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Abstract—In this paper, we present a method to interactively
create segmentation masks on the basis of user clicks. We pay
particular attention to the segmentation of multiple surfaces
that are simultaneously present in the same image. Since these
surfaces may be heavily entangled and adjacent, we also present a
novel extended evaluation metric that accounts for the challenges
of this scenario. Additionally, the presented method is able to
use multi-modal inputs to facilitate the segmentation task. At
the center of this method is a network architecture which takes
as input an RGB image, a number of non-RGB modalities, an
erroneous mask, and encoded clicks. Based on this input, the
network predicts an improved segmentation mask. We design
our architecture such that it adheres to two conditions: (1) The
RGB backbone is only available as a black-box. (2) To reduce the
response time, we want our model to integrate the interaction-
specific information after the image feature extraction and the
multi-modal fusion. We refer to the overall task as multi-modal
multi-surface interactive segmentation (MMMS). We are able to
show the effectiveness of our multi-modal fusion strategy. Using
additional modalities, our system reduces the NoC@90 by up to
1.28 clicks per surface on average on DeLiVER and up to 1.19 on
MFNet. On top of this, we are able to show that our RGB-only
baseline achieves competitive, and in some cases even superior
performance when tested in a classical, single-mask interactive
segmentation scenario.

Index Terms—segmentation, interactive, multi-modal, surface,
multi-surface, black-box

I. INTRODUCTION

Segmentation tasks constitute some of the most important
tasks in computer vision. The most prominent are instance
segmentation [1] and semantic segmentation [2], [3]. To train
a segmentation model, we need large amounts of annotated
segmentation data.

However, ground truth segmentation masks are hard to
obtain. This led to the development of click-based interactive
segmentation systems [4]-[6]. Therein, the user places clicks
on the image to indicate which object surface they want to
segment. The system then combines these clicks with the
image to produce a high-quality segmentation mask.
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Fig. 1: Qualitative examples from DeLiVER (upper images)
and MFNet (lower images). The left column shows the ground
truth, the middle column shows the additional modality, and
the right column shows the prediction. We only plot positive
points for easier identification. More qualitative examples can
be found in the supplementary material section J.

Most of the interactive segmentation literature only con-
siders the segmentation process of each mask in isolation.
Nevertheless, there are situations in which we have multiple
adjacent surfaces in the same image (e.g. Fig. 1).

In such cases, false positive pixels in the annotations can
cause conflicts between masks (see Fig. 2). A user then
has to revisit some masks for correction. Previous evaluation
procedures for interactive segmentation ignore this problem.
For this reason, we propose a novel evaluation procedure that
takes this problem into account.

When it comes to segmentation tasks, we often have the
opportunity to benefit from additional modalities instead of
just RGB images. For example, we might have depth maps
or thermal images. These additional modalities are usually
collected by a specific sensor at the same time as the images.



Thus, by the time we annotate our images with segmentation
masks, we have access to the non-RGB modalities. For this
reason, we may leverage the other modalities to ease the
annotation of our data. In this paper, we propose a network
architecture that can leverage an arbitrary number of modal-
ities for interactive segmentation. We are able to show that
that our multi-modal fusion strategy supports the interactive
segmentation process.

On top of this, we design our multi-modal segmentation
strategy in a way that allows for the RGB backbone to be a
black-box. In particular, this allows us to use RGB foundation
models which are outsourced to an external foundation model
provider. This scenario is discussed in greater detail in section
B of the supplementary material.

In summary, we tackle the problem of multi-modal multi-
surface interactive segmentation (MMMS). ! Our contributions
can be summarized as follows:

o We present an asymmetric multi-modal fusion strategy
which assumes the RGB backbone to be an untrain-
able black-box while all other parts of the network are
trainable. We show that our fusion strategy successfully
leverages multi-modal data for interactive segmentation.

o We introduce new metrics for interactive segmentation
of multiple adjacent surfaces in the same image. We
adapt the evaluation mechanism to account for challenges
in this scenario that have previously been ignored by eval-
uation mechanisms for classical interactive segmentation.

o We provide an experimental evaluation that demonstrates
the performances improvements caused by our strat-
egy of multi-modal fusion on various datasets with a
wide range of non-RGB modalities.

II. RELATED WORK
A. Interactive Segmentation

While there are other modes of interaction [6]-[8], this
paper only focuses on click-based interactive segmentation [4],
[9]. A detailed introduction to this problem can be found in
the supplementary material section A. Most modern interactive
segmentation systems are based on a neural network that
takes the encoded clicks and the image as input, and tries
to predict a high-quality mask [4]-[6], [10], [11]. As the
task formulation revolves around iteratively improving a mask,
recent systems [4], [10] use the previous, imperfect mask as
additional input. The bulk of these works require rerunning
the entire network after each click, incurring slow response
times. Similar to previous works [5], [12]-[14], we design our
network such that only a small part of the architecture has to
be rerun after each click. Notably, there is also previous work
on interactive segmentation on images with multiple surfaces
[15]-[18]. However, come to find their interaction modes
rather arbitrary and constraining with respect to architectural
choices. In contrast to previous methods, we offer an extension
of the standard interactive segmentation problem.

'We will release the code upon publication: https://github.com/Schorob/
mmms

B. Multi-Modal Segmentation

Earlier work on multi-modal segmentation has mostly dealt
with a single additional input modality. Examples for such
architectures are FuseNet [19], MFNet [20], RTFNet [21],
SegMiF [22] and CMX [23]. More recent methods use multi-
ple additional modalities at once. TokenFusion [24] combines
tokens from a variable number of modalities. MCubeSNet
[25] concatenates the features from different modalities before
feeding them to the decoder. CMNeXt [26] introduces a mech-
anism to select tokens from multiple non-RGB modalities,
which are afterwards fused with the main RGB modality. Both,
HRFuser [27] and CAFuser [28] use windowed cross-attention
to combine multiple modalities. GeminiFusion [29] applies a
pixel-wise fusion mechanism between the attention mechanism
and the MLP of the backbone. StitchFusion [30] uses adapter
modules which are inserted into a frozen backbone. All
of the aforementioned methods assume access to the RGB
backbone during training. However, our method will allow for
a black-box RGB backbone. We are not the first to use non-
RGB information for the purpose of click-guided interactive
segmentation. The methods presented in [31] and [32] are both
based on using pseudo-depth maps generated by a pretrained
monocular depth estimation (MDE) network. In contrast to
these methods, we want to use real and arbitrary additional
modalities.

III. MULTI-SURFACE INTERACTIVE SEGMENTATION

In this section, we discuss an extension to the classical
interactive segmentation problem. We adress challenges that
occur when segmenting multiple masks in the same image.
We recommend that any reader unfamiliar with the standard
interactive segmentation problem and the NoC metric may first
read section A in the supplementary material. The standard
NoC metric considers each mask in isolation.

Suppose we want to interactively create segmentation masks
for multiple surfaces in the same image using a regular inter-
active segmentation system. The most straightforward way of
doing this would be to annotate these masks independently.
Let L be the number of surfaces / masks we want to annotate.
We want to create a set of segmentation masks

Sm = {m(l),...,m(i),...,m(j),...,m(L)}7 (1)

where each of those masks is annotated using the standard
interactive segmentation procedure. We generally do not as-
sume the user to annotate each of these masks to absolute
perfection. We just expect a sufficiently high degree of quality.
This is also reflected in the automatic evaluation of interactive
segmentations systems. We only continue the annotation clicks
until an IoU with a pre-existing grouth truth mask of at least
Oy is reached. These imperfections allow for conflicts by
creating overlap between adjacent masks.

