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Data privacy is a significant concern when using numerical simulations for sensitive information such as medical, 
financial, or engineering data—especially in untrusted environments like public cloud infrastructures. Fully 
homomorphic encryption (FHE) offers a promising solution for achieving data privacy by enabling secure 
computations directly on encrypted data. Aimed at computational scientists, this work explores the viability of 
FHE-based, privacy-preserving numerical simulations of partial differential equations. The presented approach 
utilizes the Cheon-Kim-Kim-Song (CKKS) scheme, a widely used FHE method for approximate arithmetic on real 
numbers. Two Julia packages are introduced, OpenFHE.jl and SecureArithmetic.jl, which wrap the OpenFHE 
C++ library to provide a convenient interface for secure arithmetic operations. With these tools, the accuracy 
and performance of key FHE operations in OpenFHE are evaluated, and implementations of finite difference 
schemes for solving the linear advection equation with encrypted data are demonstrated. The results show that 
cryptographically secure numerical simulations are possible, but that careful consideration must be given to 
the computational overhead and the numerical errors introduced by using FHE. An analysis of the algorithmic 
restrictions imposed by FHE highlights potential challenges and solutions for extending the approach to other 
models and methods. While it remains uncertain how broadly the approach can be generalized to more complex 
algorithms due to CKKS limitations, these findings lay the groundwork for further research on privacy-preserving 
scientific computing.

1. Introduction

Partial differential equations (PDEs) are used to model phenomena 
across scientific fields ranging from physics and engineering to biology 
and finance. Since many PDEs cannot be solved analytically, numerical 
methods are used to approximate their solutions in scientific, industry, 
and business applications. In certain cases, the input data and simulation 
results involve highly sensitive information—such as personal health 
records, financial details, or proprietary engineering designs—that must 
be appropriately safeguarded. For instance, finite element simulations 
of the aorta used in personalized approaches for treating cardiovascular 
disease rely on patient-specific data [1,2]. These datasets must be han
dled securely to comply with regulations like the General Data Protec
tion Regulation (GDPR) in the European Union or the Health Insurance 
Portability and Accountability Act (HIPAA) in the United States, posing 
challenges for scientific research as well as practical implementations 
[3,4]. Another example arises in population genetics, where the evolu
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tion of gene frequencies has long been modeled by reaction-diffusion 
equations [5--7] that are solved numerically [8--10]. A practical issue 
here is working with combined datasets from multiple providers (which 
do not trust each other), while protecting the privacy of individual ge
netic information [11--13].

To safeguard data, encryption is commonly employed both at rest 
and during transmission. However, once the data is decrypted for pro
cessing, it becomes vulnerable to attacks. The data privacy risks associ
ated with decryption for processing become pronounced when data must 
be processed remotely, as is often the case with public cloud computing 
platforms. Limited local resources or the need for distributed systems 
may necessitate offloading computations to external cloud infrastruc
tures, thereby exposing decrypted data to potential attacks. With the 
rapid expansion of cloud computing [14], ensuring data privacy during 
computation has emerged as a pressing concern for both practitioners 
and researchers [15,16].
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A possible solution to this conundrum is the use of what is known 
as fully homomorphic encryption (FHE). With FHE, it is possible to per
form computations directly on the encrypted data. That is, the re
sult of an operation will be same as if the data had been decrypted 
first, processed, and then encrypted again. Since in case of FHE the 
data is never available in plaintext, even a fully compromised com
pute system would not leak any sensitive information. The notion of 
homomorphic encryption (homomorphisms) was introduced by Rivest, 
Adleman, and Dertouzos, who in 1978 suggested that such a scheme 
might be possible [17]. The first viable scheme was proposed much 
later by Gentry in 2009 [18], when he showed that fully homomor
phic encryption is achievable using lattice-based cryptography. Since 
then, several FHE schemes have been proposed, with the Cheon-Kim
Kim-Song (CKKS) scheme being the most popular option for compu
tations with real numbers [19]. Other commonly used schemes in
clude the Brakerski/Fan–Vercauteren (BFV) [20,21] and Brakerski--
Gentry--Vaikuntanathan (BGV) [22] schemes for computations with 
integers, and the Ducas–Micciancio (DM/FHEW) [23] and Chillotti--
Gama--Georgieva--Izabachene (CGGI/TFHE) [24] schemes for evaluat
ing Boolean and small-integer arithmetic circuits. A good overview of 
FHE schemes and their applications can be found in [16].

Fully homomorphic encryption schemes represent an active field of 
research, and applications of FHE schemes are used in disciplines such 
as privacy-preserving machine learning [25], analysis of encrypted med
ical or genomic data [13,26--28], or for processing data in financial 
services [29]. One area where FHE has yet to be applied is the field of 
computational physics. There are mainly three reasons for this: First, the 
concept of FHE is still new and not well known outside of the cryptog
raphy community. Second, while there are some excellent open-source 
libraries available for FHE, they currently require a high level of exper
tise to use. Third, since FHE only supports a very limited subset of the 
usual arithmetic operations, implementing secure numerical algorithms 
is not straightforward and requires a good understanding of FHE. In this 
paper, we aim to address these issues by examining fully homomorphic 
encryption from a scientific computing perspective and introducing it 
to the computational physics community.

Two representative scenarios highlight the practical relevance of 
FHE-secured numerical simulations. Both involve a data owner (holding 
sensitive model parameters or input data) and a compute provider (of
fering computational resources and/or proprietary simulation software). 
In the first scenario, the data owner must ensure the confidentiality 
of the input data, for example, a medical researcher running patient
specific simulations on a public cloud platform. In the second scenario, 
both parties require confidentiality: the input data must remain private, 
and the compute provider must protect intellectual property in the sim
ulation code. One example is the use of proprietary multiphysics solvers 
to analyze sensitive design data in aerospace or energy applications. In 
both scenarios, the workflow proceeds as follows: the data owner lo
cally encrypts the input using a homomorphic encryption scheme such 
as CKKS and transmits the ciphertexts to the compute provider. The 
provider runs the numerical simulation directly on the encrypted data 
and returns the encrypted results. Decryption and post-processing are 
then performed locally by the data owner.

To explore the feasibility of secure simulations in a scientific comput
ing context, this paper is structured as follows: Sec. 2 begins with a brief 
overview of the CKKS scheme for computational scientists. Moreover, 
we introduce the open-source C++ library OpenFHE and the Julia pack
ages OpenFHE.jl and SecureArithmetic.jl, which provide a convenient 
interface for secure arithmetic operations in Julia for rapid experimen
tation. We then use these packages in Sec. 3 to analyze the performance 
and accuracy of basic FHE operations to establish a baseline for more 
complex algorithms. In Sec. 4, we implement several finite difference 
schemes to solve the linear advection equation using FHE. They serve 
as prototypes for FHE-secured numerical simulations, and their perfor
mance and accuracy are analyzed in Sec. 5. While secure numerical 
simulations through FHE are feasible, the computational overhead is 

Fig. 1. Comparison of data processing in the clear (top path) to processing it 
under homomorphic encryption (bottom path). Everything within the hatched 
area is secure, allowing one to process sensitive information in untrusted envi
ronments.

currently significant for many practical scenarios, and the encryption
induced numerical errors must be taken into account when designing 
applications. Sec. 6 explores challenges and potential solutions for ex
tending secure numerical simulations to other mathematical models and 
numerical methods. Finally, we summarize our findings in Sec. 7 and 
provide an outlook on future work. All code used in this paper, as well 
as the data generated during the experiments, is available in our repro
ducibility repository [30].

2. Fully homomorphic encryption

The fundamental concept of homomorphic encryption is to perform 
operations on encrypted data without decrypting it first. This is achieved 
by using a special encryption scheme that allows for the evaluation 
of arbitrary functions on encrypted data, such that the result—once 
decrypted—is the same as if the data had been processed in the clear. 
Thus, in a sense, a homomorphic encryption scheme is transparent to 
the application of arbitrary functions to the data. This is illustrated in 
Fig. 1, where some data 𝑥 is first homomorphically encrypted, then pro
cessed into 𝑓 (𝑥), and finally decrypted (bottom path). This yields the 
same result as if the data had been directly processed in the clear (top 
path).

With partially homomorphic encryption, only one type of arithmetic 
operation can be performed on the encrypted data, i.e., either addi
tion or multiplication. Leveled homomorphic encryption allows both ad
dition and multiplication, supporting arbitrary computation circuits of 
bounded (pre-determined) depth. Finally, fully homomorphic encryption 
(FHE) enables the evaluation of arbitrary functions of unbounded com
plexity on encrypted data, and is thus the most powerful type of homo
morphic encryption.

We begin with a high-level overview of the CKKS scheme for fully 
homomorphic encryption of real numbers, followed by a brief introduc
tion to the software packages developed for and used in this work. The 
discussion is intended for computational scientists unfamiliar with cryp
tography. A more comprehensive treatment of the underlying principles 
can be found in [31].

2.1. Secure approximate arithmetic with the CKKS scheme

The CKKS (Cheon-Kim-Kim-Song) scheme [19] is a fully homomor
phic encryption method for approximate arithmetic on real numbers, 
built upon the BGV scheme for FHE with integers [22]. It obtains its 
security from the ring learning with errors (RLWE) problem, which is a 
specialization of the learning with errors problem [32] for polynomial 
rings over finite fields [33]. Like other FHE methods, CKKS can be used 
either as a symmetric encryption scheme (a single key for encryption and 
decryption) or an asymmetric encryption scheme (a public key for en
cryption and a separate private key for decryption). In this manuscript, 
we solely focus on its use in the asymmetric encryption context.

Fig. 2 outlines the general procedure when using CKKS for FHE. We 
start with the raw user data 𝑑, which in case of the CKKS scheme is typi
cally a vector of double-precision floating point numbers (complex num
bers are also supported by the CKKS scheme, but they are rarely used in 
practice). This data is first mapped to a suitable polynomial represen
tation, called the plaintext 𝑝. The plaintext can then be encrypted using 
the public key to obtain the ciphertext 𝑐. The ciphertext 𝑐 is now ready 
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Fig. 2. CKKS overview (following [34]). 

to be processed by some arbitrary function 𝑓 , which yields another ci
phertext 𝑐′ = 𝑓 (𝑐). Finally, the result can be decrypted using the private 
key to obtain the plaintext representation 𝑝′ = 𝑓 (𝑝), and then decoded 
back to a vector of real numbers 𝑑′ = 𝑓 (𝑑), which is the desired output.

The encrypted ciphertext is obtained by adding a random mask gen
erated via RLWE to the plaintext in a controlled manner, effectively hid
ing the raw data behind a veil of randomness. The computational secu
rity of the CKKS scheme, just like any other FHE scheme based on RLWE, 
relies on the mathematical complexity of solving a noisy high-dimension 
linear system of equations. This task remains computationally infeasible, 
even for quantum computers. However, in CKKS the noise also intro
duces a small error in the computations that is not fully recoverable 
during the decryption procedure. In this sense, the CKKS scheme is an 
approximate arithmetic method (which distinguishes it from exact FHE 
schemes, such as BGV and BFV), and the results of CKKS computations 
are always subject to some level of approximation error. The magnitude 
of this error depends on the parameters of CKKS and the number and 
type of operations performed while evaluating the function 𝑓 .

In terms of arithmetic operations that can be evaluated on the cipher
text, the CKKS scheme supports element-wise addition and multiplication 
with ciphertexts, plaintexts, or scalar values, as well as rotation op
erations. The rotation operation performs a circular shift of the data 
elements in the ciphertext. That is, it moves the data elements by a 
fixed number of positions while preserving their order, with elements 
that are shifted out of one end being reintroduced at the opposite end. 
Rotations are essential for implementing higher-level operations such 
as vector summation or matrix-vector products. From these three basic 
operations, more complex functions can be constructed. Each of these 
operations introduces a small amount of noise into the ciphertext, which 
slightly degrades the accuracy of the underlying plaintext data. More
over, multiplication substantially increases the internal noise level of the 
ciphertext, to the point where it can eventually prevent correct decryp
tion. To avoid this, a process known as rescaling is applied to keep the 
noise level in check. Due to this, and because of how the CKKS scheme is 
constructed, the multiplicative depth of computations in CKKS, i.e., the 
number of consecutive multiplications, is limited to a fixed number of 
levels. To overcome this limitation, a technique called bootstrapping can 
be applied after all levels of a ciphertext are used. This bootstrapping 
procedure resets the available multiplicative depth in the ciphertext, 
enabling more computations. Since bootstrapping may be used repeat
edly, it effectively removes the restrictions on the algorithmic depth of 
computations in CKKS (for many practical applications where approxi
mation error growth is limited).

Remark 2.1. With the availability of addition, multiplication, and ro
tation as arithmetic operations, the CKKS scheme is indeed capable of 
evaluating arbitrary functions on encrypted data. However, the restric
tion to just these three basic operations means that, in practice, iterative 
procedures or polynomial approximations are required to evaluate even 
moderately complex functions. For example, to determine the multi
plicative inverse of a number (e.g., for a division operation), variants of 
the Newton-Raphson method [35] or Goldschmidt’s algorithm [36] are 
often used. ⊲

In the following sections, we discuss the CKKS scheme and its main 
operations in more detail. For clarity, scalar quantities (including poly

nomials) are written in regular font, while vectors are denoted by bold 
font. While not strictly necessary to understand the remainder of the 
paper, these sections provide a useful background for the subsequent 
sections, especially for readers unfamiliar with FHE methods. Good 
high-level descriptions of the CKKS scheme can also be found in, for 
example, [37--39].

