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Abstract

Background: Accurate prediction of postoperative care requirements is critical for patient
safety and resource allocation. Although numerous approaches involving artificial intelli-
gence (AI) and machine learning (ML) have been proposed to support such predictions,
their implementation in practice has so far been insufficiently successful. One reason for
this is that the performance of the algorithms is difficult to assess in practical use, as the
accuracy of clinical decisions has not yet been systematically quantified. As a result, mod-
els are often assessed purely from a technical perspective, neglecting the socio-technical
context. Methods: We conducted a retrospective, single-center observational study at
the University Hospital Augsburg, including 35,488 elective surgical cases documented
between August 2023 and January 2025. For each case, preoperative care-level predictions
by surgical and anesthesiology teams were compared with the actual postoperative care
provided. Predictive performance was evaluated using accuracy and sensitivity. Since
this is a highly imbalanced dataset, in addition to sensitivity and specificity, the balanced
accuracy and the Fβ-score were also calculated. The results were contrasted with published
Machine-Learning (ML)-based approaches. Results: Overall prediction accuracy was high
(surgery: 91.2%; anesthesiology: 87.1%). However, sensitivity for identifying patients
requiring postoperative intensive care was markedly lower than reported for ML models
in the literature, with the largest discrepancies observed in patients ultimately admitted to
the ICU (surgery: 38.05%; anesthesiology: 56.84%; ML: 70%). Nevertheless, clinical judg-
ment demonstrated a superior F1-score, indicating a more balanced performance between
sensitivity and precision (surgery: 0.527; anesthesiology: 0.551; ML: 0.28). Conclusions:
This study provides the first real-world benchmark of clinical expertise in postoperative
care prediction and shows a way in which modern ML approaches must be evaluated in a
specific sociotechnical context. By quantifying the predictive performance of surgeons and
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anesthesiologists, it enables an evaluation of existing ML approaches. Thus the strength
of our work is the provision of a real-world benchmark against which all ML methods
for preoperative prediction of ICU demand can be systematically evaluated. This enables,
for the first time, a comparison of different approaches on a common, practice-oriented
basis and thus significantly facilitates translation into clinical practice, thereby closing the
translational gap. Furthermore it offers a data-driven framework to support the integration
of ML into preoperative decision-making.

Keywords: elective surgery; postoperative care requirements; prediction; artificial intelligence;
machine learning; translation gap

