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Application of Multimodal Self-Supervised
Architectures for Daily Life Affect Recognition

Yekta Said Can , Mohamed Benouis , Bhargavi Mahesh , and Elisabeth André

Abstract—The recognition of affects (an umbrella term including
but not limited to emotions, mood, and stress) in daily life is crucial
for maintaining mental well-being and preventing long-term health
issues. Wearable devices, such as smart bands, can collect physio-
logical data including heart rate variability, electrodermal activity,
skin temperature, and acceleration facilitating daily life affect mon-
itoring via machine learning models. However, accurately labeling
this data for model evaluation is challenging in affective computing
research, as individuals often provide subjective, inaccurate, or
incomplete labels in their daily lives. This study introduces the
adaptation of self-supervised learning architectures for multimodal
daily life stress and emotion recognition tasks, focusing on self-
representation and contrastive learning methods. By leveraging
unlabeled multimodal physiological signals, we aim to alleviate
the need for extensive labeled data and enhance model general-
izability. Our research demonstrates that self-supervised learning
can effectively learn meaningful representations from physiological
data without explicit labels, offering a promising approach for
developing robust affect recognition systems that can operate in
dynamic and uncontrolled environments. This work represents a
significant improvement in recognizing affects in the wild, with
potential implications for personalized mental health support and
timely interventions.

Index Terms—Wearable computing, self supervised learning,
daily emotion recognition, deep learning, Transformer, CNN,
physiological signals.

I. INTRODUCTION

R ECOGNIZING stress and negative emotions early is vital
for maintaining mental well-being and preventing poten-

tial health complications. In recent years, there has been a surge
in interest in leveraging wearable devices to detect affective
states such as stress and emotion in real-time. These devices
can gather heart activity, electrodermal activity (EDA), skin
temperature (ST), and acceleration (ACC) signals, which are
frequently used physiological measurements in research. [1].
Wearable-based affect recognition research commences in the
laboratory environment [1], [2], [3], [1]. Recognizing affect
levels in this setting is relatively easier due to the ability to
monitor subjects, get time stamps and contextual information.
The use of gold-standard devices and the restricted movement
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of subjects contribute to improved data quality. The research
direction then shifts to controlled real-life environments like
offices, cars, and classrooms, where cameras and sensors can
still monitor and control conditions and movements are still
limited. Researchers observe that emotions and stress in artificial
settings differ from the ones encountered in daily life, which
holds greater significance to individuals [4]. Additionally, it
is found that subjects are reluctant to wear obtrusive golden
standard equipment for stress measurement due to discomfort.
Consequently, affect recognition research moves beyond the
laboratory and controlled environments, aiming to create an
unobtrusive stress recognition system for everyday use, offering
the potential for timely interventions and personalized support.

However, recognizing affect levels in daily life remains a
challenge. The effectiveness of such systems is often hindered
by problems such as relying on subjective self-reports as the
golden standard, unrestricted movements, low data quality of
unobtrusive wrist-worn devices which are suitable for daily life
usage, and limited battery life [5]. The most prominent issues are
subjective, noisy, and missing labels. Traditionally, affect recog-
nition models heavily rely on labeled data, which poses signif-
icant challenges, especially in real-world scenarios. Subjective
self-reports, the primary method of labeling affective states, can
be inherently biased and unreliable. In laboratory environments,
the context is known at all times which increases the reliability
of labels. Furthermore, there is the possibility of getting experts
to observe the behavior of participants and get more reliable
labels in laboratory environments [6]. Moreover, daily life affect
data often lack crucial context information and are limited by
factors such as unrestricted movement, leading to inaccuracies
in recognizing affective states. In the wild, the movements are
unlimited and subjects can be involved in different levels of
physical activities (such as walking, running to catch a bus, and
going to the gym) which completely alters the characteristics of
physiological signals and creates a significant amount of noise.
Therefore, in order to deal with the altered signals and increased
amount of noise, more advanced architectures are needed for
daily life environments.

Due to the mentioned reasons, daily life affect recognition has
a number of significant issues and it is almost a completely differ-
ent problem than recognizing affects in laboratory or controlled
environments. Addressing these challenges requires innovative
approaches that can alleviate the burden of labeling, particularly
in dynamic and uncontrolled environments. Self-supervised
learning architectures, such as contrastive learning and self-
representation learning, offer promising solutions by leveraging
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TABLE I
EMOTION RECOGNITION STUDIES THAT USE UNOBTRUSIVE SMARTBANDS AND SMARTWATCHES

unlabeled data to learn meaningful representations directly from
the data itself. In contrastive learning, the model learns by
comparing similar and dissimilar data points, refining its ability
to distinguish important features through these comparisons,
like recognizing a friend by seeing their photo next to others.
Self-representation learning, however, allows the model to learn
directly from the data without explicit comparisons, focusing
on finding patterns and structures within the data itself. Both
methods are pivotal for creating rich, useful representations,
especially in fields where labeled data is limited. By capturing
inherent relationships within the data, these approaches have
the potential to enhance the robustness against noise and gen-
eralizability of affect recognition models, particularly in wild
conditions where labeled data is scarce or unreliable.