2.1.1. Plaintext encoding and decoding

The encoding mechanism converts the user data from a represen
tation as a vector of double-precision floating point numbers into a 
polynomial representation. Polynomials in the CKKS scheme are cyclo

tomic polynomials  = ℤ[𝑋]∕(𝑋𝑁𝑅 + 1) with 𝑁𝑅 integer coefficients, 
where 𝑁𝑅 is always a power of two and is called the ring dimension. The 
batch size or capacity, i.e., the number of slots available for packing data 
into a plaintext, is also a power of two and can be at most as large as 
half the ring dimension 𝑁𝑅∕2.

For encoding, the input vector is treated as coefficients of a poly
nomial. This polynomial is first converted to a new representation by 
evaluating it at complex roots of unity of the 𝑁𝑅-th cyclotomic poly
nomial using a procedure resembling an inverse Fast Fourier Transform 
(FFT). This enables component-wise vector multiplication using FHE. 
The result of the inverse FFT is then scaled by a large value, the scaling 
factor (or scaling modulus), and rounded to the nearest integer values 
to make it compatible with RLWE. At this point, the data is still not en
crypted. Due to the limited precision of (double) floating-point numbers 
and rounding error, the encoding step already introduces a small error 
into the data.

The decoding mechanism downscales the integers back to floating
point values and then converts the polynomial back into a data vector 
by evaluating the polynomial at the complex roots of unity, an opera
tion similar to forward FFT. The noise increase brought about by this 
operation is typically negligible as the error introduced by the decoding 
operation is usually smaller than the existing approximation error result
ing from prior CKKS operations, such as encryption and computations.

2.1.2. Levels and ciphertext modulus

CKKS is a leveled FHE scheme (with bootstrapping), where a freshly 
encrypted ciphertext starts with a level 𝑙 > 0. With each multiplication of 
the ciphertext, the level 𝑙 is decreased by one until 𝑙 = 0. Once the level 
reaches zero, no more multiplications are possible with this ciphertext. 
Bootstrapping, as discussed in Sec. 2.1.8, alleviates this restriction by 
resetting the level to a value greater than zero. Addition or rotation 
operations typically do not consume levels.

Therefore, we usually set FHE parameters using the desired mul
tiplicative depth of the computation. We denote the maximum mul
tiplicative depth as 𝑙max. Based on the multiplicative depth, precision 
requirements, and security level, two main lattice parameters are con
figured: ring dimension 𝑁𝑅 (as described in Section 2.1.1) and ciphertext 
modulus 𝑄.

The ciphertext modulus gets reduced after each multiplication by the 
rescaling operation. This operation discards the least significant part of 
the ciphertext—analogous to truncation in floating-point arithmetic�-
thereby controlling noise growth and maintaining a fixed scale for sub
sequent operations. Its purpose is explained later in Sec. 2.1.6. It is thus 
convenient to use the notation of 𝑄𝑙 , where 𝑙 is the current level. We 
start with 𝑙 = 𝑙max, i.e., 𝑄 =𝑄𝑙max

.
At a more granular level, the ciphertext modulus is a product of 𝑙+1

factors and is represented as 𝑄𝑙 = 𝑞0 ⋅ 𝑞1 ⋅ 𝑞2… 𝑞𝑙−1 ⋅ 𝑞𝑙 . The rescaling 
operation reduces the ciphertext modulus from 𝑄𝑙 to 𝑄𝑙−1. 𝑞0 is the 
decryption modulus (often called the first modulus), and for 𝑖 = 1… 𝑙, 𝑞𝑖
is equal (exactly or approximately) to the scaling factor.

For efficiency, the OpenFHE implementation of CKKS (which we use 
in this paper, see also Sec. 2.2) uses the Residue Number System (RNS) 
representation of large numbers, with all values 𝑞𝑖 being co-prime. For 
the RNS implementation and a fixed ring dimension 𝑁𝑅 , most of FHE 
operations scale approximately linearly with the level 𝑙 [40].
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2.1.3. Encryption and decryption

CKKS is a public key encryption scheme with two keys, a public and 
a private one. The public key 𝐩𝐤 is used for encryption and can be safely 
shared, while decryption uses the private key 𝐬𝐤. The public key is gen
erated using three polynomials: a uniformly random polynomial 𝑎, a 
small secret polynomial 𝑠, and a small error polynomial 𝑒pk . The secret 
key is defined as

𝐬𝐤 = (1, 𝑠) (1)

and the public key is defined as

𝐩𝐤 ∶= (pk0,pk1) = (−𝑎 ⋅ 𝑠+ 𝑒pk , 𝑎) (mod 𝑄𝑙), (2)

where ⋅ denotes polynomial multiplication. The term pk0 ∶= −𝑎 ⋅ 𝑠+ 𝑒pk
corresponds to the RLWE problem, which can be informally stated as 
follows: if 𝑎 and pk0 are given, it is computationally hard to find 𝑠 (and 
𝑒pk ). Furthermore, we use (mod 𝑄𝑙) to emphasize where arithmetic 
operations are performed modulo the current ciphertext modulus 𝑄𝑙 . 
The error polynomial 𝑒pk is essential for the security of the scheme, as 
it prevents an attacker from recovering the secret 𝑠 from the public key 
𝐩𝐤 by solving the corresponding linear systems of equations.

To encrypt the data previously encoded in the plaintext message 𝜇, 
which itself is a polynomial, three small random polynomials are gener
ated: 𝑢, 𝑒1, and 𝑒2. The public key 𝐩𝐤 is then used to encrypt the encoded 
data into a ciphertext 𝒄 = (𝑐0, 𝑐1) as follows:

𝑐0 = pk0 ⋅ 𝑢+ 𝑒1 + 𝜇 = (−𝑎 ⋅ 𝑠+ 𝑒pk) ⋅ 𝑢+ 𝑒1 + 𝜇 (mod 𝑄𝑙),

𝑐1 = pk1 ⋅ 𝑢+ 𝑒2 = 𝑎 ⋅ 𝑢+ 𝑒2 (mod 𝑄𝑙).
(3)

As can be seen from Eqn. (3), a ciphertext always consists of a pair of 
polynomials. Similar to the public key before, the plaintext message is 
masked by the pseudorandomness coming from the RLWE problem.

To decrypt the encrypted data 𝒄 = (𝑐0, 𝑐1), the private key 𝐬𝐤 is used 
to obtain an approximate value of the plaintext message 𝜇̃ by computing 
the inner product ⟨⋅, ⋅⟩ of the ciphertext 𝒄 with 𝐬𝐤 as

𝜇̃ = ⟨𝒄, 𝐬𝐤⟩ = 𝑐0 + 𝑐1 ⋅ 𝑠 (mod 𝑄𝑙)

= 𝜇 + 𝑒pk ⋅ 𝑢+ 𝑒1 + 𝑒2 ⋅ 𝑠 = 𝜇 + 𝑣 ≈ 𝜇,
(4)

where 𝑣 = 𝑒pk ⋅ 𝑢+ 𝑒1 + 𝑒2 ⋅ 𝑠 is small compared to the plaintext message 
𝜇 by construction. Thus, the decryption operation is not exact and adds 
a small error to the decrypted data.

2.1.4. Addition

Addition of two ciphertexts is done by adding the corresponding 
polynomials element-wise, i.e.,

𝒄
′ = 𝒄 + 𝒄̂ = (𝑐0 + 𝑐0, 𝑐1 + 𝑐1) (mod 𝑄𝑙). (5)

This operation results in an error growth from 𝑒 to 𝑒 + 𝑒 in decrypted 
data, which is still small compared to the data itself [19]. To add a plain
text to a ciphertext, the plaintext is encoded and then extended to the 
ciphertext space (no additional error is introduced by this operation). 
Addition of ciphertexts and scalars is done similarly (but no encoding is 
needed in this case).

2.1.5. Key switching

Unlike addition, the two other basic arithmetic operations, multipli
cation and rotation, require executing a special maintenance procedure 
called key switching. This key switching procedure needs an additional 
public key, which is often called an evaluation key or key-switching 
hint/key. We use the term evaluation key in the paper.

Key switching is necessary because a multiplication or rotation trans
forms both the encrypted message and the underlying secret key. To 
transform the resulting ciphertext back to the original secret key, we per
form the key switching procedure using a properly generated evaluation 
key. The evaluation key is essentially an encryption of the transformed 
secret key under the original secret key, which is done in a way that 
minimizes the noise increase associated with key switching.

In CKKS, the key switching procedure is more computationally ex
pensive than the actual multiplication or rotation. This is because key 
switching involves multiple number-theoretic transforms (a specialized 
version of the discrete Fourier transform), which dominate the over
all cost of these encrypted operations in practice [28,41]. As such, key 
switching is typically the main performance bottleneck in CKKS-based 
FHE applications.

2.1.6. Multiplication

Multiplication of two CKKS ciphertexts 𝒄 and 𝒄̂ is a considerably 
more complex operation than addition, which is why we only provide a 
brief overview here. It requires three steps:

1. Multiplication of the polynomial pairs 𝒄 = (𝑐0, 𝑐1) and 𝒄̂ = (𝑐0, 𝑐1)
to obtain a polynomial triple 𝒅 = (𝑑0, 𝑑1, 𝑑2) = (𝑐0 ⋅ 𝑐0, 𝑐0 ⋅ 𝑐1 + 𝑐0 ⋅
𝑐1, 𝑐1 ⋅ 𝑐1). This is typically called a tensor product.

2. Relinearization of the polynomial triple 𝑑 to reduce it to polynomial 
pair 𝒄̃ = (𝑐0, 𝑐1) again. This step requires a key switching operation.

3. Rescaling of the ciphertext 𝒄̃ to reduce the message to the same scale 
as before and to reduce the ciphertext modulus from 𝑄𝑙 to 𝑄𝑙−1.

As we saw in Sec. 2.1.3, after encryption the first polynomial of the 
ciphertext 𝑐0 is linear with respect to the secret key 𝐬𝐤. After multiplying 
two ciphertexts using the tensor product, we get a quadratic polynomial 
in secret key polynomial 𝑠, i.e., the decryption would be evaluated as ⟨𝒅, (1, 𝑠, 𝑠2)⟩ = 𝑑0 + 𝑑1 ⋅ 𝑠 + 𝑑2 ⋅ 𝑠

2. Each subsequent multiplication will 
increase the degree of 𝑠 even further; one can think of a multiplication 
of two ciphertexts as a product of two corresponding decryption poly
nomials. This implies the size of the ciphertext after a multiplication of 
two ciphertexts of sizes 𝑖 and 𝑗 will grow to 𝑖 + 𝑗 − 1 polynomials. To 
maintain the compact representation of ciphertexts, the relinearization 
procedure compresses the ciphertext by reducing it by one polynomial, 
in this case from three to two polynomials.

Another issue is that the multiplication of ciphertext leads to error 
growth because a small error polynomial is multiplied by encrypted mes
sage values. This problem is mitigated by the rescaling technique, which 
reduces the scaling factor to the one used during encryption, hence 
truncating the least significant error that appeared as the result of multi
plication. Each rescaling reduces the ciphertext modulus 𝑄𝑙 by a factor 
comparable to the scaling factor, thereby decreasing the ciphertext level 
𝑙 and thus the number of multiplications still available.

In leveled FHE, one therefore tries to minimize the required mul
tiplicative depth of an algorithm by evaluating a chain of multiplica
tions using a binary tree approach. For example, instead of computing 
𝒄′ = 𝒄1 ⋅ 𝒄2 ⋅ 𝒄3 ⋅ 𝒄4 with three consecutive multiplications (and thus re
quiring three levels), one can first compute 𝒓1 = 𝒄1 ⋅ 𝒄2 and 𝒓2 = 𝒄3 ⋅ 𝒄4
using one level, and then combine them to 𝒄′ = 𝒓1 ⋅ 𝒓2 using a second 
level. In the naïve case, to multiply 𝑛 ciphertexts, the multiplicative 
depth of 𝑛 − 1 is needed. If the binary tree method is used instead, the 
multiplicative depth is reduced to approximately log2(𝑛) (see also [38]).

2.1.7. Rotation

The multiplication and addition operations are element-wise over 
the entire ciphertext, i.e., they are always performed between corre
sponding elements of the user-provided data vectors. However, many 
practical algorithms require interactions between elements within the 
same vector or access to specific indices, which goes beyond basic 
element-wise operations. In such cases, the rotation operation is used, 
which cyclically shifts encrypted data by some rotation index. When 
the rotation is evaluated, the underlying secret key is also implicitly ro
tated. To change the underlying secret key back to the original one (to 
support further homomorphic computations), one needs to apply the 
key switching operation. The rotation itself is cheap (effectively it is 
just reindexing), but the required key switching operation following it 
is computationally expensive.
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Listing 1 Ciphertext multiplication using OpenFHE in C++ (left) and OpenFHE.jl in Julia (right).

1 std::vector<double> v = {1.0, 2.0, 3.0, 4.0}; 
2 Plaintext p = cc->MakeCKKSPackedPlaintext(v); 
3 auto c = cc->Encrypt(public_key , p); 
4 auto c_squared = cc->EvalMult(c , c); 
5 Plaintext result; 
6 cc->Decrypt(private_key , c_squared , &result); 
7 result->SetLength(batch_size); 
8 std::cout << "v * v = " << result; 
9 // Output: v * v = (1.0 , 4.0 , 9.0 , ... 

1 v = [1.0, 2.0, 3.0, 4.0] 
2 p = MakeCKKSPackedPlaintext(cc , v) 
3 c = Encrypt(cc , public_key , p) 
4 c_squared = EvalMult(cc , c , c) 
5 result = Plaintext() 
6 Decrypt(cc , private_key , c_squared , result) 
7 SetLength(result , batch_size) 
8 println("v * v = ", result) 
9 # Output: v * v = (1.0 , 4.0 , 9.0 , ... 