1. Introduction
The accurate prediction of postoperative care requirements following elective surgical

procedures plays a central role, both from a medical and an economical perspective [1]. For
instance, if a patient is mistakenly assumed to require only PACU (Post-Anesthesia Care
Unit) followed by timely transfer to a general ward, this can lead to last-minute scheduling
changes with significant consequences for operating room and intensive care resources [2,3],
ultimately compromising patient safety [4–6]. On the other hand, planning for intensive
care resources that are not actually needed can also have negative medical and economic
consequences [7], for example delay of surgeries that by local protocol require postoperative
transfer to an ICU. Numerous risk factors and scoring systems have already been described
for general [8–18] and specific postoperative complications [19], such as respiratory compli-
cations [20] or acute kidney injury [21], which may necessitate postoperative admission to
a unit with advanced monitoring and therapeutic capabilities. A predictive model titled
“SURPAS” [22] identified several risk factors for the necessity of advanced postoperative
monitoring such as the ASA classification, preoperative functional status, and surgical
specialty. The machine learning (ML)-based model for predicting ICU admission presented
by Chiew et al. demonstrated a specificity of 98%, a sensitivity of 50%, and an AUROC of
0.96. Despite the existence of such models in the literature, there are currently no clearly
defined recommendations for clinical practice. No standardized guidelines currently exist
that call for routine ICU admission based on preoperative variables or planned surgical
procedures—neither from surgical, anesthesiologic, nor intensive care perspectives [23,24].
In practice, the preoperative assessment of the required level of care—whether ICU, Inter-
mediate Care (IMC) [25], prolonged PACU, or PACU—is still primarily based on internal
hospital protocols and the individual judgment of physicians. Despite promising results on
technical benchmarks, the clinical adoption of AI in medicine has been limited. As Sokol
et al. recently emphasized, focusing on ‘superhuman’ performance in artificial settings does
not necessarily translate into meaningful clinical impact. Instead, AI must be evaluated
within a sociotechnical framework. In this framework, its value is measured by its ability
to support real-world clinical reasoning and decision-making. While several studies have
compared clinician performance with machine learning (ML) models in other fields—such
as dermatology [26,27], radiology [28] and pathology [29]—a systematic, practice-oriented
quantification of real-world clinical decision-making in the perioperative setting has not
yet been established and, to our knowledge, no such benchmark currently exists. In the
perioperative domain, MySurgeryRisk [30] demonstrated that ML-based prediction of post-
operative complications could complement physician judgment, and Chiew et al. proposed
an ML model for ICU prediction that explicitly called for direct comparison with clinical
decision-making [4]. However, these approaches did not establish a structured benchmark
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that translates subjective physician judgment into reproducible, imbalance-aware perfor-
mance metrics. This Problem is described by Sokol et al. as the “translation gap” [4,31].
Our study addresses this gap by introducing a practice-oriented reference framework
against which future AI- and ML-based approaches can be systematically evaluated. The
absence of widespread adoption of promising data-driven and ML-based approaches can
also be attributed to the lack of direct performance comparisons with subjective clinical
decision-making [4,31–35]. The aim of this study is to evaluate a real-world dataset to
generate robust insights into the performance of subjective physician decision-making,
thereby enabling practical recommendations for the integration of modern ML approaches.

This article addresses the question: Can the real-world performance of clinicians
serve as a pragmatic benchmark for evaluating AI- and ML-based models in predicting
postoperative ICU requirements, thereby representing a crucial step towards their future
integration into clinical practice?

The data-driven concept in this work aims to improve the prediction of postoperative
care requirements and thus optimize the management of elective surgical procedures.

2. Materials and Methods
This retrospective analysis was conducted using an anonymized dataset from the

University Hospital Augsburg and was previously reviewed by the Ethics Committee of
Ludwig Maximilian University of Munich (Nr 25-0377-KB).

To classify the postoperative care requirements of elective surgery patients, four levels
were defined:

• A patient assigned to Level 0 requires standard postoperative care in the recovery
room followed by timely transfer to a general ward (=standard care) when transfer
criteria are met. This corresponds to the international standard of a PACU. This level
was set as the system default.

• Level 1 patients are expected to stay in the PACU for an extended period of at least
4 h, e.g., including overnight monitoring. Level 2 patients are monitored at the IMC
during the postoperative phase.

• For Level 3 patients, postoperative care in an ICU is assumed to be necessary.

2.1. Clinical Practice at the University Hospital Augsburg

In daily clinical practice at University Hospital Augsburg, the initial prediction of the
required postoperative level of care was made by the responsible surgical team during the
scheduling of the operation. This was later reassessed during the anesthesiologic consulta-
tion and preoperative evaluation by anesthesiology physicians (see Figure 1). Typically,
the anesthesiologist was aware of the surgical team’s initial level-of-care prediction prior
to making their own assessment. In selected cases, an additional interdisciplinary case
conference is conducted shortly before the start of surgery in the morning to determine the
appropriate prognosis for the respective patient.

During the observation period, 46,830 patient cases were recorded. Of these,
11,342 emergency cases were excluded from the study, resulting in 35,488 elective pro-
cedures. The performance of the decision-making process was retrospectively evaluated
based on this cohort of 35,488 interdisciplinary elective surgical procedures conducted
between 1 August 2023, and 31 January 2025. For each case, both the surgical and anesthe-
siologic preoperative predictions, as well as the actual postoperative level of care provided,
were taken into account.
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Figure 1. Current process for elective procedures and level designation: OR: Operating room; Level 0:
Recovery room stay followed by prompt transfer to the general ward (PACU); Level 1: Recovery room
stay followed by delayed transfer to the general ward (prolonged PACU); Level 2: Postoperative
transfer to the IMC; Level 3: Postoperative transfer to the ICU.