The standard version of the interactive segmentation prob-
lem ignores the issue of overlap between imperfect masks.
It deals with each of these masks in isolation, despite each
describing a different surface on the same image. Given the
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Fig. 2: We first place click 1 to annotate mask 1 (a.).
Afterwards, we place click 2 to annotate mask 2 (b.). False
positive pixels in mask 2 harm the quality of mask 1. We then
have to revisit mask 1 by placing click 3 (c.).

fact that these surfaces are sometimes semantically defined
(e.g. grass, sky or water), they may actually be heavily
entangled.

In the remainder of this section, we will describe an
extended version of the interactive segmentation evaluation
procedure that takes this problem into account. We will also
describe corresponding metrics.

Let m®, m0U) € S, be two masks from Eq. 1. Here, i and
7 indicate different target surfaces; not different iterations for
the same target surface. Assume that m/) has been annotated
after m(®. In case of an overlap, the later annotated mask
m0) overrides the earlier annotated mask m(). An example
of such a situation can be found in Fig. 2. Some pixels in the
overlapping area may have been false positives of m(/) that
actually belong to m(?) (see Fig. 2 b.). In such a case, the
false positive pixels in m) have harmed the quality of m(?).
We would need to revisit m(® (see in Fig. 2 c.).

In order to account for this challenge, we introduce two new
metrics: NoCMS and FRMS. These metrics are based on two
IoU-thresholds O average-ou and Ojoy. When computing these
metrics, our goal is to reach a sufficiently high average IoU
of all masks with their associated ground truth masks. This is
the case if

L
1
Z Z IoU(m(l), m(Gl%) > @Average—loU' 2
=1

If this holds true, we are done with annotating the image. If
not, we pick the mask m) € S, which has the smallest
ToU with its corresponding ground truth. This m®*) is then
improved with the regular interactive segmentation mechanism
for single surfaces. We add clicks until an IoU of at least O,y
is reached. Afterwards, we test again whether the condition
in Eq. 2 is true. We repeat this cycle of selection and
improvement of an m*) until an average IoU of at least
O Average-1ou 1s reached. It should be noted that this evaluation
requires Oroy > O ayerage-Iou. Otherwise, the improvements of
m(*) might not be significant enough for the average IoU to
rise above © average-1ou- The count of already executed clicks for
each particular surface is not reset at each revisiting attempt.
Instead, we accumulate the click count over different attempts

with the same surface. Since the network might not be capable
of annotating some masks, we use a maximum number of
clicks nyax = 20 for each surface mask. We introduce two new
metrics for multi-surface interactive segmentation. The average
number of clicks per surface in this extended scenario is called
NoCMSQ(O1ou, O average-tou). We can also measure the per-
centage of surfaces that could not be segmented successfully
within nm,x = 20 clicks. We refer to this percentage as the
failure rate FRMSQ(Orou, O average-1ou)- Additionally, section
E of our supplementary material discusses the creation of a
joint mask for all surfaces in an image.

IV. METHOD

In this section, we describe the architecture that we use to
tackle our problem. We first explain the general architecture
and its overall functionality. Afterwards, we explain the MM-
Fuser and the CSNet in greater detail. An overview of our
architecture is given in Fig. 3.

a) Overall architecture : We will describe the data
processing in our architecture in a step-by-step fashion. First,
the RGB image Xime € RT*W>3 is processed by the RGB
backbone FMggg. We restrict ourselves to cases where FMgrggp
has a ViT architecture. Let Pry and dpy be the patch size
and the embedding dimension of the model, respectively. We
obtain the image feature tensors

Fing = (Fiag: Fing: Fona Fom) = Mk (img)- )
. (4) A x A X dpy .
These image feature tensors fimg € RPm " Prm for ¢+ =
1,2, 3,4 are extracted from various intermediate layers in the
network. In our case, the features are extracted after the blocks
3, 6,9, and 12. As FMggg is a black-box, we still need a
learnable adapter that gives our model the ability to change
the representation of JFiys. We follow common practice and
operate on feature pyramids to better represent multi-scale
features. In order to obtain an adapted feature pyramid, we
use a ParallelFPN to transform Fiy into
fimg = (fimg: fong: finee: finne) = ParallelFPN(Fipg).  (4)

img> Jimg> Jimg

We have f,, € RT*TxCi for i € {4,8,16,32}. The C; are
the feature channel numbers of the respective tensors in our
feature pyramid. Unless stated otherwise, all feature pyramids
in the following text will have this shape. Our ParallelFPN is
inspired by [10]. A detailed description can be found in the
supplementary material in section I.

So far, we have not integrated any non-RGB information
into our features. This will be done by the MMFuser. The
MMFuser receives M non-RGB images Xmod,m € RHXWxCo,
for m = 1,..., M as well as the RGB features fin, as input.
This results in the mixed feature pyramid

4 8 16 32
Jiix = (fmix7fmix7 mix? mix) =

MMFuser(fimg7 Xmod, 15 +++5 » Xmod,]VI)~

&)

fmix has the same tensor shapes as fing. It should be noted
that all computation up until this point has to be carried out
only once per image. The feature extraction is not dependent
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Fig. 3: Overall architecture of our multi-modal interactive segmentation system. The RGB features Fine from the backbone
FMggg are processed by a ParallelFPN to obtain a feature pyramid fins. The MMFuser integrates information from non-RGB
modalities X into the feature pyramid resulting in fu,;x. MSPatchEmbed creates a feature pyramid fi, from the interaction
tensor [my;m_;m;]. CSNet uses fmix and fin to predict the mask m, ;. Apart from CSNet and the mutli-scale patch
embedding (MSPatchEmbed) every part of our architecture only has to be executed once per image. & denotes element-wise

addition.

on information for interactive mask annotation. Due to this
design choice, we do not have to rerun FMggp and MMFuser
again after each click, which improves the response time. The
positive and negative clicks are encoded as small disks in
their respective binary maps m and m_ as described in [4].
The clicks are then concatenated with the previous mask m,,
resulting in the interaction tensor [my;m_;m,] € RFTXWx3,
We want to give our model access to the interaction informa-
tion at every stage of the mask prediction. For this reason,
we make use of a multi-scale patch embedding MSPatchEm-
bed. MSPatchEmbed converts the interaction tensor into an
interaction feature pyramid

8 16 32
flnt ( int> Jint» Jint » int)

6
= MSPatchEmbed([m;;m_;m.]). ©

The tensors in fi,, have the same shapes as those in fuyx.
MSPatchEmbed is implemented as different convolutions that
produce the desired shapes in our feature pyramid.

The last part of our architecture is our click segmentation
network CSNet, which can be seen on the right side of Fig.
3. CSNet combines the features in fu,;x and fiy, and produces
the improved mask m,1:

mryq = CSNet(fmi)u fint) (7

We note that the two modules MSPatchEmbed and CSNet are
the only two components of our network that would have to
be rerun after each click.

b) MMFuser : We now describe our MMFuser. The
MMFuser is used to integrate multi-modal information into
the feature pyramid (Fig. 4, left).

First, the non-RGB modality x;0q is processed by a Seg-
Former encoder [2]. This encoder yields a feature pyramid

f mod —

8 16 32
(fmod’ mod> J/ mod> mod)
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Fig. 4: The MMFuser (left) uses a SegFormer encoder to com-
pute the features for the non-RGB modality. The feature fusion
happens in the CrossBlock (right). Similar to [2], the efficient
cross-attention (EffCA) works with a number of keys and
values that are reduced by a reduction rate R € {1,4, 16, 64}.
In case we use multiple non-RGB modalities, we have one
SegFormer encoder and one CrossBlock per modality. &
denotes element-wise addition.

