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Abstract
Schizophrenia spectrum disorders (SSDs) exhibit a marked heterogeneity in clinical course and treatment outcomes. Some 
individuals achieve remission and recovery, whereas others experience repeated relapses and progressive deterioration 
in psychosocial functioning. This variability underscores the unmet clinical need for prognostic biomarkers to predict 
treatment outcomes and guide personalized care. Deep phenotyping with multimodal data integration holds promise for 
understanding this complexity and delivering clinically relevant predictive models of treatment response in SSDs. To 
address this need, we initiated the Clinical Deep Phenotyping of Treatment Response in Schizophrenia (CDP-STAR) 
study, a prospective, naturalistic, longitudinal observational study integrating comprehensive multimodal assessments. 
These include clinical phenotyping, magnetic resonance imaging (MRI), electroencephalography (EEG), retinal imaging, 
and extensive sampling of blood and cerebrospinal fluid (CSF) for multi-omics profiling. The study aims to externally 
validate promising biomarker candidates and elucidate the pathophysiological mechanisms underlying treatment outcomes. 
This innovative deep phenotyping framework integrates data across multiple critical domains, enabling external valida-
tion of potential biomarkers and the discovery of novel ones. Ultimately, the CDP-STAR study aims to yield mechanistic 
insights that advance precision psychiatry and inform clinical decision-making in SSDs.
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Introduction

Schizophrenia spectrum disorders (SSDs) are characterized 
by considerable clinical heterogeneity and highly diverse 
disease trajectories. While some individuals achieve remis-
sion or even recovery, others experience recurrent relapses 
and progressive functional decline [1]. This clinical vari-
ability is accompanied by significant neurobiological het-
erogeneity, as evidenced by increased brain structural 
variability [2, 3] and a highly polygenetic architecture [4]. 
Such heterogeneity in biological underpinnings has been 
suggested to contribute to the interindividual variability in 
pharmacological treatment resistance, which occurs in up to 
one-third of affected individuals [5, 6].

To date, psychiatry still lacks reliable prognostic bio-
markers to inform clinical decision-making [7]. A person-
alized medicine approach based on such markers holds 
great promise for improving patient care and well-being, as 
well as alleviating socioeconomic burden [8]. For instance, 
the early recognition and stratification of individuals with 
treatment-resistant schizophrenia (TRS) could minimize 
ineffective treatment trials, facilitate the timely initiation of 
adequate treatments such as clozapine, and enable more effi-
cient allocation of clinical resources.

SSDs are associated with widespread alterations across 
various biological systems [9–12], including changes in 
brain structure [13], microstructure [14], and connectiv-
ity [15] in multiple neuronal networks [16, 17]. Among 
these, the striatum has emerged as a central hub, repeat-
edly implicated in the pathophysiology of SSDs [18, 19]. 
This is particularly relevant given that most antipsychotics 
exert their effects primarily through dopamine D2 receptor 
blockade in the striatum [18]. The functional striatal abnor-
malities (FSA) score has been internally and externally vali-
dated as a diagnostic biomarker, successfully differentiating 
individuals with schizophrenia from healthy controls (HC) 
with a balanced accuracy exceeding 80% in two indepen-
dent studies [18, 20]. The FSA score has also been associ-
ated with poor short-term treatment response [18], although 
these findings warrant further replication. Another striatal 
biomarker candidate, the striatal connectivity index (SCI), 
has shown potential in differentiating responders from non-
responders and predicting relapse risk [7, 21, 22]. Beyond 
the striatum, additional prognostic biomarkers have been 
proposed, including functional connectivity between bilat-
eral superior temporal cortex and other cortical regions [23], 
glutamate levels in the anterior cingulate cortex measured 
via magnetic resonance spectroscopy [24], and neuromela-
nin-sensitive MRI signal [25]. In the domain of cognitive 
dysfunction, the electroencephalography (EEG)-based mis-
match negativity (MMN) has also emerged as a promising 

biomarker candidate due to its robust test–retest reliability 
[26, 27].