2.2. Statistics

To assess the predictive accuracy of the physicians’ classifications, both disciplines—
surgery and anesthesiology—were analyzed individually and comparatively. Evaluation
metrics included accuracy, sensitivity, specificity, balanced accuracy, and precision. To
evaluate the quality of the level-of-care predictions, several performance metrics were
employed. Accuracy represents the overall proportion of correctly classified patients across
all categories. Sensitivity measures the proportion of true positives correctly identified for
each care level, whereas specificity reflects the model’s ability to correctly exclude patients
who did not require a particular level of care. Given the imbalanced distribution of care
levels in the dataset, balanced accuracy was additionally calculated, as it incorporates both
sensitivity and specificity and thus provides a more robust measure. Precision, defined
as the proportion of correctly predicted positive cases among all positive predictions,
indicates the likelihood that a predicted care level matches the level actually required. The
Fβ-score was further applied as a generalized measure that combines precision and recall
into a single metric, allowing for flexible weighting of the two. When β = 1, precision
and recall are equally weighted, yielding the classical F1-score. The F1-score, a special
case of the Fβ-score with β = 1, represents the harmonic mean of precision and recall and
therefore balances both metrics equally. It is widely used as a single summary measure
of classification performance, especially in imbalanced datasets. Values of β > 1 increase
the weight of recall, which emphasizes minimizing false negatives, whereas values of
β < 1 increase the weight of precision, emphasizing the reduction in false positives. This
flexibility makes the Fβ-score particularly suitable for imbalanced datasets, where the
relative importance of recall versus precision depends on the clinical context.

Fβ was evaluated for β = 0.5, 1 and 2 to reflect precision- vs. recall-oriented priorities.
This approach allows for a nuanced evaluation of subjective clinical decision-making

and its potential alignment—or divergence—from actual postoperative needs.
Cohen’s Kappa was used to quantify the interrater agreement between the two medical

assessments, correcting for agreement expected by chance. To test whether the performance
of the assessments differed significantly, a Chi-square test was conducted. Statistical
analyses were performed using R (version 02.04.24) and Python (version 03.12.11).
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3. Results
In the following sections, the performance of the surgical and anesthesiologic as-

sessments is analyzed separately. This is followed by a comparative evaluation of the
predictions made by both disciplines.

3.1. Surgery-Based Predictions

Overall, the surgeons show an accuracy of 91.17%, meaning that in approximately
9% of cases, the surgical assessment did not match the level of care actually provided
postoperatively. For 2008 patients, a postoperative care level higher than Level 0 was
predicted. Among patients who ultimately required Level 3 care, 656 (38.05%) were
correctly identified preoperatively. Table 1 compares the surgical prediction with the actual
postoperative observation.

Table 1. Surgery-based prediction and actual level (Kappa = 0.0263, p-value < 0.001).

Actual
Postoperative Level of Care

Surgery-Based Prediction

Level 0 Level 1 Level 2 Level 3 Total

Level 0 31,480 (98.21%) 296 (0.92%) 125 (0.39%) 152 (0.47%) 32,053

Level 1 736 (86.59%) 84 (9.88%) 21 (2.47%) 9 (1.06%) 850

Level 2 492 (57.14%) 41 (4.76%) 324 (37.63%) 4 (0.46%) 861

Level 3 772 (44.78%) 28 (1.62%) 268 (15.55%) 656 (38.05%) 1724

total 33,480 449 738 821 35,488

Patients requiring Level 0 care were identified with a sensitivity of 98.21%. The
sensitivities for Level 1, Level 2, and Level 3 patients were 9.88%, 37.63%, and 38.05%,
respectively. The specificity for the Level 0 group was 41.78%, while specificities for Levels 1
through 3 were 98.95%, 98.80%, and 99.51%, respectively. For patients ultimately requiring
Level 3 care, the surgical assessment achieved a balanced accuracy of 68.78%. When a
surgeon predicted Level 3 care, this was correct in 79.9% of cases. The precision for Level 0
predictions was 94.03%.