The tensors in fpoq have the same shape as those in fipg. In
order to mix fime and fuo4, We will employ a cross-attention
based CrossBlock (Fig. 4, right) at each stage. For each i €
{4,8,16, 32}, we compute

fi. = CrossBlock;(fi ., f& ;). ©)

img» J mod

We want to equip the model with the capacity to dynamically
integrate useful parts from other modalities. For this reason,



the first part of the CrossBlock is a cross-attention module. To
reduce the execution time, we extend the efficient self-attention
of [2] to cross-attention. We reduce the number of keys and
values by a reduction rate R,. The number of queries stays
the same. This results in what we call efficient cross-attention
EffCA. Therein, the image features fmé are used to compute
the queries Q, while we compute the keys K and values V' on
the basis of f¢ ;. For a particular i € {4,8,16,32} we will
use a reduction rate R; = (2)2 Formally we have

1

friix = EffCA(LN(flfng)’ LN(fanod)) + flzmg + flfmd (10)
i = MLP(LN (/) + s (11

where LN represents layer normalizations. Each layer normal-
ization has its own learnable parameters. In cases where we
have more than one non-RGB modality, we use a separate
SegFormer encoder [2] for each of them. In addition to this,
we have multiple cross-attentions, one for each modality.

c) CSNet : The click segmentation network CSNet uses
the interaction information fi, and our feature pyramid fiix
to predict a mask m, ;. Both, fi; and fpix are encoded in a
dense fashion. We thus deem it natural to use existing insights
about processing dense features, and employ an existing
segmentation architecture. In our case, we will use the different
stages and the prediction head of a SegFormer [2]. The internal
mechanism is depicted on the right side of Fig. 3.

We use the stages of the SegFormer sequentially, and make
sure that the network has access to both, image features and
interaction features, at each stage of the network. The input
to the first stage only consists of 9, + f. The input to later
stages is the sum of fi. . fi and the output of the previous
stage. The output of all stages is then fed to the SegFormer
prediction head which will predict the subsequent mask m ;.

V. EXPERIMENTS

To show the efficacy of our our multi-modal fusion strategy,
we test our system on DeLiVER [23], [26] and MFNet [20].
DeLiVER offers depth maps, lidar and event camera images
as additional modalities, and MFNet offers thermal images.
We use four different types of RGB foundation models as
FMgggp: DINOv2-B14 [33], [34], MAE-B16 [35], JEPA-H16
[36], and the RGB encoder from the SAM model (SAM-B16)
[5]. Further implementation details and qualitative examples
can be found in sections F and J of our supplementary material,
respectively. Section G of the supp. material contains further
results on MCubeS [25] and FMB [22].

We use an NVIDIA V100 GPU. If we amortize the duration
of the feature extraction over all clicks, our model takes 42 ms
per click on average when tested on the MFNet dataset. If we
only consider the response time in isolation, we measure 12 ms
when averaged over 30 clicks. On the CPU (Intel®Xeon®CPU
E5-2697 v4) we arrive at 206 ms per click. We thus consider
our model to be real-time-capable.

A. Results on DeLiVER

The results on the DeLiVER dataset [26] are presented in
Table I.

The first thing to be noted is that we encounter very
complex non-contiguous shapes. For this reason, we also look
at lower IoU thresholds with O,y € {60, 70, 80,90}. For the
DINOv2-B14 we test all possible combinations of the available
modalities. Using only a single non-RGB modality our fusion
method works best with depth maps, causing a reduction in
the NoC@80 of 1.3 clicks on average.

The DeLiVER dataset [26] contains intentionally placed
perturbations in lidar and event data. These modalities are
thus less reliable. This is reflected in our method performance,
such as a NoC@90 of 16.07 for depth vs. 16.10 for depth and
lidar. However, our method still causes improvements over the
RGB-only case.

For the new multi-surface interactive segmentation metrics
(see Sec. III) we use Oy = 80 and Oaverage-tow = 70. The
multi-modal fusion works best with a combination of depth
and event data with a NoCMS@(80, 70) of 14.50 and a
FRMS @(80, 70) of 60.19.

We use depth to demonstrate the effectiveness of our
fusion strategy for other backbones. Fig. 1 shows qualitative
examples.

B. Results on MFNet

MFNet [20] offers thermal images as an additional modality.
The general performance results can be seen in Table II.

The results in Table II corroborate our observations on
DeLiVER. When looking at RGB-only results, DINOv2-B14
delivers the best performance with a NoCMS@(80,70) of
11.30. This points to the model’s great capability to per-
form geometrically intricate segmentation tasks. In all cases,
our model successfully integrates information from thermal
images. The most significant improvements can be observed
when using IJEPA, reducing the NoC@90 by 1.19 and the
NoCMS @(80, 70) by 2.10. However, it should be noted that
thermal images are not sufficient to bridge the pre-exising
performance gap between DINOv2 and IJEPA. DINOvV2 using
only RGB images (NoC@90 of 15.37) still outperforms the
IJEPA-based model with thermal images (NoC@90 of 15.62).

C. RGB-Only Baseline Performance

We demonstrate the efficacy of our RGB-only baseline
(see Table III). The baseline results from the architecture
described in Section IV if we remove the MMFuser. We
only compare ourselves to models with similar conditions for
a fair comparison. This especially means using a ViT-B as
the backbone and the COCO+LVIS dataset [4], [37], [38] as
training data. The only exception are the SAM-based models
in Table IIla and IlIb. Most importantly, we only compare
ourselves to late fusion models. We do so, because late fusion
generally imposes a more difficult condition by sacrificing
performance for the goal of improved efficiency, as described
by [14]. We test on DAVIS [39], HQSeg-44k [11], GrabCut
[40], SBD [41], Berkeley [42], [43] and SHSeg [14].

The results can be seen in Tables IIla and IIIb. We only
compare ourselves to the other methods on datasets for
which results are available. Our model generally produces



TABLE I: Results on DeLiVER [26]. The leftmost column (FMggp) indicates the backbone we used. The usage of non-RGB
modalities is indicated by a checkmark. In RGB-only cases the MMFuser is not present.

FMpos | Depth Lidar Event | NoC@60 | NoC@70 | NoC@S0 | NoC@90 | | NoCMS@(80,70) | | FRMS@(80,70) |
1092 13.05 15.10 16.99 1558 66.43
v 9.83 11.68 13.80 16.07 1455 60.89
v 10.85 12.96 15.03 16.92 15.48 64.97
v 10.86 12.97 1501 1691 1547 6533
DINOv2-B14 v v 10.77 12.88 14.99 16.90 15.46 65.18
v v 9.78 11.68 13.80 16.08 14.50 60.19
v v 9.82 11.68 13.82 16.10 1459 61.24
v v v 9.79 1173 13.82 16.09 1459 61.06
1188 13.87 15.68 1733 T6.11 69,50
MAE-B16 v 10.16 11.97 13.96 16.13 1472 61.85
11.63 13.59 1547 17.19 1593 6339
SAM-B16 v 10.11 11.89 13.94 16.14 1467 61.61
1197 14.05 15.89 1748 1634 63.36
UEPA-HI6 | 1031 12,07 1401 1620 1485 6215

TABLE II: Results on MFNet [20]. The leftmost column
(FMggg) indicates the backbone we used. The usage of
thermal images is indicated by a checkmark. In RGB-only
cases the MMFuser is not present.

