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Abstract

In the present work we investigate kernel-type estimators for product densities and

for the pair correlation function for stationary spatial point processes. In the set-

ting of Brillinger-mixing point processes we present central limit theorems for these

estimators and for the integrated squared error of the estimators for the second-

order product density and the pair correlation function. Based on these central limit

theorems we can construct asymptotic goodness-of-fit tests for the distribution of a

stationary point process.

Zusammenfassung

In dieser Arbeit untersuchen wir Kernschätzer für Produktdichten und für die Paar-

korrelationsfunktion für stationäre räumliche Punktprozesse. Im Fall von Brillinger-

mischenden Punktprozessen leiten wir für diese Schätzer und für den integrierten

quadratischen Fehler der empirischen Produktdichte zweiter Ordnung und der empi-

rischen Paarkorrelationsfunktion Zentrale Grenzwertsätze her. Aus diesen Zentralen

Grenzwertsätzen lassen sich Anpassungstests zur Prüfung auf die Verteilung eines

stationären Punktprozesses konstruieren.

AMS Mathematics Subject Classification: primary: 60G55, 62M30; secondary: 62G20
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1
Introduction

A point process can be thought of as a set of points randomly scattered in space. Formally,

a point process is defined as a random locally-finite counting measure on the d-dimensional

Euclidean space Rd. Fields of applications for point processes are material sciences (see Ohser

and Mücklich [48] and Torquato [63]), image processing, analysis of the structure of tissues

in medical sciences, geological sciences and seismology, forestry and ecology, astronomy, and

statistical physics. Most of these applications refer to point processes in R2. Comprehensive

representations of spatial statistics and statistics for random geometrical structures can be found

in Stoyan et al. [57] and Cressie [7]. Overviews of statistics for spatial point processes are given

in Ripley [51], Karr [42], Diggle [14], and Stoyan [56].

An important task of statistics for point processes is model identification, that is, the formulation

of a mathematical model giving a satisfactory description of an observed point pattern. With

such mathematical models one can, for instance, draw conclusions about properties of certain

materials or tissues. In the last two decades various articles on nonparametric problems in

point process theory have been published, mainly concerning so-called summary statistics such

as Ripley’s K-function, the nearest-neighbor distance distribution function, the empty-space

function, and other functions based on these characteristics such as the L- or the J-function.

These summary statistics are used for verifying or rejecting hypothetical point process models

by graphical investigations or simulation tests, see Stoyan et al. [57], Baddeley and Turner [2],

and Baddeley et al. [3]. Often these investigations focus on complete spatial randomness, see

Zimmerman [67], Grabarnik and Chiu [18], and Ho and Chiu [36]. Most tests used in applications

are based on heuristic considerations rather than on mathematical models. This is mainly due to

the latter models’ complexity caused by dimension and by stochastic dependencies of neighboring

1



2 1. Introduction

areas. Furthermore one has to cope with rather little information on the point process since in

most cases there is only one observation in a given observation window available.

An approach originating from ergodic theory for stationary spatial processes is the idea of con-

sidering point processes in a convex observation window expanding in every direction. This

allows the derivation of consistency properties of estimators and, under additional mixing as-

sumptions, limiting distributions of these estimators. These limiting distributions can be used

for test procedures, where the true distribution of the considered test statistic in finite observa-

tion windows is not known. A frequent problem in this context is that such limiting distributions

depend on the underlying assumptions in a complicated way. This is not the case for the limiting

distributions of the test statistics studied in the present work.

The derivation of limit theorems for estimators of product densities and of the pair correlation

function requires mixing properties that guarantee weak dependence between numbers of points

in areas that are far apart from each other. In this work we use the concept of Brillinger-mixing

point processes. Another mixing property that is suitable for asymptotical investigations for

statistics for point processes and random sets is absolute regularity (also called β-mixing). The

asymptotic behavior of absolutely regular tessellations has been studied in Heinrich [27]. The

concepts developed there have been applied to germ-grain models in Heinrich and Molchanov

[31].

An important characteristic for stationary point processes is the second-order product density

̺(x), x ∈ Rd, which is defined as the Lebesgue density of the second-order reduced factorial

moment measure and contains information about interaction between points. If the stationary

point process is isotropic, that is, if its distribution is rotation invariant, one can consider the

pair correlation function instead of the second-order product density without loss of information.

The pair correlation function is derived from the product density by g(r) = ̺(x)/λ2 for r =

‖x‖ ≥ 0, x ∈ Rd. (Here, λ denotes the intensity of the point process.) Due to its simple

interpretation and straightforward graphical representation the pair correlation function is more

popular in applications than the second-order product density. Although second-order quantities

do not characterize the distribution of the point process (see Baddeley and Silverman [4] for an

illustrative example) they still give a rather informative description of the point pattern.

In the present work we will use the second-order product density and its isotropic analogue, the

pair correlation function, to construct goodness-of-fit tests for a wide class of stationary point

processes. These goodness-of-fit tests are based on central limit theorems for kernel-type estima-

tors of product densities and the pair correlation function under mild mixing conditions. Based

on one realization of a point process in a convex observation window expanding in every direction
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we determine kernel-type estimators for product densities and the pair correlation function and

study their deviations from a hypothetical product density or pair correlation function. Such

deviations are, for example, the sum of squared differences between estimated and hypothetical

product densities evaluated on a given finite set of points, or the integrated squared error of

the estimated second-order product density and of the estimated pair correlation function. We

will derive limit theorems for these deviations in the setting of Brillinger-mixing point processes.

The limiting distribution will solely depend on the underlying hypothetical second-order quan-

tity, the intensity of the point process, and the kernel function. This allows the construction of

distribution-free testing procedures. We will also discuss under which assumptions various point

process models are Brillinger-mixing.

The normal convergence of empirical product densities has been proved in Jolivet [40] for

Brillinger-mixing point processes based on a decomposition of their cumulants (see Leonov and

Shiryaev [45] and Jolivet [39]). This method has already been used for proving asymptotic nor-

mality of empirical reduced factorial moment measures on fixed sets such as Ripley’s K-function

(see Jolivet [39]). Jolivet [40] sketches the proof of asymptotic normality of estimated product

densities only briefly and does not state all necessary assumptions. The present work will be

more rigorous.

In Heinrich et al. [29] and Heinrich and Muche [32] the pair correlation function of the point

process of nodes in a stationary Poisson Voronoi tessellation has been determined, and Heinrich

et al. [33] derived a corresponding formula for Poisson hyperplane tessellations. The asymptotic

behavior of the empirical product density in the setting of absolutely regular point processes

has been studied in Heinrich and Liebscher [30]. For Poisson cluster processes corresponding

results can be found in Heinrich [26]. For the point process of exposed tangent points of Boolean

models the asymptotic investigations in Heinrich and Werner [35] yield a χ2-goodness-of-fit test

for a hypothetical radius distribution of Boolean models with spherical grains.

Heinrich [28] proves a functional central limit theorem for the estimated K-function. David [10]

extends this result to a multivariate K-function based on cuboids of varying size. However, the

methods used in Heinrich [28] and David [10] for achieving functional limit theorems cannot be

used for deriving similar results for product densities.

There is a vast amount of literature on estimators for probability densities (see Silverman [54],

Devroye [12], and Wand and Jones [64], for example). Hall [22] proves a central limit theorem

for the integrated squared error of nonparametric probability density estimators. Csörgö and

Horváth [8] derive central limit theorems for Lp-norms of kernel-type density estimators. Horváth

[37] extends this result to multivariate probability densities.



4 1. Introduction

The present work is organized as follows. Chapter 2 gives a brief introduction to the theory

of point processes. We introduce product densities and the pair correlation function, and we

present some examples of point process models. In Chapter 3 we give an overview of mixing

properties for point processes and study assumptions that imply various classes of point processes

to be Brillinger-mixing. Chapter 4 presents properties of cumulants that will be useful for

the derivation of the central limit theorems in Chapters 6 and 7. In Chapter 5 we introduce

estimators for product densities and the pair correlation function. The asymptotic behavior

of these estimators is studied in Chapter 6. More precisely we show asymptotic normality for

the scaled deviations of these estimators and their respective hypothetical quantities and give

asymptotic representations for the mean and the variance. In Chapter 7 we derive central limit

theorems for the integrated squared error of the estimated second-order product density and

pair correlation function and give asymptotic representations for the mean and the variance.

Chapter 8 gives a short description of how the central limit theorems in Chapters 6 and 7 can be

used for constructing asymptotic goodness-of-fit tests. The last chapter summarizes the main

results of the present work and outlines some open questions. Finally, Appendix A presents some

properties of the sequence of observation windows that are needed for the asymptotic results in

Chapters 6 and 7.



2
Point processes

This chapter gives an introduction to the theory of point processes. We restrict our presentation

primarily to the notions relevant for the following chapters. Comprehensive representations of

point process theory can for instance be found in Stoyan et al. [57], König and Schmidt [43],

and Daley and Vere-Jones [9].

The first section presents the definition of point processes and basic concepts such as stationarity

and isotropy. We continue with notions like moment measures and kth-order stationarity in the

second section. The third section focuses on point process characteristics and their interpreta-

tion. The chapter concludes with some examples of point process models.

2.1 Definition of point processes, stationarity, and isotropy

Let N be the set of all locally-finite counting measures on Rd, d ≥ 1, and let N be the σ-algebra

induced by the sets {ψ ∈ N : ψ(B) = k}, where k ∈ N0 and B ∈ B(Rd) is bounded. Here B(Rd)

denotes the Borel-σ-algebra on Rd. A point process in Rd is defined as a measurable mapping

Ψ from a probability space [Ω,A,P] into [N,N ]. Let P = P ◦ Ψ−1 be the probability measure

on [N,N ] induced by Ψ. We call P the distribution of the point process Ψ and write Ψ ∼ P .

In the present work we will only consider simple point processes in Rd, that is, P(Ψ({x}) ≤ 1

for all x ∈ Rd}) = 1.

Two important classes of statistically tractable point processes are given by the concepts of

stationarity and isotropy.

5



6 2. Point processes

Definition 2.1.1 A point process Ψ ∼ P in Rd is said to be stationary if

(Ψ(B1 + x), . . . ,Ψ(Bk + x))
d
= (Ψ(B1) . . . ,Ψ(Bk))

for all x ∈ Rd, B1, . . . , Bk ∈ B(Rd) and k ≥ 1. Here
d
= denotes identity of distributions.

A point process Ψ ∼ P in Rd is said to be isotropic if

(Ψ(U−1B1), . . . ,Ψ(U−1Bk))
d
= (Ψ(B1), . . . ,Ψ(Bk))

for all B1, . . . , Bk ∈ B(Rd), k ≥ 1, and matrices U ∈ SO(d), where SO(d) is the special orthog-

onal group over Rd. �

2.2 Moment measures and kth-order stationarity

Let supp(ψ) be the support of the counting measure ψ ∈ N . In the following we will use the

abbreviated notation x ∈ Ψ for x ∈ supp(Ψ). Further,
∑∗ denotes summation over summands

with index tuples having pairwise distinct components.

Definition 2.2.1 The kth-order factorial moment measure α(k) of the point process Ψ ∼ P in

Rd is defined by

α(k)(B1 × · · · ×Bk) := E
∑∗

x1,...,xk∈Ψ

1B1(x1) · · · 1Bk
(xk),

where B1, . . . , Bk ∈ B(Rd) and k ≥ 1. �

The first-order factorial moment measure α(1) is called intensity measure of the point process Ψ

due to α(1)(B) = EΨ(B) being the mean number of points of Ψ in a Borel set B.

A popular approach in the analysis of point processes is the use of characteristics based on

factorial moment measures, especially the second-order factorial moment measure, although in

general the distribution of Ψ is not uniquely determined by the factorial moment measures.

Baddeley and Silverman [4] give examples of non-Poissonian point processes with the same first-

and second-order factorial moment measures as the Poisson process.



2.2. Moment measures and kth-order stationarity 7

Definition 2.2.2 The kth-order factorial cumulant measure γ(k) of the point process Ψ ∼ P in

Rd is defined by

γ(k)(B1 × · · · ×Bk) :=
k∑

ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

K1∪...∪Kℓ
={1,...,k}

ℓ∏

j=1

α(|Kj |)
(

×
kj∈Kj

Bkj

)

,

where B1, . . . , Bk ∈ B(Rd) and k ≥ 1. Here,
∑

K1∪...∪Kℓ
={1,...,k}

denotes summation over all ℓ-partitions

of {1, . . . , k}, where an ℓ-partition of {1, . . . , k} is a family of nonempty pairwise disjoint subsets

K1, . . . ,Kℓ ⊆ {1, . . . , k} with K1 ∪ . . . ∪Kℓ = {1, . . . , k}. �

Note that γ(k) is a signed measure on [(Rd)k,B
(
(Rd)k

)
].

Due to Definition 2.2.2 the kth-order factorial moment measure α(k) can be expressed by the

factorial cumulant measures up to order k by

α(k)

( k

×
j=1

Bj

)

=
k∑

j=1

∑

K1∪...∪Kj
={1,...,k}

j
∏

i=1

γ(|Ki|)
(

×
ki∈Ki

Bki

)

(2.1)

with B1, . . . , Bk ∈ B(Rd) and k ≥ 1.

Definition 2.2.3 Let k ≥ 1. A point process Ψ ∼ P in Rd is said to be kth-order stationary

(henceforth abbreviated as k-stationary) if EΨk([0, 1]d) <∞ and

α(j)((B1 + x) × · · · × (Bj + x)) = α(j)(B1 × · · · ×Bj)

for all B1, . . . , Bj ∈ B(Rd), j = 1, . . . , k, and x ∈ Rd.

A 2-stationary point process Ψ is called weakly stationary. �

Clearly, stationarity implies weak stationarity.

If the point process Ψ is at least 1-stationary, then its intensity measure is translation invariant

and thus a multiple of the Lebesgue measure | . | on [Rd,B(Rd)], that is, there exists λ ∈ (0,∞)

with

α(1)(B) = λ|B|

for all B ∈ B(Rd). The constant λ = EΨ([0, 1]d) is called the intensity of Ψ and is the mean

number of points of Ψ in the unit cube [0, 1]d.



8 2. Point processes

Definition 2.2.4 Let the point process Ψ ∼ P in Rd be k-stationary with intensity λ > 0 and

k ≥ 2. The measure α
(k)
red on [(Rd)k−1,B

(
(Rd)k−1

)
] that is uniquely determined by

α(k)(B1 × · · · ×Bk) = λ

∫

Bk

α
(k)
red((B1 − x) × · · · × (Bk−1 − x)) dx

for all B1, . . . , Bk ∈ B(Rd) is called kth-order reduced factorial moment measure. The measure

γ
(k)
red on [(Rd)k−1,B

(
(Rd)k−1

)
] that is uniquely determined by

γ(k)(B1 × · · · ×Bk) = λ

∫

Bk

γ
(k)
red((B1 − x) × · · · × (Bk−1 − x)) dx

for all B1, . . . , Bk ∈ B(Rd) is called kth-order reduced factorial cumulant measure.

The total variation measure |γ
(k)
red| is defined by

|γ
(k)
red|( . ) = (γ

(k)
red)+( . ) + (γ

(k)
red)−( . ),

where the measures (γ
(k)
red)+ and (γ

(k)
red)− are given by the Jordan decomposition

γ
(k)
red( . ) = (γ

(k)
red)+( . ) − (γ

(k)
red)−( . ).

The total variation of γ
(k)
red is defined by

∥
∥γ

(k)
red

∥
∥ := |γ

(k)
red|
(
(Rd)k−1)

)
.

�

The fact that α
(k)
red coincides with the (k − 1)th-order moment measure of the reduced Palm

distribution will be used for the interpretation of the quantities introduced in the following

section. For the definition of the reduced Palm distribution see, for instance, Stoyan et al. [57],

page 121.

If the kth-order reduced factorial moment measure α
(k)
red is absolutely continuous with respect to

the Lebesgue measure on [(Rd)k−1,B
(
(Rd)k−1

)
], then its Lebesgue density ̺(k) is given by

α
(k)
red(B1 × · · · ×Bk−1) =

∫

B1

· · ·

∫

Bk−1

̺(k)(x1, . . . , xk−1) dx1 · · · dxk−1,

where B1, . . . , Bk−1 ∈ B(Rd), and is called the kth-order reduced product density, henceforth

abbreviated as kth-order product density.
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If the kth-order reduced factorial cumulant measure γ
(k)
red is absolutely continuous with respect

to the Lebesgue measure on [(Rd)k−1,B
(
(Rd)k−1

)
], then its Lebesgue density c(k) is given by

γ
(k)
red(B1 × · · · ×Bk−1) =

∫

B1

· · ·

∫

Bk−1

c(k)(x1, . . . , xk−1) dx1 · · · dxk−1,

where B1, . . . , Bk−1 ∈ B(Rd), and is called the kth-order reduced cumulant density, henceforth

abbreviated as kth-order cumulant density.

Remark 2.2.5 If the kth-order cumulant density exists, then the assumption

∥
∥γ

(k)
red

∥
∥ = |γ

(k)
red|
(
(Rd)k−1)

)
=

∫

(Rd)k−1

|c(k)(x)|dx <∞

on the total variation implies the kth-order cumulant density c(k)(x) to be finite for Lebesgue-

almost all x ∈ (Rd)k−1 and to satisfy

∫

(Rd)#S

|c(k)(x1, . . . , xk−1)|dxS <∞

for Lebesgue-almost all x{1,...,k−1}\S ∈ (Rd)k−1−#S for all S ⊆ {1, . . . , k − 1} with S 6= ∅. Here

#S denotes the cardinality of S and xS = (xi)i∈S . �

2.3 Point process characteristics

In the present work we will focus on product densities as introduced in the previous section and,

in particular, on the second-order product density ̺(2) and the pair correlation function defined

by

g(r) :=
̺(2)(x)

λ
,

where r = ‖x‖, x ∈ Rd, and λ is the intensity of the 2-stationary point process. For 2-stationary

and isotropic point processes with intensity λ the pair correlation function g contains the same

information as the second-order product density ̺(2) normalized with the intensity λ. The

standardization with the intensity λ implies the pair correlation function to be the constant 1

for the stationary Poisson process, see Section 2.4. The pair correlation function is more popular

for data analysis than the second-order product density due to its simple interpretation and

straightforward graphical representation. An alternative second-order characteristic is Ripley’s
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K-function (see Ripley [50]) defined by

K(r) :=
1

λ
α

(2)
red

(
b(o, r)

)
, r ≥ 0,

where o = (0, . . . , 0)′ ∈ Rd denotes the origin and b(x, r) := {y ∈ Rd : ‖y − x‖ ≤ r} denotes

the closed ball in Rd with radius r > 0 and midpoint x ∈ Rd. The K-function provides an

alternative definition of the pair correlation function given by

g(r) =
d
dsK(s)

dωd sd−1

∣
∣
∣
∣
s=r

, r ≥ 0,

where ωd =
√

πd

Γ(1+d/2) denotes the volume of the unit ball in Rd. The interpretations of Ripley’s

K-function,

λK(r)
∧
=

[
mean number of points in a ball of radius r centered at a

typical point

]

, (2.2)

the pair correlation function,

λg(r)
∧
=

[
mean number of points in an “infinitesimal annulus” with

distance r to a typical point

]

[volume of the “infinitesimal annulus” ]
, (2.3)

and the second-order product density,

̺(2)(t)
∧
=

[
mean number of points in an “infinitesimal neighbor-

hood” of the vector t attached to a typical point

]

, (2.4)

are illustrated in Figure 2.1. For the kth-order product density we have the interpretation

̺(k)(t1, . . . , tk−1)
∧
=

[
mean number of points in “infinitesimal neighborhoods”

of the vectors t1, . . . , tk−1 attached to a typical point

]

(2.5)

which is also illustrated in Figure 2.1 for k = 3.
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Figure 2.1: Interpretation of the K-function, the pair correlation function, and
product densities for point processes in R2

o

r

o

r

o

t

The quantity λK(r) is the mean number of points in a ball of radius r centered at the
origin (far left). Similarly, λg(r) is the mean number of points in an infinitesimal annulus
with radius r about the origin, relative to this annulus’ volume (left). Product densities
are based on “directed distances” rather than on radii. The second-order product density
̺(2)(t) is the mean number of points in an infinitesimal neighborhood of the vector t
(right) while the third-order product density ̺(3)(t1, t2) is the mean number of points in
infinitesimal neighborhoods of the vectors t1 and t2 (far right).

2.4 Examples of point processes

We will now give some examples of point processes in Rd.

Example 2.4.1 Poisson processes.

A point process Ψ ∼ P in Rd is called a Poisson process with intensity measure Λ if

(i) Ψ(B1), . . . ,Ψ(Bk) are independent for disjoint B1, . . . , Bk ∈ B(Rd) and all k ≥ 1, and

(ii) Ψ(B) ∼ Poi(Λ(B)) for all bounded B ∈ B(Rd),

where Λ is a locally-finite measure on [Rd,B(Rd)]. The measure Λ coincides with the intensity

measure. The Poisson process is stationary if it is 1-stationary, that is, Λ(B) = λ|B| for all

B ∈ B(Rd). We use the notation Πλ for the distribution of a stationary Poisson process with

intensity λ. Figure 2.2 shows a simulated realization of a stationary Poisson process in R2. The

kth-order product density of a stationary Poisson process with intensity λ satisfies

̺(k)(t) = λk−1 for all t ∈ (Rd)k−1,

see Stoyan et al. [57], page 39. This implies the pair correlation function to take the form

g(r) = 1 for all r ≥ 0.

�
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Figure 2.2: Simulated realization of a stationary Poisson process in R2
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A simulated realization of a stationary Poisson process in R2 with intensity 1 in a window
with height 10 and width 20.

Example 2.4.2 Cluster processes.

A cluster process Ψ ∼ P in Rd consists of the primary process Ψp ∼ Pp and the secondary

process Ψc ∼ Pc (also called typical cluster). Each point x ∈ supp(Ψp) triggers a point process

Ψ
[x]
c ∼ P

[x]
c (a cluster) which is independent of Ψp and Ψ

[y]
c , y 6= x, and has the same distribution

as the translated process TxΨc, that is, P
[x]
c (Y ) = Pc(TxY ) for all Y ∈ N . Here, Tx denotes the

translation operator defined by (Txϕ)(B) = ϕ(B + x), where B ∈ B(Rd), ϕ ∈ N , and x ∈ Rd.

The cluster process Ψ is then given by

Ψ =
∑

x∈Ψp

Ψ[x]
c .

The condition EΨc(Rd) < ∞ guarantees the existence of the cluster process Ψ. The cluster

radius denotes the radius of the smallest ball containing the support of the typical cluster Ψc.

If the primary process is stationary, then Ψ is stationary, too. If the primary and the secondary

process are isotropic so is Ψ. Further, the cluster process inherits k-stationarity from the primary

process. The intensity λ of a cluster process with 1-stationary primary process with intensity

λp is given by λ = λp EΨc(Rd).

If the primary process is a Poisson process, then Ψ is called a Poisson cluster process, and if the

primary process is a stationary Poisson process, then Ψ is called a stationary Poisson cluster

process. Figure 2.3 shows a simulated realization of a stationary Poisson cluster process.
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Neyman-Scott processes are examples of Poisson cluster processes. Here, the points of the typical

cluster are random in number and are scattered independently with identical distribution about

the origin.

Let Ψ ∼ P be a Neyman-Scott process in Rd with intensity λ and let λp be the intensity of

the underlying Poisson process. Let F be the distribution function of the difference of two

independent random points X = (X1, . . . ,Xd)
′ and Y = (Y1, . . . , Yd)

′ of the typical cluster

Ψc ∼ Pc, that is, F (t) = P (X1 − Y1 ≤ t1, . . . ,Xd − Yd ≤ td) with t = (t1, . . . , td)
′ ∈ Rd. If

F has a Lebesgue density f , f(t) = ∂d

∂t1···∂td
F (t), then the second-order product density of the

stationary Poisson cluster process Ψ is given by

λ̺(2)(t) = λ2 + λp

∞∑

n=2

pnn(n− 1)f(t) (2.6)

for all t ∈ Rd, where pn = P
(
Ψc(Rd) = n

)
. In order to find a representation for the pair corre-

lation function, let F now be the distribution function of the distance between two independent

random points of the typical cluster Ψc ∼ Pc, that is, F (r) = P (‖X − Y ‖ ≤ r) with r ∈ R.