3.2. Anesthesiology-Based Predictions

Overall, the anesthesiologic prediction showed an accuracy of 87.12%, meaning that
in approximately 13% of cases, the anesthesiologic assessment did not match the actual
postoperative level of care. The overall performance is influenced by the high number
of patients requiring only Level 0 care. For 5227 patients, a higher level of postoperative
care than standard care (Level 0) was predicted. Among these, 1717 (32.85%) cases were
overestimated, and 1049 (20.07%) cases were underestimated in terms of care level. Within
the group of patients who ultimately required Level 3 care, 980 (56.84%) were correctly
classified. Table 2 compares the anesthesiologic care level predictions with the levels that
were actually realized.

With a sensitivity of 91.14%, the Level 0 patient group demonstrated the highest
sensitivity. In contrast, sensitivities for Level 2 and Level 3 patients were 57.84% and 56.84%,
respectively, while the identification of Level 1 patients showed the lowest sensitivity at
26.59%. The relatively low specificity for Level 0 (69.46%) indicates that patients are often
incorrectly classified as requiring only standard care. Specificity increases for higher levels
of care.

The balanced accuracy of the anesthesiologic assessment for Level 3 patients was
77.12%, although Level 0 remained the most reliably predicted category. Overall, the
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positive predictive values for Level 1 through 3 (11.82%, 34.11%, and 52.83%, respectively)
indicate limited precision in predicting higher care levels.

Table 2. Anesthesiology-based prediction and actual level in 35,488 cases (Kappa = 0.0408, p-value < 0.001).

Actual Postoperative Level of Care
Anesthesiology-Based Prediction

Level 0 Level 1 Level 2 Level 3 Total

Level 0 29,212 (91.14%) 1544 (4.82%) 532 (1.66%) 765 (2.39%) 32,053

Level 1 517 (60.82%) 226 (26.59%) 85 (10.00%) 22 (2.59%) 850

Level 2 197 (22.88%) 78 (9.06%) 498 (57.84%) 88 (10.22%) 861

Level 3 335 (19.43%) 64 (3.71%) 345 (20.01%) 980 (56.84%) 1724

total 30,261 1912 1460 1855 35,488

3.3. Comparison of Predictions

A direct comparison between the two disciplines—anesthesiology and surgery—
reveals that the surgical assessments demonstrated slightly higher overall accuracy (87.12%
vs. 91.17%, χ2 = 2252.32, p < 0.001).

Figure 2 provides detailed information on the different predictions, stratified by the
actual postoperative level of care. Level 0 was the most frequently predicted category—even
in cases where the actual postoperative care requirement corresponded to Level 1 through
3. In 28,976 instances, both specialties predicted Level 0 care, which was subsequently
confirmed by the observed outcome. However, among these presumed low-risk patients,
a relevant number ultimately required a higher level of care (Level 1: n = 485; Level 2:
n = 114; Level 3: n = 161), indicating potential underestimation of postoperative needs
or the occurrence of unexpected intraoperative complications. Discrepancies between
surgical and anesthesiologic assessments were also evident. For example, 405 cases were
classified as Level 0 by surgery but as Level 3 by anesthesiology, whereas 127 cases showed
the inverse outcome. Although the total number of patients jointly predicted to require
intensive postoperative care (Level 3) by both disciplines was comparatively low (n = 502),
this group showed a high concordance with actual outcomes.

