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Abstract

This is an addendum to the paper by Schrepp [(2005). About the connec-
tion between knowledge structures and latent class models. Methodology,
1(3), 93–103]. The note adds additional information about the relationship
between knowledge space theory and latent class analysis.

Keywords: knowledge space theory, latent class analysis

Introduction

In Schrepp (2005), the connection between knowledge space theory (KST;
Albert et al., 2009; Albert and Lukas, 1999; Doignon and Falmagne, 1985,
1999; Falmagne et al., 2006; Falmagne and Doignon, 2009; Falmagne et al.,
1990) and classical latent class analysis (LCA; Andersen, 1982; Dayton, 1998;
Goodman, 1978; Hagenaars and McCutcheon, 2002; Lazarsfeld and Henry,
1968; McCutcheon, 1987; Vermunt and Magidson, 2004) was discussed. A
probabilistic model for knowledge structures was ‘introduced,’ which, in fact,
is a well-known and fundamental model in KST. This model was viewed as
a constrained latent class model, and based on that fact, a method was
proposed for deriving knowledge structures from data. The relationships
to other works were addressed, including the relationship to a latent class
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scaling model.

In this note, I give a more comprehensive overview of the literature and the
probabilistic models that are at the interface of KST and LCA. The KST
models are referred to with their common names, including, for instance, the
basic local independence model, which, in a restricted form, is the model
used in Schrepp (2005). The view that allows interpreting this model as a
constrained latent class model is not a new one and goes back to traditional
latent class scaling models. I elaborate on that issue more carefully. KST
and LCA are also compared concerning the statistical inference methodolo-
gies applied in their fields. Albeit without a reference to LCA, parameter
estimation and model testing have also been discussed in KST publications.
This does not become clear from Schrepp’s text. The connection between
KST and LCA at the level of inference methodologies is not astonishing
though, as both approaches are special cases of classical maximum likelihood
methodology for multinomial probability models. I conclude with an outline
and some remarks about possible future research arising from a connection
of KST to latent variable modeling approaches.

Classical unrestricted latent class model

LCA is a statistical approach to examining unobserved categorical variables.
The population of reference is assumed to be partitioned into T mutually
exclusive and exhaustive subpopulations (classes) C1, . . . , CT , with unknown
proportions p(Ct) > 0. The latent classes can be viewed as the realiza-
tions of a random variable X. Let I1, I2, . . . , IL be the dichotomous1 man-
ifest variables or indicators, with realizations il ∈ {0, 1} (1 ≤ l ≤ L). In
vector notation, I = (Il)1≤l≤L and i = (il)1≤l≤L. For each of the T la-
tent classes, there is a set of conditional probabilities for every indicator:
0 ≤ r(Il = il|X = Ct) ≤ 1 for any 1 ≤ l ≤ L, il ∈ {0, 1}, and 1 ≤ t ≤ T .
Within any of the T latent classes, the observed indicator scores are assumed
to be independent. This is the assumption of local independence which is
fundamental in (classical) LCA.

The classical unrestricted (T -class) latent class model (LCM) is a multinomial

1For comparison to KST, only dichotomous indicators are considered.
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probability model:

ρ(i) =
∑

t

{
p(Ct)r(I = i|X = Ct)

}

=
∑

t

{
p(Ct)

∏

l

r(Il = il|X = Ct)
}
,

where ρ(i) is the occurrence probability of the response pattern i = (il),
and the data—the observed absolute counts of the response patterns—are
assumed to follow a multinomial distribution. The unrestricted T -class LCM
contains (T − 1) + T · L independent model parameters to be estimated
from the data.2 Imposing (e.g., equality or fixed value) restrictions on the
parameters of the LCM (some examples follow below) gives restricted LCMs.

