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Introduction
Recent developments in Natural Language Process-
ing (NLP), like the publication and democratization 
of transformer models [1], have allowed tremendous 
improvements also in biomedical text processing [2, 3]. 
For instance, in the n2c2 2022 medication detection chal-
lenge [4]1 (Track 1, Subtask 1), conducted as a named 
entity recognition (NER) task, the 13 highest ranking 
participants relied on transformer architectures and 
all achieved an F1 score above 96% (relaxed match) in 
detecting medication mentions in English electronic 
health records. However, while automatically processing 
medical text bears many different hurdles, such as data 
access or limited computation power in hospital infra-
structures, the fact that most resources only exist for 

1 ​h​t​t​p​​s​:​/​​/​n​2​c​​2​.​​d​b​m​​i​.​h​​m​s​.​h​​a​r​​v​a​r​​d​.​e​​d​u​/​2​​0​2​​2​-​a​m​i​a​-​w​o​r​k​s​h​o​p
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Abstract
Extracting specific information, such as medication mentions, from large unstructured medical texts can be 
challenging, especially when no annotated corpus exists in the target language for training. To overcome this, 
leveraging existing machine learning models and datasets is essential, and since most pre-trained resources are in 
English, adopting multilingual approaches can help transferring between languages. In this work, we investigate 
the usage of a multi-lingual transformer model in a multi-lingual and cross-lingual setting to extract drug names 
from medical texts using named entity recognition in four European languages: German, English, French, and 
Spanish. We report the scores obtained by cross-lingual transfer with several published datasets after fine-tuning 
a multi-lingual model, aiming to create empirical evidence on how the transfer of “medical” knowledge between 
languages can be expected to benefit various language pairs. We further perform a qualitative error analysis and 
find that the performance on all languages achieves competitive levels. Conversely, erroneous prediction artifacts 
are introduced by annotation inconsistencies, differences in annotation guidelines and vague entity labels in 
general.
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English is an additional challenge for many researchers 
around the globe.

Especially in classical, mono-lingual-based approaches, 
a low resource setting, or even a lack of matching anno-
tated corpora for a certain target language is not uncom-
mon. Our work investigates the use of multilingual 
medication detection for German (de), French (fr), and 
Spanish (es), in addition to English (en) in the medical 
context. The core question that we address concerns the 
extent to which existing data and multi-lingual models 
can improve the situation in non-English medical NLP 
settings. In practical terms: Which performance can we 
expect if we rely on an annotated corpus from a source 
language as training data and apply the subsequently 
trained model on a target language?

Finding evidence-based answers to this research ques-
tion has clear practical implications. (i) Multi-lingual 
models facilitate common interoperability across mul-
tiple languages and, for instance, can be more effective in 
actual deployments since a multi-lingual base model does 
not need to be swapped if the input language is changed, 
in contrast to mono-lingual base models. (ii) Utiliz-
ing multi-lingual models allows the composition of data 
sources from multiple languages and therefore, it miti-
gates data scarcity in the medical context. (iii) In cases of 
such dataset scarcities in certain languages, cross-lingual 
approaches might be able to bridge the knowledge from 
a dataset in a source language to be applied in a target 
language.

Our experimental study design focuses on the cross-
lingual capabilities of masked language models, which 
offer a suitable architecture for NER tasks. While much 
attention has been dedicated to large language models 
(LLMs) recently, these causal language models substan-
tially differ in conceptual and practical terms, rendering 
a fair and exhaustive comparison of LLMs and BERT 
models challenging. Therefore, the scope of this study 
does not include LLM-driven medication detection 
methodologies.

To this end, we employ a multi-lingual transformer 
model for medication detection. It facilitates our evalu-
ation setup since drug-related labeled data from differ-
ent languages and different medical corpora are available 
and hence, multiple cross-lingual transfer settings can be 
conducted.

We report precision, recall, and F1 scores for differ-
ent dataset configurations as part of the evaluation. To 
expand on the scores, we additionally contribute a com-
prehensive error analysis of the resulting predictions 
based on sample-wise observations to find artifacts and 
error patterns that are not well-captured by the plain 
scores. Within this scope, we try to categorize common 
errors across and within languages and corpora and set 

them into context. A summary of general observations 
made on the predicted entities concludes the analysis.

Related work
In recent years, transformer-based approaches have 
achieved strong results in common language model-
ing tasks [1]. While most neural nets such as BERT [5] 
are frequently optimized for monolingual settings like 
English data, attempts to model multiple languages by a 
single network jointly have been described and success-
fully demonstrated with mBERT [5], XLM [6] or XLM-
RoBERTa [7].

The properties and capabilities of multi-lingual models 
have been analyzed in several works. For instance, Pires 
et al. [8] investigated the mBERT model regarding multi-
lingual transfer and reported indications that mBERT 
learns implicit multi-lingual representations, yet strong 
transfer capabilities are rather limited to “topologically 
similar” language pairs. Similarly, Wu and Dredze [9] 
evaluated the zero-shot performance and behavior of 
mBERT across several NLP tasks with positive results, 
yet they regard cross-lingual transfer in low-resource lan-
guages as future work. Chai et al. [10] discussed several 
linguistic factors for multi-lingual transfer on mBERT 
and XLM-R and identified word composition as a major 
contributor to multi-lingual understanding while con-
stituent word ordering and word co-occurrences are of 
less importance. The cross-lingual transfer capabilities of 
models such as XLM-R has been also investigated by Al-
Duwais et al. [11], including the transfer between English 
and Arabic. In their study about non-medical NER, the 
results show that the effectiveness of cross-lingual trans-
fer highly depends on the target language.

Since multi-lingual networks can process data across 
different languages through shared weights without 
explicit parallel corpora [8], the idea of utilizing these 
models for performance improvement has been applied 
in countless contexts beyond biomedical or medical 
domains. In particular, low-resource contexts are of com-
mon interest due to the limited access to labeled data in 
the low-resource language and domain. Xie et al. [12] 
approached this issue by creating a shared embedding 
space for word translation and NER in a low-resource 
context instead of using jointly inherently multi-lingual 
networks like XLM-R or mBERT to model semantic 
similarities in an end-to-end fashion. For instance, using 
recent multi-lingual transformer models, Chen et al. [13] 
have applied XLM-R and cross-lingual pre-training to 
improve NER tasks on low-resource Uyghur and Hungar-
ian datasets.