FMpgs | Thermal | NoC@S0 | NoC@90 | | NoCMSG(80,70) |
10.05 15.37 11.30
DINOV2-Bl4 |, 8.66 14.88 9.88
1128 16.14 12.40
MAE-BI6 v 9.39 1538 10.58
1101 15.03 12.30
SAM-B16 v 9.26 1531 1091
12.06 T6.81 13.45
LIEPA-H16 v 9.79 15.62 11.35

TABLE III: A comparison with other methods.

(a) Comparison of our baseline with other models on DAVIS
and HQSeg-44k. The metric is always the NoC@90 (lower is
better). Results for other methods taken from [14] and [44].

Architecture | DAVIS | HQSeg-44k
SAM [5] 5.14 7.46
MobileSAM [45] 5.83 8.70
HQ-SAM [11] 5.26 6.49
SegNext [13] 5.34 7.18
Interformer [12] 5.45 7.17
HR-SAM [44] 5.48 7.66
HR-SAM++ [44] 5.41 7.47
SkipClick [14] 4.94 6.00
Our Baseline 5.14 6.30

(b) Comparison of our baseline on further datasets with the
NoC @90 metric (lower is better). Our model outperforms others
on SBD and SHSeg. Results for other methods taken from [12]
and [14].

Architecture | GrabCut | SBD | Berkeley | SHSeg
SAM [5] - - - 7.46
HQ-SAM [11] - - - 14.29
Interformer [12] 1.50 6.34 3.14 -
SkipClick [14] 144 | 618 245 2.52
Our Baseline | 154 ] 610 | 275 | 251

(c) Comparison of our method with SkipClick on DeLiVER.
In order to use depth in SkipClick, we integrated the MMFuser
module as described in section H in the supplementary material.

Architecture | NoC@80 | | NoC@90 | | NoCMS@(80, 70) |
SkipClick + Depth 14.54 16.53 14.90
Ours + Depth 13.80 16.07 14.55

competitive results and even outperforms most of the SAM-
based methods. We are on-par with SAM on DAVIS. This is
remarkable, since all of these methods made use of the large
SA-1B dataset [5] with 1.1 billion masks at some point in their
training. On SBD and SHSeg our model even outperforms all
other methods. In general, however, SkipClick delivers the best
performance and is thus the only method with better results
on most of the datasets.

We also want to see how our method performs in compar-
ison to SkipClick if both are given multi-modal information.
For this reason, we apply our multi-modal fusion strategy to
SkipClick by integrating the MMFuser module. A description
on how we do this can be found in section H in the supplemen-
tary material. In Table Illc we carry out the comparison on the
DeLiVER dataset with depth maps as the additional modality.
Our model outperforms SkipClick in the multi-modal setting.
We thus assume our model to give us the best performance in
a multi-modal setting.

VI. CONCLUSION

In this paper, we introduced a system for interactive seg-
mentation with multiple image-like input modalities. Our
system is constructed to adhere to certain constraints. We
want our model to run fast and we want the image feature
computation to be completely decoupled from the integration
of interactions. For this reason we opt for a late fusion model.

On top of this, we introduce a metric that considers inter-
active segmentation with multiple, possibly adjacent surfaces
per image. We propose a multi-modal feature fusion strategy
that is capable of dealing with a black-box RGB backbone. We
are able to show that this fusion strategy incurs improvements
for multiple RGB backbones on multiple datasets for different
non-RGB modalities. Finally, we are able to show that our
RGB-only baseline offers competitive, and in some cases
even superior performance for regular interactive segmentation
tasks. We even outperform the currently best model in a
multi-modal setting, when integrating our multi-modal fusion
strategy into its architecture.
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APPENDIX

A. Introduction to the Interactive Segmentation Problem

In this section, we will introduce the interactive segmen-
tation problem by describing the inputs and outputs of our
interactive segmentation model. Afterwards we will describe
the NoC (Number of Clicks) metric. The NoC is generally
used to measure the performance of interactive segmentation
systems based on clicks.

1) Interactive Segmentation Task: In the standard interac-
tive segmentation scenario, we assume to have an RGB image
Ximg € RH*W >3 This image contains an object whose surface
we want to segment. More precisely, we want to create a mask
m € {0, 1}*W with m; ; = 1 if and only if the pixel (i, j)
belongs to the desired surface, while m; ; = 0 otherwise. In
order to create such a mask, we will leverage a neural network
Ninseg- Ninseg has been trained to predict high-quality masks
by using a certain form of user guidance. In this paper, the
only form of user interaction are iterative clicks. The user will
repeatedly carry out the following steps:

1) The user is shown the currently estimated mask m,,
with 7 being the index of the current round. In the
initial round, we will not have a current estimate of
the mask. Therefore we define my to only consist of
0Os (background only).

2) In case the user judges the mask to be of insufficient
quality, they place a corrective click p, = (ir, jr, ;)
on a falsely annotated position. Such a click consists of
a coordinate (ir,j,) € {1,..,H} x {1,..,W} and a
label I, € {+, —}. If the user places the click with the
left mouse button, they indicate that the position belongs
to the foreground (/. = +), while the right mouse button
indicates a background position (I, = —).

3) The network predicts a new mask

mry = NInlSeg(Ximga Po:r, m7)7 (12)
where pg., are all so far accumulated clicks and m, is
the previous faulty mask.

These steps are carried out repeatedly until the user arrives at
a resulting mask mg,, of sufficient quality.

2) NoC Metric: The mode of interaction from the previous
paragraph strongly insinuates that the quality of the mask
can be easily increased by adding more click annotations.
If the user were to just continue clicking long enough, the
mask could likely reach an arbitrary level of quality. The
most commonly used metric to measure the performance of
interactive segmentation systems follows this intuition. The
NoC@Oy,y metric measures the minimal Number of Clicks
that is necessary to create a mask of sufficient quality. We
consider a predicted mask m, to be of sufficient quality if
its IoU with an existing ground truth mask mgr reaches or
surpasses a given threshold Orey. Formally, this is the case if

|mT n mGT\

IOU(I’]’IT7 mGT) = - 100 Z @IoU- (13)

~ |m,; Umgr|

It should be noted that we follow common practice [4], [5],
[14], [44] and express the IoU in percentage points in a range
of [0,100] C R instead of a ratio in the range of [0,1] C R.

It remains possible that the network is not capable of
segmenting a surface with a satisfying degree of quality at
all. In order to account for such cases, the number of clicks
is usually capped to a value of np,x = 20. If the number
of clicks exceeds mmax, We consider the attempt to segment
the object as a failure and use mya.x as a surrogate value in
computing the average NoC on a dataset. In some works the
authors decide to either measure the number of failures [4],
[13] or the percentage of failures (i.e. the failure rate) [46].
As we do not have an actual human user at our disposal
during the testing process, the selection of the click placement
is simulated automatically. We follow the simulation strategy
described by [4].

B. Oursourcing Subtasks for Interactive Segmentation

1) Scenario Discussion: We now discuss the possibility
to outsource subtasks of interactive segmentation and why
it is beneficial to be able to deal with a black-box RGB
backbone. Recently, a number of companies have trained large
foundation models that are deliberately kept private [47]-[50].
This phenomenon also extends to image processing backbones
being offered as a service. A real-world example of this is
Amazon Nova [51]. We assume this trend to continue, leading
to private foundation models with increasing performance
being offered as a service. As we have no direct access to
them, these models can only be used as a black-box. Training
or altering such a model is not possible.