If F has a Lebesgue density f(r) = d
drF (r) then the pair correlation function of the stationary

Poisson cluster process Ψ is given by

λ2g(r) = λ2 + λp

∞∑

n=2

pnn(n− 1)
f(r)

dωdrd−1
(2.7)

for all r ≥ 0, see Stoyan et al. [57], page 159.

Matérn’s cluster process is a stationary Poisson cluster process for which the number of points

of the typical cluster is Poisson distributed with intensity µ and the points of the typical cluster

are independently uniformly scattered in the ball b(o,R) with radius R > 0. Here the density f

occurring in equation (2.7) is of the form

f(r) =







(

1 −
r

2R

)

/R, d = 1,

4r/(πR2)

(

arccos
r

2R
−

r

2R

√

1 −
r2

4R2

)

, d = 2,

3

2

r2

R6
(R− r/2)2(2R+ r/2), d = 3,

for 0 < r < 2R and f(r) = 0 otherwise, see Santaló [52], page 212.

The modified Thomas process is a stationary Poisson cluster process for which the number of

points of the typical cluster is Poisson distributed with intensity µ and the points of the typical
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cluster are independently distributed according to a normal distribution with mean vector o

and covariance matrix σ2Id. Here, Id denotes the identity matrix of size d. For d = 2 the pair

correlation function takes the form

λ2g(r) = λ2 +
λpµ

2

4πσ2
exp

(

−
r2

4σ2

)

for r ≥ 0, see Cox and Isham [6], page 148. �

Figure 2.3: Simulated realization of a stationary Poisson cluster process in R2
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A simulated realization of a stationary Poisson cluster process in R2 observed in a window
of height 10 and width 20. The primary process has intensity 1

10 . The points in the typical
cluster are independently uniformly scattered in a square with side length 1 centered at
o and there are 10 points in each cluster.

Example 2.4.3 Hard-core processes.

A hard-core process is a point process where there is a certain minimum distance R > 0 between

the points. Matérn [46] introduced two such models that both emerge from a stationary Poisson

process Ψp ∼ Πλp by dependent thinning (for a definition of thinning see Stoyan et al. [57],

Chapter 5.1). For Matérn’s hard-core process I all points x ∈ Ψp for which there is another

point y ∈ Ψp, y 6= x, with ‖x − y‖ < R are deleted. For Matérn’s hard-core process II the

points of Ψp are marked independently by random numbers uniformly distributed over (0, 1). A

point x ∈ Ψp with mark m(x) is deleted if and only if there exists another point y ∈ Ψp with

m(y) < m(x) and y ∈ bo(x,R), where bo(x, r) := {y ∈ Rd : ‖y − x‖ < r} denotes the open ball

in Rd with radius r > 0 and midpoint x ∈ Rd. �
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Example 2.4.4 Soft-core processes.

Stoyan and Stoyan [58] introduced soft-core processes as a generalization of Matérn’s hard-core

process II where the minimum distance is random. For this model the points of a stationary

Poisson process Ψp ∼ Πλp are marked independently with independent marks m ∼ U(0, 1) and

r ∼ G, where U(0, 1) denotes the uniform distribution on (0, 1) and the distribution of the radius

G has support contained in [0,∞). A point x ∈ Ψp is deleted if and only if there is another

point y ∈ Ψp, y 6= x, with y ∈ bo(x, r(x)) and m(y) < m(x).

The intensity of such a soft-core process satisfies

λ =

∞∫

0

1 − exp(−λpωdr
d)

ωdrd
dG(r).

The pair correlation function takes the form

g(r) =
λ2

ph(r)

λ2

with

h(r) =

∫ ∫

{s+t≥r,

r>s,r>t}

[A(s, t, r) +A(t, s, r)] dG(s) dG(t)

+

∫ ∫

{s+t≥r,

r>s,r≤t}

A(s, t, r) dG(s) dG(t) +

∫ ∫

{s+t≥r,

r≤s,r>t}

A(t, s, r) dG(s) dG(t)

+

∫ ∫

{s+t<r}

1 − exp(−a(s))

a(s)
·
1 − exp(−a(t))

a(t)
dG(s) dG(t),

where

A(x, y, r) =

(
1

a(x) + b(x, y, r)
−

1

b(x, y, r) exp(a(x))

)/

a(x)

+
1

b(x, y, r)(a(x) + b(x, y, r)) exp(a(x) + b(x, y, r))

and

a(x) = λpωdx
d, b(x, y, r) = λp|b(o, y) \ b(r, x)|,

where r = (r, . . . , r)′ ∈ Rd, and | . | denotes the d-dimensional Lebesgue measure (see also Stoyan
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and Stoyan [58]). For d = 2 we have

1

λp
b(R, r, t) = b(0, r) − b(0, r) ∩ b(t, R)

= r2π

− r2
(

arccos
t2 + r2 −R2

2tr
−
t2 + r2 −R2

4t2r2
(4t2r2 − (t2 + r2 −R2)2)1/2

)

−R2

(

arccos
t2 +R2 − r2

2tR
−
t2 +R2 − r2

4t2R2
(4t2R2 − (t2 +R2 − r2)2)1/2

)

see Stoyan and Stoyan [59], Appendix K.

A further generalization of this model is obtained by using a random set Ξ ∼ Q with o ∈ Ξ

instead of the ball bo(o, r) with random radius r for the thinning procedure, that is, by marking

independently the points of a stationary Poisson process Ψp ∼ Πλp with independent marks

m ∼ U(0, 1) and a random set Ξ ∼ Q with o ∈ Ξ. For the definition of random sets see for

example Stoyan et al. [57], Chapter 6. Then a point x ∈ Ψp is deleted if and only if there is

another point y ∈ Ψp, y 6= x, with y ∈ Tx Ξ and m(y) < m(x). As a result the intensity λ

satisfies

λ = λp

∫

K

∫

N

1

ϕ(K) + 1
Πλp(dϕ)Q(dK) =

∫

K

1 − exp(−λp|K|)

|K|
Q(dK).

�

Example 2.4.5 Cox processes.

A Cox process is a Poisson process with random intensity measure, that is, a point process being

Poisson conditional on the realization of the intensity measure. For a formal definition let Q be

a distribution on the measurable space [M,M] of non-negative locally-finite measures on Rd.

Let ΠΓ be the distribution of a Poisson process with intensity measure Γ and let Λ be a random

measure with distribution Q. Then the Cox process ΨΛ with driving random measure Λ has

distribution

PΨΛ
(Y ) =

∫

N

PΓ(Y )Q(dΓ)

for Y ∈ N (see Stoyan et al. [57], page 154).

The kth-order factorial moment measure of ΨΛ and the kth-order moment measure (defined

for instance in Stoyan et al. [57], page 110) of the driving random measure coincide, that is,

assuming that the following moments exist, we have

α(k)(B1 × · · · ×Bk) = EΛ(B1) · · ·Λ(Bk)
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for B1, . . . , Bk ∈ B(Rd) and k ≥ 1. Hence, ΨΛ is k-stationary if and only if Λ is k-stationary.

Plugging this into Definition 2.2.2 of the kth-order factorial cumulant measure we obtain

γ(k)(B1 × · · · ×Bk) =
k∑

ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

K1∪...∪Kℓ
={1,...,k}

ℓ∏

j=1

E
∏

kj∈Kj

Λ(Bkj
)

= Cumk(Λ(B1), . . . ,Λ(Bk)),

where Cumk(X1, . . . ,Xk) is the kth mixed cumulant of the random vector (X1, . . . ,Xk)
′. (The

definition of mixed cumulants will follow in Chapter 4.) �
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3
Mixing properties

After giving an overview of several types of mixing properties and relations between these we

will focus on Brillinger-mixing. Heinrich [26] and Heinrich and Schmidt [34] state conditions on

some classes of point processes for being Brillinger-mixing. We will sum up these results and

examine some more classes of point processes. An overview of mixing properties can be found

in Doukhan [15], for instance.

3.1 Definitions

The following definitions of mixing properties—mixing, α-mixing, ϕ-mixing, and Brillinger-

mixing—can be found in Ivanoff [38]. For the definition of strong Brillinger-mixing see König

and Schmidt [43], page 333.

Mixing

A stationary point process Ψ ∼ P is said to be mixing (see Daley and Vere-Jones [9], page 341)

if

lim
‖x‖→∞

(
P (TxV ∩W ) − P (V )P (W )

)
= 0

for all V,W ∈ N , where Tx is the translation operator, see page 12.

19
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α-mixing (strong mixing)

Let Ψ ∼ P be a stationary point process and let A ∈ B(Rd). Let F(A) be the σ-algebra

generated by all random variables Ψ(A′) with A′ ∈ B(Rd) satisfying A′ ⊆ A. Let diam(A)

denote the diameter of A, that is, diam(A) = supx,y∈A ρ(x, y) where ρ(x, y) = max1≤i≤d |xi−yi|.

Furthermore, let ρ(B,C) = minx∈B,y∈C ρ(x, y), and define α(s, t) by

α(s, t) = sup
ρ(A1,A2)≥s,

diam(A1)≤t,diam(A2)≤t

sup
U1∈F(A1),
U2∈F(A2)

|P (U1 ∩ U2) − P (U1)P (U2)|

for all s, t ∈ [0,∞). The point process Ψ ∼ P is said to be α-mixing or strongly mixing, if

limx→∞ α(xs, xt) = 0.

ϕ-mixing (uniform strong mixing)

Define ϕ(s) by

ϕ(s) = sup
ρ(A1,A2)≥s

sup
U1∈F(A1),U2∈F(A2),

P (U1)>0

|P (U2|U1) − P (U2)|

for all s ∈ [0,∞). Then the point process Ψ ∼ P is said to be ϕ-mixing or uniformly strongly

mixing if lims→∞ ϕ(s) = 0.

Brillinger-mixing

A stationary point process Ψ ∼ P is said to be Brillinger-mixing if EΨk([0, 1]d) <∞ and

‖γ
(k)
red‖ =

∫

(Rd)k−1

|γ
(k)
red(d(x1, . . . , xk−1))| <∞ (3.1)

for all k ≥ 2.

In the present work, all results involving the assumption of a Brillinger-mixing point process

remain true when stationarity is replaced by the condition that k-stationarity holds for all k ≥ 2.
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Strong Brillinger-mixing

A stationary point process Ψ ∼ P is said to be strongly Brillinger-mixing if EΨk([0, 1]d) < ∞

and if there exist constants a, b ∈ [0,∞) such that

‖γ
(k)
red‖ =

∫

(Rd)k−1

|γ
(k)
red(d(x1, . . . , xk−1))| ≤ abkk! (3.2)

for all k ≥ 2.

3.2 Implications of mixing properties on second-order charac-

teristics

Now we will study the behavior of the K-function, the second-order product density and the

pair correlation function under some mixing conditions.

The finiteness of the second total variation
∥
∥γ

(2)
red

∥
∥ of a 2-stationary point process Ψ implies

sup
r≥0

∣
∣α

(2)
red (b(o, r)) − λωdr

d
∣
∣ <∞,

where ωd is the volume of the unit ball in Rd, see page 10. Hence we have

lim
r→∞

K(r)

ωdrd
= 1,

see König and Schmidt [43], page 332 ff. This means that the K-function of a 2-stationary point

process Ψ with
∥
∥γ

(2)
red

∥
∥ < ∞ converges to the K-function of the Poisson process. König and

Schmidt [43], page 333, state that absolute continuity of the K-function and the property

∞∫

0

∣
∣
∣
dK(r)

dr
− dωdr

d−1
∣
∣
∣dr = ‖γ

(2)
red‖ <∞

entail the convergence limr→∞
∣
∣dK(r)

dr − dωdr
d−1
∣
∣ = 0 and hence the convergence limx→∞ g(x) =

1. However, in general the finiteness of
∞∫

0

|f(x)|dx does not imply limx→∞ f(x) = 0 for a function

f . For instance, the function

f(x) =

∞∑

n=1

1[n, n+1/n2)(x)
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satisfies
∞∫

0

|f(x)|dx =
∑∞

n=1
1
n2 < ∞ and lim supx→∞ f(x) = 1 6= 0 = lim infx→∞ f(x). The

discontinuity of the function f can be removed by smoothing the edges. As a result one may find

examples of infinitely often differentiable functions f for which the above-mentioned conclusion

from König and Schmidt [43]) does not hold. Thus the assumption ‖γ
(2)
red‖ <∞ does not ensure

the convergence of the pair correlation limx→∞ g(x) = 1. The same argument holds for the

second-order product density ̺.

Theorem 12.4.V in Daley and Vere-Jones [9], page 488, a result attributed by Delasnerie [11]

to Neveu, implies the second-order product density ̺ of a stationary mixing point process to

satisfy lim‖x‖→∞ ̺(x) = λ.

3.3 Relations between mixing properties

In this section we give a slightly informal presentation of relations between the mixing properties

defined in Section 3.1.

Ivanoff [38] derived the following relations between mixing conditions:

ϕ-mixing ⇒ α-mixing. (3.3)

Furthermore, we obviously have

strong Brillinger-mixing ⇒ Brillinger-mixing. (3.4)

Note that the mixing properties in (3.3) are conditions on the distribution of the point process

while those in (3.4) are conditions on associated cumulant measures. As a result there is no

obvious relation between the mixing properties in (3.3) and (3.4).

If the distribution P of a stationary point process Ψ ∼ P is uniquely determined by its moment

measures, then Brillinger-mixing implies mixing. This is due to the fact that Brillinger-mixing

implies

α(k)(A1 × . . .×Ak−1 × (Ak + t)) −−−→
t→∞

α(k−1)(A1 × . . .×Ak−1)α
(1)(Ak)

for all k ≥ 2 and all A1, . . . , Ak ∈ B(Rd) with |Ai| < ∞, i = 1, . . . , k. If the distribution of

the Brillinger-mixing point process Ψ is uniquely determined by its moment measures, then Ψ

is mixing.
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However, there exist mixing point processes that are not Brillinger-mixing. An example is given

in König and Schmidt [43], page 333: Let Ψ ∼ P be a Cox process with a stationary and isotropic

Poisson hyperplane process with intensity λ1 as its driving random measure. This process has

intensity λ = λ1, and its K-function satisfies

λK(r) = α
(2)
red(b(o, r)) = ωd−1r

d−1 + λωdr
d.

This implies

sup
r≥0

∣
∣α

(2)
red(b(o, r)) − λωdr

d
∣
∣ = sup

r≥0

∣
∣
∣ωd−1r

d−1
∣
∣
∣ = ∞

and hence
∥
∥γ

(2)
red

∥
∥ = ∞ (see Section 3.2).

Ivanoff [38] claims that the condition that for all ε > 0 there is a compact set C ∈ B(Rd) such

that ∫

(Rd)k−2

∫

D\C

|γ
(k)
red(d(x1, . . . , xk−1))| < ε

is sufficient for

Brillinger-mixing ⇒ mixing.

Examining the proof for this claim one can observe that Ivanoff [38] tacitly assumed the series

∞∑

k=1

(−1)k

k!

∫

(Rd)k

(ξ1 + Stξ2)(x1) · . . . · (ξ1 + Stξ2)(xk)γ
(k+1)
red (d(x1, . . . , xk)) (3.5)

to be absolutely convergent. The condition

∞∑

k=1

2k

k!

∫

(Rd)k

|γ
(k+1)
red (d(x1, . . . , xk))| <∞.

ensures the absolute convergence of the series (3.5). However, this condition implies the total

variation
∥
∥γ

(k)
red

∥
∥ to be of order o(k!/2k) as k → ∞. For large k this assumption is stricter than

the assumption on
∥
∥γ

(k)
red

∥
∥ for strong Brillinger-mixing.

3.4 Examples for Brillinger-mixing point processes

In the following chapters we will show central limit theorems for estimators of product densities

and the pair correlation function as well as central limit theorems for the integrated squared
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errors of the estimated second-order product density and pair correlation function. These results

will be based on the assumption of Brillinger-mixing. Therefore we will now investigate condi-

tions on some of the point process classes from Section 2.4 that are sufficient for Brillinger-mixing

or even strong Brillinger-mixing.

Stationary Poisson processes

The factorial cumulant measures of the stationary Poisson process Ψ ∼ Πλ with intensity λ

satisfy γ(k) = 0 for all k ≥ 2, see König and Schmidt [43], page 173. Hence Ψ is strongly

Brillinger-mixing, see König and Schmidt [43], page 333.

Stationary cluster processes

A stationary cluster process Ψ ∼ P generated by the stationary primary process Ψp ∼ Pp and

secondary process Ψc ∼ Pc is Brillinger-mixing if the primary process is Brillinger-mixing and

the secondary process has finite moments, that is EΨk
c (R

d) <∞ for all k ≥ 1, see Heinrich [26].

This can be seen by the representation

γ(k)(B1 × . . .×Bk) =

k∑

ℓ=1

∑

K1∪...∪Kℓ
={1,...,k}

∫

(Rd)ℓ

ℓ∏

j=1

α
(|Kj |)
Pc

(Bkj
− xj; kj ∈ Kj)γ

(ℓ)
Pp

(d(x1, . . . , xℓ)) (3.6)

of the factorial cumulant measure γ(k) of Ψ with B1, . . . , Bk ∈ B(Rd), see Heinrich and Schmidt

[34].

Stationary Poisson cluster processes

As a consequence of the above results on stationary Poisson and stationary cluster processes,

a stationary Poisson cluster process with secondary process Ψc ∼ Pc is Brillinger-mixing if

EΨk
c (R

d) < ∞ for all k ≥ 1, see Heinrich [26]. Note that this is a condition on the number

of points in the typical cluster, not on the cluster radius. In particular, assuming a bounded

cluster radius of the secondary process is not sufficient for Ψ being Brillinger-mixing. Examples

for Brillinger-mixing Poisson cluster processes are Matérn’s cluster process, the modified Thomas

process, and the Gauss-Poisson process, see König and Schmidt [43], page 332.

Matérn’s cluster process is even strongly Brillinger-mixing, see König and Schmidt [43], page

333.
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Cox processes

Example 2.4.5 already showed the kth-order factorial cumulant measure of a Cox process ΨΛ ∼ P

with stationary driving random measure Λ to satisfy

γ(k)(B1 × . . .×Bk) = Cumk(Λ(B1), . . .Λ(Bk)) =

∫

Bk

CΛ(B1 − x, . . . , Bk−1 − x)dx,

where CΛ is a well-defined measure which is equal to γ
(k)
red by Definition 2.2.4 of the kth-order

reduced factorial cumulant measure. Therefore the Cox process ΨΛ satisfies condition (3.1) if

and only if
∫

(Rd)k−1

|CΛ(d(x1, . . . , xk−1))| < ∞, see Heinrich [26] and Heinrich and Schmidt [34].

Likewise, the Cox process ΨΛ satisfies condition (3.2) if and only if there exist constants a, b

such that ∫

(Rd)k−1

|CΛ(d(x1, . . . , xk−1))| ≤ abkk!

for all k ≥ 2.

Soft-core processes and Matérn’s hard-core processes

A soft-core process Ψ ∼ P with stationary Poisson process Πλp with intensity λp > 0 as primary

process and random set Ξ ∼ Q is Brillinger-mixing if all moments of the diameter of the random

set Ξ are finite. Hence Matérn’s hard-core process II is Brillinger-mixing. To prove
∥
∥γ

(k)
red

∥
∥ <

∞ for all k ≥ 2 we first determine the factorial moment measures α(k)(.), k ≥ 1. Using a

generalization of the refined Campbell theorem for the n-fold Palm distribution P !
x1,...,xk

due to

Hanisch [23] we find

α(k)(B1 × . . .×Bk)

=

∫

Kk

∫

N

1∫

0

. . .

1∫

0

∑∗

x1,...,xk∈ϕ

1B1(x1) · . . . · 1Bk
(xk)

×
k∏

i=1

k∏

j=1
j 6=i, xj∈Ki+xi

1(ui,1](uj)du1 . . . dukP (dϕ)Q(dK1) . . . Q(dKk)



26 3. Mixing properties

=

∫

Kk

∫

N

∑∗

x1,...,xk∈ϕ

1B1(x1) · . . . · 1Bk
(xk)

×
∑

π∈S({1,...,k})

∏k
j=2 1(

⋃j−1
i=1 (Kπ(i)+xπ(i)))C (xπ(j))

∏k
j=1 ϕ(

⋃j
i=1(Kπ(i) + xπ(i)))

P (dϕ)Q(dK1) . . . Q(dKk)

= λk
p

∫

Kk

∫

(Rd)k

1B1(x1) · . . . · 1Bk
(xk)

∫

N

∑

π∈S({1,...,k})

∏k
j=2

∏j−1
i=1 1KC

π(i)
(xπ(j) − xπ(i))

∏k
j=1[ϕ(

⋃j
i=1(Kπ(i) + xπ(i))) + j]

P !
x1,...,xk

(dϕ)d(x1, . . . , xk)Q(dK1) . . . Q(dKk)

for Borel sets B1, . . . , Bk ∈ B(Rd). For the Poisson process we have P !
x1,...,xk

= Πλp (see Hanisch

[23]) as a generalization of Slivnyak’s theorem. This implies

α(k)(B1 × . . .×Bk) = λk
p

∫

Kk

∫

(Rd)k

1B1(x1)1B2−x1(y2) · . . . · 1Bk−x1(yk)

×

∫

N

∑

π∈S({1,...,k})
y1:=0

∏k
j=2

∏j−1
i=1 1KC

π(i)
(yπ(j) − yπ(i))

∏k
j=1[ϕ(

⋃j
i=1(Kπ(i) + yπ(i))) + j]

Πλp(dϕ)

d(x1, y2, . . . , yk)Q(dK1) . . . Q(dKk).

Furthermore we get

α
(k)
red(B2 × . . .×Bk) =

λk
p

λ

∫

Kk

∫

(Rd)k−1

1B2(y2) · . . . · 1Bk
(yk)

×

∫

N

∑

π∈S({1,...,k})
y1:=0

∏k
j=2

∏j−1
i=1 1KC

π(i)
(yπ(j) − yπ(i))

∏k
j=1[ϕ(

⋃j
i=1(Kπ(i) + yπ(i))) + j]

Πλp(dϕ)

d(y2, . . . , yk)Q(dK1) . . . Q(dKk)

for B2, . . . , Bk ∈ B(Rd). By Jensen’s inequality we obtain

∥
∥γ

(k)
red

∥
∥ ≤ λk

p

∫

Kk

∫

(Rd)k−1

∫

N

∣
∣
∣

k∑

l=1

(−1)l−1(l − 1)!
∑

K1∪...∪Kl
={1,...,k}, k∈K1

fred(xK1\{k})
l∏

j=2

f(xKj
)
∣
∣
∣

Πλp(dϕ)d(x1, . . . , xk−1)Q(dK1) . . . Q(dKk), (3.7)



3.4. Examples for Brillinger-mixing point processes 27

where S(T ) denotes the set of all permutations π : {1, . . . , |T |} → T and

f(xT ) =
∑

π∈S(T )

∏|T |
j=2

∏j−1
i=1 1KC

π(i)
(xπ(j) − xπ(i))

∏|T |
j=1[ϕ(

⋃j
i=1(Kπ(i) + xπ(i))) + j]

, xT = (xi)i∈T ,

fred(yT ) =
1

λ

∑

π∈S(T∪{k})
yk:=0

∏|T |+1
j=2

∏j−1
i=1 1KC

π(i)
(yπ(j) − yπ(i))

∏|T |+1
j=1 [ϕ(

⋃j
i=1(Kπ(i) + yπ(i))) + j]

, yT = (yi)i∈T ,

for subsets T ⊆ {1, . . . , k − 1}, where fred(y∅) := 1. Note that the functions f and fred are

bounded from above by the number of permutations of T and T ∪ {k} and hence by (k − 1)!

and k!, respectively. Now we dissect the region of integration (Rd)k in A ∪AC = (Rd)k−1 with

A :=
{
(x2, . . . , xk) ∈ (Rd)k−1

∣
∣ ∀j = 1, . . . , k ∃i 6= j : (Kj + xj) ∩ (Ki + xi) 6= ∅

}
.