In this study, we first implement a self-supervised deep learn-
ing model by using a public dataset recorded in the laboratory.
After that, we optimize and modify selected prominent deep
learning architectures for the multimodal daily life data which
makes it a self-supervised learning framework that is adjusted
for daily life multimodal physiological data. To the best of
our knowledge, this study is the first to develop multimodal
self-supervised (contrastive and representation learning) stress
and emotion recognition architectures specifically suited for
daily life multimodal physiological data.

The rest of the paper is organized as follows: In Section II,
the related work for automatic affect recognition systems that
use physiological signals is presented. In Section III, the used
datasets are explained. In Section IV, selected self-supervised
affect recognition architectures are introduced. In Section V, the
experimental results of the proposed systems are discussed. In
Section VI, we summarize the study, and future work of the
current research is presented.

II. RELATED WORK

The initial approach to reducing the labeling burden in affec-
tive computing involved semi-supervised learning techniques
(see Table I), which leverage a small subset of labeled data to
generate pseudo-labels for unlabeled data. In this context, the
labeled subset acts as an upstream task, aiding in representation

learning that benefits downstream applications such as affect
recognition. This approach has shown promising results,
particularly in controlled laboratory settings. For instance, Khan
et al. [3] applied semi-supervised learning to laboratory datasets,
achieving satisfactory performance on downstream tasks.
Extending this to “in-the-wild” datasets, researchers developed
a sequence-to-sequence LSTM auto-encoder (LSTM-AE) that
combines semi-supervised learning with data augmentation
and consistency regularization techniques [19]. Applied to
the SWEET [20] and TILES [21] datasets, demonstrating
moderate success in real-world scenarios. Basaran et al. [17]
subsequently improved the downstream task performance by
employing graph-based label propagation on a local daily-life
dataset.

Following this, self-supervised learning has gained traction
across various domains, including medical imaging, natural
language processing, and computer vision. In self-supervised
learning, the model typically begins with a pretext task to
learn useful representations from unlabeled data. This learned
knowledge is then transferred to downstream tasks, where it can
improve the performance of target applications. Self-supervised
methods in affective computing are still limited but include
contrastive learning approaches, such as SimCLR [22], which
involve pretext tasks aimed at learning separable representations
by contrasting positive and negative pairs of data samples. In
other works, pseudo-labeling is used to create surrogate labels
for auxiliary tasks [1].

The potential of self-supervised pretext tasks was first ex-
plored in affective computing by Sarkar and Etemad [11], who
used a multi-task CNN with ECG signals to improve represen-
tation learning. In this study, they leveraged a pretext task that
involved categorizing augmented ECG signals, and the result-
ing representations were later fine-tuned for the downstream
task of stress recognition, achieving performance gains. Cheng
et al. [23] developed a self-supervised learning model for biosig-
nal classification that focuses on EEG and ECG data, addressing
the upstream challenges of noisy labels and intersubject variabil-
ity. Their subject-aware approach incorporates subject-specific
contrastive loss and adversarial training, promoting subject-
invariance in learned representations during the pretext phase.
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These embeddings, when applied to the downstream classifi-
cation task, demonstrated competitive performance comparable
to fully supervised methods, highlighting the effectiveness of
subject-invariance in enhancing representation quality.

Most studies utilizing self-supervised learning in affective
computing concentrate on single modalities, varying the back-
bone architecture or modality to optimize pretext task perfor-
mance [24], [25], [26], [27]. Matton et al. [12] introduced a
unique approach by designing EDA-specific augmentations for
contrastive learning, enabling improved representation learning
for stress classification in EDA data. Despite these advances,
uni-modal methods often struggle with accuracy, prompting
researchers to explore multimodal transformers. Wu et al. [1]
employed transformers for multimodal self-supervised learning,
defining a pretext task that captures inter-modality relationships,
with the aim of generating discriminative representations for
downstream classification tasks. Most existing studies apply
their approaches to datasets like WESAD, VERBIO, SWELL,
and DREAMER, typically collected in laboratory or controlled
environments. However, in-the-wild settings pose additional
challenges due to increased data variability. To our knowledge,
this study is the first to tailor self-supervised learning and con-
trastive methods to in-the-wild multimodal affect recognition
tasks.

III. DESCRIPTION OF DATASETS AND PREPROCESSING

For the fine-tuning of stress detection models, the selection
of appropriate datasets is essential. We incorporate a labora-
tory dataset WESAD for this purpose and all available public
“in-the-wild” physiological signal datasets namely DAPPER,
SWEET, and LabToDaily to develop daily life stress and emo-
tion recognition models. The laboratory dataset provides a struc-
tured environment where stress levels and emotional states are
precisely labeled, enabling model fine-tuning with well-defined
physiological patterns. In contrast, the “in-the-wild” datasets,
collected in natural, everyday contexts, offer broader variability,
capturing stress and emotional responses influenced by diverse
environmental and situational factors.

