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Preface
Dynamical mean-field theory (DMFT) has established itself as the method of choice for un-
derstanding emergent phases in correlated materials. In fact, its combination with density-
functional theory (DFT) via the construction of materials-specific many-body Hamiltonians has
opened the path to the description of correlation effects beyond the level of generic models.
This, together with the development of powerful quantum-impurity solvers, and the help of
modern massively-parallel supercomputers, provides powerful tools for unraveling correlation
effects and has revolutionized the field of correlated materials science. The goal of this year’s
school is to provide students with an overview of the method and its application to materials,
with a view towards the future of many-body simulations. The program will start with fun-
damental models and concepts, introducing the Hubbard model, density-functional theory and
the principles of DMFT. More advanced lectures will focus on the DFT+DMFT technique and
its extensions. Specialized lectures will then demonstrate how the approach can be used to
identify the mechanism of paradigmatic emergent phenomena in materials: non-conventional
superconductivity, orbital ordering, Mott phases, disorder, Hund’s metal behavior, and pseudo-
gap phases. The topics will be treated with a focus on explaining key experiments in a realistic
setting and with an outlook on materials design.

A school of this size and scope requires backing from many sources. We are very grateful
for all the practical and financial support we have received. The Peter Grünberg Institute at the
Forschungszentrum Jülich and the Jülich Supercomputing Centre provided the major part of the
funding and were vital for the organization of the school as well as for the production of this
book. The Institute for Complex Adaptive Matter (ICAM) continued also this year to support
the school and supplied additional funds.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly-correlated materials.

We are grateful to Mrs. J. Timmer of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Elaheh Adibi, Amit Chauhan, Qiwei
Li, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Alexander Lichtenstein, and Dieter Vollhardt

August 2025
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1.2 Dieter Vollhardt

1 Electronic correlations

1.1 Correlated materials

The effective interaction between electrons in solids differs significantly from the bare classical
Coulomb interaction, since it depends not only on material-specific properties such as the elec-
tronic band structure and screening but, more generally, on exchange and correlation effects.
Materials whose properties are strongly influenced by electronic correlations are referred to as
“correlated electron materials”, or simply “correlated materials”.
It has long been known that correlation effects are strong in materials with partially filled d and f
electron shells and narrow energy bands as in the 3d transition metals [1] or the rare–earths [2]
and their compounds. But more recently it was found that strong electronic correlations can
occur even in materials without transition metal or rare-earth elements, such as “Moiré” (or,
more generally, twisted) van der Waals heterostructures [3].
Electronic correlations in solids often result in complex physics such as heavy fermion behavior
and unconventional superconductivity [4], especially high temperature superconductivity [5],
colossal magnetoresistance [6], Mott metal-insulator transitions [7], the fractional quantum Hall
effect [8], and Fermi liquid instabilities [9]. The recent discovery of correlation phenomena and
rich phase diagrams in Moiré heterostructures [3] has further increased the interest in correlation
physics.
The exceptional properties of correlated materials are not only of interest for fundamental re-
search but may also be relevant for technological applications. Namely, the unusual sensitiv-
ity of correlated electron materials upon changes of external parameters such as temperature,
pressure, electromagnetic fields, and doping can be employed to develop materials with useful
functionalities [10]. For example, Moiré heterostructures may enable “twistronics”, a new ap-
proach to device engineering [11]. Consequently there is a great need for the development of
appropriate models and theoretical investigation techniques which allow for a comprehensive
and at the same time reliable exploration of correlated materials [12].

1.2 The many-electron problem

The investigation of electronic correlation effects in solids requires the application of quan-
tum many-body theory for electrons (“many-electron theory”). This is faced by two closely
connected problems: the need for a sufficiently simple model of correlated electrons and its
solution. Progress in this direction was remarkably slow.1 A microscopic model of corre-

1Given the fact that the Heisenberg model [13], which explains ferromagnetic order of localized spins in solids
as the result of quantum-mechanical exchange processes, had been introduced already in 1928, and Bloch’s [14]
subsequent observation that a model for ferromagnetism in 3d transition metals had to include the mobile nature
of the electrons, one might naively expect that this set the stage for the rapid formulation of a correlated electron
model and its approximate investigation. But this was not the case (for a historical review of the evolution of
the quantum-mechanical theory of metals from 1928 to 1933, which describes the conceptual problems of that
time, see ref. [15]). One reason for the slow development of a many-electron theory was that in the 1930s and
40s nuclear physics attracted more attention than solid-state physics, with a very specific focus of research during
the 2nd World War. But apart from that, the sheer complexity of the many-body problem itself did not allow for
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lated electrons did not emerge until 1963, when a lattice model was proposed independently by
Gutzwiller [17], Hubbard [18], and Kanamori [19] to explain ferromagnetism in 3d transition
metals. Today this model is referred to as “Hubbard model”.

2 The minimal model for interacting lattice electrons

Fermionic particles that move and interact on a lattice rather than in the continuum are referred
to as “lattice fermions”. The minimal microscopic model of interacting lattice fermions is
the single-band Hubbard model. The Hamiltonian consists of the kinetic energy Ĥ0 and the
interaction energy Ĥint (in the following operators are denoted by a hat)

Ĥ = Ĥ0 + Ĥint, (1a)

Ĥ0 =
∑

Ri,Rj ,σ

tij ĉ
†
iσ ĉjσ =

∑
k,σ

εkn̂kσ, (1b)

Ĥint = U
∑
Ri

n̂i↑n̂i↓ ≡ UD̂. (1c)

Here ĉ†iσ(ĉiσ) are creation (annihilation) operators of fermions with spin σ at site Ri (for sim-
plicity denoted by i), n̂iσ = ĉ†iσ ĉiσ, and D̂ =

∑
Ri
D̂i is the operator of total double occupation

of the system with D̂i = n̂i↑n̂i↓ as the operator of double occupation of a lattice site i. The
Fourier transform of the kinetic energy in (1b), where tij is the amplitude for hopping between
sites i and j, defines the dispersion εk and the momentum distribution operator n̂kσ with k as
the wave vector. In the following the hopping is restricted to nearest-neighbor sites i and j, such
that −t ≡ tij . A schematic picture of the Hubbard model is shown in Fig. 1.

2.1 Unique features of the Hubbard model

In the Hubbard model the Coulomb interaction between two electrons is assumed to be so
strongly screened that it can be described by a local interaction U which occurs only on a lattice
site.2 Due to the Pauli exclusion principle such an on-site interaction is only possible if the
two electrons have opposite spin. Thus it seems as if the interaction between the electrons
was spin-dependent. But the Coulomb interaction is, of course, a spin-independent two-body
interaction; the fact that the operators in (1c) contain spin indices is merely a consequence of
the quantum mechanical treatment of electrons in a localized basis. A special feature of a purely

quick successes. High hurdles had to be overcome, both regarding the development of appropriate mathematical
techniques (field-theoretic and diagrammatic methods, Green functions, etc.) and physical concepts (multiple scat-
tering, screening of the long-range Coulomb interaction, quasiparticles and Fermi liquid theory, electron-phonon
coupling, superconductivity, metal-insulator transitions, disorder, superexchange, localized magnetic states in met-
als, etc.). A discussion of the many-body problem and of some of the important developments up to 1961 can be
found in the lecture notes and reprint volume by Pines [16].

2For that reason the Hubbard model applies particularly well to cold fermionic atoms in optical lattices where
the bare interaction is indeed extremely short-ranged [20].
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Fig. 1: Schematic illustration of interacting electrons in a solid described by the Hubbard
model. The ions enter only as a rigid lattice, here represented by a square lattice. The elec-
trons, which have mass, negative charge, and spin (↑ or ↓), are quantum particles which tunnel
(“hop”) from one lattice site to the next with a hopping amplitude t. Together with the lattice
structure this determines the band structure of the non-interacting electrons. The quantum dy-
namics leads to fluctuations in the occupation of lattice sites as indicated by the sequence at the
bottom: a lattice site can either be unoccupied, singly occupied (↑ or ↓), or doubly occupied.
When two electrons meet on a lattice site, which is only possible if they have opposite spins
because of the Pauli exclusion principle, they encounter a local interaction U.

local interaction is its complete independence of the lattice structure and spatial dimension of
the system.
The physics described by the Hubbard model is clearly very different from that of electrons with
a long-range Coulomb interaction in the continuum. Therefore the Hubbard model is far from
obvious. Its formulation required fundamentally new insights into the nature of the many-body
problem of interacting fermions (see footnote 1). In particular, screening is a basic ingredient
of the many-body problem of metals.3

While the kinetic energy Ĥ0 is diagonal in momentum space and reflects the wave nature of
the electrons, the interaction energy Ĥint is diagonal in position space and characterizes their
particle properties. In view of the uncertainty principle the two parts of the Hamiltonian are
therefore maximally “quantum incompatible”.