Using the implication

(Kj + xj) ∩ (Ki + xi) = ∅ ⇒ xi ∈ KC
j + xj ∨ xj ∈ KC

i + xi

and the representation of the intensity

λ = λp

∫

K

∫

N

1

ϕ(K) + 1
Πλp(dϕ)Q(dK),

see Example 2.4.4, it can be shown that the integral on the right-hand side of the inequality

(3.7) vanishes on AC . Together with the triangle inequality we obtain

∥
∥γ

(k)
red

∥
∥ ≤ λk

p

∫

Kk

∫

A

∫

N

∣
∣
∣

k∑

l=1

(−1)l−1(l − 1)!
∑

K1∪...∪Kl
={1,...,k}, k∈K1

fred(xK1\{k})
l∏

j=2

f(xKj
)
∣
∣
∣

Πλp(dϕ)d(x1, . . . , xk−1)Q(dK1) . . . Q(dKk)

+ λk
p

∫

Kk

∫

AC

∫

N

∣
∣
∣

k∑

l=1

(−1)l−1(l − 1)!
∑

K1∪...∪Kl
={1,...,k}, k∈K1

fred(xK1\{k})
l∏

j=2

f(xKj
)
∣
∣
∣

Πλp(dϕ)d(x1, . . . , xk−1)Q(dK1) . . . Q(dKk)

= λk
p

∫

Kk

∫

A

∫

N

∣
∣
∣

k∑

l=1

(−1)l−1(l − 1)!
∑

K1∪...∪Kl
={1,...,k}, k∈K1

fred(xK1\{k})
l∏

j=2

f(xKj
)
∣
∣
∣

Πλp(dϕ)d(x1, . . . , xk−1)Q(dK1) . . . Q(dKk).
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Applying the triangle inequality and the inequality

∫

N

|fred(.)
∏

f(.)
∣
∣
∣Πλp(dϕ) ≤ (k − 1)!k!

we obtain

∥
∥γ

(k)
red

∥
∥ ≤ (k − 1)!(k!)2

λk
p

λ

∫

Kk

|K1 ⊕ Ǩ2| · . . . · |K1 ⊕ Ǩk|Q(dK1) . . . Q(dKk).

This leads to the upper bound

∥
∥γ

(k)
red

∥
∥ ≤ C

λk
p

λ
ωk−1

d E(diam(Ξ))(k−1)d,

where diam(Ξ) denotes the diameter of Ξ. We see that the condition E(diam(Ξ))(k−1)d < ∞ is

sufficient for the total variation
∥
∥γ

(k)
red

∥
∥ to be finite. Hence Ψ is Brillinger-mixing if all moments

of the diameter of Ξ exist.

Independent π(x)-thinning

A point process Ψ with intensity λ resulting from an independent π(x)-thinning of a Brillinger-

mixing point process Ψp ∼ Pp with intensity λp with stationary random field π = {π(x) : x ∈

Rd} ∼ Pπ on Rd is Brillinger-mixing. This is due to the kth-order reduced factorial cumulant

measure of Φ taking the form

γ
(k)
red(B1 × . . .×Bk−1)

=
λp

λ

∫

(Rd)k−1

1B1(x1) · . . . · 1Bk−1
(xk−1) E[π(0)π(x1) · . . . · π(xk−1)]γ

(k)
p,red(d(x1, . . . , xk)).

Superposition of two independent point processes

A point process Ψ ∼ P resulting from a superposition of two independent point processes Ψ1

and Ψ2, that is, Ψ = Ψ1 + Ψ2, is Brillinger-mixing if Ψ1 and Ψ2 are Brillinger-mixing. This is

due to G(.) = G1(.)G2(.), where G and Gi, i = 1, 2, are the probability generating functionals

of Ψ and Ψi, i = 1, 2, respectively. (For the definition of the probability generating functional

see, for instance, Stoyan et al. [57], page 115.)
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Stationary infinitely divisible point process

A stationary infinitely divisible point process Ψ ∼ P governed by the KLM measure P̃ (for a

definition see Daley and Vere-Jones [9], page 258) is Brillinger-mixing if and only if the kth-order

reduced factorial moment measure of the KLM measure is finite, that is, α
(k)

red,P̃
((Rd)k−1) <∞,

for all k ≥ 2. This is due to γ(k)(·) = α
(k)

red,P̃
(·) for all k ≥ 2, which can be seen by the shape of

the probability generating functional

G(h) = exp







∫



∏

x∈s(ϕ)

h(x) − 1



 P̃ (dϕ)






,

see Heinrich [26], with h = 1 − u for some measurable function u : Rd → [0, 1] with bounded

support. However, the above-mentioned condition α
(k)

red,P̃
((Rd)k−1) < ∞ for all k ≥ 2 implies

that the KLM measure is supported by the set {ϕ ∈ N : ϕ(Rd) < ∞} and hence Ψ is regular,

see Definition 8.4.VI in Daley and Vere-Jones [9], page 259. But Ψ is regular if and only if it

can be represented as a Poisson cluster process with almost surely finite clusters, see Daley and

Vere-Jones [9], Proposition 8.4.VIII(ii), page 260. Thus a Brillinger-mixing infinitely divisible

point process can be represented as stationary Poisson cluster process satisfying the conditions

mentioned on page 24.

Stationary renewal process

The stationary renewal process Ψ ∼ P generated by the distribution law F (·) of the distance

between two consecutive points is Brillinger-mixing if, for some n ∈ N, the convolution F ∗n(·)

has a non-trivial absolutely continuous component and
∞∫

0

xkF (dx) < ∞ for every k ≥ 1, see

Heinrich [26].
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4
Cumulants

Cumulants, also called semi-invariants, were first introduced in 1889 by Thiele [61], page 19,

by a recursion formula involving the moments. In 1899 Thiele [62] gave the modern definition

of cumulants as coefficients in the power series representation of the logarithm of the moment

generating function. Despite the fact that the first k cumulants contain the same information

as the first k moments, k ≥ 1, cumulants are more convenient to work with in certain settings.

This is due to properties such as the cumulant of a sum of independent random variables being

the sum of the cumulants of these random variables (see Thiele [61]), and the cumulants of order

three and higher of normal distributions being zero (see Shiryaev [53], page 293).

An overview of Thiele’s contributions on cumulants can be found in Hald [20]. Recursive formulas

for obtaining moments from cumulants and vice versa are given in Smith [55].

In this chapter we present some well-known properties of cumulants and joint cumulants. Lemma

4.2.1 gives a representation of the cumulants of certain random variables as a sum of indecom-

posable integrals and will be the key tool in the proofs of the central limit theorems in the

following chapters.

4.1 Definition

The definitions of the kth cumulant of a random variable and the mixed cumulant of a random

vector given in this section are taken from Shiryaev [53], page 289 ff.

31
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Definition 4.1.1 Let X ∈ Rℓ, ℓ ≥ 1, be a random vector. The function h defined by

h : Rℓ → R, t 7→ log Eeit
′X ,

is the cumulant generating function of X. �

The following definition of the kth cumulant of a real-valued random variable originally goes

back to Thiele [62] (a translation to English can be found in Hald [21]).

Definition 4.1.2 Let X be a real-valued random variable with cumulant generating function h,

let k ≥ 1, and let E|X|k <∞. The kth cumulant Γk(X) of X is defined by

Γk(X) =
1

ik
dk

dtk
h(t)|t=0.

�

The mixed cumulant (also called joint cumulant or simple semi-invariant) of a real-valued random

vector is given by the following definition, to be found in Leonov and Shiryaev [45].

Definition 4.1.3 Let X = (X1, . . . ,Xk)′ ∈ Rk, k ≥ 1, be a random vector satisfying E|Xj|
k <

∞, j = 1, . . . , k. The mixed cumulant Cumk(X1, . . . ,Xk) of X is defined by

Cumk(X1, . . . ,Xk) =
1

ik
∂k

∂t1 . . . ∂tk
h(t1, . . . , tk)|t1=...tk=0.

�

4.2 Properties

In this section we present some properties of cumulants and mixed cumulants. The kth cumulant

of a random variable X satisfies

Γk(X) = Cumk(X, . . . ,X).

The kth cumulant Γk(X) of a random variable X can be expressed by the moments Mj(X) :=

EXj , j ∈ I := {1, . . . , k}, through

Γk(X) = k!
k∑

j=1

(−1)j−1

j

∑

k1+...+kj=k

k1,...,kj≥1

Mk1(X) · . . . ·Mkj
(X)

k1! · . . . · kj !
.
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From this formula it is easily seen that the first cumulant Γ1(X) equals the mean and the second

cumulant Γ2(X) equals the variance.

Conversely, the kth moment Mk(X) can be expressed by the cumulants Γj(X), j ∈ I, through

Mk(X) = k!

k∑

j=1

∑

k1+...+kj=k

k1,...,kj≥1

Γk1(X) · . . . · Γkj
(X)

k1! · . . . · kj !
.

For the mixed cumulant Cumk(X1, . . . ,Xk) of a random vector (X1, . . . ,Xk)
′ we have a repre-

sentation in terms of the mixed moments M(Xi : i ∈ T ) := E
∏

i∈T Xi, T ⊆ I, given by

Cumk(X1, . . . ,Xk) =

k∑

j=1

(j − 1)! (−1)j−1
∑

I1∪...∪Ij=I

j
∏

i=1

M(Xa : a ∈ Ii).

Conversely, the mixed momentM(X1, . . . ,Xk) can be expressed by the mixed cumulants through

M(X1, . . . ,Xk) =

k∑

j=1

∑

I1∪...∪Ij=I

j
∏

i=1

Cum|Ii|(Xa : a ∈ Ii), (4.1)

see Leonov and Shiryaev [45].

For k = 1 we have Cum1(X1) = EX1, and for k = 2 we have Cum2(X1,X2) = Cov(X1,X2).

Obviously the mixed cumulant Cumk(X1, . . . ,Xk) is invariant under permutation of its argu-

ments X1, . . . ,Xk and it is homogeneous, that is,

Cumk(c1X1, . . . , ckXk) =

k∏

j=1

cj · Cumk(X1, . . . ,Xk)

for constants c1, . . . , ck ∈ R. Furthermore, the mixed cumulant Cumk(X1, . . . ,Xk) is multilinear:

Let X = (X1, . . . ,Xk)′ be a random vector, and Y,Z be random variables with X1 = Y + Z.

Then we have

Γ1(Y + Z) = EY + EZ = Γ1(Y ) + Γ1(Z)

for k = 1 and

Cumk(Y + Z,X2, . . . ,Xk)

=

k∑

j=1

(j − 1)! (−1)j−1
∑

I1∪...∪Ij=I

j
∏

i=1

E
[ ∏

a∈Ii

Xa

]
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=

k∑

j=1

(j − 1)! (−1)j−1
∑

I1∪...∪Ij=I

1∈I1

E
[

(Y + Z) ·
∏

a∈I1\{1}
Xa

] j
∏

i=2

E
[ ∏

a∈Ii

Xa

]

=
k∑

j=1

(j − 1)! (−1)j−1
∑

I1∪...∪Ij=I

1∈I1

E
[

Y ·
∏

a∈I1\{1}
Xa

] j
∏

i=2

E
[ ∏

a∈Ii

Xa

]

+

k∑

j=1

(j − 1)! (−1)j−1
∑

I1∪...∪Ij=I

1∈I1

E
[

Z ·
∏

a∈I1\{1}
Xa

] j
∏

i=2

E
[ ∏

a∈Ii

Xa

]

= Cumk(Y,X2, . . . ,Xk) + Cumk(Z,X2, . . . ,Xk)

for k ≥ 2. This proves multilinearity due to invariance under permutation of the arguments.

If Y := (Xi)i∈T1 and Z := (Xi)i∈T2 are independent for some T1, T2 $ {1, . . . , k} with T1 ∪ T2 =

{1, . . . , k}, k ≥ 2, and T1 ∩ T2 6= ∅, then the mixed cumulant Cumk(X1, . . . ,Xk) equals zero.

This can be easily seen by differentiating

h(t) = log E eit
′X = log E eis

′Y + log E eiu
′Z

with respect to t1, . . . , tk, where s = (ti)i∈T1 and u = (ti)i∈T2 . This property explains the name

“semi-invariant”.

Since a constant and a random vector are always independent, the latter property and the

multilinearity entail the mixed cumulant to be invariant towards deterministic translation of an

arbitrary component, that is,

Cumk(X + c) = Cumk(X)

for all random vectors X, constant vectors c ∈ Rd and k ≥ 2.

Let us now consider some properties of cumulants for point process characteristics. For a 4-

stationary point process and Borel-measurable functions h1 and h2, we have

Cov

(
∑∗

x,y∈Ψ

h1(x, y),
∑∗

z,v∈Ψ

h2(z, v)

)

=

∫

(Rd)2

h1(x, y)[h2(x, y) + h2(y, x)]α
(2)(d(x, y))

+

∫

(Rd)3

h1(x, y)[h2(x, z) + h2(y, z) + h2(z, x) + h2(z, y)]α
(3)(d(x, y, z))
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+

∫

(Rd)4

h1(x, y)h2(z, v)[γ
(4)(d(x, y, z, v)) + γ(1)(dx)γ(3)(d(y, z, v))

+ γ(1)(dy)γ(3)(d(x, z, v)) + γ(1)(dz)γ(3)(d(x, y, v)) + γ(1)(dv)γ(3)(d(x, y, z))

+ γ(2)(d(x, z))γ(2)(d(y, v)) + γ(2)(d(x, v))γ(2)(d(y, z))

+ γ(2)(d(x, z))γ(1)(dy)γ(1)(dv) + γ(2)(d(x, v))γ(1)(dy)γ(1)(dz)

+ γ(2)(d(y, z))γ(1)(dx)γ(1)(dv) + γ(2)(d(y, v))γ(1)(dx)γ(1)(dz)], (4.2)

provided that the integrals exist, see equation (4.17) in Heinrich [26].

Lemma 4.2.1 will show that the kth cumulant of certain random variables which will be investi-

gated in the following chapters is a sum of integrals that are indecomposable, in the sense that

they cannot be represented as a product of two integrals. The rigorous definition of decompos-

ability is as follows.

Let fi : (Rd)pi → R be fixed measurable functions, let k ∈ N and pi ∈ N with i ∈ I = {1, . . . , k}

be fixed and set

Ψ(pi)(fi) :=
∑

x1,...,xpi
∈Ψ

fi(x1, . . . , xpi
).

Let E
[
|Ψ(pi)(fi)|

k
]
< ∞ for all i ∈ I. We will now find a representation of the mixed moments

M
(
Ψ(p1)(f1), . . . ,Ψ

(pk)(fk)
)

= E
[
∏k

i=1 Ψ(pi)(fi)
]

as a sum of integrals defined as follows.

For arbitrary T ⊆ I, q ∈ {1, . . . , pT } with pT :=
∑

i∈T pi, r ∈ {1, . . . , q}, and decompositions

PT = {P1, . . . , Pq} of {1, . . . , pT } and Q = {Q1, . . . , Qr} of {1, . . . , q} we define the integral

IPT ,Q(fi : i ∈ T )

:=

∫

(Rd)q

q
∏

b=1

∏

a∈Pb

1{xa=zb} fi1(x1, . . . , xpi1
)

× fi2(xpi1
+1, . . . , xpi1

+pi2
) · . . . · fi|T |

(x∑|T |−1
j=1 pij

+1
, . . . , xpT

)

r∏

c=1

γ(|Qc|)(dzQc),

where {i1, . . . , i|T |} = T with 1 ≤ i1 < i2 < . . . < i|T | ≤ k and zQc = (zq)q∈Qc . The elements

of a set Pb are the indices of the arguments of the functions fi1 , . . . , fi|T |
that are identical and

distinct from all the arguments in every other set Pc 6= Pb. In the above-mentioned integral this

is indicated by the term
∏q

b=1

∏

a∈Pb
1{xa=zb}.
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For the special case T = I we have

IPI ,Q(f1, . . . , fk) =
∫

(Rd)q

q
∏

b=1

∏

a∈Pb

1{xa=zb} f1(x1, . . . , xp1) · . . . · fk(x∑k−1
i=1 pi+1, . . . , xpI

)

r∏

c=1

γ(|Qc|)(dzQc).

Now the mixed moment M
(
Ψ(p1)(f1), . . . ,Ψ

(pk)(fk)
)

can be represented as

M
(
Ψ(p1)(f1), . . . ,Ψ

(pk)(fk)
)

=

pI∑

q=1

∑

P1∪...∪Pq
={1,...,pI}

∫

(Rd)q

q
∏

b=1

∏

a∈Pb

1{xa=zb}

× f1(x1, . . . , xp1) · . . . · fk(x∑k−1
i=1 pi

, . . . , xpI
)α(q)(d(z1, . . . , zq))

=

pI∑

q=1

∑

P1∪...∪Pq
={1,...,p}

q
∑

r=1

∑

Q1∪...∪Qr
={1,...,q}

∫

(Rd)q

q
∏

b=1

∏

a∈Pb

1{xa=zb}

× f1(x1, . . . , xp1) · . . . · fk(x∑k−1
i=1 pi+1, . . . , xpI

)
r∏

c=1

γ(|Qc|)(dzQc),

see Krickeberg [44]. With the above notation we have

M
(
Ψ(p1)(f1), . . . ,Ψ

(pk)(fk)
)

=

pI∑

q=1

∑

P1∪...∪Pq
={1,...,pI}

q
∑

r=1

∑

Q1∪...∪Qr
={1,...,q}

IPI ,Q(f1, . . . , fk).

Let T = {T1, T2} be a decomposition of I = {1, . . . , k}. An integral IPI ,Q(f1, . . . , fk) is decom-

posable with respect to the decomposition T = {T1, T2} if there exist a decomposition P(1) of

{1, . . . , pT1}, a decomposition P(2) of {1, . . . , pT2}, q1 ∈ {1, . . . , pT1} and q2 ∈ {1, . . . , pT2} with

q1 + q2 = q, and decompositions Q(1) of {1, . . . , q1} and Q(2) of {1, . . . , q2} such that

IPI ,Q(f1, . . . , fk) = IPT1
,Q(1)(fi : i ∈ T1) · IPT1

,Q(2)(fi : i ∈ T2).

An integral is called decomposable if there exists a nontrivial decomposition of I such that

this integral is decomposable with respect to this decomposition. An integral which is not

decomposable with respect to any nontrivial decomposition is called indecomposable.

The following lemma is the key tool for the proofs of the central limit theorems in Chapters 6

and 7. It gives a representation of the kth cumulant of certain random variables as a sum of

indecomposable integrals.
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Lemma 4.2.1 Let Ψ ∼ P be a point process in Rd. Let j, k ∈ N be fixed, let Ci ∈ R be constants

for i = 1, . . . , j, and set

Ψ(pi)(fi) =
∑

x1,...,xpi
∈Ψ

fi(x1, . . . , xpi
),

where fi : (Rd)pi → R is a fixed measurable function with pi ∈ N, for i = 1, . . . , j. Let

E
[
|Ψ(pi)(fi)|

k
]
<∞ for all i = 1, . . . , j.

Then we have

Γk

(
j
∑

i=1

CiΨ
(pi)(fi)

)

=
∑

k1+...+kj=k

k1,...,kj≥0

k!

k1! · . . . · kj !
Ck1

1 · . . . · C
kj

j µ∗k1,...,kj
,

where

µ∗k1,...,kj
:=







pk1,...,kj∑

q=1

∑

P1∪...∪Pq
={1,...,pk1,...,kj

}

q
∑

r=1

∑

Q1∪...∪Qr
={1,...,q}







∗

IPI ,Q(f1, . . . , f1
︸ ︷︷ ︸

k1

, . . . , fj , . . . , fj
︸ ︷︷ ︸

kj

) (4.3)

and pk1,...,kj
=
∑j

i=1 piki. The summation (·)∗ is taken only over the indecomposable integrals.

Proof: Due to multilinearity, symmetry, and homogeneity of the mixed cumulants we have

Γk

( j
∑

i=1

CiΨ
(pi)(fi)

)

= Cumk

( j
∑

i=1

CiΨfi
, . . . ,

j
∑

i=1

CiΨ
(pi)(fi)

)

=
∑

k1+...+kj=k

k1,...,kj≥0

k!

k1! · . . . · kj !
Ck1

1 · . . . · C
kj

j

× Cumk

(
Ψ(p1)(f1), . . . ,Ψ

(p1)(f1)
︸ ︷︷ ︸

k1

, . . . ,Ψ(pj)(fj), . . . ,Ψ
(pj)(fj)

︸ ︷︷ ︸

kj

)
.

In order to prove the identity

µ∗k1,...,kj
= Cumk

(
Ψ(p1)(f1), . . . ,Ψ

(p1)(f1)
︸ ︷︷ ︸

k1

, . . . ,Ψ(pj)(fj), . . . ,Ψ
(pj)(fj)

︸ ︷︷ ︸

kj

)

for all k1, . . . , kj ∈ {0, . . . , k} with
∑j

i=1 ki = k we will proceed as in Jolivet [39] and Leonov
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and Shiryaev [45]. Let k1, . . . , kj ∈ {0, . . . , k} with
∑j

i=1 ki = k and set Ψi = Ψ(pi)(gi), where

gi =







f1 for i ∈ {1, . . . , k1},

f2 for i ∈ {k1 + 1, . . . , k1 + k2},
...

fj for i ∈ {k1 + . . .+ kj−1 + 1, . . . , k}.

Then we have 













Ψ1

...

Ψk1

Ψk1+1

...

Ψk















=















Ψ(p1)(f1)
...

Ψ(p1)(f1)

Ψ(p2)(f2)
...

Ψ(pj)(fj)















.

With M(Ψ1, . . . ,Ψk) = E
[
∏k

i=1 Ψi

]

and I = {1, . . . , k} we have (see equation (4.1))

Cumk(Ψ1, . . . ,Ψk) = M(Ψ1, . . . ,Ψk) −
k∑

j=2

∑

I1∪...∪Ij=I

j
∏

i=1

Cum|Ii|(Ψa : a ∈ Ii)

= Σindec + Σdec − C,

where Σdec is the sum over the decomposable integrals from M(Ψ1, . . . ,Ψk),

µ∗k1,...,kj
≡ Σindec = M(Ψ1, . . . ,Ψk) − Σdec

is the sum over all indecomposable integrals from M(Ψ1, . . . ,Ψk), and

C =
k∑

j=2

∑

I1∪...∪Ij=I

j
∏

i=1

Cum|Ii|(Ψa : a ∈ Ii)

denotes the remaining term.

For j ∈ {2, . . . , k} and a fixed decomposition {I1, . . . , Ij} of I = {1, . . . , k}, a summand
∏j

i=1 Cum|Ii|(Ψa : a ∈ Ii) of C factorizes with respect to a decomposition T = {T1, T2} if

for each i ∈ {1, . . . , j} we have either Ii ⊆ T1 or Ii ⊆ T2, that is, if the summand can be written

as
j
∏

i=1

Cum|Ii|(Ψa : a ∈ Ii) =

j
∏

i=1
Ii⊆T1

Cum|Ii|(Ψa : a ∈ Ii) ·

j
∏

i=1
Ii⊆T2

Cum|Ii|(Ψa : a ∈ Ii).
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Note that due to j ≥ 2 each summand
∏j

i=1 Cum|Ii|(Ψa : a ∈ Ii) factorizes with respect to at

least one nontrivial decomposition.