Although numerous prognostic biomarker candidates 
have been proposed, the majority of evidence to date is lim-
ited to in-sample statistical associations [7]. While some 
markers have undergone internal validation, external valida-
tion in naturalistic samples – a crucial prerequisite for clini-
cal translation [28] – remains scarce [8]. Moreover, most 
candidate biomarkers focus on single parameters or systems 
and were derived from cross-sectional studies, limiting their 
capacity to capture the heterogeneity and complexity of 
SSDs and reducing their translational potential. A deeper 
understanding of the biological mechanisms underlying 
clinical outcomes, such as treatment response or treatment 
resistance, could refine existing biomarkers and support the 
discovery of novel candidates in a mechanistically informed 
manner.

A longitudinal, naturalistic, and multimodal research 
framework is warranted to advance our understanding of the 
underlying biology and enable the validation of biomarker 
candidates [8] as well as the discovery of novel ones, thereby 
fostering progress toward precision medicine in psychiatry. 
To this end, we initiated the Clinical Deep Phenotyping of 
Treatment Response in Schizophrenia (CDP-STAR) study, 
a prospective, naturalistic, observational study employing 
a comprehensive multimodal approach. The overarching 
goal of this translational project is to evaluate the predictive 
capability of prognostic biomarker candidates and elucidate 
the pathophysiological mechanisms underlying outcome 
trajectories in SSDs. Based on a previous study [29], our 
protocol integrates detailed clinical phenotyping with mul-
timodal neuroimaging, EEG, retinal assessments, and multi-
omics profiling of blood and cerebrospinal fluid. This design 
enables both the external validation of existing biomarker 
candidates and the investigation of short- and long-term 
trajectories of SSDs across genetic, molecular, cellular, and 
systems biology levels. Ultimately, this multidimensional 
framework aims to generate mechanistic insights into the 
complex pathophysiology of SSDs and advance the devel-
opment of precision psychiatry.

Methods and design

The CDP-STAR study is a naturalistic, multimodal, pro-
spective, longitudinal, single-center study conducted at the 
Department of Psychiatry and Psychotherapy, University 
Hospital of the Ludwig-Maximilian University Munich, 
Germany. It is an add-on study to the Munich Mental Health 
Biobank (project number 18–716) [30], and was approved 
by the local ethics committee (project number 24–0341, 
dated 08.07.2024). The study is registered at the German 
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Clinical Trials Register (DRKS00034820) and OSF (​h​t​t​p​​s​:​/​​
/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​7​6​0​​5​/​O​​S​F​.​I​O​/​S​Q​2​T​Z).

The multimodal protocol of the longitudinal CDP-STAR 
study builds upon the previous Clinical Deep Phenotyping 
(CDP) study [29]. From 09.10.2020 to 10.11.2023, we col-
lected cross-sectional data from 466 participants, highlight-
ing the feasibility of our approach.

Study population

This study includes inpatients with SSDs (incl. psychotic 
disorder due to psychoactive substance use) according to the 
Diagnostic and Statistical Manual of Mental Disorders 5th 
Edition, text revision (DSM-5-TR, Version 7.0.2). The diag-
noses are validated with the Mini-International Neuropsy-
chiatric Interview (M.I.N.I.) [31]. Further inclusion criteria 
include an age between 18 and 65 years, hospitalization due 
to newly developed or exacerbated psychotic symptoms, 
ability to provide informed consent, and fluency in the Ger-
man language. Exclusion criteria include a primary psy-
chiatric disorder other than SSDs, pregnancy, patients with 
acute danger to self and/or others (e.g., acute suicidality), 
individuals who are not able to provide informed consent, 
currently undergo coercive treatment or involuntary hos-
pitalization at the time of study inclusion, individuals with 
relevant neurological comorbidity (e.g., dementia, multiple 
sclerosis, epilepsy) as assessed by experienced clinicians or 
psychotic symptoms due to a general medical condition.