In the medical and biomedical domain, Catelli et al. 
[14] have fine-tuned a pre-trained mBERT model on Ital-
ian and English data to obtain NER items in Italian clini-
cal texts for de-identification, yet the NER classes have 
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no particular medical relationship. Concerning medi-
cal NER entities, Ding et al. [15] showed that bi-lingual 
models can improve NER performance by additionally 
pre-training on parallel corpora in English and Chinese. 
Their approach uses aligned ICD-11  [16] data for paral-
lel text corpora, the MIMIC-III dataset [17] and internal 
Chinese data, and is built upon the XLM [6] model. Pur-
witasari et al. [18] trained mBERT and XLM-R in mono-
lingual, zero-shot and joint multi-lingual training setups 
to evaluate the language transfer for English and Indone-
sian biomedical NER. The authors report superior per-
formance of XLM-R compared to mBERT and no notable 
difference between the monolingual model and their 
multilingual approach. Contextualized embeddings from 
XLM-R models can also be applied without fine-tuning 
in a zero-shot fashion using embedding-based similar-
ity search to detect medical entities in multi-lingual set-
tings as demonstrated by Schwarz et al. [19]. For medical 
text classification, baseline experiments on cross- and 
multi-lingual transfer e.g. in the context of adverse drug 
reactions (ADR) [20] were conducted. The reported 
results on text classification using XLM-R show imper-
fect performance score for the transfer from English to 
German, which may be impacted by several factors such 
as the challenging ADR task, the varying data quality of 
social media forums, and class imbalances. Regarding 
the cross- and multi-lingual transfer from Chinese to 
English on medical NER, rather poor results (about 40% 
F1 score) have been reported [21] in their baseline sys-
tems. Zanoli et al. [22] report baseline experiments on 
the E3C corpus, focusing on disorder entities with men-
tion- and concept-level UMLS annotations. Their results 
cover monolingual, multilingual, and cross-lingual train-
ing across English, French, Italian, Spanish, and Basque, 
though without analysis of specific language-to-language 
transfer. The work does not include German data or med-
ication entities but provides useful baselines for disorder-
focused biomedical NER.

Rather than only relying on cross-lingual transfer, the 
re-use of datasets from other languages through transla-
tion and annotation projection is considered. Concerning 
the question to which degree translation and annotation 
projection-based language shifts can outperform cross-
lingual training, Gaschi et al. [23] investigated the uni-
directional transfer from English to German and from 
English to French using the n2c2 2018 dataset (ADE, 
Track 2). Since their underlying evaluation corpora fol-
low the identical annotation guidelines, the reported F1 
score ranges between 72% (German) and 79% (French) 
using XLM-R base model for cross-lingual transfer. Simi-
larly, Schafer et al. [24] is conceptually related, whereas 
both an annotation projection attempt is compared to an 
English-to-German cross-lingual transfer approach. They 
report a lower F1 score of 69% for the XLM-R base model 

on medication detection, which might also be influenced 
by the fact that their corpora do not share common 
annotation guidelines.

Large Language Models (LLMs) may also be used for 
medical-related tasks such as drug detection, taking 
advantage of their large training corpus and model size 
in multi-lingual tasks. However, LLM-based NER using 
few-short learning is reported to still perform inferior to 
masked language models [25, 26].

Material and methods
Throughout this work, we refer to cross-lingual when all 
languages of the training set differ from the languages of 
the test set, and similarly, we consider the term multi-lin-
gual if datasets from multiple languages are used jointly 
for training. In order to investigate the cross- and multi-
lingual transferability for medication mention detec-
tion, we fine-tune a multi-lingual transformer model on 
several dataset compositions from different languages. 
Therefore, we harmonize all individual drug-related label 
classes by mapping all semantically similar label classes 
of each dataset to one harmonized label class which is 
subsequently used for all datasets.

If possible, we use not only one dataset per language 
but several to avoid overfitting on a particular kind of 
data or annotation style and to increase the model’s 
robustness on different text styles. Based on preliminary 
experiments, we select XLM-RoBERTa [7] as our trans-
former model, henceforth abbreviated as XLM-R.

Our approach investigates three perspectives. First, 
we fine-tune XLM-R mono-lingually as a mono-lingual 
reference. Second, we measure the performance in the 
joint multi-lingual setting by fine-tuning across all data-
sets from different languages. Third, we evaluate dif-
ferent combinations of training and test sets that allow 
us to quantify cross-lingual strengths and weaknesses 
for different languages. To provide further insights to 
our quantitative analysis, we also report and discuss 
observed artifacts and patterns in the qualitative analysis 
counterpart.

Data overview
The presented corpora are selected because of the lan-
guages they represent and their respective annotations of 
medical entities. In particular, we are interested in medi-
cation names or other closely related types, such as sub-
stances. However, available medical datasets in languages 
other than English are limited, so we choose two Ger-
manic (English and German) and two Romance (French 
and Spanish) languages and collect the corpora to which 
we were permitted access.

In particular, for the data, we consider medication 
names (and chemicals) used in medical texts, e.g., patient 
records. Usually, there is only one label per dataset 
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dedicated to the desired expressions; sometimes, how-
ever, these labels cover a broader scope than only drug 
names, which is an inherent limitation when dealing with 
diverse datasets. As pointed out earlier, we harmonize all 
corpus-specific label classes we are interested in into one 
common label class. Such label classes are highlighted 
in bold in the subsequent descriptions of the datasets 
(Sections “German Datasets” and “Spanish Datasets”). 
The statistics of the available corpora and their selected 
drug-related labels can be found in Table 1. Due to pre-
processing steps involving unicode normalization and 
span-corrections, certain text samples were removed to 
avoid issues with corrupted label spans after the unicode 
normalization.