A. WESAD

The Wearable Stress and Affect Detection (WESAD) dataset,
retrieved from 15 participants in a laboratory setting, encom-
passed conditions such as amusement, stress, meditation, and
recovery. Self-reports includes assessments from the Positive
and Negative Affect Schedule (PANAS), State-Trait Anxiety
Inventory (STAI), and Likert scale questions (stress, frustration,
happy, and sad). The recorded physiological signals included
ECG, EDA, EMG, PPG, respiration, accelerometer, and skin
temperature, spanning a duration of 2 hours. Specifically for
this study, we focused on three primary modalities: skin tem-
perature, electrodermal activity, and blood volume pressure.
Employing established preprocessing techniques [28], raw EDA
and TEMP signals underwent low-pass Butterworth filtering
(cutoff frequency: 0.5 Hz), followed by standard deviation
normalization and downsampling to 4 Hz to normalize and
expedite computation. The four states—baseline, amusement,

Fig. 1. Label distributions in the used datasets.

stress, and meditation—were condensed into two classes: stress
versus non-stress (see Fig. 1 for label distribution).

B. DAPPER

The DAPPER dataset, recorded in an ambulatory environ-
ment, differed from the aforementioned datasets by being col-
lected outside laboratory settings. 142 participants contributed
psychological recordings, with only 88 providing physiological
recordings over five days [29]. Emotions were annotated using
the experience sampling method (ESM), capturing detailed de-
scriptions of everyday emotional experiences through the day re-
construction method. ESM included arousal and valance ratings,
and PANAS questions for ten selected emotions. Physiological
data included blood volume pulse (PPG), EDA, and acceleration
data. To ensure data quality, incomplete or discontinuous seg-
ments were excluded, resulting in 1801 30-minute data segments
from 86 participants. Labels were not utilized, as the dataset
served solely for self-supervised upstream tasks.

C. SWEET

Imec’s SWEET (Stress in the Work Environment) dataset [20]
is the largest of its kind, utilizing wearable technology to explore
the relationship between stress and physiological factors. It
was collected in Leuven, Belgium and consists of data from
over 1,000 participants and provided researchers with a specific
subset of 179 participants for focused analysis. Participants wore
clinical-grade wristbands and wireless ECG patches continu-
ously for five days, capturing comprehensive physiological data
including heart rate, heart rate variability, skin conductance, skin
temperature, and movement. ECG data is collected in one sample
in one minute and we downsampled acceleration, electrodermal
activity, and skin temperature signals to this sampling rate.
This creates a difference from the other datasets, where we
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downsampled to four samples per second. However, we want to
include ECG data and its sample rate forced us to downsample
other signals for this purpose. The physiological data were sup-
plemented by contextual information from smartphones, such as
GPS data, phone activity, noise levels, and self-reported stress
levels and daily activities. The dataset, enriched with physiolog-
ical and contextual information, aims to facilitate the develop-
ment of personalized, context-sensitive feedback systems.

D. LabToDaily

This dataset is recorded from 14 university students aged
between 20 and 25 for one week, twelve hours a day during
their daily routine [13]. Participants completed an online version
of the Perceived Stress Scale (PSS-5) questionnaire every three
hours, assessing five emotions on a 6-point Likert scale. The
total stress score ranged from 0 to 30, divided into low (0-15)
and high (15-30) perceived stress categories. A total of 989
hours of physiological data and 332 self-reports were obtained,
with some sessions containing missing Ecological Momentary
Assessments (EMAs), resulting in the exclusion of their corre-
sponding physiological data. The dataset exhibited an imbalance
in the number of samples between stress and relaxation classes,
with 73% of the data labeled as relaxed and 27% as stressed.

E. Preprocessing

Following established preprocessing methods [28], raw EDA,
BVP, ACC, and TEMP signals underwent low-pass Butterworth
filtering (cutoff frequency: 0.5 Hz). Standard deviation nor-
malization and downsampling to 4 Hz were applied to nor-
malize and facilitate faster computation. Furthermore, based
on previous work [1], we segmented the signal recordings of
all datasets into windows of length 60 s with around 99.5%
overlap, which corresponds to one sample shift. After that, these
processed physiological signals are fed into the self-supervised
architectures for classification purposes. We chose not to use
handcrafted features since raw data is commonly used with self-
supervised deep learning architectures [1] and using raw data
directly with them provides better performance when compared
to handcrafted features [30].

IV. METHODOLOGY

We selected the self-supervised architectures that prove suc-
cessful performance in various tasks by using physiological
signals. We selected two contrastive learning-based CNN ar-
chitectures [12] and [23], created and optimized one contrastive
learning LSTM architecture, and one transformer-based [1] self-
representation learning architecture. We adapted these architec-
tures to multimodal physiological signal data, used fine-tuned
hyperparameters for multi-modal affect recognition tasks, and
improved them. We described their original versions and adapta-
tion techniques in this section. We also mentioned our validation
and evaluation strategies.