Let PI be the distribution of the vector (Ψ1, . . . ,Ψk)
′ which is determined by the distribution P

of the point process Ψ. For all S ⊆ I, let PS be the distribution of the vector (Ψa)a∈S . Every

term in C that factorizes with respect to a fixed decomposition T = {T1, T2} of I is completely

determined by the marginals PT1 and PT2 . The same is true for every term in Σdec that is

decomposable with respect to T .

Let T (1) =
{

T
(1)
1 , T

(1)
2

}

be an arbitrary fixed decomposition of I. The sum over the terms of

Σdec that are decomposable with respect to T (1) is denoted by Σ
(1)
dec, and the sum over the terms

of C that factorize with respect to T (1) is denoted by C
(1)
dec. Let

Σ(1) = Σdec − Σ
(1)
dec

and

C(1) = C − C
(1)
dec.

Then we have

Cumk(Ψ1, . . . ,Ψk) = Σindec + Σ(1) + Σ
(1)
dec − C(1) − C

(1)
dec.

Now we will show

Σ
(1)
dec = C

(1)
dec. (4.4)

To this end we set P̃I := P
T

(1)
1

⊗P
T

(1)
2

, where P
T

(1)
1

and P
T

(1)
2

are the distributions of the random

vectors
(
Ψa : a ∈ T

(1)
1

)
and

(
Ψa : a ∈ T

(1)
2

)
, respectively. Let (Ψ̃1, . . . , Ψ̃k)

′ be a random vector

with distribution P̃I , and let Σ̃indec, Σ̃(1), Σ̃
(1)
dec, C̃

(1), and C̃
(1)
dec be defined as Σindec, Σ(1), Σ

(1)
dec,

C(1), and C
(1)
dec above, with (Ψ1, . . . ,Ψk)

′ replaced by (Ψ̃1, . . . , Ψ̃k)
′. By construction we have

(
Ψ̃a : a ∈ T

(1)
i

)
∼ P

T
(1)
i

, that is,
(
Ψ̃a : a ∈ T

(1)
i

) d
=
(
Ψa : a ∈ T

(1)
i

)
, i = 1, 2. Hence the fact that

Σ
(1)
dec and C

(1)
dec are completely determined by the marginals P

T
(1)
1

and P
T

(1)
2

implies Σ̃
(1)
dec = Σ

(1)
dec

and C̃
(1)
dec = C

(1)
dec. In particular we have

Cumk(Ψ̃1, . . . , Ψ̃k) = Σ̃indec + Σ̃(1) + Σ
(1)
dec − C̃(1) − C

(1)
dec. (4.5)

Clearly,
(
Ψ̃a : a ∈ T

(1)
1

)
and

(
Ψ̃a : a ∈ T

(1)
2

)
are independent by construction. This implies the
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left-hand side in (4.5) to be equal to zero. Since the mixed moment

M(Ψ̃1, . . . , Ψ̃k) = E
[ k∏

i=1

Ψ̃i

]

= E
[ ∏

i∈T
(1)
1

Ψ̃i

]

· E
[ ∏

i∈T
(1)
2

Ψ̃i

]

= Σ̃
(1)
dec

is decomposable with respect to the decomposition T (1) we also have Σ̃indec = 0 and Σ̃(1) = 0.

Finally the independence of
(
Ψ̃a : a ∈ T

(1)
1

)
and

(
Ψ̃a : a ∈ T

(1)
2

)
yields Cumk(Ψ̃a : a ∈ K) = 0

for all K ⊆ {1, . . . , k} with K∩T
(1)
1 6= ∅ and K∩T

(1)
2 6= ∅. Since every summand in C̃(1) contains

a factor of this type we obtain C̃(1) = 0.

Altogether this proves (4.4) by equation (4.5). As a result we have

Cumk(Ψ1, . . . ,Ψk) = Σindec + Σ(1) − C(1).

Now we go through all possible decompositions of I in this manner. Since every term of Σdec is

decomposable with respect to some decomposition and every term of C factorizes with respect

to some decomposition, this yields

Σdec = C

and hence

Cumk(Ψ1, . . . ,Ψk) = Σindec.

In summary we have

Cumk

(
Ψ(p1)(f1), . . . ,Ψ

(p1)(f1)
︸ ︷︷ ︸

k1

, . . . ,Ψ(pj)(fj), . . . ,Ψ
(pj)(fj)

︸ ︷︷ ︸

kj

)
= µ∗k1,...,kj

for all k1, . . . , kj ∈ {0, . . . , k} with
∑j

i=1 ki = k. This completes the proof. �



5
Estimators for product densities and the

pair correlation function

Kernel-type estimators for product densities were introduced by Krickeberg [44], page 245, in

1982. Since then, especially the second-order product density and its isotropic analogue, the

pair correlation function, have been of particular interest for spatial data analysis. In the first

section we define kernel functions, present some conditions that will be helpful in the following

chapters for deriving convergence rates of the mean and the variance of the estimators, and give

some examples of kernel functions satisfying these conditions. The second and the third section

introduce estimators for product densities and the pair correlation function, respectively. The

chapter concludes with an interpretation of the second-order product density, the pair correlation

function, and their estimators.

For asymptotic considerations we assume that a single realization of a point process Ψ is given

in an expanding convex observation window. For 1-stationary point processes this corresponds

to an increase in the expected number of points.

5.1 Kernel functions

The estimators for product densities that will be introduced in the following section are based

on kernel functions. After the definition of kernel functions we will state some conditions that

can be used for deriving rates of convergence for the estimators. The section ends with some

examples of kernel functions.

41
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Definition 5.1.1 Let ℓ ≥ 2. The function k(ℓ,d) : (Rd)ℓ−1 → R is called a kernel function if it

satisfies

(i)

∫

(Rd)ℓ−1

k(ℓ,d)(x)dx = 1,

(ii) k(ℓ,d)(x) = 0 for every x ∈ (Rd)ℓ−1 with ‖x‖ > R and some R ∈ (0,∞),

(iii) |k(ℓ,d)(x)| ≤M for every x ∈ (Rd)ℓ−1 and some M ∈ (0,∞), and

(iv) k(ℓ,d)(x) = k(ℓ,d)(−x) for every x ∈ (Rd)ℓ−1. �

The second condition in the above definition says that the support of the kernel function sat-

isfies supp
(
k(ℓ,d)

)
⊆ bℓ−1(o,R), implying the kernel function to have bounded support. (Here,

bℓ−1(x, r) denotes the closed ball in (Rd)ℓ−1 with radius r > 0 and midpoint x ∈ (Rd)ℓ−1.) This

condition is not essential for our further investigations but simplifies proofs in the following

chapters. The condition could be replaced by integrability conditions to get the same results.

From now on we will suppress the superscript and write only k = k(ℓ,d) for a kernel function

wherever the appropriate superscript follows from the context.

The following condition on the kernel function is helpful for deriving rates of convergence of

mean and variance of the estimated product densities and pair correlation function that will be

defined in the next two sections. For the kernel function k(2,d) this condition has been defined

in Heinrich and Liebscher [30]. An analogous condition is also needed for probability density

estimators, see Nadaraya [47], page 19, and Horváth [37].

Condition 5.1.2 K((ℓ − 1)d, s)

The kernel function k = k(ℓ,d) satisfies Condition K((ℓ− 1)d, s) (d ≥ 1, s ≥ 1), see Heinrich and

Liebscher [30], if for i1, . . . , ij ∈ {1, . . . , (ℓ− 1)d}, j = 1, . . . , s− 1 (with s ≥ 2)

∫

(Rd)(ℓ−1)

xi1 · . . . · xijk(x1, . . . , x(ℓ−1)d)d(x1, . . . , x(ℓ−1)d) = 0

holds. �

Condition K((ℓ − 1)d, 1) is satisfied for every kernel k(ℓ,d) as defined in 5.1.1 since there are no

further requirements for s = 1. Obviously, if a kernel function satisfies Condition K((ℓ− 1)d, s)

for some s ≥ 2, it satisfies K((ℓ− 1)d, j) for all j ≤ s.
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The conus kernel,

k(x) =
d(d+ 1)Γ(d/2)

2πd/2Rd

(

1 −
‖x‖

R

)

1b(o,R)(x),

and the Epanechnikov kernel,

k(x) =
d(d+ 2)Γ(d/2)

4πd/2Rd

(

1 −
‖x‖2

R2

)

1b(o,R)(x),

satisfy Condition K(d, 2), see Heinrich and Liebscher [30].

The following condition can be used for deriving rates of convergence of the mean and the

variance of the empirical second-order product density.

Condition 5.1.3 K2(d, 2)

The kernel function k = k(2,d) satisfies Condition K2(d, 2) if

∫

Rd

xik
2(x1, . . . , xd)d(x1, . . . , xd) = 0

holds for all i ∈ {1, . . . , d}. �

The convolution of the kernel function k = k(ℓ,d) defined by

k̃ : (Rd)ℓ−1 → R, t 7→

∫

(Rd)ℓ−1

k(x)k(t− x)dx

will occur in Chapter 7. Due to the symmetry of the kernel k we have

k̃(t) =

∫

(Rd)ℓ−1

k(x)k(t− x)dx =

∫

(Rd)ℓ−1

k(x)k(x− t)dx =

∫

(Rd)ℓ−1

k(x+ t)k(x)dx = k̃(−t)

for all t ∈ (Rd)ℓ−1, that is, the convolution k̃ is symmetric.

Table 5.1 provides some examples of univariate kernel functions k(2,1), along with their val-

ues of

∫

R

k2(x)dx and

∫

R

k̃2(y)dy. The column labeled K(1, s) shows the maximum value of

s for which K(1, s) is satisfied by the respective kernel function. Except for the cosine kernel

all kernels and their value of

∫

R

k2(x)dx can be found in Nadaraya [47], page 176. Two mis-

prints in Nadaraya [47], 2625
2048

√
π

instead of 2265
2048

√
π

and (0.54 + 0.46 cos πx)1[−1,1](x) instead of
(

1
2 + 1

2 cos πx
)
1[−1,1](x), are corrected.
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For all even s ∈ N the function

k(x) =

s−2∑

i=0
i even

aix
i
1[−1,1](x)

is a kernel function that satisfies Condition 5.1.2 K(1, s), where (a0, a2, . . . , as−2) is the solution

of the linear system of equations
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A multivariate kernel function k(ℓ,d) can be obtained by setting

k(ℓ,d)(x1, . . . , x(ℓ−1)d) =

(ℓ−1)d
∏

i=1

ki(xi)

(“product kernels”) where ki : R → R, i = 1, . . . , (ℓ − 1)d, are univariate kernel functions, see

e.g. Table 5.1. If ki satisfies Condition K(1, si), i = 1, . . . , (ℓ−1)d, then the product kernel k(ℓ,d)

satisfies Condition K((ℓ − 1)d,mini=1,...,d si). Furthermore we have

∫

(Rd)ℓ−1

(k(ℓ,d)(x))2dx =

(ℓ−1)d
∏

i=1

∫

R

k2
i (xi)dxi

and
∫

(Rd)ℓ−1

(k̃(ℓ,d)(y))2dy =

(ℓ−1)d
∏

i=1

∫

R

k̃2
i (yi)dyi.

Further examples of multivariate kernels are the conus kernel and the Epanechnikov kernel.
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Table 5.1: Kernel functions

k(x)
∫

R

k2(x)dx
∫

R

k̃2(y)dy K(1, s)

1
21[−1,1](x)

1
2

1
3 s = 2

(rectangular kernel)

(1 − |x|)1[−1,1](x)
2
3

151
315 s = 2

(triangular kernel)

(
1√
6
− |x|

6

)

1[−
√

6,
√

6](x)
√

6
9

151
√

6
1890 s = 2

(
3

4
√

5
− 3x2

20
√

5

)

1[−
√

5,
√

5](x)
3

5
√

5
167

385
√

5
s = 2

(Epanechnikov kernel)

(
1
2 + 1

2 cos πx
)
1[−1,1](x)

3
4

3(8π2+35)
64π2 s = 2

π
4 cos π

2x1[−1,1](x)
π2

16
π4(8π2+15)

1536π2 s = 2

(cosine kernel)

9
8

(
1 − 5

3x
2
)
1[−1,1](x)

9
8

543
616 s = 4

1√
2π

exp(−x2/2) 1
2
√

π
1√
2π

s = 2

(Gaussian kernel)

1
2 exp(−|x|) 1

4
5
32 s = 2

3
2

(

1 − x2

3

)
1√
2π

exp(−x2/2) 27
32

√
π

7881
8192

√
2π

s = 4

15
8

(
1 − 2

3x
2 + 1

15x
4
)

1√
2π

exp(−x2/2) 2265
2048

√
π

711122385
536870912

√
2π

s = 6

Examples for univariate kernel functions k and associated values of
∫

R

k2(x)dx and

∫

R

k̃2(y)dy. The rightmost column indicates the maximal value of s for which Condi-

tion 5.1.2 K(1, s) is satisfied. The last four functions do not satisfy our definition of
kernel functions since their support is unbounded.
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5.2 Estimators for product densities

The definition of a kernel-type estimator for the ℓth-order product density, ℓ ≥ 2, goes back to

Krickeberg [44]. Let

ρ(W ) := sup{r ≥ 0 : b(x, r) ⊂W,x ∈ Rd}

denote the inscribed radius of the set W ⊆ Rd.

Definition 5.2.1 Let (Wn)n∈N be a sequence of convex sets in Rd satisfying ρ(Wn) −−−→
n→∞

∞.

Let (bn)n∈N be a descending sequence of positive real numbers satisfying bn −−−→
n→∞

0 and let

(bdn)ℓ−1|Wn| −−−→
n→∞

∞. Let k = k(ℓ,d) be a kernel function with support contained in [−R,R]d(ℓ−1).

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its ℓth-order product density ̺(ℓ)

to exist.

Then we define

ˆ̺(ℓ)
n (t1, . . . , tℓ−1) :=

1

(bdn)ℓ−1|Wn|

∑∗

x1,...,xℓ∈Ψ

1Wn(x1)k

(
x2 − x1 − t1

bn
, . . . ,

xℓ − x1 − tℓ−1

bn

)

as an estimator for λ̺(ℓ)(t) for t = (t1, . . . , tℓ−1) ∈ (Rd)ℓ−1. �

The above-mentioned sequence (bn)n∈N is called the sequence of bandwidths. Evaluating the

estimator ˆ̺
(ℓ)
n (t) requires observing a realization of Ψ in the window Wn ⊕ b(o, bnR + ‖t‖).

(Here, A ⊕ B = {x + y : x ∈ A, y ∈ B} denotes Minkowski addition of two convex sets

A,B ⊆ Rd.) Given a realization of a point process in a window Wn, the estimator ˆ̺
(ℓ)
n can

still be used by applying minus sampling, see Stoyan et al. [57], page 133, which is a simple

form of edge-correction. Another edge-corrected version of the above-mentioned estimator—

analogous to edge-corrected versions of estimators for the kth-order factorial moment measure

as considered in Hanisch [24]—, is given by the following definition.

Definition 5.2.2 Let (Wn)n∈N be a sequence of convex sets in Rd satisfying ρ(Wn) −−−→
n→∞

∞.

Let (bn)n∈N be a descending sequence of positive real numbers satisfying bn −−−→
n→∞

0 and let

(bdn)ℓ−1|Wn| −−−→
n→∞

∞. Let k = k(ℓ,d) be a kernel function with support lying in [−R,R]d(ℓ−1).

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its ℓth-order product density ̺(ℓ)

to exist.
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Then we define

˜̺(ℓ)
n (t1, . . . , tℓ−1) :=

∑∗

x1,...,xℓ∈Ψ

1Wn(x1) . . . 1Wn(xℓ)k
(

x2−x1−t1
bn

, . . . ,
xℓ−x1−tℓ−1

bn

)

(bdn)ℓ−1 |(Wn − x1) ∩ . . . ∩ (Wn − xℓ)|

as an estimator for λ̺(ℓ)(t) for t = (t1, . . . , tℓ−1) ∈ (Rd)ℓ−1. �

The estimator ˆ̺
(ℓ)
n has already been studied by Jolivet [40]. We will study its asymptotic behavior

and investigate statistics based on this estimator in Chapters 6 and 7.

5.3 Estimators for the pair correlation function

Now we define estimators for the pair correlation function. Let ωd =
√

πd

Γ(1+d/2) denote the volume

of the unit ball in Rd.

Definition 5.3.1 Let (Wn)n∈N be a sequence of convex sets in Rd satisfying ρ(Wn) −−−→
n→∞

∞.

Let (bn)n∈N be a descending sequence of positive real numbers satisfying bn −−−→
n→∞

0 and let

bn|Wn| −−−→
n→∞

∞. Let k = k(2,1) be a kernel function with support lying in [−R,R].

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its pair correlation function to

exist.

Then we define

ĝn(r) =
1

bn |Wn| dωd

∑∗

x1,x2∈Ψ

1Wn(x1)

‖x2 − x1‖d−1
k
(‖x2 − x1‖ − r

bn

)

as an estimator for λ2g(r) for r ∈ [0,∞). �

Definition 5.3.2 Let (Wn)n∈N be a sequence of convex sets in Rd satisfying ρ(Wn) −−−→
n→∞

∞.

Let (bn)n∈N be a descending sequence of positive real numbers satisfying bn −−−→
n→∞

0 and let

bn|Wn| −−−→
n→∞

∞. Let k = k(2,1) be a kernel function with support lying in [−R,R].

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its pair correlation function to

exist.
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Then we define

ĝn,2(r) =
1

bn |Wn| dωd rd−1

∑∗

x1,x2∈Ψ

1Wn(x1) k
(‖x2 − x1‖ − r

bn

)

as an estimator for λ2g(r) for r ∈ (0,∞). �

As in the case of the estimated product density ˆ̺n evaluation of the estimators ĝn(r) and ĝn,2(r)

requires observing a realization of Ψ in Wn ⊕ b(o, bnR+ r).

Just like for the estimator for the second-order product density we can define edge-corrected

versions of the estimators ĝn and ĝn,2, see Fiksel [17].

Definition 5.3.3 Let (Wn)n∈N be a sequence of convex sets in Rd satisfying ρ(Wn) −−−→
n→∞

∞.

Let (bn)n∈N be a descending sequence of positive real numbers satisfying bn −−−→
n→∞

0 and let

bn|Wn| −−−→
n→∞

∞. Let k = k(2,1) be a kernel function with support lying in [−R,R].

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its pair correlation function to

exist. Then we define

g̃n(r) =
∑∗

x1,x2∈Ψ

1Wn(x1)1Wn(x2)k
(
‖x2−x1‖−r

bn

)

bn |(Wn − x1) ∩ (Wn − x2)| dωd‖x2 − x1‖d−1

as an estimator for λ2g(r) for r ∈ [0,∞). �

Definition 5.3.4 Let (Wn)n∈N be a sequence of convex sets in Rd with the inscribed radii satis-

fying ρ(Wn) −−−→
n→∞

∞. Let (bn)n∈N be a descending sequence of positive real numbers satisfying

bn −−−→
n→∞

0 and let bn|Wn| −−−→
n→∞

∞. Let k = k(2,1) be a kernel function with support lying in

[−R,R].

Let the point process Ψ ∼ P in Rd be 2-stationary and assume its pair correlation function to

exist. Then we define

g̃n,2(r) =
∑∗

x1,x2∈Ψ

1Wn(x1)1Wn(x2)k
(
‖x2−x1‖−r

bn

)

bn |(Wn − x1) ∩ (Wn − x2)| dωd rd−1

as an estimator for λ2g(r) for r ∈ (0,∞). �
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Stoyan and Stoyan [60] suggest further estimators for g(r) using adapted distance-dependent

intensity estimators and refined estimators of the squared intensity. Simulation studies for

Poisson processes, Matérn’s cluster processes, and Matérn’s hard-core processes show that these

estimators are superior to the above estimators in the sense of reduced bias and variance for

a fixed bandwidth. The fact that these estimators involve a division by an estimator for the

squared intensity makes the analytic investigation of these estimators’ asymptotic behavior a

difficult problem. Therefore we will restrict our investigations to the estimators from Definitions

5.3.1–5.3.4.

5.4 Interpretation

In Section 2.3 we have given an interpretation of the second-order product density and the pair

correlation function. We will now continue this discussion and present an example of a real data

set. The interpretation of the pair correlation function has been discussed in detail in Stoyan

et al. [57], page 130. For the Poisson process the pair correlation function g is the constant

1. High values of g indicate frequent occurrences of inter-point distances; likewise, low values

of g indicate inhibition at these inter-point distances. The second-order product density can

be interpreted analogously, with directed distances t ∈ Rd instead of (undirected) distances.

That is, high values of the second-order product density ̺(2) indicate frequent occurrences of

directed distances between points, whereas low values of ̺(2) indicate inhibition at these directed

distances.

Figure 5.1 shows the estimated pair correlation function and second-order product density for

the data set redwood provided in the R package spatstat, see Baddeley and Turner [2]. This

point field’s anisotropy is not visible in the estimated pair correlation function but is evident in

the estimated second-order product density.
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Figure 5.1: Interpretation of estimated pair correlation function and second-order
product density
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Locations of 62 seedlings and saplings of California redwood trees (left) and the estimated
pair correlation function of this point field up to the radius 2 (middle). In the level plot
of the estimated second-order product density for t = (t1, t2)

′ ∈ [0, 2] × [−2, 2] (right) a
blue dot marks the origin.



6
Central limit theorems for

empirical product densities and

the empirical pair correlation function

This chapter deals with the asymptotic behavior of estimators for product densities and the pair

correlation function. It is divided into results for the empirical second-order product density

and the empirical pair correlation function in the first section and analogous results for the

estimators for product densities of higher order in the second section. The asymptotic behavior

of these estimators has already been studied, see for instance Jolivet [40], Heinrich [26], and

Heinrich and Liebscher [30]. Jolivet [40] studies the speed of convergence of empirical product

densities of order two and higher, and presents a short proof of the normal convergence for the

estimated product densities of order two and higher by determining the asymptotic order of

their cumulants. However, the assumptions stated in Jolivet [40] are not sufficient for deriving

this representation, which may be seen by deriving the asymptotic order of the variance. In the

setting of Poisson cluster processes Heinrich [26] proves a central limit theorem for the empirical

second-order product density. Heinrich and Liebscher [30] prove almost sure convergence of the

estimators of the second-order product density and the pair correlation function in the setting

of β-mixing point processes and also give rates of convergence.

All results in this chapter are stated only for one of the product density estimators and one of

the pair correlation estimators defined in Sections 5.2 and 5.3, respectively. The results carry

over to the other estimators from these sections. Proofs parallel those to be given in this chapter.

In the following we will use the abbreviations ̺ = ̺(2) and ˆ̺n = ˆ̺
(2)
n .

51
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6.1 Central limit theorems for the empirical second-order

product density and the empirical pair correlation function

After presenting asymptotic representations of the mean and the variance of the estimators for

the second-order product density (see Definitions 5.2.1 and 5.2.2 with ℓ = 2) and the estima-

tor for the pair correlation function (see Section 5.3) under mild mixing conditions we derive

central limit theorems for these estimators in the setting of Brillinger-mixing point processes.

Throughout this section we tacitly assume the second-order product density to exist.

6.1.1 Asymptotic representation of the mean and the variance of the estima-

tors

In this section we derive asymptotic representations for the mean and the variance of the esti-

mators for the second-order product density and the pair correlation function under mild mixing

conditions. Analogous results for these estimators in the setting of β-mixing point processes can

be found in Heinrich and Liebscher [30].

The following theorem gives an asymptotic representation for the mean of the estimator for the

second-order product density. We will use the Landau notation f(n) = O(h(n)) as n → ∞ for

error terms f(n) satisfying lim supn→∞
∣
∣
∣
f(n)
h(n)

∣
∣
∣ < ∞, and f(n) = o(h(n)) as n → ∞ for error

terms f(n) satisfying limn→∞
∣
∣
∣
f(n)
h(n)

∣
∣
∣ = 0.

