

Generation and characterization of a human acellular meniscus scaffold for tissue engineering

G. H. Sandmann, S. Eichhorn, Stephan Vogt, C. Adamczyk, S. Aryee, M. Hoberg, S. Milz, A. B. Imhoff, T. Tischer

Angaben zur Veröffentlichung / Publication details:

Sandmann, G. H., S. Eichhorn, Stephan Vogt, C. Adamczyk, S. Aryee, M. Hoberg, S. Milz, A. B. Imhoff, and T. Tischer. 2009. "Generation and characterization of a human acellular meniscus scaffold for tissue engineering." *Journal of Biomedical Materials Research Part A* 91A (2): 567–74. https://doi.org/10.1002/jbm.a.32269.

Generation and characterization of a human acellular meniscus scaffold for tissue engineering

G. H. Sandmann, S. Eichhorn, S. Vogt, C. Adamczyk, S. Aryee, M. Hoberg, S. Milz, A. B. Imhoff, T. Tischer,

INTRODUCTION

The main function of the human meniscus is load distribution and therefore stress reduction in the knee joint, thereby preventing cartilage damage, as shown by various clinical¹ and experimental studies.^{2,3} In cases where meniscus repair is not possible, meniscus replacement could be warranted to restore normal anatomy in order to prevent early degenerative joint disease following meniscus resection. Nevertheless, there are still unsolved problems.^{4–6} Several biologic and synthetic materials, such as autologous tendons, submucosa, collagen matrices, or carbon-fiber prostheses were developed for meniscus transplantation,^{7–13} but only the collagen meniscus implant (CMI), made from bovine Achilles tendons,

Correspondence to: T. Tischer; e-mail: thomas.tischer@gmx.net

is used clinically with varying success rates. ¹⁴ Linke et al. demonstrated that the clinical outcome after implantation of a CMI combined with high-tibial osteotomy was not different compared with the control group with high-tibial osteotomy alone after 2 years. ¹⁴ In another study, histological findings revealed only remnants of the original CMI, with mostly scar tissue instead of mature meniscus fibrocartilage tissue. ¹⁵ To improve long-term stability and integration of the CMI, tissue engineering of the CMI with autologous cells was performed in an animal model. However, the biomechanical characteristics still remained insufficient, leading to premature destruction of the transplanted CMI. ¹⁶

Apart from the collagen meniscus implantation, allograft meniscus transplantation is performed in specialized centers for patients with total meniscectomy. Over 20 years ago the first meniscus transplantation was carried out in Munich, Germany. Much progress has been made since then, but the main problems remain similar: slow immuno-reactions

¹Department of Orthopaedic Sport Surgery, Technical University (TU) Munich, Germany

²Department of Orthopaedic Surgery, Biomechanics Section, TU Munich, Germany

³Department of Anatomy, Ludwig-Maximilians-University Munich, Germany

⁴Department of Orthopaedic Surgery, TU Munich, Germany

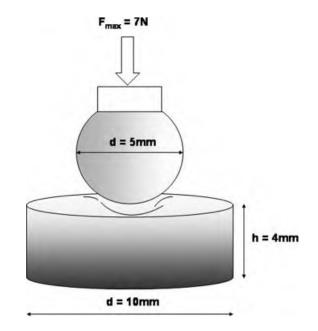
⁵AO Research Institute, AO Foundation, Davos, Switzerland

TABLE I Protocol Used for the Final Acellularization Process

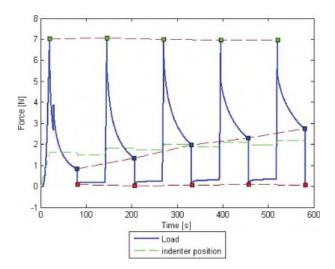
Day 1	Deionized water
Day 2–14	Sodium-dodecyl sulfate, SDS 2%
Day 15	Deionized water
Day 16	Ethanol 70%
Day 17	Phosphate buffered saline (PBS)

sometimes lead to progressive failure of the transplant. 5,19–22 Nevertheless, Stone et al. found that allograft meniscus transplants can survive up to 7 years, even in knees with chondromalacia in the compartment of the meniscus transplantation, leading to improved patient satisfaction in terms of pain relief and physical activity. The question of whether the meniscus allograft itself or the accompanying procedures (lavage and debridement of the knee joint) lead to these improvements could not be answered in their study. Further possible disadvantages of allografts are the transmission of infectious diseases (e.g. HIV, hepatitis, veneral diseases), slow graft remodeling, and incorporation into the host tissue. 22