A. Self Supervised Contrastive Learning Architectures

1) Applied Transformation Types: In contrastive learning,
transformations are applied to data to create diverse views or
augmentations of the same input. These transformations alter the
input data in various ways, such as introducing noise, negating
values, scaling, permuting the order of data points, or time
shifting (TS) the signal. Tuples from these transformations are
used in contrastive learning to pair different augmentations or
transformations of the same input data. By creating tuples of
augmented views, the model is trained to minimize the dif-
ference between positive pairs (augmented views of the same
data) and maximize the difference between negative pairs (aug-
mented views of different data). This encourages the model
to learn representations that capture the underlying structure
or semantics of the data, as it must recognize similarities and
differences between various transformations of the same input.
The applied transformations (augmentations) can be briefly
explained as:

a) Noising: Adding random noise to the input signal. This
helps the model learn to be robust against noise in the data and
generalize better to unseen variations.

b) Negating: Inverting or changing the sign of values in
the input signal. This transformation helps the model learn
invariant representations that are not affected by changes in
polarity.

c) Scaling: Adjusting the magnitude or scale of values
in the input signal. This helps the model learn representations
that are invariant to changes in magnitude, making it more
generalizable.

d) Permuting: Shuffling the order of data points within
the input signal. This transformation helps the model learn to
be invariant to the temporal order of data points, enhancing its
robustness to variations in sequence length.

e) Time Shifting (TS): Temporally shifting the signal along
the time axis. This transformation helps the model learn to be
invariant to temporal shifts in the data, making it more robust to
changes in timing or alignment.

f) TS-TCC (Temporal and Contextual Contrasting): This
is a specific contrastive learning method mentioned in the
study [31]. It involves creating contrasting views of time-series
data by considering both temporal dynamics and contextual
information. This method aims to learn robust representations
by contrasting different aspects of the data, such as temporal
features and contextual contexts.

2) Basic CNN Architecture. a) Overview of the Original
Architecture: We first applied a basic CNN architecture for the
upstream task [12]. A convolutional Neural Network (CNN)
encoder is configured to process input data with a dimensionality
of 240 (see Fig. 3). It employs a 7 × 7 convolutional kernel
with a stride of 1, producing 64-dimensional feature vectors as
output. Notably, dropout, a regularization technique, is disabled
(dropout_prob: 0), implying that during training, no units are
randomly dropped. Moreover, the weights of the network are
not frozen (freeze=False), allowing them to be updated during
the training process. Overall, this code segment sets up a CNN
encoder network with specific architectural parameters suitable
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Fig. 2. Architecture diagrams for multimodal transformer and CNN_complex architectures.

Fig. 3. Basic CNN architecture.

for processing input data of a given dimensionality and gener-
ating feature representations of a defined size.

b) Adaptation to the Multimodal Affect Recognition Data:
First of all the architecture uses EDA-specific transformation
based on phasic and tonic signal components. However, since
we are using multimodal data which has three other modalities
in addition to the EDA signal, we tested time series related well
known generic signal processing transformations and chose the
best-performing tuple. Second, the architecture is developed
for a single modality and we changed the input layers by

concatenating different modalities into one input and providing
this concatenated multimodal data as input. Lastly, since an im-
portant parameter of contrastive learning, namely temperature,
is not reported in the original study, we need to fine-tune this
hyperparameter and use the best-performing temperature value.

3) Complex CNN Architecture. a) Overview of the Original
Architecture: We also applied a more complex CNN architec-
ture [23] which is applied to a laboratory-recorded MIT-BIH
ECG dataset [32] for recognizing heart arrhythmia. The CNN
encoder architecture begins with a convolutional layer that takes
input from 2 channels and generates 32 feature maps using a
13 × 13 kernel (see Fig. 2(b)). This is followed by a residual
block, maintaining 32 feature maps and employing a convo-
lutional layer with an 11 × 11 kernel. Subsequently, a max-
pooling layer with a 4 × 4 pool size downsamples the feature
maps. Another residual block ensues, expanding the feature
maps to 64 and utilizing a 9 × 9 kernel convolutional layer,
followed by another max-pooling operation. The architecture
then incorporates a residual block that increases the feature
maps to 128 via a convolutional layer with a 7 × 7 kernel,
succeeded by a max-pooling layer with a 2× 2 pool size. Finally,
a residual block reduces the feature maps back to 64 with a
7 × 7 kernel convolutional layer. An Exponential Linear Unit
(ELU) activation function is applied before flattening the output,
preparing it for further processing. This sequential arrangement
forms a robust CNN encoder adept at extracting hierarchical
representations from input data.

b) Adaptation to the Multimodal Affect Recognition Data:
First, this architecture is also developed for a single modality,
and we increased the number of input layers to four. After this
change, we also optimized the other layers so that we had the
same size output representation layer 64. The updated layers can
be described as follows: Furthermore, we test time series related
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TABLE II
HYPERPARAMETER OPTIMIZATION RESULTS ON THE WESAD DATASET, SHOWING THE IMPACT OF DIFFERENT TRANSFORMATION PAIRS AND TEMPERATURE

VALUES ON F1 SCORE

TABLE III
LSTM HYPERPARAMETER OPTIMIZATION ON SWEET DATASET

to well-known generic signal processing transformations and
choose the best-performing transformation tuple for contrastive
learning, and we also fine-tune the temperature value and use
the best-performing temperature value.

