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ABSTRACT: This work provides a detailed overview of density
functional theory (DFT) methods for treating molecular and
periodic systems within the TURBOMOLE software package. The
implementation employs Gaussian-type orbitals and is based on
efficient real-space techniques and density-fitting approaches for
Coulomb interactions. Recent developments are reviewed,
including the treatment of relativistic effects with effective core
potentials, the incorporation of spin−orbit coupling via two-
component formalisms, and the extension to real-time time-
dependent DFT (RT-TDDFT). Embedding schemes based on
frozen-density and projection-based approaches are also discussed,
enabling the combination of DFT with high-level correlated wave
function methods and many-body perturbation theory for selected
subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures,
and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure
manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples,
this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.

■ INTRODUCTION
Over the past few decades, density functional theory (DFT)
has matured into one of the most powerful and versatile
approaches for predicting and rationalizing the electronic
structure of atoms, molecules, and extended systems.1−12 Its
balance of relatively low computational cost with often
remarkable accuracy has made DFT a “workhorse” for a
wide range of chemical, physical, and materials science
problems�from describing molecular reactivity to predicting
the properties of bulk solids and surfaces. Advancements in
both hardware (high-performance computing, HPC) and
software (algorithmic optimizations) have further propelled
the field, enabling ever-larger and more complex systems to be
studied with increasing precision.
Within this broad landscape, the TURBOMOLE software

package12−14 has established itself as a highly efficient and
robust platform for quantum chemical calculations. Initially
recognized for its accuracy and speed in molecular (i.e., finite)
DFT and post-Hartree−Fock calculations, it has continuously
evolved to include comprehensive capabilities for treating
extended (periodic) systems. Central to this development is
the Riper module, which provides an efficient and general
implementation of periodic DFT employing Gaussian-type

orbitals (GTOs). This makes it possible to investigate diverse
classes of materials (crystalline solids, surfaces, and low-
dimensional nanostructures) under a single unified framework.
A prominent feature of this periodic DFT implementation is

its reliance on advanced real-space methods and density-fitting
techniques, which ensure both numerical accuracy and
favorable scaling with the system size. Moreover, the methods
are well parallelized and optimized for modern HPC resources,
thus bridging the gap between theoretical innovation and
practical feasibility. Recent extensions include (i) scalar- and
spin−orbit-coupled relativistic treatments via effective-core and
two-component formalisms,15−17 (ii) real-time time-dependent
DFT (RT-TDDFT) for ultrafast electron dynamics,18,19 (iii)
efficient hybrid-functional and exact-exchange algorithms,20

and (iv) embedding approaches�frozen-density embedding
(FDE) and projection-based embedding (PbE)�that seam-
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lessly couple high-level wave function or many-body
perturbation methods (e.g., GW/BSE) to a periodic DFT
environment.21 Together, these capabilities expand the scope
of TURBOMOLE well beyond conventional applications,
enabling, for instance, accurate studies of localized excitations,
interfacial charge transfer, and strong spin−orbit or correlation
phenomena in solids.
The aim of this work is to present a comprehensive overview

of the DFT framework for periodic systems in TURBOMOLE,
with particular emphasis on the Riper module. We begin by
summarizing the theoretical foundations of periodic DFT and
its practical realization using GTOs, shedding light on the
resolution-of-the-identity approach and the efficient handling
of Coulomb and exchange-correlation (XC) terms. We then
discuss more advanced topics, including the two-component
(2c) formalism for spin−orbit coupling, local embedding
schemes that combine molecular and periodic perspectives, as
well as real-time extensions that enable studies of non-
equilibrium and ultrafast processes. Following these theoretical
and methodological details, a variety of case studies illustrate
the capabilities of the code�from prototypical inorganic
crystals and surface adsorbates to nanomaterials exhibiting
strong spin−orbit or correlation effects�underscoring both
the accuracy and efficiency of the TURBOMOLE approach.
We hope this review will serve as a useful resource for both

new and experienced researchers alike. By highlighting the
underlying theory, implementation strategies, and representa-
tive applications, we aim to empower users to fully exploit the
periodic DFT functionalities in TURBOMOLE, fostering new
discoveries in quantum chemistry, materials science, and
beyond.

■ GENERAL THEORY
Periodic DFT Employing Gaussian Basis Functions.

The DFT implementation for periodic systems using
GTOs14,20,22−29 closely follows standard methods used in
comparable computational frameworks. Key equations are
presented here to provide an overview of the approach.
In a periodic system, translational symmetry implies that

each single-particle orbital (ψpσ
k (r)) can be expressed as a

Bloch function, labeled by the band index p, spin σ, and
wavevector k within the Brillouin zone (BZ). In the GTO
picture, each Bloch orbital reads

N
e Cr r( )

1
( )p

i
p

k

L

k L k
L

UC

T
=

(1)

where μ(r − Rμ − L) ≡ μL(r) are GTO basis functions
centered at atomic positions Rμ translated by the direct lattice
vector L, summing over all NUC unit cells. In the Kohn−Sham
(KS) formalism, the expansion coefficients Cμpσ

k are obtained
by solving matrix equations

F C S Ck k k k k= (2)

independently for each k in the BZ. In molecular systems, only
L = k = 0 is relevant, and NUC equals one. Here, Fσ

k and Sk

represent the KS and overlap matrices in reciprocal space,
respectively, which are obtained from real-space matrices as

F e Fik

L

k L LT
=

(3)

S e Sik

L

k L LT
=

(4)

The elements Fμνσ
L contain contributions from the kinetic

energy Tμν
L , Coulomb Jμν

L , and XC Xμνσ
L matrices, given by

F T J XL L L L= + + (5)

The kinetic-energy terms Tμν
L are evaluated identically to the

molecular case, and Xμνσ
L values are computed using a

hierarchical integration scheme.26 Calculating Jμν
L and Xμνσ

L

requires the real-space density matrix Dμνσ
L , defined as an

integral over the BZ, which is evaluated numerically as
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=

(6)

where wk are the weights assigned to each k-point. Here, Dμνσ
k

is the reciprocal-space density matrix, calculated as

D f C C( )
p

p p p
k k k k= *

(7)

At zero Kelvin, occupation numbers f pσ
k are either zero or one,

representing fully occupied or unoccupied states. For metals,
however, fractional occupations are used to smooth the Fermi
surface and improve the convergence. At finite temperatures,
these fractional occupations are computed using either the
Fermi−Dirac distribution

f
e

1

1
p k T
k

( )/( )p
k

B
=

+ (8)

or Gaussian smearing, where occupations are approximated as

i

k
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zzzzzzf exp

( )

2p
pk
k 2

2=
(9)

where μ is the chemical potential (or Fermi level), kB is the
Boltzmann constant, T is the temperature, and σ is the
smearing width in the Gaussian approach. These methods
provide smooth fractional occupations for states near the
Fermi level, enabling faster convergence in metallic systems.
The total energy per unit cell E is calculated as

E D T J E
L

L L
xc= + +

(10)

where J and Exc are the Coulomb and the XC energy,
respectively.
Density-Fitting Scheme for the Coulomb Term in

Periodic Systems. Due to the long-range nature of Coulomb
interactions, density fitting (DF) for periodic systems requires
special techniques. TURBOMOLE implements a projection
approach as a direct extension of the molecular DF scheme. A
full description of this method can be found in refs 22−25;
only a summary is provided here.
The total (infinite) electron density of the crystal, ρcryst, is

expressed as an infinite sum of local densities ρL over cells
translated by the vector L as

L
L

cryst =
(11)

with each local density ρL defined by
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DL
L

L
L LL=

(12)

where νL(r − L′) ≡ νLL′ is shorthand notation, and the
subscript 0 is omitted when L = 0.
To approximate ρcryst, an auxiliary density ρ̃cryst is defined as

L
L

cryst cryst =
(13)

where each unit cell auxiliary density ρ̃L is given by

cT
L L=

(14)

Here, α denotes GTOs that form the auxiliary basis functions
in α. Expansion coefficients c are the same across all unit cells
and are found by minimizing the Coulomb interaction D of the
residual density δρ = ρ − ρ̃

D d dr
r r

r r r( )
1

( )

( )

( )

L
L

L

L L

=
| |

= |

= | (15)

In periodic systems, D remains finite only if δρ is chargeless,
requiring

d d Nr r r r( ) 0 ( ) el= = (16)

where Nel is the total electron count. This constraint allows to
decompose ρ̃ into charged (ρ̃∥) and chargeless (ρ̃⊥) parts

c cT T= + = + (17)

with

d N dr r r r( ) and ( ) 0el= = (18)

Orthogonal projection matrices

P nn P 1 nnandT T= = (19)

allow the decomposition of c as c∥ = P∥ c and c⊥ = P⊥ c, where
n is the normalized auxiliary charge vector with elements nα
given as

n q q q q d
q

q r r1
, ( , , ...) , ( )T

1 2=
| |

= =
(20)

Projection of α yields the charged (α∥) and chargeless (α⊥)
auxiliary basis functions: α∥ = P∥ α and α⊥ = P⊥ α.
The expansion coefficients of ρ̃∥ are

N
c

q
nel=

| | (21)

and the chargeless part ρ̃⊥ is optimized by minimizing D with
respect to c⊥ yielding

V P c( )+ = (22)

where V⊥ is the projected Coulomb metric matrix

V P VP ( )T
L= = | (23)

and ξ⊥ is given by

( )L L= | (24)

This DF scheme guarantees convergent lattice sums in eqs
22−24 by using only chargeless quantities. Unlike other DF
approaches for extended systems,30−32 this method yields
converged lattice sums without adding nuclear charge
distributions.
The final auxiliary density coefficients are given by c = c∥ +

c⊥. The Coulomb matrix elements Jμν
L d′ in real space are

calculated as

J ( )L
L L Ln= | (25)

where ρnL represents the nuclear charge distribution. Note that
the difference ρ̃L − ρnL is charge neutral.
The total Coulomb energy is expressed as

