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Highlights  

 

• The quality of algorithm performance testing strongly depends on the instances 

• Instances need to be feasible, reasonable, diverse, and challenging 

• Our instance generator is based on reverse engineering from instance space analysis 

• Its benefits are demonstrated by three well-known machine scheduling problems 
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Abstract:  

The availability of a sufficiently large number of meaningful instances for a scheduling problem is of 

utmost importance for the evaluation of solution methods for the problem. This study introduces a novel 

method for machine scheduling instance generation, termed Reverse Instance Generation (RIG), 

leveraging Instance Space Analysis. This method aims to create diverse, feasible, and realistic instances 

by reverse engineering from the instance space. Unlike existing approaches that rely on iterative search 

methods, RIG utilizes a constructive approach, combining dimensionality reduction techniques and 

controlled instance generation. The approach addresses the challenges of instance diversity and 

reasonableness, ensuring unbiased and reproducible outcomes. The effectiveness of RIG is 

demonstrated on three different machine scheduling problems: the single-machine weighted tardiness 

problem, the job shop scheduling problem, and a complex serial batch scheduling problem. The results 

highlight the method's ability to cover gaps in the instance space while maintaining practicality and 

efficiency, paving the way for improved benchmarking and algorithm development. 
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1 Introduction 

For many years, researchers from various fields like Operations Research (OR) and its subfield machine 

scheduling have been developing solution methods to solve different kind of optimization problems. Hereby, 

the performance of solution methods is either assessed by deductive mathematical methods or by empirical 

analyses. As pointed out by Hooker (1994) in his seminal work “Needed: an empirical science of 

algorithms”, deductive mathematical analyses provide only information about average-case or worst-case 

performances, which are often constrained by unrealistic assumptions about probability distributions or do 

not adequately reflect practical problems. Instead, he recommended to use a more empirical approach based 

on a rigorous experimental design with a diverse set of (problem) instances to test hypothesis about the 

performance of solution methods. This approach has become a standard for evaluating the performance of 

solution methods. However, in a later study, Hooker (1995) addressed two major problems associated with 

empirical performance analyses: In addition to implementation aspects of solution methods, the selection 

and/or generation of synthetic test instances presents several pitfalls to achieve an objective evaluation of 

solution methods. Since these statements, many researchers have studied the topic of selecting or generating 

appropriate instances, for example in the OR community, Kolisch et al. (1999), Hall & Posner (2001), Reilly 

(2009), and Smith-Miles & Bowly (2015). Based on this research, two questions need to be answered. First, 

what are appropriate instances and what properties must they have?  

The appropriateness of instances is directly related to the purpose of the performance testing. 

According to Hall & Posner (2001), purposes can be  

(P1) demonstrating the potential of a new solution method in specific situations,  

(P2) demonstrating that a solution method is practical, 

(P3) identifying conditions under which a solution method performs well or poorly, and 

(P4) comparing competing solution methods. 

The most important fundamental requirements derived from these purposes are that test instances 

have the right properties to (i) challenge algorithms and elaborate their strengths and weaknesses, and to (ii) 

reflect the characteristics of real-world problem instances (Smith-Miles & Bowly, 2015). A direct 

consequence of these requirements is that a set of test instances should be highly diverse. However, for 

many OR problems, synthetic and real-world instances exist but they are often not very different. This can 

lead to the temptation to design and tune solution methods to perform well on these instances, neglecting 

the performance on instances with diverse properties (Smith-Miles et al., 2014). In addition, many OR 

problems lack instance libraries or often contain only a small set of instances. This leads us to the second 

question: How to obtain an appropriate and comprehensive set of instances with the desired properties?  

Generally, instances originate from real-world cases or are generated synthetically. As real-world 

instances are often not sufficient or comprehensive, instance generators provide the opportunity to overcome 

that problem. There are three basic types of instance generators known in the literature: The first type, naive 

instance generators, accomplish instance dissimilarity by drawing attributes from specific distributions. 

However, naive instance generators cannot guarantee to compute feasible instances (i.e., that all constraints 

of the optimization problem can be fulfilled by at least one solution; cf., Bowly et al., 2020). In addition, 

                  



2 

they cannot guarantee for reasonable instances, i.e., that (functional) relationships between different 

elements of the data or value ranges are respected (e.g., the number of jobs to schedule should be greater 

than the number of machines, otherwise the problem becomes trivial; cf., Hall & Posner, 2010). To solve 

these problems, the second type generates instances by using “control attributes”. Such “controllable 

instance generators” (CIGs) compute instances according to user-defined generation attributes, which 

typically define parameters of intervals and distributions, which in turn are used for randomizations. 

Through this interplay of attributes, parameters, and randomized values in the generation process, CIGs are 

able to generate reasonable and feasible instances with diverse properties. However, the diversity of such 

synthetic instances should be further improved (Bowly et al., 2020). To address the lack of diversity, 

advanced instance generators (AIGs), which either modify existing instance data or create entirely new 

instances, have been proposed in the literature. Most AIGs are based on the instance space analysis (ISA) 

framework, introduced by Smith-Miles et al. (2014), which visualizes the diversity of instances by 

projecting them onto a two-dimensional instance space. In general, AIGs use iterative meta-generation 

methods (e.g., Local search or Genetic algorithms) to search for new instances with some target properties 

or instances that are closest to target points in the instance space.  

In contrast to such AIGs that search for new instances, we propose a more constructive approach: 

generating new instances through reverse engineering from ISA. This involves using the ISA method to 

project the existing instances belonging to the base sample and their high-dimensional feature vectors into 

a two-dimensional instance space via dimension reduction. Then, we calculate new desired features via 

inverse projection from artificially placed target points in the instance space. We use these reverse-

engineered features to derive appropriate parameters for a CIG, which computes the new instances. By doing 

this, we establish a direct relationship between the target points, which represent specific instance 

characteristics, and the raw data of the new instance. This allows our reverse engineering instance generator 

(RIG) to produce a really diverse set of instances that is both feasible and reasonable due to the CIG 

application. 

Our contributions to the literature are as follows: 

‐ A new method (RIG) for generating diverse, feasible, and reasonable instances based on reverse 

engineering from instance space is proposed. 

‐ The applicability of the new method is demonstrated by three problems from the literature: two well-

known machine scheduling problems (the single machine weighted tardiness problem - SMTWTP 

and the classic job shop problem - JSSP) and a complex serial-batch scheduling problem with parallel 

machines, incompatible job families, sequence-dependent setup times, and arbitrary batch capacity 

requirements (PSBIJF). 

Note that our proposed RIG method, in contrast to many approaches in the literature, is completely free of 

any bias towards preferring any solution method, as it intentionally ignores the performance of any solution 

method at all. In other words, we completely ignore the aspect of "hard" or "easy" solvable instances, 

because it is hardly possible to evaluate whether an instance is "hard" or "easy" to solve in an objective way 

based on the performance of existing solution methods. In our opinion, such a hardness assessment is always 
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based on a "snapshot" of the current state of research. A new solution method may easily solve instances 

that have been deemed "hard" thus far. The Combo algorithm (Martello et al., 1999) is a good example of 

such a “game-changing” solution method for the 1-0 knapsack problem (cf., Jooken et al., 2022). Another 

problem of focusing on hard instances and the often accompanying concentration on purpose P4 is that “the 

emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in the 

long run is conducive to more effective algorithms” (Hooker, 1995). For these reasons, we take a very 

critical view of focusing on the generation of “hard” instances. However, if "hard" instances are available, 

these should definitely be included in the base sample to influence the generation of the new instances. 

Additionally, if only "hard" characteristics are known, a CIG with the corresponding attributes can be used 

to generate "hard" instances, which are then added to the base sample. Another option is to adjust the 

parameters of the CIG that computes the reverse-engineered instances. 

The paper is structured as follows. First, the theoretical foundations of instance generation and 

instance space analysis are discussed in Section 2. In Section 3, the RIG method is presented, and in Section 

4, the method is evaluated on the three problems from the literature. Our conclusions are presented in Section 

5, together with suggestions for the use of RIG in the future. 

2 Theoretical foundation and related literature 

2.1 Theory of instance generation 

According to Hall & Posner (2010), three major sources of data for the experimental analyses of solution 

methods exist: real-world data, library data, and random generation procedures (instance generators). Real-

world data holds the advantage of its practical relevance, the resulting credibility for the experiment, and it 

is usually unbiased (e.g., does not favor any existing or new solution method). However, there is the 

drawback that real world data are not available in sufficient quantities for exhaustive experimental analyses. 

Moreover, most real-world data originate from the same (physical) process (e.g., demand data originate 

from the same supply policy) and there are situations where collecting real-world data is costly, lengthy, or 

inconvenient. If no suitable real-world data sets are available, library data could be used. For example, the 

OR-Library (Beasley, 1990) contains many instance sets for various OR and machine scheduling problems. 

An advantage of library data is that optimal or at least best-known solutions (objective values) are often 

available and comparisons between solution methods are transparent and verifiable. Nevertheless, library 

data does not exist for many real-world application cases. Furthermore, library data sets may be biased in 

such a way that a new solution method developed and published with the data set performs very well as the 

instances are not challenging for this solution method or any solution method at all (Hooker, 1995). For 

example, minimizing tardiness is not difficult when the due dates of a scheduling problem are very loose. 

To solve the problem of non-existent test instances for varying or new optimization problems, randomized 

instance generation procedures are often used to compute synthetic (artificial, academic) test instances. 

Sometimes, such procedures use existing real-world or library data and randomize them to obtain new 

instances (Smith-Miles & Bowly, 2015). However, not all the problems discussed can be solved in this way. 

Consequently, it may be better to generate entirely new synthetic instances that are not directly related to 

existing data but consider the “meta”-characteristics of real-world and library data (if appropriate). To 
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integrate these characteristics and further requirements (e.g., to challenge algorithms and explore their 

strengths and weaknesses), instance generators using control attributes have been developed. These control 

attributes are used by CIGs to define ranges for data values or to define distribution parameters that are used 

by a specified procedure to generate feasible and reasonable synthetic instances. However, all of the 

problems discussed so far can also arise in the context of CIGs and Hall & Posner (2010) outlined three 

principles (correctness, applicability, and reproducibility) and several generation properties for reducing and 

eliminating them: 

Correctness: The data sets generated are free from defects. 

Consistency: Identical types of data are generated in the same way.  

The generator should not treat certain elements (e.g., the last one) of the instance set differently. 

Unbiasedness: All biases in the data are controlled. 

Instances should be generated in such a way that the data does not favor some experimental 

results (solution methods) over others. In terms of unbiasedness, it is helpful to think of all 

feasible instances as members of a population and generating a particular set of instances is 

analogous to selecting a sample from that population. 

Applicability: The generator provides the types of data sets that are needed. 

Completeness: All data sets that are important to the experiment can be generated.  

Parsimony: The variations in the data sets are important to the experiment. 

Variance in the data should be caused only by variations related to the experimental design (e.g., 

defined by control attributes) and the desired randomness. 

Comparability: The experiments are comparable within and between studies. 

Reproducibility: The generation process and its data sets are reproducible. 

Describability: The generator is easy to describe. 

Efficiency: The generator is easy and efficient to implement, use, and replicate. 

Since recent developments in online data repositories (providing instance data and results) and the ability to 

make source code available online have made comparability and reproducibility much easier to achieve than 

in the past. Therefore, the most important and challenging properties to be achieved by instance generators 

are consistency, unbiasedness, completeness, and parsimony. Strongly related to these properties are the 

already discussed requirements of feasibility, reasonability, and diversity of instances. The last requirement 

for diversity in particular causes problems for CIGs if, for example, data intervals are too narrow, or 

distribution parameters are not set properly. To improve instance diversity, a new class of instance 

generators, so called advanced instance generators (AIGs) has been developed. However, the mere 

evaluation of diversity, which is a prerequisite for its improvement, is challenging. To this end, the instance 

space analysis (ISA) framework, first described by Smith-Miles et al. (2014), provides a very good visual 

and traceable method to assess the diversity of a set of instances. Since most existing AIGs are based on 
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ISA, as is our proposed method, we briefly describe it in the following. 

2.2 Instance space analysis (ISA) 

The ISA framework proposed by Smith-Miles et al. (2014) was originally developed to provide visual 

insights into the diversity and discrimination capabilities of instance sets. In many publications, the ISA is 

integrated into frameworks that address the “algorithm selection problem” (ASP; cf., Rice, 1976) and is 

used to visualize the performance of a solution method through "footprints" in the instance space (see, for 

example, Smith-Miles & Bowly, 2015 or Muñoz & Smith-Miles, 2017). As the ASP is not directly relevant 

for the development of AIGs, we omit its detailed description here but focus on the parts relevant for this 

study. 