3It should be noted that Anderson had introduced the main ingredient of the Hubbard model, namely a local
interaction between spin-up and spin-down d electrons with strength U, already in his 1959 paper on the theory of
superexchange interactions [21] and, even more explicitly in his 1961 paper on localized magnetic states in metals,
where he formulated a model of s and d electrons referred to today as “single impurity Anderson Model” (SIAM)
or “Anderson impurity model” (AIM) [22]. The latter paper inspired Wolff [23] to study the formation of localized
magnetic moments in dilute alloys in terms of a model with a single-band of noninteracting d electrons which can
interact only on a single site. In this sense the Hubbard model could be called “periodic Wolff model” in analogy
to the standard terminology “periodic Anderson model”, which generalizes the AIM by extending the interaction
to all sites of the lattice. Apparently Gutzwiller, Hubbard and Kanamori did not know the earlier work of Anderson
and Wolff; at least they did not refer to their papers.
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The Coulomb interaction between electrons with equal spin direction, e.g., on neighboring sites,
is not described by the Hubbard model, but can be easily included. Similarly, the model can
be generalized to more than one band. Indeed, in a Wannier basis the Hubbard model can be
derived systematically from a general Hamiltonian of interacting electrons which consists of
a kinetic energy, the ionic potential Uion(r), and the two-body Coulomb interaction Vee(r−r′)
[18]; for a discussion see ref. [24].
As mentioned above, the Hubbard model was originally introduced to provide a microscopic
explanation of ferromagnetism in 3d transition metals [17–19]. Indeed, taken by itself the
Hubbard interaction favors a ferromagnetic ground state, since this corresponds to the state with
the lowest (zero) energy due to the absence of doubly occupied sites. However, this argument
ignores the other term in the Hamiltonian, the kinetic energy. While the lattice structure and
spatial dimension do not influence the Hubbard interaction, they play a very important role in
the kinetic energy, where they determine, for example, the density of states of the electronic
band at the Fermi energy (see section 5).
The single-band Hubbard model is the fundamental lattice model of interacting fermions.4 As
a consequence, many well-known models can be derived from it in special limits of the model
parameters. For example, at half filling and in the limit U � t the Hubbard model corresponds
to the Heisenberg model with antiferromagnetic exchange coupling J = 4t2/U.

2.1.1 How can the Hubbard model be solved?

In spite of the extreme simplifications of the Hubbard model compared with interacting elec-
trons in a real solid, the model still cannot be solved analytically, except in dimension d= 1

for nearest-neighbor hopping [25]. For dimensions d= 2, 3 comprehensive analytic solutions
of the Hubbard and related models are not available. This is due to the complicated quantum
dynamics and, in the case of fermions, the non-trivial algebra introduced by the Pauli exclusion
principle.
In view of the fundamental limitations of exact analytical approaches one might hope that, at
least, modern supercomputers can provide detailed numerical insights into the thermodynamic
and spectral properties of correlated fermionic systems. However, classical computers are fun-
damentally limited by the exponential growth of the Hilbert space with system size. Therefore
they can solve the Hubbard model and related correlation models only on finite, often rather
small lattices and in certain parameter regimes (here “solving” means calculating the ground
state energy and correlation functions, simulating dynamics and mapping out phase diagrams).5

In principle, quantum computers will be able solve many-electron models much more efficiently
than classical computers. However, there are still significant challenges. In particular, improve-

4More generally, the Hubbard model is the fundamental lattice model of quantum particles, since it may also
be used for interacting bosons [20].

5Recently significant progress was made in the case of the three-dimensional Hubbard model at half-filling,
where numerically exact auxiliary-field Quantum Monte Carlo computations of magnetic, thermodynamic, and
dynamical properties have become possible for lattices up to 203 sites [26]. However, more complicated fermionic
lattice models in d=3, especially models for realistic materials with many orbitals and energy bands, can be solved
only on much smaller lattices.
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ments in error correction, hardware scaling, and algorithm design will be necessary before it is
possible to study large, realistic systems. Therefore quantum computers are not yet capable of
accurately computing physical properties of large, realistic correlated electron systems beyond
what classical methods can handle [27].
This shows very clearly that there is still a great need for analytically tractable, non-perturbative
approximation schemes, which are applicable for all input parameters. Moreover, to understand
the characteristic physical properties of a many-body problem “good” approximations are re-
quired.6 Here mean-field theories play an important role.

3 Mean-field theories for the many-electron problem

In the theory of classical and quantum many-body systems an overall description of the proper-
ties of a model is often obtained within a mean-field theory. A mean-field theory is an approxi-
mation, where each particle (electron, spin, etc.) is assumed to experience an average (“mean”)
field created by all other particles, rather than the explicit particle-particle interaction. Although
the term is frequently used it is not well defined, since there exist numerous ways to derive such
theories. One construction scheme is based on the factorization of the interaction, as in the case
of the mean-field theory for the Ising model for classical spins, or the Hartree-Fock theory for
electronic models (see below). The factorization (“decoupling”) implies a neglect of fluctua-
tions (or of the correlation of fluctuations), which reduces the original many-body problem to
a solvable “independent-particle” problem, where a single particle now interacts with a mean
field provided by the other particles. Mean-field theories are a powerful first step for analyzing
many-body systems; they provide qualitative insights and make calculations tractable.

3.1 Hartree-Fock theory

Hartree-Fock theory is an independent-electron approximation which, mathematically, may be
interpreted in two different ways. Starting from the Hamiltonian level, it can be viewed as a
factorization of the electron-electron interaction, whereby the actual many-electron problem is
reduced to one where each electron now moves in a mean field (or mean potential) generated
by all other electrons. This simplified problem is then solvable, the solution being given by the
Hartree-Fock wave function, i.e., a single Slater determinant of one-electron spin-orbitals which
ensures that the wave function remains antisymmetric under electron exchange, satisfying the
Pauli exclusion principle. Alternatively, starting from the wave function, Hartree-Fock theory
may be viewed as an approximation of the total N -electron wave function as a single Slater
determinant of one-electron spin-orbitals. Applying this wave function to the electron-electron
interaction corresponds to a decoupling of the interaction. Both views lead to the same results.

6Approximations are useful not only per se, but also because they allow us to better understand the key features
of a complicated physics problem. As Peierls wrote: “... the art of choosing a suitable approximation, of checking
its consistency and finding at least intuitive reasons for expecting the approximation to be satisfactory, is much
more subtle than that of solving an equation exactly” [28].
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While Hartree-Fock theory respects the Pauli principle, it neglects interaction-induced correla-
tions between the electrons due to the decoupling/factorization procedure on which the approx-
imation is based. Hence Hartree-Fock theory is a static mean-field approximation.7

To account for electronic correlation effects one must go beyond Hartree-Fock theory. Wigner
[29] was apparently the first who tried to calculate the contribution of the mutual electronic
interaction to the ground state energy beyond the Hartree-Fock result, which he referred to as
“correlation energy”. The correlation energy is defined asEcorr = Eexact−EHF whereEexact is the
exact non-relativistic electronic energy and EHF is the Hartree-Fock energy. Since Hartree-Fock
theory does not include electron correlations, one always has Ecorr < 0.

3.2 Infinite dimensions and mean-field behavior

Another, in general unrelated, mean-field construction scheme makes use of the simplifications
that occur when some parameter is assumed to be large (in fact, infinite), whereby fluctuations
are suppressed. In this case a particle no longer experiences the actual, fluctuating interaction
with the other particles, but feels the interaction only as a “mean field”. Depending on the model
this parameter can be the length of the spins S, the spin degeneracy N, the spatial dimension
d, or the coordination number Z, i.e., the number of nearest neighbors of a lattice site.8, Mean-
field theories obtained in such a limit, supplemented if possible by an expansion in the inverse
of the large parameter, can provide valuable insights into the fundamental properties of a model.
Perhaps the best-known mean-field theory in many-body physics is the “Weiss molecular-field
theory” for the Ising model (see below). It is a prototypical “single-site mean-field theory”
which becomes exact in the limit of infinite coordination number Z or infinite dimension d.
It should be noted that the coordination number of a three-dimensional lattice can already be
quite large, e.g., Z = 6 for a simple cubic lattice, Z = 8 for a bcc lattice and Z = 12 for an
fcc-lattice.
Investigations of many-particle models in the limit d, Z →∞ do not go far back in time. In fact,
Z was originally regarded as a measure of the range of the interaction between spins in the Ising

7The conclusion that Hartree-Fock theory does not include correlations calls for further discussion. The anti-
symmetry of the Hartree-Fock wave function required by the Pauli principle keeps electrons with equal spin apart,
and thereby leads to a reduced probability of finding two electrons with the same spin close together in position
space (“Pauli hole”). This corresponds to a spatial correlation, implying that Hartree-Fock theory does include
a specific form of (static) correlation – at least for electrons with the same spin. However, this correlation is a
result of the Fermi-Dirac statistics, i.e., is due to the effective quantum mechanical exchange interaction between
indistinguishable electrons and is not caused by a classical force such as the Coulomb repulsion, which makes
all electrons avoid each other (“Coulomb hole”) regardless of spin to reduce the energy. The approximation of
the many-electron wave function as a single Slater determinant means that each electron experiences an averaged
potential rather than explicit electron-electron interactions. This neglects the instantaneous Coulomb interaction
between electrons (i.e., the Hartree-Fock wave function does not adjust to the instantaneous repulsion), leading
to an overestimation of the total energy. In particular, correlations among electrons with opposite spin are then
completely missing. Therefore Hartree-Fock theory is a static mean-field approximation which does not describe
(dynamic) electronic correlations between the electrons.

8For regular lattices both a dimension d and a coordination number Z can be defined. The coordination number
Z is then determined by the dimension d and the lattice structure. But there exist other lattice-like structures, such
as the Bethe lattice, which cannot be associated with a physical dimension d, although a coordination number Z is
well-defined.
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model, and thus of the number of spins in the range of the interaction [30]. In this case the limit
Z → ∞ describes an infinitely long-ranged interaction. Since a particle or spin then interacts
with infinitely many other particles or spins (which are all “neighbors”, i.e., the system has
“infinite connectivity”), this limit was originally referred to as “limit of high density” [30] and
only later as “limit of infinite dimensions” [31]. Thereafter the Ising model and other classical
models were investigated on general d-dimensional hypercubic lattices. Today Z denotes the
coordination number, i.e., the number of nearest neighbors.
Mean-field theories derived in the limit of infinite coordination number Z or dimension d pro-
vide an approximate solution of the many-body problem which retains characteristic features
of the problem in d <∞ and provides insights into the (unknown) solution in d = 3. This will
now be illustrated by the Ising model in infinite dimensions.