Figure 3 compares the sensitivities and specificities. While surgical clinicians achieved
higher sensitivity for Level 0 patients, anesthesiology physicians demonstrated significantly
higher sensitivities across all other care levels. The conclusions regarding specificity are
vice versa.

Table 3 summarizes the diagnostic performance metrics and presents them in a com-
parative manner. In the comparison of predictive performance across risk levels, substantial
effects of the highly imbalanced dataset became evident. As Level 0 constituted the over-
whelming majority of cases (90.3%), both anesthesiologists and surgeons achieved high
sensitivity for this class (0.911 vs. 0.982). However, specificity differed considerably (0.695
vs. 0.418), reflecting that anesthesiologists were more cautious and thus less likely to incor-
rectly classify higher-risk patients as Level 0. The dominance of this class also explained the
uniformly high positive predictive values (>0.94), which were largely driven by prevalence
rather than discriminative ability. Negative predictive values for Level 0 remained low,
highlighting the limited reliability of a “non-Level 0” classification in ruling out higher
risk. For the intermediate Level 1 category, predictive performance was consistently poor.
With very low sensitivity (0.266 vs. 0.099) and near-zero positive predictive values (0.118 vs.
0.187), this category proved almost indistinguishable in real-world practice. The scarcity
of cases in this group likely exacerbated the inability of both specialties to consistently
recognize Level 1. In Level 2, anesthesiologists achieved somewhat higher sensitivity than
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surgeons (0.578 vs. 0.376), though both groups retained high specificity (>0.97). Positive
predictive values remained moderate (0.341 vs. 0.439), again reflecting the small prevalence
of this class. The clinically most relevant Level 3 (ICU mandatory) category demonstrated
complementary strengths of the two specialties. Anesthesiologists detected a greater pro-
portion of ICU cases (sensitivity 0.568 vs. 0.381), whereas surgeons demonstrated higher
precision (PPV 0.799 vs. 0.528).

 

Figure 2. Comparison of surgery- and anesthesiology-based predictions, grouped by the actual level
of care.

 

Figure 3. Comparison of specialties with regard to sensitivity (left) and specificity (right).
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Table 3. Test performance metrics: surgery-based prediction (SUR) and anesthesiology-based predic-
tion (AIN).

Actual
Postoperative
Level of Care

Sensitivity
AIN

Sensitivity
SUR

Specificity
AIN

Specificity
SUR

PPV
AIN

PPV
SUR

NPV
AIN

NPV
SUR

Prevalence
AIN

Prevalence
SUR

Level 0 0.911 0.982 0.695 0.418 0.965 0.940 0.456 0.715 0.903 0.903

Level 1 0.266 0.099 0.951 0.989 0.118 0.187 0.981 0.978 0.024 0.024

Level 2 0.578 0.376 0.972 0.988 0.341 0.439 0.989 0.985 0.024 0.024

Level 3 0.568 0.381 0.974 0.995 0.528 0.799 0.978 0.969 0.049 0.049

Figure 4 presents an aggregated comparison: all levels of care exceeding standard
recovery (Level 1–3) were combined and contrasted with PACU (Level 0). This visualization
allows for assessment of how well patients requiring enhanced postoperative care were
identified. The comparison highlights that anesthesiologic assessments resulted in fewer
patients being incorrectly classified as Level 0, thereby ensuring that critical resources were
more appropriately utilized. However, this approach also led to a higher proportion of
false positive classifications.

 

Figure 4. Comparison of the percentage distribution of anesthesiology-based (left) and surgery-based
predictions (right) in cases with aggregated elevated postoperative care requirements.