In our scenario, the RGB backbone FMggp for image
feature extraction is such an external foundation model. The
external party providing the foundation model service will be
called foundation model provider. The scenario is depicted
in Figure 5. Therein, we are the operating institution, and
will act on behalf of our interest. We can send RGB images
Ximg to the foundation model provider and receive a set of
image features Fiy,. Most multi-modal fusion strategies for
segmentation assume the backbone to be either trainable or
at least allow backpropagation through the network as a pre-
condition. As this is not possible in our scenario, we will
devise an asymmetric multi-modal fusion strategy that does
not depend on the trainability and internal workings of the
RGB backbone. We are thus able to effectively treat the
RGB backbone as a black-box whilst still profiting from the
additional knowledge from other modalities.

Since our method is designed to be capable of dealing with
a black-box, using an external foundation model as an RGB
backbone is no obstacle during training or during usage:

o During training, we send all RGB images in our training
dataset to the foundation model provider for feature
extraction. The foundation model provider responds with
the extracted features Fiy, for our entire dataset. This
feature extraction can be executed once in bulk before
the training even starts. We thus do not have to attend it
or wait for a response during training. On our side, we
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Fig. 5: A scenario for interactive segmentation where the RGB foundation model and the the annotation task have been
outsourced. In this scenario, we are the operating institution and will act on behalf of our interests. The RGB foundation
model FMggp has been outsourced to an external foundation model provider. This makes FMgrgp a black-box. We first use
FMRggp to extract features Fipg from RGB images Xing. Afterwards, we integrate the information from non-RGB modalities
Xmod,; Using our MMFuser. From MMFuser, we obtain a mixed feature tensor fmix. fmix is the input to CSNet, along with the
clicks to generate the masks. The annotation task itself is outsourced to an external annotation service, which only receives
Ximg and fuix, and gives us the high-quality result masks mges. As fmix already contains all non-RGB information, we can
avoid giving the non-RGB modalities Xn0q,; to the annotation service. This is beneficial, as we consider Xpqq,; valuable data.
A detailed discussion of our network and modules such as MMFuser and CSNet can be found in the main paper’s method

section.

can effectively train all other components of the network
on the extracted features Fip,.

o During usage, we usually use interactive segmentation
systems to annotate ground truth masks for entirely new
datasets. We can send the images of this new dataset
to the foundation model provider, which will in turn
send the extracted features Fime to us. Similar to the
training, this feature extraction can be carried out in bulk
without any user attending to it. In case we also have
non-RGB modalities, we then use the MMFuser module
to generate the mixed feature tensor fiix. Both, Fing
and fiix, only need to be created once per image. The
interactive annotation itself can then be repeatedly carried
out using CSNet.

It should be noted that our framework based on a black-
box RGB backbone does not actually necessitate the use
of an external foundation model service. In only offers the
possibility to do so. The RGB backbone may just as well be
present locally. In fact, during our experiments, we only use
local RGB backbones FMggp. We will simulate FMggp being
an external black-box by freezing the model and refraining
from any architectural alterations.

Since we want to annotate data in an interactive segmen-
tation setting, we also assume the existence of a third party,
the annotation service. Once we receive the extracted RGB
features from the foundation model provider, we will enrich
those features with additional modalities using a multi-modal
fusion strategy. These enriched features are then sent to the
annotation service. The external annotation service will only
receive the RGB image, the enriched features, and a small
interactive segmentation network that operates on the features
and user clicks (see Fig. 5).

2) Notes on used Network Bandwidth: First, it should be
mentioned that the size of tensors fabricated by foundation
model providers, such as AWS Nova or LeewayHertz, strongly

depends on what the user demands. In fact, the handbook for
AWS Nova, explicitly mentions this [51] and lists examples for
image resolution and resulting token numbers. For example, an
image with a resolution of 900 x 900 results in approximately
1300 tokens according to the handbook. From this, we can
infer their approximate patch size as

900
V1300

Assuming that the images have a resolution of 448 x 448, we
would arrive at a spatial token resolution of 18 x 18. With
an embedding dimension of 1280, a float32 encoding, and 4
extracted tensor per image, this implies the transfer of

~ 25. (14)

18 -18-1280 - 4 - 32 bits = 53084160 bits (15)

per image. With a consumer connection of 500 mbit per
second, a single image only needs 0.1061 seconds for transfer,
which is much faster than any user could annotate an image.
On top of this, the operation can be carried out in bulk without
the user attending to it. We thus do not assume network
bandwidth to be a problem.

C. Differences to Other Work Related to Interactive Segmen-
tation for Multiple Surfaces in an Image

The main paper does not present the very first work on
interactive segmentation with multiple surface in the same
image. However, we deem all previous work to be too different
from our work to allow for a direct comparison. On top
of this, we come to find their interaction mechanisms quite
arbitrary. In [15], the authors propose a mechanism where
an initial segmentation is generated using specifically chosen
border points. Corrections can only be carried out as an
extension mechanism for existing regions, making corrections
on non-exising regions impossible. The authors of MagicPaint
[16] provide a vast variety of input tools such as freeform
scribbles, variable stroke thickness and filling mechanisms.



TABLE IV: A comparison of our baseline model with Dy-
naMITe for the single-surface interactive segmentation task.
In all cases the metric is the NoC@90, for which a lower
value indicates better performance. It should be noted that
DynaMITe uses a different backbone than us.

Model | GrabCut | Berkeley | SBD | DAVIS
DynaMITe (Swin-L) 1.72 1.90 5.64 5.09
DynaMITe (Swin-T) 1.78 1.96 6.32 5.23
MMMS (ours, ViT-B) 1.54 2.75 6.10 5.14

In contrast these methods our mechanism only works with
clicks. DynaMITe [17] is the only purely click-based system
for multiple surfaces in the same image. While our system
allows for a sequential creation of masks, DynaMITe enforces
a direct manipulation of the multi-surface mask. This direct
manipulation requires the user to reconsider their class selec-
tion after every click. Additionally, the multi-surface aspect
and the accompanying interaction mechanism are deeply con-
nected to the architecture of DynaMITe. Thus, the interaction
mechanism and the metrics within the multi-surface case of
the DynaMITe system are too different from our scenario to
allow for a meaningful performance comparison. However, as
the DynaMITE provides results for single-surface interactive
segmentation, we can make a comparison for the single-
surface case. The comparison can be found in Table IV.
Nonetheless, it should be noted that DynaMITe uses the
considerably different Swin backbone [52].

In addition to the aforementioned methods, there is also
work that is marginally related to our paper. iCMFormer++
[18] is specialized for cases in which multiple object instances
of the same class are present in the same image. The seg-
mentation is carried out in two rounds. In the first round, a
segmentation mask for a single object instance of the targeted
class is created. Using the created mask, this object is then
cropped from the image and given to the network in the second
round. In the second round, the network is used to create a
semantic mask covering all objects of that class as a single
surface.

There is also work dealing with target ambiguity in inter-
active segmentation, such as DISNet [53] and PiClick [54].
Target ambiguity deals with the problem that a single click
does not clearly tell the network which surface to segment.
E.g. if I click on the tire of a car, do I want to to only segment
the tire, or the complete car? In contrast to this, multi-surface
segmentation deals with the overlap of multiple annotated
masks per image. Although somewhat related, these papers
tackle different challenges within interactive segmentation.

D. Further Notes on Computational Efficiency

In the main paper, we already include some remarks on
the response time. We use an Nvidia V100 as the GPU and
a Intel®Xeon®CPU E5-2697 v4 as the CPU. If we amortize
the duration of the feature extraction over all clicks, our model
takes 42 ms per click on average when tested on the MFNet
dataset using the GPU. If we only consider the response time

TABLE V: We compare the response time or our model with
measurements from other models from [12].