In particular, the LCM is a finite mixture model (Everitt and Hand, 1981;
McLachlan and Basford, 1988; McLachlan and Peel, 2000; Titterington et
al., 1985), and LCA is often referred to as finite mixture modeling. There
are various extensions of the classical LCM; for instance, latent class factor
models (including more than one latent variable; Magidson and Vermunt,
2001) or latent class regression models (parameters of the regression model
may differ across unobserved subgroups; Vermunt and Van Dijk, 2001). In
the context of KST specifically, Ünlü (2006) discussed a generalization of the
classical model and of the basic local independence and latent class scaling
models using random effects, which allows to weaken the assumption of local
independence and/or to incorporate covariate information.

KST as unrestricted and restricted LCA

This section integrates KST probabilistic models into the latent class scaling
framework and literature. Viewing the knowledge states of a knowledge struc-
ture as the latent classes, the fundamental KST basic probabilistic model and
basic local independence model (Doignon and Falmagne, 1999, Chapter 7)
can be seen as unrestricted and restricted latent class models, respectively.
It is important to note here that the latent classes possess an ‘inner struc-
ture,’ composed of the indicators, which determines the constraints imposed

2More generally, for L indicators Il with corresponding numbers of levels Dl, this model
contains (T − 1) + T ·

∑L

l=1
(Dl − 1) independent parameters.
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on the conditional probabilities. This view is not a new one and goes back to
traditional latent class measurement or scaling models such as the Proctor
(1970) model, the Dayton and Macready (1976) intrusion–omission model,
and more generally, the Lazarsfeld and Henry (1968) latent distance model.
They originated as probabilistic generalizations of the deterministic, linear
Guttman (1944, 1950) model. For a description of these models and their
relationships, see Dayton (1998) and Heinen (1996).

Let the indicators I1, I2, . . . , IL be dichotomous items; that is, let the domain
of questions or problems be Q = {Il : 1 ≤ l ≤ L}. Scoring 1 or 0 to an item
is interpreted as solving or failing to solve that item, respectively. Let K be a
knowledge structure on Q, that is, a family of subsets of Q containing at least
the empty set and Q. (If no response errors are made, these subsets are the
only response patterns possible.) The elements of K are called knowledge
states. Let the latent classes be represented by the knowledge states; the
random variable X now assumes values in the knowledge structure K.

The basic probabilistic model (Doignon and Falmagne, 1999, p. 144)

ρ(i) =
∑

K∈K

{
p(K)r(I = i|X = K)

}

obviously is an unrestricted latent class (finite mixture) model. It is a very
general model and grounds on the basic idea underlying any type of la-
tent class model. The probability of observing a response pattern i, ρ(i),
is a finite weighted average of the |K| class-specific conditional probabilities
r(I = i|X = K).3 Under the assumption of local independence, the basic
probabilistic model specializes to the classical unrestricted LCM

ρ(i) =
∑

K∈K

{
p(K)

∏

l

r(Il = il|X = K)
}
.

This model assumes that the item responses of an examinee are independent
given the knowledge state of the examinee, and that the response probabilities
r(Il = il|X = K) are attached to the items (item-specific) and knowledge
states (state-specific). This model is implicitly referred to in Doignon and
Falmagne (1999, p. 146).

3|.| denotes set-cardinality.
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Imposing restrictions on the parameters of the classical unrestricted LCM
gives the following restricted latent class (scaling) models, in the order of
increasing generality.

1. A single response error rate across all items and knowledge states. That
is, for a constant (error rate) τ ∈ [0, 1),

r(Il = 0|X = K) = τ (Il ∈ Q, K ∈ K, Il ∈ K),

r(Il = 1|X = K) = τ (Il ∈ Q, K ∈ K, Il 6∈ K).

In other words, careless error and lucky guess rates equal τ . This
restricted LCM is a ‘de-linearized’ Proctor (1970) model.4

2. Two response error rates across all items and knowledge states. That
is, for constants (error rates) µ ∈ [0, 1) and τ ∈ [0, 1),

r(Il = 0|X = K) = µ (Il ∈ Q, K ∈ K, Il ∈ K),

r(Il = 1|X = K) = τ (Il ∈ Q, K ∈ K, Il 6∈ K).