As can also be seen in Figure 4, the actual distribution of care requirements is, as
previously noted, heavily skewed toward the Level 0 group (n = 3435 vs. n = 32,053).
To adequately account for this imbalance in performance evaluation, we calculated the
Fβ-score [36,37]. Moreover, the Fβ-score can be weighted and adapted to clinical priorities—
such as placing greater emphasis on avoiding false negatives, i.e., underestimating the
need for ICU admission—by adjusting the beta coefficient. The Fβ-score provides an ap-
propriate metric for evaluating imbalanced data. While, in an ideal setting, a perfectly
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accurate prediction would be desirable, in the clinical context it is reasonable to assume
that patients incorrectly classified as Level 0 carry a more serious consequence than those
incorrectly classified as Level > 0. This asymmetry can be captured using the weighted
Fβ-score, as illustrated in Figure 5. In our setting, false negative classifications correspond
to patients who were incorrectly predicted as Level 0, despite actually requiring a higher
level of postoperative care. To account for the greater clinical risk associated with such
misclassifications, a higher β value was applied in the Fβ-score. By increasing β, recall is
weighted more strongly than precision, thereby penalizing false negatives more severely
than false positives. This adjustment reflects the clinical priority of minimizing the under-
estimation of postoperative care needs. When applying higher β values in the Fβ-score,
misclassifications of patients as Level 0—despite requiring higher levels of care—were
penalized more strongly. This weighting reflects the increased clinical relevance of false neg-
ative predictions. Accordingly, anesthesia showed higher Fβ-scores under recall-oriented
weighting (β > 1), whereas surgery performed better under precision-oriented weighting
(β < 1).

 

Figure 5. Fβ-Score of the anesthesiology-based and surgery-based prediction for varying β weights.

4. Discussion
4.1. Summary of the Results and Their Significance for the Establishment of Future AI Models

Our study shows that both anesthesiologic and surgical predictions demonstrate a
high, though not perfect, concordance with the care that was ultimately provided. In
approximately 11% of cases, an incorrect prediction was made. Only about half of the
patients who ultimately required postoperative intensive care were correctly identified as
such during the preoperative assessment by either the surgical or the anesthesiology team,
resulting in a large number of patients requiring an unplanned ICU admission. Since ICUs
are commonly required to have a high bed utilization due to economic reasons, multiple
unplanned ICU admissions of elective cases can pose major challenges.

A variety of AI and ML methods have been proposed for forecasting postoperative ICU
demand, as highlighted in the introduction. In their systematic review and meta-analysis,
Arina et al. summarized relevant AI models, highlighting three major limitations: the
overall modest performance of existing approaches, the challenges of imbalanced datasets,
and the lack of a pragmatic clinical benchmark [32]. For preoperative ICU prediction, the
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authors identified the study by Chiew et al. as particularly impactful, as it demonstrated
a procedure-independent approach relying solely on preoperatively available informa-
tion [4]. The work of Chiew et al. is based exclusively on preoperative parameters and
was applied independently of the surgical procedure. Notably, Chiew et al. themselves
explicitly emphasized the need for direct comparisons between model predictions and
clinical decision-making. Building on this rationale, the present study uses the work of
Chiew et al. as a reference to contextualize and benchmark the performance of subjective
physician decision-making [4].

Using ten preoperative parameters, Chiew et al. trained multiple ML models that
demonstrated superior sensitivity and, to a lesser extent, specificity compared to the
physician-based predictions reported in the present study [4].

Clinical benchmarking yielded F1-scores by anesthesiologists (0.551) and surgeons
(0.527) that were comparable to each other and to the ML prediction reported by Chiew
et al. (0.28), although the latter performed slightly worse. This indicates that clinical
judgment and ML approaches achieve results in a similar range, with minor differences in
predictive balance [4]. For implementation, patient safety must remain the primary goal
of preoperative risk stratification; thus, false positives are a tolerable trade-off, whereas
underestimation poses a direct risk to patients [7].

It is important to emphasize that this comparison is intended as an outlook rather
than a direct evaluation. Given the substantial differences in datasets, case mixes, and
class distributions, these results are not directly comparable and should be interpreted as
illustrative rather than conclusive.