Inpatients in our clinic are screened by a study physi-
cian for inclusion and exclusion criteria on a regular basis, 
and written informed consent is obtained prior to any study-
related procedures. Participants are approached soon after 

admission—generally within seven working days. Prior to 
that, experienced clinicians (VY, JM, EB) review each can-
didate’s electronic health record and confer with the treating 
physicians to confirm that the patient is still experiencing 
active psychotic symptoms (e.g., hallucinations, delusions).

Study timeline

The study flowchart is depicted in Fig. 1. After study inclu-
sion, multimodal assessments, including multimodal mag-
netic resonance imaging (MRI), electroencephalography 
(EEG), retinal examinations, clinical characterization, 
blood sampling, and, if clinically indicated, cerebrospinal 
fluid (CSF) sampling, are being performed at baseline (V1) 
and four weeks after inclusion (V2). Clinical assessments 
are repeated three months (V3), six months (V4), and two 
years (V5) after inclusion to characterize the participants 
regarding short- and long-term clinical outcomes. Besides 
patient interview, therapeutic drug monitoring (TDM) is 
conducted at baseline (V1) to assess pharmacological treat-
ment adherence.

Medical examinations

Clinical characterization

Table 1 provides an overview of the examinations per-
formed during the study visits. The clinical characterization 
includes diagnosis validation and assessment of current and 
past suicidality using the Mini-International Neuropsychi-
atric Interview (M.I.N.I.) [31] according to DSM-5. The 
CDP-STAR assessments comprise the basic phenotyping 

Fig. 1  Study design and timeline. SSD schizophrenia spectrum disorders. Created in BioRender. Yakimov, V. (2025)
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(PHQ-9) [38], and the Munich Chronotype Questionnaire 
(MCTQ) [39].

The study-specific clinical phenotyping includes the 
Positive and Negative Syndrome Scale (PANSS) [40], the 
Calgary Depression Rating Scale for Schizophrenia (CDSS) 
[41], the Clinical Global Impression (CGI) scale [42], the 
Global Assessment of Functioning (GAF) scale [43], the 
Functional Remission of General Schizophrenia (FROGS) 
scale [44], the Social and Occupational Functioning Assess-
ment Scale (SOFAS) [45], the visual items of the Schizo-
phrenia Proneness Instrument – Adult Scale (SPI-A) [46], 
as well as a questionnaire covering adverse childhood 

framework of the Munich Mental Health Biobank [30], 
which includes (A) a structured assessment of socioeco-
nomic status, psychiatric and medical history, as well as 
family history of mental disorders, and (B) a set of transdi-
agnostic self-ratings. These self-ratings have been described 
previously by our group [29] and include the Childhood 
Trauma Screener (CTQ-Screen) [32], the Brief Resilience 
Scale [33], the Loneliness Scale [34], the Lubben Social 
Network Scale [35], the World Health Organization-5 Well-
Being Index (WHO-5) [36], the abbreviated version of the 
World Health Organization Quality of Life Scale (WHO-
QOL-BREF) [37], the Patient Health Questionnaire-9 

Table 1  Overview of baseline and follow-up examinations
Study visit
Day 0 
(baseline)

Day 
28 ± 7 days*

Day 
90 ± 14 days*

Day 
180 ± 30 days*

Day 
730 ± 90 days*

Assessments V1 V2 V3 V4 V5
Clinical characterization
Basic phenotyping Munich Mental Health Biobank and 
German Center for Mental Health (DZPG)