J D J
1
2

( )
L

L L
L Ln n= + |

(26)

The DF-accelerated continuous fast multipole method (DF-
CFMM) is applied to evaluate Coulomb lattice sums in eqs
22−26 directly in real space.22−25 In DF-CFMM the Coulomb
lattice sum is divided into a crystal near-field (CNF) and a
crystal far-field (CFF) component. For a sum (ρ1|ρ2L),
distribution ρ1 in the central unit cell interacts with all images
ρ2L of ρ2. The CNF portion accounts for interactions within
nearby cells, while the CFF covers distant cells

( ) ( ) ( )
L

L
L

L
L

L1 2
CNF

1 2
CFF

1 2| = | + |
(27)

The CFF sums are computed very efficiently with multipole
expansions and recurrence relations, while the CNF part is
evaluated in real space using CFMM. Distributions ρ1 and ρ2
are organized into an octree, decomposing interactions into
near-field (NF) and far-field (FF) terms, with CFMM using
DF employed to efficiently handle NF interactions.23

Exchange−Correlation Energy and Matrix. The XC
energy is obtained as a functional of the density and its
derivatives. In the local density approximation (LDA), only the
density itself is needed, while the generalized gradient
approximation (GGA) necessitates first-order spatial deriva-
tives. For meta-generalized gradient approximations (meta-
GGAs), the kinetic-energy density τ is further considered.
Thus, the XC energy reads

E f dr r r r( ), ( ), ( )xc xc= [ ] (28)

with γ(r) = |∇ρ(r)|2 and f xc describing the specific density
functional approximation. Here, the integration is carried out
over the unit cell for periodic systems and over the complete
molecule in discrete systems. The XC matrix for the KS
equations is formally defined as

X e X X O drwithik

L

k L L L
Lxc

T
= = [ ]

(29)

where Ôxc denotes the XC operator. In practical implementa-
tions, the integration is carried out numerically on a grid with

E w f r r r( ), ( ), ( )
i m i

m m m mxc xc= × [ ]
(30)

X X
i m i

mL L ,=
(31)
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where i are the atoms in the unit cell and m is a grid point with
its weight wm leading to

X w Om
m

m mL

L
L LL

,
xc= [ ]

(32)

In practice, the XC operator is not used explicitly and its form
for metaGGAs is also not easily available.33 Instead the matrix
elements are obtained from the derivative of the XC energy
with respect to the density matrix.
For simplicity, we consider only closed-shell systems in this

subsection. Then, the XC matrix reads

X z z

t t

( )

(( ) ( ))

m m m m

m m

L

L
L

L L L
LL

L
L

L L L
LL

, , ,

, ,

= +

+ · + ·

+

+

(33)

with the LDA and GGA potential z

z
w f

w
f

2
2 ( ) ( )m m m

m
mL

L L
, xc xc= + ·

(34)

and the metaGGA potential vector t

t
w f

4
( )m m mL

L,
, xc=

(35)

where α denotes the Cartesian directions. Here, derivatives of
f xc are always formed at the respective grid point m. The
electron density and its derivatives are also evaluated at these
grid points according to

Dm

L L

L L
L L=

(36)

D ( ) ( )m

L L

L L
L L L L= [ + ]

(37)

D
1
2

( ) ( )m

L L

L L
L L= ·

(38)

For each grid point, only a limited number of basis functions
contributes and therefore the computation of the XC matrix
scales roughly linearly with the number of grid points.
Fock Exchange. Fock exchange is an essential ingredient in

accurate descriptions of the electronic structure of periodic
systems.34 Going beyond local and semilocal approximations
of XC functionals in DFT, it is required for hybrid and range-
separated hybrid-DFT XC functionals, the Hartree−Fock
(HF) method, and as a starting point for advanced approaches
considering electronic correlations such as the MP2 scheme of
Møller−Plesset perturbation theory, the coupled cluster ansatz,
or random phase and GW approximations.34−36

A robust formulation of periodic Fock exchange requires
caution because of the artificial periodicity of the density
matrix for any finite Born-von Kaŕmań supercell size.37−39

From a formal, basis-set-independent point of view the
complications for establishing a robust scheme for Fock
exchange can be seen in real space as follows.20 Considering a
spin-degenerate system, the one-electron density matrix is
given as

fr r r r( , ) 2 ( ) ( )
p

p p p
k

k k k
1 2

,
1 2= *

(39)

with the crystal orbital ψp
k(r1) belonging to band p and

wavevector k as well as the occupation number f p
k. Born-von

Kaŕmań periodic boundary conditions imply that ψp
k(r1) =

ψp
k(r1 + L1) for any supercell lattice vector L1. Thus, from the

definition of the density matrix ρ(r1,r2), the periodicity ρ(r1,r2)
= ρ(r1 + L1,r2) = ρ(r1,r2 + L1) in both spatial arguments
follows for any finite number of employed k-points, but
ρ(r1,r2) should decay with distance |r1 − r2| in the real
crystal.40−44 The unphysical periodicity of the off-diagonal
elements of the one-electron density matrix ρ(r1,r2) will impact
the exchange energy per unit cell of the crystal

E
N

d d
r r r r

r r
r r

1
4

( , ) ( , )

k
X

1 2 2 1

1 2
1 2=

| | (40)

described by a finite Born-von Kaŕmań supercell. Note that this
problem does not appear for the Coulomb energy

J
N

d d
r r r r

r r
r r

1
2

( , ) ( , )

k

1 1 2 2

1 2
1 2=

| | (41)

which depends only on the diagonal part ρ(r1,r1), i.e., the
conventional electron density, which is naturally periodic on
every single (primitive) unit cell.
These formal considerations show that exchange matrix

elements may be divergent for periodic systems as a result of
the artificial periodicity of the off-diagonal elements of the
density matrix if no precautions are taken. In ref 20, we have
presented a robust implementation of the periodic Fock
exchange in TURBOMOLE’s Riper module. We have
compared two truncation schemes for a real-space con-
struction, namely the minimum image convention (MIC)45

and the truncated Coulomb interaction (TCI).46 They both
remove the divergence for discrete k-meshes by basically
restricting off-diagonal elements of the density matrix to just
one Born-von Kaŕmań supercell. Calculations with periodic
Fock exchange may thus be unstable for small Born-von
Kaŕmań supercells, but for a sufficiently large k mesh or size of
the supercell, stable self-consistent field (SCF) calculations and
convergence of total energies are typically achieved. As shown
in Table 1, both MIC and TCI regularization schemes
converge to the same result, but we find the behavior with
the MIC to be generally smoother,20 and therefore recommend
to use this scheme.
The size of the Born-von Kaŕmań supercell or k-mesh that is

required for a reliable exchange energy depends on the locality
of the density matrix and hence both on the electronic
structure of the studied material and on the chosen basis set.

Table 1. Self-Consistent HF Total Energies per Primitive
Cell in Eh for LiH in the Rocksalt Structure with a Lattice
Constant of 4.084 Å46,a

k-mesh MIC TCI

5 × 5 × 5 −8.06060281 −b

7 × 7 × 7 −8.06058890 −b

9 × 9 × 9 −8.06058834 −8.06058764
11 × 11 × 11 −8.06058830 −8.06058831
13 × 13 × 13 −8.06058829 −8.06058829
19 × 19 × 19 −8.06058829 −8.06058829

aPrimitive unit cells with two atoms are calculated for different k-
meshes using the pob-TZVP basis set.47 Adapted with permission
from ref 20. Copyright 2018 American Chemical Society. bBorn-von
Kaŕmań supercell too small.
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For selected insulators and semiconductors, we have
demonstrated that the HF total energy converges exponentially
with the number of k-points.20

Through our implementation of periodic exchange,20

conventional HF calculations can be carried out for periodic
systems of any dimension. In addition, DFT calculations with
global and range-separated hybrid functionals can now be
performed routinely for semiconductors and insulators, and we
showed successful application20 of PBE048 and HSE0649

functionals, respectively. As the next important step, analytical
gradients are needed for structure optimization. The existing
Fock exchange infrastructure can now be used for applying
advanced electronic structure methods to periodic systems that
require an exact exchange.