This observation is consistent with the findings of the meta-analysis by Arina et al.
and underscores the importance of establishing a benchmark against clinical expertise [32].
Only after such a benchmark has been defined, can it be meaningfully assessed whether,
and in what form, an ML tool should be implemented in clinical practice. In the present
case, an upstream model appears most appropriate, leveraging the high sensitivity of
the ML approach to optimally support clinical decision-makers in their daily work. Tak-
ing these requirements into account, Figure 6 outlines a data-driven concept developed
from the findings of this study, aimed at guiding practical implementation in real-world
clinical settings. The proposed approach could thus improve overall sensitivity without
negatively affecting specificity. In practical terms, this would allow for more accurate
preoperative planning of ICU bed allocation—at least for elective procedures. Over the
approximately one-year observation period, this concept could lead to a maximum increase
of 1309 correctly predicted ICU admissions. This analysis provides insights into the quality
of preoperative clinical assessments regarding postoperative care requirements from a
practical point of view. The results highlight the challenges associated with preoperative
assessment of postoperative care requirements in the real world. According to the findings
of this study, integrating an appropriate upstream ML-model into the clinical decision-
making process would particularly enhance the sensitivity for the most critical patient
group-those requiring Level 3 postoperative care.

The novelty of our work lies not only in directly benchmarking surgical and
anesthesiologic decision-making but also in formalizing this process into a structured,
practice-oriented framework. Previous Head-to-Head comparisons of clinician and AI
performance—such as in dermatology [26,27], radiology [28], and pathology [29]—have
provided valuable insights, but they remained confined to image-based or narrowly defined
diagnostic tasks. In the perioperative domain, only isolated evaluations of predictive mod-
els exist [38], yet none have conducted a direct Head-to-Head comparison with real-world
physician judgment. To date, no study has, to our knowledge, systematically transformed
perioperative decision-making into a reproducible benchmark that accounts for class im-
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balance and the socio-technical realities of care. By embedding clinical performance into
such a benchmark, our study advances the field conceptually and methodologically: it
provides actionable, imbalance-aware performance targets for future AI models, enables
fair Head-to-Head evaluations, and thereby supports the translational pathway of AI into
routine practice.

 

Figure 6. Data-Driven Process for Elective Procedures and Level Classification: ML: Machine-learning;
OR: Operating Room; Level 0: Recovery room stay followed by prompt transfer to the general ward
(PACU); Level 1: Recovery room stay followed by delayed transfer to the general ward (prolonged
PACU); Level 2: Postoperative transfer IMC; Level 3: Postoperative transfer to ICU.

4.2. Limitations

This study is subject to some limitations: the overall performance of physician-based
predictions, particularly accuracy, is influenced by the high proportion of patients classified
as Level 0. This effect is further amplified by the system’s default setting to Level 0. The
training level of the participating physicians was not systematically recorded. Therefore,
differences in the proportion of residents, board-certified specialists, and senior physicians
across both disciplines may have biased the results. Furthermore, the physicians’ reasons for
their predictions -for example, comorbidities, procedure severity, the interplay of different
variables, or the overall clinical impression—were not systematically recorded and analyzed.
Our study therefore reflects only the performance (i.e., the outcome) of the clinical decision.
Investigating the specific reasons underlying physicians’ decisions represents an interesting
topic for future research. A key limitation of this study lies in its single-center design, which
inherently restricts the ability to assess potential institution-specific biases or regulatory
frameworks and limits the generalizability of the findings. Additionally, the need for a
higher level of postoperative observation is influenced by center-specific protocols, where
patients undergoing certain procedures are always transferred to an ICU postoperatively,
regardless of their assumed risk.

The reasons for the actual level of postoperative care realized were not available. It
remains unclear whether the observed care levels were based solely on medical necessity
or also influenced by organizational factors such as limited bed availability in IMC/ICU
units. Consequently, no judgment could be made regarding the medical appropriateness of
the care allocation observed in this dataset.