German datasets
BRONCO150 [28]  The Berlin-Tübingen Oncology Cor-
pus2 contains 150 discharge summaries of cancer patients 
who received treatment at either Charité Berlin or Uni-
versitätsklinikum Tübingen. The summaries were manu-
ally anonymized, split into sentences, and scrambled to 
avoid the possibility of tracing back discharge reports to 
individuals. The sentences in this corpus are annotated 
with three entity labels (“diagnosis”, “treatment” and 
“medication”) and normalized to the terminologies ATC  
[29] (medication), ICD-10  [30] (diagnosis), and OPS  [31] 
(treatment). Only complete tokens were annotated, even if 
only a sub-token was part of a medical entity. The authors 
define a medication as “a pharmaceutical substance or a 
drug that can be related to the Anatomical Therapeutic 
Chemical Classification System (ATC 3)” [28].

GERNERMED [32]  This corpus4 originates from the 
n2c2 2018 ADE dataset [33] which is an annotated English 

2 ​h​t​t​p​​s​:​/​​/​w​w​w​​2​.​​i​n​f​​o​r​m​​a​t​i​k​​.​h​​u​-​b​​e​r​l​​i​n​.​d​​e​/​​%​7​E​​l​e​s​​e​r​/​b​​r​o​​n​c​o​/​i​n​d​e​x​.​h​t​m​l
3 ​h​t​t​p​​:​/​/​​w​w​w​.​​d​i​​m​d​i​​.​d​e​​/​d​y​n​​a​m​​i​c​/​​d​e​/​​a​r​z​n​​e​i​​m​i​t​​t​e​l​​/​a​t​c​​-​k​​l​a​s​s​i​f​i​k​a​t​i​o​n​/
4 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​f​r​a​n​​k​k​​r​a​m​​e​r​-​​l​a​b​/​​G​E​​R​N​E​R​M​E​D

dataset that covers several medical entities such as “Drug”, 
“Dosage”, “Strength” etc. The German data samples are 
obtained through an automatic machine translation, 
while annotation information is transferred into German 
through word alignment estimation. Therefore, it is not a 
gold standard dataset. In this work, we use a refined data-
set iteration which is available on request. According to 
the respective n2c2 annotation guideline, the drug entity 
should include all kinds of drugs except for “illicit” drugs 
and alcohol.

GGPONC v2.0 [34]  This datatset5 is, according to the 
authors, the first data collection based on clinical prac-
tice guidelines in German. GGPONC is a collection of 
curated scientific text documents, i.e., clinical guidelines 
that include, for example, instructions for the treatment 
of breast or lung cancer. It does not contain any personal 
data and thus is freely accessible. The entities labeled in 
this corpus belong to the category “Finding”, “Substance” 
or “Procedure”. The “Substance” label includes “general 
substances, the chemical constituents of pharmaceutical/
biological products, body substances, dietary substances 
and diagnostic substances (…)”.6 The GGPONC 2.0 cor-
pus provides both a short-span and a long-span annota-
tion layer, determining whether entity-related specifica-
tions are included into the span. For this study, we use the 
long-span annotation layer as it fits best to the span char-
acteristics of the other corpora.

Ex4CDS [35]  The dataset7 consists of short notes writ-
ten by physicians in the context of estimating different 
patient risks. The text data has similarities to clinical text 
and was annotated with entities and relations and com-
prises entities such as “Condition”, “Lab Values”, “Health-
State”, “Measure”, or “Medication”. The latter refers to, in 
this case, generic drug names, groups of medications, and 
active substances.

English dataset
CMED [36]  CMED8 was published by the organizers 
of the n2c2 challenge in 2022. It contains over 500 clini-
cal notes based on the 2014 i2b2/ UTHealth Natural 
Language Processing shared task corpus [37–39] and is 
annotated with medication changes. Thus, every medica-
tion name is either labeled as “Disposition” (there was 
a change in medication), “NoDisposition” (no change in 
medication) and “Undetermined” (it is not evident from 

5 ​h​t​t​p​​s​:​/​​/​w​w​w​​.​l​​e​i​t​​l​i​n​​i​e​n​p​​r​o​​g​r​a​​m​m​-​​o​n​k​o​​l​o​​g​i​e​​.​d​e​​/​p​r​o​​j​e​​k​t​e​/​g​g​p​o​n​c​-​e​n​g​l​i​s​h​/
6 Annotation guidelines of GGPONC: ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​h​p​i​-​​d​h​​c​/​g​​g​p​o​​n​c​_​
a​​n​n​​o​t​a​​t​i​o​​n​/​b​l​​o​b​​/​m​a​​s​t​e​​r​/​a​n​​n​o​​t​a​t​​i​o​n​​_​g​u​i​​d​e​​/​a​n​n​o​_​g​u​i​d​e​.​p​d​f

7 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​D​F​K​I​​-​N​​L​P​/​E​x​4​C​D​S
8 To the best of our knowledge, these data are not (yet) publicly accessible.

Table 1  The dataset statistics. The data was tokenized using 
SpaCy [27]. Only labels of drug-related entity classes are counted. 
Number of tokens refers to the entire dataset
Dataset # Tokens (overall) # Labels (drug-related)
de BRONCO150 83,551 1,630

GERNERMED 21,678 1,450
GGPONC 2.0 2,005,183 23,671
Ex4CDS 2.0 4,356 98

en CMED 472,114 8,993
fr Quaero 79,706 3,537

DEFT 284,111 1,337
es PharmaCoNER 406,316 4,448

CT-EBM-SP 355,443 9,224
Total 3,712,458 54,388

https://www2.informatik.hu-berlin.de/%7Eleser/bronco/index.html
http://www.dimdi.de/dynamic/de/arzneimittel/atc-klassifikation/
https://github.com/frankkramer-lab/GERNERMED
https://www.leitlinienprogramm-onkologie.de/projekte/ggponc-english/
https://github.com/hpi-dhc/ggponc_annotation/blob/master/annotation_guide/anno_guide.pdf
https://github.com/hpi-dhc/ggponc_annotation/blob/master/annotation_guide/anno_guide.pdf
https://github.com/DFKI-NLP/Ex4CDS
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the context if there was a change or not)9. All “Disposi-
tion” events are further characterized with what kind of 
change happened (“Action”), e.g., if the medicated intake 
started, increased, or decreased, the timing of the change 
event (“Temporality”, e.g., past, present), the certainty of 
the medication change (“Certainty”, e.g., certain, hypo-
thetical, etc.), the initiator of the change, i.e., the patient 
or physician (“Actor”) and if the medication event was 
negated or not (“Negation”).