■ EXTENSION TO A RELATIVISTIC FRAMEWORK
In heavy elements, the electrons in the vicinity of the nucleus
move at a speed close to that of light. Therefore, not only the
laws of quantum mechanics but also those of special relativity
need to be considered. This leads to the framework of
relativistic quantum mechanics.50,51 Here, special relativity can
be described with either pseudopotentials and effective core
potentials52 (ECPs) or all-electron approaches based on the
Dirac equation.53−56 In terms of computational costs, ECPs are
beneficial, as they ”cut out” the core electrons and introduce a
pseudopotential, which accounts for relativistic effects. The
corresponding pseudopotential is parametrized based on all-
electron calculations. ECPs are sufficient for properties that are
associated with the valence electrons such as the chemical
bonding or the structure. Therefore, we will consider
relativistic effects with ECPs in this work.
Relativistic effects are generally partitioned into scalar or

spin-independent contributions and spin-dependent effects,
such as spin−orbit interaction. Scalar-relativistic effects
describe the mass-velocity relation and the Darwin term.
These effects do not lead to structural changes of the KS
equations, i.e., the scalar ECP is included in the equations just
like the electron−nucleus Coulomb potential. Therefore, the
standard one-component (1c) formalism with separate α and β
spin space is sufficient. However, spin−orbit coupling requires
further generalizations, as the spin is not a good quantum
number anymore. That is, the KS wave functions are no longer
eigenfunctions of the spin operator. In other words, the wave
function is a combination of α and β spin contributions.
Moreover, the spin−orbit ECPs are described with complex
operators in position space. These considerations lead to the
two-component (2c) Hamiltonian in the Born−Oppenheimer
approximation given by

H T J V VV0
0 SO

NN= + + [ + ] + (42)

Here, V̂0 denotes the scalar-relativistic ECPs or pseudpoten-
tials, whereas V̂SO refers to the spin−orbit ECPs. Note that V̂SO

is a vector consisting of three spin components. σ0 and σ are
the (2 × 2) identity matrix and the vector of the three Pauli
spin matrices, respectively. T̂, J,̂ and V̂NN are the kinetic-energy
operator, the Coulomb interaction, and the nucleus−nucleus
potential. The operators are of the same form as in
nonrelativistic quantum chemistry. For clarity, we use · to
indicate a scalar product associated with spatial indices, ◦ for
the scalar product of the spin components, and ⊙ for the
simultaneous scalar product. Bold letters are used for vectors

with spin and spatial components, as well as matrix
representations of operators.
The KS Bloch functions are now linear combinations of the

α and β spin contributions. That is, they are so-called spinors
within the LCAO ansatz defined as
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where ϕμ
k is a one-component and spin-independent Bloch

atomic orbital

N
er r( )

1
( )ik

L

k L
L

UC

T
=

(44)

Therefore, the expansion coefficients Cμp are always complex�
even for molecules and at the Γ point. However, the atomic
orbitals μL(r) are still real and the same as in a nonrelativistic
calculation. The two-component KS equations in this
representation follow as

i

k

jjjjjjjj
y

{

zzzzzzzz
i

k

jjjjjjjj
y

{

zzzzzzzz
i
k
jjjjjj

y
{
zzzzzz

i

k

jjjjjjjj
y

{

zzzzzzzz
F F

F F

C

C

S 0

0 S

C

C

k k

k k

k

k

k

k

k

k
k=

(45)

In real space, the elements of the KS matrix read

KF T J V V Xz
L L L L L L L0, SO,= + + + + + (46)

F V V X Kix y
L L L L LSO SO,= + + (47)

F T J V V X Kz
L L L L L L L0, SO,= + + + + (48)

This clearly shows that the α and β spins are coupled. The
kinetic-energy and Coulomb terms are identical to the
nonrelativistic limit.22,23,27 The KS coefficients Ck can be
used to construct a 2c density matrix in reciprocal space in the
same way as that done in the 1c approach. To exploit sparsity,
the integral evaluation for the KS matrix is also done in the
position space. Here, the 2c density matrix from the Fourier
transformation reads

i

k

jjjjjjjj
y

{

zzzzzzzzD
D D

D D
D Dwith ( )L

L L

L L
L L= =†

(49)

To extend an existing 1c code to a 2c framework with minimal
effort, linear combinations of the spin blocks are formed.57,58

This not only reduces memory requirements as the
information encoded in the 2c density matrix is redundant
but also allows one to reuse large parts of the integral and
transformation code. For periodic systems, we form the real
symmetric (RS), real antisymmetric (RA), imaginary anti-
symmetric (IA), and imaginary symmetric (IS) linear
combinations as59

D D D
1
2

Re( )L LRS,RA[ ] = [ ± ]
(50)

D D D
1
2

Im( )L LIA,IS[ ] = [ ± ]
(51)

Note that the same-spin antisymmetric contributions are zero
and symmetry or antisymmetry of the matrix M for periodic
systems refers to the relation
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M ML L= ± (52)

To compare with, only real and symmetric parts are necessary
to describe the matrices in position space within a scalar-
relativistic formalism.
The exact exchange term can be easily computed based on

an existing 1c implementation with minor modifications to
include the antisymmetric linear combinations.59 The full exact
exchange matrix is constructed by reversing the linear
combinations above. Furthermore, these linear combinations
can be used to describe all physical quantities, such as the
electron density and current density. The symmetric
contributions constitute the particle density ρ and the spin
magnetization vector m according to

D DL

L

L
L LL

RS RS= [ + ]
(53)

m D2x
L

L

L
L LL

RS= [ ]
(54)

m D2y
L

L

L
L LL

IS= [ ]
(55)

m D Dz
L

L

L
L LL

RS RS= [ ]
(56)

so that the total 2c spin density60 ρsL = 1/2 (ρLσ0 + mL◦σ)
follows as

i

k

jjjjjjjj
y

{

zzzzzzzz
m m m

m m m

1
2

i

i

z x y

x y z

L
L L L L

L L L Ls =
+

+ (57)

Note that summation over the cell densities again yields the
crystal densities. Compared to the scalar unrestricted Kohn−
Sham (UKS) formalism, all spin directions are simultaneously
considered, and the norm of m results in the spin expectation
value. Other density variables such as the kinetic-energy
density τ are obtained in the same manner, i.e., only the basis
function term on the right-hand side, μL νLL′, is replaced with
1/2[∇μL][∇νLL′]. The antisymmetric linear combinations give
rise to the particle current density j and the spin current
densities Yu with u ∈ {x,y,z} referring to the spin components.

j D D
1
2

L

L

LIA IA= [ + ]
(58)

Y D
1
2

2x
L

L

LIA= [ ]
(59)

Y D
1
2

2y
L

L

LRA= [ ]
(60)

Y D D
1
2z

L

L

LIA IA= [ ]
(61)

L LL L LL= [ ] [ ] (62)

These current densities are only due to the spin−orbit
potential, i.e., no current densities arise in a field-free
nonrelativistic or scalar-relativistic 1c ground-state calculation.
That is, spin−orbit coupling is a form of magnetic
induction.50,61 This also means that the kinetic-energy density

necessitates a generalization to ensure gauge invariance and the
von-Weizsa ̈cker inequality for the iso-orbital condi-
tion.16,17,62−68 In other words, the functional should depend
on the density, its gradient, the kinetic-energy density, and the
current density.
In the following, we will first consider a closed-shell system

for simplicity.15−17,67 For a closed-shell Kramers-restricted
system, the spin magnetization and particle current density
vanish. However, the three spin current densities are still
generally nonzero. The generalized kinetic-energy density for
metaGGAs is then defined as16,17,67

Y Y
2

=
(63)

where τ is the standard kinetic-energy density. Note that the
current densities are not included for LDAs and GGAs. This
directly introduces a dependence of the semilocal XC
functional term on the current density. Therefore, the XC
energy follows as

E f n d

g n d

r r r Y r r

r r r r

( ), ( ), ( ), ( )

( ), ( ), ( )

xc xc

xc

= [ ]

= [ ] (64)

Following the numerical schemes as done in the nonrelativistic
limit, this leads to the 2c XC matrix according to16,17,67
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(65)

with the modified LDA and GGA potential z

z
w g w g

n

w
g

Y Y
2 2 2

2 ( ) ( )

m m m m m m

m

m

m m
m

L
L L

L

, xc
2

xc

xc

= +

+ ·
(66)

and the metaGGA potential vector t in real space

t
w g

4
( )m m mL

L,
, xc=

(67)

Note that the GGA and metaGGA contributions are the same
as in the nonrelativistic limit. However, the spin current
densities lead to a new term in the LDA part of z. The spin
current densities further lead to the vector y in spin space

w g
y

Y
( )

2
( )

( )m
u

m m u

m

mL
L

, xc= ·
(68)

which arises from the application of the chain rule, see ref 67
for details.
For open-shell systems, time-reversal symmetry does not

hold for a single-reference KS solution.69 Here, two distinct
formalisms are available in TURBOMOLE, namely the
canonical15,57,60,67 and the Sclamani−Frisch15,17,59,70−72 ap-
proach. The former is more common and utilizes a projection
onto spin magnetization. The Scalmani−Frisch approach for
current-dependent metaGGAs is presented in ref 17 and we
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note that this formalism avoids the projection onto the spin
magnetization vector m, which is crucial to naturally ensure the
closed-shell limit with all three spin current densities
contributing. Note that validation is strictly possible for the
molecular limit by comparison to calculations in finite
magnetic fields. Here, the current density is required for
gauge-origin independence and translational invari-
ance.17,33,66,67

Not only spin−orbit coupling induces a current density but
magnetic properties73−76 or electromagnetic perturbations in
general.77 Thus, the 2c implementation could be easily
modified to use explicitly current-dependent metaGGAs in
1c RT-TDDFT calculations, as described in the Supporting
Information. Here, the IA contribution of the propagated
density matrix is used to compute the current density. The spin
channels are still fully decoupled in the scalar-relativistic or
nonrelativistic RT-TDDFT framework. That is, the 1c UKS
RT-TDDFT code requires only the particle current density
and the spin-z current density (or the α + β and α − β current
densities). Likewise, the restricted KS code only necessitates
the particle current density. As shown in the Supporting
Information, comparison of RT-TDDFT and the established
linear-response TDDFT framework77,78 with the current
density contribution to the kernel further validated our XC
potential routines for current-dependent metaGGAs.