3.2.1 Ising model

To explain ferromagnetism in three-dimensional solids from a microscopic point of view, Ising
investigated a minimal model of interacting classical spins with a non-magnetic interaction
between neighboring elementary magnets [32]. The Hamiltonian function for the Ising model
with coupling J between two nearest-neighbor spins at lattice sites Ri, Rj is given by

H = −1

2
J
∑
〈Ri,Rj〉

SiSj, (2)

where we assume ferromagnetic coupling (J > 0) and 〈Ri,Rj〉 indicates summation over
all nearest-neighbor sites (the factor 1/2 prevents double counting of sites). This can also be
written as

H = −
∑
Ri

hiSi, (3)

where now every spin Si interacts with a site-dependent, i.e., locally fluctuating, field

hi = J

(i)∑
Rj

Sj (4)

generated by the coupling of the spin Si to its neighboring sites; here the superscript (i) on the
summation symbol indicates summation over the Z nearest-neighbor sites of Ri.

Mean field theory of the Ising model In mean-field theory the interaction of a spin with its
local field in (3) is decoupled (factorized), i.e., hi is replaced by a mean field hMF, which leads
to the mean-field Hamiltonian

HMF = −hMF

∑
Ri

Si + Eshift . (5)

Now a spin Si interacts only with a global field hMF = JZS (the “molecular” or “Weiss” field),
where S ≡ 〈Si〉 = (1/L)

∑L
i=0 Si is the average value of Si, Eshift = LJZS2/2 is a constant

energy shift, and L is the number of lattice sites of the system.
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Fig. 2: Already in three dimensions (d = 3) can the coordination number Z of a lattice be
quite large, as in the face-centered cubic lattice shown on the left, where Z = 12. In the limit
Z → ∞, or equivalently d → ∞, the Ising model effectively reduces to a single-site problem
where the fluctuating local field hi is replaced by a static global (“molecular”) mean field hMF.

Next we show that in infinite dimensions or for infinite coordination number Z this decoupling
arises naturally. First we have to rescale the coupling constant J as

J =
J∗

Z
, J∗ = const. (6)

With this “classical scaling” hMF and the energy (or the energy density in the thermodynamic
limit) remain finite in the limit Z →∞. Writing Si = S+δSi, where δSi is the deviation of Si
from its average S, (4) becomes hi = J∗

(
S+∆Si

)
, where

∆Si =
1

Z

(i)∑
Rj

δSj (7)

is the sum of the fluctuations δSj of the Z nearest-neighbor spins of Si per nearest neighbor.
These fluctuations are assumed to be uncorrelated, i.e., random. The law of large numbers then
implies that the sum increases only as

√
Z for Z → ∞, such that ∆Si altogether decreases as

1/
√
Z in this limit. As a consequence the local field hi can indeed be replaced by its mean hMF

(central limit theorem). Hence the Hamiltonian function (5) becomes purely local

HMF =
∑
Ri

Hi + Eshift , (8)

where Hi = −hMF Si. Thereby the problem reduces to an effective single-site problem (see
Fig. 2). We note that S corresponds to the magnetization m of the system (S ≡ m). In the
paramagnetic phase, where m = 0, the mean field hMF vanishes; hence (5) and (8) are only
non-trivial in the presence of ferromagnetic order.

The self-consistent equation of the mean-field theory The magnetization m is obtained
from the partition function of the mean-field Hamiltonian (5) as m = tanh(βhMF) where β =
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1/(kBT ). The condition hMF = JZS ≡ J∗m then yields the well-known self-consistent
equation for the magnetization m as

m = tanh
(
βJ∗m

)
. (9)

The mean-field theory is seen to become exact in the limit of infinite coordination number Z or
dimension d.9

In this case 1/Z or 1/d serve as a small parameter which can be used, in principle, to improve the
mean-field theory systematically (see section 7.1 of ref. [33]). This mean-field theory contains
no unphysical singularities, is applicable for all values of the input parameters (temperature
and/or external magnetic field) and is often viewed as the prototypical mean-field theory in
statistical mechanics.

4 Static approximations for the Hubbard model

4.1 Factorization approach: Hartree mean-field theory

Lattice fermion models such as the Hubbard model are much more complicated than models
with localized spins. Therefore the construction of a mean-field theory with the comprehensive
properties of the mean-field theory of the Ising model will be more complicated, too. The sim-
plest static mean-field theory of the Hubbard model is the Hartree approximation (an exchange
(Fock) term does not arise in this case since the Hubbard interaction acts only for electrons
with opposite spin on the same lattice site) [34]. To clarify the characteristic features of this
mean-field theory we proceed as in the derivation of the mean-field theory of the Ising model
and factorize the interaction term. To this end we rewrite the Hubbard interaction in the form of
(3), i.e., we let an electron with spin σ at site Ri interact with a local field ĥiσ (ĥiσ is an operator
and therefore a dynamic variable) produced by an electron with opposite spin on that site

Ĥint =
∑
Ri,σ

ĥiσn̂iσ, (10)

where ĥiσ = 1
2
Un̂i,−σ (the factor 1/2 is due to the summation over both spin directions). Next

we replace the operator ĥiσ by its expectation value
〈
ĥiσ
〉
, now a real number, and obtain the

single-particle (“mean-field”) Hamiltonian

ĤMF = Ĥkin +
∑
Ri,σ

〈
ĥiσ
〉
n̂iσ + Eshift , (11)

where Eshift is a constant energy shift. Now a σ-electron at site Ri interacts only with a local
static field

〈
ĥiσ
〉

= 1
2
U〈n̂i−σ〉, which can be determined self-consistently using the single-

particle Hamiltonian (11). The above decoupling of the operators corresponds to the Hartree
approximation whereby correlated fluctuations on the site Ri are neglected.

9Due to the simplicity of the Ising model, the limits of infinite dimensions d and of infinitely long-ranged spin
coupling J both yield the same mean-field theory. However, for more complicated models, in particular quantum
models with itinerant degrees of freedom, this will generally not be the case.
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It should be noted that although (11) is now an effective single-particle problem it can generally
not be solved exactly since the mean field 〈ĥiσ〉 may vary from site to site, leading to solu-
tions without long-range order. This is a new feature originating from the quantum-mechanical
kinetic energy in the Hamiltonian.
The Hartree approximation is valid in the weak-coupling limit (U → 0) and/or low-density limit
(n → 0), but clearly does not become exact in the limit d → ∞, since the Hubbard interaction
between two electrons is purely local and hence does not dependent on the spatial dimension.
Therefore the physics behind the factorizations (8) and (11) is very different. Namely, (8)
describes the decoupling of a spin from a bath of infinitely many neighboring spins whose
fluctuations become unimportant in the limit d→∞, while (11) corresponds to the decoupling
of an electron from one other electron (with opposite spin) on the same site.
While the Hartree approximation is useful for investigations at weak coupling, it will lead to
fundamentally incorrect results at strong coupling when the double occupation of a lattice site
becomes energetically very unfavorable and is therefore suppressed. Indeed, a factorization of
the local correlation function 〈n̂i↑ n̂i↓〉 → 〈n̂i↑〉〈n̂i↓〉 eliminates correlation effects generated by
the local quantum dynamics (see footnote 7). Hence the nature of the Hartree mean-field theory
of spin-1

2
electrons with a local interaction is very different from the Weiss mean-field theory of

spins with nearest-neighbor coupling.

4.2 Variational approach: Gutzwiller wave function

Another useful approximation scheme for quantum many-body systems makes use of varia-
tional wave functions [35]. Starting from a physically motivated many-body trial wave function
the energy expectation value is calculated and is then minimized with respect to the variational
parameters. Although variational wave functions usually yield only approximate results, they
have several advantages: they are physically intuitive, can be custom tailored to a particular
problem, can be used even when standard perturbation methods fail or are inapplicable, and
provide a rigorous upper bound for the exact ground state energy by Ritz’s variational principle.
To investigate the properties of the electronic correlation model (1) (which, actually, Gutzwiller
was the first to introduce [17], but which was later named after Hubbard), Gutzwiller also pro-
posed a simple variational wave function [17]. This “Gutzwiller wave function” introduces
correlations into the ground-state wave function for non-interacting electrons through a corre-
lation factor—a local operator in real space—which is constructed from the double occupation
operator D̂, (1c), as

|ΨG
〉

= gD̂
∣∣FG

〉
=
∏
Ri

[
1− (1−g)D̂i

]∣∣FG
〉
. (12)

Here |FG〉 is the wave function of the non-interacting Fermi gas and g is a variational parameter
with 0 ≤ g ≤ 1. The projector gD̂ globally reduces the amplitude of those spin configurations
in |FG〉 with too many doubly occupied sites for given repulsion U. The limit g = 1 describes
the non-interacting case, while g → 0 corresponds to U →∞.
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The Gutzwiller wave function can be used to calculate the expectation value of an operator, e.g.,
the ground state energy of the Hubbard model, (1), as

EG(g, U) ≡ 〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

. (13)

By computing the minimum of EG(g, U) with respect to the variational parameter g, the latter
is determined as a function of the interaction parameter U.

4.2.1 Gutzwiller approximation

In general the evaluation of expectation values in terms of |ΨG〉 cannot be performed ex-
actly. Therefore Gutzwiller additionally introduced a non-perturbative approximation scheme
whereby he obtained an explicit expression for the ground state energy of the Hubbard model
[17, 36, 37]. The results of Gutzwiller’s rather complicated approach were later re-derived by
counting classical spin configurations [38] as described below; for details see ref. [39]. The
idea behind the Gutzwiller approximation can be easily understood by calculating the norm
〈ΨG|ΨG〉. Namely, by working in configuration space the ground state of the Fermi gas can be
written as ∣∣FG

〉
=
∑
D

∑
{iD}

AiD
∣∣ΨiD〉, (14)

where |ΨiD〉 is a spin configuration withD doubly occupied sites, withAiD as the corresponding
probability amplitude. The sum extends over the whole set {iD} of different configurations with
the same D, and over all D. For a system with L lattice sites and Nσ electrons with spin σ (“σ-
electrons”) the number ND of different configurations in {iD} is given by the combinatorial
expression

ND =
L!