French datasets
DEFT [40]  The DEFT corpus10 contains more than 700 
documents from freely available clinical case reports in 
French and is a subset of the CAS corpus [41]. The data 
are classified into four general categories (“age”, “gender”, 
“outcome” and “origin”) and a subset of the reports is then 
annotated in a more fine-grained way, using, for instance, 
entity labels relating to physiology (e.g., “body measure-
ment”) or surgeries (e.g., “surgical approach” or “medi-
cal device”). The entity we are interested in is the one 
named “substance”, a subset of the broader category of 
drug annotations, which also include labels like “concen-
tration” or “mode”. “Substance” is defined as “commercial 
and generic drug names or generic substance” [40]. Note 
that not all documents in DEFT were annotated fully.

Quaero [42]  The Quaero French Medical Corpus11 was 
designed for medical NER and named entity normaliza-
tion in Medline titles and EMEA documents. The types of 
medical entities follow the UMLS  [43] semantic groups 
and allow labels such as “Anatomy”, “Chemical”, or “Dis-
order”. Entities can be discontinuous and can be linked 
to more than one UMLS concept, the latter, however, is 
not relevant to the presented work. The label “Chemical” 
contains chemicals and drugs as defined by [44], includ-
ing, for instance, antibiotics, clinical drugs, elements or 
enzymes, amongst others.

Spanish datasets
PharmaCoNER [45]  This corpus,12 developed for the 
PharmaCoNER shared task, contains approximately 1,000 
manually annotated clinical case studies in Spanish. The 
annotated entities are “Normalizables” (chemicals13 that 
could be manually normalized to a CUI), “No_Normal-

9 Note that for the CMED dataset, all medication labels in the test set are 
already mapped to “Drug”. Unfortunately, we do not know the exact defini-
tion of “Drug”.

10 ​h​t​t​p​​s​:​/​​/​d​e​f​​t​.​​l​i​m​​s​i​.​​f​r​/​2​​0​1​​9​/​i​n​d​e​x​-​e​n​.​h​t​m​l
11 ​h​t​t​p​​s​:​/​​/​q​u​a​​e​r​​o​f​r​​e​n​c​​h​m​e​d​​.​l​​i​m​s​i​.​f​r​/
12 ​h​t​t​p​​s​:​/​​/​t​e​m​​u​.​​b​s​c​​.​e​s​​/​p​h​a​​r​m​​a​c​o​n​e​r​/
13 For this dataset, the terms “chemical” and “drug” are used interchangeably.

izables” (chemicals that could not be normalized), “Pro-
teinas” and “Unclear”.

CT-EBM-SP [46]  The Clinical Trials for Evidence-Based 
Medicine in Spanish corpus14 is annotated with entities 
from UMLS. The texts are taken, as the name suggests, 
from journal abstracts about clinical trials (500 docu-
ments) and announcements of trial protocols (700 docu-
ments), containing entities belonging to categories such 
as “Anatomy”, “Pathology”, or “Chemical”. The latter are 
defined as “pharmacological and chemical substances” 
[46].

In summary, we collected four German, one English, 
two French, and two Spanish datasets. All of these are 
based on similar, but not identical annotation guide-
lines and annotate entities that exhibit varying levels 
of semantic overlap with medication names. Note that 
although the guidelines might be comparable, the data 
were created with different goals in mind, by different 
annotators and in different settings. Therefore, the scope 
of the annotated entities might vary or include or exclude 
particular expressions.

Pre-processing
All datasets are split into a training, development, and 
test set. In some cases (CMED, CT-EBM-SP, Pharma-
CoNER, Quaero), these splits were already given; the 
remaining corpora are split into 70% training, 15% 
development, and 15% test set. If possible, the data were 
split on document level, otherwise, e.g., in the case of 
BRONCO150, where several documents (sentences) were 
assigned to only five files, we take three files as training 
data and the remaining two as development and test sets. 
Code for data pre-processing, fine-tuning of models, and 
the error analysis is available online.15

First, all datasets are converted into the BRAT [47] for-
mat to prepare the input data by using modified scripts16 
from the BRAT maintainers. This is done to re-use the 
existing evaluation script from n2c2 2022.17 We convert 
the data into CONLL-style  [48] inside-outside-beginning 
(IOB) format, which then serves as input to Huggingface’s  
[49] transformer models. In the case of discontinuous 
entities, the longer span is selected over the single entities 
using the “longer span” option in the BRAT scripts. Due 
to the 512 token limit of our transformer model, we split 
the text into chunks of 26 sentences at maximum such 

14 ​h​t​t​p​​:​/​/​​w​w​w​.​​l​l​​l​f​.​​u​a​m​​.​e​s​/​​E​S​​P​/​n​l​p​m​e​d​t​e​r​m​_​e​n
15 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​l​r​a​i​​t​h​​e​l​/​​c​r​o​​s​s​_​l​​i​n​​g​_​d​r​u​g​_​n​e​r
16 brat2bio: ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​s​p​y​y​​s​a​​l​o​/​s​t​a​n​d​o​f​f​2​c​o​n​l​l and bio2brat ​h​t​t​p​​s​:​/​​/​
g​i​t​​h​u​​b​.​c​​o​m​/​​n​l​p​l​​a​b​​/​b​r​​a​t​/​​b​l​o​b​​/​m​​a​s​t​​e​r​/​​t​o​o​l​​s​/​​B​I​O​t​o​S​t​a​n​d​o​f​f​.​p​y
17 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​l​r​a​i​​t​h​​e​l​/​​c​r​o​​s​s​_​l​​i​n​​g​_​d​​r​u​g​​_​n​e​r​​/​b​​l​o​b​​/​m​a​​i​n​/​s​​r​c​​/​e​v​a​l​_​s​c​r​i​
p​t​.​p​y