Listing 2 Ciphertext multiplication using SecureArithmetic.jl in Julia.
1 v = [1.0, 2.0, 3.0, 4.0] 
2 c = encrypt(v , public_key , context) 
3 c_squared = c * c 
4 result = decrypt(c_squared , private_key) 
5 println("v * v = ", result) 
6 # Output: v * v = [1.0 , 4.0 , 9.0 , ... 

An important property of rotation is that it is circular with respect 
to the batch size/capacity.

2.1.8. Bootstrapping

As described in Sec. 2.1.2 and 2.1.6, the necessity to rescale the 
ciphertext limits the number of multiplicative operations that can be 
performed, since no more multiplications are possible once the level 𝑙
reaches zero. The bootstrapping operation alleviates this restriction by 
resetting the level to 𝑙 > 0. It involves approximating a homomorphic 
decryption procedure on a ciphertext using an encrypted version of the 
secret key (this is done indirectly in CKKS), and then re-encrypting it 
to obtain a refreshed ciphertext. In theory, the number of multiplica
tions that can be performed with a ciphertext is unlimited when using 
bootstrapping. However, bootstrapping also adds a significant approx
imation error to the ciphertext and is computationally very expensive. 
Due to the high complexity of the bootstrapping operation, we do not 
go into more detail here. In-depth descriptions of various bootstrapping 
implementations are covered elsewhere [42].

2.2. Software libraries for fully homomorphic encryption

While the CKKS scheme is a powerful method for FHE with real num
bers, it is also an advanced technique that requires a deep understanding 
of the underlying mathematical methods to be used effectively. It is 
therefore advisable to use a software library that provides an implemen
tation of the CKKS scheme and other necessary operations. Several such 
libraries are available, e.g., SEAL [43], HElib [44], and OpenFHE [40].

In this paper, we focus on the OpenFHE library, which is actively 
maintained and includes most recent CKKS optimizations [45]. We also 
present two Julia packages OpenFHE.jl and SecureArithmetic.jl, which 
provide a convenient interface to OpenFHE in the Julia programming 
language. We now give a brief overview of these tools.

2.2.1. OpenFHE

OpenFHE [40] is an open-source FHE library that offers efficient 
C++ implementations of all common FHE schemes, including the CKKS 
scheme with bootstrapping. OpenFHE contains many examples that are 
especially useful for new users when designing their applications. The 
OpenFHE library puts an emphasis on usability. For example, the relin
earization and rescaling operations after ciphertext multiplication are 
handled automatically, allowing the library to be used also by non
experts in FHE. This can be observed in a short code snippet in Listing 1
(left), where the CKKS internals for multiplication are hidden from the 
user. Some code for initializing the setup was omitted for clarity, e.g., 
to create the cryptographic context object (named cc in this listing) or 
the public and private keys. For more details about OpenFHE, please 
refer to [40].

2.2.2. OpenFHE.jl

The Julia programming language [46] is designed for technical com
puting, with a simple, expressive syntax and high computational perfor
mance. It combines the ease of use of high-level languages like Python 
with the speed of compiled languages such as C or Fortran, making it 
ideal for scenarios that require both rapid prototyping and fast execu
tion. Julia comes with its own package manager, which allows users to 
easily install and manage additional packages, including those written 
in other languages.

It is this feature that we leverage in our OpenFHE.jl package [47], 
which provides a Julia wrapper for the OpenFHE library. When in
stalling OpenFHE.jl, pre-built binaries of the OpenFHE library are au
tomatically downloaded without the user having to compile anything 
locally. The C++ functionality is exposed in Julia via the CxxWrap.jl 
package [48]. Besides offering a native Julia interface to the OpenFHE 
library, OpenFHE.jl does not provide any extra functionality. It is in
tended to be used as a backend for other Julia packages that require FHE 
capabilities. As can be seen in Listing 1 (right), the syntax of OpenFHE.jl 
is very similar to that of OpenFHE, making it easy to port code between 
the two programming languages.

2.2.3. SecureArithmetic.jl

To make the use of FHE more accessible to non-experts in Julia, we 
created the SecureArithmetic.jl package [49]. It inherits the low-level 
functionalities of the OpenFHE.jl package, but provides them through 
a more convenient, higher-level Julia interface. Using the SecureArith
metic.jl package, users can write arithmetic expressions in a common 
mathematical notation, significantly simplifying the code. Furthermore, 
SecureArithmetic.jl supports the ability to use the same code for se
cure and non-secure computations, which is especially useful during 
the design stage. It allows one to debug FHE algorithms without hav
ing to go through the actual encryption and decryption steps, mak
ing the execution much faster during the prototyping phase. Listing 2
shows an example of how the ciphertext multiplication is performed 
using SecureArithmetic.jl. Compared to OpenFHE/OpenFHE.jl in List
ing 1, SecureArithmetic.jl provides a more high-level interface that is 
closer to the mathematical notation. However, since it is built on top 
of OpenFHE.jl and OpenFHE, it is still possible to access the lower-level 
functions if needed.

3. Accuracy and performance of the CKKS scheme

In this section, we analyze the accuracy and performance of ba
sic CKKS operations as provided by OpenFHE to create a baseline for 
the more complex numerical simulations shown later. We first describe 
the CKKS configuration used throughout this paper and the method we 
use to measure errors and runtime. We then present our accuracy and 
performance analysis for individual FHE operations and discuss the im
plications of these results for the secure numerical simulations. All code 
used for the experiments and our numerical results are available in the 
reproducibility repository [30].

3.1. Experimental setup and measurement methodology

The experiments in this paper were conducted with the OpenFHE 
library v1.2.0 via the SecureArithmetic.jl package, using a CKKS con
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Table 1
Parameters for the CKKS configuration in OpenFHE. For more details, please refer to 
the OpenFHE documentation [40].

Parameter Value 
Batch size 25--216 (as small as possible) 
Bootstrapping level budget [4,4]
Enabled features ADVANCEDSHE, FHE, KEYSWITCH, LEVELEDSHE, PKE 
Size of first modulus 𝑞0 60 bits 
Size of scaling modulus 𝑞𝑖 59 bits 
Scaling technique FLEXIBLEAUTO 
Secret key distribution SPARSE_TERNARY (use UNIFORM_TERNARY for production) 
Security level HEStd_128_classic 

figuration that ensures 128-bit security and uses 𝑆word = 64 bits as 
the native integer size. The security level is determined based on the 
homomorphic encryption standard [50], and OpenFHE throws an er
ror if any parameters provided violate the security guarantee. All other 
parameters were chosen on a best-effort basis to balance performance 
and accuracy. Unless noted otherwise, the configuration used for the 
OpenFHE setup is as shown in Table 1. While the OpenFHE library has 
many more user-configurable options, we only focus on those that need 
to be set explicitly or where we deviate from the default values. For de
tails on the CKKS configuration parameters, please refer to the OpenFHE 
documentation [40]. 

For the batch size/capacity, we used the smallest power of two that 
still fits the data. The multiplicative depth available after bootstrapping 
was chosen to be 𝑙refresh = 15, with a maximum multiplicative depth 
of 𝑙max = 33. The ring dimension is chosen automatically by OpenFHE, 
which usually corresponds to 𝑁𝑅 = 217 given the remaining parameters. 
Since the security standards in the OpenFHE library are being constantly 
improved, a different ring dimension may be supported for these pa
rameters in the future. Furthermore, since the current homomorphic 
encryption standard [50] does not provide CKKS parameters when using 
a sparse ternary distribution for the secret key generation, in production 
settings it is advisable to use the uniform ternary distribution.

The performance and accuracy investigations in this section require 
applying operations to encrypted and unencrypted data. The main ci
phertext is always initialized to[
sin

(
2𝜋 1 

𝐿

)
, sin

(
2𝜋 2 

𝐿

)
, ..., sin

(
2𝜋𝐿

𝐿

)]
, (6)

with 𝐿 = 64. Scalars are always initialized to 1 + 𝜋∕30, and plaintexts 
to[
1 + 𝜋

30
,1 + 𝜋

30
, ...,1 + 𝜋

30

]
, (7)

also with a length of 𝐿 = 64. Therefore, the batch size/capacity is always 
64. If required, a second ciphertext was created by encrypting the above 
plaintext. Due to the approximate nature of CKKS, the encrypted values 
differ slightly from the original.

Since the computational overhead of using OpenFHE through the 
Julia packages is negligible compared to the cost of the FHE opera
tions themselves, in this paper we use SecureArithmetic.jl to analyze 
the performance. The experiments were conducted on an AMD Ryzen 
Threadripper 3990X 64 core processor with 256 GiB RAM using a sin
gle thread. All measurements discard the initial just-in-time compilation 
time of the Julia programming language. We measured the runtime of 
FHE operations by averaging over five consecutive executions.

Numerical errors are measured by comparing the decrypted result 
of a secure operation with a corresponding unencrypted operation. In 
case of encryption, decryption, and bootstrapping operations, the er
ror is calculated relative to doing nothing with the unencrypted data. 
Secure addition, multiplication, and rotation are compared to regular 
addition, multiplication, and Julia’s Base.circshift. For the error 
measurements, we used the 𝐿∞ norm, which denotes the maximum ab
solute element-wise error. The observed error depends heavily on the 
cryptographic parameters such as ring dimension, security level, or scal

Fig. 3. Performance evaluation for encoding a vector of real numbers into a 
plaintext.

ing modulus. Therefore, error measurements should not be interpreted 
by their absolute numbers, but rather by their order of magnitude and 
trend.

3.2. Plaintext encoding and decoding

As described in Sec. 2.1.1, the encoding operation is used to trans
form a vector of real numbers into a plaintext, where it is stored as a 
polynomial. The decoding is the inverse operation, which converts the 
polynomial back into a data vector. Unfortunately, the OpenFHE library 
does not provide a direct way to decode a plaintext (as extra noise is 
added during decoding for security purposes), thus we can only measure 
the runtime of the encoding operation, but not the decoding operation, 
nor the error of either operation. From Fig. 3, we can see that runtime 
required for encoding a data vector into a plaintext grows linearly with 
the multiplicative depth 𝑙max. While generally the plaintext encoding is 
independent of 𝑙max, by default the OpenFHE library already prepares 
the plaintext for multiplication with a ciphertext, i.e., transforms the 
plaintext to ciphertext space. This requires additional expensive oper
ations, which depend on 𝑙max, to be performed during encoding. The 
level used to prepare the plaintext can be configured (changed from its 
default value) by the user of the library. 

3.3. Encryption and decryption

We proceed with analyzing the accuracy and performance of the 
two most fundamental operations of cryptography: encryption and de
cryption. Since it is impossible to measure the error of these operations 
independently, the error was determined after encrypting and immedi
ately decrypting a data vector.

As shown in Fig. 4a, the error of a single encryption/decryption op
eration is of (10−13), and remains at that level even after more than 
ten subsequent encryption/decryption pairs. Since the error is approx
imately in the range of machine precision (for the parameters summa
rized in Table 1), and usually only a single encryption and decryption 
are performed, the error is negligible for all practical purposes.
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Fig. 4. Error analysis (left) and performance evaluation (right) for encryption and decryption of a ciphertext. For the error investigation, the multiplicative depth 
was set to 𝑙max = 33.

Fig. 5. Error analysis (left) and performance evaluation (right) for addition operations between ciphertexts, ciphertexts and plaintexts, and ciphertexts and scalars. 
For the error investigation, the multiplicative depth was set to 𝑙max = 33. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

As mentioned in Section 2.1.2, we expect the runtime of ciphertext 
operations to depend linearly on the multiplicative depth 𝑙max . This is 
confirmed by the results in Fig. 4b. It is also clear that encryption and 
decryption take a non-negligible amount of time, already in the order 
of a second. 

Due to the nature of how we measure the accuracy of other oper
ations, the error incurred by one encryption/decryption operation will 
be included in the error analysis of all other FHE operations in the sub
sequent sections. Moreover, since it is impossible to measure the error 
of encoding and decoding operations independently, they are also im
plicitly included. A more detailed discussion of encryption/decryption 
errors can be found in [45].

3.4. Addition

Error and runtime measurements for addition operations are pre
sented in Fig. 5. Here, we analyze the addition of two ciphertexts, a 
ciphertext and a plaintext, and a ciphertext and a scalar. The error of 
adding a plaintext or a scalar value to a ciphertext is virtually neg
ligible at (10−14), which is approximately the truncation error for 
double-precision arithmetic. Adding two ciphertexts incurs an error only 
slightly larger, on the order of (10−13) (Fig. 5a).

When adding ciphertexts, it is instructive to distinguish between ci
phertexts with correlated and uncorrelated errors. Two ciphertexts have 
correlated errors if they share the same noise or if their noise terms are 

not statistically independent. This typically happens when the same ci
phertext is used more than once in an algorithm, e.g., when adding a 
ciphertext to itself multiple times. To achieve uncorrelated ciphertext 
errors, one needs to encrypt the second ciphertext summand indepen
dently for each operation (or rerandomize the ciphertext by adding an 
encryption of zero). As shown in Fig. 5a, the difference between these 
two cases is significant. Although the errors initially have the same mag
nitude, correlated errors increase linearly with the number of additions, 
as the same errors are repeatedly added. In contrast, uncorrelated er
rors grow at a rate proportional to the square root of the number of 
additions, matching the expected behavior based on the Central Limit 
Theorem.

As with the other operations before, the runtime of the addition op
eration grows linearly with the multiplicative depth 𝑙max . While the 
addition of two ciphertexts or a ciphertext and a plaintext requires a 
similar amount of time, adding a scalar to a ciphertext is considerably 
faster.