Theorem 6.1.1 Let Ψ ∼ P be a 2-stationary point process in Rd with intensity λ. Then we

have

lim
n→∞

E ˆ̺n(t) = λ̺(t)

in every point of continuity t ∈ Rd of ̺. In addition, let the kernel function satisfy Condition

5.1.2 K(d, s) and let ̺ have bounded and continuous partial derivatives of order s in bo(t, ε) for

some ε > 0 and some s ≥ 1.

Then we have

E ˆ̺n(t) = λ̺(t) +O(bsn)

as n→ ∞.
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Proof: Due to the 2-stationarity of Ψ and the existence of the second-order product density we

have

E ˆ̺n(t) =

∫

Rd

k(y)λ̺(bny + t)dy.

The continuity of ̺ in t and the boundedness conditions on the kernel function yield the first

conjecture by Lebesgue’s dominated convergence theorem.

By Taylor’s expansion we get

̺(t+ bnz) = ̺(t) +

s−1∑

i=1

1

i!

(
∂

∂t1
bnz1 + . . . +

∂

∂td
bnzd

)i

̺(t1, . . . , td) +Rs(z, t)

where Rs(z, t) = 1
s!

(
∂

∂t1
bnz1 + . . . + ∂

∂td
bnzd

)s
̺(t1 + θbnz1, . . . , td + θbnzd) for some θ ∈ (0, 1).

Together with condition K(d, s) and the boundedness of the partial derivatives of order s of ̺

in bo(t, ε) for some ε > 0 we obtain the claimed rate of convergence. �

The following theorem states the assumptions under which the variance of the estimator for

the second-order product density vanishes. Since asymptotic unbiasedness does not require any

further assumptions (see the first part of the previous theorem), the assumptions in Theorem

6.1.2 are solely responsible for ensuring weak consistency of ˆ̺n(.) for λ̺(.).

Theorem 6.1.2 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ with finite

total variations
∥
∥γ

(k)
red

∥
∥ <∞, k = 2, 3, 4. Let one of the assumptions

(i) the bandwidth satisfies b2d
n |Wn| −−−→

n→∞
∞

(ii) the third-order and fourth-order cumulant densities c(3) and c(4) exist and satisfy

supu,v∈b(t,ε)∪b(−t,ε) |c
(3)(u, v)| < ∞ and supu,v∈b(t,ε)

∫

Rd

|c(4)(u,w, v + w)|dw < ∞ for some

ε > 0

be satisfied.

Then we have limn→∞ Var(ˆ̺n(t)) = 0 in every point of continuity t ∈ Rd of ̺.

We will prove Theorem 6.1.2 together with the following theorem, which presents an asymptotic

representation of the covariance Cov(ˆ̺n(s), ˆ̺n(t)) of the estimated second-order product density



54 6. CLTs for empirical product densities and the empirical pair correlation function

in two points s, t ∈ Rd. In Heinrich [26], Theorem 5, the limit bdn|Wn|Cov(ˆ̺n(s), ˆ̺n(t)) has

already been determined, based on assumptions on the densities p(2), p(3) and p(4) of the moment

measures of order two, three and four, not on assumptions on cumulant densities as we have

here. Note that Heinrich [26], Theorem 5 misstates the limiting variance of the second-order

product density estimator in zero. An extra factor 2 has to be added for correction.

Theorem 6.1.3 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ, and let
∥
∥γ

(k)
red

∥
∥ < ∞, k = 2, 3, 4. Let the third-order and fourth-order cumulant densities c(3) and c(4)

exist and satisfy

sup
u∈b(s,ε)∪b(−s,ε),v∈b(t,ε)∪b(−t,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(s,ε),v∈b(t,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0.

Then we have

bdn|Wn|Cov
(
ˆ̺n(s), ˆ̺n(t)

)
=







λ̺(s)

∫

Rd

k2(x)dx+ o(1), s = ±t 6= o,

2λ̺(o)

∫

Rd

k2(x)dx+ o(1), s = t = o,

0 +O(bdn), s 6= ±t,

in every point of continuity s ∈ Rd of ̺ as n → ∞. This result can be refined in the following

two ways.

(i) If, in addition, the second-order product density ̺ has bounded and continuous first-order

partial derivatives in bo(t, ε) for some ε > 0, then we have

bdn|Wn|Cov
(
ˆ̺n(s), ˆ̺n(t)

)
=







λ̺(s)

∫

Rd

k2(x)dx+O(bn), s = ±t 6= o,

2λ̺(o)

∫

Rd

k2(x)dx+O(bn), s = t = o,

0 +O(bdn), s 6= ±t,

as n→ ∞.
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(ii) If, in addition, the second-order product density ̺ has bounded and continuous second-order

partial derivatives in bo(t, ε) for some ε > 0 and the kernel function satisfies Condition

5.1.3 K2(d, 2), then we have

bdn|Wn|Cov
(
ˆ̺n(s), ˆ̺n(t)

)
=







λ̺(s)

∫

Rd

k2(x)dx+O(b2n) +O(bdn), s = ±t 6= o,

2λ̺(o)

∫

Rd

k2(x)dx+O(b2n) +O(bdn), s = t = o,

0 +O(bdn), s 6= ±t,

as n→ ∞.

Proof of Theorems 6.1.2 and 6.1.3: Concerning the proof of Theorem 6.1.2, we only consider

assumption (i). Under assumption (ii) Theorem 6.1.2 is a special case of Theorem 6.1.3. By

equation (4.2) we have

Cov
(
ˆ̺n(s), ˆ̺n(t)

)

=
1

b2d
n |Wn|2

×

[
∫

(Rd)2

1Wn(x)k

(
y − x− s

bn

)

k

(
y − x− t

bn

)

α(2)(d(x, y))

+

∫

(Rd)2

1Wn(x)1Wn(y)k

(
y − x− s

bn

)

k

(
x− y − t

bn

)

α(2)(d(x, y))

+

∫

(Rd)3

1Wn(x)k

(
y − x− s

bn

)

k

(
z − x− t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(y)k

(
y − x− s

bn

)

k

(
z − y − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− s

bn

)

k

(
x− z − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− s

bn

)

k

(
y − z − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)4

1Wn(x)1Wn(z)k

(
y − x− s

bn

)

k

(
v − z − t

bn

)

[γ(4)(d(x, y, z, v))

+ γ(1)(dx)γ(3)(d(y, z, v)) + γ(1)(dy)γ(3)(d(x, z, v)) + γ(1)(dz)γ(3)(d(x, y, v))
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+ γ(1)(dv)γ(3)(d(x, y, z)) + γ(2)(d(x, z))γ(2)(d(y, v)) + γ(2)(d(x, v))γ(2)(d(y, z))

+ γ(2)(d(x, z))γ(1)(dy)γ(1)(dv) + γ(2)(d(x, v))γ(1)(dy)γ(1)(dz)

+ γ(2)(d(y, z))γ(1)(dx)γ(1)(dv) + γ(2)(d(y, v))γ(1)(dx)γ(1)(dz)]

]

.

When multiplied by bdn|Wn|, only the first two integrals do not converge to zero for s 6= t. For

the first integral we have

1

bdn|Wn|

∫

(Rd)2

1Wn(x)k

(
y − x− s

bn

)

k

(
y − x− t

bn

)

α(2)(d(x, y))

=
λ

bdn|Wn|

∫

(Rd)2

1Wn(x)k

(
y − s

bn

)

k

(
y − t

bn

)

α
(2)
red(dy)dx

= λ

∫

Rd

k(y)k

(

y +
s− t

bn

)

̺(bny + s)dy

=







λ̺(s)

∫

Rd

k2(x)dx+ o(1), s = t,

0, s 6= t,

by continuity of ̺ in s and the bounded support of the kernel function k as n → ∞. Note that

in the case s 6= t the error term equals zero for sufficiently large n since k has bounded support.

Using Taylor’s formula we find, under the additional assumption (i) in Theorem 6.1.3,

λ

∫

Rd

k(y)k

(

y +
s− t

bn

)

̺(bny + s)dy =







λ̺(s)

∫

Rd

k2(x)dx+O(bn), s = t,

0, s 6= t,

as n→ ∞. Likewise the additional assumption (ii) in Theorem 6.1.3 yield

λ

∫

Rd

k(y)k

(

y +
s− t

bn

)

̺(bny + s)dy =







λ̺(s)

∫

Rd

k2(x)dx+O(b2n), s = t,

0, s 6= t,

as n→ ∞. Again, in the case s 6= t the error terms equal zero for sufficiently large n because k

has bounded support.
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Multiplying the second integral by bdn|Wn| we get

1

bdn|Wn|

∫

(Rd)2

1Wn(x)1Wn(y)k

(
y − x− s

bn

)

k

(
x− y − t

bn

)

α(2)(d(x, y))

=
λ

bdn|Wn|

∫

(Rd)2

1Wn(x)1Wn(y + x)k

(
y − s

bn

)

k

(
y + t

bn

)

α
(2)
red(dy)dx

= λ

∫

Rd

|Wn ∩ (Wn − bny − s)|

|Wn|
k(y)k

(

y +
s+ t

bn

)

̺(bny + s)dy

=







λ̺(s)

∫

Rd

k2(x)dx+ o(1), s = −t,

0, s 6= −t,

in every point of continuity s ∈ Rd as n → ∞. As before, in the case s 6= −t the error term

equals zero for sufficiently large n since k has bounded support. The rates of convergence for

this integral under the additional assumptions (i) and (ii) in Theorem 6.1.3 are the same as

those for the first integral.

We will now show that all the other integrals vanish under the assumptions of Theorem 6.1.2.

Moreover we will prove them to be of order O(bdn) when multiplied with bdn|Wn| given the

assumptions of Theorem 6.1.3. For the first integral with respect to the third-order factorial

moment measure α(3) we have

1

b2d
n |Wn|2

∫

(Rd)3

1Wn(x)k

(
y − x− s

bn

)

k

(
z − x− t

bn

)

α(3)(d(x, y, z))

=
1

b2d
n |Wn|2

∫

(Rd)3

1Wn(x)k

(
y − x− s

bn

)

k

(
z − x− t

bn

)

[γ(3)(d(x, y, z))

+ λdxγ(2)(d(y, z)) + λdyγ(2)(d(x, z)) + λdzγ(2)(d(x, y)) + λ3dxdydz].

In order to prove the integral with respect to γ(3) to converge to zero we use either
∥
∥γ

(3)
red

∥
∥ <

∞ and assumption (i) in Theorem 6.1.2 or the existence of the third-order cumulant density.

Multiplying with bdn|Wn| we find

1

bdn|Wn|

∫

(Rd)3

1Wn(x)k

(
y − s

bn

)

k

(
z − t

bn

)

γ
(3)
red(d(y, z))dx

=
1

bdn
λ

∫

(Rd)2

k

(
y − s

bn

)

k

(
z − t

bn

)

γ
(3)
red(d(y, z))
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= bdnλ

∫

(Rd)2

k(y)k(z)c(3)(bny + s, bnz + t)dydz

which is of order O(bdn) by our assumption on the third-order cumulant density c(3). Analogously,

one may show the other integrals with respect to the third-order factorial moment measure α(3)

to vanish or to be of order O(bdn).

The integrals with respect to the factorial cumulant measures can be treated analogously. In

order to prove the integral with respect to γ(4) to converge to zero we use either
∥
∥γ

(4)
red

∥
∥ < ∞

and assumption (i) in Theorem 6.1.2 or the existence of the fourth-order cumulant density.

Multiplying with bdn|Wn| we get

1

bdn|Wn|

∫

(Rd)4

1Wn(x)1Wn(z)k

(
y − x− s

bn

)

k

(
v − z − t

bn

)

γ(4)(d(x, y, z, v))

=
λ

bdn|Wn|

∫

(Rd)4

1Wn(x)1Wn(z + x)k

(
y − s

bn

)

k

(
v − z − t

bn

)

γ
(4)
red(d(y, z, v))dx

=
λ

bdn

∫

(Rd)4

|Wn ∩ (Wn − z)|

|Wn|
k

(
y − s

bn

)

k

(
v − z − t

bn

)

γ
(4)
red(d(y, z, v))

=
λ

bdn

∫

(Rd)4

|Wn ∩ (Wn − z)|

|Wn|
k

(
y − s

bn

)

k

(
v − z − t

bn

)

c(4)(y, z, v)dydzdv

= bdnλ

∫

(Rd)4

|Wn ∩ (Wn − z)|

|Wn|
k(y)k(v)c(4)(bny + s, z, bnv + z + t)dydzdv

which is of asymptotic order O(bdn) due to the assumption on the fourth-order cumulant density

c(4). Similar arguments show that the other integrals converge to zero or are of asymptotic order

O(bdn), respectively. �

The above results for the estimated second-order product density can be shown analogously for

the estimated pair correlation function. We will briefly sketch the first proof, and point out the

main differences. We start with the asymptotic representation of the mean.

Theorem 6.1.4 Let Ψ ∼ P be a 2-stationary point process in Rd with intensity λ. Then we

have

lim
n→∞

E g̃n(r) = λ2g(r)

in every point of continuity r ∈ (0,∞) of g.
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Let the kernel function satisfy Condition 5.1.2 K(1, s) and let the derivative of order s of g be

bounded and continuous in (r − ε, r + ε) for some ε > 0 and some s ≥ 1.

Then we have

E g̃n(r) = λ2g(r) +O(bsn)

as n→ ∞.

Proof: The mean of the estimated pair correlation function satisfies

E g̃n(r) = E
∑∗

x,y∈Ψ

1Wn(x)1Wn(y)k
(
‖y−x‖−r

bn

)

bn |(Wn − x) ∩ (Wn − y)| dωd‖y − x‖d−1

=

∫

(Rd)2

1Wn(x)1Wn(y)k
(
‖y−x‖−r

bn

)

bn |(Wn − x) ∩ (Wn − y)| dωd‖y − x‖d−1
α(2)(d(x, y))

= λ2

∫

Rd

∫

Rd

1Wn(x)1Wn(y)k
(
‖y−x‖−r

bn

)

bn |(Wn − x) ∩ (Wn − y)| dωd‖y − x‖d−1
g(‖y − x‖)dxdy

= λ2

∫

Rd

k
(
‖z‖−r

bn

)

bn dωd‖z‖d−1
g(‖z‖)dz

= λ2

∞∫

−r/bn

k(s)g(r + bnz)dz

−−−→
n→∞

λ2g(r)

in every point of continuity r ∈ (0,∞) of g, see Fiksel [17]. Now we turn to the second assertion.

First we use Taylor’s formula to obtain

g(r + bnz) = g(r) +

s−1∑

i=1

1

i!

(
d

dr
bnz

)i

g(r) +Rs(z, r),

where Rs(z, r) = bsn
1
s!

ds

drs g(r + θbnz) for some θ ∈ (0, 1). Together with Condition 5.1.2 K(1, s)

and the boundedness of the derivative of order s of g in (r−ε, r+ε) for some ε > 0 this completes

the proof. �
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The following two theorems state the assumptions under which the variance of the estimated

pair correlation function vanishes and give asymptotic representations of that variance. Since

these results are shown along the same lines as Theorem 6.1.2 and Theorem 6.1.3 the proofs are

omitted.

Theorem 6.1.5 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ with finite

total variations
∥
∥γ

(k)
red

∥
∥ <∞, k = 2, 3, 4. Let one of the assumptions

(i) the bandwidth satisfies b2n|Wn| −−−→
n→∞

∞

(ii) the third-order and fourth-order cumulant densities c(3) and c(4) exist and satisfy

supu,v∈b(r,ε)∪b(−r,ε) |c
(3)(u, v)| < ∞ and supu,v∈b(r,ε)

∫

Rd

|c(4)(u,w, v + w)|dw < ∞ for some

ε > 0 and all r ∈ Rd with ‖r‖ = r

be satisfied.

Then we have limn→∞ Var
(
ĝn(r)

)
= 0 in every point of continuity r ∈ (0,∞) of g. �

Theorem 6.1.6 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ with finite

total variations
∥
∥γ

(k)
red

∥
∥ < ∞, k = 2, 3, 4. Let the third- and fourth-order cumulant densities c(3)

and c(4) exist and satisfy

sup
u∈b(s,ε)∪b(−s,ε),v∈b(t,ε)∪b(−t,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(s,ε),v∈b(t,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and all s, t ∈ Rd with ‖s‖ = s and ‖t‖ = t.

Then we have

bn|Wn|Cov
(
ĝn(s), ĝn(t)

)
=







2λ2 g(s)

dωdsd−1

∫

R

k2(x)dx+ o(1), s = t,

0 +O(bn), s 6= t,

in every point of continuity s ∈ (0,∞) of g as n→ ∞. This result can be refined in the following

two ways.
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(i) If, in addition, the first-order derivative of the pair correlation function g is bounded and

continuous in (s− ε, s+ ε) for some ε > 0, then we have

bn|Wn|Cov
(
ĝn(s), ĝn(t)

)
=







2λ2 g(s)

dωdsd−1

∫

R

k2(x)dx+O(bn), s = t,

0 +O(bn), s 6= t,

as n→ ∞.

(ii) If, in addition, the second-order derivative of the pair correlation function g is bounded

and continuous in (s− ε, s+ ε) for some ε > 0 and the kernel function satisfies Condition

5.1.3 K2(1, 2), then we have

bn|Wn|Cov
(
ĝn(s), ĝn(t)

)
=







2λ2 g(s)

dωdsd−1

∫

R

k2(x)dx+O(bn), s = t,

0 +O(bn) s 6= t,

as n→ ∞. �

6.1.2 Central limit theorems

For Poisson cluster processes Heinrich [26] proves a central limit theorem for the sequence

∆n(t) := (bdn|Wn|)
1/2
(
ˆ̺n(t) − E ˆ̺n(t)

)

by using methods for m-dependent point fields. However, these methods cannot be applied in

the setting of Brillinger-mixing point processes. In the latter case we will prove a central limit

theorem by showing the k-th cumulants of the above-mentioned sequence to converge to zero

for k ≥ 3. We will also investigate the corresponding sequence for the estimators of the pair

correlation function.

Jolivet [40] determines the order of the kth cumulant of the ℓth-order product density ˆ̺
(ℓ)
n ,

ℓ ≥ 2, by using methods by Leonov and Shiryaev [45] and Jolivet [39]. However, Jolivet [40]

only investigates the terms of highest order and does not take into account that some assumptions

on the cumulant densities have to be made in order to prove that the lower-order terms converge

to zero.
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In the following
d

−−−→
n→∞

denotes weak convergence, while χ2
q and N(µ,Σq) denote the χ2-distribu-

tion with q degrees of freedom and the q-variate normal distribution with mean vector µ ∈ Rq

and positive-semidefinite (q × q)-covariance matrix Σq, respectively.

Theorem 6.1.7 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ and let

all cumulant densities of order 2 and higher exist. Let the q-tuple (u1, . . . , uq) ∈ (Rd)q be chosen

such that ui 6= ±uj for i 6= j, and let ui be a point of continuity of ̺ for every i = 1, . . . , q.

(i) Let the cumulant densities c(ℓ), ℓ ≥ 3, satisfy

sup
u∈b(ui,ε)

∫

(Rd)ℓ−2

|c(ℓ)(u, x2, . . . , xℓ−1)|d(x2, . . . , xℓ−1) <∞

for some ε > 0 and i = 1, . . . , q, and

(ii) let the third-order and fourth-order cumulant densities c(3) and c(4) satisfy

sup
u∈b(ui,ε)∪b(−ui,ε),v∈b(uj ,ε)∪b(−uj ,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(ui,ε),v∈b(uj ,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and i, j = 1, . . . , q.

Then we have (∆n(ui))
q
i=1

d
−−−→
n→∞

N(0,Σq), where the covariance matrix Σq = (σij)
q
i,j=1 is given

by

σii =







λ̺(ui)

∫

Rd

k2(x)dx, ui 6= 0,

2λ̺(ui)

∫

Rd

k2(x)dx, ui = 0,

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(∆n(ui))
2

σii

d
−−−→
n→∞

χ2
q.
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Proof: The asymptotic covariance has already been determined in Theorem 6.1.3. In order to

show asymptotic normality of (∆n(ui))
q
i=1 we use the method of Cramér-Wold and consider the

linear combination a1∆n(u1)+. . .+aq∆n(uq) for an arbitrary q-tuple (a1, . . . , aq)
′ ∈ Rq. Asymp-

totic normality of this linear combination will be established by showing that its cumulants of

order k converge to zero for all k ≥ 3.

Applying Lemma 4.2.1 and using the notation given there the kth cumulant of a1∆n(u1)+ . . .+

aq∆n(uq), k ≥ 2, satisfies

Γk (a1∆n(u1) + . . .+ aq∆n(uq))

= Γk

(
q
∑

i=1

(bdn|Wn|)
−1/2aiΨ

(2)(fi)

)

= (bdn|Wn|)
−k/2

∑

k1+...+kq=k

k1,...,kq≥0

k!

k1! · . . . · kq!
ak1

1 · . . . · a
kq
q µ∗k1,...,kq

with fi : (Rd)2 → R, (x1, x2) 7→ 1Wn(x1)k
(

x2−x1−ui

bn

)

, i = 1, . . . , q.

Now we have to determine the order of µ∗k1,...,kq
for k1, . . . , kq ≥ 0 with k1 + . . . + kq = k.

Since µ∗k1,...,kq
consists only of indecomposable integrals it can be seen by disintegration and

substitution that the highest order of integrals with respect to at least two factorial cumulant

measures is O(bdn|Wn|) due to
∥
∥γ

(k)
red

∥
∥ < ∞ for k ≥ 2 and the boundedness assumptions on

the kernel function. Together with the factor (bdn|Wn|)
−k/2 this yields the asymptotic order

O((bdn|Wn|)
1−k/2) of these terms. For integrals taken with respect to only one factorial cumulant

measure γ(ℓ), disintegration and the finiteness of the total variations yield the asymptotic order

O(|Wn|). Since this result is insufficient for our purposes we use the additional assumption

that the cumulant densities exist. Due to this assumption we may substitute z =
xj−xℓ−ui

bn

in one instance of the kernel function k. In the case ℓ ≥ 3 assumption (i) on the cumulant

densities yields the asymptotic order O(bdn|Wn|) of this integral by Lebesgue’s dominated con-

vergence theorem. For an integral taken with respect to γ(2) the continuity of the second-order

product density in ui, i = 1, . . . , q, (which implies the continuity of c(2) in these points due to

̺(.) = c(2)(.) + λ) and Lebesgue’s dominated convergence theorem again yield the asymptotic

order O(bdn|Wn|).

Altogether we have

Γk (a1∆n(u1) + . . .+ aq∆n(uq)) = O((bdn|Wn|)
1−k/2)

as n → ∞. Hence the cumulants of order three and higher converge to zero as n → ∞ which
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implies the claimed normal convergence. The weak convergence of

q
∑

i=1

(∆n(ui))
2

σii

to a χ2-distributed random variable with q degrees of freedom follows immediately by the Con-

tinuous Mapping Theorem (see Pollard [49]). �

The previous theorem assumed the existence of and boundedness conditions on all cumulant

densities. In the following theorem these assumptions are only made on the cumulant densities

up to order ℓ, supplemented with the condition (bdn)ℓ|Wn|
ℓ−2 −−−→

n→∞
∞ on the bandwidth, for

some ℓ ≥ 3.

Theorem 6.1.8 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ. Let the

q-tuple (u1, . . . , uq) ∈ (Rd)q be chosen such that ui 6= ±uj for i 6= j, and let ui be a point of

continuity of ̺ for every i = 1, . . . , q.

(i) Let there be an ℓ ≥ 3 with (bdn)ℓ|Wn|
ℓ−2 −−−→

n→∞
∞ and let the cumulant densities c(k),

k = 3, . . . , 2(ℓ− 1), exist and satisfy

sup
u∈b(ui,ε)

∫

(Rd)k−2

|c(k)(u, x2, . . . , xk−1)|d(x2, . . . , xk−1) <∞

for some ε > 0, i = 1, . . . , q, and k = 3, . . . , 2(ℓ− 1), and

(ii) let the third- and fourth-order cumulant densities c(3) and c(4) satisfy

sup
u∈b(ui,ε)∪b(−ui,ε),v∈b(uj ,ε)∪b(−uj ,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(ui,ε),v∈b(uj ,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and i, j = 1, . . . , q.