L↑!L↓!D!E!
, (15)

where Lσ = Nσ−D and E = L−N↑−N↓+D are the numbers of singly occupied and empty
sites, respectively. Since |ΨiD〉 is an eigenstate of D̂, the norm of |ΨG〉 reads

〈ΨG|ΨG〉 =
∑
D

g2D
∑
{iD}

∣∣AiD∣∣2. (16)

The Gutzwiller approximation effectively amounts to neglecting spatial correlations between
the spins of the electrons. The probability |AiD |2 for a specific spin configuration withD doubly
occupied sites is then the same for all configurations of electrons on the lattice, i.e., is given by
the classical combinatorial result for uncorrelated particles∣∣AiD∣∣2 = P↑P↓ . (17)

Here Pσ = 1/
(
L
Nσ

)
' nNσσ (1−nσ)L−Nσ , with nσ = Nσ/L, is the probability for an arbitrary

configuration of σ-electrons to occur. In this case (16) reduces to

〈ΨG|ΨG〉 = P↑P↓
∑
D

g2DND. (18)
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In the thermodynamic limit the sum in (18) is dominated by its largest term corresponding to a
value D = D̄, where D̄ is determined by [36]

g2 =
d̄
(
1− n↑ − n↓ + d̄

)(
n↓−d̄

)(
n↑−d̄

) , (19)

with d̄ = D̄/L. Equation (19) has the form of the law of mass action where, however, the
correlation parameter g2 rather than the Boltzmann factor regulates the dynamical equilibrium
between the concentrations of singly occupied sites on one side of this “chemical reaction” and
that of doubly occupied sites and holes on the other.10 Eq. (19) uniquely relates d̄ and g, such
that g may be replaced by the quantity d̄.
The expectation value of the interaction term, which is local in real space and thereby dimen-
sion independent, can be evaluated in the same way as 〈ΨG|ΨG〉. By contrast, the expectation
value of the kinetic energy, which is non-local since it involves hopping between two sites, is
approximated by neglecting the surrounding of these two sites, i.e., the two sites are thought to
be decoupled from the rest of the system [39].
The non-magnetic ground state energy per lattice site of the Hubbard model at half filling (n↑ =

n↓ = 1/2) is then found as
EG[d̄(g)]/L = q(d̄) ε0 + U d̄, (20)

which has to be minimized with respect to the variational parameter d̄. Here ε0 is the internal
energy of non-interacting electrons and q = 8(1−2d̄)d̄ ≤ 1 may be viewed as a reduction factor
of the kinetic energy (or the band width) due to correlations. In the Gutzwiller approximation,
electronic correlations are therefore found to lead only to a simple renormalization of the kinetic
energy of the electrons.

4.2.2 Brinkman-Rice metal-insulator transition

The results of the Gutzwiller approximation may be interpreted as follows [17, 36]: they de-
scribe a correlated, normal-state fermionic system at zero temperature whose momentum distri-
bution has a discontinuity q at the Fermi level, where q=1 in the non-interacting case, which is
reduced to q < 1 by the interaction as in a Landau Fermi liquid. In 1970 Brinkman and Rice [41]
showed that for a half-filled band the minimization of (20) yields q = 1−Ū2, d̄ = 1

4

(
1−Ū

)
,

and E/L = −|ε0|
(
1−Ū

)2, where Ū = U/
(
8|ε0|

)
. They noticed that in this case the Gutzwiller

approximation describes a transition at a finite critical interaction strength Uc = 8|ε0| from an
itinerant to a localized state, where lattice sites are singly occupied and the discontinuity q van-
ishes. This “Brinkman-Rice transition” therefore corresponds to a correlation induced (“Mott”)
metal-insulator transition. They argued [41] that the inverse of q can be identified with the
effective mass of Landau quasiparticles, q−1 = m∗/m ≥ 1, which diverges at Uc.
The results obtained with the Gutzwiller approximation are intuitively understandable (they
are very “physical”). In the 1970s and 80s it was the only approximation scheme which was

10In fact, (19), with g2 replaced by the Boltzmann factor e−βU , is the exact result for the Hubbard model with
infinite-range hopping [40].
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able to describe a Mott metal-insulator transition at a finite value of the interaction and was in
accord with basic properties of Landau Fermi liquid theory.11 This was confirmed by a detailed
investigation of the assumptions and implications of the Gutzwiller approximation that showed
that the Gutzwiller-Brinkman-Rice theory was not only in qualitative [44], but even in good
quantitative agreement with properties of normal-liquid 3He [39]; for a discussion see section 3
of ref. [45].

4.2.3 Can the Gutzwiller approximation be derived by quantum many-body methods?

In the Gutzwiller approximation the quantum mechanical expectation value of the ground state
energy of the Hubbard model is evaluated by counting classical spin configurations – hence it
is a quasiclassical approximation [38, 39]. It was later shown that these results are reproduced
by a two-site cluster factorization when intersite correlations are neglected [46]. Since intersite
correlations decrease with increasing spatial dimension [46], it was to be expected that the
Gutzwiller approximation is equivalent to a cluster expansion in position space in the limit
d → ∞ [39]. The question was then, whether the results of the Gutzwiller approximation –
a real-space approximation for lattice fermions – can be derived also by quantum many-body
theory in a systematic way.12 A few years later Walter Metzner and I [49] provided an answer,
by employing a new diagrammatic quantum many-body approach. Namely, we showed that the
Gutzwiller approximation corresponds to the calculation of the expectation values of operators
with the Gutzwiller wave function in the limit d → ∞, as will be explained next; for a more
detailed discussion see section 4 of ref. [45].

5 Lattice fermions in infinite dimensions

Using quantum many-body theory the expectation values of the kinetic and the interaction en-
ergy of the Hubbard model (1) in terms of the Gutzwiller wave function can be expressed dia-
grammatically for arbitrary dimensions d [49]. In d = 1 it is even possible to calculate and sum
the diagrams analytically to all orders [49].13 But this no longer works in dimensions d = 2, 3.
By numerical calculations we found that in high dimensions the values of individual diagrams

11Other well-known approximation schemes, in particular those proposed by Hubbard, do not have these im-
portant properties: in the Hubbard-I approximation [18], which interpolates between the atomic limit and the
non-interacting band, a band gap opens for any U > 0, while in the Hubbard-III approximation [42], which cor-
responds to the coherent potential approximation [43] for disordered systems, the Fermi surface volume is not
conserved.

12I discussed this question in 1983-84 with several colleagues, in particular with Andrei Ruckenstein during my
stay at the Bell Laboratories in Murray Hill in 1983. At that time Andrei tried to understand how to think about
the Brinkman-Rice transition in correlated electronic systems in the presence of disorder. This eventually led him
and Gabi Kotliar to formulate a functional integral representation of the Hubbard and Anderson models in terms
of auxiliary bosons, whose simplest saddle-point approximation (“slave-boson mean-field theory”) reproduces
exactly the results of the Gutzwiller approximation [47,48]. Thus they had shown that the results of the Gutzwiller
approximation could also be obtained without the use of the Gutzwiller variational wave function.

13The diagrams have the same form as the usual Feynman diagrams in quantum many-body theory, but a line
corresponds to the time-independent single-particle density matrix g0ij,σ =

〈
ĉ†iσ ĉjσ

〉
0

of the non-interacting system
rather than to the single-particle propagator G0

ij,σ(t) since the variational approach involves only static quantities.
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Fig. 3: Collapse of the irreducible self-energy diagram for the Hubbard model in second-order
perturbation theory in U in the limit d → ∞. Left hand side: For nearest-neighbor sites Ri,
Rj the diagram is of the order 1/d3/2. Right hand side: Only for i = j does the diagram give a
finite contribution in the limit d→∞.

approach a constant, which could be calculated analytically if the momentum conservation at
a vertex was neglected. The sum over all diagrams gave exactly the results of the Gutzwiller
approximation [49]. In view of the random generation of momenta in a typical Monte Carlo
integration over momenta we concluded that the assumed independence of momenta at a vertex
is correct in the limit of infinite spatial dimensions (d→∞). The results of the Gutzwiller ap-
proximation thus correspond to the evaluation of expectation values with the Gutzwiller wave
function in the limit d = ∞. This immediately explained the quasiclassical nature of the
Gutzwiller approximation. Most importantly, we had found that diagrammatic calculations in
quantum many-body theory drastically simplify for d→∞ . Clearly, the limit d→∞ was not
only useful for the investigation of spin models, but also in the case of lattice fermion models.

5.1 Simplifications of diagrammatic quantum many-body theory

The simplifications of diagrammatic many-body theory for d → ∞ are due to a collapse of
irreducible diagrams in position space. This means that only site-diagonal (“local”) diagrams
(diagrams which only depend on a single site), remain [50, 51].14 In particular, the irreducible
self-energy is then completely local (Fig. 3).
To understand the reason for the diagrammatic collapse in d → ∞ let us, for simplicity, con-
sider diagrams where lines correspond to the single-particle density matrix g0ij,σ as they enter
in the calculation of expectation values with the Gutzwiller wave function (note that, since
g0ij,σ = limt→0− G

0
ij,σ(t), the following arguments are equally valid for the single-particle Green

function G0
ij,σ(t) or its Fourier transform).

