in light of the given regularization technique being activated overlaid between DEBI-NN and Baseline 
NN models. The vertical dashed line (value zero on the x-axis) denotes no effect of the regularization technique. X-axes denote the delta change of BACC when the 
given regularization is active. Negative X-axis values imply that the regularization technique decreases test BACC, and positive values on the x-axis represent a 
positive effect of the given regularization on predictive performance. Y-axes values represent the occurrence of the given test balance accuracy delta across all cohorts 
and model instances. L2 and DC appear to have minimal to no effect on DEBI-NN predictive performances, while GN, WS and SCO represent noticeable effects on 
predictive performance. Looking at the x-axes of GN, WS and SCO reveals that DEBI-NNs on average do not benefit from the presence of these regularization 
techniques as much as Baseline NNs do. Spatial Dropout (CD), a DEBI-NN specific regularization technique represents a high test BACC Spread in light of having SD 
activated, implying that its effect is not generic, but model-specific which is in line with the findings of [20]. L1 – Lasso regression; L2 – Ridge regression; DC – Drop 
Connect; GN – Group Norm; WS – Weight Standardization; SCO – Shift-Scale Optimization; SD – Spatial Dropout (DEBI-NN specific).
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significantly reduce neural network parameter counts and overall 
training complexity while increasing predictive performance at the same 
time. On that note, prior works that succeeded to utilize DL in hybrid 
imaging data mostly focus on segmentation tasks [1,26–28], but typi
cally fail to achieve high performance with classification tasks [1,2,29]. 
The reason is that while segmentation can cut up the input training 
image to small parts for identifying whether a given voxel and its direct 
surrounding belongs to suspicious lesions - thereby dramatically 
increasing the number of samples to train on -, predicting a patient-level 
information (e.g. outcome) requires to analyse either the whole body or 
a complex organ associated to the prediction of the given clinical 
outcome. This reduces the number of training samples to the number of 
patients, which in return makes the utilization of DL challenging.

Our most outstanding findings indicate that DEBI-NNs can change 
this trend, as they possess intrinsic self-regularizing properties. As 
highlighted in the analysis of regularization techniques (Fig. 8), DEBI- 
NN models often achieve optimal or near-optimal performance with 
minimal or no explicit regularization. Fig. 8 reveals that the gap between 
the "Default" DEBI-NN configuration (with no regularization) and the 
best-performing configuration is generally smaller than in case of 
Baseline NNs. This however does not mean that the absolute best- 

performing configuration is the no-regularization (Default) configura
tion. However, it is generally observed that the worst-performing DEBI- 
NN models had multiple regularizers active, while the best performing 
DEBI-NN configurations were less regularized.

Delving deeper into specific regularization techniques, L1 regulari
zation was a notable exception, appearing in the best-performing DEBI- 
NN configurations across different datasets and layouts (Fig. 6). This 
suggests that the feature-selecting property of L1 norm might comple
ment the DEBI-NN architecture. Consequently, many other standard 
regularization techniques showed neutral, weak, or even negative cor
relations with DEBI-NN performance (

Fig. 5). For example, Weight Standardization (WS) exhibited a strong 
negative correlation (−0.65) with performance for 1H DEBI-NN models 
on the DLBCL dataset. The DEBI–NN–specific Spatial Dropout (SD) did 
not consistently emerge as a top-performing regularizer on its own, 
implying that the spatial plasticity of DEBI-NNs might already provide 
similar benefits to what SD aims to achieve. For Baseline NNs, the 
pattern of regularization impact was also mixed, though generally, they 
are expected to benefit more from regularization. However, on the 
DLBCL dataset, 90 % of the cases represented as cells of the top right 
heatmap on Fig. 5 were negatively correlated with Baseline NN 

Fig. 7. Comparison of no regularization (Default) and best regularization (Best) configurations in DEBI-NN and Baseline NN models based on average test balanced 
accuracy (BACC) performance across layouts for the given configuration.