Then we have (∆n(ui))
q
i=1

d
−−−→
n→∞

N(0,Σq), where the covariance matrix Σq = (σij)
q
i,j=1 is given

by

σii =







λ̺(ui)

∫

Rd

k2(x)dx, ui 6= 0,

2λ̺(ui)

∫

Rd

k2(x)dx, ui = 0,
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for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(∆n(ui))
2

σii

d
−−−→
n→∞

χ2
q.

Proof: The result can be proved analogously to the previous theorem. The only difference to

Theorem 6.1.7 is that we only use assumptions on the cumulant densities up to order 2(ℓ − 1).

This leads to the asymptotic order O((bdn|Wn|)
1−k/2) of the kth cumulant for k = 3, . . . , ℓ − 1.

For the cumulants of order k ≥ ℓ we obtain the asymptotic order O((bdn)−k/2|Wn|
1−k/2) by

disintegration and
∥
∥γ

(j)
red

∥
∥ < ∞ for all j ≤ 2. Here the assumptions (bdn)ℓ|Wn|

ℓ−2 −−−→
n→∞

∞

and bdn|Wn| −−−→
n→∞

∞ imply the cumulants of order three and higher to converge to zero. This

completes the proof. �

Corollary 6.1.9 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ and let

all cumulant densities of order 2 and higher exist. Let the q-tuple (u1, . . . , uq) ∈ (Rd)q be chosen

such that ui 6= ±uj for i 6= j, and let ̺ have bounded and continuous partial derivatives of order

s in bo(ui, ε) for some ε > 0 and some s ≥ 1 and every i = 1, . . . , q. Let the kernel function

satisfy Condition 5.1.2 K(d, s). Further, let the bandwidth satisfy b2s+d
n |Wn| −−−→

n→∞
0.

(i) Let the cumulant densities c(ℓ), ℓ ≥ 3, satisfy

sup
u∈b(ui,ε)

∫

(Rd)ℓ−2

|c(ℓ)(u, x2, . . . , xℓ−1)|d(x2, . . . , xℓ−1) <∞

for some ε > 0 and i = 1, . . . , q, and

(ii) let the third- and fourth-order cumulant densities c(3) and c(4) satisfy

sup
u∈b(ui,ε)∪b(−ui,ε),v∈b(uj ,ε)∪b(−uj ,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(ui,ε),v∈b(uj ,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and i, j = 1, . . . , q.

Then we have

(

∆̃n(ui)
)q

i=1
:=
(

(bdn|Wn|)
1/2
(
ˆ̺n(ui) − λ̺(ui)

))q

i=1

d
−−−→
n→∞

N(0,Σq),
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where the covariance matrix Σq = (σij)
q
i,j=1 is given by

σii =







λ̺(ui)

∫

Rd

k2(x)dx, ui 6= 0,

2λ̺(ui)

∫

Rd

k2(x)dx, ui = 0,

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(

∆̃n(ui)
)2

σii

d
−−−→
n→∞

χ2
q.

Proof: The result is an immediate consequence Theorem 6.1.7, the second part of Theorem

6.1.1, and b2s+d
n |Wn| −−−→

n→∞
0. �

In the following corollary we apply a variance-stabilizing transformation to the sequence ∆̃n.

Corollary 6.1.10 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ. Let

the assumptions of Corollary 6.1.9 be satisfied. Then we have

(

∆̃∗
n(ui)

)q

i=1
:=
(

(bdn|Wn|)
1/2
(√

ˆ̺n(ui) −
√

λ̺(ui)
))q

i=1

d
−−−→
n→∞

N(0,Σq),

where the covariance matrix Σq = (σij)
q
i,j=1 is given by

σii =







∫

Rd

k2(x)dx, ui 6= 0,

2

∫

Rd

k2(x)dx, ui = 0,

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(

∆̃∗
n(ui)

)2

σii

d
−−−→
n→∞

χ2
q.

Proof: The claim is established based on the weak consistency of the estimated product density,

on Corollary 6.1.9, and on variance-stabilization by a square-root transformation (see Witting

and Müller-Funk [66], page 107). �
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The above central limit theorems can be proved analogously for the sequence

∆(g)
n (r) := (bn|Wn|)

1/2
(
ĝn(r) − Eĝn(r)

)
,

and for the corresponding sequences based on the other estimators for the pair correlation

function suggested in Section 5.3.

Theorem 6.1.11 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ and

let all cumulant densities of order 2 and higher exist. Let the q-tuple (u1, . . . , uq) ∈ (0,∞)q be

chosen such that ui 6= uj for i 6= j, and let ui be a point of continuity of g for every i = 1, . . . , q.

(i) Let the cumulant densities c(ℓ), ℓ ≥ 4, satisfy

sup
u∈b(ui,ε)

∫

(Rd)ℓ−2

|c(ℓ)(u, x2, . . . , xℓ−1)|d(x2, . . . , xℓ−1) <∞

for some ε > 0 and all ui ∈ Rd with ‖ui‖ = ui, i = 1, . . . , q, and

(ii) let the third- and fourth-order cumulant densities c(3) and c(4) satisfy

sup
u∈b(ui,ε)∪b(−ui,ε),v∈b(uj,ε)∪b(−uj,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(ui,ε),v∈b(uj,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and all ui,uj ∈ Rd with ‖ui‖ = ui and ‖uj‖ = uj , i, j = 1, . . . , q.

Then we have
(

∆
(g)
n (ui)

)q

i=1

d
−−−→
n→∞

N(0,Σq), where the covariance matrix Σq = (σij)
q
i,j=1 is

given by

σii = 2λ2 g(ui)

dωdu
d−1
i

∫

R

k2(x)dx

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(

∆
(g)
n (ui)

)2

σii

d
−−−→
n→∞

χ2
q.

�
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Theorem 6.1.12 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ. Let

the q-tuple (u1, . . . , uq) ∈ (0,∞)q be chosen such that ui 6= uj for i 6= j, and let ui be a point of

continuity of g for every i = 1, . . . , q.

(i) Let there be an ℓ ≥ 3 with bℓn|Wn|
ℓ−2 −−−→

n→∞
∞ and let the cumulant densities c(k), k =

3, . . . , 2(ℓ − 1), exist and satisfy

sup
u∈b(ui,ε)

∫

(Rd)k−2

|c(k)(u, x2, . . . , xk−1)|d(x2, . . . , xk−1) <∞

for some ε > 0 and all ui ∈ Rd with ‖ui‖ = ui, i = 1, . . . , q, and k = 3, . . . , 2(ℓ− 1), and

(ii) let the third- and fourth-order cumulant densities c(3) and c(4) satisfy

sup
u∈b(ui,ε)∪b(−ui,ε),v∈b(uj,ε)∪b(−uj,ε)

|c(3)(u, v)| <∞

and

sup
u∈b(ui,ε),v∈b(uj,ε)

∫

Rd

|c(4)(u,w, v + w)|dw <∞

for some ε > 0 and all ui,uj ∈ Rd with ‖ui‖ = ui and ‖uj‖ = uj , i, j = 1, . . . , q.

Then we have
(

∆
(g)
n (ui)

)q

i=1

d
−−−→
n→∞

N(0,Σq), where the covariance matrix Σq = (σij)
q
i,j=1 is

given by

σii = 2λ2 g(ui)

dωdu
d−1
i

∫

R

k2(x)dx

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(

∆
(g)
n (ui)

)2

σii

d
−−−→
n→∞

χ2
q.

�

Remark 6.1.13 Results analogous to Corollaries 6.1.9 and 6.1.10 also hold for the sequences

(

(bn|Wn|)
1/2
(
ĝ(ui) − λ2g(ui)

))q

i=1

and
(

(bn|Wn|)
1/2
(√

ĝ(ui) −
√

λ2g(ui)
))q

i=1
.
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Again this can be shown by the asymptotic representation of the mean, the weak consistency of

the estimated pair correlation function, and by variance-stabilization by a square-root transfor-

mation. �

6.2 Central limit theorems for empirical product densities of

higher order

This section generalizes the results on the second-order product density in the previous section

to product densities ̺(ℓ) of order ℓ ≥ 2. Throughout the whole section we assume the product

density ̺(ℓ) to exist. Brillinger [5] proved normal convergence of product densities for point

processes in R1. As already mentioned in Section 6.1.2, the normal convergence has already been

stated in Jolivet [40] without mentioning the necessary conditions on the cumulant densities.

6.2.1 Asymptotic representation of the mean and the variance of the estima-

tors

First we derive asymptotic representations for the mean and the variance of the estimators for

product densities of order two and higher in the setting of Brillinger-mixing point processes.

Theorem 6.2.1 Let Ψ ∼ P be an ℓ-stationary point process in Rd with intensity λ. Then we

have

lim
n→∞

E ˆ̺(ℓ)
n (t) = λ̺(ℓ)(t)

in every point of continuity t ∈ (Rd)ℓ−1 of ̺(ℓ).

Let the kernel function satisfy Condition 5.1.2 K((ℓ − 1)d, s) and let ̺(ℓ) have bounded and

continuous partial derivatives of order s in boℓ−1(t, ε) for some ε > 0 and some s ≥ 1, where

boℓ−1(x, r) denotes the open ball in (Rd)ℓ−1 with radius r > 0 and midpoint x ∈ (Rd)ℓ−1. Then

we have

E ˆ̺(ℓ)
n (t) = λ̺(ℓ)(t) +O(bsn)

as n→ ∞.
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Proof: Since Ψ is ℓ-stationary we have

E ˆ̺(ℓ)
n (t)

=
1

(bdn)ℓ−1|Wn|

∫

(Rd)ℓ

1Wn(x1)k

(
x2 − x1 − t1

bn
, . . . ,

xℓ − x1 − tℓ−1

bn

)

α(ℓ)(d(x1, . . . , xℓ))

= λ

∫

(Rd)ℓ−1

k(z)̺(ℓ)(bnz + t)dz

for t = (t1, . . . , tℓ−1)
′ = (t11, t12, . . . , t(ℓ−1)d)

′ ∈ (Rd)ℓ−1, see Jolivet [40]. The boundedness

conditions on the kernel imply the asymptotic unbiasedness in every point of continuity of ̺(ℓ)

by Lebesgue’s dominated convergence theorem.

If ̺(ℓ) has continuous partial derivatives of order s in bo(t, ε) for some ε > 0 and some s ≥ 1,

then we get

̺(ℓ)(t+ bnz) =

̺(ℓ)(t) +
s−1∑

i=1

1

i!

(
∂

∂t11
bnz11 + . . .+

∂

∂t(ℓ−1)d
bnz(ℓ−1)d

)i

̺(t11, . . . , t(ℓ−1)d) +Rs(z, t)

by Taylor’s expansion, where

Rs(z, t) =
1

s!

(
∂

∂t11
bnz1 + . . . +

∂

∂t(ℓ−1)d
bnz(ℓ−1)d

)s

̺(t11 + θbnz11, . . . , t(ℓ−1)d + θbnz(ℓ−1)d)

for some θ ∈ (0, 1). Together with Condition 5.1.2 K((ℓ− 1)d, s) the boundedness of the partial

derivatives of order s imply the second assertion. �

Theorem 6.2.2 Let Ψ ∼ P be a 2ℓ-stationary point process in Rd with intensity λ with finite

total variations
∥
∥γ

(j)
red

∥
∥ <∞, j = 2, . . . , 2ℓ. Let one of the assumptions

(i) the bandwidth satisfies b
2(ℓ−1)d
n |Wn| → ∞

(ii) the cumulant densities up to order 2ℓ exist and satisfy

sup
x1,...,xj−1∈

⋃ℓ−1
i=1 b(ti,ε)∪b(−ti,ε)

|c(j)(x1, . . . , xj−1)| <∞
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for j = ℓ+ 1, . . . , 2ℓ− 1, and

sup
x1,xℓ∈b(t1,ε),...,

xℓ−1,x2ℓ−2∈b(tℓ−1,ε)

∫

Rd

|c(2ℓ)(x1, . . . , xℓ−1, x+ xℓ, x+ xℓ+1, . . . , x+ x2ℓ−2, x)|dx <∞

for some ε > 0

be satisfied.

Then we have

lim
n→∞

Var
(
ˆ̺(ℓ)
n (t)

)
= 0

in every point of continuity t = (t1, . . . , tℓ−1) ∈ (Rd)ℓ−1 of ̺(ℓ). �

As in the case ℓ = 2 (see Theorem 6.1.2) we prove the above theorem together with the following

one.

Theorem 6.2.3 Let Ψ ∼ P be a 2ℓ-stationary point process in Rd with intensity λ with finite

total variations
∥
∥γ

(j)
red

∥
∥ < ∞, j = 2, . . . , 2ℓ. Let the cumulant densities up to order 2ℓ exist and

satisfy

sup
x1,...,xj−1∈

⋃ℓ−1
i=1 b(ti,ε)∪b(−ti,ε)∪b(si,ε)∪b(−si,ε)

|c(j)(x1, . . . , xj−1)| <∞

for j = ℓ+ 1, . . . , 2ℓ− 1, and

sup
x1∈b(t1,ε),...,xℓ−1∈b(tℓ−1,ε),

xℓ∈b(s1,ε),...,x2ℓ−2∈b(sℓ−1,ε)

∫

Rd

|c(2ℓ)(x1, . . . , xℓ−1, x+ xℓ, x+ xℓ+1, . . . , x+ x2ℓ−2, x)|dx <∞

for some ε > 0.

Then we have

lim
n→∞

b(ℓ−1)d
n |Wn|Cov

(
ˆ̺(ℓ)
n (s), ˆ̺(ℓ)

n (t)
)

=







λ̺(ℓ)(s)

∫

(Rd)ℓ−1

k2(x)dx, s = t,

0, s 6= t,

in every point of continuity s = (s1, . . . , sℓ−1) ∈ (Rd)ℓ−1 of ̺(ℓ) satisfying si 6= o and si 6= ±sj

for all i, j ∈ {1, . . . , ℓ− 1}, i 6= j.
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Proof of Theorems 6.2.2 and 6.2.3: For Theorem 6.2.2 we only have to consider assumption (i)

since Theorem 6.2.3 generalizes Theorem 6.2.2 under assumption (ii). As in equation (4.2) the

covariance Cov
(

ˆ̺
(ℓ)
n (s), ˆ̺

(ℓ)
n (t)

)

for s = (s1, . . . , sℓ−1)
′ ∈ (Rd)ℓ−1 and t = (t1, . . . , tℓ−1)

′ ∈ (Rd)ℓ−1

is a sum of indecomposable integrals. One of the terms of highest order of the covariance is

1

(bdn)2ℓ−2|Wn|2

∫

(Rd)ℓ

1Wn(x1)k

(
x2 − x1 − s1

bn
, . . . ,

xℓ − x1 − sℓ−1

bn

)

× k

(
x2 − x1 − t1

bn
, . . . ,

xℓ − x1 − tℓ−1

bn

)

α(ℓ)(d(x1, . . . , xℓ))

=
1

(bdn)2ℓ−2|Wn|

∫

(Rd)ℓ−1

k

(
x2 − s1
bn

, . . . ,
xℓ − sℓ−1

bn

)

k

(
x2 − t1
bn

, . . . ,
xℓ − tℓ−1

bn

)

× ̺(ℓ)(x2, . . . , xℓ) d(x2, . . . , xℓ)

=
1

(bdn)ℓ−1|Wn|

∫

(Rd)ℓ−1

k(x2, . . . , xℓ)k

(

x2 +
s1 − t1
bn

, . . . , xℓ +
sℓ−1 − tℓ−1

bn

)

× ̺(ℓ)(bnx2 + s1, . . . , bnxℓ + sℓ−1) d(x2, . . . , xℓ).

Since the ℓth-order product density is continuous in s, Lebesgue’s dominated convergence theo-

rem and assumption (i) of Theorem 6.2.2 imply this term to converge to zero. For Theorem 6.2.3

we multiply with b
(ℓ−1)d
n |Wn|. Then the continuity of ̺(ℓ) and Lebesgue’s dominated convergence

theorem entail

∫

(Rd)ℓ−1

k(x2, . . . , xℓ)k

(

x2 +
s1 − t1
bn

, . . . , xℓ +
sℓ−1 − tℓ−1

bn

)

× ̺(ℓ)(bnx2 + s1, . . . , bnxℓ + sℓ−1) d(x2, . . . , xℓ)

−−−→
n→∞







λ̺(ℓ)(s)

∫

(Rd)ℓ−1

k2(x)dx, s = t

0, s 6= t.

All other integrals converge to zero. �

6.2.2 Central limit theorems

In this section we will show normal convergence of the sequence

∆n(t) := (b(ℓ−1)d
n |Wn|)

1/2
(
ˆ̺(ℓ)
n (t) − E ˆ̺(ℓ)

n (t)
)

for ℓ ≥ 2. The following theorem is proved along the same lines as Theorem 6.1.7.
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Theorem 6.2.4 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ and let

all cumulant densities of order 2 and higher exist. Let the q-tuple (u1, . . . , uq) ∈ (R(ℓ−1)d)q with

ui = (ui1, . . . , ui(ℓ−1))
′ be chosen such that ui 6= o and ui 6= ±uj for all i, j ∈ {1, . . . , ℓ − 1},

i 6= j, and let ui be a point of continuity of ̺(ℓ) for every i = 1, . . . , q.

(i) Let the cumulant densities c(j), j ≥ ℓ+ 1, satisfy

sup
y1∈b(ui1,ε),...,

yℓ−1∈b(ui(ℓ−1),ε)

∫

(Rd)j−ℓ

|c(j)(y1, . . . , yℓ−1, xℓ, . . . , xj−1)|d(xℓ, . . . , xj−1) <∞

for i = 1, . . . , q, and

(ii) let the cumulant densities up to order 2ℓ exist and satisfy

sup
x1,...,xk−1∈

⋃q
i=1

⋃ℓ−1
j=1 b(uij ,ε)∪b(−uij ,ε)

|c(k)(x1, . . . , xk−1)| <∞

for k = ℓ+ 1, . . . , 2ℓ− 1, and

sup
x1∈b(ui1,ε),...,xℓ−1∈b(ui(ℓ−1),ε),

xℓ∈b(uj1,ε),...,x2ℓ−2∈b(uj(ℓ−1),ε)

∫

Rd

|c(2ℓ)(x1, . . . , xℓ−1, x+ xℓ, x+ xℓ+1, . . . , x+ x2ℓ−2, x)|dx <∞

for some ε > 0 and i, j = 1, . . . , q.

Then we have (∆n(ui))
q
i=1

d
−−−→
n→∞

N(0,Σq), where the covariance matrix Σq = (σij)
q
i,j=1 is given

by

σii = λ̺(ℓ)(ui)

∫

(Rd)ℓ−1

k2(x1, . . . , xℓ−1)d(x1, . . . , xℓ−1)

for i = 1, . . . , q, and σij = 0 for i 6= j. Furthermore we have

q
∑

i=1

(∆n(ui))
2

σii

d
−−−→
n→∞

χ2
q.

Proof: The asymptotic covariance has been derived in Theorem 6.2.3; assumption (ii) provides

the conditions on the cumulant densities needed in this derivation. To prove normal convergence

of the random vector (∆n(ui))
q
i=1 we proceed as in Theorem 6.1.7. Using the method of Cramér-

Wold we prove asymptotic normality of the linear combination a1∆n(u1) + . . . + aq∆n(uq),

(a1, . . . , aq)
′ ∈ Rq, by showing its cumulants of order k to converge to zero for all k ≥ 3.
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Lemma 4.2.1 (with the notation given there) entails that the kth cumulant of a1∆n(u1) + . . .+

aq∆n(uq), k ≥ 2, satisfies

Γk (a1∆n(u1) + . . .+ aq∆n(uq)) = Γk

(
q
∑

i=1

(b(ℓ−1)d
n |Wn|)

−1/2aiΨ
(ℓ)(fi)

)

= (b(ℓ−1)d
n |Wn|)

−k/2
∑

k1+...+kq=k

k1,...,kq≥0

k!

k1! · . . . · kq!
ak1

1 · . . . · a
kq
q µ∗k1,...,kq

with fi : (Rd)ℓ → R, (x1, . . . , xℓ) 7→ 1Wn(x1)k
(

x2−x1−ui

bn
, . . . , xℓ−x1−ui

bn

)

, i = 1, . . . , q.

Now we have to determine the order of µ∗k1,...,kq
for k1, . . . , kq ≥ 0 with k1 + . . . + kq = k.

Since µ∗k1,...,kq
consists only of indecomposable integrals it can be seen by disintegration and

substitution that the highest order of integrals with respect to at least two factorial cumulant

measures is O(b
(ℓ−1)d
n |Wn|), due to

∥
∥γ

(k)
red

∥
∥ < ∞ for k ≥ 2 and the boundedness assumptions on

the kernel function. Together with the factor (b
(ℓ−1)d
n |Wn|)

−k/2 this yields the asymptotic order

O((b
(ℓ−1)d
n |Wn|)

1−k/2) of these terms. For integrals with respect to only one factorial cumulant

measure γ(j), disintegration and the finiteness of the total variations yield the asymptotic order

O(|Wn|). As in the proof of Theorem 6.1.7 we may obtain a stricter asymptotic order by

assuming the existence of the cumulant densities and substituting z =
xm−xj−ui

bn
in one instance

of the kernel function k. Assumption (i) on the cumulant densities leads to the asymptotic order

O(b
(ℓ−1)d
n |Wn|) of this integral if j ≥ ℓ + 1 by Lebesgue’s dominated convergence theorem. For

an integral with respect to γ(ℓ) the continuity of the ℓth-order product density in ui, i = 1, . . . , q,

(which implies the continuity of c(ℓ) in these points due to ̺(.) = c(2)(.) + λ) and Lebesgue’s

dominated convergence theorem again yield the asymptotic order O(b
(ℓ−1)d
n |Wn|).

Altogether we obtain

Γk (a1∆n(u1) + . . .+ aq∆n(uq)) = O((b(ℓ−1)d
n |Wn|)

1−k/2)

as n → ∞, so the cumulants of order three and higher converge to zero as n → ∞. This shows

normal convergence of the random vector (∆n(ui))
q
i=1. The weak convergence of

q
∑

i=1

(∆n(ui))
2

σii

is an immediate consequence using the Continuous Mapping Theorem. �
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Remark 6.2.5 The normal convergence can also be shown for the sequences

(

∆̃n(ui)
)q

i=1
:=
(

(bdn|Wn|)
1/2
(

ˆ̺(ℓ)
n (ui) − λ̺(ℓ)(ui)

))q

i=1

and
(

∆̃∗
n(ui)

)q

i=1
=

(

(bdn|Wn|)
1/2

(√

ˆ̺
(ℓ)
n (ui) −

√

λ̺(ℓ)(ui)

))q

i=1

using the same arguments as in Corollaries 6.1.9 and 6.1.10. �
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7
Central limit theorems for the integrated

squared error of the empirical second-order

product density and the empirical

pair correlation function

The integrated squared error (henceforth abbreviated as ISE) is often used in simulation studies

to measure the performance of probability density estimators, see Hall [22]. In this chapter we

will study the ISE of estimators for the second-order product density and for the pair correlation

function. More specifically we derive central limit theorems for the ISE of the estimators intro-

duced in Sections 5.2 and 5.3 in the setting of Brillinger-mixing point processes. These central

limit theorems may be used for constructing goodness-of-fit tests.