X

M.I.N.I. interview (DSM-5-TR) X
Check inclusion/exclusion criteria X X X X X
Psychiatric and medical history X X X X X
Previous and current use of alcohol and illicit drugs X X X X X
SPI-A visual items X
Current and previous medication X X X X X
PANSS (valid 7 days) X X X X X
PANSS RSWG criteria (valid 7 days) X X X X X
KERF-40 X
CDSS (valid 7 days) X X X X X
CGI X X X X X
GAF X X X X X
FROGS X X X X
SOFAS X X X X
Biomaterials
Biobank blood sampling X
Cerebrospinal fluid (optional) X
Serum X X
Cognitive Assessment
BACS, TMT-A, -B, MoCA X X X
Neuroanatomy
sMRI, rsfMRI, 1H-MRS, DTI, ASL X X
DCE-MRI (optional) X X X
OCT X X
Electrophysiology
EEG X X
ERG X X
The basic phenotyping of the Munich Mental Health Biobank has been described in detail by Kalman et al., 2022 and Krčmář et al., 2023 [29]. 
ASL Arterial Spin Labeling; BACS Brief Assessment of Cognitive Function in Schizophrenia; CGI Clinical Global Impression; CDSS the 
Calgary Depression Scale for Schizophrenia; CTQ-S Childhood Trauma Questionnaire screener; DCE dynamic contrast-enhanced; DTI Diffu-
sion Tensor Imaging; EEG electroencephalography, ERG electroretinography; FROGS Functional Remission of General Schizophrenia; GAF 
Global Assessment of Functioning; 1H-MRS, Magnetic Resonance Spectroscopy; MoCA Montreal Cognitive Assessment; OCT optical coher-
ence tomography, PANSS Positive and Negative Syndrome Scale; rsfMRI resting-state functional MRI sMRI, structural MRI; SOFAS Social 
and Occupational Functioning Assessment Scale; TMT Trail Making Test
*Indicates working days
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dose of 0.1 mmol/kg. The injection is delivered at a rate of 
3 mL/s, followed by a 25–30 mL saline flush.

Electroencephalography (EEG)

Digitalized resting-state EEG recordings are performed 
with a standardized set-up (BrainAmp amplifier, Brain 
Products, Martinsried, Germany), including 32 scalp elec-
trodes (10/20 system). All EEGs are recorded during wake-
ful rest under two conditions: (i) eyes closed and (ii) eyes 
open while fixating on a central point.

Retinal anatomy and electrophysiology

Due to the neurodevelopmental origin of the retina [55] and 
emerging evidence for alterations in individuals with SSDs 
[10, 56–58], our phenotyping includes the investigation of 
retinal anatomy by optical coherence tomography (OCT) 
(ZEISS CIRRUS HD-OCT 5000 device, Carl Zeiss Meditec 
AG) and retinal electrophysiology by electroretinography 
(ERG) (RETeval  electroretinography, LKC Technologies, 
Inc.) [29]. In addition, intraocular pressure, refraction, and 
best-corrected visual acuity are measured in all participants 
at baseline.

Biobanking of blood and cerebrospinal fluid

The biobanking of samples is provided by the Munich 
Mental Health Biobank [30] infrastructure, as previously 
described [29]. Blood-based biobanking includes the fol-
lowing: 1 × 7,5  ml K3EDTA tube (Fa Sarstedt, Cat no 
01.1605.001) for DNA extraction, 1 × S-Monovette® RNA 
exact (Fa Sarstedt, Cat no 01.2048.001) for RNA extraction, 
1 × 9 ml K3EDTA tube (Fa Sarstedt, Cat no 02.1066.001) 
for plasma-based analysis, and 1 × 9 ml tube with coagula-
tion activator (Fa Sarstedt, Cat no 02.1063.001) for serum-
based analysis. All samples are stored at – 80 °C after initial 
processing. Besides blood samples, cerebrospinal fluid 
(CSF) is also collected and stored at – 80 °C from individu-
als with SSDs who consent and undergo a diagnostic lum-
bar puncture. The collected biological samples will enable 
comprehensive multi-omics profiling, including genomic, 
transcriptomic, proteomic, and metabolomic analyses, facil-
itating integrative characterization of molecular signatures 
associated with clinical outcomes in SSDs.