The basic idea of the ISA framework is the projection of an instance 𝑥 from the “problem space” 𝑃 

(representing a possibly infinite set of instances of a problem; the set of existing real-world and/or synthetic 

instances is called 𝐸 ⊆ 𝑃) and its properties expressed by numerical features from the “feature space” 𝐹 

(instance 𝑥 ∈ 𝐸 is described by a feature vector calculated by function 𝑓) onto the two-dimensional “instance 

space” 𝐼2 by a mapping 𝑝. Thus, we have a transformation of instances to points in ℝ2: 𝐸
𝑓
→𝐹

𝑝
→ 𝐼2 (note 

that the mapping 𝑝 is nothing else but a dimension reduction and known methods can be used for it, e.g., 

Principal Component Analysis - PCA). The resulting points can then be visualized, and the diversity of 

instances easily be evaluated.  

There are two important aspects to consider when using this framework: First, since 𝑃 is generally 

unknown, a subset 𝐸 must be used and its composition can have a strong influence on the shape of 𝐼2. For 

example, if some authors have published very special instances, the question arises whether these should be 

considered or not (to avoid bias). Second, determining numerical features to adequately represent instances 

(i.e., feature engineering) is challenging, as it is in machine learning in general. In the context of ISA, the 

feature space 𝐹 should contain not only simple properties, but also sophisticated ones with a greater ability 

to discriminate between instances (Smith-Miles et al., 2014). Hereby, multiple features measuring the same 

properties or with simple correlations should not be used simultaneously (i.e., in a single feature vector). 

Finding the most appropriate subset of features is most often an experimental process (for more information 

on feature selection in the context of ISA, see, for example, Muñoz et al., 2018). A comprehensive 

description of the ISA framework and related software tools can be found in Smith-Miles & Muñoz (2023). 

2.3 Advanced instance generators 

As discussed in the introduction, AIGs are designed to increase the diversity of instance sets while satisfying 

the requirements of consistency, unbiasedness, completeness, parsimony, feasibility, and reasonability. To 

analyze existing AIGs from the literature, we particularly focus on four aspects to identify the most relevant 

literature in the context of this paper: the purpose of instance generation (e.g., to generate hard to solve 

instances), the type of data generation (e.g., to modify existing instance raw data), the generation meta-

method (e.g., a Genetic algorithm that searches for the new raw data), and the considered optimization 

problem. In Table 1, we give an overview of the analyzed literature. explicitly addressing the topic of 

advanced instance generation. 
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Table 1: Overview of related literature 

Reference Purpose Data generation 
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Cotta & Moscato (2003)  x   x   GA Sorting 

van Hemert (2006)  x   x   GA CSP 

Smith-Miles et al. (2010)  x   x   GA TSP 

Smith-Miles & van Hemert 

(2011) 
 x   x   GA TSP 

Lopes & Smith-Miles (2013)  x     x LS Timetabling 

Mersmann et al. (2013)  x   x   GA TSP 

Smith-Miles & Bowly 

(2015) * 
   x x   GA Graph coloring 

Kang et al. (2017) *    x x x  GA Forecasting 

Muñoz et al. (2018) *   x   x  GMM Classification 

Lou & Yuen (2019)  x1     x GA CBBO 

Bowly et al. (2020) *   x  x  x LS 
Linear 

programs 

Muñoz & Smith-Miles 

(2020) * 
  x x  x  GP CBBO 

Gao et al. (2021) x x   x   GA TSP 

Smith-Miles et al. (2021) *    x x  x GA Knapsack 

Vela et al. (2021) *  x1 x   x  PSO JSP 

Coster et al. (2022) *   x    x SbD Timetabling 

Shand et al. (2022) x x    x  GA Clustering 

Yap et al. (2022) x    x  x Man.2 
continuous 

MOOP 

Lechien et al. (2023)  x1    x  GA HCP 

Liu et al. (2023) *    x  x x GA Bin packing 

van Bulck & Goossens 

(2023) * 
   x   x MILP 

Sports 

timetabling 

This study    x   x RIG Scheduling 

Abbreviations: CBBO := Continuous black-box optimization, CSP := Constraint satisfaction problem,  GA 

:= Genetic algorithm, GMM := Gaussian mixture model, GP := Genetic programming, HCP := Hamiltonian 

completion problem, JSP := Job shop problem, LS := Local search, MILP := Mixed-integer liner program, 

MOOP := Multi-objective optimization problem, PSO := Particle swarm optimization, SbD := Sampling 

from estimated distributions, TSP := Traveling sales person 

x1: Here, not hard but instances that are easy for one algorithm are desired. 

Man.2: The new instances (i.e., the considered objective functions) are more or less “manually” created. 
  

In the following, we give a more detailed analysis of the papers with the purpose of “Target properties” or 

“Target points in 𝐼2” as these are the most relevant for our approach (marked with * in Table 1). 

As first, Smith-Miles & Bowly (2015) developed an AIG that used a GA (Genetic Algorithm) to 

evolve randomly generated instances and adapt their raw data until they are located at target points in the 
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instance space. The starting point of the GA search was the “valid instance space”, which resulted from the 

linear projection (via PCA) of a set of inequalities (constraining the high-dimensional feature space) onto 

the two-dimensional instance space. Their GA used four strategies to fill the valid instance space: First, the 

GA fitness function rewards instances with increasing distance from the known instances. Second, a grid of 

target points in the valid instance space is defined and the fitness decreases with increasing distance from 

the target point. Third, target points are defined along the theoretical boundary of the valid instance space. 

Fourth, target points that are arbitrarily close to known instances but well distributed throughout the valid 

instance space are determined, and not only instances but also target points have been evolved by the GA. 

Using these four strategies, a new set of 8,278 instances was generated for the graph coloring problem. The 

authors reported several findings. First, the evolved instances came much closer to the boundaries of the 

valid instance space than the existing ones. Second, with the first strategy, the GA became trapped in a 

limited set of regions and that strategies two and three resulted in many instances that were very far from 

any known instances. Third, strategy four achieved a good compromise between the exploration and the 

exploitation of the valid instance space. 

Kang et al. (2017) used a GA for evolving time series instances. They applied a 32×32 rectangular 

grid with 1,024 target points determined by minimum and maximum values one unit wider than the upper 

and lower bounds of PC1 and PC2 of the ISA. This allowed the authors to generate new series that lie outside 

the boundaries of the original instance space. For each of the target points, the GA searched for an instance 

individually and started with an initial population consisting of randomly generated instances and existing 

instances not too close at the target point (to avoid instance replications). To evolve an instance, the GA 

modified the raw data of the instance. Since the GA was not able to adjust the length of a time series itself, 

the process was run several times for different time series lengths. The authors observed that despite the 

equal distribution of the target points in the instance space, there are still large unoccupied regions after 

incorporating the new instances. The implication is that the time series have natural boundaries within the 

two-dimensional instance space due to constraints on feature combinations. However, Kang et al. (2017) 

also reported that their evolved instances are more evenly distributed in the instance space and that new 

regions are being explored.   

To generate instances for machine learning classification, Muñoz et al. (2018) employed a Gaussian 

mixture model to minimize the mean squared error between the features of a new instance and a target 

feature vectors (determined by a Latin hyper-cube sample in the two-dimensional instance space with given 

bounds). Although using a Gaussian mixture model has several advantages, it is not appropriate for 

generating machine scheduling instances. 

Bowly et al. (2020) developed a very powerful CIG for linear programming instances that, when 

well attributed, achieved a much higher coverage of feature space projections (works like the instance space 

projection but without dimension reduction and presents two features in a two-dimensional space) compared 

to a naive generator. To fill gaps in some of the feature spaces, the authors defined a single target feature 

point and used a local search (with specific instance search operators) to obtain corresponding instances by 

modifying existing instances from the naive generator and by adjusting the attributes of their CIG. Their 
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results showed that the approach was able to generate instances filling some gaps. However, even the local 

search was not able to produce a uniform distribution of instances across all feature spaces. 

For the continuous black-box optimization problem, Muñoz & Smith-Miles (2020) presented a 

Genetic programming approach that treats instance generation as a task similar to a symbolic regression 

problem. Two strategies were used to generate new instances: The first used a Latin Hypercube Design 

(LHD) to define target points in the high-dimensional feature space (with eight features), while the second 

used an LHD in the two-dimensional instance space. They reported that the first strategy was not able to 

push the boundaries of existing benchmarks very far. However, the second strategy with the target points in 

the instance space, was able to reach new regions and thus to generate instances with more diverse 

characteristics. 

Smith-Miles et al. (2021) proposed several methods to generate instances near target points in the 

instance space for the 0-1 knapsack problem. Here, two types of target points were defined: manually placed 

target points within the interior of the instance space to address gaps and target points on the empirical 

boundary (represented by the convex hull of the projected hyper-cube of minimum and maximum feature 

values pruned by unlikely vertices) of the instance space. In this way, a total of 26 target points was defined. 

To generate weakly structured instances, a GA was implemented to evolve the raw data of existing instances 

closest to the desired target point. The final population from a single GA run was then used to create 10 new 

instances that most closely matched the desired target point. To generate strongly structured instances, four 

different CIGs (with different attributes) were used. Starting with randomly created attribute vectors, a GA 

evolved these vectors to minimize the distance to the current desired target point. Using the fittest attribute 

vector, 10 instances were generated for each target point and CIG. The projection of the newly generated 

instances into the original instance space showed that the structured approach was able to expand the 

coverage area to some extent, but this approach was not very good at producing diverse instances. The 

unstructured approach was not able to generate instances in new regions of the instance space. 

The only paper that addressed a machine scheduling problem, i.e., the JSP, is that of Vela et al. 

(2021). The authors used a “Unified Particle Swarm Optimization” (UPSO) algorithm to generate new 

instance raw data. The primary focus of this work was to generate instances that are easy to solve for one of 

the four solution methods considered, with the intention that such instances may be hard to solve for the 

other solution methods. Despite such instances, which are not the focus of this work, the authors proposed 

to generate so-called “feature-focused” instances. To do this, the authors analyzed five features of the 

generated JSP instances and used their minimum and maximum values combined with a normalization 

constant to define target feature values. UPSO was then used to generate instances to match the target feature 

values. Because the latter approach was studied only with a fixed number of jobs (3) and machines (4) and 

the discussion of the results is very specific, insights regarding our research are limited. 

Coster et al. (2022) proposed an approach to generate instances for the curriculum-based course 

timetabling problem. To generate new instances, the authors extended the CIG proposed by Lopes & Smith-

Miles (2013) with 16 new attributes to have more influence on the generation process. This CIG was then 

run with attribute values which are sampled from distributions estimated based on real-world instances. 
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Since several of the used features are correlated, sampling directly from the distributions of the features 

would lead to unrealistic and often trivially infeasible instances. Therefore, PCA is used for dimension 

reduction, and the distributions of the transformed parameters were estimated using kernel density 

estimation. Sampling by these distributions resulted in new principal components, which in turn were 

reverse transformed into a new set of generation attributes. Finally, infeasible instances (e.g., with a total 

number of lectures greater than the total number of scheduling options) are filtered out by simple checks. 

This process was performed iteratively to fill sparse regions of the instance. The authors report that their 

approach covers the space occupied by real-world instances better than previous generators, and that many 

of the new instances have characteristics like the real-world instances (in terms of the features analyzed). 

For the two-dimensional bin packing problem, Liu et al. (2023) used two GAs to generate instances 

at target points filling the entire region inside the estimated boundary within the instance space. The 

boundary is estimated by the “Correlated Limits of the Instance Space’s Theoretical or Experimental 

Regions” procedure. The first GA evolved attributes for an adapted CIG that bases on 2DCPackGen 

proposed by Silva et al. (2014). This GA was run for each target point. To obtain instances near the target 

points in the instance space, the second GA evolved parameters (i.e., the widths and heights of the small 

bins to be placed) that were directly used to compute instance raw data. They report that the first GA was 

able to effectively fill gaps between existing instances but lacked diversity. However, both approaches were 

able to generate instances that covered the instance space and expanded beyond the original instances in the 

center of the instance space. 

van Bulck & Goossens (2023) developed a method that uses a CIG to generate new instances for 

sports timetabling. To do this, they defined a “target instance space” (by the convex hull of the projections 

of the inequalities that define the bounding box in the high-dimensional feature space) where the target 

points representing desired feasible real-world-like instances must lie. The target points are then determined 

by a grid covering the entire target instance space (the number of grid points within the target instance space 

defines the number of instances to generate). To transform each target point into the corresponding high-

dimensional feature vector used by the CIG to generate new instances, the authors proposed a mixed-integer 

linear program (MILP), since the inverse transformation of the PCA did not lead to suitable results. The 

projection of the 45 new instances onto the original instance space showed a remarkably good covering of 

target points by the projected new instances. 