Furthermore, current ML models only predict the need for ICU admission-corresponding
to Level 3 in our methodology [4]. Looking ahead, the development and prospective vali-
dation of ML models capable of predicting care needs across all levels—including Levels 1
and 2—would be a desirable advancement.

We did not develop or train any machine-learning (ML) model because it is not
required to answer the study’s primary question—namely, to quantify real-world clinician
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performance and establish a clinical benchmark. ML appears only via published results
from the literature, which we use to situate our benchmark. This design choice is intentional
to help close the translational gap as a first step: by first defining the exact meaning of
“better than clinical practice”, our benchmark provides actionable, imbalance-aware targets
(e.g., minimum recall for Level 3 patients at an acceptable precision) that future models
should meet before real-world adoption. The comparison with published ML results must
be interpreted with caution. The authors explicitly state that this is meant as an outlook,
not as a direct evaluation. Differences in datasets, case structures, and prevalence patterns
preclude a one-to-one comparison; the results should therefore be understood as illustrative
only. The resulting clinical reference enables fair, prospective, and multicenter head-to-head
evaluations of candidate ML systems against clinicians, directly aligning model claims with
clinically meaningful goals.

4.3. Strengths

A key strength of this study lies in the use of a large, real-world dataset comprising
over 35,000 elective surgical procedures from a tertiary care center. This allows for robust,
practice-oriented insights into current clinical decision-making processes. By incorporating
both surgical and anesthesiologic assessments and comparing them to the actual postoper-
ative level of care, the study offers a comprehensive evaluation of current practice patterns.
The dual-perspective design adds depth and realism, reflecting interdisciplinary workflows
in perioperative planning.

Moreover, the classification system employed-differentiating between four distinct
postoperative care levels (PACU, prolonged PACU, IMC, ICU)-closely mirrors commonly
applied structures in many European hospitals. Despite the inherent heterogeneity in how
observation units are defined and utilized across institutions, the applied model is broadly
representative and thus enhances the generalizability of findings.

Finally, the study provides a valuable reference benchmark for evaluating future ML-
based prediction models. By quantifying the performance of human clinical judgment, it
enables a meaningful comparison and helps guide the development and implementation
of data-driven decision support systems.

5. Conclusions
This study offers real-world insights into the preoperative prediction of postoperative

care requirements following elective surgical interventions.
By establishing a pragmatic benchmark through the performance analysis of clinicians,

this work provides a reference framework against which future AI- and ML-based models
can be measured. Such a benchmark may represent a crucial step towards overcoming
one of the key obstacles that have thus far hindered the implementation of these models
in everyday clinical practice. The data-driven concept introduced here shows potential
to enhance existing clinical decision-making processes. As demonstrated, early findings
from the literature indicate that ML-based approaches can provide meaningful support in
this context [4]. Through the present analysis, this potential has, for the first time, been
objectively quantified in a real-world clinical setting.

Looking ahead, future interdisciplinary research should prioritize the development of
data-driven decision support systems that effectively bridge the interface between human
expertise and algorithmic assistance. The goal must be to create actionable, user-centered
tools that deliver measurable value for both patients and clinicians in anesthesiology and
surgery. In the future, AI methods should be evaluated against the clinical benchmark as
established in this study. Particular attention should be paid to handling imbalanced data
and to the clinical weighting of misclassifications. Our work provides a solid best-practice
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approach and highlights suitable parameters for this purpose. For the adoption of an AI
method, it is essential to address issues of missing data and limited generalizability. The
framework developed in this study represents a promising foundation for such efforts. It
illustrates a pragmatic approach to optimizing resource allocation in perioperative care.
The key challenge for future research lies in translating the predictive performance of
ML-based models into clinical practice—while navigating the regulatory, ethical, and
organizational constraints inherent to healthcare systems. In the end, the impact of AI
tools in perioperative medicine will not be determined by technical performance alone, but
by how well they align with the clinical benchmark and integrate into the sociotechnical
environment of everyday practice.
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