Outcome measures

The primary outcome (O1) of this study is the evaluation 
of prognostic capabilities (measured by the area under the 
curve (AUC) in receiver operator characteristic (ROC) 
curves) of biomarker candidates (e.g., FSA score [18]) 

experiences (“Belastende Kindheitserfahrungen”, KERF-
40) [47]. Neurocognitive functioning is assessed via the 
standardized Brief Assessment of Cognition in Schizophre-
nia (BACS) [48]. This battery (30–45 min) assesses six cog-
nitive domains identified as important for clinical trials in 
schizophrenia by the MATRICS Neurocognition Commit-
tee [49]. These include verbal memory, working memory, 
motor speed, attention, executive functions, and verbal flu-
ency [48]. In addition, we complement the battery with the 
time-efficient and widely used Montreal Cognitive Assess-
ment (MoCA) [50] and Trail Making Test (TMT): Parts A & 
B [51] (Table 1). The battery of assessments is performed by 
trained mental health professionals.

Furthermore, a comprehensive medical and psychiatric 
history, as well as treatment data (e.g., medication, electro-
convulsive therapy), are collected through patient interview 
and medical chart review (Table 1). This includes the dura-
tion of illness, age of symptom onset, duration of untreated 
psychosis, number of hospitalizations due to psychosis, hear-
ing impairment during the past twelve months, lifetime can-
nabis use, and substance abuse during the past seven days. 
Additional details on substance use during the past twelve 
months are obtained with the respective M.I.N.I. modules – 
I (alcohol use disorder) and J (substance use disorder) [31]. 
Following our previous protocol, we assess past and pres-
ent medical conditions, including neurological disorders, 
cardiometabolic comorbidities, risk factors (e.g., body mass 
index, smoking status, dyslipidemia), and ophthalmological 
conditions. Electronic health records are endorsed to verify 
the collected data if applicable and available. These com-
prehensive clinical data enable us to estimate the environ-
mental risk score for schizophrenia [52] and the future risk 
of cardiovascular disease [53] in our cohort.

Multimodal brain imaging

Multimodal Magnetic Resonance Imaging (mMRI) is per-
formed with a Siemens Magnetom Prisma 3 T MRI scan-
ner (Siemens Healthineers, Erlangen, Germany). It includes 
anatomical (T1-weighted magnetization prepared-rapid 
acquisition gradient echo [T1-MPRAGE], T2 sampling 
perfection with application-optimized contrasts using dif-
ferent flip angle evolution [T2-SPACE], diffusion tensor 
imaging [DTI]) and functional (resting-state functional 
MRI, multivoxel magnetic resonance spectroscopy [MRS] 
of the anterior cingulate cortex, dynamic contrast-enhanced 
MRI [DCE-MRI], and arterial spin labeling [ASL]) mea-
surements. For the mMRI measurements, the Human 
Connectome Project (HCP) protocol [54] is used. For the 
DCE-MRI measurement, a gadolinium-based contrast agent 
(Gadobutrol, Gadovist®, Bayer AG, Leverkusen, Germany) 
is administered intravenously via the antecubital vein at a 
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treatment resistance, relapse, symptomatic remission, and 
recovery (O3), employing a multimodal approach (Fig. 2).

Power analysis and expected sample size

In the context of our ROC analysis, we conducted a power 
calculation to determine the predictive capability of candi-
date biomarkers. The expected Area Under the Curve (AUC) 
was set at 0.7, with an aim to achieve a power of 80% at 
a significance level (α) of 1%. Since there is limited data 
regarding the predictive capabilities of candidate biomark-
ers in terms of treatment response, we set the expected AUC 
to 0.7 for two reasons. First, we expect the AUC of the FSA 
score (as the most advanced biomarker in schizophrenia [7]) 
to be lower for outcomes such as treatment response than 
its AUC for discriminating schizophrenia from healthy con-
trols (0.8) [18, 20]. Second, it has been suggested that for 
a biomarker candidate to achieve clinical utility, it should 
show an AUC of at least 0.7 – 0.8 [7, 8, 66]. Considering 
the ratio of non-responders to responders in SSDs, approxi-
mated at 1.0 [67], the required sample size was estimated. 
The calculation was performed using the R programming 
language with the power.roc.test function from the pROC 
package [68]. The analysis indicated the need for at least 
132 participants (66 responders and 66 non-responders) to 
attain the desired statistical power for our ROC analysis.