https://deft.limsi.fr/2019/index-en.html
https://quaerofrenchmed.limsi.fr/
https://temu.bsc.es/pharmaconer/
http://www.lllf.uam.es/ESP/nlpmedterm_en
https://github.com/lraithel/cross_ling_drug_ner
https://github.com/spyysalo/standoff2conll
https://github.com/nlplab/brat/blob/master/tools/BIOtoStandoff.py
https://github.com/nlplab/brat/blob/master/tools/BIOtoStandoff.py
https://github.com/lraithel/cross_ling_drug_ner/blob/main/src/eval_script.py
https://github.com/lraithel/cross_ling_drug_ner/blob/main/src/eval_script.py
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that we can avoid issues of exceeding the token limit. 
To avoid the model getting biased towards one language 
during fine-tuning, we apply weighted random sampling 
when creating the batches fed to the model to make sure 
that each batch contains at least one example from each 
language. Note that when using this method, the model 
might see an example from a particular language and 
dataset several times during the fine-tuning process.

Experimental setup
We rely on the base model of XLM-R [7] for all our 
experiments due to its lower computational costs, as we 
observed in preliminary trials that in terms of macro F1 
score, the results showed only minor differences while 
fine-tuning with XLM-R large took significantly longer. 
Furthermore, the base XLM-R model works best for our 
use case compared to the other multi-lingual transformer 
models we tested. We fine-tune five models using five dif-
ferent seeds for every setup to account for training insta-
bilities known from transformer models [5].

As outlined in the Section “Introduction”, we do not 
further address LLM-based medical NER within the con-
text of our experiments. The broader reasoning is dis-
cussed in Section “Discussion”.

The predictions of the five resulting models on the 
test set are ensembled via a majority vote and evaluated 
against the gold standard data. After applying the fine-
tuned models for inference, the resulting IOB sequences 
are converted back to BRAT format, allowing 1) some 
automated label corrections and 2) an easy and consis-
tent evaluation using the n2c2 2022 evaluation script.18

Mono-lingual fine-tuning
In this setup, we fine-tune five XLM-R models on each 
language separately and evaluate the models on the com-
plete test set bench of languages using the ensembled 
predictions. Hereby, the mono-lingual reference score as 
well as the cross-lingual transfer to other languages are 
tracked. We abbreviate these models as monolanguage, e.g., 
monode.

Joint multi-lingual fine-tuning
The fine-tuning on all datasets across all languages con-
stitutes the highest degree of joint multi-lingual train-
ing. We abbreviate this experiment setup to all. For this 
premise, we expect the model to learn a shared represen-
tation of medication names across languages by taking 
into account the different (language) contexts and anno-
tation styles. While one can assume that this method 
may achieve lower scores due to the divergences across 
languages and datasets, the resulting model may be more 
robust in terms of dataset shifts, and it might be able to 

18 ​h​t​t​p​s​:​​​/​​/​n​2​c​​2​​.​d​b​​m​​i​.​​h​​m​s​​.​h​​a​r​v​​a​​r​d​​.​​e​d​​u​/​​2​​0​2​2​-​t​​r​a​c​k​-​1

pick up, for instance, syntactic constructions that are evi-
dent in one dataset but not in another.

Fine-tuning on language pairs
The experiments of this group are based on the assump-
tion that similar languages might learn from each other. 
Therefore, we combine the English and German train-
ing data (de+en, both are Germanic languages) into one 
dataset and the Spanish and French training data into one 
dataset (fr+es, both are Romance languages). The train-
ing data are selected to adequately counter imbalances 
in different scales of abundance of data samples within a 
language pair.

Merging the datasets from two linguistically related 
languages for a joint language-pair-specific training can 
be considered to constitute a middle ground between 
pure mono-lingual setups and the joint multi-lingual 
setup. These language-pair setups are relevant to inves-
tigate whether it is practical to stay within one lan-
guage family instead of focusing on including also more 
remotely related languages.

Results
Every model is evaluated on the same test set bench, con-
taining examples of all languages and datasets (all) as 
well the language-specific subsets separately. To mitigate 
disagreement issues on exact span borders, we compute 
the scores for Precision, Recall and F1 using the evalu-
ation script from the n2c2 2022 challenge in overlap 
(lenient) mode. This ensures that also spans with (any) 
partial overlap are considered as true positive matches.19 
The scores for exact matching can be found in the supple-
mentary materials.

To provide a comprehensive yet condensed overview 
of our obtained results, the F1 scores on different experi-
ment setups are given in Table 2.

Mono-lingual setups
With regard to the mono-lingual setup, three aspects are 
of particular interest:

 	• How well can a mono-lingual model learn to detect 
medication names within its own language?

 	• Which mono-lingual model performs well when it is 
required to transfer across all languages?

 	• Can mono-lingual models be used to transfer to 
certain other languages particularly well through the 
cross-lingual abilities of the XLM-R base model?

Addressing the first point, as for the mono-lingual mod-
els in general, we find, not surprisingly, that the best 

19 Note that if there is nothing to annotate/predict in a document, the evalu-
ation script returns 0.0 for all scores.

https://n2c2.dbmi.hms.harvard.edu/2022-track-1
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model for one language is always the one trained on this 
language. Regarding the second aspect, we observe that 
the model trained only on German data achieves the best 
lenient F1 (0.77) compared to the other “mono” models 
when evaluated on all examples, no matter the language. 
This is closely followed by the model trained only on 
Spanish data with an F1 of 0.76.

Further, it is interesting to see that the performance of 
model_en is lower compared to the other models when 
applied to the Spanish data (F1 = 0.67 versus 0.73 (de) 
and 0.71 (fr)). The same is apparent for the French test 
set (F1 = 0.49 versus 0.57 (de) and 0.59 (es)). According 
to the F1 scores, for French, training on Spanish is bet-
ter than on German (if only by a small difference), while 
on Spanish, German is more beneficial than French. Note 
that French generally yields the lowest scores overall, 
even when trained mono-lingually. While the French lan-
guage resources are composed of two datasets, the low 
results indicate conflicting annotation schemes.