■ DFT-BASED EMBEDDING
DFT-based embedding methods offer a practical approach to
modeling complex chemical systems by partitioning the total
system into a smaller active subsystem, which is the region of
interest, and a larger environment subsystem. This allows for
the application of complex or higher-level methods to the
active subsystem while treating the less critical environment at
the DFT level. Thus, this allows the study of large systems
efficiently.
Frozen density embedding (FDE)79 and projection-based

embedding (PbE)80 are two prominent DFT-based embedding
techniques. FDE relies on a frozen environment density and an
approximate kinetic-energy density functional (KEDF) to
account for the interaction among the subsystems. PbE, on
the other hand, employs a level-shift projection operator to
enforce orthogonality between the subsystem orbitals,
eliminating the need for approximate KEDFs and enabling
exact embedding calculations, which are especially useful for
strongly interacting subsystems.
This section gives a concise overview of FDE and PbE, as

well as the relevant expressions for the embedding potentials.
Frozen-Density Embedding. FDE, introduced by Weso-

łowski and Warshel,79 is based on the concept of a frozen
environment density. The total electronic density (ρtot) of the
system is expressed as the sum of the individual active and
environment subsystem densities, ρact and ρenv, respectively

r r r( ) ( ) ( )tot act env= + (69)

The total energy (Etot) of the system can be written as a
bifunctional of the subsystem densities

E E E E,tot act env act act env env int act env[ ] = [ ] + [ ] + [ ]
(70)

Here, Eact and Eenv are the individual subsystem energies
calculated using standard KS-DFT, and Eint represents the
interaction energy between the subsystems

E v d v d

E d d

E T

r r r r r r

r r
r r
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, ,s
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env env

nuc
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nuc
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xc
nadd act env nadd act env

[ ] = +

+ +
| |

+ [ ] + [ ]
(71)

Eint includes contributions from the electrostatic interaction
between the nuclei of the two subsystems (∫ ρact(r)vnucenvr)dr +
∫ ρenv(r)vnucact (r)dr); the Coulomb repulsion between the
electrons of the active and environment subsystems

( )d dr rr r
r r

( ) ( )act env

| | ; nonadditive contributions to the

kinetic-energy (Ts
nadd) and XC energy (Exc

nadd) arising from
the interaction between the subsystems. The nonadditive terms
account for the nonlinear nature of the kinetic and XC
functionals. Since the exact form of Ts

nadd is unknown,
approximations have to be employed in practical applications.
Therefore, the accuracy of FDE is limited for systems with
strongly overlapping densities, as the approximate KEDFs may
not accurately account for Pauli repulsion between subsystem
electrons.

Embedding Potential. The density of the active subsystem
(ρact) in the presence of a given frozen environment density
(ρenv) is obtained by minimizing the total energy bifunctional
(eq 70) with respect to ρact while keeping ρenv fixed. This
minimization leads to a set of KS-like equations known as the
Kohn−Sham constrained electron density (KSCED) equations
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(72)

with i = 1, ..., Nact.
The effective KSCED potential (veffKSCED) consists of the

standard KS potential (veffKS) of the active subsystem and the
embedding potential (vemb), that accounts for the interaction
between the active and environment subsystems and is given
by
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(73)

The embedding potential includes contributions from the
nuclear potential of the environment (vnucenv(r)), the Coulomb
potential due to the electrons of the environment (

dr ),r
r r

( )env

| | the nonadditive XC potential ( E
r
,

( )
xc
nadd act env

act
[ ]),

and nonadditive kinetic potential ( T
r
,

( )
s
nadd act env

act
[ ]) terms.

While originally formulated for DFT-in-DFT embedding,
the embedding potential described above has been extensively
utilized for a variety of embedding calculations. These include
applications where the active subsystem is treated using
correlated wave function theory (WFT) methods (WFT-in-
DFT),81,82 many-body perturbation theory methods such as
GW approximation combined with the Bethe−Salpeter
equation (GW/BSE-in-DFT),83−85 and RT-TDDFT-in-
DFT.21,86,87
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While the exact KEDF remains elusive, it would yield a vemb
that, within the FDE framework, could accurately reproduce
the total KS density (ρtot), provided that the environment
density (ρenv) is non-negative and the active subsystem density
(ρact) is vs-representable.

88 This implies that ρenv should never
be greater than ρtot at any point in space, thus ensuring that ρact
= ρtot − ρenv remains non-negative everywhere. However, in
practical applications, fulfilling this criterion is often challeng-
ing. Numerous choices for ρenv can lead to negative regions in
ρact, thereby restricting the choice of usable frozen densities.89
Freeze-and-Thaw and Subsystem DFT. To address the

limitations of the fixed environment density assumption in
FDE, the freeze-and-thaw (FaT) procedure was introduced.90

In FaT, the roles of the active and environment subsystems are
iteratively switched, allowing for self-consistent determination
of subsystem densities. This iterative process, in principle,
leads to more accurate and mutually polarized subsystem
densities.
Once the FaT procedure is performed, there is no formal

distinction between the active and environment subsystems,
leading to the formulation of subsystem DFT (sDFT).
For a more detailed review on FDE and sDFT, we refer the

reader to the reviews in refs 91,92.
Projection-Based Embedding. PbE is an exact DFT-

based embedding method, that eliminates the need for a
nonadditive kinetic potential in vemb, thereby avoiding the use
of approximate KEDFs.80 This is done by enforcing
orthogonality between the subsystem orbitals using a
projection operator, allowing the total kinetic energy to be
expressed as the sum of the individual subsystem kinetic
energies. This makes PbE suitable for even strongly over-
lapping subsystem densities.21,93,94

Various projection operators have been suggested in the
literature such as the level-shift projection operator (LSPO),80

Huzinaga operator95 and Hoffman operator.96 The LSPO has
been implemented in TURBOMOLE, defined as

O P S D Slim limP
env act,env env env,act= =

(74)

where μ is the scaling factor (ideally ∞ but in practical
implementations, set to 106 a.u.), Denv is the density matrix of
the environment, and Sact,env/Senv,act are the overlap matrices
between the basis functions of the two subsystems.
The LSPO replaces the nonadditive kinetic potential, when

vemb is written in the matrix form Vemb

V V J X OPemb nuc
env

elec
env

nadd= + + + (75)

where Vnuc
env and Jelecenv are the environmental nuclear and

Coulomb potential matrices, respectively, and Xnadd is the
nonadditive XC potential matrix.
The approach developed by Manby et al. relies on prior

knowledge of the KS orbitals of the entire system, which are
subsequently partitioned into active and environmental
subsystems.80 In contrast, Chulhai and Jensen proposed a
more efficient method that begins with arbitrary subsystem KS
orbitals and uses FaT cycles to converge to the exact
subsystem densities.93 The latter approach is implemented in
TURBOMOLE.21

■ RT-TDDFT AND ITS EXTENSION TO DFT-BASED
EMBEDDING

RT-TDDFT is a robust method to study the time-dependent
behavior of electrons under external electric fields. It achieves

this by propagating the KS wave function in time, governed by
an effective potential derived from the time-dependent
electron density, ρ(r,t). For practical purposes, particularly
when Gaussian basis sets are employed, the evolution of the
reduced single-particle density matrix is preferred. This is
expressed through the Liouville−von Neumann (LvN)
equation

t
t

t t t t
D

F D D Fi
( )

( ) ( ) ( ) ( )p p=
(76)

where D′(t) and Fp′(t) are the time-dependent density matrix
and the perturbed KS matrix, respectively, in the orthonormal
molecular orbital basis. Within the dipole approximation, the
perturbed KS matrix in the atomic orbital basis is expressed as

t t tF F F( ) ( ) ( )p
E= + (77)

where F(t) represents the KS matrix in the absence of external
fields, and its implicit time-dependence is induced by D(t).
The term FE(t) represents the field-induced contributions,
given by

M EFij
k x y z

ij
k

k
E

, ,

=
= (78)

where Mij
k are the elements of the dipole moment matrices Mk,

defined as

M k dr r r( ) ( )ij
k

i j= (79)

To propagate the system in time, the LvN equation is
integrated using numerical methods.97 The implementation in
TURBOMOLE employs the Magnus expansion to ensure a
unitary propagator, which preserves the idempotency of
D′.98,99 Details of the implementation and its application to
linear-response absorption spectra can be found in ref 18.
Recently, this implementation was adapted to the strong-field
regime to enable simulations of ultrafast phenomena, including
high harmonic generation (HHG), under intense laser
pulses.19 The extension to current-dependent metaGGAs and
hybrids is briefly discussed in the Supporting Information of
the present work.
The coupling of RT-TDDFT with DFT-based embedding

has been a topic of significant interest recently.86,87 This
coupling, referred to as real-time time-dependent density
functional embedding theory (RT-TDDFET) in this work,
allows evolving the active subsystem’s electron density while
keeping the environment density fixed. RT-TDDFET with
LSPO- or KEDF-based embedding potentials is straightfor-
ward to implement. The density matrix of the active
subsystem, D′act(t), evolves according to

t
t

t t t t
D

F D D Fi
( )

( ) ( ) ( ) ( )p p

act

emb
act act act

emb
act=

(80)

where Fp emb′act (t) is the embedded KS matrix of the active
subsystem, in the presence of an external field

t t t tF F V F( ) ( ) ( ) ( )p emb
act act

emb
E= + + (81)

with Vemb(t) representing the embedding potential matrix.
Depending on the embedding approach, Vemb(t) can be
KEDF-based (as in FDE) or LSPO-based (as in PbE).
RT-TDDFET framework enables the study of ultrafast

phenomena and spectroscopic properties in complex and
hybrid chemical systems.
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■ DFT-BASED EMBEDDING COUPLED WITH WFT
(WFT-IN-DFT)