3.5. Multiplication

Next, we analyze the accuracy and performance of multiplication op
erations. As shown in Fig. 6a, the behavior of the error from multiplying 
two ciphertexts depends on whether the ciphertexts have correlated or 
uncorrelated errors. Similar to the findings for ciphertext addition, mul
tiplying ciphertexts with correlated errors leads to a linear increase in 
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Fig. 6. Error analysis (left) and performance evaluation (right) for multiplication operations between ciphertexts, ciphertexts and plaintexts, and ciphertexts and 
scalars. For the error investigation, the multiplicative depth was set to 𝑙max = 33.

Fig. 7. Error analysis (left) and performance evaluation (right) for rotation operations by different rotation indices 𝑖∈ {−1,5,−25}. For the error investigation, the 
multiplicative depth was set to 𝑙max = 33.

the overall error, while multiplying ciphertexts with uncorrelated errors 
results in an error growth proportional to the square root of the number 
of operations. In both cases, we adjusted the levels of the ciphertexts 
used for multiplication to maintain consistency across the ciphertexts. 
In practice, the total error from multiplication in an FHE algorithm will 
be between the correlated and uncorrelated error curves.

Unlike addition or multiplication of a ciphertext with a plaintext 
or a scalar, multiplication of two ciphertexts requires a relinearization 
step, which is especially computationally expensive due to the necessary 
key switching operation. Therefore, the runtime of ciphertext-ciphertext 
multiplication increases significantly compared to addition, as can be 
observed in Fig. 6b, and is much larger than for multiplication by plain
text or scalar. Furthermore, multiplication of a ciphertext by a plaintext 
or scalar is much slower than the corresponding addition operations due 
to the necessary rescaling operation. Generally, one should keep in mind 
that the runtime for key switching is always significantly larger than the 
runtime of rescaling, which in turn is significantly larger than the run
times of the underlying component-wise multiplication or addition.

As before, the runtime grows with increased multiplicative depth 
𝑙max. For the performance measurements, we evaluated the runtime of 
the second multiplication of the ciphertext with another factor, since in 
OpenFHE with the FLEXIBLEAUTO rescaling technique, the rescaling 
step is not applied to the first multiplication.

3.6. Rotation

The impact of rotation operations on error and execution time is 
shown in Fig. 7 for different rotation indices. The rotation operation 

does not result in error growth, thus the error remains at the level of a 
single encryption-decryption operation. In terms of the runtime, there 
is still a linear growth with the multiplicative depth 𝑙max . Neither the 
error nor the runtime depend on the rotation index.

3.7. Bootstrapping

Finally, we analyze the accuracy and performance of the bootstrap
ping procedure. The errors are measured without any arithmetic oper
ations between two subsequent bootstrapping operations. To make the 
results comparable between different settings for the maximum multi
plicative depth 𝑙max, we always measure the execution time after drop
ping the ciphertext to two remaining multiplicative levels 𝑙 = 2 before 
performing the bootstrapping operation.

To improve the accuracy of the bootstrapping operation, in [51] an 
iterative (or multiprecision) bootstrapping technique was introduced. 
The idea is to perform multiple bootstrapping operations in sequence 
when refreshing the ciphertext, each time progressively reducing the 
error by the precision (in bits) of CKKS bootstrapping. This can signifi
cantly increase the bits of precision available for an FHE computation, 
as demonstrated in, e.g., [52]. The OpenFHE library supports iterative 
bootstrapping with two consecutive iterations, which requires an exper
imentally determined precision of a single bootstrapping as an input. In 
this paper, we use both the standard bootstrapping method with a sin
gle iteration and the iterative procedure with two iterations, setting the 
experimentally determined precision to 19 bits.

From Fig. 8a, it becomes clear that bootstrapping has a much higher 
approximation error than all other CKKS operations, which is consis

Computer Physics Communications 318 (2026) 109868 

8 



A. Kholod, Y. Polyakov and M. Schlottke-Lakemper 

Fig. 8. Error analysis (left) and performance evaluation (right) for bootstrapping operations. For the error investigation, the multiplicative depth was set to 𝑙max = 33. 
The standard bootstrapping procedure uses a single bootstrapping operation, while the iterative procedure performs two subsequent bootstrapping operations.

tent with previous findings, e.g., in [42]. The 𝐿∞ error at (10−6)
for standard bootstrapping and (10−9) for iterative bootstrapping is 
orders of magnitude greater than in all previous experiments (adding 
further bootstrapping iterations is expected to make this error com
parable to the error after leveled CKKS operations). When performing 
multiple bootstrapping procedures in a row, a gradual decline in preci
sion is observed, with the rate of precision loss becoming progressively 
smaller. This is consistent with [42], where the error eventually reaches 
quasi-steady state conditions after many bootstrapping invocations. The 
primary cause for this behavior is the approximation of the modular 
reduction—the function evaluated as part of CKKS bootstrapping—with 
a sine wave. This approximation is only accurate near zero within a 
small, periodically repeating interval, and its error grows as the mes
sage value moves farther from zero [42]. Each application of the sine 
wave approximation introduces additional error, but the precision loss 
decreases with each step, as each bootstrapping operates on already
degraded input (rather than the more accurate value fed into the first 
bootstrapping). In practice, this means that CKKS can be used for very 
deep computations with many hundreds of bootstrapping invocations, 
with a small cumulative loss in precision compared to the first bootstrap
ping. Moreover, CKKS also provides tools to further reduce the noise 
using Hermite interpolations [53], thereby enabling practically unlim
ited deep computations.

Fig. 8b further reveals that bootstrapping is also the most time
consuming of all CKKS operations, with a runtime that again grows 
linearly with the maximum multiplicative depth 𝑙max . The runtime for 
the iterative bootstrapping is approximately twice as large as for the 
standard bootstrapping. Thus in practice, the increased accuracy of the 
iterative bootstrapping technique has to be balanced with the additional 
computational cost. Furthermore, we have to emphasize that the errors 
and runtimes reported here are highly dependent on the specific CKKS 
setup and the actual user data, and should thus be only interpreted as 
indicators and not taken for their absolute values. Unless noted other
wise, in the remainder of the paper we use the standard bootstrapping 
method. 

At this point it should be mentioned that the bootstrapping proce
dure (as implemented in OpenFHE) requires one remaining multiplica
tive level per bootstrapping iteration to get started and also consumes 
multiple levels for the bootstrapping itself. Therefore, after bootstrap
ping the ciphertext level is restored to 𝑙 = 𝑙refresh < 𝑙max, and the number 
of levels for continuous operation is 𝑙usable = 𝑙refresh −1 for standard and 
𝑙usable = 𝑙refresh − 2 for iterative bootstrapping. Fig. 9 illustrates these 
values, which are important to consider when designing an FHE appli
cation. A more detailed discussion of the slightly different behavior of 
the corresponding OpenFHE function GetLevel() is provided in Ap
pendix A. 

Fig. 9. Overview of an exemplary CKKS bootstrapping process with maximum 
multiplicative depth 𝑙max = 33. Standard bootstrapping requires one level to get 
started, and then consumes 18 levels during the actual process. After bootstrap
ping, the ciphertext level is restored to 𝑙refresh = 15 levels, and 𝑙usable = 14 levels 
may be used before the next bootstrapping.

We further observed in our experiments that in addition to 𝑙max , the 
error and runtime of bootstrapping are also sensitive to many other 
parameters, such as the ring dimension 𝑁𝑅, the batch size/capacity, 
the ciphertext modulus and scaling factor, the bootstrapping level bud
get, and the multiplicative depth available after bootstrapping 𝑙refresh . 
It is thus difficult to quantify the accuracy and performance behavior 
of bootstrapping in general. Moreover, the error also depends on the 
absolute value of the data in the ciphertext. For algorithms that use 
bootstrapping, it is thus recommended to rescale the data such that its 
magnitude is less than one [54]. While it is beyond the scope of this 
paper to analyze the performance and error implications of all these 
parameters, we recommend to carefully tailor them to the specific ap
plication.

To summarize, of all CKKS operations, bootstrapping is the most 
detrimental to the accuracy and performance of any FHE application, 
and should be used as sparingly as possible. However, it is also the in
gredient that enables an unlimited number of multiplications in an FHE 
algorithm (for most of practical applications) and thus facilitates the 
evaluation of truly arbitrary functions on encrypted data. When the ac
curacy of the computations is a primary concern, iterative bootstrapping 
with two iterations can reduce the error by multiple orders of magnitude 
at the cost of doubling the runtime.

3.8. Overview of accuracy and performance of OpenFHE operations

As noted at the beginning of the accuracy and performance inves
tigation, the exact values of the errors and execution times depend 
on many factors such as the chosen CKKS parameters, the actual op
erations performed, the data itself, and on the used compute system. 
Consequently, all absolute values presented here should be regarded 
as indicative estimates. We summarize our findings in Table 2, where 
we analyze the errors and execution times of different FHE operations 
relative to ciphertext-ciphertext addition. From the table, it is again ev
ident that the most inaccurate and time-consuming FHE operation is 
bootstrapping. Hence, it is important to use bootstrapping as rarely as 
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Table 2
Error and runtime of OpenFHE operations relative to the addition 
of two ciphertexts, rounded to the first significant digit. The abso
lute 𝐿∞ error and runtime for ciphertext-ciphertext addition are 
(10−14) and (10−2) s, respectively. Independently encrypted ci
phertexts were used for the binary ciphertext operations.

Operation Relative error Relative runtime 
Encrypt plaintext < 1 ≈ 20
Decrypt ciphertext < 1 ≈ 30

Ciphertext + ciphertext = 1 = 1
Ciphertext + plaintext < 1 ≈ 1
Ciphertext + scalar < 1 < 1

Ciphertext ∗ ciphertext ≈ 1 ≈ 60
Ciphertext ∗ plaintext < 1 ≈ 10
Ciphertext ∗ scalar < 1 ≈ 6

Rotate ciphertext < 1 ≈ 50

Bootstrap ciphertext (standard) ≈ 30, 000, 000 ≈ 2, 500
Bootstrap ciphertext (iterative) ≈ 5, 000 ≈ 5, 000

possible. At the same time, the previous results also show a linear de
pendence of the runtime on the maximum multiplicative depth 𝑙max for 
all FHE operations. Although increasing 𝑙max and the usable levels after 
bootstrapping 𝑙usable reduces the number of required bootstrapping op
erations, the runtime of all operations (including bootstrapping itself) 
increases linearly. Therefore, 𝑙max should be chosen carefully to balance 
error and runtime, and its optimal value depends on the specific appli
cation.

There are some additional measures that can be taken to improve the 
accuracy and performance of the CKKS scheme. To reduce the error, it is 
recommended to increase the scaling factor. The iterative bootstrapping 
method decreases the errors by several orders of magnitude compared to 
the standard bootstrapping method. Furthermore, the OpenFHE library 
allows one to set 𝑆word = 128 bits to internally use larger integers. Most 
of these measures will, however, increase the runtime of the CKKS oper
ations. To improve the performance, it is advisable to always choose the 
smallest possible batch size/capacity, since larger batch sizes increase 
the bootstrapping runtime and reduce the precision. Finally, it is im
portant to find the optimal multiplicative depth 𝑙max : a larger one may 
reduce the frequency of bootstrapping but at the same time increase the 
size of the ciphertext and, thereby, the execution time of all FHE oper
ations.

4. Setting up secure numerical simulations

The central goal of this work is to demonstrate that fully homo
morphic encryption can be used for secure numerical simulations of 
partial differential equations (PDEs). Since the CKKS scheme only sup
ports three basic arithmetic operations (addition, multiplication, and 
rotation), we need to recast the numerical methods into a form that can 
be represented with the available operations. A secondary goal for this 
manuscript is therefore to start developing the necessary algorithmic 
building blocks, which will also be useful for other scientists who want 
to use FHE for their own numerical applications.

In this section, we begin by introducing the linear advection equation 
in one and two spatial dimensions, which will serve as the prototypical 
PDEs for our secure numerical simulations. We then present two finite 
difference schemes which we use to discretize these equations. Next, we 
rewrite these schemes in terms of the FHE primitives provided by the 
CKKS scheme. Finally, we provide the full algorithm for secure numeri
cal simulations using FHE.

4.1. Linear scalar advection equations

The linear scalar advection equation describes the transport of a 
scalar field 𝑢 at constant speed. In one dimension, it is given by

𝜕𝑢

𝜕𝑡 
+ 𝑎𝑥

𝜕𝑢 
𝜕𝑥

= 0, (8)

with 𝑢 = 𝑢(𝑡, 𝑥), where 𝑡 is time, 𝑥 is the spatial coordinate, and 𝑎𝑥 > 0
is the advection speed. In two dimensions, the equation extends to

𝜕𝑢

𝜕𝑡 
+ 𝑎𝑥

𝜕𝑢 
𝜕𝑥

+ 𝑎𝑦
𝜕𝑢 
𝜕𝑦

= 0, (9)

with 𝑢 = 𝑢(𝑡, 𝑥, 𝑦), and positive speeds 𝑎𝑥, 𝑎𝑦 > 0.
Simulations are conducted on the domains Ω = [0,1] in 1D and 

Ω= [0,1] × [0,1] in 2D, using periodic boundary conditions. Initial con
ditions are specified in the respective examples.

4.2. Finite difference discretization

We use finite difference schemes to approximately solve the linear 
advection equations in space and time. The computational domain is 
discretized by a Cartesian mesh with equidistant nodes in each spatial 
direction as shown in Fig. 10a for 1D and in Fig. 10b for 2D. 