Fig. 8. Mean Balanced Accuracy (BACC) with 95 % CI vs. Number of Regularization Techniques Turned ON. The numbers 0–7 represent the number of regularization 
techniques applied in a group of configurations. Note that for DEBI-NN, there are 7 regularization options, for Baseline NNs, there are only 6. The mean BACC with 
95 % CI was calculated over each group of regularization technique. Blue markers represent DEBI-NN, while red markers are for Baseline NN models.
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performance, potentially indicating sensitivities to specific regularizer 
settings or interplay between different regularizers when applied to 
small datasets. This might serve as an explanation for the presence of 
many neutrally to negatively correlated cells in the heatmaps, thus it is 
important to observe individual regularization configurations to deter
mine which ones result in robust performance.

The architectural design of DEBI-NNs, characterized by training 
spatial positions of neurons instead of direct weights, leading to spatial 
plasticity and linear scaling with trainable parameters, might explain 
the above observations. This parameter efficiency is a significant 
advantage when fitting to small datasets, as it reduces the model’s ca
pacity to overfit, thereby diminishing the reliance on external regula
rization methods. The study by Papp et al. introducing DEBI-NNs [11] 
demonstrated that DEBI-NNs are capable of modelling complex, 
non-linear relationships in the data, thereby exhibiting fundamental 
properties of NNs. Our work significantly expands on these initial 
findings by: (a) performing a multi-centric comparative study on diverse 
cancer cohorts; (b) systematically evaluating an extensive suite of reg
ularization techniques and their combinations; and (c) conducting in
dependent validation where training and testing data originated from 
distinct centers.

Despite these promising findings, our study has several limitations. 
First of all, our study utilized and compared DEBI-NNs only against fully- 
connected NNs and avoided the use of current state-of-the-art DL as well 
as conventional ML models as baselines. However, since we used 
radiomic datasets, the choice of the baseline networks was justified and 
in line with the objectives of the study. The size and imbalanced nature 
of the datasets present major limitations for larger overparameterized 
DL models requiring the use of techniques such as data augmentation, 
transfer learning, pre-training, etc. which is out of the scope of the 
present study. The use of simple fully-connected layers as part of both 
DEBI-NNs and the baseline networks allowed us to establish a simple 
setting for fair comparison of different regularization techniques. This 
design choice was made to avoid further interplay with more advanced 
architectural solutions and to ensure that we can implement, test, and 
evaluate a diverse set of regularization techniques in a standardized 
manner on the same architectures where their effects can be best 
observed and compared.

Second, we also note that the chosen datasets do not meet the 
empirical heuristic of 10–15 events per feature [30]. Such constraints 
are common in radiomic and outcome prediction studies in oncology 
and represent one of the main reasons why deploying AI in these con
texts is so challenging. This imbalance likely contributes to the vari
ability in NN performance across architectures and datasets, by 
increasing the risk of overfitting and amplifying sensitivity to 
dataset-specific characteristics. Importantly, this limitation is not 
unique to DEBI-NNs but affects nearly all ML methods applied in 
small-sample, high-dimensional biomedical settings, as consistently re
ported in the literature. What our results demonstrate is that, even under 
these unfavourable conditions, DEBI-NNs consistently outperform 
Baseline NNs. We attribute this robustness to their parameter-efficient 
design and inherent spatial regularization, which mitigate - though 
cannot fully eliminate - the risks imposed by low patient-to-feature ra
tios. We therefore view these findings as highlighting both a limitation 
and an opportunity: while small sample sizes do restrict generalizability, 
the ability of DEBI-NNs to maintain superior performance under exactly 
these conditions suggests they may be particularly well-suited for 
data-limited, imbalanced clinical imaging scenarios. It is important to 
note, however, that the present findings should be interpreted as a 
methodological proof-of-concept under data-constrained conditions 
rather than as an immediately deployable clinical tool.