New methods in tissue engineering, for example the acellularization²⁴ of tissues and seeding with autologous cells, have the potential to overcome these problems. To date, many organs and tissues—such as tendons, heart valves, nerves, esophagus etc.^{25–29}—have been acellularized using different methods. The underlying goal remains the same: reducing the antigenicity of tissues by removing the cellular components of the donor while preserving the extracellular matrix and therefore the original biomechanical strength. The aim of our study was to generate an acellular meniscus scaffold for tissue engineering by using a sodium dodecyl sulpfate (SDS) based solution. This construct was then characterized biomechanically, histologically, and immunohistochemically.


MATERIALS AND METHODS

All samples were collected from the department of forensic medicine and excluded if there was any sign of degenerative knee disease, or other pathologies that could influence the outcome. All surrounding tissue was removed by sharp dissection. Specimens were stored until further use at -20° C. For complete acellularization of the human meniscus specimens by the detergent SDS, preliminary testing was conducted based on our previous experience with tendons.²⁹ Different testing protocols (SDS concentration of 1, 2, and 5%; incubation time of 7 or 14 days) were used and the degree of acellularization was evaluated histologically by hematoxylin and eosin staining. In pilot studies, six meniscus samples were evaluated to find the optimal SDS concentration and time period to completely acellularize the human meniscus tissue (SDS 2% for 2 weeks). The cell extraction process consists of a multistep procedure. All steps were performed at room temperature


under continuous shaking to enhance diffusion of the chemicals into the samples. At first, the samples were rinsed and placed in deionized water for 24 h. Next, the samples were placed in varying SDS-solutions (1, 2, or 5%) for different time periods, followed by deionized water (24 h), ethanol 70% (24 h), and phosphate buffered saline (PBS) treatment for 24 h to wash out all remnants of SDS. For the final experiments, five medial and five lateral meniscus samples were collected from human cadavers (mean age: 38 ± 6 years, mean weight 73.1 ± 7.4 kg; 3 males, 2 females). All meniscus samples revealed no degenerative changes and were randomized to one of two groups: meniscus samples which did not undergo acellularization or the acellularization group. Each group consisted of 3 medial/2 lateral menisci. The samples in the control/ untreated group were put into PBS. Following this acellularization process (Table I), three cylinders were collected for biomechanical testing from each meniscus. The remaining meniscus tissue was fixed in methanol (90%) and prepared for histological investigation.

Biomechanical testing

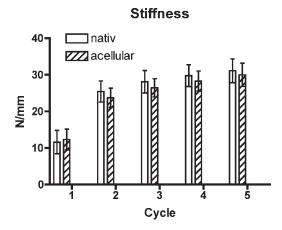
Acellularized (n=5, 3 cylinders each) or intact menisci (n=5, 3 cylinders each) of medial and lateral menisci of five individuals were used for biomechanical testing. The undersurface of the menisci was oriented perpendicular to the testing device. Three cylinders with a diameter of 5.0 mm and a height of 4.0 mm were punched out of each meniscus. These cylinders were put into a custom-made device and the upper part of the cylinder was shaped to create a surface parallel to the base (Fig. 1). One sample at the time was then put into a custom-designed metallic plate with a circular cavity (diameter 5.0 mm and depth 4.0 mm) to prevent the samples from dislocating during biomechanical testing. The meniscus samples were then

Figure 1. Schematic setup of the ball indention trial as described in the text.

Figure 2. Load curve of a test cycle consisting of five repetitive cycles showing the graphical course of preload, dynamic and static compression and relaxation. Note the linear-elastic slope during dynamic compression. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