The numerical solution 𝑢(𝑡, 𝑥) is represented in 1D by the values 𝑢𝑛
𝑖
=

𝑢(𝑡𝑛, 𝑥𝑖) at the mesh node locations 𝑥𝑖 = (𝑖 − 1)Δ𝑥, with 𝑖 = 1,… ,𝑁𝑥, 
and at time 𝑡𝑛 = 𝑛Δ𝑡, with 𝑛 = 0,1,2,… up to the final time. Δ𝑥 is the 
distance between two neighboring nodes in the 𝑥-direction and Δ𝑡 is 
the time step size. In 2D, we have a similar discretization with 𝑢𝑛

𝑖𝑗
=

𝑢(𝑡𝑛, 𝑥𝑖, 𝑦𝑗 ) at the mesh nodes, where 𝑦𝑗 = (𝑗 − 1)Δ𝑦, 𝑗 = 1,… ,𝑁𝑦, and 
Δ𝑦 being the distance between two neighboring nodes in the 𝑦-direction.

We use two finite differences schemes to approximately solve the 
linear advection equation: a first-order upwind scheme and a second
order Lax-Wendroff scheme. The upwind scheme is first-order accurate 
in space and time. In 1D, the discretization of the linear advection equa
tion is given by

𝑢𝑛+1
𝑖

= 𝑢𝑛
𝑖
−
𝑎𝑥Δ𝑡
Δ𝑥 

(
𝑢𝑛
𝑖
− 𝑢𝑛

𝑖−1
)
, (10)

and in 2D by

𝑢𝑛+1
𝑖𝑗

= 𝑢𝑛
𝑖𝑗
−
𝑎𝑥Δ𝑡
Δ𝑥 

(
𝑢𝑛
𝑖𝑗
− 𝑢𝑛

𝑖−1𝑗

)
−
𝑎𝑦Δ𝑡
Δ𝑦 

(
𝑢𝑛
𝑖𝑗
− 𝑢𝑛

𝑖𝑗−1

)
. (11)

The Lax-Wendroff scheme is second-order accurate in space and 
time. In 1D, it is given by

𝑢𝑛+1
𝑖

= 𝑢𝑛
𝑖
−
𝑎𝑥Δ𝑡
2Δ𝑥 

(
𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖−1
)
+
𝑎2
𝑥
Δ𝑡2

2Δ𝑥2
(
𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖
+ 𝑢𝑛

𝑖−1
)

(12)

and in 2D by

𝑢𝑛+1
𝑖𝑗

=

(
1 −

𝑎2
𝑥
Δ𝑡2

Δ𝑥2
−
𝑎2
𝑦
Δ𝑡2

Δ𝑦2

)
𝑢𝑛
𝑖𝑗
+

(
𝑎2
𝑥
Δ𝑡2

2Δ𝑥2
−
𝑎𝑥Δ𝑡
2Δ𝑥 

)
𝑢𝑛
𝑖+1𝑗

+

(
𝑎2
𝑥
Δ𝑡2

2Δ𝑥2
+
𝑎𝑥Δ𝑡
2Δ𝑥 

)
𝑢𝑛
𝑖−1𝑗 +

(
𝑎2
𝑦
Δ𝑡2

2Δ𝑦2
−
𝑎𝑦Δ𝑡
2Δ𝑦 

)
𝑢𝑛
𝑖𝑗+1

+

(
𝑎2
𝑦
Δ𝑡2

2Δ𝑦2
+
𝑎𝑦Δ𝑡
2Δ𝑦 

)
𝑢𝑛
𝑖𝑗−1

+
𝑎𝑥𝑎𝑦Δ𝑡2

4Δ𝑥Δ𝑦 

(
𝑢𝑛
𝑖+1𝑗+1 − 𝑢𝑛

𝑖+1𝑗−1 − 𝑢𝑛
𝑖−1𝑗+1 + 𝑢𝑛

𝑖−1𝑗−1

)
(13)

As stated above, we assume periodic boundary conditions in all spa
tial directions and that the advection speeds are positive. More details 
about the employed finite-difference schemes can be found in, e.g., [55].

4.3. Reformulating finite difference schemes for FHE

All FHE operations in the CKKS scheme are vector-based, thus we 
need to rewrite the finite difference schemes in Eqns. (10)--(13) in a 
vector-wise manner. Furthermore, we need to limit ourselves to the 
available operations of element-wise addition, multiplication, and ro
tation. We begin with the 1D equations and then proceed to the 2D 
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Fig. 10. Cartesian meshes with equidistant node distributions for the finite-difference discretizations. 

equations. In the latter case, we also need to develop a strategy to han
dle matrix operations with FHE.

In the following, vector/matrix addition and subtraction are written 
using the usual symbols + and −, respectively. Element-wise vector/ma
trix multiplication is indicated by the Hadamard product symbol ⊙. In 
the spirit of the SecureArithmetic.jl library, we do not distinguish in our 
notation between unencrypted and encrypted data, since all algorithms 
work transparently with either.

We represent a generalized rotation operation by circshif t(𝒙, 𝑘), 
where a vector 𝒙 is cyclically shifted by 𝑘 positions. If 𝑘 is positive, 
the shift moves elements forward; otherwise, it moves them backward. 
For example,

circshif t
⎛⎜⎜⎝
⎛⎜⎜⎝
𝑎

𝑏

𝑐

⎞⎟⎟⎠,1
⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑐

𝑎

𝑏

⎞⎟⎟⎠ . (14)

For algorithms in two dimensions, we need to extend the circular shift 
operation to matrices. In case of a matrix 𝑨 ∈ ℝ𝑛×𝑚, circshif t(𝑨, 𝑘, 𝑙)
denotes a cyclic shift by 𝑘 rows and 𝑙 columns. For example,

circshif t
⎛⎜⎜⎝
⎛⎜⎜⎝
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

⎞⎟⎟⎠,1,2
⎞⎟⎟⎠ =

⎛⎜⎜⎝
ℎ 𝑖 𝑔

𝑏 𝑐 𝑎

𝑒 𝑓 𝑑

⎞⎟⎟⎠ . (15)

Depending on the context, the ``circshif t'' operator may represent either 
the rotation of unencrypted or encrypted vectors and matrices. When 
we specifically refer to the CKKS rotation operation, we use the term 
“rotate''. For our goal to rewrite the finite difference schemes in terms of 
operations supported by FHE, we thus have addition/subtraction, mul
tiplication, and circshif t at our disposal.

4.3.1. Rewriting the finite difference methods in 1D

With the definitions above, we can rewrite the 1D first-order upwind 
finite difference scheme from Eqn. (10) with periodic boundary condi
tions as

𝒖
𝑛+1 = 𝒖

𝑛 −
𝑎𝑥Δ𝑡
Δ𝑥 

(
𝒖
𝑛 − circshif t(𝒖𝑛,1)

)
. (16)

Similarly, we can rewrite the 1D Lax-Wendroff scheme from Eqn. (12)
with periodic boundary conditions as

𝒖
𝑛+1 = 𝒖

𝑛 −
𝑎𝑥Δ𝑡
2Δ𝑥 

(
circshif t(𝒖𝑛,−1) − circshif t(𝒖𝑛,1)

)
+
𝑎2
𝑥
Δ𝑡2

2Δ𝑥2
(
circshif t(𝒖𝑛,−1) − 2𝒖𝑛 + circshif t(𝒖𝑛,1)

) (17)

As described in Sec. 2.1.1, the CKKS scheme encodes vectors of real 
numbers into plaintexts with a certain batch size/capacity, which is at 
most half the ring dimension 𝑁𝑅 . If the batch size coincides with the 
length of the solution vector 𝒖, we can directly use the CKKS rotation op
eration for our circshif t operation. In general, however, we need a way 
to handle the rotation of vectors where the length of the user-provided 

vector is smaller than the capacity. This is especially relevant for prac
tical applications, since the batch size is always a power of two.

Therefore, we need to augment the circshif t operation to support the 
case where the length of the actual data vector is less than the capac
ity of the ciphertext. We present an algorithm for this in Algorithm 1. 
The algorithm performs two rotations of the input ciphertext 𝒙, one 
backward and one forward, and then uses multiplication with appro
priate masking vectors to combine the elements from both rotations. In 
the algorithm, we designate the CKKS rotation operation as ``rotate''. 
Since the OpenFHE library uses a different sign convention for the ro
tation index than we use for the circshif t operation (which follows the 
sign convention of the corresponding function in the Julia base library, 
Base.circshift), we need to adjust the sign of the shift in the rotate
operation. For the input vectors in Algorithm 1, we consider the length 
to be equal to the length of the actual user data, while the capacity is 
equal to the batch size. 

Algorithm 1 Circular shift for secure vectors.

1: ⊳ Input vector 𝑥, shift index 𝑘 ⊲ 
2: function circshift(𝒙, 𝑘)
3: if length(𝒙) == capacity(𝒙) then

4: return rotate(𝒙,−𝑘) ⊳ Use CKKS rotation if data length matches cipher

text capacity

5: end if

6: 𝒖← rotate(𝒙,−𝑘)
7: 𝒗← rotate(𝒖, (𝑘 > 0 ? length(𝒙) : -length(𝒙)) − 𝑘)

8: if 𝑘 < 0 then ⊳ Determine indices for masking vectors

9: 𝑓1 ← 1
10: 𝑙1 ← length(𝑥) + 𝑘

11: 𝑓2 ← 1 + length(𝑥) + 𝑘

12: 𝑙2 ← length(𝑥)
13: else

14: 𝑓1 ← 1 + 𝑘

15: 𝑙1 ← length(𝑥)
16: 𝑓2 ← 1
17: 𝑙2 ← 𝑘

18: end if

19: 𝒎1 ← (0,… ,0)⊺ ⊳ Create masking vectors as plaintexts

20: 𝒎1[𝑓1 ∶ 𝑙1]← 1
21: 𝒎2 ← (0,… ,0)⊺
22: 𝒎2[𝑓2 ∶ 𝑙2]← 1

23: 𝒖̄← 𝒖⊙𝒎1 ⊳ Apply masks by multiplying ciphertexts with plaintexts

24: 𝒗̄← 𝒗⊙𝒎2

25: return 𝒖̄+ 𝒗̄ ⊳ Combine masked ciphertexts for final result

26: end function
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Fig. 11. Storing a 4×3 matrix (left) in a one-dimensional ciphertext with capac
ity 16 (right) by fusing its columns in column-major order. The last four slots of 
the ciphertext remain unused.

With this implementation for the circshif t operation, we now sup
port all operations to compute the solution at the new time step in 
Eqns. (16) and (17). The circshif t operation consumes one multiplica
tive level if the length of the ciphertext is less than its capacity, and 
zero levels otherwise. Therefore, a single evaluation of Eqn. (16) or 
Eqn. (17) uses two multiplicative levels if the length of the ciphertext 𝒖
is less than the capacity, and one level otherwise. Algorithm 1 is also the 
basis for the circshif t implementation in the SecureArithmetic.jl pack
age.

4.3.2. Matrix arithmetic with FHE ciphertexts

To reformulate the 2D finite difference schemes in matrix-vector 
form, we first need to establish a means of representing data as a ma
trix in CKKS. Unfortunately, currently no FHE scheme natively supports 
matrix arithmetic, thus we need to find a vector-based matrix represen
tation and define arithmetic operations on it.

The simplest solution would be to put every row of a matrix in a 
separate ciphertext. Unfortunately, this approach quickly becomes in
ordinately inefficient for problems with a user data length that would 
otherwise fit into a single ciphertext. Consider, for example, a 2D do
main discretized by 40×40 nodes. Since the 40×40 matrix has only 1600
elements, it could still be held in a single ciphertext with ring dimension 
𝑁𝑅 = 217. However, we can also store the solution matrix as 40 vectors 
with a length of 40, each in a separate ciphertext. In the latter case, 
each FHE operation would require approximately 40 times longer, since 
it would have to be performed for each ciphertext separately. Further
more, due to security requirements and other algorithmic constraints, 
such a storage strategy still results in ciphertexts with a ring dimension 
of 217. Thus, the size of the matrix in memory will be around 2.5 GB 
for a multiplicative depth of 𝑙max = 31, as opposed to a single ciphertext 
with 64 MB. Obviously, we need to find another vector-based matrix 
representation.

Therefore, we store a matrix by fusing its elements column by col
umn and storing it in a single ciphertext. This is akin to programming 
languages that store matrix data linearly in memory in a column-major 
order. The procedure is visualized in Fig. 11. Since the batch size/ca
pacity of CKKS ciphertexts is always a power of two, in this exam
ple the last four slots in the ciphertext are unused and of indetermi
nate value. The good news is that ciphertext addition and multipli
cation in CKKS are element-wise, and thus element-wise matrix addi
tion and multiplication are supported out of the box. However, the 
circshif t operation does not extend directly to the matrix, since the 
underlying CKKS rotate operation performs only one-dimensional ro
tations.

We therefore need to extend Algorithm 1 to two dimensions. One 
possible approach is given in Algorithm 2. Similar to the 1D algorithm, 
it works through a series of rotations and appropriate masking vectors, 
which are then additively combined for the final result. With the ``size'' 
function we obtain the number of rows and columns of the matrix. The 
two-dimensional circshif t operation consumes between zero and two 
multiplicative levels, depending on whether a mask is required and if 
the underlying ciphertext holding the matrix data has a length that is 
equal or less than its capacity. An overview of the required number of 
multiplications is given in Table 3. Algorithm 2 is also the basis for the 
circshif t implementation for ciphertexts representing matrix data in the 
SecureArithmetic.jl package.

Algorithm 2 Circular shift for secure matrices.