In other words, careless error and lucky guess rates equal µ and τ , re-
spectively. This restricted LCM is a ‘de-linearized’ Dayton and Macready
(1976) intrusion–omission model (intrusion rate τ and omission rate µ).

3. For each item, two response error rates across all knowledge states
(item-specific). That is, for constants (error rates) µl ∈ [0, 1) and
τl ∈ [0, 1) (1 ≤ l ≤ L),

r(Il = 0|X = K) = µl (Il ∈ Q, K ∈ K, Il ∈ K),

r(Il = 1|X = K) = τl (Il ∈ Q, K ∈ K, Il 6∈ K).

In other words, to every item is attached careless error and lucky guess
rates µl and τl (item-specific), respectively. This restricted LCM is
called the basic local independence model (BLIM) in KST (Doignon
and Falmagne, 1999, pp. 144–145). The interpretation of the BLIM as
a restricted LCM is discussed in Schrepp (2005) and Ünlü (2006). It
is a sort of ‘de-linearized’ Lazarsfeld and Henry (1968) latent distance

4In the following, ‘de-linearized’ means that the knowledge structure K is not necessarily
totally ordered with respect to set-inclusion, as is the case for the traditional latent class
scaling models.
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model. At this point, it is important to note that the BLIM is not
identifiable in general. This is why in the latent distance model, for
two items, say I1 and IL, single response error rates across all states
are assumed. That is, for constants τ1 ∈ [0, 1) and τL ∈ [0, 1),

r(I1 = 0|X = K) = τ1 (K ∈ K, I1 ∈ K),

r(I1 = 1|X = K) = τ1 (K ∈ K, I1 6∈ K),

r(IL = 0|X = K) = τL (K ∈ K, IL ∈ K),

r(IL = 1|X = K) = τL (K ∈ K, IL 6∈ K).

For the remaining |Q| − 2 items, the same restrictions as in the BLIM
are imposed.

Inferential statistics

As a statistical method, LCA comes with corresponding inference methodol-
ogy. Parameter estimation and model testing are typically performed using
maximum likelihood. This statistical inference methodology, at least theoret-
ically (in realistic contexts a prohibitively large number of state proportions
may have to be estimated), in particular applies to the KST probabilistic
models, as they are special latent class scaling models. Albeit without a
reference to LCA, this has been already demonstrated by Doignon and Fal-
magne (1999, Chapters 7 and 8), and the statistical techniques presented
there are consistent with latent class modeling methodology. This does not
become clear from Schrepp (2005), so I recapitulate that next.

Estimates of the model parameters are obtained maximizing the likelihood
function. Let the model parameters of the BLIM be summarized in a pa-
rameter vector θ = (p(K), µl, τl), which ranges over a parameter space Θ.
Let the data be denoted by x = (N(i)), where N(i) is the observed absolute
count of response pattern i. The kernel of the likelihood function that is
maximized is (multinomial sampling distribution for the data):

L(θ; x) =
∏

i

{
∑

K∈K

{
p(K)

∏

l

r(Il = il|X = K)
}}N(i)

where r(Il = il|X = K) is µl, 1 − µl, τl, or 1 − τl depending on whether
il = 0 and Il ∈ K, il = 1 and Il ∈ K, il = 1 and Il 6∈ K, or il = 0 and
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Il 6∈ K, respectively. Let θ̂ ∈ Θ be the maximum likelihood estimate of
the parameter vector θ, that is, L(θ̂; x) = maxθ∈Θ L(θ; x). The maximum
of the kernel of the likelihood function cannot in general be obtained by
analytical methods. Numerical optimization methods are required. Popular
iterative methods for solving the maximum likelihood estimation problem
are expectation–maximization (EM) or Newton–Raphson type algorithms.
For instance, the software package Latent GOLD (Vermunt and Magidson,
2000) for latent class and finite mixture modeling implements a hybrid EM–
Newton–Raphson algorithm to do maximum likelihood estimation. In KST,
the conjugate gradient search algorithm principal axis (PRAXIS) by Brent
(1973) has been commonly used, which is a modification of a direction-set
method by Powell (1964). For a brief description of Powell’s method and
Brent’s modification, see Gegenfurtner (1992), who provides a freely available
implementation of the PRAXIS algorithm in the programming language C.