tested by a repetitive ball indentation test, as described previously. 30,31

The test was performed as a minimally constraint compression-relaxation test with a universal testing machine (Zwicki 1120; Zwick, Ulm, Germany) and a 5 mm steel ball at the tip of the indentor. The testing machine was used with a calibrated load sensor of a maximum of 20 N and an accuracy of 1% (KAP-S; A.S.T, Dresden, Germany). The meniscus samples were kept moist throughout the experiments using physiologic saline solution) and the indentor position was calibrated prior to each test (indentor position zero was at the level of the base of the cavity). A preload of 0.1 N was used and samples were checked intermittently during testing for displacement. The test cycle consisted of four phases: preloading of the sample with 0.1 N; dynamic compression with a constant load velocity of 5 mm/min until 7 N; static compression of the sample for 60 s with a load of 7 N; relaxation of the sample with a constant unload velocity of 1 mm/min until a load of 0.15 N. After an interval of 60 s, the new test cycle started until a total number of five test cycles were reached (Fig. 2). Load, indentor position, and time were displayed by the test software TestXpert (Version 8.1.; Zwick, Ulm, Germany) and three values could be calculated: (1) Stiffness determined from the linear elastic slope of the loading curve between 2 and 5 N. High stiffness values indicate high elasticity and vice versa. (2) Relative sample compression (indentor position in relation to absolute sample height) at the end of the dynamic compression phase. 'Compression' is an indicator for viscosity and characterizes the ability of a sample to evade the indenter. (3) Residual force (load measured at the end of the static compression phase). The 'residual force' is influenced by the ability of tissue to evade the indenter in unconstraint compression (viscosity) as well as by the reset forces present in the tested tissue (elasticity). High residual forces thereby indicate more elastic than viscous properties. The experiments were performed in cyclic loading to simulate physiologic stress. All data were exported from TestXpert to Excel and statistical analysis was performed between groups using the Student's *t*-test.

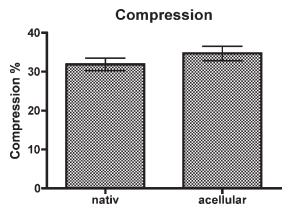

Histology

For pilot testing, three menisci were obtained, cut in two halves and chemically processed using the different SDS concentrations and time frame as described above. For final histological examination sections of six acellularized menisci (3 medial and 3 lateral) were used, and sections from three intact menisci served as untreated control group. After fixation in 90% methanol in 4°C for 48 h, specimens were infiltrated overnight in PBS with 5% sucrose at pH 7.4 and afterwards mounted on chucks in Jung tissue embedding medium (Leica, Germany), frozen in a HM 500 OMV cryostat (Mikrom, Germany) and cryosectioned at 12 µm. Sections were stained with hematoxylin and eosin. Three transverse sections (one in the anterior horn, one in the middle part and one in the posterior horn) of each specimen were examined for remaining cell nuclei and histological changes after acellularization. Phase-contrast microscopy was performed to observe any changes in collagen bundle orientation. Additionally, the collagen staining pattern was evaluated immunohistochemically using antibodies against collagen I, II, and VI (Table II). The immunhistochemical labeling procedure has been described by Tischer et al.³² In summary, all sections were treated with 0.3% hydrogen peroxide in methanol for 30 min to block endogenous peroxidase activity and nonspecific binding of the primary antibodies was reduced by blocking with normal horse serum for 60 min. Control sec-

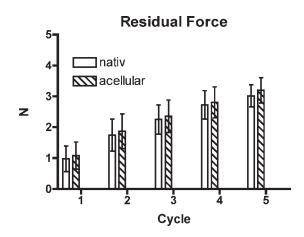
TABLE II
Sources and Labeling Characteristics of the Monoclonal Antibodies Used

					Staining	
Antigen recognized	Antibody	Dilution	Enzyme	Source	Native	Acellular
Col I	Col1	1:2000	Ch ABC	Sigma	++	++
Col II	CICC	1:6	Ch ABC	DŠHB	+	+
Col VI	5C6	1:10	Ch ABC	DSHB	++	++

Note that collagen antibodies required an enzyme pre-treatment with 0.25 Units/mL of hyaluronidase/chondroitinase (Ch) ABC (Sigma). Immunohistochemical labelling results for *intact* and acellular menisci.


Figure 3. Stiffness of the acellular meniscus graft versus control during load cycles. No statistical significance was found.

tions were obtained by omitting the primary antibody and treating the sections with PBS alone. Antibody binding was detected with a Vectastain ABC 'Elite' avidin/biotin kit (Vector Labs, Burlingham, CA) and sections were counterstained with Mayer's hematoxylin. Staining intensity was graded semiquantitive (no staining (–), weak staining (+), and strong staining (++)).