Concerning the cross-lingual transfer of mono-lin-
gually trained models, it appears that German and 
Spanish are best suited to be used for German, Span-
ish, or English cross-lingual transfer. While the German 
and Spanish language resources consist of more than 
one corpus per language, English only uses one dataset. 
This leads to the observed overfitting effect of the Eng-
lish mono-lingual model, which performs best within its 
own language domain at the expense of its cross-lingual 
scores on the German and Spanish test sets. In reverse, 
both German and Spanish mono-lingual models show 
rather evenly balanced scores in transfer setups.

Joint multi-lingual setup
We discuss the results in the joint multi-lingual setup 
both on the language level and on the dataset level.

Language-level scores
We find that the results per language are slightly below 
those of the “mono-lingual” setups, but only by a small 
margin (de: 1% point, en: 1.9, fr: 1.5, es: 1.1). In short, 
this indicates that for our particular use case, there is no 

clear evidence that could prove a clear multi-lingual ben-
efit over a mono-lingual when it comes to improving the 
scores for a certain target language.

Dataset-level scores
Going beyond the language-level analysis, we evaluate 
the joint multi-lingual model on each dataset indepen-
dently. This indicates which datasets and implicitly which 
annotation guidelines are covered well by the jointly 
trained multi-lingual NER model. Table 3 displays these 
dataset-dependent scores.

The results of this multi-lingual model show two outli-
ers: The F1 scores on the Ex4CDS dataset (0.41) and on 
the Deft corpus (0.28). In particular, a striking imbalance 
with regard to precision and recall scores on these outli-
ers can be observed, as the German Ex4CDS shows much 
higher precision over recall, while it is reversed for the 
French DEFT dataset. We will go into more detail in the 
error analysis.

For the other datasets, the results appear to be quite 
good: The lowest F1 score apart from the two already 
mentioned is observed on the Quaero corpus, all others 
exceed an F1 of 0.81. In addition, the precision and recall 
values appear balanced.

Table 2  F1 scores observed for various mono-lingual, cross-lingual and multi-lingual setups. The scores are reported as micro scores 
over all test set samples and separated by language. “Train” denotes the data the model was fine-tuned on, “test” stands for the data 
the model was evaluated on

Table 3  Dataset-dependent scores achieved by the joint 
multi-lingual model. The first part of the second column denotes 
the language (e.g., “de”), and the second part the dataset (e.g., 
“BRONCO150”). “train” denotes the data the model was fine-
tuned on, “test” stands for the data the model was evaluated on. 
p = precision, R = recall
Train Test Language Test Corpus P R F1

all de BRONCO150 0.845 0.888 0.866
all de Ex4CDS 0.714 0.294 0.417
all de GERNERMED 0.944 0.886 0.914
all de GGPONC 0.830 0.868 0.848
all en CMED 0.907 0.954 0.930
all es CT-EBM-SP 0.921 0.929 0.925
all es PharmaCoNER 0.755 0.885 0.815
all fr DEFT 0.186 0.568 0.281
all fr Quaero 0.889 0.599 0.716
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Language pair-based multi-lingual scores
When merging the languages by language families, 
Romance and Germanic, we can see several interesting 
results as well. First, the de+en cluster achieves the sec-
ond best scores both on German and English, better than 
using the all model. The same holds true for fr+es 
model evaluated on French data. Further, the scores on 
Spanish are strongly reduced when using only de+en 
data, but when we compare the scores of de+en, fr+es 
and all, it seems like there is still some information gain 
from adding German and English examples to the French 
and Spanish data. This is evident in the improvement of 
the precision score by 2.4% points.

Error analysis
The following is a mostly qualitative analysis of the pre-
dictions of the joint multi-lingual model. We highlight 
false positives (FPs) and false negatives (FNs) of inter-
est and categorize them into groups for a more insight-
ful overview. The counts of FP and FNs per language are 
reported in Table 4.

This might be an artifact of the different annotation 
guidelines of the various datasets: Since they were all 
built with different task objectives in mind, some drug 
occurrences might be annotated for some datasets but 
not for others, providing the model only with an unstable 
training signal on how to treat these occurrences.

Analysis of false positives
FPs are text spans that were predicted as (part of ) a drug 
name but are not correct according to the respective 
dataset’s ground truth annotation. During the qualitative 
analysis of the FP samples, we identify two notable error 
sources:

Annotation errors
Out of the collected false positive samples, several can 
be considered as true positives, contrary to the respec-
tive ground truth of the underlying dataset. For example, 
on the DEFT dataset the model predicted, among other 
things, “Rivotril” and “paroxétine”, both of which are, 
indeed, names of medications, yet they are not treated 
accordingly by the ground truth annotation.

Investigating the occurrences of the entities, we find 
that “Rivotril” only occurs in the Spanish training data 
and in no other dataset. “Paroxetine”, however, can be 
found in the training data of GGPONC and GERNER-
MED (“Paroxetin”), CMED (“Paroxetine”), Pharma-
CoNER and CT-EBM-S (“paroxetina”) and even in DEFT 
(“paroxétine”). Similar examples from German would be 
“Dopamin” (GGPONC) or “Metamizol” (BRONCO150, 
GGPONC), both were not labeled in the ground truth in 
some cases. However, we could verify them to be pres-
ent in the training sets of GGPONC, PharmaCoNER, 

BRONCO150 and CT-EBM-SP. Consequently, we 
assume these to be annotation errors or entities that were 
not relevant for the respective corpus for some reason.20

Groups of other medical terms
In the FPs across all languages and datasets, we can find 
terms that belong to specific groups. These groups and 
their members often have medical associations, but are 
not medications themselves. However, their medical 
“context” might be a reason for their prediction. Some 
of the most visible groups are proteins (de: “Cyclin E”, en: 
“Creatine Kinase”, fr: “PHOSPHOMONOESTÉRASE”, es: 
“proteína C”), chemical compounds (de: “Dinitrotoluol”, 
en: “phosphate”, fr: “D-glycosylamines”, es: “fósforo”), 
abbreviations (de: “HLA”, en: “ASA”, fr: “STH”, es: “PTH”), 
general medication classes (de: “Medikation”, en: “pain 
medication”, es: “narcóticos”), medical terms and tools 
(de: “Gewebsflüssigkeit”, en: “Tegaderm”, fr: “solution”, es: 
“concentrado”), and dietary supplements (de: “Vitamin 
C”, en: “B12”, es: “calcio”). A reason for these predictions 
might be the label definitions of the different datasets. 
Some of them, e.g., Quaero and PharmaCoNER, include 
enzymes or chemical substances in their respective labels 
and the model is, apparently, not overfitting on any of 
those datasets. Also, the mentioned expressions are all 
used in very similar or even the same context as drugs, 
and therefore, the model might not be able to distinguish 
them semantically from medications.