Analyzing these most relevant AIGs, all except van Bulck & Goossens (2023), use some kind of 

(iterative) search method, the so-called meta-generation method, to generate instances that either possess 

specified target properties (features) or that hit specified target points 𝑇2 in the instance space (after 

projecting their features). The methods used to generate the corresponding instances (“Modifying raw data”, 

“New raw data”, and “CIG with attribute adaptation”) vary and no clear superior one can be identified. 

However, all these papers influenced the development process of our instance generation approach described 

below. 

3 Instance generation by reverse engineering (RIG) 

The central aspect that differentiates our approach from the literature is not to search for new diverse, 
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reasonable, and feasible instances but to generate them by reverse engineering from ISA. Reverse 

engineering means that we take advantage of the ability of most dimension reduction techniques (e.g., PCA) 

to perform a reverse projection from the lower dimensional space (here the instance space) to the higher 

dimensional space (here the feature space). van Bulck & Goossens (2023) claimed in their instance 

generation approach that such a “simple inverse transformation […] does not suffice to derive a set of high 

dimensional feature vectors projected at these coordinates” (van Bulck & Goossens, 2023). The reasons 

given were that relationships between features are ignored by this inverse transformation, and that due to 

the linearity of the transformation, most feature values are likely to be zero or not within the bounds of the 

high-dimensional feature space. However, we believe that these problems are directly related to the feature 

engineering and that features with direct relationships (e.g., two features that are mutually exclusive) should 

generally be avoided (as is common in machine learning). Regarding the second argument, that the resulting 

feature vector values are not suitable, we can report that we observed zero feature values extremely rarely. 

Maybe the unsuitable results of the inverse transformation observed by van Bulck & Goossens (2023) are 

due to the integer features whereas most of our features are real values. Furthermore, extremely low or high 

feature values should not be seen as problematic but rather es beneficial for generating a highly diverse set 

of instances. Of course, the requirement to compute reasonable and feasible instances must be met (as is 

done by van Bulck & Goossens, 2023, within their feature vector determination model).  

Figure 1 illustrates the transformation processes applied in our RIG method:  

 

Figure 1: Main course of action of the Reverse Instance Engineering 
 

The first part of our proposed RIG approach is identical to the basic ISA process, with the transformation 

of instances to points in ℝ2: 𝐸
𝑓
→𝐹

𝑝
→ 𝐼2. 

To obtain a set of desirable feature vectors for generating instances, we use the same approach as 

used by many other authors and use a function 𝑏 to determine target points 𝑡 in the instance space: 𝐼2
𝑏
→𝑇2. 

Based on this set of target points 𝑇2, we perform an inverse projection (𝑝−1) to calculate new feature vectors 
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𝑝−1(𝑡) ∈ 𝐹 for each target point 𝑡 ∈ 𝑇2: 𝑇2
𝑝−1

→  𝐹. For computing reasonable and feasible instances, we 

propose to use the procedures also used by CIGs and influence them with a parameter vector  derived by a 

mapping 𝑔 from the “reverse engineered” feature vectors: 𝑔(𝑝−1(𝑡)) ∈ 𝐺, with 𝐺 representing the set of all 

parameters required for generating reasonable and feasible instances: 𝐹
𝑔
→𝐺. We propose to use CIG 

procedures to generate machine scheduling instances because they offer several advantages over other 

approaches in the literature: First, CIG procedures can be designed to generate only feasible and reasonable 

instances. Second, expert knowledge can be integrated (e.g., to obtain instances that resemble the real 

world). Third, a large and controllable variety of instances can be generated, provided they have the "right" 

attributes. The advantage of using properly attributed CIG procedures is for example demonstrated by 

Jooken et al. (2022). The authors use a CIG to generate instances for the 0-1 knapsack problem that are 

harder to solve than the (evolved) instances proposed in Smith-Miles et al. (2021). The CIG itself represents 

a transformation from parameters to a new set of problem instances: 𝐺
𝐶𝐼𝐺
→ 𝑁 ⊂ 𝑃.  

To generate the desired diverse, reasonable, and feasible instances, we developed a comprehensive 

iterative process (a similar process in the context of an ASP is presented in Muñoz & Smith-Miles, 2020) 

consisting of the six steps illustrated in Figure 2:  

 

Figure 2: The process steps of instance generation by reverse engineering 
 

The process steps I., II., and VI. are accompanied by a so-called “Sample analysis” (SA) which 

provides statistical information about a (sub)set of instances (sample) and supports the decision making 

throughout the iterative RIG process by enabling an effective and traceable comparison of two or more 

instance samples. For example, if the SA in the validation step shows an unsatisfying diversity of an 

important instance characteristic (feature), another set of features should be investigated, and the subsequent 

process steps are repeated. The SA combines elements from descriptive statistics (i.e., measures of central 

tendency such as mean or median and measures of variability such as standard deviation, variance, or 

skewness) with statistical graphics such as box plots or violin plots from the area of exploratory data 

analysis. These elements of the sample analysis are used to describe and summarize the characteristics of 

an instance sample based on a given set of features 𝐹𝑆𝐴  ⊆ 𝐹 that have been determined specifically for the 

purpose of sample analysis (see Section 3.2). 
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3.1 I. Sample selection 

The purpose of the sample selection step is to define a base sample of instances 𝐸𝐵 ⊂ 𝐸 from all existing 

real-world and synthetic instances 𝐸 ⊂ 𝑃. The selection of the base sample, together with the features used, 

is responsible for the shape of the resulting instance space 𝐼2, and thus in turn for the target space 𝑇2 and 

the new instances. A natural approach would be to use all existing instances so that 𝐸𝐵 = 𝐸. For some (new) 

problems, the number of available instances may be very small. In this case, 𝐸 could be extended with 

existing (adapted) instance generation procedures (as for example done by Coster et al., 2022). Furthermore, 

for some problems, authors might have published very specific synthetic instances or instances of a very 

distinct real-world case are part of 𝐸. In these cases, it may be appropriate not to use all instances of 𝐸 but 

only a subset 𝐸𝐵 ⊂ 𝐸. A good example for this is the SMTWTP. There are three instance sets (wt40, wt50, 

and wt100) provided by the OR-Library (Beasley, 1990) and a CIG, which is commonly used in the literature 

(see e.g., Gahm et al., 2019) and was also used in this study to generate six instance sets (gkt25, gkt50, 

gkt100, gkt200, gkt400, and gkt800). The sample set combining all the instances is named 𝐸𝑆𝑇𝐷. The same 

CIG approach, but with different attributes, was used by Geiger (2010) to generate two new instance sets 

(geigS and geigP) to be more challenging for state-of-the-art algorithms. The sample set combining these 

two sets and 𝐸𝑆𝑇𝐷 is called 𝐸𝑆𝑇𝐷+𝐺.  

The effect of the instance sets provided by Geiger (2010) on the resulting instance space is illustrated 

in Figure 3.  

 

Figure 3: Illustration of the effect of different base samples on the resulting instance space (with 

identical feature set) 
 

As can be seen on the right-hand side of Figure 3, the instance space is very different when the instance sets 

geigS and geigP are part of the base sample.  

The decision on the final composition of the base sample 𝐸𝐵 may depend on the specific research 

project and whether all available instances in 𝐸 are considered to be reasonable. It is also possible that after 

validating the newly generated instances, the conclusion is to adapt the base sample and start the iterative 

process again (see Figure 2). 

Some authors recommend eliminating instances with outliers from the instance samples or 

performing a log transformation on all features to prevent the instance space from being unduly distorted by 

outliers (cf., e.g., Smith-Miles & Bowly, 2015 or Lechien et al., 2023). Since the purpose of the ISA and the 
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subsequent instance generation is to provide as diverse a set of instances as possible, we do not recommend 

outlier elimination of any kind, as these "special" instances may provide the information needed to generate 

the most interesting instances at the boundaries of the instance space. We also do not use log transformations 

to allow visual identification of "special" instances in the instance space (cf. purpose P1 and P3). 

3.2 II. Feature engineering 

The term “feature engineering” is commonly used in machine learning to describe the process of defining 

and computing numerical values (features) to represent a given object. It is an iterative process and usually 

involves a considerable amount of trial and error to get the best features for the intended purpose. In the 

context of machine scheduling and ISA/RIG, given objects are problem instances and their features, 

combined in a feature vector, should comprehensively describe their characteristics. Like the definition of 

the base sample 𝐸𝐵, it may also be advantageous not to use all conceivable features from the feature space 

𝐹, but to select a subset 𝑠 of features 𝐹𝑠 ⊆ 𝐹 that contains features that represent the (most) important 

characteristics of an instance and that provides the required information to derive appropriate attributes for 

the CIG procedure. Accordingly, we first need to determine 𝐹 and then identify a most suitable feature set 

from the power set of 𝐹: 𝐹𝑠 ∈ 𝛲(𝐹). 

In their approach to measure instance difficulty, Smith-Miles & Lopes (2012) propose to use 

problem independent features based on “Fitness landscape analysis”. This analysis is based on computed 

solutions characterizing the search space of applied solution methods. However, as “[…] the link between 

problem difficulty and fitness landscape structure is poorly understood.” (Bierwirth et al., 2004) and our 

approach is designed to be completely independent of solution methods, we do not recommend using such 

features within RIG. For the same reason (being independent of solution methods and their performances), 

we are not applying the SIFTED algorithm to identify features as proposed in Smith-Miles & Muñoz (2023). 

Instead, we rely on the expertise of scheduling researchers to identify suitable features and the proposed 

iterative process (see Figure 2). With respect to machine scheduling, three starting points for determining 𝐹 

based on literature analyses can be recommended: First, the control attributes of existing CIGs as these are 

usually used to control the most important instance characteristics from the perspective of the respective 

authors. Second, most empirical analyses investigate the performance of solution methods with respect to 

instance characteristics. Third, whenever machine learning is applied (e.g., in the context of the ASP), 

features describing instances have already been determined.  

In general, we distinguish between the features used in the sample analysis (𝐹𝑆𝐴 ⊆ 𝐹) and those 

used for reverse engineering. In the former case, the number of features can be arbitrarily large (however, 

statistical graphics and summary tables may become illegible if it is too large). In the latter case, the number 

of features in the feature set should be as small as possible and as large as necessary. As large as necessary 

means that all the main instance characteristics should be represented (to allow for an appropriate ISA) and 

that the necessary information to derive the required parameters for the CIG procedures is provided. The 

number of features should be as small as possible, because a smaller number of features is more likely to 

result in a high explained variance by the dimension reduction (e.g., in the first two principal components 

of a PCA) and in higher coefficients needed for the inverse transformation. For these reasons, (strongly) 
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related features representing the same characteristic should also be avoided (e.g., mean and median of an 

instance data parameter such as processing time, both describing the central tendency). Whenever two or 

more features can express the same instance characteristics, we recommend using only one to preserve the 

information while avoiding unwanted side effects. However, which feature combination complies best with 

these requirements (and the purpose of reverse instance engineering) is the result of the iterative process 

illustrated in Figure 2: 𝐸𝐵
𝑓
→ 𝐹𝐵. Result of the feature engineering is a feature set that contains |𝐹𝐵| features 

from 𝐹𝐵 and appropriately represents each instance 𝑖 ∈ 𝐸𝐵 by feature vector 𝑣(𝑖) = (𝑓𝑖
1, 𝑓𝑖

2, … , 𝑓𝑖
|𝐹𝐵|
).  

As already stated, within our RIG process, we do not perform log transformations after feature 

calculation but a min-max normalization to [0, 1] (this ensures that each feature has an equal share in 

determining the direction of maximal variation; van Bulck & Goossens, 2023). That means, each value 𝑓𝑖
𝑥 

of feature 𝑥 ∈ 𝐹𝐵 and instance 𝑖 is transformed to 𝑓𝑖̇
𝑥:  

𝑓𝑖̇
𝑥 = (𝑓𝑖

𝑥 −min (𝑓𝑖
𝑥|𝑖 ∈ 𝐸𝐵))  (max(𝑓𝑖

𝑥|𝑖 ∈ 𝐸𝐵) − min (𝑓𝑖
𝑥|𝑖 ∈ 𝐸𝐵))⁄ .  