Based on our power analysis, we would need at least 132 
participants to attain enough statistical power for our pri-
mary outcome analysis. We assume a cumulative drop-out 
rate of approximately 25% during follow-up (4 weeks after 
inclusion) from previous studies [69, 70]. Furthermore, 

regarding acute treatment response in patients with SSDs 
four weeks after inclusion (Fig.  2). Short-term treatment 
response would be defined as ≥ 25% symptom reduction in 
PANSS total score compared to the baseline score [28]. To 
ensure our results are not driven by idiosyncrasies in defin-
ing treatment response, we will include two other defini-
tions commonly used in the field: ≥ 50% symptom reduction 
in the PANSS total score and percentage change with base-
line correction as previously described [28].

Secondary outcomes include investigating the prognos-
tic capabilities of candidate biomarkers regarding treat-
ment resistance (at least two unsuccessful adequate trials of 
antipsychotics) [59], relapse [60], symptomatic remission 
six months after inclusion [61], and recovery (defined as 
improvements of both clinical and social domains) [62] two 
years after inclusion in SSDs. The definition of symptom-
atic remission will be based on modified Andreasen remis-
sion criteria [61] six months after baseline measurements. 
We will also aim to identify biologically driven subgroups 
within the schizophrenia spectrum (secondary outcome) 
(O2) using unsupervised machine learning models (e.g., 
Gaussian Mixture Models, spectral clustering, hierarchi-
cal clustering) [63] on our multimodal data. They will be 
conducted after dimensionality reduction (e.g., principal 
component analysis, paired contrastive map) [64] of the 
data, which would be crucial to prevent the clustering algo-
rithms from overfitting to high-dimensional idiosyncrasies 
[65]. We will employ further strategies to mitigate overfit-
ting, such as permutation tests and cross-validation. Further 
secondary outcomes include exploring the neurobiological 
and systemic mechanisms behind acute treatment response, 

Fig. 2  Study objectives. O1, objec-
tive 1; O2, objective 2; O3, objec-
tive 3; SSD schizophrenia spectrum 
disorders. Created in BioRender. 
Yakimov, V. (2025)
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equations (MICE) or a random forest-based imputer (miss-
Forest) – to better preserve inter-variable relationships [73]. 
These methods have been shown to improve the accuracy 
and validity of analyses compared to naive imputation [73].

Study progress

As of 12.06.2025, we have recruited 44 individuals with 
schizophrenia spectrum disorders. Of those, 36 have com-
plete data (incl. clinical data, MRI, EEG, retinal imaging 
data, and blood samples) at baseline. So far, 31 out of 41 
individuals have participated in V2, resulting in a current 
dropout rate of 24%. Additionally, 18 out of 29 have par-
ticipated in V3, and 6 out of 12 have participated in V4. The 
sample’s average PANSS scores were as follows: PANSS 
total score = 84.2 (SD ± 19.7); PANSS positive score = 21.0 
(SD ± 6.21); PANSS negative score = 20.2 (SD ± 7.14); 
PANSS general score = 43 (SD ± 9.79), suggesting that the 
participants so far were on average “markedly ill” [75]. 
Most of the participants were still hospitalized during V2.

Discussion

One of modern medicine's success stories is the develop-
ment of personalized medicine approaches in oncology and 
immunology [76]. In oncology, for example, diagnostic and 
therapeutic decision-making is often guided by biomarker 
analyses of tumor samples and bodily fluid samples (e.g., 
liquid biopsy) [77]. This innovation has been achieved 
mostly through deep profiling of the biological underpin-
nings, providing critical insights into the pathophysiological 
factors contributing to these heterogeneous disorders [78].