7.1 Central limit theorems for the integrated squared error of

the second-order product density estimator

After some preliminary considerations concerning the cumulants of the ISE of the empirical

second-order product density we will derive asymptotic representations for mean and variance

of this estimator’s ISE under mild mixing conditions. The chapter concludes with central limit

theorems for the ISE of the estimated second-order product density in the setting of Poisson

processes, Poisson cluster processes and Brillinger-mixing processes.
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7. CLTs for the integrated squared error of the empirical second-order product density and the

empirical pair correlation function

All results in this chapter are presented for the ISE based on the estimator ˆ̺n = ˆ̺
(2)
n from

Definition 5.2.1 and the estimator ĝn from Definition 5.3.1 but also hold for the variants of these

estimators introduced in Section 5.2 and 5.3.

7.1.1 The integrated squared error and some preliminary considerations

In Theorem 6.1.7 we have shown that under certain mixing conditions the sequence (∆n(ui))
q
i=1

with ∆n( . ) = (bdn|Wn|)
1/2
(
ˆ̺n( . )−E ˆ̺n( . )

)
and pairwise distinct u1, . . . uq converges weakly to a

Gaussian vector with independent components. This entails that the potential limiting process

of ∆n(.) is a Gaussian white noise. Since this process is not measurable, see Kallianpur [41], page

10, this result is not useful for finding the limiting distribution of the estimated second-order

product density’s ISE defined by

In(K) :=

∫

K

(ˆ̺n(t) − λ̺(t))2dt,

where K ∈ B(Rd), |K| > 0, is a bounded set. For this reason we will investigate the integrated

squared error In(K) directly. For Brillinger-mixing point processes the normal convergence of

the centered and suitably scaled ISE is proved by showing all cumulants of order three and

higher to converge to zero. Lemma 7.1.1 will give a representation for the cumulants of the ISE

of the estimated second-order product density. This representation can also be used for deriving

an asymptotic representation for the variance of the ISE.

The cumulants of the ISE can be represented by a sum of indecomposable (see page 36) and

irreducible integrals. First we give a definition of an irreducible integral. This definition is

closely related to the special form of the functions

f1 : (Rd)4 → R,

(x1, x2, x3, x4) 7→ 1Wn(x1)1Wn(x3)1{x1 6=x2,x3 6=x4}

∫

K

k

(
x2 − x1 − t

bn

)

k

(
x4 − x3 − t

bn

)

dt,

and

f2 : (Rd)2 → R, (x1, x2) 7→ 1Wn(x1)1{x1 6=x2}

∫

K

k

(
x2 − x1 − t

bn

)

λ̺(t)dt.
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An integral IP,Q(f1, . . . , f1
︸ ︷︷ ︸

k−j

, f2, . . . , f2
︸ ︷︷ ︸

j

), j = 0, . . . , k − 1, with P = {P1, . . . , Pq} and Q =

{Q1, . . . , Qr} (see page 35) is reducible if there are indices a, b ∈ {1, . . . , q}, c, d ∈ {1, . . . , r},

and an odd number i ∈ {1, . . . , 4k − 4j} such that Pa = {i}, Pb = {i + 1}, and Qc = {a, b} or

Qc = {a} and Qd = {b}. In other words, a reducible integral contains one of the terms

∫

(Rd)2

f1(xi, xi+1, x, y)γ
(2)(d(xi, xi+1)),

∫

(Rd)2

f1(x, y, xi, xi+1)γ
(2)(d(xi, xi+1)),

∫

(Rd)2

f1(xi, xi+1, x, y)γ
(1)(dxi)γ

(1)(dxi+1),

∫

(Rd)2

f1(x, y, xi, xi+1)γ
(1)(dxi)γ

(1)(dxi+1),

with x, y 6∈ {xi, xi+1}, and the remaining functions contain neither xi nor xi+1. We will call this

term the reducible part of the integral. An integral can have more than one reducible part. An

integral that is not reducible is called irreducible. For instance, the integral

I{{1},{2},{3,5},{4,6}
}

,
{
{1,2},{3,4}

}(f1, f2)

=

∫

(Rd)2

∫

(Rd)2

f1(z1, z2, z3, z4)f2(z3, z4)γ
(2)(d(z1, z2))γ

(2)(d(z3, z4))

is reducible with reducible part

∫

(Rd)2

f1(z1, z2, z3, z4)γ
(2)(d(z1, z2)),

whereas the integral

I{{1,5},{2},{3,6},{4}
}

,
{
{1,2},{3,4}

}(f1, f2)

=

∫

(Rd)2

∫

(Rd)2

f1(z1, z2, z3, z4)f2(z1, z3)γ
(2)(d(z1, z2))γ

(2)(d(z3, z4))

is irreducible.
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Recall the sum of indecomposable integrals µ∗k−j,j, j = 0, . . . , k, see (4.3). We denote the sum of

irreducible integrals in µ∗k−j,j by µ∗∗k−j,j, j = 0, . . . , k. We will write µ∗∗ak−(j+r),j+r, a = 1, . . . , r, for

the term obtained from µ∗∗k−(j+r),j+r by replacing a instances of f2 with f̃2, where the function

f̃2 is given by

f̃2(x, y) := 1Wn(x)

∫

K



k

(
y − x− t

bn

)

λ





∫

Rd

Rs(z, t)k(z)dz







 dt

with Rs(z, t) = 1
s!

(
∂

∂t1
z1 + . . .+ ∂

∂td
zd

)s
̺(t1 + θbnz1, . . . , td + θbnzd) and θ = θ(t) ∈ (0, 1). As a

result, µ∗∗ak−(j+r),j+r contains only j + r − a instances of f2.

Now we can state the lemma giving a representation of the kth cumulant of the ISE in terms of

indecomposable and irreducible integrals for k ≥ 2.

Lemma 7.1.1 Let k ≥ 2, and let Ψ ∼ P be a 4k-stationary point process in Rd with intensity

λ and
∥
∥γ

(j)
red

∥
∥ < ∞ for j = 2, . . . , 4k. Let the second-order product density ̺ have bounded

and continuous partial derivatives of order s in K ⊕ bo(o, ε) for some ε > 0 and some s ≥ 1.

Furthermore let b2s+d
n |Wn| → 0, and let the kernel function satisfy Condition 5.1.2 K(d, s).

Then the kth cumulant of the ISE In(K) satisfies

Γk(In(K)) =

k∑

j=0

(
k

j

)

2j(bsn)j(bdn|Wn|)
j−2kµ∗∗jk−j,j.

Proof: In the first part of the proof we apply Lemma 4.2.1 in order to express the kth cumulant

by a sum of indecomposable integrals. Due to the smoothness conditions on the second-order

product density this representation can be further simplified. This is shown in the second part

of the proof.

Due to the semi-invariance of the cumulants of order 2 and higher the kth cumulant of∫

K

(
ˆ̺2
n(t) − 2λ̺(t)ˆ̺n(t)

)
dt is identical to the kth cumulant of In(K)−EIn(K) for k ≥ 2. There-

fore we investigate the kth cumulant of

∫

K

(
ˆ̺2
n(t) − 2λ̺(t)ˆ̺n(t)

)
dt.
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I Representation of the kth cumulant by indecomposable integrals

First we rewrite

∫

K

(
ˆ̺2
n(t) − 2λ̺(t)ˆ̺n(t)

)
dt. We have

∫

K

(
ˆ̺2
n(t) − 2λ̺(t)ˆ̺n(t)

)
dt

=
∑

x1,x2,x3,x4∈Ψ
x1 6=x2,x3 6=x4

(bdn|Wn|)
−2
1Wn(x1)1Wn(x3)

∫

K

k

(
x2 − x1 − t

bn

)

k

(
x4 − x3 − t

bn

)

dt

−
∑∗

x1,x2∈Ψ

2(bdn|Wn|)
−1
1Wn(x1)

∫

K

k

(
x2 − x1 − t

bn

)

λ̺(t)dt

=
∑

x1,x2,x3,x4∈Ψ

C1f1(x1, x2, x3, x4) +
∑

x1,x2∈Ψ

C2f2(x1, x2),

with functions

f1 : (Rd)4 → R,

(x1, x2, x3, x4) 7→ 1Wn(x1)1Wn(x3)1{x1 6=x2,x3 6=x4}

∫

K

k

(
x2 − x1 − t

bn

)

k

(
x4 − x3 − t

bn

)

dt,

and

f2 : (Rd)2 → R, (x1, x2) 7→ 1Wn(x1)1{x1 6=x2}

∫

K

k

(
x2 − x1 − t

bn

)

λ̺(t)dt,

and constants C1 := (bdn|Wn|)
−2 and C2 := −2(bdn|Wn|)

−1. Since we have |K| < ∞ and since

k is bounded with bounded support the moments E
[

|
∑

x1,x2,x3,x4∈Ψ f1(x1, x2, x3, x4)|
k
]

and

E
[

|
∑

x1,x2∈Ψ f2(x1, x2)|
k
]

are finite. Hence we can apply Lemma 4.2.1. Therefore the kth

cumulant Γk(In(K)) of the ISE In(K) satisfies

Γk(In(K)) =
∑

k1+k2=k

k1,k2≥0

k!

k1!k2!
(−1)k22k2(bdn|Wn|)

−2k1−k2µ∗k1,k2

=

k∑

j=0

(
k

j

)

(−1)j2j(bdn|Wn|)
j−2kµ∗k−j,j. (7.1)
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II Representation of the cumulants by indecomposable and irreducible inte-

grals

The special form of the functions f1 and f2 allows a further simplification of the representation

(7.1) for the kth cumulant. This simplification is based on the approximate identity

∫

(Rd)2

f1(x1, x2, x3, x4)α
(2)(d(x1, x2)) =

∫

(Rd)2

f1(x3, x4, x1, x2)α
(2)(d(x1, x2))

≈ bdn|Wn|f2(x3, x4)

for x3, x4 6∈ {x1, x2}, which implies the reducible integrals of µ∗k,0 (except for the error terms)

and integrals in µ∗k−ℓ,ℓ, ℓ = 1, . . . , k, to cancel.

More precisely we start by combining two reducible integrals in µ∗k−j,j, j = 0, . . . , k − 1. These

integrals differ only by their reducible parts, in two possible ways. Either the two integrals’

reducible parts are

∫

(Rd)2

f1(xi, xi+1, x, y)γ
(2)(d(xi, xi+1)) and

∫

(Rd)2

f1(xi, xi+1, x, y)γ
(1)(dxi)γ

(1)(dxi+1)

or they are

∫

(Rd)2

f1(x, y, xi, xi+1)γ
(2)(d(xi, xi+1)) and

∫

(Rd)2

f1(x, y, xi, xi+1)γ
(1)(dxi)γ

(1)(dxi+1).

The sum of these two reducible integrals in µ∗k−j,j is hence an integral which emerges from either

of the two aforementioned integrals by replacing the respective reducible parts by

∫

(Rd)2

f1(xi, xi+1, x, y)α
(2)(d(xi, xi+1)) (7.2)

or

∫

(Rd)2

f1(x, y, xi, xi+1)α
(2)(d(xi, xi+1)), (7.3)

depending on the above distinction. If the integral has more than one reducible part, then

we iterate the above procedure, eventually obtaining an irreducible integral. In the following,

we will only consider irreducible integrals and integrals which arise from the above-mentioned
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combination and summation of reducible integrals. The latter integrals are also called reducible

parts. Now we simplify one of the reducible parts (7.2) and (7.3) of a reducible integral by

disintegration and Taylor’s expansion, that is,

∫

(Rd)2

1Wn(xi)1Wn(x)

∫

K

k

(
xi+1 − xi − t

bn

)

k

(
y − x− t

bn

)

dtα(2)(d(xi, xi+1))

= λ

∫

Rd

∫

Rd

1Wn(xi)1Wn(x)

∫

K

k

(
xi+1 − t

bn

)

k

(
y − x− t

bn

)

dt̺(xi+1)dxi+1dxi

= bdn|Wn|1Wn(x)

∫

K

k

(
y − x− t

bn

)

λ





∫

Rd

k(xi+1)̺(bnxi+1 + t)dxi+1



dt

= bdn|Wn|f2(x, y) + bsnb
d
n|Wn|f̃2(x, y), (7.4)

where

f̃2(x, y) = 1Wn(x)

∫

K



k

(
y − x− t

bn

)

λ





∫

Rd

Rs(z, t)k(z)dz







 dt

with Rs(z, t) = 1
s!

(
∂

∂t1
z1 + . . .+ ∂

∂td
zd

)s
̺(t1 + θbnz1, . . . , td + θbnzd) and θ = θ(t) ∈ (0, 1).

Here we have used Condition 5.1.2 K(d, s) so that only ̺(t) and the error term remain from

Taylor’s expansion. In the following we will refer to the above simplification by disintegration

and Taylor’s expansion as reduction of the integral.

An integral in µ∗k−j,j is called r-reducible if it can be reduced exactly r times (that is, if reduction

as defined above can be applied exactly r times), with r ∈ {0, . . . , k−j}. Reducing an r-reducible

integral r times yields a sum of two parts. The first part is an integral in µ∗∗k−(j+r),j+r multiplied

by (bdn|Wn|)
r while the second part is a sum of integrals containing the error terms from all Taylor

expansions performed in the reductions. Note that within this iterative scheme reductions can

also be applied to error terms obtained from earlier reductions. We illustrate this procedure by

an example involving three reductions of a 3-reducible integral in µ∗3,0:

∫

(Rd)8

f1(x1, x2, x3, x4)f1(x1, x2, x5, x6)f1(x1, x2, x7, x8)

γ(2)(d(x1, x2))α
(2)(d(x3, x4))α

(2)(d(x5, x6))α
(2)(d(x7, x8))
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= bdn|Wn|

(
∫

(Rd)6

f2(x1, x2)f1(x1, x2, x5, x6)f1(x1, x2, x7, x8)

γ(2)(d(x1, x2))α
(2)(d(x5, x6))α

(2)(d(x7, x8))

+ bsn

∫

(Rd)6

f̃2(x1, x2)f1(x1, x2, x5, x6)f1(x1, x2, x7, x8)

γ(2)(d(x1, x2))α
(2)(d(x5, x6))α

(2)(d(x7, x8))

)

= b2d
n |Wn|

2

(
∫

(Rd)4

(f2(x1, x2))
2f1(x1, x2, x7, x8)γ

(2)(d(x1, x2))α
(2)(d(x7, x8))

+ 2bsn

∫

(Rd)4

f2(x1, x2)f̃2(x1, x2)f1(x1, x2, x7, x8)γ
(2)(d(x1, x2))α

(2)(d(x7, x8))

+ b2s
n

∫

(Rd)4

(f̃2(x1, x2))
2f1(x1, x2, x7, x8)γ

(2)(d(x1, x2))α
(2)(d(x7, x8))

)

= b3d
n |Wn|

3

(
∫

(Rd)2

(f2(x1, x2))
3γ(2)(d(x1, x2))

+ 3bsn

∫

(Rd)4

(f2(x1, x2))
2f̃2(x1, x2)γ

(2)(d(x1, x2))

+ 3b2s
n

∫

(Rd)4

f2(x1, x2)(f̃2(x1, x2))
2γ(2)(d(x1, x2))

+ b3s
n

∫

(Rd)4

(f̃2(x1, x2))
3γ(2)(d(x1, x2))

)

.

In the remaining terms a instances of the function f2 are replaced by f̃2, a = 1, . . . , r. For each

integral in µ∗∗ak−(j+r),j+r the number of r-reducible integrals in µ∗k−j,j leading to this integral is

2r
(

k−j
r

)

. Hence we obtain the representation

µ∗k−j,j =

k−j
∑

r=0

2r

(
k − j

r

)

(bdn|Wn|)
r

r∑

a=0

(bsn)a
( r

a

)

µ∗∗ak−(j+r),j+r (7.5)

for j = 0, . . . , k. The main terms are µ∗∗k−(j+r),j+r ≡ µ∗∗0k−(j+r),j+r, r = 0, . . . , k − j, and the
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remaining terms are µ∗∗ak−(j+r),j+r, a = 1, . . . , r. Equations (7.1) and (7.5) imply

Γk(In(K)) =
k∑

i=0

(−1)i
(
k

i

)

2i(bdn|Wn|)
i−2kµ∗k−i,i

=
k∑

i=0

k−i∑

r=0

r∑

a=0

(−1)i
k!

i!a!(r − a)!(k − (i+ r))!
2i+r(bdn|Wn|)

i+r−2k(bsn)aµ∗∗ak−(i+r),i+r

=
k∑

j=0

j
∑

i=0

j−i
∑

a=0

(−1)i
k!

i!a!(j − i− a)!(k − j)!
2j(bdn|Wn|)

j−2k(bsn)aµ∗∗ak−j,j

=
k∑

j=0

(
k

j

)

2j(bsn)j(bdn|Wn|)
j−2kµ∗∗jk−j,j. (7.6)

For the last line we consider the summands indexed by j ∈ {0, . . . , k}. This yields

j
∑

i=0

j−i
∑

a=0

(−1)i
k!

i!a!(j − i− a)!(k − j)!
2j(bdn|Wn|)

j−2k(bsn)aµ∗∗ak−j,j

=
k!

(k − j)!
2j(bdn|Wn|)

j−2k
j
∑

a=0

1

a!
(bsn)aµ∗∗ak−j,j

j−a
∑

i=0

(−1)i
1

i!(j − a− i)!
.

Due to
∑j−a

i=0 (−1)i 1
i!(j−a−i)! = 0 for a = 0, . . . , j − 1 and

∑0
i=0(−1)i 1

i!(j−i)! = 1 the identity (7.6)

follows and the proof is complete. �

For the stationary Poisson process the kth cumulant of the ISE In(K) takes a simpler form, as

is seen in the following corollary.

Corollary 7.1.2 Let k ≥ 2, and let Ψ ∼ P be a stationary Poisson process in Rd with intensity

λ. Then the kth cumulant of the ISE In(K) satisfies

Γk(In(K)) = (bdn|Wn|)
−2kµ∗∗k,0.

Proof: For the stationary Poisson process the kth-order product density is the constant λk−1.

Hence equation (7.4) simplifies to

∫

(Rd)2

1Wn(xi)1Wn(x)

∫

K

k

(
xi+1 − xi − t

bn

)

k

(
y − x− t

bn

)

dtα(2)(d(xi, xi+1))

= λ2

∫

Rd

∫

Rd

1Wn(xi)1Wn(x)

∫

K

k

(
xi+1 − t

bn

)

k

(
y − x− t

bn

)

dtdxi+1dxi
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= bdn|Wn|1Wn(x)λ2

∫

K

k

(
y − x− t

bn

)

dt

= bdn|Wn|f2(x, y),

where we have used the same notation as in Lemma 7.1.1. As a result, Condition 5.1.2 K(d, s)

is not needed for deriving the representation (7.5), which reduces to

µ∗k−j,j =

k−j
∑

r=0

2r

(
k − j

r

)

(bdn|Wn|)
rµ∗∗k−(j+r),j+r.

Thus equation (7.6) simplifies to

Γk(In(K)) =

k∑

i=0

(−1)i
(
k

i

)

2i(bdn|Wn|)
i−2kµ∗k−i,i

=

k∑

i=0

k−i∑

r=0

(−1)i
k!

i!r!(k − (i+ r))!
2i+r(bdn|Wn|)

i+r−2kµ∗∗k−(i+r),i+r

=

k∑

j=0

j
∑

i=0

(−1)i
k!

i!(j − i)!(k − j)!
2j(bdn|Wn|)

j−2kµ∗∗k−j,j

= (bdn|Wn|)
−2kµ∗∗k,0,

where the last equation holds by the same argument as in (7.6). �

7.1.2 Asymptotic representation of the mean and the variance

In this section we derive asymptotic representations of the mean and the variance of the ISE

In(K) for the Poisson process and under some mild mixing conditions. The following lemma

gives an asymptotic representation for the mean of the ISE In(K) for the Poisson process.

Lemma 7.1.3 Let Ψ ∼ Πλ be a stationary Poisson process in Rd with intensity λ. Then we

have

bdn|Wn|E
∫

K

(ˆ̺n(t) − λ2)2dt = λ2|K|

∫

Rd

k2(y)dy +O(bdn)

as n→ ∞.
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Proof: For the Poisson process the estimator for the second-order product density is unbiased

for λ2, that is,

E ˆ̺n(t) =
1

bdn|Wn|
E
∑∗

x,y∈Ψ

1Wn(x)k

(
y − x− t

bn

)

=
1

bdn|Wn|

∫

(Rd)2

1Wn(x)k

(
y − x− t

bn

)

α(2)(d(x, y))

=
λ

bdn|Wn|

∫

(Rd)2

1Wn(x)k

(
y − x− t

bn

)

α
(2)
red(d(y − x))dx

=
λ2

bdn|Wn|

∫

Rd

∫

Rd

1Wn(x)k

(
y − t

bn

)

dxdy

= λ2.

Applying Fubini’s theorem the mean of the ISE is

E
∫

K

(ˆ̺n(t) − λ2)2dt =

∫

K

Var(ˆ̺n(t))dt.

For the Poisson process we have γ(k) ≡ 0 for k ≥ 2. This implies α(k)(d(x1, . . . , xk)) =

λkd(x1, . . . , xk). Hence the representation (4.2) simplifies to

Cov

(
∑∗

x,y∈Ψ

h1(x, y),
∑∗

z,v∈Ψ

h2(z, v)

)

=

∫

(Rd)2

h1(x, y)[h2(x, y) + h2(y, x)]λ
2d(x, y)

+

∫

(Rd)3

h1(x, y)[h2(x, z) + h2(y, z) + h2(z, x) + h2(z, y)]λ
3d(x, y, z).

Thus we have

Var
(
ˆ̺n(t)

)
=

1

b2d
n |Wn|2

Cov




∑∗

x,y∈Ψ

1Wn(x)k

(
y − x− t

bn

)

,
∑∗

x,y∈Ψ

1Wn(x)k

(
y − x− t

bn

)
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=
1

b2d
n |Wn|2

(

λ2

∫

(Rd)2

1Wn(x)k2

(
y − x− t

bn

)

d(x, y)

+ λ2

∫

(Rd)2

1Wn(x)1Wn(y)k

(
y − x− t

bn

)

k

(
x− y − t

bn

)

d(x, y)

+ λ3

∫

(Rd)3

1Wn(x)k

(
y − x− t

bn

)

k

(
z − x− t

bn

)

d(x, y, z)

+ λ3

∫

(Rd)3

1Wn(x)1Wn(y)k

(
y − x− t

bn

)

k

(
z − y − t

bn

)

d(x, y, z)

+ λ3

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
x− z − t

bn

)

d(x, y, z)

+ λ3

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
y − z − t

bn

)

d(x, y, z)

)

=
1

bdn|Wn|
λ2

∫

Rd

k2(y)dy

+
1

bdn|Wn|2
λ2

∫

Rd

|Wn ∩ (Wn − bny − t)|k(y)k

(

y −
2t

bn

)

dy

+
λ3

|Wn|

+
2

|Wn|2
λ3

∫

Rd

|Wn ∩ (Wn − bny − t)|k(y)dy

+
1

|Wn|2
λ3

∫

(Rd)2

|Wn ∩ (Wn − bnx+ bny)|k(x)k(y)d(x, y).

This entails

bdn|Wn|

∫

K

Var(ˆ̺n(t))dt

= λ2|K|

∫

Rd

k2(y)dy

+ bdn

∫

K

λ2

∫

Rd

1K(bnt)
|Wn ∩ (Wn − bny − bnt)|

|Wn|
k(y)k(y − 2t)dydt

+ bdnλ
3|K|
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+ bdn2λ3

∫

K

∫

Rd

|Wn ∩ (Wn − bny − t)|

|Wn|
k(y)dydt

+ bdnλ
3|K|

∫

(Rd)2

|Wn ∩ (Wn − bnx+ bny)|

|Wn|
k(x)k(y)d(x, y).

Due to |K| <∞ and since the kernel function is bounded with bounded support this completes

the proof. �

The following two lemmata give an asymptotic representation of the mean of the ISE In(K). In

the first lemma we assume the second-order product density to be Lipschitz-continuous whereas

in the second lemma we assume the second-order product density to have bounded and contin-

uous partial derivatives of order s. The latter condition implies a slightly faster convergence for

s ≥ 2.