The single-particle density matrix g0ij,σ may be interpreted as the quantum amplitude of the
hopping of an electron with spin σ between sites Ri and Rj . The square of its magnitude is
therefore proportional to the probability of an electron to hop from Rj to a site Ri. For nearest-
neighbor sites Ri, Rj on a lattice with coordination number Z this implies |g0ij,σ|2 ∼ O(1/Z),

14Gebhard later showed that in d = ∞ the calculation of expectation values with the Gutzwiller wave function
can be performed even without diagrams [52]. This provided a direct link between the slave-boson mean-field the-
ory and the results obtained with the Gutzwiller wave function in d =∞. The latter approach was generalized by
Gebhard and collaborators to multi-band Hubbard models, which can be used to describe the effect of correlations
in real materials (“Gutzwiller density-functional theory”) [53].
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such that on a hypercubic lattice, where Z = 2d, and d→∞ one finds [50, 51]

g0ij,σ ∼ O
( 1√

d

)
. (21)

For general i, j one obtains [51, 54]

g0ij,σ ∼ O
(

1/d‖Ri−Rj‖/2
)
. (22)

Here ‖R‖ =
∑d

n=1 |Rn| is the length of R in the “Manhattan metric”, where electrons only
hop along horizontal or vertical lines, but never along a diagonal; for further discussions of
diagrammatic simplifications see ref. [55].
Consequences of the asymptotic d dependence of g0ij,σ can be determined by examining the
kinetic energy. For non-interacting electrons at T = 0 the expectation value of the kinetic
energy is given by

E0
kin = −t

∑
〈Ri,Rj〉

∑
σ

g0ij,σ. (23)

The sum over nearest neighbors leads to a factorO(Z) (which isO(d) for a hypercubic lattice).
In view of the 1/

√
d dependence of g0ij,σ for d → ∞ it is therefore necessary to scale the

nearest-neighbor hopping amplitude t as [50, 51]

t =
t∗√
d
, t∗ = const., (24)

so that the kinetic energy remains finite for d → ∞. The same result may be derived in a
momentum-space formulation.15 It is important to bear in mind that, although g0ij,σ vanishes
for d → ∞, the electrons are still mobile. Indeed, even in the limit d → ∞ the off-diagonal
elements of g0ij,σ contribute, since electrons may hop to Z ∼ O(d) many nearest neighbors with
amplitude t∗/

√
d.

5.2 The Hubbard model in d = ∞

A rescaling of the microscopic parameters of the Hubbard model with d is only required for the
kinetic energy, since the interaction term is independent of the spatial dimension.16 Altogether

15The need for the scaling (24) also follows from the density of states of non-interacting electrons. For nearest-
neighbor hopping on a d-dimensional hypercubic lattice εk has the form εk = −2t

∑d
i=1 cos ki (here and in the

following we set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity). The density
of states corresponding to εk is given by Nd(ω) =

∑
k δ(ω−εk), which is the probability density for finding the

value ω = εk for a random choice of k = (k1, . . . , kd). If the momenta ki are chosen randomly, εk is the sum of d
many independent (random) numbers −2t cos ki. The central limit theorem then implies that in the limit d → ∞
the density of states is given by a Gaussian, i.e., Nd(ω)

d→∞−→ 1
2t
√
πd

exp
[
−
(

ω
2t
√
d

)2]
. Only if t is scaled with d

as in (24) does one obtain a non-trivial density of states N∞(ω) in d =∞ [56,50] and thus a finite kinetic energy.
The density of states on other types of lattices in d =∞ can be calculated similarly [57, 58].

16Interactions beyond the Hubbard interaction, e.g., nearest-neighbor interactions such as Ĥnn =∑
〈Ri,Rj〉

∑
σσ′ Vσσ′ n̂iσn̂jσ′ have to be scaled, too, in the limit d → ∞. In this case a scaling as in the Ising

model, Vσσ′ → V ∗σσ′/Z, is required [59] (“classical scaling”). In d = ∞ non-local contributions therefore reduce
to their (static) Hartree substitute and only the Hubbard interaction remains dynamical.
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Fig. 4: Correlation energy of the Hubbard model in second-order Goldstone perturbation the-
ory in U in units of 2U2/|ε0| vs. density n in dimensions d = 1, 3,∞. Here ε0 is the kinetic
energy for U = 0 and n = 1; adapted from ref. [50].

this implies that only the Hubbard Hamiltonian with a rescaled kinetic energy

Ĥ = − t∗√
d

∑
〈Ri,Rj〉

∑
σ

ĉ†iσ ĉjσ + U
∑
Ri

n̂i↑n̂i↓ (25)

has a non-trivial d → ∞ limit where both the kinetic energy and the interaction contribute
(namely, it is the competition between the two terms which leads to interesting many-body
physics). Therefore, even in d =∞ the Hubbard model describes nontrivial correlations among
the fermions. This is already evident in the evaluation of the second-order diagram in Goldstone
perturbation theory for the correlation energy at weak coupling [50]. The integral over the three
internal momenta (which, in d = 3, lead to nine integrals) reduces to a single integral in d =∞.
Obviously, calculations are much simpler in d =∞ than in finite dimensions. More importantly,
the results for the energy obtained in d =∞ turn out to be very close to those in d = 3 (Fig. 4)
and therefore provide a computationally simple, but quantitatively reliable approximation.
The simplifications in calculations for quantum lattice models such as the Hubbard model in
infinite dimensions arise from the fact that energies are randomized by umklapp processes gen-
erated when lattice momenta are added [50]. Hence the energies become mutually independent,
which allows one to replace the momentum integrations by energy integrations over the density
of states. In other words, in d = ∞ the momentum conservation constraint at a vertex may be
ignored.
With these results Walter and I had demonstrated [50] that microscopic calculations for cor-
related lattice fermions in d = ∞ dimensions were useful and very promising. Subsequently
Müller-Hartmann [59] showed that in infinite dimensions the self-energy is k-independent, i.e.,
local in position space, as in the Gutzwiller approximation, but remains dynamical

Σσ(k, ω)
d→∞≡ Σσ(ω), (26)
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whereby typical Fermi liquid features are preserved [60]. This result may be understood as
follows [61, 62]: The influence of an interaction between particles on their motion is de-
scribed quite generally by a complex, spatially dependent and dynamical field, the self-energy
Σσ(k, ω). On a lattice with a very large number of nearest neighbors the spatial dependence of
this field becomes increasingly unimportant and vanishes completely in d =∞, as in the mean-
field theory of the Ising model. So the field becomes a mean field in position space but retains its
full dynamics.17 Furthermore, Schweitzer and Czycholl [65] found that calculations for the pe-
riodic Anderson model also simplify in high dimensions, and Brandt and Mielsch [66] derived
the exact solution of the Falicov-Kimball model in infinite dimensions by mapping the lattice
problem onto a solvable atomic problem in a generalized, time-dependent external field; they
also indicated that, in principle, such a mapping was even possible for the Hubbard model.18

Due to the k-independence of the irreducible self-energy the most important obstacle for di-
agrammatic calculations in finite dimensions d ≥ 1, namely the integration over intermediate
momenta, is removed. At the same time the limit d → ∞ does not affect the dynamics of the
system. Hence, in spite of the simplifications in position or momentum space, the many-electron
problem retains its full dynamics in d =∞.

5.2.1 Single-particle propagator and spectral function

In d = ∞ the single-particle propagator of an interacting lattice fermion system (the “lattice
Green function”) at T = 0 is then given by

Gk,σ(ω) =
1

ω − εk + µ−Σσ(ω)
. (27)

The k-dependence ofGk(ω) is now entirely due to the energy dispersion εk of the non-interacting
particles. This means that in a homogeneous system described by the propagator

Gij,σ(ω) = L−1
∑
k

Gk,σ(ω)eik·(Ri−Rj) (28)

its local part, Gii,σ ≡ Gσ, is determined by

Gσ(ω) = L−1
∑
k

Gk,σ(ω) =

∞∫
−∞

dE
N0(E)

ω − E + µ−Σσ(ω)
, (29)

where N0(E) is the density of states of the non-interacting system. The spectral function of the
interacting system (also often called density of states) is given by

Aσ(ω) = − 1

π
ImGσ(ω+i0+). (30)

17In this respect there is a direct analogy to non-interacting electrons in the present of static (“quenched”)
disorder, where the self-energy also becomes k-independent in the limit d → ∞ and plays the role of a coherent
potential. The “coherent potential approximation” [43] is a single-site theory where an electron moves through an
effective medium described by the self-energy Σσ(ω) that becomes exact in d =∞ [61, 63, 64]. In the case of the
Hubbard model in the limit d→∞ the coherent potential is much more complicated due to the explicit interaction
between the particles (see footnote 21).

18Alternatively, it can be shown that in the limit Z → ∞ the dynamics of the Falicov-Kimball model reduces
to that of a non-interacting, tight-binding model on a Bethe lattice with coordination number Z = 3 which can be
solved analytically [67].
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5.2.2 k-independence of the self-energy and Fermi liquid behavior

The k-independence of the self-energy allows one to make contact with Fermi liquid theory
[60]. In general, i.e., even when Σ has a k-dependence, the Fermi surface is defined by the
ω = 0 limit of the denominator of (27) (in the paramagnetic phase we can suppress the spin
index)

εk +Σk(0) = EF . (31)

According to Luttinger and Ward [68] the volume within the Fermi surface is not changed by
interactions, provided the latter can be treated in perturbation theory.19 This is expressed by

n =
∑
kσ

Θ
(
EF−εk−Σk(0)

)
, (32)

where n is the electron density and Θ(x) is the step function. The k-dependence of Σk(0) in
(31) implies that, in spite of (32), the shape of the Fermi surface of the interacting system will
be quite different from that of the non-interacting system, except for the rotationally invariant
case εk = f(|k|). By contrast, for lattice fermion models in d = ∞, where Σk(ω) ≡ Σ(ω),
the Fermi surface itself, and hence the enclosed volume, is not changed by the interaction. The
Fermi energy is simply shifted uniformly from its non-interacting value E0

F to EF = E0
F +

Σ(0), to keep n in (32) constant. Thus G(0), the ω = 0 value of the local lattice Green
function, and the spectral function A(0) = − 1

π
ImG(i0+) are not changed by the interaction at

all. This “pinning behavior” is well-known from the single-impurity Anderson model [70]. A
renormalization of N(0) can only be due to a k-dependence of Σ.
For ω → 0 the self-energy has the property [60]

Im Σ(ω) ∝ ω2, (33)

which implies Fermi liquid behavior. The effective mass of the quasiparticles

m∗

m
= 1− dΣ

dω

∣∣∣∣
ω=0

(34)

= 1 +
1

π

∫ ∞
−∞

dω
ImΣ(ω+i0−)

ω2
≥ 1 (35)

is seen to be enhanced by the interaction. In particular, the momentum distribution

nk =
1

π

∫ 0

−∞
dω ImGk(ω) (36)

has a discontinuity at the Fermi surface given by nk−F −nk+F = (m∗/m)−1, where k±F = kF ±0+.