4) LSTM Architecture. a) Overview of the Original Archi-
tecture: An LSTM model was also implemented. The model
is built around a long short-term memory (LSTM) network,
which processes sequential input features and extracts mean-
ingful representations. The final hidden state from the LSTM is
passed through a fully connected layer to generate the output,
which is then normalized using L2 normalization. This ensures
that embeddings are of unit length, an essential property for
contrastive learning. The training framework relies on con-
trastive loss, which is key for learning robust self-supervised
feature representations. Instead of relying on manually labeled
emotional categories, the model learns by comparing pairs of
augmented physiological signals and optimizing their similarity.
A temperature parameter of 0.4 was set to control the sensitivity
of the similarity function, ensuring effective distance scaling
between samples.

b) Hyperparameter Optimization: To enhance model per-
formance, hyperparameter optimization was conducted, vary-
ing the number of LSTM layers from 1 to 4 to explore the
impact of model depth on feature extraction (see Table III).
The hidden dimension was adjusted between 128 and 1024
neurons to balance expressiveness and computational efficiency.
The optimization process also tested different learning rates
and batch sizes, ultimately setting batch size to 64 for stable
training. The model was trained using AdamW optimization,
which provides adaptive learning rates and improved weight
decay, and a learning rate scheduler (ExponentialLR) was used
to dynamically reduce the learning rate over time, ensuring better
convergence.

B. Self-Representation Based Self Supervised Multimodal
Transformer Architecture

1) Applied Self Representations: The pretext task of signal
transformation recognition is employed in self-representation-
based SSL. A number of signal transformations are defined,
and the system tries to recognize these transformations in a

classification task. Signal transformation recognition has been
proven effective in learning generalized representations for
downstream tasks like action and emotion recognition. The
transformations used in SSL can be categorized into magni-
tude domain transformations and time domain transformations.
These transformations are applied to all modalities of the signal
data, and the resulting transformed data is input into the SSL
model alongside the original data. By recognizing the types of
signal transformations, the model learns to extract robust and
generalized representations against disturbances in the magni-
tude or time domains.

Magnitude domain transformations include Gaussian noise
addition and Magnitude-warping. Gaussian noise addition dis-
turbs the original signal with white Gaussian noise, simulating
real-world noise scenarios. Magnitude-warping alters the mag-
nitudes of the signal by applying a random smooth curve, which
can mimic measurement errors or signal artifacts.

Time domain transformations consist of Permutation, Time-
warping, and Cropping. Permutation disrupts the temporal order
of segments in the signal, prompting the model to capture time-
domain dependencies. Time-warping stretches or squeezes seg-
ments of the signal to simulate duration variations in emotional
responses. Cropping randomly selects and resamples segments
of the signal to enhance robustness to temporal changes in
emotional events.

2) Multimodal Transformer Architecture: The multimodal
transformer architecture described in the paper is a novel frame-
work designed for wearable emotion recognition, leveraging
peripheral physiological signals. The architecture consists of
two main components: modality-specific encoders and a shared
transformer-based encoder. The modality-specific encoders use
temporal convolutional networks to process individual modal-
ities such as blood volume pulse (BVP), electrodermal ac-
tivity (EDA), and temperature (TEMP), generating low-level
features for each. These features are then fed into the shared
transformer-based encoder, which integrates multimodal infor-
mation through cross-modal attention and self-attention mech-
anisms.

The shared encoder employs a transformer block with four-
head attention, a feedforward layer dimension of 128, ReLU
activation, and a Dropout rate of 0.2. It processes the stacked
multimodal embeddings without positional encoding, as the
features from each modality are generated by different encoders.
The output from the shared encoder is then passed through
modality-specific classification heads, which include 1D global
average pooling, fully connected layers, batch normalization,
and ReLU activation, followed by a final fully connected layer
for emotion classification. The architecture is trained in a self-
supervised manner using a pretext task of signal transforma-
tion recognition, which automatically labels a large amount
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of unlabeled data. This pre-training allows the model to learn
generalized multimodal representations that are later fine-tuned
on supervised emotion recognition tasks.

3) Adaptation to the Multimodal Affect Recognition Data:
For the feature extraction component, this study used temporal
convolutional networks. We changed this part and adopted the
inception time architecture for the feature extractor encoder
because it provides a better representation along a multi-series
dimension and yields better results with time series [33] (see
Fig. 2(a)). Typically, this encoder consists of five inception mod-
ules, Global Average Pooling (GAP), and two dense layers with
ReLU activation to map into a sequence of segment embeddings
with dimensions n x d. For more details, refer to the paper by
Ismail et al. [33].