The final feature vector of instance 𝑖 is given by 𝑣̇(𝑖) = (𝑓𝑖̇
1, 𝑓𝑖̇

2, … , 𝑓̇𝑖
|𝐹𝐵|
). Note that any feature 

transformations must be inverted during the reverse engineering (e.g., after the inverse projection from the 

target space to the feature space 𝑇2
𝑝−1

→  𝐹), and thus, the min-max normalization must also be inverted.  

3.3 III. Dimension reduction 

For the projection from the high-dimensional feature space to the two-dimensional instance space (𝐹𝐵

𝑝
→ 𝐼2), any dimension reduction technique with the possibility of reverse transformation can be used. In the 

literature, most approaches using dimension reduction for ISA apply PCA as dimension reduction technique 

(e.g., Smith-Miles & Bowly, 2015, Neuenfeldt Júnior et al., 2019, Weise et al., 2020, Kletzander et al., 2021, 

Scherer et al., 2024, or Sun et al., 2024). Only Muñoz et al. (2018) and Muñoz et al. (2021) use their 

developed optimization-based “Prediction Based Linear  imensionality Reduction – PBLDR” method and 

Smith-Miles et al. (2021) use the “Projecting Instances with Linearly Observable Trends (PILOT)” method 

that is identical to PBLDR. Smith-Miles & Muñoz (2023) also use PILOT to encourage linear trends in 

features and solution method performance. Both methods, PCA and PILOT, generally provide the 

possibility of inverse transformations. However, since the aspect of solution method performance is 

explicitly not considered, we are not applying PILOT but PCA for dimension reduction. Another advantage 

is its high efficiency (also with large datasets) and its availability in many software packages. Therefore, we 

use it for the dimension reduction here: 𝐹𝐵
𝑃𝐶𝐴
→  𝐼2.  

Before applying the PCA, the feature values must be mean centered to ensure that a feature vector 

is projected to the origin of the two-dimensional instance space. Accordingly, we transform the feature 

values of 𝑣̇(𝑖) by 𝑓𝑖̈
𝑥 = 𝑓𝑖̇

𝑥 ∗ mean (𝑓𝑖
𝑥|𝑖 ∈ 𝐸𝐵) and obtain 𝑣̈(𝑖) = (𝑓𝑖̈

1, 𝑓𝑖̈
2, … , 𝑓̈𝑖

|𝐹𝐵|
). Most PCA 

implementations perform this transformation automatically, but since the mean centering must also be 

inverted during the reverse engineering, we highlight this step here.  
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Since the desired instance space 𝐼2 consists of two dimensions, we are only interested in the two 

principal components with the largest explained variance (eigenvalues) to define a so-called sample point 𝑝 

(ℝ2) for an instance 𝑖: 𝑝𝑖(PC1𝑖, PC2𝑖) = 𝑃𝐶𝐴(𝑣̈(𝑖)). All the sample points of the instances of a sample 

constitute the instance space as shown in Figure 3 (right-hand side). Note that in all the instance space graphs 

in this paper, the x-axis (abscissa) corresponds to PC1 and the y-axis (ordinate) corresponds to PC2. 

The basis of the transformation (and the inverse transformation) are the projection coefficients 

(weights) that map the feature vectors to the two principal components. Figure 4 shows the projection 

coefficients computed by the PCA for the two feature sets 𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 and 𝐹𝑛−𝑝𝑀𝑆−𝑑𝑅𝑇−𝑤𝑀𝑆 (see 

Section 4.1.2 for more details). The total explained variance is 91.6% (61.4% for PC1 and 30.2% for PC2) 

and 78.3% (50.5% for PC1 and 27.8% for PC2), respectively. Besides the higher explained variance, the 

projection by 𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 is more stable and more meaningful because each feature (and thus the 

important instance characteristics) is represented in at least one component by a sufficiently high coefficient. 

 

Figure 4: Projection coefficients for different feature sets (with sample set 𝑬𝑺𝑻𝑫+𝑮). 
 

In general, both aspects, a high explained variance and a suitable representation of each feature by projection 

coefficients, are necessary conditions for reverse engineering to be possible. Therefore, with respect to the 

example, we conclude that reverse engineering is possible for the SMTWTP with the feature set 

𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 and sample 𝐸𝑆𝑇𝐷+𝐺. 

3.4 1V. Target point determination 

To generate a new set of diverse and reasonable instances, we follow the approach often successfully used 

in the literature (e.g., Smith-Miles & Bowly, 2015) and define a set of target points with the instance space: 

𝑇2 ⊂ 𝐼2. To avoid generating unreasonable instances, it is common to first define a target instance space (a 

subspace of the instance space) that contains points that are most likely to lead to reasonable instances. Two 

approaches are used for this: The first approach is based on (empirical) bounds of feature values defining 

vertices of a hyper-cube (sometimes combined with a pruning of features due to correlations between them; 

cf., e.g., Smith-Miles et al., 2021 or Liu et al., 2023) and the projection of the (pruned) hyper-cube to the 

two-dimensional instance space (cf., e.g., Smith-Miles & Bowly, 2015 or van Bulck & Goossens, 2023). In 

the second approach, the target instance space is determined directly by the instance space, i.e. by the 

minimum and maximum values of the two principal components adjusted by given values to not only filling 

“holes” in the instance space but also to additionally enlarge the overall space that is occupied by the existing 

instances (to push the boundaries of the instance space; cf. e.g., Kang et al., 2017 or Muñoz & Smith-Miles, 

2020). Since we can assume that all features are well represented by the two principal components (see 

previous sections), and since reasonableness and feasibility are ensured by the subsequent steps of the CIG 
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application, we follow the second approach and define the target instance space directly based on the 

instance space. However, instead of defining the boundaries of the target instance space by adjusting the 

minimum and maximum component values, we compute the rotated minimum bounding rectangle (𝑟𝑀𝐵𝑅; 

rotated means that the edges of the rectangle are not necessarily parallel to the axes of the instance space). 

In this way, we can better consider the “shape” of the existing instances in the instance space. The result of 

the 𝑟𝑀𝐵𝑅 calculation is a set of four points: 𝑟𝑀𝐵𝑅 = {𝑝𝑟(𝑥𝑟, 𝑦𝑟)|𝑟 = 1, 2, 3, 4} (numbering is clockwise 

from the top left). To increase the diversity of the new instances, we enlarge this 𝑟𝑀𝐵𝑅 by a relative factor 

𝛿, which is used to calculate two adjustment offsets related to the maximum deviations of the 𝑟𝑀𝐵𝑅 points 

to the origins of the two principal components: Δ𝑥 = 𝛿 ⋅ max {|𝑥𝑟|} and Δ𝑦 = 𝛿 ⋅ max {|𝑦|}. In this way, we 

consider the magnitude of both components and amplify them accordingly. The resulting adjusted 𝑟𝑀𝐵𝑅 is 

defined as follows:   𝑟𝑀𝐵𝑅 = {𝑝1(𝑥1 − Δ𝑥, 𝑦1 + Δ𝑦),  𝑝2(𝑥2 + Δ𝑥, 𝑦2 + Δ𝑦), 

                                      𝑝3(𝑥3 + Δ𝑥, 𝑦3 − Δ𝑦),  𝑝4(𝑥4 − Δ𝑥, 𝑦4 − Δ𝑦)}. 

However, any other approach to defining the boundaries of the target instance space would be applicable. 

To finally determine the set of target points 𝑇2, we use the parameter 𝜋 to define the number of 

points on each axis of the 𝑟𝑀𝐵𝑅, thus expanding a grid consisting of 𝜋2 target points. Both parameters can 

be used to control the exploration (by a high 𝛿 value) and the exploitation (by a high 𝜋 value) of the instance 

space. Figure 5 shows the 𝑟𝑀𝐵𝑅 and the determined target points 𝑇2 for the SMTWTP example. 

 

Figure 5: Illustration of rMBR and target points 𝑻𝟐  with δ=0.1 and π=32  
 

Summarizing this process step, we use a function 𝑏 with the two parameters 𝛿 and 𝜋 to determine the target 

points based on the instance space given by the previous steps: 𝐼2
𝑏(𝛿,𝜋)
→    𝑇2. 

3.5 V. Reverse instance generation 

First sub-step of the reverse instance generation itself is the inverse projection of the target points onto the 

feature space 𝑇2
𝑝−1

→  𝐹. The coordinates of a target point 𝑡 correspond to the two principal components 

(𝑝𝑡(PC1𝑡, PC2𝑡)) and the mean centered feature vector 𝑣̈(𝑡) = (𝑓𝑡̈
1, 𝑓𝑡̈

2, … , 𝑓̈𝑡
|𝐹𝐵|
) results from the inverse 

transformation 𝐼2
𝑃𝐶𝐴−1

→    𝐹𝐵: 𝑣̈(𝑡) = 𝑃𝐶𝐴−1(𝑝𝑡(PC1𝑡, PC2𝑡)).  

Inverting the mean centered features (𝑓𝑡̇
𝑥 = 𝑓𝑡̈

𝑥 mean (𝑓𝑖
𝑥|𝑖 ∈ 𝐸𝐵)⁄ ) leads to the scaled feature 

vector 𝑣̇(𝑡) = (𝑓𝑡̇
1, 𝑓𝑡̇

2, … , 𝑓̇𝑡
|𝐹𝐵|
), which in turn is inverted by the original scales to the new feature vector 
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𝑣(𝑡) = (𝑓𝑡
1, 𝑓𝑡

2, … , 𝑓𝑡
|𝐹𝐵|
) (with 𝑓𝑡

𝑥 = 𝑓𝑡̇
𝑥 ⋅ (max(𝑓𝑖

𝑥|𝑖 ∈ 𝐸𝐵) −min(𝑓𝑖
𝑥|𝑖 ∈ 𝐸𝐵) + min(𝑓𝑖

𝑥|𝑖 ∈ 𝐸𝐵) ) ). 

In the next step, the parameters for the CIG procedure must be determined individually for each 

target point and its feature vector 𝑣(𝑡): 𝑔(𝑣(𝑡)) ∈ 𝐺. Remember that we differentiate between the control 

attributes of a CIG and the parameters used by the CIG procedure. For example, the CIG used by Gahm et 

al. (2019) for the SMTWTP has the attribute “processing time variability” with the manifestations “low” 

and “high”. The attribute is in turn used to define the parameters “lower bound” and “upper bound” of the 

processing time interval from which the processing times are finally drawn from: “low” results in [45, 55], 

while “high” results in [1, 100]. Because of the loss of information by mapping one or more feature values 

to existing CIG attribute manifestations (the resulting instance would most likely be nowhere near the target 

point), and because newly introduced attribute manifestations may not be processable by the CIG, we 

propose to map features directly to parameters used by the CIG procedure. In the example, this would mean 

that the interval bounds are directly derived from one or more feature values (e.g., by the mean and the 

standard deviation of the processing time). However, sometimes the determination of CIG attributes may 

be unavoidable. In this case, we recommend deriving threshold values from the base samples to determine 

the attribute based on the feature values. For example, if the standard deviation of the processing time is 

below the threshold value, the attribute is set to “low”, otherwise it is set to “high”. 

While deriving attributes and parameters from reversed features, we can also integrate mechanisms that 

ensure feasible and reasonable instances. For example, the number of jobs should be greater than or equal 

to one, and due dates should be greater than or equal to zero. Whenever a lower or upper bound on the 

generation parameters must be respected, there are two options: adjust the parameter to the corresponding 

bound (e.g., set the number of jobs to a given minimum value) or discard the instance completely. The 

advantage of the first option is that exactly the desired number of instances is computed at the cost of 

diversity, as instances generated with the same parameters will result in “clusters” of very similar instances. 

Therefore, we recommend using the option to discard instances, with the advantage that the diversity is kept 

on a higher level and “clusters” of instances (e.g., at the borders of the 𝑟𝑀𝐵𝑅) could be avoided (at the cost 

of an unpredictable number of instances). The discarding of nearly identical instances to avoid biases is also 

proposed by Alipour et al. (2023). If the resulting number of instances is not sufficient (e.g., for statistical 

analyses), the target point determination parameters 𝛿 and 𝜋 can be adjusted. Figure 6 illustrates the 

difference between both options for the SMTWTP.  

                  



18 

 

Figure 6: Comparison of instances with generation parameter adjustment (𝑵̌, left side) and instance 

discarding (𝑵, right side) projected to the same instance space. 
 

In Figure 6, on the left side, where all desired |𝑁̌| = 𝜋2 = 1,024 instances are projected, some 

clustering (due to parameter adjustments) on the left border and at the bottom border of the 𝑟𝑀𝐵𝑅 can be 

observed. On the right side, where |𝑁| = 863 instances are projected, this clustering is avoided by 

discarding instances. The specific adjustment and discarding mechanisms will be presented in the sections 

related to the specific scheduling problems.  