Prognostic biomarkers in psychiatry could tremendously 
reduce mortality, suffering, and socioeconomic burden 
associated with mental health disorders. This is especially 
important in light of new emerging treatments with differ-
ent mechanisms of action [79, 80]. Nevertheless, predict-
ing treatment outcomes and prognosis remains an enduring 
challenge despite decades of progress in neuroscience [81]. 
This challenge arises not only from limited accessibility to 
the affected tissue but also from the unique complexity of 
the psychosocial, anatomical, molecular, and genetic archi-
tectures of mental disorders combined with high interindi-
vidual heterogeneity [78]. We argue that just as in oncology, 
precision medicine in psychiatry should go hand in hand 
with deep multi-system profiling of the biological underpin-
nings, utilizing technological advances such as multi-omics, 
neuroimaging, and neurophysiology, along with deep clini-
cal phenotyping. Prediction models based on routine clini-
cal data alone, without additional biological markers, have 

based on our previous multimodal Clinical Deep Phenotyp-
ing (CDP) study [29], we estimate that approximately 50% 
of the participants would yield complete datasets (includ-
ing clinical phenotyping, MRI, EEG, retinal investigations, 
and blood analyses at baseline and V2), which would be 
necessary for our primary outcome. Taking the expected 
drop-out rate and partial data missingness into account, we 
would need to recruit 352 participants with SSDs to yield 
the necessary 132 patients for the primary analysis as fol-
lows: 352*0.75 [minus drop-out] *0.5 [minus participants 
with incomplete dataset] = 132 participants.

For secondary outcomes such as identifying biological 
subgroups within the schizophrenia spectrum, we would 
pool cross-sectional and baseline data from the previ-
ous CDP study (n = 233 individuals with SSDs), from the 
ongoing interventional BrainTrain study (expected n = 120 
individuals with SSDs), and the current CDP-STAR study 
(n = 352 participants), which have harmonized protocols for 
baseline measurements. Based on our previous CDP study 
[29], we expect complete baseline/cross-sectional datasets 
in approximately 70% of the participants, yielding a total of 
494 participants: (233 + 120 + 352)*0.7 [minus participants 
with incomplete dataset].

Handling of missing data

We assume missing data will be Missing at Random (MAR) 
and plan to perform imputation (see below) to include all 
participants in the primary analyses [71]. Complete-case 
analyses (using only subjects with no missing data) will be 
performed as a sensitivity check. If results are consistent, 
this will support the validity of the MAR assumption; if 
not, we will investigate potential Missing Not at Random 
mechanisms. For example, we will examine whether par-
ticipants without MRI data differ systematically from those 
with MRI (e.g., in demographics or disease severity) and 
discuss how such differences might affect biomarker vali-
dation. In cases where an entire modality is missing for a 
participant, that participant will be excluded from analyses 
of biomarkers in that modality (modality-specific complete-
case approach). This combined strategy ensures we maxi-
mize statistical power and reduce bias by imputing where 
appropriate, while also transparently assessing the impact of 
missing data through complete-case comparisons [72, 73].

We will exclude any modality features with more than 
20% missing values to avoid unreliable imputations and 
bias [71]. This threshold is consistent with common prac-
tice in biomarker studies, where features present in fewer 
than ~ 80% of participants are often omitted [74]. Features 
with lower levels of missingness will be retained and han-
dled with appropriate imputation. Specifically, we will use 
advanced methods – either multiple imputation by chained 
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contributing factors to the pathophysiology of SSDs, we 
investigated the blood–brain barrier (BBB) and the blood-
cerebrospinal fluid barrier (BCB) in SSDs [88]. In the larg-
est dynamic contrast-enhanced MRI study in SSD to date, 
we reported higher BBB leakage in individuals with SSDs 
compared to healthy controls in multiple brain regions 
implicated in the disorder [89]. Furthermore, we found that 
BCB disruption was associated with both dyslipidemia and 
a history of clozapine treatment in SSDs [90]. The volumes 
of the choroid plexus, a central hub of the blood-CSF inter-
face, showed higher variability in individuals with SSDs 
compared to healthy controls [3] and were positively associ-
ated with brain region volumes previously linked to periph-
eral inflammation [91].