C. Validation Strategy

For the evaluation of the machine learning algorithms, we
selected realistic and challenging techniques. We separated
training, validation, and test sets by considering the partici-
pants. We used a 60%-20%-20% split by dividing the data by
the number of subjects. We guaranteed that all different sets
consist of data obtained from different subjects, and there is no
overlap between training, validation, and test sets. If there are
80 subjects, randomly selected 48 subjects (%60) were assigned
to the training set, randomly selected another 16 subjects were
used for validation purposes, and the remaining 16 were used
for testing. We rounded the numbers for the float number of
subjects, and the percentages can vary slightly in these cases
since we can not use the float number of (e.g. 48,31) subjects.

The second issue is the class imbalance in all of the datasets.
To get more meaningful results, we opted for the F1 score metric
instead of the accuracy metric. In this way, we achieved a fairer
comparison between algorithms and state-of-the-art.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first fine-tune the critical hyperparameters
for contrastive learning in a stress recognition task from a public
multimodal physiological dataset. We use these hyperparam-
eters in the contrastive learning architectures. We apply the
selected and adapted architectures to available daily life affect
recognition datasets and report the results.

A. Hyperparameter Optimization

Temperature plays a significant role in controlling the be-
havior of contrastive learning [34]. It determines the level of
penalty on hard negative samples. It has a significant impact
on the classification performance [34]. Furthermore, the used
transformation type has a prominent effect on affect recognition
performance [12]. We fixed the different CNN and Transformer
architectures since they are applied to similar affect recognition
tasks and achieved robust results in controlled environments.
However, since the best temperature values and best transfor-
mation pairs changed from paper to paper, and especially since
temperature values are not reported in most of the papers, we
tested all different values in hyperparameter optimization, found

TABLE IV
THE PERFORMANCE OF SINGLE MODALITIES FOR RECOGNIZING AFFECTS

TABLE V
THE PERFORMANCE OF THE SELECTED MULTIMODAL ARCHITECTURES FOR

RECOGNIZING AFFECTS

the best setting, and used it throughout the paper. As can be seen
in Table II, the best transformation tuple is noise-permute, and
the best temperature value is 0.4. These values are fixed for the
remaining experiments.

B. Contribution of Modalities to Affect Recognition
Performance

Our main focus is to apply a multimodal self-supervised
system for daily life datasets. However, it is also important to
demonstrate the effect of single modalities and their contribution
when used alone. We skipped the acceleration modality because
it mostly reflects physical activity levels, and using it alone
for affect recognition can be misleading. The CNN_complex
architecture [23] is used for the comparison. The best modality
changes with the dataset (see Table IV). EDA achieves the best
results with DAPPER and SWEET. On the other hand, PPG
achieves slightly higher performance when compared to EDA.

C. Multimodal SSL Architectures for Daily Life Affect
Recognition

We tested the selected three self-supervised architectures for
the three in-the-wild datasets (see Table V). For emotion recog-
nition, we used only the Arousal label since it is more clearly
reflected in the physiological signals. For the SWEET dataset,
we used both the Arousal and Stress labels. Both CNN archi-
tectures achieve similar accuracies for all the tasks. Although a
multimodal transformer is a more complex architecture, it could
not outperform the best CNN-based architecture in most cases.
The nature of the datasets used can significantly impact model
performance. CNNs, designed for local feature extraction, may
excel when data exhibits strong local dependencies. In contrast,
Transformers are adept at capturing global relationships, which
may not always be necessary for tasks that do not require
modeling long-range dependencies. Furthermore, Transformers
typically require larger datasets to effectively learn patterns due
to their complexity and lack of inherent inductive biases. In situ-
ations with limited data, CNNs might perform better as they can
generalize more effectively from smaller datasets. Therefore, in
our case, Transformers might require larger datasets to further
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improve their performance. We also tested LSTM architecture
for the SWEET dataset, and it achieved similar results (95.76
F1 score) with transformer and CNN_complex architectures.

The SWEET dataset has higher accuracies than the other two
datasets. One key factor contributing to the superior performance
observed in the SWEET dataset is the difference in sampling
rates and decision intervals. In our study, we standardized the
sampling rates across datasets by downsampling to the lowest
available frequency. For the SWEET dataset, this was derived
from Electrocardiography (ECG) data at 1 sample per minute,
which led to all other signals being downsampled accordingly.
Given our window size of 240 samples, this resulted in a decision
interval of 240 minutes. In contrast, for other datasets, the lowest
frequency was 4 samples per second, leading to a decision inter-
val of only 1 minute. This longer interval in SWEET allows for
more stable and averaged physiological measurements, poten-
tially enhancing model accuracy by reducing the impact of tran-
sient fluctuations. This aligns with findings in signal processing
literature, where appropriate sampling rates and window sizes
are crucial for improving signal representation while minimizing
noise. Additionally, dataset-specific differences in data distri-
bution and sensor modalities likely contributed to performance
variations. Each dataset was collected under different conditions,
with varying participant demographics and recording environ-
ments, which may have influenced generalization. Notably, the
SWEET dataset employs ECG for heart activity monitoring,
whereas others use Photoplethysmography (PPG). ECG pro-
vides a direct measure of the heart’s electrical activity, offering
higher precision, while PPG is more susceptible to motion
artifacts, potentially affecting classification performance. These
factors collectively suggest that the SWEET dataset’s superior
results may stem from its longer decision intervals, improved
signal stability, and the use of ECG for heart rate measurement.