In summary, executing the CIG procedure with the derived attributes and parameters yields a new set 

of instances 𝑁 ⊂ 𝑃. For simplicity, and because we recommend using the discarding option, we use 𝑁 to 

indicate a set of generated instances where unreasonable instances are discarded in the following.  

3.6 VI. Validation 

To validate that the newly generated instances are useful for the purpose of performance testing, three steps 

should be performed: First, the new instance set 𝑁 is projected onto the instance space obtained with the 

feature set 𝐹𝐵, the original base sample 𝐸𝐵 (i.e., without 𝑁), and the corresponding projection coefficients. 

Figure 7 illustrates this “re-projection” on the right side.  

 

Figure 7: Comparison of target points (left side) and new instances (right side) projected to the same 

instance space. 
 

As can be seen by comparing the left and right sides of Figure 7, the newly created instances generally fill 

the area of the instance space as desired by the determined target points (i.e., they fill the gaps and explore 

new regions). 

                  



19 

It can also be seen that the target points left of and/or below the 𝑟𝑀𝐵𝑅 are not "hit" and instances are 

missing. This is because instances are discarded based on specified bounds to ensure reasonable instances 

(e.g., a minimum number of jobs per instance or a minimum processing time of one). This is an example of 

how expert knowledge can augment the CIG to generate reasonable instances. Hereby, plotting feature 

distributions into the instance space is helpful to identify relationships between areas in the instance space 

and specific features (cf., Figure 20 in Appendix A3).  

The second validation step is to repeat the ISA with the combined instance set 𝐸𝐵 ∪ 𝑁 and feature 

set 𝐹𝐵. As with the ISA with 𝐸𝐵 and 𝐹𝐵, the projection should result in a more or less “rectangular” shape 

(see left side of Figure 8). 

 

Figure 8: Comparison of ISAs with different feature sets for projecting the new (combined) sample 

(𝑬𝑩 ∪ 𝑵). 
 

Note that the location of the new instances in the instance space is different to the ISA shown in Figure 7, 

as the base sample is now extended by the new instances. Such an analysis with an updated instance space 

has also been proposed in Smith-Miles et al. (2021). In addition, an ISA with the new base sample and a 

different set of features (also with a high explained variance) could be performed (see right side of Figure 

8). Again, the projection should result in a more or less “rectangular” shape. Note that the “quality” of the 

second ISA is obviously worse than the first one with the “original” feature set. Note that the “quality” of 

the second ISA is obviously worse than the first one with the “original” feature set. 

The third step of the validation involves comparing the SAs with the feature set 𝐹𝑆𝐴 and the sample 

sets 𝐸𝐵 and 𝑁(𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆, 𝐸𝑆𝑇𝐷++𝐺), respectively. Box plots or violin plots (see Figure 9) are useful 

for evaluating whether the desired diversity has been achieved.  

As discussed before, the whole process is an iterative one and when the validation results are not 

satisfying, steps I. to V. must be adapted and repeated. 

( )( )

ISA(              ,
    +  (              ,     + ))

ISA(              ,
    +  (              ,     + ))
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Figure 9: Violin plots of selected features for the original base sample 𝑬𝑺𝑻𝑫+𝑮 (blue) and for the new 

sample set 𝑵(𝑭𝒏−𝒑𝑴𝑺−𝒅𝑴𝑺−𝒘𝑴𝑺, 𝑬𝑺𝑻𝑫+𝑮) (green). 
 

4 Evaluation 

To evaluate the applicability of our RIG approach to generate new diverse, feasible, and reasonable machine 

scheduling instances, we applied it to generate instances for three different problems: the single machine 

weighted tardiness problem (SMTWTP), the job shop scheduling problem (JSSP), and the parallel serial-

batch scheduling problem with incompatible job families (PSBIJF). Note that all instances used as base 

samples, as well as the newly created instances, are made available for download at Mendeley Data (Gahm, 

2025). For easy integration into new projects, we provide all instances in a unified format. 

4.1 Single-machine weighted tardiness problem 

The SMTWTP is a classic problem in machine scheduling theory. It focuses on scheduling a set of 𝑛 jobs 

with processing times (p), priority weights (w), and due dates (d) per job on a single machine with the 

objective of minimizing the total weighted tardiness of all jobs. According to the three-field notation of 

Graham et al. (1979), we address the 1||∑𝑤𝑗 𝑇𝑗 – problem. 

4.1.1 Sample selection 

The base sample consists of a total of 3,425 instances. 375 test instances are derived from the OR-Library 

from Beasley (1990) and consist of 125 instances for the problem sizes (number of jobs) 𝑛 ∈{40, 50, 100}. 

These three sample sets are named wt40, wt50 and wt100. The next six sample sets (gkt25, gkt50, gkt100, 

gkt200, gkt400, and gkt800), each consisting of 500 instances, are generated based on the procedure 

proposed by Gahm et al. (2019) and differ by the number of jobs 𝑛 ∈{25, 50, 100, 200, 400, 800} (amongst 

other attributes). Other generation attributes are identical for each set. For example, the processing times 

and the priority weights are drawn from the two uniform distributions [45, 55] and [1, 100] (to represent 

low and high variability). These nine sample sets form the first base sample called 𝐸𝑆𝑇𝐷. Two additional 

sample sets are provided by Geiger (2010). The sample set geigS consists of 25 test instances with 𝑛=1000, 

processing times drawn from the uniform distribution [1, 1000], and weights drawn from the uniform 

distribution [1, 100]. The sample set geigP also consists of 25 test instances computed by drawing processing 

times and weights from a set of prime numbers ensuring unique combinations of weight and processing time 
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values. Combining these two sample sets with 𝐸𝑆𝑇𝐷 leads to a second base sample called 𝐸𝑆𝑇𝐷+𝐺. Common 

to all instances in all sample sets is that the due dates are drawn equally from an interval defined by the two 

attributes “tardiness tightness” (𝑡𝑓) and “due date range” (𝑟𝑑𝑑): [𝑃(1 − 𝑡𝑓 − 𝑟𝑑𝑑 2⁄ ), 𝑃(1 − 𝑡𝑓 + 𝑟𝑑𝑑 2⁄ )] 

(with 𝑃 ≔total processing time). 

The influence of the two base samples on the ISA is illustrated by Figure 3. Since we want to achieve 

a large variety of instances, we will use 𝐸𝑆𝑇𝐷+𝐺 as the base sample in the following. 

4.1.2 Feature engineering 

From the instance generation procedures found in the literature, we have derived the following main 

characteristics of SMTWTP instances: the number of jobs and the central tendency and variability of the 

processing times, of the weights, and of the due dates.  

Table 2: Feature space 𝑭 for the SMTWTP 

Abbreviations Features 

n Number of jobs 

pM, pS, pCV, pSK, pR 
Statistics (mean, standard deviation, coefficient of variation, skewness, 

and range) for the processing times of all jobs 

wM, wS, wCV, wSK, wR Statistics for the weights of all jobs 

dM, dS, dCV, dSK, dR Statistics for the due dates of all jobs 

RDD Due date range: (max(𝑑𝐽) − min(𝑑𝐽)) max (𝑑𝐽)⁄  

TF Due date tightness: 1 − 𝑑𝑀 𝑃⁄    (with 𝑃 ≔total processing time) 

 

To represent these characteristics, the features in Table 2 are defined. For the SA, we use the feature set 

𝐹𝑆𝐴 = 𝐹. To identify potential feature subsets for the reverse instance engineering for the SMTWTP, we 

use the data provided by the SA with 𝐹𝑆𝐴 and 𝐸𝑆𝑇𝐷+𝐺. The SA revealed that skewness is not important for 

processing times, weights, and due dates (because of their generation by drawing from uniform distributions) 

and therefore, these are not part of the feature sets to be investigated in the following (see Table 3). 

Table 3: Feature sets for the reverse engineering (SMTWTP) 

Feature set Features 
Total explained variance  

(by PC1, by PC2) 

𝐹𝑛−𝑝𝑀𝑆−𝑑𝑅𝑇−𝑤𝑀𝑆 n, pM, pS, RDD, TF, wM, wS 0.78 (0.50, 0.28) 

𝐹𝑛−𝑝𝑀𝐶𝑉−𝑑𝑅𝑇−𝑤𝑀𝐶𝑉 n, pM, pCV, RDD, TF, wMean, wCV 0.55 (0.30, 0.24) 

𝐹𝑛−𝑝𝑀𝑅−𝑑𝑅𝑇−𝑤𝑀𝑅 n, pM, pR, RDD, TF, wM, wR 0.78 (0.51, 0.28) 

𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 n, pM, pS, dM, dS, wM, wS 0.92 (0.61, 0.30) 

𝐹𝑛−𝑝𝑀𝐶𝑉−𝑑𝑀𝐶𝑉−𝑤𝑀𝐶𝑉 n, pM, pCV, dM, dCV, wM, wCV 0.62 (0.34, 0.28) 

𝐹𝑛−𝑝𝑀𝑅−𝑑𝑀𝑅−𝑤𝑀𝑅 n, pM, pR, dM, dR, wM, wR 0.92 (0.61, 0.30) 

 

4.1.3 Dimension reduction and target point determination 

The six feature sets listed in Table 3 are used to perform ISAs and the explained variances obtained are 

given in the last column. As can be seen, the feature sets 𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 and  

𝐹𝑛−𝑝𝑀𝑅−𝑑𝑀𝑅−𝑤𝑀𝑅 lead to the same high explained variances and so we could use both for the RIG. 

Furthermore, the projection coefficients computed by the PCA are identical. 
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The target points 𝑇2 for reverse engineering are determined with the parameters 𝛿=0.1 and 𝜋=32 

(cf. Figure 5). This leads to a maximum number of 1,024 new instances. 

4.1.4 Reverse instance generation 

To generate a new instance 𝑖𝑡 ∈ 𝑁 for each target point 𝑡 ∈ 𝑇2, we first compute the inverse transformed 

feature vector 𝑣(𝑡) based on the target point coordinates in 𝐼2 and the feature set  

𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆 (also 𝐹𝑛−𝑝𝑀𝑅−𝑑𝑀𝑅−𝑤𝑀𝑅 would be possible):  

𝑣(𝑡) = (𝑛̂𝑡, 𝑝𝑀𝑡, 𝑝𝑆𝑡, 𝑑𝑀𝑡, 𝑑𝑆𝑡, 𝑤𝑀𝑡, 𝑤𝑆𝑡). 

The next step is to determine the parameters 𝑔(𝑣(𝑡)) required for the instance generation. Since we are 

essentially using the instance generation procedure proposed by Gahm et al. (2019) for our reverse 

engineering, we need to determine the number of jobs 𝑛𝑡 and the distribution intervals for processing times 

(𝑙𝑏𝑡
𝑝
, 𝑢𝑏𝑡

𝑝
), weights (𝑙𝑏𝑡

𝑤, 𝑢𝑏𝑡
𝑤), and due dates (𝑙𝑏𝑡

𝑑, 𝑢𝑏𝑡
𝑑). To obtain SMTWTP instances with reasonable 

values, we propose using the following bounds: 𝐿𝐵𝑛 = 10, 𝐿𝐵𝑝 = 1, 𝐿𝐵𝑑 = 1, and 𝐿𝐵𝑤 = 1.  

When following the first option and not discarding unreasonable instances but adjust the generation 

parameters, the number of jobs for a new instance based on target point 𝑡 is defined by: 𝑛𝑡 = max {𝐿𝐵
𝑛, [𝑛̂𝑡]} 

(note that [𝑥] means integer closest to 𝑥 in this paper). Since we know that the processing times are based 

on uniform distributions, the lower bound for the processing times is calculated by 𝑙𝑏𝑡
𝑝
=

max {𝐿𝐵𝑝, [ 𝑝𝑀𝑡 − (√12 ⋅ 𝑝𝑆𝑡) ⋅ 0.5]} and the upper bound by 𝑢𝑏𝑡
𝑝
= max {𝑙𝑏𝑡

𝑝
+ 1, [ 𝑝𝑀𝑡 + (√12 ⋅ 𝑝𝑆𝑡) ⋅

0.5]}. The interval bounds for the weights and the due dates are calculated accordingly. For each job of the 

new instance, the corresponding values are drawn from the calculated intervals with equal distribution. 