Correlated WFT methods address limitations of KS-DFT with
standard LDA/GGA functionals, such as poor treatment of van
der Waals interactions, charge transfer, and strongly correlated
systems by providing a systematic approach to include electron
correlation. However, state-of-the-art methods like coupled
cluster singles and doubles with perturbative triples CCSD(T),
the “gold standard” for ground-state quantum chemistry, scale
as O(N7), making them feasible only for small systems with
fewer than 50 atoms. The combination of DFT-based
embedding with correlated WFT methods, referred to as
WFT-in-DFT, has proven to be an effective way to improve
the accuracy of both ground and excited state properties
beyond standard DFT81,82,91,94,100−102 for complex and large
chemical systems. This method has been applied in various
contexts, including both KEDF- and LSPO-based embedding.
The key advantage of WFT-in-DFT is that it allows for the
computationally expensive correlated WFT calculations to be
confined only to the region of interest, or the active subsystem,
while treating the surrounding environment with DFT. This
reduces the overall computational cost significantly while still
providing highly accurate results for the active region.
WFT-in-DFT has been particularly successful in accelerating

studies of solvated molecules through molecule-in-molecule
embedding101,103 and in the study of adsorbed molecules on
periodic slabs via molecule-in-periodic embedding.94,102 In
WFT-in-DFT, the embedding potential matrix (Vemb) is added
to the HF Hamiltonian of the active subsystem to obtain the
HF orbitals. A correlated post-HF method, such as CCSD, is
then applied to improve the description of the active
subsystem’s ground and excited states. Ideally, Vemb, which
depends on the active subsystem’s density matrix, should be
updated during both the HF and WFT calculations. However,
in this work, Vemb remains fixed and is constructed from DFT

level subsystem density matrices. The total system’s ground-
state energy (Etot

WFT‑in‑DFT) is calculated by adding a correction
term to the DFT total energy (Etot

DFT), corresponding to the
active region

E E E E( )tot
WFT in DFT

tot
DFT

act
WFT

act
DFT= + (82)

Thus, WFT-in-DFT provides a computationally efficient way
to account for the local correlation in the active region.

■ DFT-BASED EMBEDDING COUPLED WITH
MANY-BODY PERTURBATION THEORY AND
BETHE−SALPETER EQUATION (GW/BSE-IN-DFT)

Green’s function-based many-body perturbation theory
methods, such as the GW approximation104−106 combined
with the Bethe−Salpeter equation107 (GW/BSE), provide
highly accurate excitation energies and exciton binding
energies. The GW approximation improves upon DFT by
considering dynamic screening of the Coulomb interaction,
yielding more accurate quasiparticle energies. The BSE then
incorporates electron−hole interactions, which are crucial for
optical excitations. Combining these (GW/BSE) provides
accurate optical properties.108 However, the high computa-
tional cost of full GW/BSE calculations limits their
applicability to large systems (O(N4) scaling with the system
size).
Therefore, combining GW/BSE with DFT-based embedding

offers a powerful approach to extend its applicability to larger
and more complex systems.83−85,109 This embedded approach,
termed GW/BSE-in-DFT, is similar to the WFT-in-DFT
discussed above and allows for the treatment of the active
subsystem using GW/BSE, while describing the surrounding
environment using DFT. This significantly reduces the overall
computational cost.

GW/BSE-in-DFT calculations are carried out by using the
embedded KS orbitals of the active subsystem to calculate the

Figure 1. Screenshots of Riper-Tools Web App functionalities: (a) Retrieving crystal structures from the Materials Project, (b) Generating RT-
TDDFT input files, (c) Packing molecules into a periodic cell, and (d) Placing adsorbates (molecules) on surfaces.
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GW-in-DFT quasiparticle energies, which are then used to
determine the BSE for excitation energy evaluation. For more
details regarding the implementation, the readers are referred
to ref 109.

■ WEB-BASED INTERFACE FOR CREATING INPUT
FILES AND ANALYZING OUTPUT FILES

One of the primary hurdles for new users of any quantum
chemistry package is the generation of correct input files,
which requires a deep understanding of various keywords and
calculation setup procedures. This is where a user-friendly,
web-based (hence cross-platform) graphical user interface
(GUI) application becomes crucial, significantly reducing the
learning curve and making the software more accessible to a
wider range of researchers.
To this end, Riper-Tools,110 a web-based GUI application

has been developed to simplify the use of the Riper module
in TURBOMOLE. Built using the Streamlit framework,111

Riper-Tools leverages several powerful Python libraries under
the hood to provide a comprehensive suite of tools for creating
input files involving molecular and periodic structures, parsing
and visualizing output files, as well as modeling capabilities.
Figure 1 shows screenshots of some of the functionalities of the
Riper-Tools.
The key components powering Riper-Tools include:
• Streamlit: An open-source Python library that supports

the development of interactive web applications with
minimal coding effort. Its popularity in the machine
learning community is now expanding to computational
chemistry, where it enables the development of
accessible and interactive scientific applications.111

• Py3Dmol: This library provides in-browser, interactive
3D visualization of chemical structures, enhancing user
experience.112,113

• Atomic Simulation Environment (ASE): ASE offers a
standardized interface for handling atomic structures and
performing operations such as creating supercells,
structural translations, and adsorbate placements.114

These features facilitate the preparation and manipu-
lation of structures required for periodic simulations.

• Python Materials Genomics (Pymatgen): With its
powerful capabilities for handling periodic structures,
Pymatgen115 supports essential tasks such as file format
conversions, symmetry analysis,116 and access to
materials databases like the Materials Project,117 thus
enriching the tool’s versatility for periodic system
modeling.

Notable Features of Riper-Tools. Riper-Tools offers a
rich set of features designed to streamline various calculations
using Riper, including:

• Input Generation
• Importing structures from popular databases like

Materials Project117 and PubChem,118 eliminating
many intermediate steps like downloading the
structure in formats like CIF or XYZ and
converting it to TURBOMOLE format, thereby
streamlining the process of getting started with
Riper.

• Converting structure files in popular formats like
CIF, POSCAR, XYZ, and Quantum ESPRES-
SO3,119,120 to the format expected by Riper,
simplifying the process of working with diverse

data sources, making a switch from other packages
to TURBOMOLE convenient.

• Generating input parameters and keywords for
RT-TDDFT calculations, which are typically more
complex to set up manually, as they require the
user to specify various parameters such as electric
field type, strength, frequencies, evolution time,
time step, time evolution algorithm, and so on.18

• Generating input for band structure calculations
can be cumbersome and error-prone when done
manually. Riper-Tools simplifies this by automati-
cally determining high-symmetry k-points based
on ref 121, as facilitated by Pymatgen and ASE,
and generating the necessary input for Riper.

• The web interface also facilitates the creation of
input files for DFT-based embedding calculations.
The users can specify the atoms to be considered
as the active and environment subsystems, as well
as the embedding method and other parameters
conveniently, and download the input and
coordinate files.

• Output Analysis
• Parsing and plotting of RT-TDDFT absorption

spectra from output files.
• Electron density cube file operations, including

addition, subtraction, multiplication, translation,
integration, and planar averaging, enabled by the
CubeToolz122 Python library.

• Density of states (DOS) plotting capabilities after
DOS calculations.

• Band structure plotting after a band structure
calculation.

• Extraction and visualization of key results (e.g.,
energies at each iteration, structure) from Riper
output files.

• Visualization of chemical systems from coord
files using Py3Dmol.112,113

• Modeling
• Supercell creation for large systems or defect

simulations.
• Structure translation within the unit cell for

precise atomic positioning.
• Adsorbate placement on surfaces to study surface-

adsorption phenomena.
• Cell packing with a molecule to create specific

molecular densities.
• Surface orthogonalization, converting nonorthog-

onal surface cells (e.g., hBN monolayer) into
orthogonal cells for ease of modeling.

These features collectively make Riper-Tools a valuable asset
for researchers using the Riper module of TURBOMOLE.
By providing a user-friendly interface and automating many
common tasks, Riper-Tools enhances the accessibility and
efficiency of performing DFT calculations, enabling users to
focus on exploring chemical and materials properties. It is also
worth mentioning that in addition to a detailed documentation
and text tutorials, the web application is accompanied by
hands-on YouTube tutorials on various aspects of quantum
chemistry calculations with TURBOMOLE, created by one of
the authors.123 It is also mentioned in passing that the
TURBOMOLE coord files of both molecular and periodic
systems can now be visualized using CrysX-3D Viewer,124 a
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cross-platform visualization application that runs on Linux,
Mac, Windows, and Android devices.

■ APPLICATIONS
Rashba Splittings and the Importance of the Current

Density. Rashba splitting occurs due to the momentum-
dependent splitting of spin bands in low-dimensional
condensed matter systems, as, for example, in the prominent
transition-metal dichalcogenide monolayers of MoCh2 and
WCh2 (Ch = S, Se, Te) in the hexagonal (2H) phase. Here,
time-reversal symmetry holds, and ϵ+k

↑ = ϵ−k
↓ , however, space-

inversion symmetry does not hold and hence ϵ+k
↑ = ϵ−k

↑ is not
generally true. Therefore, the energies of the spin-up and spin-
down states at a general k-point, e.g., at the K-point may differ.
As presented in ref 16, current-dependent DFT plays an

important role when describing these Rashba splittings, if of
course the underlying functional is at least of kinetic-energy
dependent metaGGA quality. As outlined above, any
metaGGA that depends on the kinetic-energy density should
employ the current-dependent form, in the case of spin−orbit
coupling (SOC) being considered variationally. As this is a
priori required for the accurate description of Rashba effects,
any variational calculation of the latter will be current-
dependent, leading to a considerable error in the obtained

splittings if the spin current density is neglected. Exemplary
results are listed in Figure 2. For comparison, we also include
results with the range-separated GGA hybrid HSE06,49 where
the Fock exchange contribution uses all density matrix part or
excludes the ones associated with the spin current densities Y.
Rashba splittings are shown for two different basis sets, namely
the Karlsruhe dhf-TZVP-2c bases optimized for molecular
calculations125 and the pob-TZVP-rev2 basis optimized for
periodic calculations.126−128 All calculations are carried out
with the latest development version of TURBOMOLE.17 As is
evident from the figure, the choice of basis set strongly affects
the Rashba splittings of the tungsten-based monolayers.
Especially for the strongly current-dependent density

functional approximations r2SCAN131,132 and TASK,133

changes of up to 25% are observed upon the neglect or
inclusion of the current density. These strong effects can be
attributed to the exchange and correlation enhancement
factors employed in the construction of these functionals.
Both TASK and r2SCAN use the same iso-orbital indicator α
to interpolate between iso-orbital and uniform electron gas
limits. This iso-orbital indicator α, itself being constructed
from kinetic-energy densities,137 automatically yielding this
dependence. Still, the effect observed for WSe2 with r2SCAN is
considerably smaller than predicted in ref 138. This is likely

Figure 2. Rashba splittings of the valence band at the K−point for transition-metal dichalcogenide monolayers at the 1c DFT, 2c DFT, and 2c
CDFT level with the PBE,129 TPSS,130 r2SCAN,131,132 TASK,133 and HSE0649 functionals. The application of the CDFT formalism is indicated by
a “c” for the functional acronym. All values in eV. Left panel: dhf-TZVP-2c basis set.125 Right panel: pob-TZVP-rev2 basis set.126−128 All
calculations use a 33 × 33 k-mesh and Dirac−Fock ECPs for Mo (28), Se (10), Te (28), and W(60).134−136 Thresholds, RI auxiliary basis set, and
computational details are the same as in refs 16,17.