Model \ Device  Response Time
Interformer-Light (ViT-B) CPU 0.19
Interformer-Tiny (ViT-L) CPU 0.32

SimpleClick (ViT-B) CPU 1.51
SimpleClick (ViT-L) CPU 333
SimpleClick (ViT-H) CPU 7.76
MMMS (ours, ViT-B) CPU 0.206
MMMS (ours, ViT-B) GPU 0.012

TABLE VI: We measure the occupied VRAM during evalua-
tion and count the number of parameters. The first row only
uses RGB as input. In the rows beneath, we progressively add
Depth, Lidar, and Event camera images.

Modalities \ VRAM (MiB) # params (mio.)
RGB 1474 125.2
RGB+D 1582 144.1
RGB+D+L 1686 159.7
RGB+D+L+E 1772 175.3

in isolation, we measure 12 ms when averaged over 30 clicks.
On the CPU, we arrive at 206 ms per click. We thus consider
our model to be real-time-capable.

Here, we extend our discussion regarding the computational
efficiency of our model. We compare our response time with
response times of existing models using the measurements
from [12]. It should be noted that the authors of [12] did not
disclose which CPU they used. The comparison can be found
in Table V.

A second aspect of computational efficiency lies in the
memory usage. We measure the occupied VRAM during
evaluation on our NVIDIA V100 and count the number of
parameters in Table VI. We do this for the RGB-only case and
progressively add depth maps, lidar and event camera images.
We choose the DINOv2-ViT-B based model as it delivered the
best performance.

E. Combining the Surface-Specific Masks into a Joint Mask

Whenever we segment multiple surfaces in the same image,
we are able to combine them to a joint mask. This joint mask
assigns each pixel as either belonging to one of the surfaces or
to non of them (background). In this section, we will describe
how the multi-surface interactive segmentation problem from
the main paper relates to the construction of such a joint
mask. We will first describe how the joint mask is constructed
in context of the classical interactive segmentation problem.
Afterwards, we extend the procedure of constructing a joint
mask to the multi-surface evaluation framework where some
masks may be revisited. We will also discuss how the surface-
specific masks are extracted from the joint mask.

1) Joint Masks in Classical Interactive Segmentation: We
now discuss how a joint mask is constructed, when we work
with the assumptions of classical interactive segmentation. Let



L be the number of surfaces that we want to segment. As
previously stated in the main paper, we want to create a set

Sm = {m(l), e m(L)} .

of segmentation masks. In the setting of classical interactive
segmentation, each of these masks is considered in isolation.
To create a joint mask m*"t € {0, 1, ..., L}7*W  the surface-
specific masks are created sequentially and pasted onto the
joint mask. We start out with an initial joint mask mi®"-9 that
is completely filled with Os. In our case a pixel-value of O
indicates that the pixel belongs to the background, whereas a
pixel-value [ = 1, ..., L indicates the pixel belongs to the [-th
surface. As soon as the [-th mask is created, we update the
pixels (¢, 7) in the previous joint mask with the rule

{l ,if m{) =1.

(16)

joint,l
nj

a7)

mjoim,l—l
.3 ’ 2]

In this way, the masks are each constructed and added to the
joint mask. As each mask is considered in isolation, no mask
is revisited. We eventually end up with the final joint mask
mjoinl — mjoint,L.

2) Joint Masks in Multi-Surface Interactive Segmentation:
In our extended multi-surface evaluation mechanism, the
masks for some surfaces may be revisited for correction.
Instead of simply adding masks in a linear order [ = 1,..., L
we continuously pick the worst mask beloning to surface &
and improve it. Afterwards, the improved mask can be used
to update the joint mask mi®™A~1 to mi°"A Note that we
change the index notation from [ to A to avoid confusion. We
also have to extend our update rule. Once we consider that
some surfaces may be revisited, we also have the possibility of
decreasing the size of a surface. Assume we currently correct
the mask for surface k£ and by doing so remove a few pixels
that previously belonged to that surface in the joint mask. In
this case, the removed pixels are set to the background class
in the updated joint mask. Our extended update rule for pixels

(4,) is

k o
o 2] .
ml A i (m) = 0) A (i £ k).

(18)

Finally, we mention how we extract a binary mask m*) for

the k-th surface of the joint mask. We take all pixel belonging

to that surface as foreground pixels and the rest as background

pixels. We extract pixels (4, j) according to the rule.
* {1 if M = k.

) — 19
“J 0 , otherwise. (19

F. Further Implementation Details

As we want to show the general efficacy of our multi-
modal fusion strategy, we use datasets that offer different non-
RGB modalities. The first dataset we use in the main paper is
the synthetic DeLiVER dataset [23], [26] with the split from

[26]. In addition to the RGB images, DeLiVER contains depth
maps, lidar and event camera images as additional modalities.
We use the lidar representation from [26]. The second dataset
in the main paper is MFNet [20], which provides thermal
images as an additional modality. For MFNet we use the splits
provided with the dataset. Furthermore, we test our method on
FMB [22] and MCubeS [25] for which the results can be found
in the supplementary material.

We train for 100 epochs on DeLiVER and MFNet, while
training for 400 epochs on FMB and MCubeS. We found these
training durations promising in preliminary experiments. We
use the Adam optimizer [55] with a batch size of 8, a learning
rate u = 5-107°% and 3, = 0.9, B2 = 0.999. If we train for
100 epochs, a scheduler reduces the learning by % at epochs
95 and 100. If we train for 400 epochs, this reduction happens
at epochs 390 and 400. During training and testing, we use a
resolution of 448 x 448 unless said otherwise. During training,
this resolution is imposed by random crops. During testing, we
follow common practice [4], [10] and rescale to this size.

Our multi-modal fusion strategy works on a variety of vision
foundation models. We test it on four different backbones
as our RGB foundation model FMggg. All of these models
are vision transformers [56]. The first model is a ViT-B that
has been pretrained with DINOv2 [33], [34], and has a patch
size of 14. The second model is a ViT-B pretrained with the
masked auto-encoder (MAE) [35] framework. We also use the
ViT-B encoder that has been trained as part of the Segment
Anything Model (SAM) [5], since we assume this backbone
to be capable of producing features that are beneficial for
segmentation tasks. The SAM backbone only operates on
a resolution of 1024 x 1024. For this reason, we upscale
the input images before feeding them to the backbone, and
downscale the resulting feature tensors afterwards. On top of
this, we use a ViT-H pretrained with IJEPA [36]. Here, we
use the huge (H) model as no smaller size was available. In
order to simulate FMgrgp being a black-box, we do not train
or backpropagate through the RGB backbones at any time.
Our RGB-only baseline is almost identical to our multi-modal
model, apart from the MMFuser being removed completely.
In all cases, the models receive the RGB images as input.
We use a SegFormer-B1 encoder inside the MMFuser and a
SegFormer-B0 [2] as the basis for CSNet.

G. Further Results

1) Ablation of the CrossBlock: In Table VII, we can see the
results of our ablation study of our CrossBlock on the MFNet
dataset. In the first line, neither the efficient cross-attention
(EffCA) nor the subsequent MLP are used. In this case, the
feature tensors from different modalities are just added. Only
adding a single one of the two submodules has different effects
depending on how demanding the metric is. Using the efficient
cross-attention or the MLP on its own, slightly degrades the
performance on the easier NoC@80 metric (8.81 vs 8.93 and
8.88, respectively). Once we use the NoC@90 metric, which
demands a higher degree of detail, we also see improvements
using a single submodule. This phenomenon can be attributed



TABLE VII: Ablation study of the CrossBlock on MFNet. In
all cases, we use the thermal images and the backbone is a
DINOv2-B14.