1: ⊳ Input matrix 𝑥, shift indices 𝑘, 𝑙 for rows and columns. ⊲ 
2: function circshift(𝒙, 𝑘, 𝑙)
3: 𝑛,𝑚 = size(𝒙) ⊳ Get matrix dimensions 𝑛 ×𝑚

4: if 𝑘 == 0 then ⊳ If no row shift, directly use vectorial circshif t from Algo

rithm  1
5: return circshif t(𝒙, 𝑙𝑛)
6: end if

7: if 𝑘 > 0 then ⊳ Determine indices for masking vectors

8: 𝑓1 ← 1
9: 𝑙1 ← 𝑛− 𝑘

10: 𝑓2 ← 1 + 𝑛− 𝑘

11: 𝑙2 ← 𝑛

12: else

13: 𝑓1 ← 1 − 𝑘

14: 𝑙1 ← 𝑛

15: 𝑓2 ← 1
16: 𝑙2 ← −𝑘
17: end if

18: 𝒎tmp,1 ← (0,0,… ,0)⊺ ∈ℝ𝑛 ⊳ Create masking vectors for one column as 
plaintexts

19: 𝒎tmp,1[𝑓1 ∶ 𝑙1]← 1
20: 𝒎tmp,2 ← (0,0,… ,0)⊺ ∈ℝ𝑛

21: 𝒎tmp,2[𝑓2 ∶ 𝑙2]← 1
22: 𝒎1 ←repeat(𝒎tmp,1,𝑚) ∈ℝ𝑛𝑚 ⊳ Repeat the mask for each column

23: 𝒎2 ←repeat(𝒎tmp,2,𝑚) ∈ℝ𝑛𝑚

24: 𝒖̄← 𝒙⊙𝒎1 ⊳ Apply masks by multiplying ciphertexts with plaintexts

25: 𝒗̄← 𝒙⊙𝒎2

26: 𝑠1 ← 𝑙𝑛+ 𝑘 ⊳ Compute one-dimensional shift indices

27: 𝑠2 ← 𝑙𝑛+ 𝑘+ (𝑘 < 0 ? 𝑛 : −𝑛)

28: if 𝑙 == 0 then ⊳ Without column shift, save multiplications by using rotate
29: return rotate(𝒖̄,−𝑠1) + rotate(𝒗̄,−𝑠2)
30: else

31: return circshif t(𝒖̄, 𝑠1) + circshif t(𝒗̄, 𝑠2)
32: end if

33: end function

Table 3
Multiplicative levels required by two-dimensional 
circshif t for rotation by 𝑘 rows and 𝑙 columns.

𝑘 𝑙 Levels 
= 0 = 0 0
= 0 ≠ 0 1
≠ 0 = 0 1
≠ 0 ≠ 0 2

𝑘 𝑙 Levels 
= 0 = 0 0
= 0 ≠ 0 0
≠ 0 = 0 1
≠ 0 ≠ 0 1

(a) Length ≠ capacity. (b) Length = capacity. 

4.3.3. Rewriting the finite difference methods in 2D

With the algorithmic building blocks of Sec. 4.3.2, we can finally 
rewrite the 2D upwind scheme from Eqn. (11) with periodic boundary 
conditions in matrix-vector formulation as

𝒖
𝑛+1 = 𝒖

𝑛 −
𝑎𝑥Δ𝑡
Δ𝑥 

(
𝒖
𝑛 − circshif t

(
𝒖
𝑛,1,0

))
−
𝑎𝑦Δ𝑡
Δ𝑦 

(
𝒖
𝑛 − circshif t

(
𝒖
𝑛,0,1

)) (18)

Similarly, we can rewrite the 2D Lax-Wendroff scheme from Eqn. (13)

with periodic boundary conditions as
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𝒖
𝑛+1 =

(
1 −

𝑎2
𝑥
Δ𝑡2

Δ𝑥2
−
𝑎2
𝑦
Δ𝑡2

Δ𝑦2
)
𝒖
𝑛

+
(𝑎2

𝑥
Δ𝑡2

2Δ𝑥2
−
𝑎𝑥Δ𝑡
2Δ𝑥 

)
circshif t

(
𝒖
𝑛,−1,0

)
+
(𝑎2

𝑥
Δ𝑡2

2Δ𝑥2
+
𝑎𝑥Δ𝑡
2Δ𝑥 

)
circshif t

(
𝒖
𝑛,1,0

)
+
(𝑎2

𝑦
Δ𝑡2

2Δ𝑦2
−
𝑎𝑦Δ𝑡
2Δ𝑦 

)
circshif t

(
𝒖
𝑛,0,−1

)
+
(𝑎2

𝑦
Δ𝑡2

2Δ𝑦2
+
𝑎𝑦Δ𝑡
2Δ𝑦 

)
circshif t

(
𝒖
𝑛,0,1

)
+
𝑎𝑥𝑎𝑦Δ𝑡2

4Δ𝑥Δ𝑦 

(
circshif t

(
𝒖
𝑛,−1,−1

)
− circshif t

(
𝒖
𝑛,−1,1

)
− circshif t

(
𝒖
𝑛,1,−1

)
+ circshif t

(
𝒖
𝑛,1,1

))

(19)

𝒖
𝑛+1 is a matrix now, with coefficients 𝑢𝑖𝑗 at each node location. Conse

quently, we also need to use the matrix representation of real data in a 
ciphertext and the matrix version of the circshif t operation, which were 
introduced in the previous section.

4.4. Full algorithm for FHE-secured simulations

All introduced numerical schemes in Eqns. (16)--(19) are one-step 
methods. Algorithm 3 represents the general structure of how all such 
numerical methods can be implemented with FHE. Here, it is assumed 
that the initial solution 𝒖0 is already encrypted. The algorithm iterates 
over the time span 𝑡0 to 𝑡end with a fixed time step Δ𝑡. In each itera
tion, we check if during the next iteration (requiring 𝑙step multiplicative 
levels), the ciphertext level would fall below one (or two, if iterative 
bootstrapping is used). If this is the case, the solution is bootstrapped to 
increase the ciphertext level again. The actual computation of the solu
tion at the next time step is then performed in line 7. The algorithm is 
terminated when the final time 𝑡end is reached.

Algorithm 3 FHE algorithm for secure numerical simulations.

1: 𝒖← 𝒖
𝟎 ⊳ Initialize solution

2: 𝑡← 𝑡0 ⊳ Initialize time

3: while 𝑡 < 𝑡end do

4: if level(𝒖) − 𝑙step < 1 then ⊳ Perform bootstrapping if required

5: 𝒖←bootstrap(𝒖)
6: end if

7: 𝒖
𝑛+1 ← 𝑓 (𝒖) ⊳ Compute solution at next time step based on Eqns.  (16)--(19)

8: 𝒖← 𝒖𝑛+1

9: 𝑡← 𝑡+Δ𝑡 ⊳ Update time

10: end while

Compared to a classical numerical simulation implementation, the 
main difference is the check for the multiplicative depth and the exe
cution of the bootstrapping operation if required. One should keep in 
mind that since branching on encrypted ciphertext values is impossible 
by design, the condition for exiting a loop cannot be cryptographically 
secured. In our implementation we chose to keep the time and step size a 
plaintext value. To also hide this information from a potential adversary, 
one could prescribe a fixed number of iterations instead, after which the 
result is returned. This is also the only option if, in a modified algorithm, 
the time step were to be computed dynamically from the encrypted so
lution data. In addition, we made the decision to further keep some the 
of the numerical setup as plaintext, such as the advection speeds or the 
spatial step size. This is due to the fact that division is not natively sup
ported by FHE, and thus factors such as 𝑎𝑥Δ𝑡∕Δ𝑥 need to be computed 
a priori. However, the actual solution data is always kept in encrypted 
form.

The accuracy and performance of cryptographically secure numeri
cal simulations depends significantly on the performed FHE operations. 
For Algorithm 3 and the numerical schemes introduced in the previous 
sections, we conducted a static analysis of the number of FHE opera
tions (add, multiply, rotate, and bootstrap) that are executed in each 
iteration. Our findings are summarized in Table 4. 

As expected, the two-dimensional schemes require more FHE oper
ations than their one-dimensional counterparts. Similarly, the higher
order Lax-Wendroff scheme requires more operations than the first
order upwind scheme. The number of operations also depends on the 
length of the user data: if it is equal to the ciphertext capacity, some 
of the circular shifts reduce to simple CKKS rotations, which necessi
tate fewer operations than a full circshif t operation. In addition, using 
a data size less than the ciphertext capacity increases the multiplicative 
depth due to additional masking operations.

While the higher-order Lax-Wendroff scheme is more accurate in the
ory, it also uses more FHE operations per iteration, which increases both 
runtime and the error introduced by the CKKS scheme. Therefore, these 
requirements need to be balanced against each other in practice, and 
they likely depend on the specific application.

5. Numerical results and performance of secure numerical 
simulations

With all ingredients for FHE-compatible algorithms in place, we can 
now proceed to conducting secure numerical simulations. Our investi
gation aims to compare the accuracy and performance of the crypto
graphically secure simulations with their classical counterparts. For the 
CKKS setup in OpenFHE, we generally use the same parameters as in 
Sec. 3.1, but with the available depth after bootstrapping being set to 
𝑙refresh = 25. The ring dimension remains at 𝑁𝑅 = 217. All simulations 
were conducted using SecureArithmetic.jl with a single thread unless 
noted otherwise. The code for the simulations and the results are avail
able in our reproducibility repository [30].

For the numerical simulations presented here, the advection speed of 
the linear advection equations is set to 𝑎𝑥 = 𝑎𝑦 = 1. The initial condition 
is given by 𝑢0(𝑥) = sin(2𝜋𝑥) in 1D and 𝑢0(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦) in 2D, 
and periodic boundary conditions are imposed. Unless noted otherwise, 
we use 𝑁 =𝑁𝑥 =𝑁𝑦 = 64 equidistant nodes in each spatial direction 
to discretize the computational domain, and a simulation time span of 
𝑡 ∈ [0,1]. The time step size Δ𝑡 is determined from the CFL condition 
with a CFL number of 0.5.

In the following, we first conduct convergence tests to verify that the 
FHE-secured numerical simulations do not break the convergence prop
erties of the numerical schemes, and present the numerical results of a 
full simulation. We then discuss the accuracy and performance of the se
cure simulations and compare them to their unencrypted counterparts. 
Finally, we briefly explore the potential for speeding up the simulations 
by leveraging the multi-threading capabilities of the OpenFHE library.

5.1. Convergence test

We begin by performing a convergence study to verify the implemen
tation of the numerical methods and to make sure that the convergence 
properties of the numerical schemes are not affected by the FHE encryp
tion. We use the simulation setup as described, but vary the number of 
nodes in each direction from 𝑁 = 32 to 𝑁 = 256 and reduce the sim
ulation time span to 𝑡 ∈ [0,0.5]. To speed up the convergence tests, we 
ran the simulations in parallel with eight threads (for more details on 
parallelizing OpenFHE with OpenMP, see Sec. 5.4 below).

We use the discrete 𝐿2 norm as a measure of the error between the 
numerical solution 𝑢 and the exact solution 𝑢exact, where 𝑢𝑛exact,𝑖 = 𝑢0(𝑥𝑖−
𝑎𝑥𝑡𝑛) in 1D and 𝑢𝑛exact,𝑖𝑗 = 𝑢0(𝑥𝑖 − 𝑎𝑥𝑡𝑛, 𝑦𝑗 − 𝑎𝑦𝑡𝑛) in 2D. The 𝐿2 error for 
𝑁 nodes per direction is then calculated by
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Table 4
Number of FHE operations required for a single time step for different numerical schemes.

length ≠ capacity length = capacity 
Upwind Lax-Wendroff CKKS 

operation
Upwind Lax-Wendroff 

1D 2D 1D 2D 1D 2D 1D 2D 
3 6 4 24 Add 2 5 2 14
3 6 7 38 Multiply 1 4 3 18
2 4 4 24 Rotate 1 3 2 14
2∕𝑙usable 2∕𝑙usable 2∕𝑙usable 3∕𝑙usable Bootstrap 1∕𝑙usable 2∕𝑙usable 1∕𝑙usable 2∕𝑙usable

Table 5
Convergence test results for the secure simulation of the 1D/2D linear scalar advection equation with the 
first-order upwind scheme and the second-order Lax-Wendroff scheme.

1D, upwind 1D, Lax-Wendroff 2D, upwind 2D, Lax-Wendroff 
𝑁 𝐿2 error EOC 𝑁 𝐿2 error EOC 𝑁 𝐿2 error EOC 𝑁 𝐿2 error EOC 
32 1.01e-01 - 32 1.07e-02 - 32 1.88e-01 - 32 1.07e-02 -
64 5.25e-02 0.95 64 2.67e-03 2.00 64 1.07e-01 0.82 64 2.68e-03 2.00 

128 2.67e-02 0.97 128 6.69e-04 2.00 128 5.69e-02 0.90 128 6.69e-04 2.00 
256 1.35e-02 0.99 256 1.67e-04 2.00 256 2.94e-02 0.95 256 1.67e-04 2.00 

1D: 𝑒𝑁 =

√√√√ 1 
𝑁

𝑁∑
𝑖=1 

(𝑢𝑛
𝑖
− 𝑢𝑛exact,𝑖)2

2D: 𝑒𝑁 =

√√√√√ 1 
𝑁2

𝑁∑
𝑖,𝑗=1

(𝑢𝑛
𝑖𝑗
− 𝑢𝑛exact,𝑖𝑗 )2 (20)

From the 𝐿2 error, we then compute the experimental order of conver
gence (EOC) at each step by

EOC = log2(𝑒𝑁∕𝑒2𝑁 ) (21)

Table 5 contains the results of the convergence study. The EOC val
ues are close to the expected values of one for the first-order upwind 
scheme and two for the second-order Lax-Wendroff scheme. This con
firms the correctness of the implementation and shows that the FHE 
encryption does not break the convergence properties of the numerical 
schemes. 