Summarizing the analysis of FPs, we observe that most 
of the incorrectly detected expressions can be catego-
rized into a particular group. Most of these classes can 
be associated with medicine, medical treatments or other 
things related to a clinical setting. Some FPs are simply 
based on annotation errors or on small differences in the 
dataset guidelines (e.g., “CHEM” versus “Medication”).

Analysis of false negatives
Similar to the analysis of FPs, we now focus on enti-
ties that were classified as medication names accord-
ing to their ground truth but were not detected by the 

20 Note that some of the DEFT examples were only annotated partially.

Table 4  Number of false positives (FP) and false negative (FN) 
samples. The individual samples are used for the qualitative error 
analysis
Language #FP #FN
German 376 382
English 113 63
French 298 175
Spanish 287 142
total 1,074 763
unique total 977 755
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multi-lingual model. During our analysis we identify the 
following group categories covering most FN entities:

 	• therapies: (de: “Sorafenibtherapie”, en: “lipid-
lowering therapy”, fr: “traitement antidotique”)

 	• abstract medication terms: (de: 
“Herzentlastungsmedikamente”, en: “BP meds”, fr: 
“ANTICOAGULANTS”, es: “antitrombótica”)

 	• brand names: (de: “Sab Simplex”, fr: “IONSYS”, es: 
“McGhan”),

 	• medications with imprecise spans: (de: “Irinotecan 
(60 mg/m2”, fr: “Comprimé”)

 	• ambiguous or weak terms: (de: “B6”, en: “Mg”, fr: 
“CE”, es: “P”)

In contrast to that, we also encounter a few very long 
spans, e.g., “orale Supplemente mit Omega-3-Fettsäuren” 
(de, oral supplements with omega-3 fatty acids), “nouveau 
traitement antituberculeux” (fr, new anti-tuberculosis 
treatment), “antiveneno F(ab’)2 polivalente” (es, polyva-
lent F(ab’)2 antivenom). We will again refer to these long 
spans in the general observations below.

Finally, most FNs seem to be actual medication names 
(e.g., de: “Avelumab”, en: “LISINOPRIL”, fr: “Atripla”, es: 
“folato”) that were simply not detected by the model. The 
reason might be that some of these drugs (e.g., “Atripla”) 
were never seen in any training examples, or, in case they 
were seen, the context in the test example did not match 
the one the model was trained on.

General observations
We conclude the qualitative error analysis with some 
general observations regarding the predicted entities.

Volatile span length
The model seems to have difficulties in deciding the span 
length of an entity. In terms of scores, this is ignored by 
the permissive overlap mode, but some true positives 
are conspicuously longer than they need to be from the 
perspective of annotating medication names. This might 
be due to the strikingly different span lengths across the 
training datasets: In GGPONC, PharmaCoNER, CT-
EBM-SP, Quaero, and DEFT we have at least four medi-
cation names that are longer than four tokens, in the case 
of GGPONC there are 812 medications that are longer 
than four tokens. Also in GGPONC, DEFT and CT-
EBM-SP we can still find several entities with a span lon-
ger than ten tokens. Examples from the German data are 
“fettlöslichen Vitaminen” (fat-soluble vitamins) or “orale 
Medikation” (oral medication). They were both predicted 
correctly, however, in other cases, e.g. “schwere Beruhi-
gungsmittel” (heavy sedatives), this is not the case, since 
arguably a shorter span for “Beruhigungsmittel” (“seda-
tive”) would have been correct.

Treatment versus medication
In several instances, there seems to be a disagreement 
between the terms of treatment (or other entity labels) 
and medication. Therapies, for example, like “chemo 
therapy” are dependent on the dataset and their respec-
tive annotation guidelines, categorized in either of these 
categories, and therefore predicted inconsistently.

Inconsistent annotations within datasets
We also encounter occurrences within datasets where 
the annotation might be misleading. For example, in one 
of the German datasets our system predicts both “Sub-
stanzen” (substance) and “Einzelsubstanzen” (single sub-
stances), but only the first of those is a correct match.

Overlap between false positives and false negatives
There are overall 59 expressions across all languages and 
datasets that are included in the FPs, but also in the FNs. 
Often, these belong to certain groups as specified above, 
e.g., general medication names (e.g., “medicación”), 
dietary supplements (e.g., “Magnesium”), or abbrevia-
tions (“ARV”). All of them, however, have a clear medical 
association. Their occurrence in both FPs and FNs may 
be a result of the different underlying guidelines or con-
texts, and there may be some annotation errors involved 
as well. However, it also demonstrates the difficulty of 
annotating medical texts and creating guidelines for the 
annotation.

Unseen medications
To make sure the model is not simply overfitting to indi-
vidual medication names, we check for some true posi-
tives if they occur in any of the training sets. Indeed, we 
observe that there are several correctly predicted drugs 
that the model did not see during training. Examples are 
“Quixidar” (Quaero), and “rifampine” (DEFT). “Dexa-
methasone” is an interesting case: We can see that it 
was correctly predicted in both GERNERMED and 
GGPONC, but it never occurred like that in the train-
ing data. Instead, it was included in much longer spans, 
e.g.  “für 3 Tage 5 mg Dexamethasone” (for 3 days 5 mg 
Dexamethasone). Finally, examples for Spanish are 
“biperideno” (PharmaCoNER) or “tirofibán” (CT-EBM-
SP). From this, we can conclude that the context indeed 
plays a role when detecting medication names.