D. Visualization of Emotion Separability Across Datasets

To further investigate how physiological signals encode emo-
tional states, we analyzed the t-SNE projections of feature rep-
resentations extracted from our model across different datasets.
Fig. 4 illustrates the differences in emotion separability between
the controlled WESAD dataset and three daily-life datasets:
DAPPER, SWEET, and LabToDaily. In WESAD, where par-
ticipants experience controlled emotional stimuli, the clusters
of different emotional states are clearly distinguishable. This
indicates that under structured experimental conditions, physio-
logical signals provide strong and distinct affective represen-
tations, supporting the effectiveness of our model in detect-
ing emotions. However, as we transition to daily-life datasets,
the separability of emotions is notably reduced. In DAPPER,
SWEET, and LabToDaily, we observe increased cluster overlap,
reflecting the challenges introduced by real-world noise, motion
artifacts, and self-reported labels. Despite these challenges, the
partial clustering observed in the real-world datasets suggests
that physiological signals still retain emotional information,
even in dynamic, uncontrolled environments. This supports the
viability of our model in wearable-based emotion recognition
tasks.

TABLE VI
CROSS-DATASET EVALUATION RESULTS USING THE SELF-SUPERVISED

CNN_COMPLEX MODEL TRAINED ON DAPPER

E. Investigating Generalizability Through Cross-Dataset
Evaluations

To assess the generalization potential of our self-supervised
learning approach, we performed cross-dataset fine-tuning ex-
periments. Rather than training models independently on each
dataset, we first pre-trained our model using DAPPER, the most
diverse and largest dataset in our study, and then fine-tuned it
on SWEET and LabToDaily (LD). This approach allows us to
evaluate whether features learned in a self-supervised manner
on DAPPER can be effectively transferred to new datasets.

The results presented in Table VI show that the DAPPER-
trained self-supervised model, when fine-tuned on SWEET and
LD, achieves comparable accuracy to models trained directly
on these datasets. This suggests that our learned representations
capture fundamental physiological patterns related to emotion,
enabling effective adaptation to unseen conditions. The ability
to generalize well across datasets is particularly important for
real-world applications, where labeled physiological datasets are
often scarce, noisy, and collected in varying conditions.

While these findings confirm the transferability of our self-
supervised learning approach, further research is required to
systematically evaluate its behavior across more datasets, pop-
ulation groups, and recording conditions. In future work, we
will extend this investigation, incorporating domain adaptation
strategies and exploring methods to further improve cross-
dataset consistency in affect recognition models.

F. Comparison With the State of the Art

As mentioned, the proposed system is the first self-supervised
in-the-wild affect recognition study. In this section, we compared
our performances with other studies that applied supervised
architectures to these datasets. In this way, we will see the
contribution of self-supervised techniques more clearly. It is
important to note that even achieving similar and comparable
performance with supervised architectures shows the superiority
of self-supervised architectures since it relieves the burden of
intensive labeling. We will compare and discuss the results
for each dataset (see Table VII). For the DAPPER dataset,
the studies applied supervised architectures and achieved a
maximum of 71% accuracy for binary arousal detection. Our
self-supervised approach outperforms these performances with-
out using labeled data. Both supervised and semi-supervised
techniques were tested with the SWEET dataset. Our system
outperformed the semi-supervised systems, and our results are
slightly below supervised results for this dataset. However, the
decrease from 98.29% to 97.80% seems acceptable if we take
into account the labeling burden. For the LabtoDaily dataset,
our system achieves better results than traditional supervised
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Fig. 4. t-SNE visualizations of physiological feature representations across different datasets. The first four plots show daily-life datasets: DAPPER, SWEET,
and LabToDaily (LD), while the last plot represents the WESAD dataset (lab-controlled). Red and Orange points are stress labels, whereas blue ones are non-stress.

TABLE VII
AFFECT RECOGNITION STUDIES THAT USE DAILY LIFE DATASETS

architectures and comparable results with semi-supervised ar-
chitectures (75.69 - 77.00). These results show that our system
achieves robust results with all three datasets.

VI. CONCLUSION

This study has explored the application of self-supervised
learning architectures for the recognition of stress and

emotions in daily life scenarios, leveraging multimodal
physiological signals captured by wearable devices. By employ-
ing self-representation learning and contrastive learning meth-
ods, we aimed to mitigate the reliance on extensive labeled data
and improve the generalizability of affect recognition models
across different datasets and real-world conditions.

The study tested the effectiveness of the self-supervised learn-
ing models on several in-the-wild datasets, including DAPPER,
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SWEET, and LabToDaily. The models demonstrated robust
performance, with the best F1 scores achieved being 97.80%
for stress recognition on the SWEET dataset, 75.30% for arousal
detection on the DAPPER dataset, and 75.69% for stress recog-
nition on the LabToDaily dataset. These results indicate that
the self-supervised learning approaches can achieve comparable
or even superior performance to traditional supervised methods
that rely heavily on meticulous data labeling.