5.2. Results for a full simulation

Fig. 12 shows the results for a full simulation of the linear scalar ad
vection equation in 1D at 𝑡 = 1, i.e., after one full period of this periodic 
problem setup. The results of the upwind scheme and the Lax-Wendroff 
scheme are compared to the exact solution. As expected, the first-order 
upwind scheme is much more dissipative than the second-order Lax
Wendroff scheme, with the latter being visually indistinguishable from 
the exact solution. 

In Fig. 13, we present the simulation results for the linear scalar 
advection in 2D, also at 𝑡 = 1. Again, the first-order upwind scheme 
displays significant dissipative effects. We omitted the exact solution, 
since it is again indiscernible from the Lax-Wendroff scheme. 

5.3. Accuracy and performance of encrypted vs. unencrypted simulations

With the convergence properties of the numerical solvers verified, 
we proceed with comparing the accuracy of the results and the perfor
mance of the secure algorithms with their unencrypted counterparts. 
In Fig. 14 we analyze the accuracy of the cryptographically secure nu
merical simulations compared to the unencrypted simulations, using 
the same setup as before. Unlike the convergence test, where we used 
the exact solution as a reference, we now compare the results of the 
secure simulations to the results of the unencrypted simulations. This 
allows us to separate the error of the numerical discretization and in
stead only consider the error introduced by the FHE encryption, which 

Fig. 12. Secure simulation results of the linear scalar advection equation with 
the first-order upwind and the second-order Lax-Wendroff schemes in 1D at 
𝑡 = 1.

we compute as the 𝐿∞ norm of the difference between the secure and 
unencrypted solutions at each time step. In both the 1D and 2D cases, 
we can see that the error for the Lax-Wendroff scheme is higher than for 
the upwind scheme. This is expected, since the Lax-Wendroff scheme 
requires more FHE operations, which in turn increases the error intro
duced by the CKKS scheme. As we saw above, however, overall the Lax
Wendroff scheme is still much more accurate than the upwind scheme, 
even with the additional error introduced by the encrypted operations. 
Furthermore, the relative 𝐿∞ error at (10−6) is still several orders of 
magnitude lower then the absolute numerical error of the unencrypted 
simulations at (10−3). Yet, it is also clear that with FHE, less than 
single-precision floating point accuracy is achieved, which may be a 
limiting factor for some applications. 

It is also very interesting to see the large effect the bootstrapping 
operation has on the accuracy. Until the first bootstrapping operation 
at around 40 time steps in the 1D simulations and at around 25 time 
steps in the 2D simulations, the error is very low at (10−13). After 
the bootstrapping operation, the error jumps by several orders of mag
nitude to (10−6). We also observe that the error seems to gradually 
decrease again after the bootstrapping operation, which is especially 
notable for the 2D upwind solution. The observation that the precision 
of CKKS with bootstrapping improves over time is a relatively com
mon phenomenon in privacy-preserving machine learning applications 
of CKKS. For instance, Han et al. show that the CKKS error in encrypted 
logistic regression training is higher in initial iterations, but then the en
crypted solution gradually converges to the plaintext result due to the 
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Fig. 13. Secure simulation results of the linear scalar advection equation in 2D at 𝑡= 1. 

Fig. 14. Errors introduced by the CKKS scheme for the numerical simulations with different discretization methods. 

convergence of the underlying (logistic regression training) procedure 
(see Section 5.2 of [56]). We expect similar behavior in converging finite 
difference schemes, and consider the observed precision improvement 
after bootstrapping as an indicator of this more general phenomenon.

Next, we look at the runtime performance of the secure numerical 
simulations. In Table 6a we show the runtime per step for the differ
ent schemes, which in case of the secure simulations was measured 
between the first and the second bootstrapping operation, including 
bootstrapping, and then averaged over the number of time steps. From 
the table, we can clearly see that the secure simulations are significantly 
slower than the unencrypted simulations, by approximately six orders 
of magnitude. Considering the runtime measurements of the individ
ual CKKS operations in Sec. 5.3, this is not surprising. Furthermore, the 
2D simulations are more expensive than the 1D simulations, and the 
Lax-Wendroff scheme has a higher runtime than the upwind scheme, 
which also matches expectations. It is interesting to note that the run
time of the encrypted simulations only differs by a factor of two to four 
between the 1D and 2D simulations, while the unencrypted 2D simula
tions are around ten times more expensive than their 1D counterparts. 
Given that the FHE operation count in the 2D simulations is consid
erably higher than in 1D (Table 4), the relatively modest increase in 
runtime suggests that bootstrapping dominates the overall performance 
cost. This is further supported by the measured bootstrapping time: for 
the Lax-Wendroff scheme, bootstrapping accounts for about 54% of the 
total runtime in 1D and 36% in 2D. 

A brief analysis of the time required for the initialization of the CKKS 
scheme is given in Table 6b. Not surprisingly, the initial setup of the 

FHE operations is orders of magnitude slower than the initialization of 
the unencrypted data structures. Even though ciphertexts with the same 
ring dimensions are used, the 2D times are much higher than for the 
1D simulations, owing to the fact that they have a significantly larger 
batch size/capacity. In addition, the 2D circshif t operation requires a 
larger number of index shifts, which need to be set up during the ini
tialization phase. Similarly, the Lax-Wendroff scheme requires rotations 
in more directions than the upwind scheme, which also increases the 
initialization time.

Next to the average runtime per step, it is instructive to look at the 
runtime over the number of time steps (Fig. 15). Especially for the 1D 
simulations in Fig. 15a, we can see that the run time per step decreases 
with the number of steps, until there is a sudden and significant in
crease in runtime. These jumps can be attributed to the bootstrapping 
operation, matching the first bootstrapping after around 40 steps and 
then every approximately 25 steps thereafter. This also lines up with 
the jumps in the error at the same time steps we have seen in Fig. 14. 
The fact that the runtime per step decreases with each step up to the 
next bootstrapping operation also matches the performance characteris
tics we saw earlier in Sec. 3, where many FHE operations became slower 
with increasing multiplicative depth. This is due to the ciphertext mod
ulus being reduced after each multiplication, which in turn reduces the 
number of computational steps required for each subsequent FHE op
eration. The same behavior can be observed here, where the remaining 
multiplicative depth decreases with each time step until it is refreshed 
by bootstrapping. A similar trend can be observed in Fig. 15b for the 2D 
simulations. 
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Table 6
Runtime per time step (left) and initial configuration time (right) for the 1D and 2D simulations with 
the secure and insecure backends.

OpenFHE Unencrypted 

1D
Upwind 4.67 s 6.85e-7 s 
Lax-Wendroff 5.28 s 1.21e-6 s 

2D
Upwind 10.5 s 2.41e-5 s 
Lax-Wendroff 20.8 s 6.92e-5 s 

OpenFHE Unencrypted 

1D
Upwind 93.3 s 4.44e-6 s 
Lax-Wendroff 101.0 s 5.89e-6 s 

2D
Upwind 170.1 s 9.73e-4 s 
Lax-Wendroff 220.8 s 1.09e-3 s 

(a) Runtime per time step. (b) Time for initialization. 

Fig. 15. Execution times of secure numerical simulations. 

Fig. 16. Error and execution time for secure simulations with different values 
of 𝑙refresh (multiplicative depths after bootstrapping). The simulations of the 2D 
linear advection equation were performed with the Lax-Wendroff scheme.

To highlight their interdependence, in Fig. 16 we analyze the error 
and runtime of the secure simulations with the Lax-Wendroff scheme 
in 2D for different multiplicative depths after bootstrapping 𝑙refresh . The 
error becomes smaller with larger 𝑙refresh , aligning with our previous 
observation that the bootstrapping incurs a high approximation error. 
The overall runtime first decreases with increasing multiplicative depth, 
which is expected since the bootstrapping operation occurs less fre

quently. However, there seems to exist an optimum value, since after 
approximately 𝑙refresh = 17 the runtime increases again. This confirms 
our earlier discussion that there exists a trade-off between the compu

tational cost of the FHE operations, which increases with larger values 
for 𝑙refresh, and the frequency of the bootstrapping operation. The opti

mal multiplicative depth thus depends on the specific application and 
the used numerical scheme. 

Finally, we examine the effect of using the iterative bootstrapping 
technique with two iterations as discussed in Sec. 3.7. Compared to the 
previous results with standard bootstrapping in Fig. 14, Fig. 17 shows 
that the error is reduced by three orders of magnitude, from approxi
mately (10−6) to (10−9). This matches our previous findings in Fig. 8, 
reemphasizing the dominant role of the bootstrapping operation on the 
overall error caused by the CKKS scheme. At the same time, the runtime 
per step rises from 20.8 s to 30.4 s. The increase in runtime is mainly 
due to doubling the number of bootstrapping operations. Furthermore, 
for iterative bootstrapping, a larger number of available levels 𝑙 = 2 is 
required (compared to 𝑙 = 1 before, see also Sec. 3.7). Nevertheless, it 
is clear that iterative bootstrapping can be a viable option in scenarios 
where the error introduced by the CKKS scheme is a limiting factor and 
the computational cost is not prohibitive. Interestingly, the previously 
observed self-healing capabilities of the finite difference scheme seem to 
disappear with iterative bootstrapping, as the error no longer decreases 
between two bootstrapping operations.

Overall, our findings demonstrate that secure numerical simulations 
with the CKKS scheme are feasible. Results remain accurate as long 
as bootstrapping is not required, which introduces noticeable numer
ical errors—though single-precision accuracy is still achievable. The 
results also highlight the considerable performance overhead introduced 
by CKKS—primarily from bootstrapping. For practical applications, it 
thus seems advisable to primarily focus on optimizing the multiplicative 
depth and the bootstrapping configuration to minimize the introduced 
error and to maximize the computational performance of secure simula
tions. In scenarios where runtime is not the primary limitation, iterative 
bootstrapping may be used to improve the accuracy of FHE-based sim
ulations.

5.4. Parallel computations

As evident from the previous sections, FHE operations incur a con
siderable performance overhead. Therefore, it makes sense to evaluate 
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Fig. 17. Error (left) and execution time (right) for secure simulations with iterative bootstrapping. The simulations of the 2D linear advection equation were performed 
with the Lax-Wendroff scheme.

Fig. 18. Parallel execution with multiple OpenMP threads of the Lax-Wendroff scheme for the linear scalar advection equation in 2D. Runtime and speedup are 
analyzed separately for the configuration and the computation phase.

potential ways to speed up the secure computations. One possible ap
proach is to parallelize the FHE operations.

The OpenFHE library internally uses the OpenMP library for multi
threading computations, which is also available in Julia. To study the 
efficiency of CKKS parallelization, we consider the most expensive nu
merical solver from this work, i.e., the Lax-Wendroff scheme for the 
linear advection equation in 2D, and execute it for various numbers of 
OpenMP threads. This can be controlled by setting the environment vari
able OMP_NUM_THREADS to the appropriate number of threads before 
starting the Julia runtime.

Fig. 18 shows the runtimes for the parallel execution of the secure 
simulations. For the used CKKS parameters and hardware setup, we 
could achieve at most a three-fold speedup in computation time with 
eight threads, and a ten-fold speedup with 32 threads in configuration 
time. In either case, using more threads than this did not lead to any 
significant improvements in runtime.

Given that using multiple threads can reduce solution times and 
that the OpenFHE library offers basic multithreading capabilities, it is 
advisable to employ 2 to 8 threads to speed up CKKS computations 
whenever possible. However, the observed speedup remains fall short 
of ideal scaling, indicating that the current multithreading implementa
tion has practical limitations. Since efficient parallelization is crucial for 
the viability of FHE-based simulations—especially in more demanding 
applications—this remains an important subject for future investigation. 
Nevertheless, these results provide a basis for exploring more advanced 
simulation scenarios, outlined in the next section.

6. Extension to other mathematical models and numerical 
methods

Building on the prototype simulations and findings from Sec. 5, we 
discuss challenges and possible strategies for extending secure numeri
cal simulations to more complex models and schemes. As noted before, 
the primary impediments to the practical use of the CKKS scheme for 
such scenarios are the large computational overhead and, to a lesser ex
tent, the precision loss. In addition, three main challenges arise when 
considering to extend the simulation prototypes shown in this paper 
to other PDEs and advanced numerical schemes: a single built-in data 
structure, limited function evaluation capabilities, and constraints in 
control flow logic when it comes to conditional branching. In the fol
lowing, we discuss these issues and potential solutions to them, to give 
other researchers a starting point for their own investigations into secure 
numerical simulations. We then outline general strategies to improve 
performance and conclude with a brief summary of simulation types 
that are (currently) out of scope.

6.1. Data structures

A vector of real numbers is the only encrypted data structure avail
able in the CKKS scheme, as described in Sec. 2.1. More complex data 
structures, such as tensors or matrices, are not natively supported. In 
Sec. 4.3.2, we have introduced one potential approach to a matrix rep
resentation for use with explicit, mesh-based numerical simulations. 
In other algorithms that involve matrix-matrix or matrix-vector mul
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tiplications, specialized encoding strategies for the matrix lead to more 
efficient algorithms in terms of the multiplicative depth [28,57,58].