EffCA MLP | NoC@80 | NoC@90 | | NoCMS@(80,70) |

8.81 15.05 10.11

v 8.93 15.04 10.23
v 8.88 14.93 10.19

v v 8.66 14.88 9.88

TABLE VIII: Results on the FMB dataset [22]. The leftmost
column (FMggg) indicates the backbone we used. The usage
of infrared images is indicated by a checkmark. In RGB-only
cases the MMFuser is not present.

FMrgs | Infrared | NoC@S0 | NoC@90 | | NoCMS@(80,70) |
7.86 12.97 828
DINOv2-BI4 |, 7.07 11.92 737
846 14,00 898
MAE-B16 v 7.56 12.64 8.12
835 13.80 889
SAM-B16 v 7.55 12.53 .08
9.02 14.52 9.80
UEPA-H16 v 772 12.95 8.30

to the fact that the NoC metric is likely to not increase
linearly over different IoU thresholds, even when measured
on the same model. Using both, EffCA and the MLP, incurs
improvements in all metrics.

2) Results on FMBNet: We also evaluate the effectiveness
of our multi-modal fusion strategy on the FMB dataset [22].
In addition to RGB images, FMB offers infrared images as
a supplementary modality. The results can be found in Table
VIII. If we compare different backbones, we see similar results
as with other datasets. When taking a look at the NoC@90
metric in the RBG-only setting the ranking is as follows:
DINOvV2-B14 is best with 12.97, followed by SAM-B16 with
13.80, MAE-B16 with 14.00 and IJEPA-H16 with 14.52.
Using the infrared images leads to improvements in all cases.
The strongest improvement can be observed on the NoC@90
when using the IJEPA-based backbone. There, the number of
clicks is reduced by 1.57 on average. We attribute this to [JEPA
as it is generally worse than the other models in its role as
FMRggs.

As the DINOv2-based model already produces the best
RGB features, the effects of including the information from
infrared images are comparatively smaller. On the NoC@90
metric we see an average improvement of 1.05 clicks. The
NoCMS @(80, 70) metric is reduced by 0.91. Another aspect
that we can observe is that the NoCMS@(80, 70) is always
higher than the regular NoC@&80. We attribute this to the
NoCMS metric accounting for competition between multiple
surfaces in the same image. As the NoCMS @(80, 70) metric
requires the revisiting of previous surfaces, we assume this
metric to be more demanding.

3) Results on MCubeS: The results on the MCubeS dataset
[25] can be found in Table IX. In addition to RGB images, this
dataset offers three non-RGB modalities: The Angle of Linear

Polarization (AoLP) and the Degree of Linear Polarization
(DoLP) as measured by a camera with a polarizaion filter,
and Near Infrared (NIR) images. RGB images are given to
the model in all cases.

For the model with DINOv2-B14 in the role of FMggg,
we first test the effect of using each modality on its own.
Our multi-modal fusion mechanism performs best when using
the DoLP, which allows the model to reduce the NoC@90
by 0.42, the NoC@80 by 0.63 and the NoCMS@(80, 70) by
0.46. Our model successfully employs all non-RGB modalities
when used in isolation. Using all of them at once improves
the performance even further, reducing the NoCMS@(80,
70) from 16.77 to 16.13. The failure rate FRMS@(80, 70)
is reduced from 65.15 to 61.98. As using all modalities at
the same time is the most promising strategy, we also test
this for other versions of FMgrgg. For MAE the NoC@90
improves from 18.66 to 17.83. When looking at the multi-
surface segmentation metric NoCMS@(80, 70), the largest
improvement can be observed for IJEPA with a reduction from
17.68 to 16.29. Here, we also see the largest improvement in
the FRMS@(80, 70) from 70.95 to 61.90.

H. Integrating MMFuser into SkipClick

In this section, we briefly describe how we integrate MM-
Fuser into the SkipClick architecture. As a complete descrip-
tion of SkipClick would be far beyond the scope of this
text, we refer the interested reader to [14] for further details.
However, we do illustrate the altered version of SkipClick in
Figure 6.

The MMFuser is integrated after the backbone of the
SkipClick architecture. As SkipClick uses a DINOv2-B14 as
a backbone, the patch size is 14 x 14 and doqe) = 768. Let

1, for f3, fa € RTT X T7X768 (20)

be the feature tensors extracted from the intermediate layers
of the backbone. We first use a ParallelFPN to convert the
features (f1, f2, f3, f4) to a feature pyramid

(fimes Fres fimss fo2 ) = ParallelFPN( f1, fo, f3, f4).

img’ Jimg> Jimg» Jimg

2n

We now have a feature pyramid to which we can apply the
MMFuser. We give X4 and the feature pyramid to MMFuser
and obtain

4 8 16 32 _
( mm,Pafmm,Pv mm, P> mm,P) -
4 8 16 32
MMFuser ((fimga fimga img> img) ’ Xmod) .

The remaining parts of the Ski‘BCIick architecture are designed
to operate on tensors in R 1% % T7 X768 Thus, we need to reverse
the changes in the tensor shape again. To do so, we apply
a second ParallelFPN to which we refer to as InverseP-
arallelFPN. The network does not actually constitute the
mathematically inverse operation of the regular Paralle]lFPN.
Instead, it consists of multiple scaling modules that each
change the shape of a particular stage in our feature pyramid to
the original shape of the tensor that has been extracted from the
backbone. Similar to the Paralle]lFPN, each scaling module is
based on convolutions, up-/downsampling mechanisms, layer

(22)



TABLE IX: Results on the MCubeS dataset [25]. The leftmost column (FMggp) indicates the backbone we used. The usage
of non-RGB modalities is indicated by a checkmark. In RGB-only cases the MMFuser is not present.

FMrgs | AoLP DoLP NIR | NoC@60 | NoC@70 | NoC@S0 | NoC@90 | | NoCMS@(80,70) | | FRMS@(80,70) |
11.94 14.09 16.29 1835 16.77 65.15
v 11.55 13.75 15.93 18.07 16.50 6436
DINOV2-B14 v 11.14 13.38 15.66 17.93 16.31 62.93
v 11.10 13.42 15.72 18.01 16.42 6428
v v v 10.80 1312 1547 17.79 1613 61.98
12.84 15.02 17.01 18.66 17.36 69.28
MAE-BI6 v v v 11.14 13.27 15.63 17.83 16.18 63.57
12.60 1472 16.87 18.65 17.21 68.01
SAM-B16 v v v 11.05 13.38 15.61 17.89 16.30 62.93
13.33 15.57 T7.41 18.84 17.68 70.95
LEPA-HI6 v v v 11.24 13.39 15.65 17.90 16.29 61.90
VD
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Fig. 6: An extension of the SkipClick architecture to also make use of the MMFuser module. This figure is an extended version

of Figure 2b from [14].

normalizations and GELU activations. A detailed description
can be found in the supplementary material in section I. We
have

(Fams Foms foms fam) =

23
InverseParallelFPN (fi, p, fom. ps foon. ps fom. p) - 23)

As the shape has been restored to that of the backbones output,
we have

1 2 3 4 H o W 768
fmm’fmm7fmm7fmm€Rl4x14X M (24)

From this stage onward, the remaining part of the architecture
stays identical to SkipClick. While Figure 6 provides an
overview of the overall architecture, we refrain from a detailed
description and refer the interested reader to [14]. Finally, it

might be interesting to note that the reason we do not have
an extra SkipClick-based backbone in our experiments is that
SkipClick uses an unaltered DINOv2-B14 backbone as well.