19Recently, necessary and sufficient conditions for the validity of Luttinger’s theorem [68] based on the Atiyah-
Singer index theorem were derived, by which the topological robustness of a generalized Fermi surface may be
quantified [69].
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6 Dynamical mean-field theory for correlated electrons

The diagrammatic simplifications of quantum many-body theory for lattice fermions in d =∞
provide the basis for the construction of a comprehensive mean-field theory of the Hubbard
model which is diagrammatically controlled and whose free energy has no unphysical singular-
ities. The construction is based on the scaled Hamiltonian (25). The self-energy is then momen-
tum independent but retains its frequency dependence and thereby describes the full many-body
dynamics of the interacting system. This is in contrast to Hartree(-Fock) theory where the self-
energy acts only as a static potential. The resulting theory is both mean-field-like and dynamical
and therefore represents a dynamical mean-field theory (DMFT) for lattice fermions which is
able to describe genuine correlation effects as will be discussed in this section.

6.1 The self-consistent equations

In d = ∞ lattice fermion models with a local interaction effectively reduce to a single site
embedded in a dynamical mean field provided by the other interacting fermions as illustrated
in Fig. 5. The self-consistent DMFT equations can be derived in different ways depending on
the physical interpretation of the correlation problem emerging in the limit d, Z → ∞ [61, 71,
72]; for a discussion see ref. [55]. The mapping of the lattice electron problem onto a single-
impurity Anderson model with a self-consistency condition in d = ∞ introduced by Georges
and Kotliar [71], which was also employed by Jarrell [72], turned out to be the most useful
approach,20 since it made a connection with the well-studied theory of quantum impurities [70],
for whose solution efficient numerical codes such as the quantum Monte Carlo (QMC) method
[73] had already been developed and were readily available.21 For a detailed discussion of the
foundations of DMFT see the review by Georges, Kotliar, Krauth, and Rozenberg [74] and the
lecture by Kollar at the Jülich Autumn School 2018 [75]; an introductory presentation can be
found in ref. [76].
For T > 0 the self-consistent DMFT equations are given by:
(I) the local propagator Gσ(iωn), which is expressed by a functional integral as

Gσ(iωn) = − 1

Z

∫ ∏
σ

Dc∗σDcσ [cσ(iωn)c∗σ(iωn)] exp[−Sloc] (37)

with the partition function

Z =

∫ ∏
σ

Dc∗σDcσ exp[−Sloc] (38)

20The mapping itself can be performed without approximation, but leads to a complicated coupling between the
impurity and the bath which makes the solution generally intractable. However, the problem can be solved in the
limit d→∞ when the momentum dependence of the self-energy drops out.

21Alternatively, Janiš derived the self-consistent DMFT equations already in 1991 by generalizing the coherent
potential approximation (CPA) [61]. In the CPA quenched disorder acting on non-interacting electrons is averaged
and produces a mean field, the “coherent potential”. In the case of the Hubbard model in d = ∞ the fluctuations
generated by the Hubbard interaction may be treated as “annealed” disorder acting on non-interacting electrons [62]
which, after averaging, produce a mean field, the self-energy. Numerical solutions of the DMFT equations starting
from the CPA point of view have not been developed so far.
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Fig. 5: In the limit d or Z → ∞ the Hubbard model effectively reduces to a dynamical single-
site problem which may be viewed as a lattice site embedded in a k-independent, dynamical
fermionic mean field. Electrons can hop from the mean field onto this site and back, and interact
on the site as in the original Hubbard model (see Fig.1). The local dynamics of the electrons is
independent of the dimension or coordination number and therefore remains unchanged.

and the local action

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1σ (τ1−τ2) cσ(τ2) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ). (39)

Here Gσ is the effective local propagator (also called “bath Green function”, or “Weiss mean
field”22), which is defined by a Dyson equation

Gσ(iωn) =
[
[Gσ(iωn)]−1 +Σσ(iωn)

]−1
. (40)

Furthermore, by identifying the local propagator (37) with the Hilbert transform of the lattice
Green function

Gk σ(iωn) =
1

iωn − εk + µ−Σσ(iωn)
, (41)

(which is exact in d =∞ [74]), one obtains
(II) the self-consistency condition

Gσ(iωn) =
1

L

∑
k

Gk σ(iωn) =

∞∫
−∞

dε
N(ω)

iωn − ε+ µ−Σσ(iωn)
(42)

= G0
σ

(
iωn−Σσ(iωn)

)
. (43)

In (42) the ionic lattice enters only through the density of states of the non-interacting electrons.
Eq. (43) illustrates the mean-field nature of the DMFT equations very clearly: the local Green
function of the interacting system is given by the non-interacting Green function G0

σ at the
shifted energy iωn−Σσ(iωn), which is the energy measured relative to that of the surrounding
fermionic bath, the dynamical mean field Σσ(iωn).

22This expresses the fact that G describes the coupling of a single site to the rest of the system, similar to the
Weiss mean-field hMF in the mean-field theory of the Ising model (see section 3.2.1). However, in the case of the
DMFT the mean field depends on the frequency, i.e., is dynamical. It should be noted that, in principle, both local
functions Gσ(iωn) and Σσ(iωn) can be viewed as a dynamical mean field since both enter in the bilinear term of
the local action (39).
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6.1.1 Solving the self-consistent equations

The self-consistent DMFT equations can be solved iteratively: starting with an initial guess for
the self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (42) and thereby the
bath Green function Gσ(iωn) from (40). This determines the local action (39) which is needed
to compute a new value for the local propagator Gσ(iωn) from (37). By employing the old
self-energy a new bath Green function Gσ is calculated and so on, until convergence is reached.

It should be stressed that although the DMFT corresponds to an effectively local problem, the
propagator Gk(ω) depends on the crystal momentum k through the dispersion relation εk of
the non-interacting electrons. But there is no additional momentum-dependence through the
self-energy, since this quantity is local within DMFT.

Solutions of the self-consistent DMFT equations require the extensive application of numerical
methods, in particular quantum Monte Carlo (QMC) simulations [72, 74] with continuous-time
QMC [77] still as the method of choice, the numerical renormalization group [78], the density
matrix renormalization group [79], exact diagonalization [74], Lanczos procedures [80], and
solvers based on matrix product states [81] or tensor networks [82]. Here the recent develop-
ment of impurity solvers making use of machine learning [83] and quantum computers [84]
open new perspectives.

6.2 Application of DMFT to the Hubbard model

In DMFT the mean field is dynamical, whereby local quantum fluctuations are fully taken
into account, but is local (i.e., spatially independent) because of the infinitely many neigh-
bors of every lattice site. The only approximation of this “single-site DMFT” when applied in
d < ∞ is the neglect of the k-dependence of the self-energy. DMFT provides a comprehen-
sive, non-perturbative, thermodynamically consistent and diagrammatically controlled approx-
imation scheme for the investigation of correlated lattice models at all interaction strengths,
densities, and temperatures [74, 76], and can resolve even very low energy scales.

Intensive theoretical investigations of the Hubbard model and related correlation models us-
ing DMFT over the last three decades have provided a wealth of new insights into the physics
described by this fundamental fermionic interaction model. In this subsection only a few exem-
plary results will be discussed; more detailed presentations can be found in refs. [74, 55], and
the lecture notes of the Jülich Autumn Schools in 2011, 2014, 2018, and 2022 [12].

Most importantly, with DMFT it is possible to compute electronic correlation effects quanti-
tatively in such a way that they can be tested experimentally, for example, by electron spec-
troscopies. Namely, DMFT describes the correlation induced transfer of spectral weight and
the finite lifetime of quasiparticles through the real and imaginary part of the self-energy, re-
spectively. This greatly helps to understand and characterize the Mott metal-insulator transition
(MIT) to be discussed next.
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6.2.1 Metal-insulator transitions

Mott-Hubbard transition The interaction-driven transition between a paramagnetic metal
and a paramagnetic insulator, first discussed by Mott [85] and referred to as “Mott metal-
insulator transition” (MIT), or “Mott-Hubbard MIT” when studied within the Hubbard model,
is one of the most intriguing phenomena in condensed matter physics [86, 87]. This transi-
tion is a consequence of the quantum-mechanical competition between the kinetic energy of
the electrons and their interaction U : the kinetic energy prefers the electrons to be mobile (a
wave effect) which invariably leads to their interaction (a particle effect). For large values of U
doubly occupied sites become energetically too costly. The system can reduce its total energy
by localizing the electrons, which leads to a MIT. Here the DMFT provided detailed insights
into the nature of the Mott-Hubbard-MIT for all values of the interaction U and temperature
T [74, 88, 76, 55]. A microscopic investigation of the Mott MIT obtained within DMFT from a
Fermi-liquid point of view was performed only recently [89].

While at small U the interacting system can be described by coherent quasiparticles whose
spectral function (“density of states” (DOS)) still resembles that of the free electrons, the DOS
in the Mott insulating state consists of two separate, incoherent “Hubbard bands” whose centers
are separated approximately by the energy U (here we discuss only the half filled case without
magnetic order). At intermediate values of U the spectrum then has a characteristic three-peak
structure which is qualitatively similar to that of the single-impurity Anderson model [90] and
which is a consequence of the three possible occupations of a lattice site: empty, singly occupied
(up or down), and doubly occupied.

At T = 0 the width of the quasiparticle peak vanishes at a critical value of U which is of the or-
der of the band width. So the Mott-Hubbard MIT occurs at intermediate coupling and therefore
belongs to the hard problems in many-body theory, where most analytic approaches fail and in-
vestigations have to rely on numerical methods. Therefore several features of the Mott-Hubbard
MIT near the transition point are still not sufficiently understood even within DMFT. Actually,
it was recently argued that the Mott-Hubbard transition in the infinite-dimensional single-band
Hubbard model may be understood as a topological phase transition, where the insulating state
is the topological phase, and the transition from the metallic (Fermi liquid) to the insulating
state involves domain wall dissociation [91].