The findings suggest that self-supervised learning can effec-
tively learn meaningful representations from physiological data,
offering a promising avenue for the development of unobtrusive
and robust affect recognition systems operating in dynamic and
uncontrolled environments. The system’s ability to integrate into
daily life routines holds the potential for timely interventions and
personalized support for mental well-being.

Limitations and Future Work: Despite the promising results,
the study acknowledges its limitations. In the wild affect recogni-
tion has two important issues different from laboratory studies.
The first one is the reliance on subjective and often missing
self-reports as the sole ground truth, and the second one is the
unlimited movements and artifacts and noise caused by them.
While our method effectively mitigates labeling issues, address-
ing motion artifacts remains an ongoing challenge. Wearable
emotion recognition systems rely on physiological signals (e.g.,
heart activity, electrodermal activity) that are often distorted by
motion artifacts. In ambulatory settings, even moderate move-
ments can introduce noise in sensor readings that are unrelated
to genuine emotional states. For example, electrodermal activ-
ity (EDA) signals can be severely affected by motion; high-
frequency spikes from movements may mimic or obscure true
skin conductance responses to the point that entire data segments
become unusable [36]. In one study, weeks of EDA record-
ings had to be discarded due to motion-induced signal degra-
dation [36]. Similarly, low-cost photoplethysmography (PPG)
sensors in smartwatches and smartbands are “easily affected by
motion artifacts” [37]. Physical activity can be associated with
heart-activity-based emotion metrics – a raised heart rate from
running or hand motion may be falsely interpreted as emotional
arousal. Indeed, researchers note that only data from static or
mildly active states can be reliably used for emotion monitoring
with wrist PPG, whereas data during intense movement (e.g.,
running) are often excluded due to artifact contamination [38].
Even ECG-based emotion recognition suffers in real-life use;
motion artifacts can “lead to the decline of the distinguish[ing]
ability of ECG features”, making emotion classification far less
accurate [39]. In summary, acceleration (motion) data interfere
by introducing noise, degrading the quality of emotion-related
signals, and potentially triggering false emotion inferences if not
properly handled, underscoring the need for artifact mitigation
in wearable emotion recognition.

Mitigation Strategies for Motion Artifacts: A common ap-
proach is to filter out frequency bands associated with mo-
tion noise. For instance, band-pass filtering PPG signals (e.g.,
0.5–8 Hz) removes high-frequency jitters and baseline drift,
helping suppress motion-induced disturbances [37]. Beyond
static filters, adaptive algorithms are used to cancel motion noise

in real time. Techniques like Kalman smoothing or adaptive
filtering (e.g., LMS filters) leverage reference noise signals to
subtract motion artifacts from physiological data [40]. Many
wearable devices also embed noise-reduction algorithms and
recommend tight sensor contact to minimize movement arti-
facts at the source [38]. These filtering methods significantly
improve signal quality by attenuating the artifact components
while preserving genuine emotion-related patterns. Combining
motion sensors with physiological sensors enables smarter ar-
tifact handling. Accelerometers can detect when a user is in
motion and either flag those data segments or help correct them.
One strategy is activity gating – using accelerometer data to
identify high-movement periods and exclude or down-weight
those physiological readings in emotion analysis [38]. Another
fusion approach is to use the accelerometer as a reference
input for artifact removal algorithms. Adaptive noise cancelation
filters often take accelerometer readings as the reference noise
signal, dynamically filtering motion artifacts out of the primary
biosignal [41].

Data-driven techniques have been developed to automatically
detect and compensate for motion artifacts. Instead of simple
threshold rules, machine learning models can learn the subtle dif-
ferences between genuine emotional signal patterns and artifact
noise. For example, Hossain et al. trained a classifier to distin-
guish clean versus motion-corrupted EDA segments, achieving
about 95% accuracy in detecting artifact-contaminated win-
dows [36]. Such classifiers use statistical and time-frequency
features to identify artifacts, outperforming basic heuristics and
preserving more valid data. On the modeling side, modern
deep learning frameworks incorporate multi-modal sensor in-
puts to handle motion context as in this study. For instance,
Transformer-based models and convolutional neural networks
have been used to fuse heart activity, EDA, and accelerometer
data, allowing the network to internally learn motion-artifact
compensation and focus on emotion-relevant features [35]. By
leveraging patterns across sensors and large datasets, these ML
approaches can adapt to complex real-world noise.

In future research, we aim to integrate pretrained founda-
tion models for physiological signals to enhance representation
learning in emotion recognition tasks. Recent advancements
in large-scale self-supervised learning have demonstrated that
foundation models trained on extensive wearable biosignal
datasets can generalize effectively across various applications.
For instance, Abbaspourazad et al. (2024) [42] developed foun-
dation models using large-scale photoplethysmography (PPG)
and electrocardiogram (ECG) data collected via wearable con-
sumer devices, showcasing the potential of such models in health
monitoring contexts. Building upon these findings, we plan to
investigate the application of pretrained physiological signal
models in emotion recognition, aiming to improve performance
while reducing reliance on large labeled datasets.
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