Figure 3. Band structures of monolayer MoSe2 computed using different XC functionals: PBE, HSE06, and SCAN0. The direct band gap at the K−
point is indicated for each method, showing a significant increase in the gap from 1.39 eV (PBE) to 2.46 eV (SCAN0), highlighting the role of
hybrid and metaGGA functionals in improving electronic structure predictions.
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caused by the definitions of τ differing by a factor of 2.78 We
chose the definition that ensures gauge invariance within a
static magnetic field66 and consistency within the TDDFT
frameworks78 as shown by a comparison of RT-TDDFT and
linear-response TDDFT in the Supporting Information.
Obviously, TASK has been constructed with a steeper slope
of α, leading to significantly more pronounced effects. Overall,
the absolute magnitude of the effect of current densities on
Rashba splitting depends on the material, although the relative
effect is of the same order of magnitude for each material. This
outlines that for significant Rashba effects, also the impact of
the current density will be significant and therefore must not
be neglected. As further demonstrated in refs 16,17, this is not
the case for simple band gaps, which are rather independent of
the current density.
Band Structure of the MoSe2 Monolayer. To further

illustrate the capabilities of Riper, we present band structure
calculations for monolayer MoSe2 (2H phase). As discussed in
the last paragraph, this system is known for its significant
valence-band splitting at the K point, which arises from SOC
and the lack of inversion symmetry. We calculate the band
structure using the PBE (GGA),129 HSE06 (range-separated
hybrid),49 and SCAN0 (hybrid metaGGA)139 functionals, with
spin−orbit coupling included. The calculations are performed
using the pob-TZVP-rev2 basis set,126,127 Dirac−Fock ECP28
for Mo,135 and a 33 × 33 k-point mesh for sampling the
Brillouin zone (large DFT grid size m5). The monolayer
geometry is obtained from ref 140. Figure 3 compares the band
structures obtained with PBE, HSE06, and SCAN0. The band
gaps computed using PBE (1.39 eV) and HSE06 (1.80 eV)
with Riper are in excellent agreement with plane-wave
benchmark values (PBE: 1.35 eV; HSE06: 1.75 eV).141 The
SCAN0 functional yields a band gap of 2.46 eV, which closely
matches the reference GW value of 2.41 eV.141 With cSCAN0,
a gap of 2.47 eV is obtained. The band structures without SOC
are also shown with gray lines in Figure 3, to underscore the
importance of the proper treatment of SOC for capturing the
valence-band splitting at the K−point.
As mentioned earlier, the Riper-Tools web application can

be used to streamline band structure calculations, such as the
one presented here. The procedure is described briefly as
follows:

1. Upload CIF File. After uploading the crystal structure
(in CIF format) to the web app, ASE and pymatgen
are used to identify the Bravais lattice and to reduce the
cell to its primitive form if necessary (via spglib).

2. 2D Flag and Path Generation. For 2D materials such as
monolayer MoSe2, a dedicated flag generates an
appropriate high-symmetry path in the 2D Brillouin
zone (e.g., Γ → M → K → Γ).

3. Input Snippet Creation. The tool then produces the
necessary snippet for the $kpoints section of the
control file in Riper. An example for MoSe2 is

This can be directly copied to the control file, saving
the user from having to manually define the high-
symmetry path.

Once the calculation is complete, a Python script (available
in the GitHub repository of Riper-Tools142 can be used to
parse the output and plot the resulting band structure with
matplotlib (as the one shown in Figure 3). This end-to-
end workflow, from structure file to plotted band diagram,
significantly simplifies what can otherwise be a tedious process.
Magnetic Transition of a Pt Chain with 2c DFT. One

dimensional Pd and Pt chains are well studied systems to
illustrate the transition of a nanomaterial from a closed-shell
configuration to an open-shell configuration. For a small Pt−Pt
distance, the closed-shell or nonmagnetic electronic config-
uration is lower in energy, while the open-shell state becomes
the ground state with increasing distance.143−147 Figure 4

outlines this behavior at the spin−orbit PBE129 and TPSS130

levels. Here, two Pt atoms are placed in the unit cell, and a
closed-shell solution is found for cell parameters of d = 4.0 to d
= 4.8 Å. That is, an open-shell guess converges into a closed-
shell solution with a vanishing spin magnetic moment.
Additionally, the equilibrium structure is at d ≈ 4.8 Å with
PBE and at d ≈ 4.7 Å with TPSS/cTPSS. The impact of the
current density on the potential energy surface and relative
energies is rather small.
For the open-shell configuration, the spin magnetization can

be aligned parallel or perpendicular to the chain with a two-
component formalism. Here, the energy for the parallel
alignment is more favorable, and the transition to the open-
shell state occurs at smaller cell parameters. Additionally, a
large magnetic moment is observed. This moment increases
from PBE to TPSS and cTPSS. Overall, these results are in
excellent qualitative agreement with previous studies based on
plane-wave approaches at the LDA and PBE level.146

Adsorption Energy of H2O on LiH (001) from WFT-in-
DFT. Predicting adsorption energies is important in under-
standing surface interactions in heterogeneous catalysis,

Figure 4. Magnetic moment in units of Bohr’s magneton μB per atom
for the spin contribution of 2c canonical noncollinear DFT (PBE,
TPSS) and CDFT (cTPSS) approach. Starting with d ≈ 4.8 Å, the
open-shell solutions are energetically favored compared to the closed-
shell solutions, and the spin alignment parallel (para) to the chain is
preferred over the alignment perpendicular (perp) to the chain. The
unit cell includes two Pt atoms. Results collected from refs 15,16 and
plotted for this work. Picture of Pt chain reproduced from ref 16
under a CC BY license. Copyright 2024 the Authors.
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materials science, and environmental chemistry. As shown in
refs 21,148, KEDF-based molecule-in-periodic embedding
coupled with correlated WFT methods can be used to predict
the adsorption energy of molecules highly accurately. For water
(H2O) adsorption on LiH (001) (Figure 5), the LDA
adsorption energy (−474 meV)148 significantly overestimates
the periodic MP2 reference (−219 meV),149 highlighting
LDA’s overbinding tendency.

For WFT-in-DFT embedding calculations, the active
subsystem is defined to include the water molecule and nearby
LiH atoms, while the rest of the slab is treated as the
environment subsystem. By employing KEDF-based molecule-
in-periodic embedding, the MP2-in-LDA adsorption energy is
computed for different fragment sizes (H2O−LinHn with n = 9,
12, 15, and 18 - Figure 5), to assess convergence with respect
to cluster size.148

For the smallest fragment (H2O − Li9H9), the MP2-in-LDA
adsorption energy is −191 meV, converging to −220 meV for
larger fragments (H2O−Li15H15 and H2O−Li18H18), in
excellent agreement with a periodic MP2 adsorption energy
of −219 meV as reported in ref 149.
Interestingly, using the PBE functional, the adsorption

energy is predicted to be −212 meV, which is already quite
close to the MP2 reference. Applying MP2-in-PBE embedding
for the largest fragment further refines the result to −215 meV,
demonstrating that the error-compensation strategy of
embedding (see Section 6) can work in both directions�
reducing or slightly enhancing binding as needed.
These results underscore the potential of DFT-based

embedding in accurately capturing the local correlation effects
in adsorption studies. By selectively applying wave function-
based corrections to key regions of interest, this approach
enables computationally efficient yet highly accurate adsorp-
tion energy predictions. Furthermore, the computational time
is significantly shorter than a full periodic WFT calculation,
only taking as long as a DFT calculation of the total system
plus a molecular WFT calculation of the active subsystem.
Such a framework can be extended to more complex surfaces
and molecular adsorbates, making it a valuable tool for
computational materials design and surface chemistry inves-
tigations.
Optical Gaps of Ionic Solids from GW/BSE-in-DFT.