In general, the concrete choice of data representation depends on 
the target application and the used numerical method. Due to the sig
nificant computational overhead of the CKKS scheme, it is necessary 
to make full use of its batch processing capabilities, i.e., the ability to 
do element-wise addition and multiplication on the entire data vector. 
Therefore, discretization schemes that allow for efficient vectorization 
are preferable when considering other numerical methods for secure 
simulations. The choice of PDE is largely unaffected by the data struc
ture, as long as a single model with a constant number of state variables 
is used throughout the computational domain. However, algorithms that 
require fine-grained access to the data—such as irregular sparse matrix 
operations—are not directly compatible with FHE.

6.2. Function evaluation

As discussed before, the CKKS scheme supports only a limited set 
of arithmetic operations, i.e., element-wise addition and multiplication 
of the ciphertexts, as well as rotation. This means that more complex 
arithmetic operations, such as division, exponentiation, or trigonomet
ric functions, are not directly available but must be approximated by 
a series of simpler operations or using a polynomial interpolation. For 
example, the division of two ciphertexts can be implemented with the 
Newton-Raphson method [35] or Goldschmidt’s algorithm [36], the lat
ter of which is also used to implement floating point division in some 
CPU families [59]. Exponentiation or trigonometric functions may be 
approximated by a Taylor series expansion [60].

Since evaluating a polynomial expression is straightforward with the 
built-in arithmetic operations, any function that is reasonably well ap
proximated by a polynomial can be computed with sufficient accuracy. 
For many other functions, an iterative approach is required. Here, the 
main difficulty is that the number of iterations must be fixed a priori, 
since branching based on encrypted data is not possible (refer to the 
next section for details). Without fundamental limitations to computing 
branch-free functions with FHE, the primary challenge is therefore to 
find an efficient approximation that converges robustly. Selecting the 
best approach is problem-dependent and likely requires some experi
mentation to find a good balance between accuracy and performance. 
When considering other mathematical models or numerical discretiza
tions, it is thus advisable to choose options that minimize the mul
tiplicative depth of the FHE operations to avoid costly bootstrapping 
operations.

For many discontinuous functions, e.g., sign/comparison, the use of 
CKKS is challenging as the polynomial approximation in the proximity of 
the singularity point(s) requires extremely high-degree polynomials, i.e., 
very large multiplicative depth and runtime. Instead, other FHE schemes 
are often used, such as DM [23] or CGGI [24]. DM and CGGI support 
the evaluation of arbitrary functions via lookup tables using a technique 
called functional or programmable bootstrapping [61]. In these scenar
ios, a scheme switching procedure is employed [62,63], where the encryp
tion of the data is temporarily changed from CKKS to DM/CGGI. This 
allows for the evaluation of the discontinuous function, after which the 
data is converted back to a CKKS representation. Such scheme switch
ing capability is supported in OpenFHE [40]. The main drawback of 
scheme switching is the significant computational overhead, especially 
when high precision is required [52,64,65]. A promising new method 
for evaluating discontinuous functions using functional CKKS bootstrap
ping is proposed and implemented in [53]. The method enables arbitrary 
function evaluation via lookup tables and achieves a throughput that is 
orders of magnitude higher than DM or CGGI.

6.3. Data-dependent control flow

By their very nature, many of the control flow directives com
monly used in regular programs cannot be employed with FHE methods. 

More specifically, FHE precludes the use of conditional statements or 
branches—including loops with a termination condition—that depend 
on encrypted data. This is due to the fact that the encryption of the data 
prevents the processor from knowing the actual values of the data. If this 
were not the case, it would be possible for a malicious actor to infer in
formation about the encrypted data, e.g., by using a bisection algorithm 
to compare the secret ciphertext with known values.

As noted in [66], this restriction in control flow logic presents a 
fundamental challenge when converting regular programs to FHE algo
rithms. Since branching on an encrypted value is impossible by design, 
an FHE algorithm encountering a conditional branch must therefore first 
compute the outcome for each possible branch. The final result is then 
constructed by combining the results from all branches and applying 
an appropriate mask that selects the correct result. For example, Algo
rithm 4 shows a simple branching statement in a regular program. Based 
on a function condition() that returns either 1 or 0, the value of 𝑟 is 
computed by calling either foo() or bar(). The equivalent FHE algo
rithm in Algorithm 5 first computes the value of the condition, evaluates 
both branches, and then combines the results with the condition value 
to obtain the final result.

Algorithm 4 Regular conditional branching.
1: if condition() == 1 then

2: 𝑟← foo()
3: else

4: 𝑟← bar()
5: end if

Algorithm 5 Conditional branching with FHE.
1: 𝑐← condition()
2: 𝑟foo ← foo()
3: 𝑟bar ← bar()
4: 𝑟← 𝑐 ∗ 𝑟foo + (1 − 𝑐) ∗ 𝑟bar

Such an approach is feasible if a small, predetermined number of 
branches needs to be considered, e.g., when computing the well-known 
HLLC flux for the compressible Euler equations, which has different 
branches based on three different wave speeds [67]. It becomes in
tractable, however, if the number of branches is large and possibly 
unknown in advance, e.g., when terminating a time step loop while 
using a dynamic, CFL-based time step size or when considering itera
tive schemes with error-based stopping criteria. Furthermore, numerical 
schemes that strictly require conditional branching based on current so
lution values are not directly compatible with FHE. This includes meth
ods that dynamically modify their data structures during the simulation, 
such as periodic remeshing when dealing with deforming boundaries or 
adaptive mesh refinement. As a result, this poses a concrete limitation 
on the applicability of FHE to certain classes of numerical simulations.

Therefore, when choosing a numerical method for secure numeri
cal simulations, it is important to avoid the need for control flow that 
depends on encrypted data and that does not have a fixed number of 
branches. While the statement that FHE can be used to compute any 
function (see Sec. 2) is not violated, it means that in practice, the trans
lation to an FHE algorithm is not always feasible. As a workaround, one 
can consider allowing certain control flow operations to be unencrypted, 
like we did in Sec. 4.4 for the time loop in Algorithm 3.

6.4. General strategies for improving performance

As noted in the previous subsections, most methods for dealing with 
mathematical models and numerical schemes that require more complex 
FHE operations incur a significant computational overhead. To mitigate 
this, several strategies can be employed to optimize the performance of 
FHE algorithms:
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• Prefer parallelizable algorithms over sequential ones. As discussed in 
Sec. 2.1.6, using a binary approach for multiple multiplications can 
reduce the overall multiplicative depth of the FHE operations. This 
naturally applies also to all other functions that consume multi
plicative levels. For example, consider loop unrolling to manually 
encode its iterations more efficiently.

• Minimize or avoid FHE-hard operations. For instance, another set of 
state variables, e.g., using a different non-dimensionalization strat
egy, may save some (costly) division operation in each time step.

• Reduce the number of rotations. While they do not consume mul
tiplicative levels, they require similar computational resources as 
multiplications (see Table 2). For example, summation over a 
row/column of a matrix may be expressed as a series of additions 
instead.

• Consider performing costly computations a priori. For example, it 
might be more efficient to use a fixed, smaller time step based on 
an conservative estimate, rather than computing a potentially larger 
step size dynamically in each time step loop iteration.

A more detailed description of these and other optimization strategies 
can be found in [28].

6.5. Unsupported simulation types

The presented prototypes demonstrate the viability of FHE-secured 
numerical simulations for some simple schemes, and the previous sec
tions outline challenges and solutions for extending them to more com
plex use cases. Some types of numerical simulations, however, remain 
infeasible—either due to inherent limitations of FHE/CKKS or due to 
current technical constraints.

Fundamentally unsupported are numerical methods that rely on 
data-dependent control flow, such as adaptivity (adaptive time stepping, 
adaptive mesh refinement), nonlinear solvers with conditional logic, 
event-driven simulations, or iterative schemes with convergence-based 
termination. Similarly, algorithms requiring irregular data structures 
or random memory access patterns are difficult or impossible to re
alize with the CKKS scheme. Examples include irregular sparse linear 
algebra, mesh-free particle methods, or multilevel algorithms with non
uniform transfer operators. Finally, numerical methods that require high 
numerical accuracy and are sensitive to rounding errors (typically dou
ble precision or higher), such as time integration for stiff PDEs, spectral 
methods, or eigenvalue solvers for ill-conditioned systems, are not well
suited for use with CKKS if they require bootstrapping.

While some of these methods may be rewritten to avoid the limi
tations imposed by FHE through careful algorithm design, this usually 
introduces an even higher computational overhead. Thus, they repre
sent significant challenges for many common numerical methods.

7. Conclusions and outlook

In this work, we present the first prototype of secure numerical sim
ulations using fully homomorphic encryption. We gave an overview of 
the CKKS scheme and its efficient implementation within the OpenFHE 
library, and introduced our OpenFHE.jl and SecureArithmetic.jl pack
ages, which provide a user-friendly interface to OpenFHE in the Julia 
programming language. A detailed analysis of the accuracy and perfor
mance of the individual CKKS routines revealed that while each opera
tion introduces some numerical error, bootstrapping is by far the least 
accurate procedure. Similar observations were made for the runtime 
behavior, where the bootstrapping mechanism is orders of magnitude 
slower than other CKKS operations.

Next, we implemented the first-order upwind and second-order Lax
Wendroff schemes for the linear advection equations for secure numeri
cal simulations using the SecureArithmetic.jl package. For this purpose, 
we introduced a circshif t operation that is compatible with the CKKS 

scheme and that works for both 1D and 2D data representations. Conver
gence tests verified the correctness of our implementations and showed 
that the CKKS encryption does not break the convergence properties of 
the finite difference schemes.

We then conducted homomorphically encrypted numerical simula
tions by building upon the tools and methods developed in the previous 
sections. Our results illustrate that it is feasible to implement secure nu
merical simulations with the CKKS scheme, with results that match the 
unencrypted simulations well. However, the encrypted operations in
troduce a large computational overhead and are a significant source 
of error, to the point that we were able to achieve less than single
precision floating point accuracy at the cost of a six-orders-of-magnitude 
increase in runtime. Nearly all of these undesirable effects can be at
tributed to the bootstrapping procedure, which is the most inaccurate 
and slowest operation in the CKKS scheme. However, bootstrapping is 
necessary to refresh the multiplicative depth of the ciphertexts, making 
it indispensable for long-running simulations. Moreover, iterative boot
strapping further improves the accuracy of an FHE algorithm, though 
at a non-negligible runtime penalty that needs to be taken into account. 
We also showed that the CKKS scheme implementation in OpenFHE is 
parallelizable, and that using multiple threads can lead to a significant 
reduction in the solution time.

Finally, we explored challenges—and how to address them—when 
extending secure numerical simulations beyond the presented examples. 
Many of the discussed issues can be mitigated through careful algorithm 
design and by accepting some computational overhead. However, the 
lack of dynamic, value-based conditional branching precludes the use 
of schemes that strictly depend on it, such as adaptive mesh refinement.

To summarize, our work demonstrates the feasibility of secure nu
merical simulations using fully homomorphic encryption. We developed 
a user-friendly interface to the OpenFHE library in Julia, introduced 
building blocks such as the circshif t algorithms, and verified that the 
overall simulation results agree well with unencrypted baselines. These 
contributions lay the foundation for further research in FHE-secured sci
entific computing.

Looking ahead, several critical research challenges must be over
come to make secure simulations practical at scale. First, the numeri
cal accuracy achievable with CKKS is inherently limited. Higher preci
sion, e.g., through iterative bootstrapping, demands significantly more 
computational resources, and double-precision accuracy appears out of 
reach given the current bootstrapping implementation. Second, the ho
momorphic paradigm precludes core algorithmic structures in scientific 
computing, such as data-dependent control flow (necessary for iterative 
or adaptive schemes) or irregular data structures (e.g., sparse matrices). 
Third, the runtime overhead remains substantial—not only compared to 
unencrypted simulations but also in absolute terms. Bridging this per
formance gap will require improvements in CKKS implementations, new 
approaches like functional bootstrapping, and the efficient use of accel
erators such as GPUs [68--70]. Emerging hardware architectures tailored 
for FHE workloads, including FPGAs [71,72] and FHE-specific ASICs 
[73,74], could play a central role in reducing runtimes. Addressing these 
limitations is the key to enabling broader use of FHE in scientific com
puting. In the meantime, FHE-secured numerical simulations only make 
practical sense in specialized applications where data confidentiality is 
of utmost importance.

Despite these open challenges, we believe that progress can be made 
incrementally. In particular, we plan to extend our work in several ar
eas. We would like to increase the complexity of the simulations by 
looking at systems of equations and at three-dimensional problems. 
This also necessitates an extension of the circshif t operation to sup
port multiple ciphertexts and tensors. Furthermore, we will investigate 
the discretization of nonlinear equations, which requires us to handle 
additional arithmetic operations such as division and exponentiation. 
Moreover, we would like to better understand the observed behavior 
that the accuracy of secure numerical simulations with bootstrapping 
can improve over time. Finally, we plan to continue developing the 
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SecureArithmetic.jl package as a tool for experimentation and rapid pro
totyping with encrypted algorithms, to open up FHE to a wider audience 
in the computational science community.
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Appendix A. OpenFHE implementation details

In the OpenFHE library, the value returned by the GetLevel() 
function does not represent the ciphertext level as it is commonly used in 
literature and in this paper. Instead, it starts at zero for a fresh cipher
text and increases by one with each multiplication. Also, when using 
the OpenFHE library with the FLEXIBLEAUTO scaling technique as we 
are here (see Table 1 above), the rescaling step after a ciphertext mul
tiplication is not performed immediately but only just before the next 
multiplication. Therefore, the ciphertext level reported by GetLevel() 
function may be off by one. These implementation-specific peculiari
ties must be taken into account when implementing algorithms with 
OpenFHE.
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