RESULTS

Biomechanical testing

The mean sample height was 3.9 mm (±0.2 mm) and all samples could be loaded up to 7 N without signs of plastic deformity. With the ball indention test we could see no statistically significant differences between the intact and the acellularized menisci in terms of stiffness (N/mm), compression force (N), and residual force (N). Stiffness showed no significant difference during cycle one between intact

Figure 4. Percentual change of compression intact versus acellular during cycle 5. No statistical difference was found.

Figure 5. Residual force of the acellular meniscus graft versus control dependent on load cycles. No statistical significance was found.

(mean $11.6 \pm 3.2 \text{ N/mm}$) and acellular scaffolds (mean 12.3 ± 2.9 N/mm). Stiffness increased significantly throughout testing by 162% (stiffness of intact meniscus in cycle five: $31.1 \pm 3.3 \text{ N/mm}$) and 143%(stiffness of acellular meniscus in cycle 5: 30 ± 3.2 N/mm), respectively (p < 0.05). During each testing cycle the differences between the two groups—intact meniscus and acellular scaffold-were not statistically significant (Fig. 3, p > 0.05). Mean compression of sample height was 32% (±7.2%) for intact meniscus samples after the fifth cycle. Mean compression of the scaffolds was found to be 35% (±8.3%). Scaffold compression exceeded compression of intact meniscus by 9%, being not statistically significant (p > 0.05, Fig. 4). The residual force of the two groups increased after each cycle, but no statistically significant difference could be noticed. Mean initial (after cycle one) residual force for intact menisci and acellularized samples was 1.0 N (±0.41) versus 1.1 N $(\pm 0.4 \text{ N})$ and 3.0 (± 0.36) versus 3.2 (± 0.41) after five cycles (p > 0.05, Fig. 5). Biomechanical results were not significantly different comparing processed medial or processed lateral meniscus samples with the control group.

Histology/immunohistochemistry

Results of the pilot testing showed that complete cell removal could be achieved using SDS 2% for 2 weeks and SDS 5% for 2 weeks as seen by hematoxylin and eosin staining. In contrast, when using a lower SDS concentration (1%), samples still showed nuclei [Fig. 6(c)], but in lower numbers when compared with intact menisci [Fig. 6(a)]. For the following testing procedure SDS 2% for 2 weeks was utilized for acellularization. After treatment with SDS 2% for 2 weeks all samples (both medial and lateral) were identified as acellular by hematoxylin and

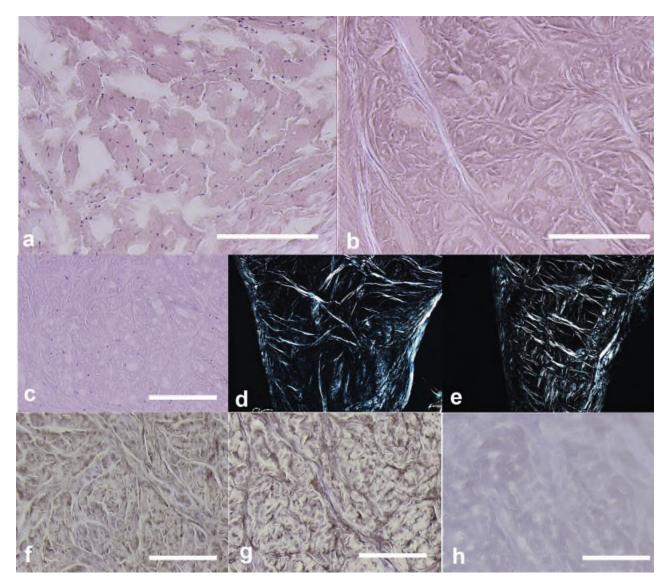


Figure 6. (a) HE staining of intact meniscus (scale bar = $200 \mu m$) and (b) acellular meniscus (SDS 2% for 2 weeks) showing no discernible nuclei (scale bar = $200 \mu m$), whereas (c) acellularized specimens with SDS 1% for 24 h shows remaining nuclei in decreased frequency (bar = $200 \mu m$). No differences in phase contrast microscopy between acellular (d) and (e) intact menisci could be detected. (f) collagen 1 labeling of acellular meniscus (g) labeling for collagen VI (h) control section, here the primary antibody was omitted. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

eosin staining [Fig. 6(b)]. Phase-contrast examinations revealed regular collagen bundle arrangement in the acellular specimens as seen in intact menisci [Fig. 6(d,e)]. Immunohistochemically, no differences in the labeling patterns for collagen I, II, and VI [Fig. 6(f)] were observed when compared with intact menisci. Whereas for collagen I there was strong labeling in the whole meniscus, collagen II was labeled only in the fibrocartilaginous section of both groups. Collagen VI staining was evenly distributed throughout the meniscus tissue, both in acellularized and intact menisci. The immunohistochemical results are summarized in Table II.