Accurate optical property predictions in ionic solids are

essential for electronic and optoelectronic applications. GW/
BSE provides highly accurate excitation energies of periodic
systems.
As reported in ref 109, the GW/BSE-in-DFT method

employing a KEDF-based embedding potential achieves a high
level of accuracy in predicting optical gaps for ionic solids such
as MgO, CaO, LiF, NaF, KF, and LiCl, with a mean absolute
error (MAE) of just 0.38 eV compared to experimental values.
The computational efficiency of the method is notable; for
instance, the GW/BSE-in-DFT calculation for the largest LiF
cluster required only 138 s. The excitation energies calculated
by using GW/BSE-in-DFT also demonstrate quick conver-
gence with respect to cluster size. The method’s versatility is
demonstrated by its successful application to calculating the
optical gap of 2D MgCl2 and the excitation energy of an
oxygen vacancy in MgO. The GW/BSE-in-DFT results exhibit
excellent agreement with both experimental and reference
periodic GW/BSE values. Notably, the discrepancy between
GW/BSE-in-DFT and periodic GW/BSE decreases as the ionic
character of the solid increases from LiF to NaF to KF. It is
also shown that the surrounding environment significantly
impacts the excitation energies of the ionic clusters, with the
embedding process leading to excitation energies that are
consistent across different cluster sizes and significantly higher
than those of the isolated clusters. Table 2 summarizes the key
results obtained from GW/BSE-in-DFT calculations for the
largest clusters of each material.

The implementation of GW/BSE-in-DFT within TURBO-
MOLE provides an efficient tool for studying the optical
properties of ionic materials. The method accurately captures
environmental effects, making it a reliable approach. The
method can potentially be applied to other systems with
noncovalent interactions.
HHG in Water Cluster Using RT-TDDFET. HHG in

molecular systems provides valuable insights into the electron
dynamics under intense laser fields. The HHG spectrum is
computed by Fourier transforming the time-dependent dipole
acceleration μ̈(t), which corresponds to the second derivative
of the induced dipole moment with respect to time. The
resulting power spectrum P(ω) is given by

P
t t
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d t

dt
e dt( )
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( )
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2
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f
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where W(t) is the Hann window function used to minimize
edge effects due to the finite simulation time, and [ti,tf]
denotes the total propagation interval. The induced dipole
moment is defined as

Figure 5. Graphical representations of the adsorption configuration of
a water (H2O) molecule on a two-layer LiH (001) slab (center panel)
and the different fragment sizes used for WFT-in-DFT embedding
(surrounding images) Lithium atoms are shown in purple, oxygen in
red, and hydrogen in white. Adapted with permission from ref 148
under a CC BY-NC-SA license. Copyright 2024 the Authors.

Table 2. Comparison of GW/BSE-in-DFT Calculated
Optical Gaps with Experimental and Periodic (PBC) GW/
BSE Valuesa

material GW/BSE-in-DFT experiment GW/BSE (PBC)

MgO 7.71 7.70150 8.10151

CaO 7.43 6.90150 6.90152

LiF 12.09 12.61153 12.99154

NaF 9.82 10.71153 10.64154

KF 9.50 9.76155 9.76154

LiCl 8.94 8.90156 8.80157

aAll results in eV. Adapted with permission from ref 109. under a CC
BY license. Copyright 2024 the Authors.
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t t t tM D( ) ( ) , ( ) Tr ( )j j j j
jind 0= = [ · ] (84)

with Mj and D(t) denoting the dipole moment (eq 79) along
direction j = x, y, z and time-dependent density matrices,
respectively. This formalism is commonly used for HHG in
molecular systems.158−161

It is shown in ref 148 that the HHG spectrum of an isolated
water molecule under an intense laser pulse, simulated using
RT-TDDFT, differs significantly from that of a water molecule
embedded in a (H2O)44 cluster, using the RT-TDDFET
implementation described previously. KEDF-based RT-
TDDFET successfully accounts for environmental effects
while maintaining computational feasibility. A similar study
has also been conducted in ref 87, but with a much smaller
(H2O)5 cluster.
For both the isolated and embedded water molecule, the

HHG spectrum exhibits distinct perturbative, plateau, and
cutoff regions (see Figure 6), consistent with Corkum’s three-
step model.162 The ionization potential (Ip) is calculated to be
12.34 eV, in good agreement with the experimental value of
12.62 eV, and the cutoff energy of 22.3 eV (18th harmonic)
follows the expected cutoff law. Harmonic splitting is observed
due to resonances with optical absorption peaks, highlighting
the role of the electronic structure in the HHG process.
For the embedded water molecule, a redshift in the HHG

cutoff to the 15th harmonic (18.6 eV) is observed, indicating a
∼ 2 eV reduction in Ip. This shift is attributed to environmental
screening effects due to hydrogen bonding and aligns with
previous theoretical and experimental studies on ionization
energy shifts in water clusters.148,163 These results demonstrate
that KEDF-based RT-TDDFET provides an accurate and
computationally efficient framework for modeling nonlinear
optical phenomena in complex environments. Future work
could extend this approach to dynamic hyperpolarizability in
molecular systems.

Ab Initio Molecular Dynamics of Liquid Water.Water’s
fundamental role in life and chemistry is underpinned by its
surprisingly complex behavior despite its simple structure.
Investigating its unusual properties, particularly in the liquid
phase, requires accurate molecular dynamics simulations.
Unlike classical molecular dynamics which uses empirical
potentials, ab initio molecular dynamics (AIMD) directly
computes the forces between atoms using quantum mechanical
methods such as DFT at each simulation step. This
fundamental difference allows AIMD to model phenomena
where the electronic structure adapts to nuclear motion and
chemical bonds are dynamic, making AIMD uniquely suited
for simulating chemical processes involving water. In this
context, to further demonstrate the flexibility of the Riper
module in modeling periodic systems, we perform a short,
demonstrative all-electron AIMD simulation of bulk liquid
water with PBC and obtain insights about its structure.
AIMD simulations are performed using a cubic simulation

cell with a side length of 12.4198 Å containing 64 water
molecules (generated using Riper-Tools), similar to previous
studies.164,166 The optimized geometry is provided in the
Supporting Information. The pob-DZVP-rev2 basis set127 is
employed along with the universal auxiliary basis set for DF.167

A custom ASE calculator is created for Riper and used to
carry out DFT-based AIMD simulation in the NVT ensemble
at a temperature of 300 K, employing the PBE functional with
the D3 dispersion correction168 (PBE+D3)(see Supporting
Information for the Python script). The temperature is
controlled using a canonical sampling through velocity
rescaling (CSVR) thermostat169 for a total of 5 ps (time step
of 0.5 fs), with the initial 2 ps for equilibration, and the
subsequent 3 ps used for the calculation of the oxygen−oxygen
radial distribution function (RDF). The complete trajectory
and the corresponding movie are provided in the Supporting
Information.

Figure 6. HHG spectra of an isolated H2O molecule (a) and an H2O molecule embedded in a (H2O)44 cluster (b), obtained using RT-TDDFT
and KEDF-based RT-TDDFET, respectively. The spectra exhibit characteristic perturbative, plateau, and cutoff regions, with a redshift in the HHG
cutoff observed for the embedded molecule, indicating a reduction in ionization potential due to environmental screening effects. Adapted with
permission from ref 109 under a CC BY-NC-SA license. Copyright 2024 the Authors.
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Figure 7 shows the calculated oxygen−oxygen (O−O) RDF
(gO−O(r)) compared with another theoretical study utilizing

PBE+D3164 as well as X-ray scattering experiments.165 The
calculated RDF exhibits the first peak at r1 = 2.75 Å with peak
height gO−O

max (r) = 3.447. These values are in excellent
agreement with PBE+D3 results (r1 = 2.75 Å and gO−O

max (r) =
3.336) in ref 164, despite the relatively short simulation time.
These values also compare reasonably well with the
experimental data available in the literature. The simulated r1
of 2.75 Å, is quite close to the 2.73 Å,165,170 and 2.80 Å,171

values reported in experiments, suggesting a reasonable
representation of the average oxygen−oxygen distance. The
experimental g(O−O)

max (r) values are reported to range between
2.57 and 3.00 under ambient conditions.165,170,171 The peak
height predicted by PBE+D3 is slightly higher, which is a
known tendency for liquid water simulated with common DFT
approximations such as PBE+D3 at 300 K without additional
corrections or elevated temperatures to implicitly account for
nuclear quantum effects. This overestimation of the first peak
height often indicates an overstructuring of the simulated
water, where the tetrahedral hydrogen bond network is more
pronounced than that in the experiment.
The above result demonstrates that Riper is well-suited for

AIMD simulations of periodic systems. Additionally, instead of
the current all-electron setup, in the future, one could explore
the use of pseudopotentials to further enhance the computa-
tional efficiency.

■ BENCHMARKING AND PERFORMANCE ANALYSIS
FOR CONDENSED MATTER HYBRID-DFT
CALCULATIONS

In this section, we demonstrate the capability of the Riper
module to perform periodic hybrid-functional DFT calcu-
lations for exceptionally large systems with up to 2,736 atoms
and 43,200 basis functions employing desktop workstations.
For a comprehensive assessment of performance, benchmark

calculations are carried out on six chemically and structurally
diverse condensed matter systems: porous aluminum tereph-
thalate (MIL-53),172 faujasite, metal−organic framework-5
(MOF-5),173,174 two differently sized 2D SiO2 slabs, and
bulk (3D) Si and MgO crystalline systems. Their structures are
visualized in Figure 8. These systems are selected to reflect
realistic computational workloads and encompass a broad
spectrum of dimensionalities and bonding environments,

ranging from extended porous 3D frameworks and dense
crystalline solids to layered 2D materials.
MIL-53 is a flexible MOF composed of [M−OH]chains

linked by terephthalate ligands, featuring 1D diamond-shaped
pores that exhibit a reversible “breathing effect” in response to
external stimuli. MOF-5 is a cubic metal−organic framework
composed of Zn4O clusters and benzodicarboxylate linkers,
notable for its high surface area and early application in
hydrogen storage research. Faujasite represents a classical
zeolite structure, while the 2D SiO2 slabs provide insights into
layered material performance at different system sizes. The Si
and MgO crystals represent prototypical bulk (3D) crystalline
systems with fundamentally different bonding characteristics:
covalent semiconductor and ionic insulator, respectively,
allowing for direct comparison of computational efficiency
across distinct electronic structure types.
All calculations are performed using the hybrid B3LYP

functional175 along with the pob-TZVP-rev2 basis set126,127

specifically optimized for periodic systems. Universal auxiliary
basis is employed for DF, although it was originally developed
for molecular systems and may not be fully optimized for
periodic calculations.167 All calculations maintained a con-
vergence criterion of 10−6 Eh for the SCF energy (medium
DFT grid size m3). SCF is carried out at the Γ-point only, and
no space-group symmetry is exploited. Computations are
executed on a high-performance Threadripper Pro 5995WX
system with 64 cores and 512 GB memory. The reported wall
times represent averages from 10 SCF iterations to ensure
reliable benchmarking results.
Table 3 presents a comprehensive analysis of the wall time

and component breakdown for SCF iterations across the test
systems. For the MIL-53 system (2736 atoms and 3D PBC),
which represents the largest system considered in this study,
each SCF iteration takes 146 min on average. This is followed
closely by the large 2D SiO2 slab (1728 atoms and 2D PBC),
requiring 129.8 min per iteration. It is worth emphasizing that
periodic hybrid-DFT calculations of this magnitude are quite
rare in the literature and are generally restricted to massively
parallel computing environments with thousands of cores.176