At T > 0 the Mott-Hubbard MIT is found to be first order and is associated with a hysteresis
region in the interaction range Uc1 < U < Uc2 where Uc1 and Uc2 are the values at which the
insulating and metallic solution, respectively, vanish [74, 88]; for more detailed discussions see
refs. [74,76,55]. The hysteresis region terminates at a critical point, above which the transition
becomes a smooth crossover from a “bad metal” to a “bad insulator”; for a schematic plot of the
phase diagram see fig. 3 of ref. [76]. Transport in the incoherent region above the critical point
shows remarkably rich properties, including scaling behavior [92]. The highly non-perturbative
nature of the Mott MIT is illustrated by the fact that the MIT at T = 0 is an accumulation point
of an infinite number of vertex divergence lines [93].

Mott-Hubbard MITs are found, for example, in transition metal oxides with partially filled
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bands. For such systems band theory typically predicts metallic behavior. One of the most
famous examples is V2O3 doped with Ti or Cr [94]. However, it is now known that certain
organic materials are better realizations of the single-band Hubbard model without magnetic
order and allow for more controlled investigations of the Mott MIT and the Mott state [95].

Metal-insulator transitions in the presence of disorder DMFT also provides a theoreti-
cal framework for the investigation of correlated electrons in the presence of disorder. In the
absence of interactions, when the effect of local disorder is taken into account through the
arithmetic mean of the local DOS (LDOS), DMFT is equivalent to the coherent potential ap-
proximation (CPA) [63, 64]; for a discussion see ref. [55]. However, CPA cannot describe
Anderson localization. To overcome this deficiency a variant of the DMFT was formulated
where the geometrically averaged LDOS is computed from the solutions of the self-consistent
stochastic DMFT equations and is then fed into the self-consistency cycle [96]. This corre-
sponds to a “typical medium theory” which is able to reproduce the Anderson transition of
non-interacting electrons. By implementing this scheme into DMFT to study the properties of
disordered electrons in the presence of interactions it is possible to compute the phase diagram
of the Anderson-Hubbard model [97].

6.2.2 Metallic ferromagnetism

The Hubbard model was introduced in 1963 [17–19] in an attempt to explain metallic ferro-
magnetism in 3d metals such as Fe, Co, and Ni starting from a microscopic point of view.
However, at that time investigations of the model employed severe, uncontrolled approxima-
tions. Therefore it was uncertain for a long time whether the Hubbard model can explain band
ferromagnetism at realistic temperatures, electron densities, and interaction strengths in d >1
at all. Using DMFT it was found that on generalized fcc-type lattices in d = ∞ (i.e., on “frus-
trated” lattices with large spectral weight at the lower band edge) the Hubbard model indeed
predicts metallic ferromagnetic phases in large regions of the phase diagram [58, 98]. In the
paramagnetic phase the susceptibility χF obeys a Curie-Weiss law [99], where the Curie tem-
perature TC is much lower than that obtained by Stoner theory, due to many-body effects. In
the ferromagnetic phase the magnetization M is consistent with a Brillouin function as origi-
nally derived for localized spins, even for a non-integer magneton number as in 3d transition
metals [58]. Therefore, DMFT accounts for the behavior of both the magnetization and the sus-
ceptibility of band ferromagnets [98]; see section 6.1 of my 2018 lecture notes [75]. Like the
Mott MIT, metallic ferromagnetism is a hard intermediate-coupling many-electron problem.

6.2.3 Topological properties of correlated electron systems

The interest in non-trivial topological properties of electronic systems sparked by the theory
of the quantum Hall effect, greatly increased when it was realized that the spin-orbit interac-
tion can generate topologically insulating behavior [100]. Initially, investigations focused on
topological features of non-interacting systems. But during the last decade the influence of
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electronic interactions on these topological properties received more and more attention. Here
DMFT turned out to be a useful tool. For example, DMFT was employed to study interaction
effects in two-dimensional topological insulators [101], to analyze the robustness of the Chern
number in the Haldane-Hubbard model [102], and to investigate the topological quantization
of the Hall conductivity of correlated electrons at T > 0 [103]. Furthermore, to better under-
stand the topological phase transition from a Weyl-semimetal to a Mott insulator the topological
properties of quasiparticle bands were computed [104]. DMFT also made it possible to explore
topological phase transitions in the Kitaev model in a magnetic field and to calculate the cor-
responding phase diagrams [105]. Correlation-induced topological effects can even arise from
non-Hermitian properties of the single-particle spectrum in equilibrium systems [106]. Further-
more, it was demonstrated that a topologically nontrivial multiorbital Hubbard model remains
well-defined and nontrivial in the limit d → ∞ for arbitrary, but even, d [107]. Most recently,
DMFT studies of the two-dimensional Hubbard model showed that correlated altermagnets can
host Dirac points and topological phases [108].

6.2.4 Nonequilibrium DMFT

The study of correlated electrons out of equilibrium by employing a generalization of the DMFT
has become another fascinating new research area [109]. Nonequilibrium DMFT is able to ex-
plain the results of time-resolved electron spectroscopy experiments, where femtosecond pulses
are now available in a wide frequency range. In such experiments a probe is excited and the sub-
sequent relaxation is studied. Thereby it was found, for example, that doubly occupied sites in
the photo-excited quasi-2d transition-metal dichalcogenide 1T-TaS2 show an ultrafast dynam-
ics [110]. Such excitations may even result in long-lived, metastable (“hidden”) states [111].
Quite generally, photo-induced nonequilibrium states in Mott insulators provide valuable infor-
mation on correlation effects and metastable states of matter [112].

6.3 Beyond DMFT

Mean-field approximations provide useful information on the general physical properties of
many-body problems. In particular, DMFT with its dynamical but local self-energy has been
a breakthrough for the investigation and explanation of electronic correlation effects in models
and materials. Although it is an approximation when used in d < ∞, experiments with cold
atoms in optical lattices demonstrated that DMFT can be remarkably accurate in d = 3 [113].
A dynamical, local self-energy was also shown to be well justified in iron pnictides and chalco-
genides [114] as well as in Sr2RuO4 [115]. Nevertheless mean-field results can neither ex-
plain correlation phenomena occurring on finite length scales or the critical behavior at ther-
mal or quantum phase transitions, nor unconventional superconductivity observed in finite-
dimensional systems. In such cases it is necessary to go beyond mean-field theory.
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6.3.1 1/d corrections

For mean-field theories derived in the limit d → ∞ corrections can be obtained, at least in
principle, by performing an expansion in the parameter 1/d around the mean-field results.23

An early strategy to include intersite quantum fluctuations into DMFT is “extended DMFT”
(EDMFT) [116], where the interaction strength of a nearest-neighbor density-density interaction
is scaled such that its fluctuation part contributes even in the large d limit.
Systematic calculations of 1/d-corrections to the DMFT start with a Luttinger-Ward functional
of the non-local Green function Gij,σ(iωn), from which the non-local self-energy Σij,σ(iωn)

is obtained by functional derivative. To calculate first-order corrections in 1/d one needs to
consider a pair of nearest-neighbor sites [117]. This generalizes the single-impurity problem
of the DMFT to a two-impurity problem. It is then possible, in principle, to formulate a self-
consistent, thermodynamically consistent approximation which is correct to order 1/d [117].
This scheme requires an exact cancellation of certain diagrams in the approximation. Unfortu-
nately, numerical computations within this approach are unstable and can easily lead to acausal
solutions. Although the scheme was modified such that the diagrammatic cancellation is as-
sured at each iteration step [118] and thereby provided causal solutions in test calculations for
the Hubbard model, acausal behavior cannot be ruled out in general. Therefore it is still not
clear whether, and how, controlled and thermodynamically consistent 1/d expansions around
DMFT can be constructed. So far, analytic calculations in this directions were not further pur-
sued in view of the successes of numerical cluster approaches which, although not systematic
in 1/d, are explicitly causal [119] (see below).

6.3.2 Non-local extensions

There are different, mostly numerical, techniques to include non-local correlations into the
DMFT; for a review see ref. [120]; in the following we mention three approaches:

Cluster extensions These methods incorporate short-range spatial correlations by solving an
impurity problem for a cluster of sites rather than a single site. The dynamical cluster approx-
imation (DCA) [121] systematically improves the accuracy by increasing the cluster size in
momentum space, while the cellular DMFT (CDMFT) [122] works in real space. In both ap-
proaches the cluster is self-consistently embedded in a dynamical mean field. Thereby it has
become possible to compute, for example, typical features of unconventional superconductivity
in the Hubbard model in d = 2, such as the interplay of antiferromagnetism and d-wave pairing
as well as pseudogap behavior [119], but also signatures of Anderson localization in disordered
systems [123].

Diagrammatic generalizations By extending the DMFT on a diagrammatic level through
the inclusion of non-local contributions, corrections to the local self-energy of the DMFT can

23For a discussion of the calculation of 1/d corrections to the Weiss mean-field theory of the Ising model, the
Gutzwiller approximation, and the coherent potential approximation see section 7 of ref. [33].
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be calculated explicitly. In particular, the dynamical vertex approximation (DΓA) [124] incor-
porates momentum-dependent vertex corrections beyond DMFT, while the dual fermion ap-
proach [125] introduces auxiliary fermions to capture long-range correlations. These approx-
imations provided new insights into the mechanism of superconductivity arising from purely
repulsive interactions, e.g., in the Kondo lattice [126] and Hubbard model [127]. In particular,
in the Hubbard model a specific set of local particle-particle diagrams was identified which de-
scribe a strong screening of the bare interaction at low frequencies. Thereby antiferromagnetic
spin fluctuations are suppressed, which in turn reduce the pairing interaction. Thus dynamical
vertex corrections were found to lower Tc strongly [127]. With these approaches it is possi-
ble to determine critical behavior near thermal (T > 0) [128] and quantum phase transitions
(T = 0) [129].