Discussion
In our experiments, we show that the multi-lingual 
model achieves a F1 score that is only slightly below the 
one of the “mono-lingual” models when evaluated on 
the languages separately. Since the difference is indeed 
very small (the maximum difference in lenient F1 score 
is 1.9% points), this can be good news for certain use 
cases: Given the case when several languages need to be 
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processed, a multi-lingual model needs less training time 
and computational resources, may be more robust to 
dataset shifts and potential noise like spelling errors, and 
can be easier to use in practice.

As part of the initial research question, the findings on 
the cross-lingual transfer indicate that transfer across 
certain languages is in fact a viable solution. While we 
observed drops in performance, our findings indicate 
that conflicting annotation guidelines across different 
datasets might be a larger impeding factor than lossy 
effects during the cross-lingual transfer. For instance, 
the transfer of a mono-lingual French model to English 
yielded quite good scores already.

Concerning language pairs, the results vary. Assum-
ing there is no target language training material available, 
combining other languages for fine-tuning does indeed 
show good performance on the target language and 
also often performs better than fine-tuning only on one 
source language. Since this is not always the case, a thor-
ough inspection of the available data might be necessary, 
to avoid the introduction of noise. For language pairs, 
languages from the same family seem to work better.

On two datasets, Ex4CDS (de) and DEFT (fr), we find 
a lower performance when compared to the other cor-
pora (0.41 and 0.28 F1). This might be due to the smaller 
dataset size (Ex4CDS), the different guidelines for both 
corpora (e.g., Ex4CDS contains, in contrast to the other 
datasets, explanations of clinical decisions), and the 
annotation of DEFT, where some documents were not 
completely annotated. Nevertheless, we use this data-
set to investigate the performance of the system in low-
resource contexts, and find, not surprisingly, a high 
number of false positives according to the evaluation 
scores. Many of these false positives, however, are actu-
ally correctly identified medication spans when taking a 
closer look.

With respect to both false positives and false negatives, 
we find error groups that are evident across all languages 
and across all datasets. We cannot say that there are lan-
guage-specific errors made by the system. It is, therefore, 
not the case that the model overfit on one language or 
dataset, most mistakes are to be found cross-lingually. 
For future work, it would be interesting to take a closer 
look at the contexts of the predicted FPs and FNs that we 
cannot explain by their medical association, context, or 
inconsistencies in the annotation.

We observe overlaps between false positives and false 
negatives in all languages and datasets. This hints at 
annotation inconsistencies, but also on very subtle differ-
ences that might depend on the exact context in which 
the entity in question was uttered. We argue that this is 
a normal phenomenon of manually annotated datasets, 
especially in a more complex domain like the medical 
domain.

Since all the datasets used in this work are based on 
different annotation guidelines, it is no surprise that for 
some of the test sets, we find predictions that are eval-
uated as false positives. These might be correct for one 
dataset, but not for the other. However, this shows very 
clearly why it is important to take a look at the actual pre-
dictions and not only at the scores: If we would like to 
(semi-)automatically annotate a new medical and poten-
tially multi-lingual dataset, these predictions would still 
be very useful. Also, as we have seen in some examples, 
even if a particular drug was not present in the training 
data, it can still be predicted correctly, based on context, 
but also based on its potential occurrence in the other 
datasets.

Finally, the fact that a lot of medication names are 
very similar across the four investigated languages (e.g., 
compare “Paroxetin” vs.  “Paroxetine” vs.  “paroxétine” 
vs. “paroxetina”) is likely to have a positive impact on the 
drug detection task as well. This might change for drug 
names with different origins or when using datasets from 
other language families, and maybe more importantly, 
other scripts. However, inconsistencies within datasets 
and in label definitions across datasets might counterbal-
ance these effects. The investigation of the influence of 
inconsistencies is, however, a task for future work.

Regarding the use of LLMs for medical NER tasks, 
these models have demonstrated applicability in areas 
such as medication detection  [25]. However, a direct and 
fair comparison of their cross-lingual capabilities with 
masked language models is inherently challenging due 
to fundamental architectural and operational differences 
between these model types. While our study focuses on 
gradient-based fine-tuning for the medication detec-
tion task, LLMs are typically employed using few-shot 
prompting techniques to circumvent the computational 
expense of fine-tuning larger model sizes. These con-
ceptual differences not only affect performance but also 
introduce distinct categories of error, which require sepa-
rate analytical frameworks. Therefore, our study remains 
centered on a single model, XLM-R, to ensure a focused 
and consistent evaluation.

Conclusions
In this work, we investigated the ability of the cross- and 
multi-lingual transfer-learning capabilities of the XLM-R 
model in the context of medication detection in differ-
ent languages and datasets. We fine-tuned the model on 
mono-lingual, bi-lingual and multi-lingual datasets and 
evaluated their drug detection performance across all 
languages. While our results indicate that mono-lingual 
models perform best on their respective target language, 
multi-lingual-trained models can reach scores close to 
their mono-lingual counterparts. Due to their cross-lin-
gual transfer, we demonstrated that multi-lingual models 
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can be a relevant approach in low-resource contexts in 
order to tackle NLP tasks with non-native datasets even 
if no appropriate native dataset or no language-specific 
pre-trained model is available.

An error analysis provided valuable insights into the 
mistakes the multi-lingual model makes when extract-
ing medication names from unseen data. The found error 
groups allow further investigations into how these errors 
can be alleviated or even avoided, e.g., by more consistent 
annotation guidelines across languages. This stresses the 
need to strengthen the efforts towards more standard-
ized, comparable and interoperable annotation guide-
lines in general. We also find indications that the model 
learns across dataset boundaries, taking into account 
drug names that were only present in another language’s 
dataset.

More medical datasets and annotation data for 
extended evaluation of multi-lingual models could fur-
ther improve the state of medical NLP in low-resource 
contexts, yet due to our scope this is considered future 
work. Furthermore, the usefulness of multi-lingual mod-
els in other language families (e.g., Arabic, Swedish, 
Ukrainian or Japanese) for the identical clinical purpose 
of drug detection remains open for further investigation.
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