The fact that such calculations can be performed on a standard
workstation underscores the exceptional efficiency of the
Riper module and makes these demanding simulations more
accessible to researchers with modest hardware.
A detailed examination of the time distribution across

computational components reveals interesting trends that
highlight the module’s efficiency. For the largest systems
(MIL-53 and large 2D SiO2), the total time required for KS
matrix construction�comprising Coulomb (J), exchange (K),
and XC contributions�constitutes less than 31% of the total
wall time. This demonstrates the remarkable efficiency of the
various algorithms implemented in the Riper module. For
these large systems, the diagonalization step dominates the
computational cost, consuming 62.3% and 65.9% of the total
time for MIL-53 and large 2D SiO2, respectively. This is
expected given the exceptionally large matrices resulting from
the significant number of basis functions (43,200 for MIL-53
and 35,136 for large 2D SiO2).
The next most time-consuming component is the K matrix

construction, which requires approximately 25% of the total
time for the largest systems. Notably, the J matrix construction
is highly efficient, taking only 6.2% for MIL-53 and 2.5% for
large 2D SiO2. Even more impressive is the negligible time
required for XC matrix construction (0.2% and 0.1% for MIL-

Figure 7. O−O radial distribution function gO−O(r) calculated using
PBE+D3 compared with a similar calculation in ref 164 and
experimental data.165 Inset shows the snapshot at 5 ps.
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53 and large 2D SiO2, respectively), which takes significantly

less time than miscellaneous operations such as octree

preparation, shell indices list construction, grid generation,

and reading the initial guess from disk.

The computational profile changes significantly for medium-
sized systems such as faujasite (3D PBC, 576 atoms), Si (3D
PBC, 512 atoms), MgO (3D PBC, 512 atoms), and MOF-5
(3D PBC, 424 atoms), as well as the smaller 2D SiO2 system
(2D PBC, 144 atoms). For these systems, the K matrix

Figure 8. Graphical depiction of periodic systems used in benchmarking the Riper module, including MOFs (MIL-53, MOF-5), a zeolite
(faujasite), layered 2D SiO2, and 3D dense crystals (Si and MgO). For each system, unit cell dimensions, number of atoms, electrons, and Gaussian
basis functions are provided. Visualization generated using CrysX-3D Viewer.124

Table 3. Wall Time per SCF Iteration (Minutes) and Component Breakdown (Percent) for Various Systems; Hybrid B3LYP
Functional and pob-TZVP-rev2 Basis Sets

system Natoms Nelec Nbf (cart) Total (min) J (%) K (%) XC (%) diag (%) misc (%)

MIL-53 2736 15264 43200 146.0 6.2 24.6 0.2 62.3 6.7
Faujasite 576 5760 11712 5.5 18.5 62.0 1.0 10.6 7.9
MOF-5 424 3040 7672 2.2 7.9 61.5 1.4 18.9 10.3
2D SiO2 (small) 144 1440 2928 0.6 19.0 67.0 3.0 7.7 3.3
2D SiO2 (large) 1728 17280 35136 129.8 2.5 25.9 0.1 65.9 5.6
3D Si 512 7168 11776 20.1 18.7 56.3 0.6 20.7 3.7
3D MgO 512 5120 9984 22.8 31.4 54.2 0.8 11.1 2.5
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construction becomes the dominant computational bottleneck,
consuming 54.2−67% of the total wall time, while diagonaliza-
tion becomes less demanding, in contrast to MIL-53 and large
2D SiO2. However, even for these smaller systems, the XC
matrix construction remains remarkably efficient, requiring
only 1−3% of the total computation time.
A direct comparison between the Si and MgO supercells,

both containing 512 atoms, reveals interesting computational
differences, despite their similar system sizes. While both
require similar wall times for SCF (∼20 min), the MgO system
exhibits significantly higher Coulomb matrix (J) construction
time (31.4% vs 18.7% for Si), nearly doubling the computa-
tional cost. This increased J time for MgO arises from the ionic
nature of the Mg−O bonds, which creates a more challenging
electrostatic environment with stronger and longer-range
Coulomb interactions compared with the covalent Si−Si
bonds. Conversely, the diagonalization step is more efficient
for MgO (11.1% vs 20.7% for Si), likely due to the smaller
basis set requirements (9,984 vs 11,776 basis functions), fewer
electrons, and the more localized electronic structure of the
ionic system, which leads to sparse matrices and faster
diagonalization. Interestingly, faujasite with a similar system
size as Si and MgO takes significantly less time (only 5.5 min)
for a single SCF iteration. This is attributed to its porous
nature, thereby requiring much fewer integral evaluations due
to fewer overlapping basis functions.
Scaling behavior is another important aspect of computa-

tional efficiency. Comparing the small and large 2D SiO2
systems provides valuable insights into this. When increasing
from 144 to 1728 atoms (a factor of 12), the total wall time
increases from 0.6 to 129.8 min, indicating favorable
subquadratic scaling overall. Examining individual components
reveals even better scaling characteristics: the Coulomb term
scales nearly linearly, increasing from 6.6 to 199 s, while the
XC term demonstrates excellent linear scaling, growing from 1
to 11 s. The exchange term exhibits subquadratic scaling,
increasing from ∼ 24 s for the 144-atom system to ∼ 2020 s for
the 1728-atom system.
These benchmarking results demonstrate that the Riper

module offers an efficient implementation for periodic DFT
calculations, making it possible to study complex systems with
thousands of atoms on modest computational hardware. The
module’s favorable scaling characteristics and efficient matrix
construction algorithms represent a significant advancement in
making high-level quantum chemical calculations accessible for
realistic periodic systems.

■ CONCLUSIONS AND SUMMARY
The periodic DFT framework in TURBOMOLE, implemented
through the Riper module, has undergone continuous
development to improve its accuracy and efficiency for
modeling extended systems. By employing Gaussian-type
basis sets and resolution-of-identity techniques, the method
provides a computationally efficient approach to studying
periodic materials, surfaces, and interfaces, while maintaining a
reasonable balance between cost and accuracy. Recent
extensions have introduced additional functionalities, broad-
ening the range of possible applications.
One of the most significant developments is the incorpo-

ration of spin−orbit coupling and relativistic effects within a
two-component formalism. These features are particularly
relevant for materials containing heavy elements, where
relativistic interactions influence the electronic structure,

magnetic properties, and optical behavior. The use of
Gaussian-based real-space methods allows for an efficient
treatment of these effects within the periodic DFT framework,
making it possible to study systems that require a relativistic
description.
Another notable improvement is the implementation of

hybrid functionals and exact exchange methods for periodic
calculations. Hybrid DFT provides better accuracy for
properties such as band gaps and reaction energetics compared
to conventional GGA functionals. The use of DF techniques
and fast multipole methods has improved the computational
feasibility of hybrid functionals in periodic systems, enabling
more accurate predictions for semiconductors, insulators, and
correlated materials.
Embedding methods have also been integrated, allowing for

multiscale simulations that combine different levels of theory.
Techniques such as FDE and PbE make it possible to treat
specific regions of a system with higher accuracy, while keeping
the rest of the environment at a lower computational cost. This
is particularly useful for studying localized electronic states,
adsorption phenomena, and heterogeneous interfaces.
The recent extension of RT-TDDFT to range-separated

hybrid functionals broadens the scope of simulations of
electronic dynamics. This approach allows for the study of
light-induced excitations, nonlinear optical responses, and
ultrafast electronic processes in periodic systems. The real-time
propagation scheme avoids perturbative assumptions and
enables direct modeling of nonequilibrium phenomena.
These methodological improvements enhance the versatility

of periodic DFT calculations in TURBOMOLE, making them
applicable to a wide range of problems in quantum chemistry,
materials science, and condensed matter physics. Development
efforts have focused on balancing accuracy, computational
efficiency, and usability, ensuring that the methods are practical
for studying electronic structure in extended systems.
Future improvements are expected to focus on further

optimization of computational efficiency, better scalability for
large systems, and integration of more advanced electron
correlation methods, such as Møller−Plesset perturbation
theory and coupled cluster approaches.
Overall, the recent developments in periodic DFT within

TURBOMOLE provide a robust framework for studying a
wide range of electronic and structural properties in extended
systems. The implemented methods offer a balance between
computational cost and accuracy, making them practical for
both routine applications and more complex problems
requiring a higher level of theory.
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