DISCUSSION

Over the last decade multiple strategies have been developed to successfully replace damaged meniscus tissue. Tissue Engineering using synthetic constructs like CMI or other materials combined with autologous cell transfer or gene therapy might be one solution. Another approach is the acellularization of allograft tissue to decrease immunogenic reactions by removing all cellular components²⁰ and thereby improve long-term survival and clinical results. Different processing methods can be used for the acellularization of allografts, which all aim to preserve

the extracellular matrix thereby preserving the biomechanical characteristics of the allograft. Additionally, an intact extracellular matrix should provide autologous cells an optimal environment for repopulation. This has already been demonstrated by new synthesis of procollagen I—the precursor to collagen I—in fibroblasts seeded within acellularized tendons. ²⁹ Long-term stability should be improved by active remodeling of the graft and ingrowth into the host tissue.

Several nonchemical methods like repetitive freezing/thawing24 and high pressure treatment30,33 have been used so far to acellularize allografts. Naal et al.³³ could demonstrate that the high pressure treatment of meniscal cartilage with a pressure up to 600 MPa for 10 min did not negatively affect the biochemical properties. Furthermore, no differences in immunohistochemical staining pattern of the collagen structure (collagens I, II, III) or the proteoglycan composition (versican, aggrecan, link protein) could be noted in comparison to untreated samples. Nevertheless, one disadvantage of repetitive freezing/ thawing²² and high-pressure treatment³³ is that it leaves the cell detritus in place, thereby possibly inducing potential immunogenic reactions. To overcome this limitation, different chemical processing methods have been developed. The single use of trypsin has been successfully used to acellularize ovine heart valves, because it cannot digest intact collagen bundles.²¹ Because meniscus tissue is composed mainly of fibrocartilage and collagen with a tightly packed ECM, it is much more difficult to acellularize, and trypsin alone is insufficient. Recently, ovine meniscus was acellularized using a multistep enzymatic process utilizing trypsin, collagenase, and protease.³¹ By using this method, acellular menisci could be generated for the first time. One disadvantage of this procedure is the disruption and partial digestion of the extracellular matrix by these enzymes. The glycosaminoglycans (GAGs), with their crucial role in the regulation of the water content within the meniscus, were partially removed. Biomechanical properties were negatively influenced, as was shown using the same biomechanical test utilized in a previous study.31 Different detergent or solvent based solutions may be able to accellularize a meniscus. SDS and other detergents or solvents like Triton-X or Tri-(n-butyl) phosphate remove all cells or cellular detritus.³⁴ This has been demonstrated in the anterior cruciate ligament, nerve grafts, and heart valves, but not yet for meniscus tissue.^{25–27,29} Cartmell et al. also noted difficulties with the acellularization of fibrocartilage present at the enthesis of the patella tendon.³⁵ In his observations SDS was more successfully in removing cells than Triton-X or tri-(n-butyl) phosphate. With adaptation of the protocol used by Cartmell et al,36 which

uses higher concentrations of SDS together with a longer incubation time, the acellularization of human meniscus samples was successful in our study. To test the limits of SDS, acellularization (5% SDS for 2 weeks) of hyaline cartilage (with its dense extracellular matrix was also tried) but this process was not successful (data not shown). All three substances were biocompatible and also supported cellular growth to a different degree.³⁵ In comparison to Triton-X and tri-(n-butyl) phosphate, SDS was most effective in cell extraction,³⁴ but least supportive of cellular regrowth in the acellularized constructs.34,35 Gratzer et al.³⁷ have recently reported negative effects on cellular repopularization of grafts after acellularization with SDS,3 but the relevance of this has yet to be confirmed in vivo.