1. ParallelFPN and InverseParallelFPN

In this section, we describe the ParallelFPN used in the
main paper. We also describe the InverseParallelFPN that
is exclusively used when integrating our MMFuser module
into SkipClick. It should be noted that our ParallelFPN is
inspired by the SimpleFPN used in [10]. Each of the two
models consists of four different scaling modules, which are
called Scale ¢ and Inverse Scale ¢ for ¢ = 4,8,16,32. Let
dpm and Pgpy be the internal dimensionality of the ViT-
based foundation model and its patch size, respectively. If the



original images have the shape H x W, the various tensors
of our feature pyramid will have the shape % X %, and
dl vea Will be the respective channel dimension. In our case
ambea = 04, dgppeq = 128, dggieq = 320, d3Rcq = 512.

The shape of the scaling modules’ input and output tensors

changes in the following way:

o The module Scale i transforms a feature tensor from the
ViT-like representation shape R e ™ vt *Xdn (6 a feature
pyramid shape R % %% X dembea

e The module Inverse Scale i has the inverse effect on the
shape. It transforms a feature tensor from R X X dinbea
to R P X Py X

Each of the modules is a feed-forward network, i.e. all of
its layers are executed in succession. The architecture of the
used modules can be found in Table X. Each of the table cells
contains the submodules of a particular scaling module. Within
each scaling module the submodules are executed in the order
going from top of the table cell to its bottom. It should be
noted that the LayerNormalizations have been implemented
as GroupNormalizations with a single group to allow for
convenient usage of the PyTorch library. The description in
the table also makes use of hidden dimensions, which can be
computed as follows:

d
dﬁidden = max {2 ! dgmbem I;M} (25)
& . 8 drm
hidden — 108X § deppeds - (26)
dklli?iden = max {dir?lbed’ dFM} 27
diidgen = Max {detpeqs 2 - drn } (28)

The hyperparameters given in Table X are to be interpreted
as follows:

o A convolutional layer Conv(di,, dou, k, s) receives dj,
input channels, produces d,, output channels, has a
kernel size of k x k and a stride of s.

« An interpolation layer Interpolate(h, w) resizes the height
and width axes of a tensor to (h,w) by using bilinear
interpolation.

o LayerNormalization(d) carries out a layer normalization
on a tensor with d feature channels.

e The activation function GELU [57] has no hyperparam-
eters.

J. Qualitative Results

We also display some qualitative results for DeLiVER [26]
in Figure 7, MCubeS [25] in Figure 8, the FMB dataset [22]
in Figure 9, and MFNet [20] in Figure 10. In all cases, the
first column of each figure always shows the RGB input image
with the ground truth plotted onto the image. The last column
always shows the RGB image with the prediction and the
positive clicks for each surface plotted onto it. We refrain from
plotting the negative clicks to avoid clutter.

For each of the figures, the model used to generate the
prediction is based on DINOv2-B14 as the RGB foundation

backbone. We always choose the version with the maximum
number of available modalities. Figure 11 displays examples
for conflicts between overlapping masks.



TABLE X: The submodules of the scaling modules in the Paralle]lFPN and the InverseParallelFPN. Each of the table cells
contains the submodules of a particular scaling module. Within each scaling module the submodules are executed consecutively
in the order going from top of the cell to its bottom. Any hyperparameters a submodule might need are written in the parentheses

next to it.
Submodule \ ParallelFPN InverseParallelFPN
Interpolate ( 5 V;’) Interpolate ( 5 Vg)
Conv (dpm, dit ggens £ = 3,5 = 1) Conv (delmbed7 dhigde" k=3,s= 1)
ot 4 cati iiggen
Scale 4 LayerNormalization (djkqen) LayerNormalization %)
GELU GELU
Interpolate (%, %) Interpolate ( P ® PVF‘; )
Conv (dﬁiddem dhiggen Jk=3,s= 1) Conv (dh““‘“‘ dﬁldden’ k=3,s= 1)
LayerNormalization d“‘gde“ LayerNormalization (d 4.,
4 4 _ _
ConV (diiggen: dembear ¥ = 1,5 = 1) Conv (diiggen: demy k= 1,8 = 1)
LayerNormalization (dembe d) LayerNormalization (dgwm )
GELU GELU
Interpolate (§ %) Interpolate (%, TWM)
— 8 8 _ —
Conv (dFM’ dhldden’ k= 3,8 = 1) Conv (dembed’ dhldden’ k= 3,8 = 1)
Scale 8 LayerNormahzatlon (dhidden) LayerNormalization (dﬁldden)
8
Conv ( hidden dembed7 k= 8 = 1 Conv (dhlddem dFM7 k= )8 = 1)
ayerNormalization ayerNormalization (dpm
LayerN li dembed LayerN lizati d
GELU GELU
16 — — 16 — —
Conv (dFM’ dhidden’ k= 3’ $= 1) Conv ( ‘embed’ dhld en’ k= 3’ S = 1)
Interpolate %, %) Interpolate H s Pxn )
Scale 16 LayerNormalization (dhgden) LayerNorrnahzatlon (dhledden)
Conv (dpfijens dampeas k¥ = 1,5 = 1 Conv (difjen drv, k = 1,5 = 1
LayerNormalization (dembed) LayerNormalization (dg)
GELU GELU
Conv (dFM, Sfdden, k=3,s= 1) Interpolate ( H PZ/I )
Seale 32 Interpolate (32, ;‘;) Conv (der?\becﬁ d;ﬁden, k=3,5= 1)
cale LayerNormaéleatlon (dhiddcn) Layersl‘\lzormahzanon (dﬁi%dcn)
Conv (dhldderﬁ dorer K =1,5=1 Conv (dhiddem depv, k=1,s=1
LayerNormalization (d32, ;) LayerNormalization (dgy)
GELU GELU
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Fig. 7: Qualitative results on the DeLiVER dataset [26]. The model that generated the results is based DINOv2-B14 and has
been given all three additional modalities: Depth, lidar, and event camera images. The lidar has been normalized and converted
to the viridis color map to allow for better visualization. The first and last image in each row are the RGB image with the

ground truth and the prediction plotted onto the image, respectively.



DoLP

Ground Truth

Fig. 8: Qualitative results on the MCubeS dataset [25]. The model that generated the results is based DINOv2-B14. We use
Angle of Linear Polarization (AoLP), Degree of Linear Polarization (DoLP) and Near Infrared (NIR) images as additional
modalities. The first and last image in each row are the RGB image with the ground truth and the prediction plotted onto the
image, respectively.

Ground Truth Infrared Prediction

Fig. 9: Qualitative results on the FMB dataset [22]. The model that generated the results is based DINOv2-B14. This dataset
offers infrared images as an additional modality. The first and third image in each row are the RGB image with the ground
truth and the prediction plotted onto the image, respectively.



Ground Truth Thermal Prediction

Fig. 10: Qualitative results on the MFNet dataset [20]. The model that generated the results is based DINOv2-B14. This dataset
offers thermal images as an additional modality. The first and third image in each row are the RGB image with the ground
truth and the prediction plotted onto the image, respectively.
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Fig. 11: Examples for conflicts between masks which are caused by false positives in the most recently edited mask. The first
row contains examples from DeLiVER [26], while the second and third row are from FMB [22]. The left column displays the
ground truth. The middle column displays the joint mask before the overlapping mask has been inserted, and the right column
after the overlapping mask has been inserted