The goodness-of-fit of an estimated BLIM can be tested based on the log-
likelihood ratio statistic (deviance)

L2(θ; x) = 2
∑

i

{

N(i) ln

(
N(i)

Nρθ(i)

)}

(Doignon and Falmagne, 1999, Section 7.10). Given certain regularity condi-
tions are satisfied, the random variable L2(θ̂; x) is asymptotically chi-squared
with degrees of freedom df = (2|Q| − 1) − {(|K| − 1) + 2|Q|}. Instead of L2,
Pearson’s X2 (Doignon and Falmagne, 1999, Section 7.5), or more generally,
any of the Read–Cressie goodness-of-fit statistics of the power-divergence
family (Read and Cressie, 1988) can be used as well; these statistics are
asymptotically equivalent. In KST, also general likelihood ratio tests based
on the general deviance have been discussed (Doignon and Falmagne, 1999,
Section 7.12). Since it is not valid to compare LCMs with different numbers
of latent classes by general likelihood ratio tests, model selection information
criteria such as the AIC or BIC are often used. The software package Latent
GOLD, for instance, implements these procedures.

In other words, KST and LCA are related also at the level of inferential
statistics used in both theories. More generally, both approaches are spe-
cial cases of maximum likelihood methodology for multinomial probability
models. For more information about inferential statistics for the class of
multinomial probability models, see, for instance, Bishop et al. (1975).

7



A remark regarding the use of these methodologies in Schrepp (2005) is in
order. The data analysis method for deriving knowledge structures proposed
in Schrepp (2005), described as an application of exploratory latent class
cluster analysis, in fact is fitting as many as possible multinomial probability
models to the data and choosing among them using the BIC criterion. In
particular, this approach does not carefully address the important issue of
identifiability for the models considered, which, as mentioned before, is a
crucial problem for BLIM type models. Connected with the identifiability
issue is the fact that the BIC criterion, strictly speaking, is based on the
number of independent, and at the same time, estimable model parameters.

Conclusion

Two publications about knowledge structures explicitly point out and build
upon the outlined connection between KST and LCA. Schrepp (2005) pro-
poses a method for constructing knowledge structures from the data. Can-
didate knowledge structures are generated, they are considered as restricted
latent class models and fitted to the data, and the BIC criterion is used to
choose among them. (Similar to Schrepp (2005), Stefanutti and Robusto
(2009) propose a special case of the BLIM where the response error probabil-
ities are constrained, in order to recover a probabilistic knowledge structure.)
Ünlü (2006) investigates latent class modeling with random effects for the
estimation of response error rates for dichotomous test items in KST. In par-
ticular, this approach is extended to give a generalization of the BLIM and
of a number of other LCMs. This allows for local dependence among the
items given the knowledge state of an examinee and/or for the incorporation
of covariates.

An interesting and important direction for future research is investigating
models based on stochastic processes. So far, dynamic KST probabilistic
models such as the stochastic learning paths systems (Doignon and Fal-
magne, 1999) have not been compared with statistical approaches to latent
variable modeling. For instance, latent Markov (hidden Markov or latent
transition) models (e.g., Hagenaars, 1990; MacDonald and Zucchini, 1997;
Vermunt, 1997) or generalized latent variable modeling (e.g., Skrondal and
Rabe-Hesketh, 2004) are interesting topics to study, in further comparisons
of KST to statistical analyses of latent variables.
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