Functional renormalization group (fRG) The fRG method [130] systematically integrates
out energy scales and captures collective fluctuations, which can be combined with DMFT to
describe nonlocal correlations. In the DMF2RG approach [131] the fRG flow does not start
from the bare action of the system, but rather from the DMFT solution. Local correlations are
thus included from the beginning, and nonlocal correlations are generated by the fRG flow, as
demonstrated for the two-dimensional Hubbard model [131].

7 Understanding correlated materials with DMFT

It took several decades to develop theoretical techniques that made it possible to understand ba-
sic properties of the single-band Hubbard model. During this time first-principles investigations
into the much more complicated many-body problem of correlated electron materials were out
of reach. The electronic properties of solids were mainly studied within density-functional the-
ory (DFT) [132], e.g., in the local density approximation (LDA) [133], the generalized gradient
approximation (GGA) [134], and the LDA+U method [135]. Those approaches can describe
the ground state properties of many simple elements and semiconductors, and even of some
insulators, quite accurately, and often predict the magnetic and orbital properties [133] as well
as the crystal structures of many solids correctly [136]. However, they fail to describe the
electronic and structural properties of correlated paramagnetic materials since they miss char-
acteristic features of correlated electron systems such as heavy quasiparticle behavior and Mott
physics. DMFT changed this situation completely.

7.1 DFT+DMFT and GW+DMFT

The computational scheme introduced by Anisimov et al. [137] and Lichtenstein and Kat-
snelson [138], which merges material-specific DFT-based approximations with the many-body
DMFT, provides a powerful new method for the microscopic computation of the electronic,
magnetic, and structural properties of correlated materials from first principles even at finite
temperatures [139–143]. This theoretical method is now often denoted by DFT+DMFT (or,
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more specifically, LDA+DMFT, GGA+DMFT, etc.). In particular, this approach naturally
accounts for the existence of local moments in the paramagnetic phase. By construction,
DFT+DMFT includes the correct quasiparticle physics and the corresponding energetics, and
reproduces the DFT results in the limit of weak Coulomb interaction U [144]. Most impor-
tantly, DFT+DMFT describes the correlation-induced many-body dynamics of strongly corre-
lated electron materials at all values of the Coulomb interaction and doping.
As in the case of the single-band Hubbard model the many-body model of correlated mate-
rials constructed within the DFT+DMFT scheme consists of two parts: an effective kinetic
energy obtained by DFT which describes the material-specific band structure of the uncorre-
lated electrons, and the local interactions between the electrons in the same orbital as well as
in different orbitals. Here the static contribution of the electronic interactions already included
in the DFT-approximations must be subtracted to avoid double counting [137–142]. Such a
“double counting” correction is not necessary in the fully diagrammatic, but computationally
very demanding GW+DMFT approach, where the LDA/GGA input is replaced by the GW
approximation [145]. The resulting many-particle problem with its numerous energy bands and
local interactions is then solved within DMFT, typically by CT-QMC.

7.2 Applications
7.2.1 Bulk materials

DFT+DMFT has been remarkably successful in the investigation of correlated materials, in-
cluding transition metals and their oxides, manganites, fullerenes, Bechgaard salts, f -electron
materials, magnetic superconductors, and Heusler alloys [139–142].
In particular, the application of DFT+DMFT led to the discovery of novel physical mechanisms
and correlation phenomena. Take, for example, the Mott MIT. Within the single-band Hub-
bard model the Mott MIT was originally explained as a transition where the effective mass of
quasiparticles diverges (“Brinkman-Rice scenario”) [41]. When DMFT had made it possible
to examine multi-band models, an orbitally-selective Mott MIT was identified [146]. Then,
with the advent of DFT+DMFT, a site-selective Mott MIT was discovered in Fe2O3 with its
numerous energy bands and local interactions [147].
In the following we illustrate the DFT+DMFT approach by its application to two paradigmatic
materials, SrVO3 and Fe.

SrVO3: three-peak spectral function Transition metal oxides are an ideal laboratory for the
study of electronic correlations in solids. Spectroscopic studies typically find a pronounced
lower Hubbard band in the photoemission spectra which cannot be explained by conventional
band-structure theory. SrVO3 is a particularly simple correlated material due to its 3d1 config-
uration and its purely cubic crystal structure with one vanadium ion per unit cell. The cubic
symmetry of the crystal field splits the fivefold degenerate 3d orbital into a threefold degenerate
t2g orbital and a twofold degenerate eg orbital at higher energies. In the simplest approximation
only the local interaction between the electrons in the t2g orbitals is included. By employing
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a variant of the LDA it is possible to compute the strength of the local Coulomb repulsion
(U ' 5.5 eV) and the Hund’s rule coupling (J ' 1.0 eV) [148]. Using these values the elec-
tronic band structure is calculated within LDA. The correlated electron problem defined in this
way is solved numerically within DMFT. The spectral function shows the characteristic three-
peak structure of a correlated metal (lower Hubbard band, quasiparticle peak, upper Hubbard
band) [148, 149]. This was confirmed experimentally using electron spectroscopies [148, 150].
Recently it was pointed out that oxygen vacancy states created by UV or x-ray irradiation can
strongly affect the line shapes of the lower Hubbard band and the quasiparticle peak [151],
which must be taken into account in quantitative interpretations of those peaks.

Fe: electronic correlations and structural stability Iron (Fe) exhibits a rich phase diagram.
Under ambient conditions Fe is ferromagnetic and has a bcc crystal structure (α phase). At the
Curie temperature TC ∼ 1043 K the α phase becomes paramagnetic but retains its bcc struc-
ture. Only when the temperature is further increased to Tstruct ∼ 1185 K does a structural phase
transition to a fcc structure (γ phase) take place. At T ∼ 1670 K a transition to a second bcc
structure (δ phase) occurs. DFT+DMFT calculations for ferromagnetic bcc Fe provide a semi-
quantitative description of several physical properties of that phase (at least sufficiently far from
the Curie point) and demonstrate that electronic correlations play an important role [152].24

This approach also clarified the microscopic origin of the magnetic exchange interactions in the
ferromagnetic phase [155]. While DFT band-structure methods provide qualitatively correct
results for several electronic and structural properties of iron [156], their application in the case
of the bcc-to-fcc phase transition predicts a simultaneous transition of the structural and the
magnetic state. In fact, without magnetization standard band-structure methods find bcc iron
to be unstable [157]. These discrepancies can been resolved by using DFT+DMFT to compute
total energies [154, 158]. Thereby one obtains values of the lattice constant, unit cell volume,
and bulk modulus of paramagnetic α iron which are in good quantitative agreement with ex-
periment [154]. In particular, DFT+DMFT calculations of the equilibrium crystal structure and
phase stability of iron find that the bcc-to-fcc phase transition indeed takes place at a temper-
ature well above the magnetic transition (at about 1.3 TC) and correctly determine the phonon
dispersion and Debye temperature [154]. This approach is also of interest for geophysical stud-
ies, namely to explore iron and nickel at Earth’s core conditions [159].

Furthermore, the study of Fe-based pnictides and chalcogenides led to the important insight
that in metallic multi-orbital materials the intra-atomic exchange J can also induce strong cor-
relations [160]. Clearly DMFT-based approaches will be very useful for the future design of
correlated materials [161], such as materials with a high thermopower for thermoelectric de-
vices which can convert waste heat into electric energy [162].

24In these investigations the lattice structure was assumed to be given and fixed. The question regarding the
stability of the lattice structure in the presence of electronic correlations was studied, for example, in the case of
plutonium [153] and iron at ambient pressure [154].
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7.2.2 Surfaces, layers, and nanostructures

During the last few years DMFT investigations of inhomogeneous systems greatly improved our
understanding of correlation effects at surfaces and interfaces, in thin films and multi-layered
nanostructures [163], infinite layer nickelates [164], and twisted bilayer graphene [165]. This
also opened new insights into potential functionalities of such structures and their application
in electronic devices. DMFT has been extended to study correlations also in finite systems such
as nanoscopic conductors and molecules [166]. In this way many-body effects were shown to
be important even in biological matter [167].

8 Conclusions

The solution of the Hubbard model in d = ∞, which corresponds to a dynamical mean-field
theory (DMFT) of correlated lattice fermions, has become the generic mean-field theory of cor-
related electrons. It provides a comprehensive, non-perturbative and thermodynamically con-
sistent approximation scheme for the investigation of correlated fermions, especially electrons
in solids and cold fermionic atoms in optical lattices, in finite dimensions. Non-local extensions
of the DMFT now also allow to explain correlation effects which occur on the scale of several
lattice constants and at thermal and quantum phase transitions. Most importantly, the combi-
nation of DMFT with methods for the computation of electronic band structures has led to a
powerful new theoretical framework for the realistic study of correlated materials. The further
development of this approach and its applications is the subject of current research.
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C. Mézière, and P. Batail, Phys. Rev. Lett. 91, 016401 (2003); F. Kagawa, T. Itou,
K. Miyagawa, and K. Kanoda, Phys. Rev. B 69, 064511 (2004); A. Pustogow, Y. Saito,
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[112] Y. Murakami, D. Golež, M. Eckstein, and P. Werner, arXiv:2310.05201

[113] U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T.A. Costi, R.W. Helmes,
D. Rasch, A. Rosch, Science 322, 1520 (2008)

[114] P. Sémon, K. Haule, and G. Kotliar, Phys. Rev. B 95, 195115 (2017)

[115] A. Tamai, M. Zingl, E. Rozbicki, E. Cappelli, S. Riccò, A. de la Torre, S. McKeown
Walker, F.Y. Bruno, P.D.C. King, W. Meevasana, M. Shi, M. Radović, N.C. Plumb,
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