Building on this prior work, the CDP-STAR study 
employs a longitudinal approach utilizing comprehensive, 
multimodal protocols. To address the replication crisis 
in psychiatry [8, 28], we specifically aim to 1) externally 
validate previously identified prognostic biomarker candi-
dates. Additionally, we aim to 2) investigate the biological 
underpinnings of treatment outcomes in SSDs and 3) iden-
tify novel biomarker candidates and mechanistic targets to 
enrich our understanding of the underlying pathophysiology.

Some of the limitations of our study include the exclusion 
of patients with acute danger to self and/or others (e.g., acute 
suicidality), individuals who cannot provide informed con-
sent, those who are currently undergoing coercive treatment 
or involuntary hospitalization at the time of study inclusion, 
and individuals whose illness prevents them from complet-
ing the comprehensive assessment battery. This introduces a 
selection bias, which could potentially decrease the study’s 
generalizability. Nevertheless, an extensive pre-recruitment 
screening process by experienced clinicians is conducted to 
mitigate this bias, and this is supported by the mean PANSS 
scores of the enrolled participants so far. Furthermore, TDM 
is performed only at baseline (V1) because of resource and 
feasibility constraints. Nevertheless, as medication adher-
ence is typically high during inpatient treatment, an addi-
tional TDM assessment at V2 is unlikely to provide added 
value and was therefore omitted.

In summary, this approach will help to pave the way for 
more reliable and mechanistically informed biomarker-
based stratification in psychiatry, ultimately improving 
patient care and long-term outcomes.
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limited generalizability [28]. A systems biology approach 
[78] is thus needed to enable the integration of multidi-
mensional biological and clinical data, to predict treatment 
outcomes, and to explore the mechanisms behind these 
trajectories.

Despite the sparsity of multimodal, deeply phenotyped 
cohorts in schizophrenia research, some prognostic bio-
marker candidates exist, such as FSA score [18], glial cell 
line-derived factor (GDNF) levels in the cerebrospinal fluid 
[82], extracellular vesicle-based biomarkers [83], brain 
structure measurements [84], and peripheral immunologi-
cal markers [85, 86]. Importantly, while some of these bio-
marker candidates have been internally validated, to the 
best of our knowledge, none of the available prognostic 
biomarker candidates have been validated in an indepen-
dent cohort, questioning their generalizability [8]. To close 
the generalizability gap of biomarker research in SSDs, we 
urgently need longitudinal, naturalistic, deeply phenotyped 
cohorts, which could enable external validation of such 
biomarker candidates. Without this crucial step, it remains 
unclear if any of these biomarker candidates could be trans-
lated into clinical practice.

Biomarker research in schizophrenia should not solely be 
data-driven but needs to be reciprocally connected to mech-
anistic research. Most of the biomarker candidates identi-
fied to date are linked to specific biological pathways and 
mechanistic nodes that are considered to play critical roles 
in the pathophysiology of schizophrenia spectrum disorders 
[18, 82]. This integrative approach—combining pragmatic, 
translational biomarker studies with mechanistic research—
has the potential to advance both disciplines mutually. Vali-
dation and testing of biomarker candidates can yield novel 
insights into the biological underpinnings of treatment 
outcomes, and these mechanistic insights, in turn, enable 
further refinement of biomarkers to capture the underlying 
pathophysiological pathways of SSDs more accurately [78].

Previous work from our group provides evidence that 
integrating multimodal data [29] can generate multi-level 
biological insights into the underlying pathophysiology of 
SSDs and establish links to clinically relevant outcomes 
[87]. Leveraging personalized disease models and deep 
phenotyping, we could demonstrate that genetically driven 
changes in neuronal gene expression and a resulting reduc-
tion in excitatory synaptic density in vitro are linked to 
alterations of brain structure, electrophysiology, and cogni-
tive functioning in vivo [9]. Using the retina as a model of 
the central nervous system (CNS), we could demonstrate 
multimodal microstructural [10] and electrophysiological 
retinal alterations in individuals with SSDs that are asso-
ciated with disease severity, individual polygenic burden 
[56], and linked to disturbed synapse biology [58]. In light 
of mounting evidence for lively brain-body interactions as 
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