Selecting the second option and discarding instances would mean using 𝑛𝑡 = [𝑛̂𝑡] and omitting the 

maximum function when computing the lower bounds. Accordingly, we would only accept instances with 

[𝑛𝑡] ≥ 𝐿𝐵
𝑛, 𝑙𝑏𝑡

 𝑝
≥ 𝐿𝐵𝑝, 𝑙𝑏𝑡

𝑑 ≥ 𝐿𝐵𝑑, and 𝑙𝑏𝑡
𝑤 ≥ 𝐿𝐵𝑤. With this approach, 161 instances are discarded, and 

the new set 𝑁 contains 863 instances instead of 1.024 instances. 

4.1.5 Validation 

The validation results already discussed in Section 3.6 show that our reverse engineering process was able 

to generate instances that are close to the target points and well distributed throughout the instance space. 

By comparing the sample sets 𝐸𝑆𝑇𝐷+𝐺 and 𝑁(𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆, 𝐸𝑆𝑇𝐷+𝐺) via the violin plots in Figure 9, 

we see that, among the new instances, all six job data-related features have better coverage of their respective 

intervals. Therefore, we can conclude that the new instance set 𝑁(𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆, 𝐸𝑆𝑇𝐷+𝐺) has a high 

diversity and therefore forms the final instance set generated by RIG for the SMTWTP. Note that due to the 

instance generation procedure, we also can guarantee that the instances are feasible and reasonable. 

4.1.6 Application of the new instances 

In previous sections, we demonstrated that the proposed RIG approach can generate diverse, feasible, and 

reasonable instances. In this section, we will analyze whether the new instances offer advantages in terms 

of the four purposes (P1 to P4; see Section 1) associated with solution method performance testing. To 

demonstrate the advantages of the new instances 𝑁(𝐹𝑛−𝑝𝑀𝑆−𝑑𝑀𝑆−𝑤𝑀𝑆, 𝐸𝑆𝑇𝐷+𝐺) compared to the base 
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sample 𝐸𝑆𝑇𝐷+𝐺, we will analyze the performance of 15 heuristics applied by Gahm et al. (2019) to solve 

the 1||∑𝑤𝑗 𝑇𝑗 – problem. These heuristics include the dispatching rule-based heuristics SWPT, WEDD, 

EHD, WMDD, WCR, WCoverT, ATC, MATC, AR, MAR, BT31WT, QAR, BACK, and QB6, and the new 

solution method at that time, the decision theory-based heuristic DTS. 

First, we analyze whether the new instance set (𝑁) is more challenging than the original base sample 

(𝐸). To that, on the left of Figure 10, we show the number of solution methods that computed the best 

solutions in terms of the relative proportion of all instances.  

 

Figure 10: Identification and analysis of challenging instances in the RIG instance set. 
 

As can be seen, the number of instances in which only one solution method computed the best solution is 

remarkably higher for the new instance set 𝑁 (89.2%) than for the original base sample 𝐸 (51.9%). 

Therefore, since only one solution method can compute best solutions for most of the new instances, we 

conclude that 𝑁 provides more challenging instances (Smith-Miles et al., 2014, also used this reasoning to 

determine challenging instances). Furthermore, the scatter plot on the right side of Figure 10 shows an ISA 

depicting the solution methods that computed single best solutions for one of the new instances. While no 

heuristic is superior in a specific region, this plot shows that the three heuristics AR, BACK, and MAR 

provide unique best solutions for most instances. The plot also shows that instances at the bottom and left 

of the instance space are easier to solve because more than one heuristic computed the best solution for these 

instances. 

Next, Figure 11 visualizes the solution quality of the AR heuristic (one of the best-performing 

heuristics for the SMTWTP) and the “new”  TS heuristic using their RIW values (“the relative percentage 

improvement versus the worst objective value per instance”, see Gahm et al., 2019). Note that RIWs are a 

relative measure for comparing solution methods (purpose P4), not an absolute one, and that larger values 

are better than smaller ones. Figure 11 presents the results for the combined set of instances 𝐸⋃𝑁. However, 

the solitary consideration of the new instances 𝑁 would provide the same insights.  
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Figure 11: Solution quality of AR and DTS illustrated by the new RIG instances. 
 

Regarding purpose P2, Figure 11 shows that DTS generally achieves good results in the combined instance 

set (𝐸⋃𝑁). Regarding purpose P1, however, there are some regions where AR achieves RIWs between 50% 

and 60%, while DTS achieves only 30% to 50%. Together with the feature projections illustrated in Figure 

20 in Appendix A3 purpose P3 is fulfilled. 

In summary, the RIG approach is best suited to provide SMTWTP instances for an exhaustive solution 

method performance testing because it provides diverse, feasible, reasonable, and challenging instances. 

This is particularly true when the performance analysis framework ISA is applied, but not only. 

4.2 Job-shop scheduling problem 

The JSSP is a classic 𝑁𝑃-complete optimization problem in machine scheduling. It involves determining an 

efficient way to process a set of 𝑛 jobs, each consisting of a sequence of operations o with a processing time 

𝑝𝑜 (normally, the number of tasks is equal to the number of machines), on a set of 𝑚 machines with specific 

constraints (e.g., the operations of one job cannot be processed in parallel). The sequence of machines each 

job is processed on is individual for each job. The goal is to optimize one or more objectives, whereas most 

often minimizing the maximum completion time of all jobs (makespan) is focused on. According to the 

three-field notation of Graham et al. (1979), the problem is classified by 𝐽||𝐶𝑚𝑎𝑥 (for a more detailed 

definition see Strassl & Musliu, 2022). 

4.2.1 Base samples 

The first investigated base sample 𝐸𝑂𝑅 for the JSSP is based on eight instance sets from the OR-Library 

(Beasley, 1990): abz (with 5 instances), dmu (80), ft (3), la (40), orb (10), swv (20), ta (80) and yn (4) (the 

detailed references can be found in van Hoorn, 2018). These sets differ in the number of jobs, the number 

of machines, and the range from which processing times are uniformly drawn.  

In addition to these instances, recently generated instance sets from Strassl & Musliu (2022) are 

investigated. The authors generated five sets (with number of jobs (𝑛) and number of machines (𝑚) from 

the set {1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}) that differ in the way the processing time of 

operations were determined. Because their first generated set has unit processing times (𝑝𝑜 = 1 for each 

operation), we do not add this special case to the base sample. The second set, called “str-u99” in this paper, 
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used processing times that were drawn equally from the interval [1, 99], whereas the set “str-u200” has 

uniformly distributed processing times from the interval [1, 200]. Instances from the instance set “str-b” 

have processing times that were drawn from a binomial distribution with 𝑛 = 98 and 𝑝 = 0.5, resulting in 

processing times with an approximately normal distribution with the mean of 50. The last set of instances 

“str-nb” was generated by drawing the processing times from a negative binomial distribution with 𝑟 = 1 

and 𝑝 = 0.5, shifted up by 1 (the processing times resulting from this distribution are approximately 

exponentially distributed). For all the instances, the machine sequence per job is generated by shuffling the 

array of machines. For each of the processing time distribution settings, five instances for each combination 

of 𝑛 and 𝑚 were created, leading to 845 instances per set. As instances with 𝑛 = 1 or 𝑚 = 1 lead to trivial 

or single machine instances, respectively, we remove these from the sets and only use the remaining 720 

instances per set to create the second base sample 𝐸𝑂𝑅+𝑆𝑇𝑅 combining 𝐸𝑂𝑅 with the four described sets “str-

u99”, “str-u200”, “str-b”, and “str-nb”. 

Note that we do not consider the instances generated by Vela et al. (2021), as the instances generated 

by them are very small (most of them have only three jobs and four machines). In addition, the authors used 

a proprietary, untraceable file format. 

4.2.2 Feature engineering 

In the literature, a large number of features exist to describe JSSP instances (Table 6 in Appendix A1 

provides an overview based on the features used in Mirshekarian & Šormaz, 2016 and Strassl & Musliu, 

2022). However, when analyzing the existing CIGs, we found that the control attributes are the number of 

jobs, the number of machines, and the “type” of processing times. Therefore, we conclude that the number 

of jobs, the number of machines, and the central tendency and variability of the processing times are the 

most important and thus define features for reverse engineering that correspond to them. Note that the other 

features listed in Table 6 are of course helpful for example in solving an ASP for the JSSP (cf., e.g., Strassl 

& Musliu, 2022). Because Strassl & Musliu (2022) varied not only the interval from which the processing 

times were drawn, but also the type of distribution, we investigate one feature set that includes the mean 

and the coefficient of variation and another feature set that includes the mean and variance to estimate the 

alpha and beta parameters to define a beta distribution accordingly. A beta distribution is used because it is 

very flexible to express other distributions. The feature sets used for the reverse instance generation are 

listed in Table 4. For the SA, we use the feature set 𝐹𝑆𝐴 = {n, m, nmr, pM, pS, pCV, pVar, pSkew, pR, 

pGini}. 

Table 4: Feature sets for the reverse engineering (JSSP) 

Feature set Features 
Total explained variance  

(by PC1, by PC2) 

𝐹𝑛−𝑚−𝑝𝑀𝑆 n, m, pM (mean), pS (standard deviation) 0.73 (0.47, 0.26) 

𝐹𝑛−𝑚−𝑝𝑀𝑅 n, m, pM, pR (range) 0.75 (0.51, 0.25) 

𝐹𝑛−𝑚−𝑝𝑀𝑉𝑎𝑟 n, m, pM, pVar (variance) 0.72 (0.44, 0.28) 

𝐹𝑛−𝑚−𝑝𝑀𝐶𝑉 n, m, pM, pCV (coefficient of variation) 0.56 (0.28, 0.27) 

𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟 n, nmr (job to machine ratio), pM, pVar 0.90 (0.55, 0.35) 
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4.2.3 Dimension reduction and target point determination 

The five feature sets in Table 4 are used to perform ISAs and the explained variances obtained are given in 

the last column. As can be seen, the feature set 𝐹𝑛−𝑚−𝑝𝑀𝐶𝑉 has the lowest explained variance resulting from 

the dimension reduction and is therefore omitted from further investigation. Figure 12 shows the projection 

coefficients for the remaining four feature sets and sample 𝐸𝑂𝑅+𝑆𝑇𝑅.  

 

Figure 12: Projection coefficients for different feature sets (with identical sample set 𝑬𝑶𝑹+𝑺𝑻𝑹). 
 

As can be seen in all four graphs, one component of the PCA represents the information about the number 

of jobs and the number of machines, whereas the other component represents processing time information. 

It can also be seen that all four feature sets lead to a meaningful representation of the features required for 

reverse engineering and thus, all of them could be used for the reverse engineering. 

As before, the target points 𝑇2 for reverse engineering are determined with the parameters 𝛿=0.1 

and 𝜋=32, leading to a maximum number of 1,024 new instances (per feature set). 

4.2.4 Reverse instance generation 

Depending on the feature sets, different information is available for determining instance generation 

parameters. To obtain reasonable JSSP instances, we propose using the following bounds 𝐿𝐵𝑛 = 10, 

𝐿𝐵𝑚 = 5, and 𝐿𝐵𝑝 = 1 for discarding (or adjusting).  

For all four feature sets considered, the number of jobs is determined by 𝑛𝑡 = [𝑛̂𝑡]. The number of 

machines is determined by 𝑚𝑡 = [𝑚̂𝑡], except for feature set 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟, where 𝑚𝑡 = [𝑛̂𝑡/𝑛𝑚𝑟𝑡]. In 

the case of discarding instances, we only accept instances with feature values 𝑛𝑡 ≥ 𝐿𝐵
𝑛 and 𝑚𝑡 ≥ 𝐿𝐵

𝑚, 

and in the case of adjusting, maximum functions are used (cf. Section 4.1.4).  