As our results show, the biomechanical properties of the menisci were not adversely affected by this acellularization protocol (Table I). This was tested by measurement of stiffness, compression force and residual force with an indention method previously published.^{28,29} With the ball indention experiment we were able to gain more information about the biomechanical properties stiffness, compression and residual force-all important parameters of viscoelasticity (see materials section). The treatment of the meniscus samples affected the biomechanical properties and lead to increased stiffness (143 vs. 162% in the control group), an increase of compression (3%) and residual force (7%) (Figs. 3-5). Increase of stiffness during cyclic loading is probably caused by tissue compression and can be seen in both intact meniscus samples and acellularized meniscus samples. The fact that the increase in acellular meniscus samples is lower than in the control group, shows that the treatment with SDS has no adverse affects. The water content of the chemically processed meniscus samples was not adversely affected, which might be due to the fact that SDS does not digest the GAGs to the same extent as a recently described enzymatic scaffold processing. 31,35 GAGs have a great effect on water content and their loss might lead to altered load distribution, and in a recent study by Cartmell it has been shown, that the GAG content of tendons was not altered by SDS treatment.³⁵ The residual force and compression force were slightly higher in the acellular meniscus group, demonstrating that elasticity and viscosity were notably higher in the processed group. Though differences are not statistically significant, our results show that the main biomechanical properties are not adversely affected by treatment with SDS which seems to leave the extracellular matrix intact.

Histologically, the degree of acellularization increases with the level of SDS concentration and the incubation time. The time necessary for complete acellularization is dependent on the size of the speci-

men and of the type of tissue being acellularized. This study is the first to test human meniscus tissue as opposed to the generally tested animal specimens (rabbit, rat, pig, dog).^{24,31} Human menisci naturally are much bigger, thus more difficult to penetrate with active solutions. Destructive enzymes such as collagenase may be more likely to digest the outer menisci before the inner parts are sufficiently penetrated and acellularized.

CONCLUSION

In our study, human meniscus samples were successfully acellularized using SDS without negatively affecting the main biomechanical properties. These cell-free constructs could serve as excellent scaffolds with a preserved extracellular matrix maintaining the natural biomechanical properties. Future research is necessary to evaluate the *in vivo* consequences of SDS acellularization.

References

- Allen PR, Dehnahm R, Swan A. Late degenerative changes after meniscectomy: factors affecting the knee after operation. J Bone Joint Surg (Am) B 1984;66:666–671.
- Ghosh P, Sutherland J, Bellenger C. The influence on weightbearing exercise on articular cartilage of meniscectomized joints. An experimental study in sheep. Clin Orthop Relat Res 1990;252:101–113.
- Buma P, Ramrattan N, Tienen Tv, Veth R. Tissue engineering of the meniscus. Biomaterials 2004;25:1523–1532.
- Goble EM, Kohn D, Verdonk R, Kane S. Meniscal substitutes—human experience. Scand J Med Sci Sports 1999;9:146– 157
- Kuhn JE, Woijtys E. Allograft meniscus transplantation. Clin Sports Med 1996;15:537–546.
- Messner K. Meniscal regeneration or meniscal transplantation? Scand J Med Sci Sports 1999;9:162–167.
- Arnoczky SP, Warren RF, Spivak J. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg (Am) 1988;70:1208–1217.
- 8. Bruhns J, Kahrs J, Kampen J, Behrens P, Plitz W. Autologous perichondral tissue for meniscal replacement. J Bone Joint Surg (Br) 1998;80:918–923.
- Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings A. Porous polymer implant for repair of meniscal lesions: A preliminary study in dogs. Biomaterials 1991; 12:810–816.
- Kohn D, Rudert M, Wirth CJ, Plitz W, Reiss G, Maschek H. Medial meniscus replacement by a fat pad autograft. An experimental study in sheep. Int Orthop 1997;21:232–238.
- Kohn D, Wirth CJ, Reiss G, Plitz W, Maschek H, Erhardt W, Wulker N. Medial meniscus replacement by a tendon autograft. Experiments in sheep. J Bone Joint Surg (Br) 1992;74: 910–917.
- Kang SW, Son SM, JS Lee, ES Lee, KY Lee, SG Park, JH Park, Kim B Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A 2006;78:638–651.
- Kang SW, Mi SS, Lee JS, Lee ES, Lee KY, Park SG, Park JH, Kim B Regeneration of whole meniscus using meniscal cells