Third, we acknowledge that our investigation was not complete in 
testing and comparing all existing regularization techniques used in 
present-day NNs, since there exists a vast number of such techniques, 
many used specifically only in certain special architectures such as 
convolutional, spatio-temporal, graph NNs, etc. We selected a diverse 

set of regularization techniques that have been most popular and most 
successful in DL literature to date, all of which can be implemented in 
fully-connected layers, ensuring a fair comparison between DEBI-NN 
and the baselines. In addition to testing already existing regularization 
techniques, the present study analysed the effect of Spatial Dropout 
specifically developed for the DEBI-NN architecture [20]. Moreover, the 
study design, focusing on combinations of regularizers, also makes it 
challenging to fully isolate the precise impact of each individual regu
larizer within a combined setting, however, this allowed us to test more 
realistic scenarios where often multiple techniques are used together, 
and allowed us to investigate their combined effects.

Furthermore, while in case of Baseline NNs, learning rate and weight 
decay were tuned considering the high sensitivity of these hyper
parameters in gradient descent-based optimizers, the hyperparameters 
of DEBI-NN models were not tuned. Even without hyperparameter 
optimization though, DEBI-NN models yielded strong performance with 
the chosen configuration, overperforming the Baseline models. A full 
hyperparameter optimization of DEBI-NNs might unveil further perfor
mance enhancements or even slightly different regularization patterns. 
However, the single high-performing hyperparameter configuration for 
DEBI-NNs proved sufficient on the chosen datasets in the present study. 
Furthermore, tuning the hyperparameters of specific regularization 
techniques could also enhance their efficacy. When choosing hyper
parameter settings for regularization techniques or network schemes, 
we followed published guidelines on NN regularization and historically 
successful values observed in our prior DEBI-NN studies.

Finally, we acknowledge that BACC, while appropriate for method
ological comparison, does not fully capture calibration, decision- 
analytic performance, or clinical utility. Future work aiming toward 
clinical translation will require adopting a broader evaluation frame
work. The focus of the present study, however, was on systematically 
comparing the effect of regularization strategies across datasets and 
architectures in a controlled manner, where BACC was the most suitable 
and interpretable choice which explicitly accounts for class imbalance 
by averaging sensitivity and specificity.

Our vision for future work is twofold [1]: to extend the DEBI scheme 
to architectures beyond fully connected layers, such as CNNs or Vision 
Transformers, which are widely used in foundation model development, 
and [2] to explore the integration of DEBI-NNs within multi-modal, 
multi-task learning frameworks to increase clinical relevance. We 
believe this trajectory will allow DEBI-NNs to serve not only as efficient 
stand-alone classifiers in constrained scenarios, but also as building 
blocks in more general-purpose, clinically applicable deep learning 
systems. In addition, the theoretical foundations of DEBI-NN’s spatial 
plasticity and its direct link to generalization and regularization effects 
should be further researched.

According to the above findings, the demonstrated systematic 
robustness and the reduced need for a combination of regularization 
strategies point towards the possibility that DEBI-NNs may be ideal 
candidates to enable the usage of DL in small, imbalanced medical im
aging datasets. This, together with the already demonstrated abilities to 
increase model interpretability in DEBI-NN models due to their spatial 
nature [20], represents the potential to make DEBI-NNs ideal candidates 
for both building and explaining NN models in clinical use-case sce
narios within the field of medical imaging, including Nuclear Medicine. 
For accessing the DEBI-NN solution including an extensive handbook 
and example datasets, see our repository under Access.

5. Conclusions

This study provides strong evidence that DEBI-NN is a highly effec
tive approach for predictive modelling on small, challenging medical 
imaging datasets. They consistently outperformed traditional neural 
networks and, critically, demonstrated a significantly reduced de
pendency on explicit regularization techniques, often achieving peak 
performance with minimal or no added regularizers.
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6. Access

For accessing our work, see our repository: https://github.com/ 
lpapp-muw/DEBI-NN.

This repository contains the DEBI-NN solution, all execution data 
with their accompanying configuration files, as well as all the raw 
execution results and log files.

In addition, we prepared a 34-page Handbook titled “Mastering 
Distance-Encoding Biomorphic-Informational Neural Networks - The 
DEBI-NN Handbook”, which is written support the community to train, 
evaluate as well as to observe own DEBI-NN networks within their own 
research.

The handbook is accessible on Zenodo: https://zenodo.org/records 
/15828851.
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