For 𝐹𝑛−𝑚−𝑝𝑀𝑆, the processing times of all operations are equally drawn from the interval restricted 

by the lower bound 𝑙𝑏𝑡
𝑝
= [𝑝𝑀𝑡  − (√12 ⋅ 𝑝𝑆𝑡) ⋅ 0.5] and the upper bound  

𝑢𝑏𝑡
𝑝
= max {𝑙𝑏𝑡

𝑝
+ 1, [𝑝𝑀𝑡 + (√12 ⋅ 𝑝𝑆𝑡) ⋅ 0.5]}. For 𝐹𝑛−𝑚−𝑝𝑀𝑅, the processing times are equally drawn 

from the interval bounded by 𝑙𝑏𝑡
𝑝
= [ 𝑝𝑀𝑡 − 𝑝𝑅𝑡 ⋅ 0.5] and 𝑢𝑏𝑡

𝑝
= max {𝑙𝑏𝑡

𝑝
+ 1, [𝑝𝑀𝑡 + 𝑝𝑅𝑡 ⋅ 0.5]}. For 

these cases, when discarding unreasonable instances, we only accept instances with 𝑙𝑏𝑡
𝑝
≥ 𝐿𝐵𝑝. For 
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𝐹𝑛−𝑚−𝑝𝑀𝑉𝑎𝑟 and 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟, we want to consider distributions for the processing times. Therefore, we 

use the reverse-engineered feature values 𝑝𝑀𝑡 and 𝑝𝑉𝑎𝑟𝑡 to estimate the parameters 𝛼𝑡 and 𝛽𝑡 of the 

corresponding beta distribution. Since beta distributions are defined between 0 and 1, we must first 

“unscale” these values. To do so, we define a “range scale” 𝑟𝑠 = 𝑢𝑏𝑡
𝑝
− 𝑙𝑏𝑡

𝑝
 by the minimum processing 

time 𝑙𝑏𝑡
𝑝
= 𝐿𝐵𝑝 and the (adjusted) maximum known operation processing (representing the upper bound)  

𝑢𝑏𝑡
𝑝
= max(𝑝|∀𝑗𝑜𝑏𝑠 ∈ 𝐸𝑂𝑅+𝑆𝑇𝑅) ∙ 1.1. With 𝑟𝑠, we get the unscaled values for the mean 𝑝𝑀𝑡

𝑢𝑠 =

(𝑝𝑀𝑡 − 𝑙𝑏𝑡
𝑝
)/𝑟𝑠 and for the variance 𝑝𝑉𝑎𝑟𝑡

𝑢𝑠 = 𝑝𝑉𝑎𝑟𝑡/𝑟𝑠
2. With 𝑠 = (𝑝𝑀𝑡

𝑢𝑠 ∙ (1 − 𝑝𝑀𝑡
𝑢𝑠))/𝑝𝑉𝑎𝑟𝑡

𝑢𝑠 − 1, 

we can calculate the parameters 𝛼𝑡 = 𝑝𝑀𝑡
𝑢𝑠 ∙ 𝑠 and 𝛽𝑡 = (1 − 𝑝𝑀𝑡

𝑢𝑠) ∙ 𝑠. Whenever this leads to parameter 

values below zero (which are not appropriate for beta distributions) we set them to one. The unscaled 

processing times are then drawn by 𝑝𝑜
𝑢𝑠~𝐵𝑒𝑡𝑎(𝛼𝑡 , 𝛽𝑡)  and then scaled to 𝑝𝑜 = [𝑙𝑏𝑡

𝑝
+ 𝑝𝑜

𝑢𝑠 ∙ 𝑢𝑏𝑡
𝑝
]. Here, we 

discard instances if any of the drawn operation processing time 𝑝𝑜 is smaller than 𝐿𝐵𝑝.  

The sequence of operations, i.e., the machine on which an operation must be executed, is determined 

by drawing a random permutation sequence of length 𝑚𝑡. 

4.2.5 Validation 

The first validation step is to analyze whether the newly created instances are located near the target points. 

To do this, we project the new instances onto the same instance space as used for the original ISA.  

 

Figure 13: Base sample and target points 𝑻𝟐  with δ=0.1 and π=32   left side  and new instances  right 

side) both projected with feature set 𝑭𝒏−𝒎−𝒑𝑴𝑺. 
 

Figure 13 and Figure 14 show that this is the case for the feature sets 𝐹𝑛−𝑚−𝑝𝑀𝑆 and 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟 (it is 

also the case for 𝐹𝑛−𝑚−𝑝𝑀𝑅 and 𝐹𝑛−𝑚−𝑝𝑀𝑉𝑎𝑟, but since their graphs are very similar to the ones presented 

here, the graphs are omitted). Note that in the following, we only consider sets where unreasonable instances 

are discarded: |𝑁(𝐹𝑛−𝑚−𝑝𝑀𝑆, 𝐸𝑂𝑅+𝑆𝑇𝑅|=895 and |𝑁(𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟 , 𝐸𝑂𝑅+𝑆𝑇𝑅|=928. 

ISA(        ,    +   )

 (        ,
   +   )

rMBR

ISA(        ,    +   )
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Figure 14: Base sample and target points 𝑻𝟐  with δ=0.1 and π=32   left side  and new instances  right 

side) both projected with feature set 𝑭𝒏−𝒏𝒎𝒓−𝒑𝑴𝑽𝒂𝒓. 
 

The second validation step is to repeat the ISA with the instance set 𝐸𝐵 ∪ 𝑁 and feature set 𝐹𝐵 (used for the 

instance generation) to analyze whether the projection results in a “rectangular” shape. Figure 15 shows the 

ISAs for the feature sets 𝐹𝑛−𝑚−𝑝𝑀𝑆 and 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟.  

 

Figure 15: ISAs with the feature sets 𝑭𝒏−𝒎−𝒑𝑴𝑺 (left side) and 𝑭𝒏−𝒏𝒎𝒓−𝒑𝑴𝑽𝒂𝒓 (right side) and the 

newly generated samples (𝑬𝑩⋃𝑵).  
 

As can be seen in Figure 15, both graphs show the desired rectangular shape. The graphs also show that the 

instance sets “str-u99”, “str-u200”, “str-b”, and “str-nb” contain instances with characteristics that are not 

reflected by the new instance sets (see the “blank” areas at the bottom and on the left). The special “position” 

of instance set “str-nb” at the left can be explained by their generally very small processing times (pM = 

2.0). The other “blank” areas are explained by the lower bound of minimum 10 jobs per instance. 

The third step of the validation is the comparison of the SAs with the base sample and the newly 

created sets: Figure 16 shows the violin plots for 𝐸𝑂𝑅+𝑆𝑇𝑅 and for the instance sets created by 𝐹𝑛−𝑚−𝑝𝑀𝑆 

and 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟, respectively. As can be seen from the SA for 𝑁(𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟 , 𝐸𝑂𝑅+𝑆𝑇𝑅) in Figure 

16, the diversity of the number of machines (m) is not sufficient for this feature set and thus, the reverse 

engineering by 𝐹𝑛−𝑛𝑚𝑟−𝑝𝑀𝑉𝑎𝑟 is not appropriate. This observation also shows that the third step of the 

validation and the iterative and comprehensive observation of the instance generation process is essential. 
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However, the instance set 𝑁(𝐹𝑛−𝑚−𝑝𝑀𝑆, 𝐸𝑂𝑅+𝑆𝑇𝑅) provides the desired high diversity of feasible and 

reasonable instances (see Figure 16), and therefore constitutes the new instance set generated by RIG.  

 

Figure 16: Violin plots of selected features for the base sample 𝑬𝑶𝑹+𝑺𝑻𝑹 (blue) and for the new 

instance sets 𝑵(𝑭𝒏−𝒎−𝒑𝑴𝑺, 𝑬𝑶𝑹+𝑺𝑻𝑹) (red) and 𝑵(𝑭𝒏−𝒏𝒎𝒓−𝒑𝑴𝑽𝒂𝒓, 𝑬𝑶𝑹+𝑺𝑻𝑹) (green). 

4.3 Parallel serial-batch scheduling problem with incompatible job families 

The parallel serial-batch scheduling problem with incompatible job families (PSBIJF) is a relatively new 

problem first described in Gahm et al. (2021). The PSBIJF problem considers identical parallel machines 

with the serial-batch processing characteristic (i.e., the processing time of a batch is equal to the sum of the 

processing times of all jobs grouped in a batch), limited batch capacities, batch availability, and sequence-

dependent setup times combined with incompatible job families (jobs from different families cannot be 

processed in the same batch) and arbitrary job sizes (batch capacity requirements). The primary objective is 

to minimize total weighted tardiness. For a comprehensive overview of such problems, see Wahl et al. 

(2024). 

4.3.1 Base samples 

The considered base sample 𝐸𝑈𝐺𝑊𝑇 consists of 93,360 instances proposed by Uzunoglu et al. (2023) and 

available for download at Mendeley data (Gahm, 2022). The instance set consists of three subsets: UGWT-

S has 22,320 instances with the number of jobs 𝑛 ∈{15, 30, 60}, the number of machines 𝑚 ∈{1, 3, 4, 5}, 

and the number of job families 𝑞 ∈{3, 5, 10}, the set UGWT-L contains 57,600 instances with 𝑛 ∈{100, 

200, 400}, 𝑚 ∈{1, 3, 4, 5, 10}and 𝑞 ∈{3, 5, 10, 20}, and the set UGWT-XL contains 13,440 instances with 

𝑛 ∈{800, 1,600, 3,200}, 𝑚 ∈{5, 10 , 20}, and 𝑞 ∈ {10, 20, 40}. 

4.3.2 Feature engineering 

The seven main attributes (characteristics) of the instance generation procedure used by Uzunoglu et al. 

(2023) are the number of jobs, the number of machines, the number of job families, the tendency and 

variability of batch capacity requirements, the setup time severity, the tendency and variability of the due 

dates, and the assignment of jobs to families. The complete set of features available to describe PSBIJF 

instances is given in Table 7 in Appendix A2 (see also Uzunoglu et al., 2023). Since the possible 

combinations of features required for the reverse engineering are very large, we present only a subset of the 
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investigated feature sets (with the best overall results) in Table 5. For the SA, we use all features listed in 

Table 7. 

Table 5: Feature sets for the reverse engineering (PSBIJF) 

Feature set Features 
Total explained variance  

(by PC1, by PC2) 

𝐹𝑎𝑅𝑁−𝑠𝑀𝑆−𝑑𝑀𝑆−𝑗𝑓𝑀𝑉𝑎𝑟 
n, m, q, rnS, rnM, rnL, rnXL, sM, sS, dM, dS, 

jfM, jfVar 

0.60 

(0.38, 0.22) 

𝐹𝑎𝑅𝑁−𝑠𝑀𝑉𝑎𝑟−𝑑𝑀𝑉𝑎𝑟−𝑗𝑓𝑀𝑉𝑎𝑟 
n, m, q, rnS, rnM, rnL, rnXL, sM, sVar, dM, 

dVar, jfM, jfVar 

0.61 

(0.38, 0.23) 

𝐹𝑎𝑀𝑉𝑎𝑟−𝑠𝑀𝑆−𝑑𝑀𝑆−𝑗𝑓𝑀𝑉𝑎𝑟 n, m, q, aM, aVar, sM, sS, dM, dS, jfM, jfVar 
0.56 

(0.31, 0.27) 

𝐹𝑎𝑀𝑉𝑎𝑟−𝑠𝑀𝑉𝑎𝑟−𝑑𝑀𝑣𝑎𝑟−𝑗𝑓𝑀𝑉𝑎𝑟 
n, m, q, aM, aVar, sM, sVar, dM, dVar, jfM, 

jfVar 

0.58 

(0.30, 0.28) 

 

4.3.3 Dimension reduction and target point determination 

The four feature sets in Table 5 are used to perform ISAs and the explained variances obtained are given 

in the last column. As the graphs of the projection coefficients do not provide any meaningful insight into 

the differences between the four feature sets, we do not present them here. 

The target points 𝑇2 for reverse engineering are determined with the parameters 𝛿=0.1 and 𝜋=32 

(see Figure 5). This results in a maximum number of 1,024 new instances. 

4.3.4 Reverse instance generation 

Depending on the feature set, different information is available to determine the required instance generation 

parameters. To obtain reasonable PSBIJF instances, we propose using the bounds 𝐿𝐵𝑛 = 15, 𝐿𝐵𝑚 = 1, and 

𝐿𝐵𝑞 = 3 for discarding instances. Regarding the other instance parameters, we generally use a lower bound 

equal to one. 

For all feature sets, the number of jobs for a new instance related to target point t is determined by 

𝑛𝑡 = [𝑛̂𝑡], the number of machines is determined by 𝑚𝑡 = [𝑚̂𝑡], and the number of job families is 

determined by 𝑞𝑡 = [𝑞̂𝑡].  