- and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A 2006;77:659–671.
- Linke RD, Ulmer M, Imhoff AB. Replacement of the meniscus with a collagen implant (CMI). Oper Orthop Traumatol 2006;18:453–462.
- Martinek V, Usas A, Pelinkovic D. Genetic engineering of meniscal allografts. Tissue Eng 2002;8:107–117.
- Martinek V, Ueblacker P, Braeun K, Mannhardt B, Specht K, Gansbacher B, Imhoff AB. Second generation of meniscus transplantation: In-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 2006;126:228–234.
- 17. Verdonk PC, Verstraete KL, Almqvist KF, De Cuyper K, Veys E, Verbruggen G, Verdonk R. Meniscal allograft transplantation: Long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 2006;14:694–706.
- Milachowski KA, Weismeier K, Wirth C. Homologous meniscus transplantation. Experimental and clinical results. Int Orthop 1989;13:1–11.
- Jackson DW, McDevitt CA, Simon TM, Arnoczky SP, Atwell EA, Silvino N. Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in goats. Am J Sports Med 1992;20:644–657.
- Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren R Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg (Am) A 2000; 82:1071–1082.
- Rieder E, Kasimir MT, Silberhumer G. Decellularization protocols of porcine valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004; 127:399–405.
- Khoury MA, Goldberg VM, Stevenson S. Demonstration of HLA and ABH antigens in fresh and frozen human menisci by immunhistochemistry. J Orthop Res 1994;12:751–757.
- Stone KR, Walgenbach AM, Turek TJ, Freyer A, Hill M. Meniscus allograft survival in patients with moderate to severe unicompartimental arthritis: A 2- to 7- year follow-up. J Arthrosc Relat Surg 2006;22:469–478.
- Yamasaki T, Deie M, Shinomiya R, Izuta Y, Yasunaga Y, Yanada S, Sharman P, Ochi M. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A 2005;75:23–30.
- Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 2006;114(Suppl I):559–565.
- Woods T, Gratzer P. Effectiveness of three extraction techniques in the development of a decellularized bon-anterior cruciate ligament-bone graft. Biomaterials 2005;26:7339

 7349
- Hudson TW, Zawko S, Deister C, Lundy S, Lee K, Schmidt C. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10:1641– 1651.
- Bhrany A, Beckstead B, Lang T, Farwell D, Giachelli C, Ratner B. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng 2006;12:319–330.
- Tischer T, Vogt S, Aryee S, Steinhauser E, Milz S, Martinek V, Imhoff AB. Tissue engineering of the anterior cruciate ligament: A new method using acellularized tendon allografts and autologous fibroblasts. Arch Orthop Trauma Surg 2007;127:735–741.
- Diehl P, Steinhauser E, Gollwitzer H, Heister C, Schauwecker J, Milz S, Mittelmeier W, Schmitt M. Biomechanical and

- immunhistochemical analysis of high hydrostatic pressure-treated Achilles tendons. J Orthop Sci 2006;11:380–385
- 31. Maier D, Braeun K, Steinhauser E, Ueblacker P, Oberst M, Kreuz PC, Roos N, Martinek V, Imhoff AB. In vitro analysis of an allogenic scaffold for tissue-engineered meniscus replacement. J Orthop Res 2007;25:1598–1608.
- 32. Tischer T, Milz S, Maier M, Schieker M, Benjamin J. An immunhistochemical study of the rabbit suprapatella, a sesamoid fibrocartilage in the quadriceps tendon containing aggrecan. J Histochem Cytochem 2002;50:955–960.
- 33. Naal FD, Schauwecker J, Steinhauser E, Milz S, von Knoch F, Mittelmeier W, Diehl P. Biomechanical and immunohistochemical properties of meniscal cartilage after high hydro-

- static pressure treatment. J Biomed Mater Res B Appl Biomater 2008;87:19–25.
- Gilbert TW, Sellaro TL, Badylak S. Decellularization of tissues and organs. Biomaterials 2006;27:3675–3683.
- Cartmell JS, Dunn M. Development of cell-seeded patellar tendon allografts for anterior cruciate ligament reconstruction. Tissue Eng 2004;10:1065–1075.
- Cartmell JS, Dunn M. Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 2000;49:134–140.
- 37. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng 2006; 12:2975–2983.