For the feature sets indicated by “aRN”, the batch capacity requirement is determined by the reverse-

engineered relative proportions of jobs of size S, M, L, and XL, respectively. Together with 𝑛𝑡, we can 

determine the corresponding number of jobs (e.g., 𝑛𝑆̂𝑡 = [rnS𝑡 ∙ 𝑛𝑡]) and an adjustment mechanism 

guarantees that 𝑛̂𝑆𝑡 + 𝑛̂𝑀𝑡 + 𝑛̂𝐿𝑡 + 𝑛̂𝑋𝐿𝑡 = 𝑛̂𝑡. Using these numbers, the batch capacity requirements are 

drawn from discrete uniform distributions bounded by 1 and 12 for S, by 1 and 25 for M, by 1 and 50 for L, 

and by 13 and 38 for XL jobs.  or feature sets indicated by “𝑎𝑀𝑉𝑎𝑟”, batch capacity requirements are 

determined by 𝑎𝑀𝑡 and 𝑎𝑉𝑎𝑟𝑡 and the procedure described for processing times in Section 4.2.4. This 

procedure is also used for setup times, due dates, and job to family assignments if appropriate (denoted by 

“…𝑀𝑉𝑎𝑟” in feature set names). “…𝑀𝑆” in a feature set name indicates that the values are drawn from 

uniform distributions derived by means and standard deviations (see Section 4.1.4). To restrict the new 

instance set to reasonable instances, we discard instances with 𝑛𝑡 < 𝐿𝐵
𝑛, 𝑚𝑡 < 𝐿𝐵

𝑚, 𝑞𝑡 < 𝐿𝐵
𝑞  and any 

instance with any parameter value smaller than one.  
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4.3.5 Validation 

Although the feature sets indicated by “aRN” provide a slightly higher explained variance, the feature sets 

indicated by “𝑎𝑀𝑉𝑎𝑟” showed to be the better overall results and therefore only  

𝐹𝑎𝑀𝑉𝑎𝑟−𝑠𝑀𝑉𝑎𝑟−𝑑𝑀𝑉𝑎𝑟−𝑗𝑓𝑀𝑉𝑎𝑟 is validated here. The projection of the base sample (and target points) and 

the new instances onto the same instance space shows that the new instances are not perfectly located at the 

target points (see Figure 17). However, they cover the desired area quite well.  

 

Figure 17: Base sample and target points 𝑻𝟐  with δ=0.1 and π=32   left side  and new instances  right 

side) projected with feature set 𝑭𝒂𝑴𝑽𝒂𝒓−𝒔𝑴𝑽𝒂𝒓−𝒅𝑴𝑽𝒂𝒓−𝒋𝒇𝑴𝑽𝒂𝒓. 
 

In Figure 18, we show two ISAs with feature set 𝐹𝑎𝑀𝑉𝑎𝑟−𝑠𝑀𝑉𝑎𝑟−𝑑𝑀𝑉𝑎𝑟−𝑗𝑓𝑀𝑉𝑎𝑟 and (𝐸𝐵 ∪ 𝑁): the base 

sample on the left side and the new instances on the right side. We can see that the new instances fill gaps 

in some regions of the instance space (top right). However, we can also see that other regions are already 

very well covered by the original instances. This is due to the large number of instances in instance set 

UGWT-L (with 57,600 instances with 𝑛 ∈{100, 200, 400}) and the diversity that this brings. The advantage 

of our approach here is that much fewer instances (883; with discarding unreasonable instances) are required 

to cover the instance space, and thus the effort to evaluate solution methods is much lower. 

 

Figure 18: Comparison of ISAs with the original base sample and newly generated instance sample 

(projected with the feature set 𝑭𝒂𝑴𝑽𝒂𝒓−𝒔𝑴𝑽𝒂𝒓−𝒅𝑴𝑽𝒂𝒓−𝒋𝒇𝑴𝑽𝒂𝒓). 
 

The desired diversity of the newly generated instances is shown by the violin plots in Figure 19. 
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Figure 19: Violin plots of selected features for the base sample 𝑬𝑼𝑮𝑾𝑻 (blue) and for the new instance 

set N(𝑭𝒂𝑴𝑽𝒂𝒓−𝒔𝑴𝑽𝒂𝒓−𝒅𝑴𝑽𝒂𝒓−𝒋𝒇𝑴𝑽𝒂𝒓, 𝑬𝑼𝑮𝑾𝑻) (red). 
 

Please note that the maximum number of jobs for the new instances is much lower than for the original 

instances. This is because the majority of the base sample has fewer than 2,000 jobs. To compensate for 

this, an adaptation mechanism could be used to "artificially" increase the number of jobs. However, as can 

be seen from the other selected features, the tendency and variability of all the three main instance 

characteristics (n, m, and q) are remarkably more diverse in the new instance set. Furthermore, the greater 

diversity of the nb, JpF, and TF features indicates that the new PSBIJF instances are more challenging, as 

it is more likely that more batches will have to be scheduled and that due dates will be tighter (lower TF 

values indicate tighter due dates). Moreover, the generally higher setup time severity (SSF), including some 

extreme values, suggests additional challenges in solving the new instances. Accordingly, the new instance 

set generated by RIG for the PSBIJF, is the set 𝑁(𝐹𝑎𝑀𝑉𝑎𝑟−𝑠𝑀𝑉𝑎𝑟−𝑑𝑀𝑉𝑎𝑟−𝑗𝑓𝑀𝑉𝐴𝑅 , 𝐸𝑈𝐺𝑊𝑇). 

5 Conclusions and further research directions 

This paper presents the RIG method, a new approach for generating diverse, feasible, and reasonable 

machine scheduling instances using reverse engineering from instance space analysis. By using ISA to 

identify gaps or underrepresented areas within the instance space, RIG systematically constructs new 

instances with desired properties, overcoming the limitations of some existing instance generation methods 

to provide reasonable instances, i.e., by bounding and/or adjusting individual or combinations of instance 

generation procedure parameters. The proposed method has been validated on three scheduling problems: 

SMTWTP, JSSP, and PSBIJF. The results showed that RIG effectively fills gaps in the instance space and 

expands its boundaries, providing new comprehensive sets of instances. Additionally, we demonstrated that 

the new instances of the SMTWTP are useful and challenging for fulfilling the various purposes of solution 

method performance testing. Unlike traditional methods, RIG ensures unbiased generation without favoring 

specific solution methods, which enhances its applicability to diverse optimization scenarios. 

Future research should explore extending RIG to other problem domains and further refining the 

feature engineering to maximize generalizability. In this context, the influence of the type of features (i.e., 

continuous, integer or binary) on the applicability of the RIG method needs to be further investigated. 
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Furthermore, the integration of automated feedback loops for iterative improvement and additional 

mechanisms for improving the reverse engineering of generation parameters may provide further insights 

and benefits. For example, the merging of our approach with the optimization-based PILOT method 

proposed by Muñoz et al. (2018) to provide improved projection coefficients. Because our RIG method 

preserves the general characteristics of a sample set with fewer samples while avoiding "clusters" of samples 

in certain regions of the instance space, it could be used to prevent sampling bias in machine learning 

applications (which is especially true when instances are discarded). The effects of reduced sampling bias 

on solution method performance testing and particularly machine learning is an interesting topic to 

investigate in detail in the future. 

Overall, RIG represents a meaningful advancement in the generation of problem instances and 

promotes rigorous and comprehensive benchmarking in machine scheduling. 
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Appendix 

Appendix A1 JSSP feature space 

Table 6: Feature space 𝑭 for the JSSP 

Definition Description 

n Number of jobs (𝑛) 

m Number of machines (𝑚) 

nmr  Job to machine ratio: NumJ / NumM  

Lb-Ta 

Lower bound on the makespan:  

𝑚𝑎𝑥𝐿𝑏 = max {max
𝑖
(𝑏𝑖 + 𝑇𝑖 + 𝑎𝑖) ,max

𝑗
(∑ 𝑝𝑖,𝑗

𝑚
𝑖=1 )},  

with 𝑏𝑖 = min
𝑗
(𝑝𝑏𝑗,𝑖), with 𝑝𝑏𝑗,𝑖 equal to the sum of processing times until 

job j is ready to be processed on machine I, with 

𝑇𝑖 = ∑ 𝑝𝑖,𝑗
𝑗≤𝑛
𝑗=1  (total processing time on machine i), and with  

𝑎𝑖 = min
𝑗
(𝑝𝑎𝑗,𝑖), with 𝑝𝑎𝑗,𝑖 equal to the sum of processing times until job j 

is completed after being processed on machine i. 

pM, pS, pVar, pCV, pMin, 

pMax, pR, pSkew, pGini 

Statistics (mean, standard deviation, variance, coefficient of variation, 

minimum, maximum. range, skewness and Gini-coefficient) for the 

processing time per operation. 

pmM, pmS, ... Statistics for the processing time per machine. 

pjMean, pj , … 
Statistics for the processing time per job (sum of operation processing 

times). 

posM, pos , … 

Statistics for the processing time per operation slot (e.g., the first operation 

slot contains the first operation of each job independent of the designated 

machine) 

OSMM_M, 

O MM_ , … 

Statistics for the number of missing machines per operation slot normalized 

by the number of machines. 

OSRM_M,  

O RM_ , … 

Statistics for the number of repeated machines per operation slot 

normalized w.r.t the number of machines. 

OSRMA_M,  

O RMA_, … 

Statistics for the number of repeated machines per operation slot 

(amplified) normalized w.r.t the number of machines. 

O RMA _M, O RMA _ , … 

Statistics for the number of repeated machines per operation slot 

(amplified) multiplied by the mean of the corresponding operation 

processing time and normalized by the number of machines. 

MLDU_M,  

MLDU_ , … 

Statistics for the machine load uniformity normalized by the number of 

machines. 

MLDV_M,  

MLDV_ , … 

Statistics for the machine load voids normalized by the number of 

machines. 

MLDVA_M, MLDVA_ , … 
Statistics for the machine load voids (amplified) normalized by the number 

of machines 
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VerDegree_M, 

VerDegree_ , … 

Statistics for the vertex degree of the unidirect disjunctive graph (Number 

of edges in the disjunctive graph that are incident to the regarded vertex 𝑣) 

 C_M,  C_ , … 

Statistics for the betweenness-centrality of the unidirect disjunctive graph 

(Relation of how often a vertex 𝑣 appears on the shortest paths between two 

other vertices to the number of shortest paths) 

Graph-Density Density of the unidirect disjunctive graph (𝑑𝑒𝑛𝑠(𝐺) =  
2|𝐸|

|𝑉|(|𝑉|−1)
) 

RMSD 

Root-mean-squared deviation of the operations slots to machine number 

(squared deviation of a machine sequence from the standard machine 

sequence 1, 2, 3, …; normalized by the number of operations) 

pM_Ms_S 

Standard deviation of the means of the processing time per machine:  

If the value is high, the processing times are very different,  

if the value is low, the processing times are similar 

pM_Ss_M 

Mean of the standard deviations of the processing time per machine: 

If the value is high, the processing times have a high range, 

if the value is low, the processing times have a low range. 

pOS_Ms_S 

Standard deviation of the means of the processing time per operation slot: 

If the value is high, the processing times are very different. 

If the value is low, the processing times are similar. 

pOS_Ss_M 

Mean of the standard deviations of the processing time per operation slot: 

If the value is high, the processing times have a high range. 

If the value is low, the processing times have a low range. 

Increase-Factor 

+1 added if the following machine in the machine number has a higher 

machine number than the current; normalized w.r.t. the number of jobs and 

number of machines 

Slope-Factor 
Machine numbers are multiplied with the number of the operation slot and 

added together, normalized w.r.t the number of jobs and number of machines 
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Appendix A2 PSBIJF feature space 

Table 7: Feature space 𝑭 for the PSBIJF 

Definition Description 

n Number of jobs 

m Number of machines 

q Number of incompatible job families 

bc Maximum batch capacity 

appM Approximated makespan 

TF Tardiness factor: 1 - (dM / appM) 

RDD Due date range: dMax – dMin 

JpB Approximated number of jobs per batch: bc / aM 

nB Approximated number of batches: n/JpB 

BoJ Batch occupation per job: BoJ = aM / bc 

SSF Setup time severity factor: sM / (pM * JpB) 

SDF Setup time diversity factor: sR / sM 

pM, pS, pVar, pCV, pMin, 

pMax, pR, pSkew, pGini 

Statistics (mean, standard deviation, variance, coefficient of variation, 

minimum, maximum. range, skewness and Gini-coefficient) for the 

processing time per job. 

dM, d , … Statistics of job due dates 

aM, a , … Statistics of batch capacity requirements (area) per job (aJ) 

sM, s , … Statistics of setup times 

jfM, jf , … Statistics of jobs per family 

rnS Relative number of jobs with aJ <= 0.1 bc 

rnM Relative number of jobs with 0.1 bc < aJ <= 0.33 bc 

rnL Relative number of jobs with 0.33 bc < aJ <= 0.5 bc 

rnXL Relative number of jobs with 0.5 bc < aJ 
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Appendix A3 SMTWTP feature projection  

 

Figure 20: Feature projection for the combined instance set 𝑬⋃𝑵 
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