Lemma 7.1.4 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ and
∥
∥γ

(k)
red

∥
∥ <∞

for k = 2, 3, 4. Let the second-order product density ̺ be Lipschitz-continuous in K⊕ bo(o, ε) for

some ε > 0. Let the third- and fourth-order cumulant densities c(3) and c(4) exist.

Then we have

bdn|Wn|E
∫

K

(
ˆ̺n(t) − λ̺(t)

)2
dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(bn) +O(bd+2
n |Wn|)

as n→ ∞.

Proof: By Fubini’s theorem we have

E
∫

K

(ˆ̺n(t) − λ̺(t))2dt =

∫

K

E
(
ˆ̺n(t) − E ˆ̺n(t) + E ˆ̺n(t) − λ̺(t)

)2
dt

=

∫

K

Var
(
ˆ̺n(t)

)
dt+

∫

K

(
E ˆ̺n(t) − λ̺(t)

)2
dt.

For the second summand we find

bdn|Wn|

∫

K

(
E ˆ̺n(t) − λ̺(t)

)2
dt = bdn|Wn|λ

2

∫

K





∫

Rd

(
̺(t+ bnz) − ̺(t)

)
k(z)dz





2

dt

= O(bd+2
n |Wn|)
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as n→ ∞, due to the Lipschitz-continuity of ̺ inK⊕bo(o, ε) for some ε > 0 and the boundedness

of the kernel function. Now we will prove the asymptotic representation

bdn|Wn|

∫

K

Var
(
ˆ̺n(t)

)
dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(bn).

Using the representation (4.2) we obtain

Var
(
ˆ̺n(t)

)
=

1

b2d
n |Wn|2

×

[
∫

(Rd)2

1Wn(x)k2

(
y − x− t

bn

)

α(2)(d(x, y))

+

∫

(Rd)2

1Wn(x)1Wn(y)k

(
y − x− t

bn

)

k

(
x− y − t

bn

)

α(2)(d(x, y))

+

∫

(Rd)3

1Wn(x)k

(
y − x− t

bn

)

k

(
z − x− t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(y)k

(
y − x− t

bn

)

k

(
z − y − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
x− z − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)3

1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
y − z − t

bn

)

α(3)(d(x, y, z))

+

∫

(Rd)4

1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
v − z − t

bn

)

[γ(4)(d(x, y, z, v))

+ γ(1)(dx)γ(3)(d(y, z, v)) + γ(1)(dy)γ(3)(d(x, z, v))

+ γ(1)(dz)γ(3)(d(x, y, v)) + γ(1)(dv)γ(3)(d(x, y, z))

+ γ(2)(d(x, z))γ(2)(d(y, v)) + γ(2)(d(x, v))γ(2)(d(y, z))

+ γ(2)(d(x, z))γ(1)(dy)γ(1)(dv) + γ(2)(d(x, v))γ(1)(dy)γ(1)(dz)

+ γ(2)(d(y, z))γ(1)(dx)γ(1)(dv) + γ(2)(d(y, v))γ(1)(dx)γ(1)(dz)]

]

.
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First we consider the two integrals with respect to the second-order factorial moment measure

α(2). For the first one we obtain

1

bdn|Wn|

∫

K

∫

(Rd)2

1Wn(x)k2

(
y − x− t

bn

)

α(2)(d(x, y))dt

=
λ

bdn|Wn|

∫

K

∫

(Rd)2

1Wn(x)k2

(
y − t

bn

)

α
(2)
red(dy)dxdt

= λ

∫

K

∫

Rd

k2(y)̺(bny + t)dydt

= λ

∫

K

̺(t)dt

∫

Rd

k2(y)dy +O(bn) (7.7)

as n→ ∞, due to the Lipschitz-continuity of ̺ in K⊕ bo(o, ε) for some ε > 0 and the conditions

on the boundedness of the kernel function. For the second integral with respect to the second-

order factorial moment measure α(2) we have

1

bdn|Wn|

∫

K

∫

(Rd)2

1Wn(x)1Wn(y)k

(
y − x− t

bn

)

k

(
x− y − t

bn

)

α(2)(d(x, y))dt

=
λ

bdn|Wn|

∫

K

∫

(Rd)2

1Wn(x)1Wn(y + x)k

(
y − t

bn

)

k

(
y + t

bn

)

α
(2)
red(dy)dxdt

= λ

∫

Rd

∫

Rd

|Wn ∩ (Wn − bny − t)|

|Wn|
k(y)k

(

y −
2t

bn

)

̺(bny + t)1K(t)dydt

= bdnλ

∫

K

∫

Rd

|Wn ∩ (Wn − bny − bnt)|

|Wn|
k(y)k(y − 2t)̺(bny + bnt)1K(bnt)dydt

= O(bdn)

as n → ∞. Here we have used the Lipschitz-continuity of ̺ in K ⊕ bo(o, ε) for some ε > 0 as

well as the symmetry of the kernel function.

Now we consider the integrals with respect to the third-order factorial moment measure α(3).

For the first of these integrals we have

1

bdn|Wn|

∫

(Rd)4

1K(t)1Wn(x)k

(
y − x− t

bn

)

k

(
z − x− t

bn

)

dtα(3)(d(x, y, z))



92
7. CLTs for the integrated squared error of the empirical second-order product density and the

empirical pair correlation function

=
1

bdn|Wn|

∫

(Rd)4

1K(t)1Wn(x)k

(
y − x− t

bn

)

k

(
z − x− t

bn

)

dt[γ(3)(d(x, y, z)) +

λdxγ(2)(d(y, z)) + λdyγ(2)(d(x, z)) + λdzγ(2)(d(x, y)) + λ3dxdydz]

= bdnλ

∫

(Rd)3

1K(t)k(y)k(z)c(3)(bny + t, bnz + t)dydzdt

+ bdnλ
2

∫

(Rd)3

1K(t)k(y)k(y + z)c(2)(bnz)dydzdt

+ 2bdnλ
2

∫

(Rd)3

1K(t)k(y)k(z)c(2)(bnz + t)dydzdt

+ bdnλ
3

∫

(Rd)3

1K(t)k(y)k(z)dydzdt

= O(bdn)

as n→ ∞. For deriving this asymptotic order we have used Lebesgue’s dominated convergence

theorem which is applicable due to |K| < ∞, the boundedness assumptions on the kernel

function, the Lipschitz-continuity of c(2), and
∥
∥γ

(3)
red

∥
∥ < ∞ (see Remark 2.2.5). By analogous

arguments we can show the asymptotic order of the other integrals with respect to the third-order

factorial moment measure α(3) to be O(bdn), too.

Let us now consider the integrals with respect to the factorial cumulant measures. Due to the

finiteness of the total variations of order two and three the asymptotic order of the integrals

with respect to γ(2) and γ(3) is O(bdn). The integral with respect to γ(4) is

1

bdn|Wn|

∫

(Rd)5

1K(t)1Wn(x)1Wn(z)k

(
y − x− t

bn

)

k

(
v − z − t

bn

)

γ(4)(d(x, y, z, v))dt

= bdnλ

∫

(Rd)4

|Wn ∩ (Wn − z)|

|Wn|
1K(t)k(y)k(v)c(4)(bny + t, z, bnv + z + t)dydzdvdt.

Considering Remark 2.2.5 we find that this integral is of asymptotic order O(bdn) due to
∥
∥γ

(4)
red

∥
∥ <

∞, using Lebesgue’s dominated convergence theorem. This completes the proof. �
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Lemma 7.1.5 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ and
∥
∥γ

(k)
red

∥
∥ <∞

for k = 2, 3, 4. Let the second-order product density ̺ have bounded and continuous partial

derivatives of order s in K ⊕ bo(o, ε) for some ε > 0 and some s ≥ 1. Let the third- and fourth-

order cumulant densities c(3) and c(4) exist, and let the kernel function satisfy Condition 5.1.2

K(d, s).

Then we have

bdn|Wn|E
∫

K

(ˆ̺n(t) − λ̺(t))2dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(bn) +O(bd+2s
n |Wn|)

as n→ ∞. If s = 2 and, in addition, Condition 5.1.3 K2(d, 2) is satisfied, then we have

bdn|Wn|E
∫

K

(ˆ̺n(t) − λ̺(t))2dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(b2n) +O(bdn) +O(bd+4
n |Wn|)

as n→ ∞.

Proof: By Fubini’s theorem we have

E
∫

K

(ˆ̺n(t) − λ̺(t))2dt =

∫

K

E (ˆ̺n(t) − E ˆ̺n(t) + E ˆ̺n(t) − λ̺(t))2 dt

=

∫

K

Var(ˆ̺n(t))dt+

∫

K

(E ˆ̺n(t) − λ̺(t))2dt.

For the second summand we get

∫

K

(E ˆ̺n(t) − λ̺(t))2dt = λ2

∫

K





∫

Rd

(
̺(t+ bnz) − ̺(t)

)
k(z)dz





2

dt.

Using Taylor’s expansion

̺(t+ bnz) = ̺(t) +

s−1∑

i=1

1

i!

(
∂

∂t1
bnz1 + . . . +

∂

∂td
bnzd

)i

̺(t1, . . . , td) + bsnRs(z, t)

with Rs(z, t) = 1
s!

(
∂

∂t1
z1 + . . .+ ∂

∂td
zd

)s
̺(t1 + θbnz1, . . . , td + θbnzd) and θ = θ(t) ∈ (0, 1) we

have

∣
∣
∣

∫

Rd

(
̺(t+ bnz) − ̺(t)

)
k(z)dz

∣
∣
∣ = bsn

∣
∣
∣

∫

Rd

Rs(z, t)k(z)dz
∣
∣
∣ ≤ bsnC0
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for some C0 <∞ due to Condition 5.1.2 K(d, s) and the boundedness of the partial derivatives

of order s. This implies ∫

K

(E ˆ̺n(t) − λ̺(t))2dt = O(b2s
n )

as n→ ∞. Now we will show

bdn|Wn|

∫

K

Var(ˆ̺n(t))dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(bn)

as n → ∞; for the case s = 2 and with the additional assumption of Condition 5.1.3 K2(d, 2)

we will also show

bdn|Wn|

∫

K

Var(ˆ̺n(t))dt = λ

∫

K

̺(t)dt

∫

Rd

k2(x)dx+O(b2n) +O(bdn).

The derivation of the asymptotic order of bdn|Wn|

∫

K

Var(ˆ̺n(t))dt in the proof of Lemma 7.1.4

was solely based on the Lipschitz-continuity in (7.7). Hence we only have to consider the term

λ

∫

K

∫

Rd

k2(y)̺(bny + t)dydt.

By Taylor’s expansion and the boundedness of the partial derivatives of order s this integral

satisfies

λ

∫

K

∫

Rd

k2(y)̺(bny + t)dydt = λ

∫

K

̺(t)dt

∫

Rd

k2(y)dy +O(bn)

as n → ∞. In the case s = 2 and under the additional assumption of Condition 5.1.3 K2(d, 2)

we have

λ

∫

K

∫

Rd

k2(y)̺(bny + t)dydt = λ

∫

K

̺(t)dt

∫

Rd

k2(y)dy +O(b2n) +O(bdn)

as n→ ∞. This completes the proof. �

In the following lemma we consider the reflection Ǩ := {x ∈ Rd : −x ∈ K} of the set K as well

as the convolution of the kernel function k,

k̃ : Rd → R, t 7→

∫

Rd

k(x)k(t− x)dx,
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see page 43. The lemma presents an asymptotic representation for the variance of the ISE In(K)

for the Poisson process.

Lemma 7.1.6 Let Ψ ∼ P be a stationary Poisson process in Rd with intensity λ. Then we have

Var
(

bd/2
n |Wn|

∫

K

(ˆ̺n(t) − λ2)2dt
)

−−−→
n→∞

2λ4
(
|K| + |K ∩ Ǩ|

)
∫

Rd

k̃2(t)dt.

Proof: We use the representation of the cumulant Γ2(In(K)) = (bdn|Wn|)
−4µ∗∗2,0 of the ISE In(K)

derived in Corollary 7.1.2. The terms of highest order in Γ2(In(K)), scaled with bdn|Wn|
2, are

λ4

b3d
n |Wn|2

∫

(Rd)4

f1(x1, x2, x3, x4)[f1(x1, x2, x3, x4) + f1(x3, x4, x1, x2)

+ f1(x2, x1, x4, x3) + f1(x4, x3, x2, x1)]d(x1, x2, x3, x4)

= 2
λ4

bdn

∫

(Rd)4

1K(t1)1K(t2)k(x)k

(

x+
t1 − t2
bn

)

k(y)k

(

y +
t1 − t2
bn

)

dt1dt2dxdy

+ 2
λ4

bdn

∫

(Rd)4

|Wn ∩ (Wn − bnx− t1)||Wn ∩ (Wn − bny − t2)|

|Wn|2

× 1K(t1)1K(t2)k(x)k

(

x+
t1 + t2
bn

)

k(y)k

(

y +
t1 + t2
bn

)

dt1dt2dxdy

= 2λ4

∫

(Rd)4

1K(bnt1 + t2)1K(t2)k(x)k(x + t1)k(y)k(y + t1)dt1dt2dxdy

+ 2λ4

∫

(Rd)4

|Wn ∩ (Wn − bnx− bnt1 + t2)||Wn ∩ (Wn − bny − t2)|

|Wn|2

× 1K(bnt1 − t2)1K(t2)k(x)k(x + t1)k(y)k(y + t1)dt1dt2dxdy.

For the first integral we have

2λ4

∫

(Rd)4

1K(bnt1 + t2)1K(t2)k(x)k(x + t1)k(y)k(y + t1)dt1dt1dxdy

−−−→
n→∞

2λ4|K|

∫

(Rd)3

k(x)k(x+ t)k(y)k(y + t)dxdydt

= 2λ4|K|

∫

Rd

k̃2(t)dt,
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and for the second integral we find

2λ4

∫

(Rd)4

|Wn ∩ (Wn − bnx− bnt1 + t2)||Wn ∩ (Wn − bny − t2)|

|Wn|2

1K(bnt1 − t2)1K(t2)k(x)k(x + t1)k(y)k(y + t1)dt1dt1dxdy

−−−→
n→∞

2λ4|K ∩ Ǩ|

∫

(Rd)3

k(x)k(x + t)k(y)k(y + t)dxdydt

= 2λ4|K ∩ Ǩ|

∫

Rd

k̃2(t)dt,

where Ǩ = {−x ∈ Rd : x ∈ K} is the reflection of K, as introduced above the lemma. The

remaining part of the scaled variance bdn|Wn|
2 Γ2(In(K)) converges to zero. �

Now we derive an asymptotic representation for the variance of the ISE under some mild mixing

conditions.

Lemma 7.1.7 Let Ψ ∼ P be an 8-stationary point process in Rd with intensity λ and
∥
∥γ

(k)
red

∥
∥ <

∞ for k = 2, . . . , 8. Let the second-order product density ̺ have bounded and continuous partial

derivatives of order s in K ⊕ bo(o, ε) for some ε > 0 and some s ≥ 1. Let the third- and fourth-

order cumulant densities c(3) and c(4) exist. Furthermore let b2s+d
n |Wn| → 0, and let the kernel

function satisfy Condition 5.1.2 K(d, s).

Then we have

Var
(

bd/2
n |Wn|

∫

K

(ˆ̺n(t) − λ̺(t))2dt
)

−−−→
n→∞

2λ2

∫

(Rd)3

k(x)k(x+ t)k(y)k(y + t)dxdydt






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt






= 2λ2

∫

Rd

k̃2(t)dt






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt




 .

Proof: We use the representation of the second cumulant of the ISE

Γ2(In(K)) =

2∑

j=0

(
2

j

)

2j(bsn)j(bdn|Wn|)
j−4µ∗∗j2−j,j (7.8)
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derived in Lemma 7.1.1. Now we will determine the asymptotic order of µ∗∗j2−j,j, j = 0, 1, 2. The

highest-order terms in µ∗∗02,0 are

∫

(Rd)4

f1(x1, x2, x3, x4)
[
f1(x1, x2, x3, x4) + f1(x3, x4, x1, x2)

+ f1(x2, x1, x4, x3) + f1(x4, x3, x2, x1)
]

[

γ(2)(d(x1, x2))γ
(2)(d(x3, x4)) + γ(2)(d(x1, x2))γ

(2)(d(x3, x4))

+ γ(1)(dx1)γ
(1)(dx2)γ

(2)(d(x3, x4)) + γ(1)(dx3)γ
(1)(dx4)γ

(2)(d(x3, x4))

+ γ(1)(dx1)γ
(1)(dx2)γ

(1)(dx3)γ
(1)(dx4)

]

.

Combining the factorial cumulant measures to factorial moment measures, see (2.1), and multi-

plying with the scaling factor 1
b3d
n |Wn|2 we obtain

1

b3d
n |Wn|2

∫

(Rd)4

f1(x1, x2, x3, x4)[f1(x1, x2, x3, x4) + f1(x3, x4, x1, x2)

+ f1(x2, x1, x4, x3) + f1(x4, x3, x2, x1)]α
(2)(d(x1, x2))α

(2)(d(x3, x4))

= 2λ2

∫

(Rd)2

1K(bnt1 + t2)1K(t2)





∫

Rd

k(x)k(x + t1)̺(bnx+ bnt1 + t2)dx





2

dt1dt2

+ 2λ2

∫

(Rd)2

1K(bnt1 − t2)1K(t2)

×





∫

Rd

|Wn ∩ (Wn − bnx+ bnt1 − t2)|

|Wn|
k(x)k(x+ t1)̺(bnx+ bnt1 − t2)dx





2

dt1dt2

−−−→
n→∞

2λ2

∫

K

̺2(t)dt

∫

Rd

k̃2(x)dx+ 2λ2

∫

Ǩ∩K

̺2(−t)dt

∫

Rd

k̃2(x)dx

= 2λ2

∫

Rd

k̃2(x)dx






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt




 .

The remaining part of µ∗∗02,0 , scaled with (b3d
n |Wn|

2)−1, is of order O
(
bdn +(bdn|Wn|)

−1
)

as n→ ∞.

For integrals in µ∗∗02,0 containing an integration with respect to γ(5), γ(6), γ(7) and γ(8), this is

due to the finiteness of these measures’ total variation. For the other integrals one uses the

existence of the cumulant densities up to order four and the finiteness of the total variations
∥
∥γ

(k)
red

∥
∥, k = 2, 3, 4. For example, if we do not assume the existence of the fourth-order cumulant
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density c(4), then the integral

1

b3d
n |Wn|2

∫

(Rd)8

f1(x1, x2, x3, x4)f1(x5, x6, x7, x8)γ
(4)(d(x1, x2, x5, x6))γ

(4)(d(x3, x4, x7, x8))

=
1

b3d
n

∫

(Rd)8

|Wn ∩ (Wn − x5)||Wn ∩ (Wn − x7)|

|Wn|2
1K(t1)1K(t2)

× k

(
x2 − t1
bn

)

k

(
x4 − t1
bn

)

k

(
x6 − x5 − t2

bn

)

k

(
x8 − x7 − t2

bn

)

dt1dt2γ
(4)
red(d(x2, x5, x6))γ

(4)
red(d(x4, x7, x8))

occurring in (b3d
n |Wn|

2)−1µ∗∗02,0 can only be shown to be of asymptotic order O(b−d
n ). Showing

that the above integral converges to zero hence requires the assumption that the fourth-order

cumulant density c(4) exists. By substitution the above integral turns into

bdn

∫

(Rd)8

|Wn ∩ (Wn − x5)||Wn ∩ (Wn − x7)|

|Wn|2
1K(t1)1K(t2)k(x2)k(x4)k(x6)k(x8)

× c(4)(bnx2 + t1, x5, bnx6 + x5 + t2)c
(4)(bnx4 + t1, x7, bnx8 + x7 + t2)

dt1dt2dx2dx4dx5dx6dx7dx8.

This term is of order O(bdn) as n → ∞, due to
∥
∥γ

(4)
red

∥
∥ < ∞ (see Remark 2.2.5) and since the

kernel function is bounded with bounded support. Likewise, the third-order cumulant density

c(3) is needed for showing that the integral

1

b3d
n |Wn|2

∫

(Rd)6

f1(x1, x2, x3, x4)f1(x1, x5, x3, x6)γ
(3)(d(x1, x2, x5))γ

(3)(d(x3, x4, x6))

is of order O(bdn) as n→ ∞.

Both terms µ∗∗11,1 and µ∗∗20,2 are of order O(b2d
n |Wn|) which can be shown using the finiteness of

the total variations
∥
∥γ

(k)
red

∥
∥, k = 2, . . . , 6. Together with the representation (7.8) this leads to the

asymptotic representation

bdn|Wn|
2 Γ2(In(K)) = 2λ2

∫

Rd

k̃2(t)dt






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt




+O(bdn)+O(bsn)+O(b2s+d

n |Wn|).

Now the assumption b2s+d
n |Wn| → 0 implies the claim. �
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7.1.3 Central limit theorems

In this section we derive a central limit theorem for the integrated squared error of the esti-

mated second-order product density in the setting of Brillinger-mixing point processes. The

result will be proved by showing the cumulants of order k ≥ 3 of the suitably scaled in-

tegrated squared error to converge to zero. Since the normalizing factor for the deviation
(
ˆ̺n(t) − λ̺(t)

)
is (bdn|Wn|)

1/2 (see Section 6.1) one might expect bdn|Wn| as the normalizing

factor for the integrated squared error In(K) =
∫

K

(ˆ̺n(t) − λ̺(t))2dt. However, the asymptotic

variance of In(K) shows that the suitable normalizing factor is b
d/2
n |Wn|. Note also that there

is an analogous normalizing factor for the integrated squared error of estimated probability

densities, see Horváth [37].

Recall the notation
d

−−−→
n→∞

for weak convergence and N(µ, σ2) for the univariate normal distri-

bution with mean µ ∈ R and variance σ2 ≥ 0.

Theorem 7.1.8 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ. Let

the second-order product density ̺ have bounded and continuous partial derivatives of order s

in K ⊕ bo(o, ε) for some ε > 0 and some s ≥ 1. Further let all cumulant densities c(k), k ≥ 2,

exist. Let the kernel function k satisfy Condition 5.1.2 K(d, s), and let the bandwidth satisfy

b2s+d
n |Wn| −−−→

n→∞
0.

Then we have

bd/2
n |Wn|(In(K) − EIn(K))

d
−−−→
n→∞

N




0, 2λ2






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt






∫

Rd

k̃2(t)dt




 .

Proof: The asymptotic variance of b
d/2
n nd(In(K) − EIn(K)) has already been determined in

Lemma 7.1.7. We will prove asymptotic normality by showing that the kth cumulant of

b
d/2
n |Wn|

(
In(K) − EIn(K)

)
converges to zero for all k ≥ 3.

In Lemma 7.1.1 we derived a representation of the kth cumulant of In(K) by indecomposable

and irreducible integrals. Now we will show that the kth cumulant of b
d/2
n |Wn|

(
In(K)−EIn(K)

)

is of order O
(
(bdn)k/2−1 + b

2s+ k
2
d

n |Wn|
)

as n→ ∞ for k ≥ 2. This implies the cumulants of order

three and higher to converge to zero.

We will use the representation (7.6) derived in part II of the proof of Lemma 7.1.1 and determine

the asymptotic order of the terms µ∗∗jk−j,j for j = 0, . . . , k. It is essential that the integrals in

µ∗∗jk−j,j are neither decomposable nor reducible.
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Consider an integral IP,Q(.) in µ∗∗jk−j,j, j = 0, . . . , k, see (4.3). Let V be the set of integration

variables occurring in the integral and define the set of argument pairs

V :=
{
{v,w} ⊆ V : the integrand of IP,Q(.) contains

a term f1(v,w, . , .), a term f1(. , . , v, w), or a term f2(v,w)
}
.

Now we define a linkage relation on V. Two argument pairs {v,w}, {x, y} ∈ V are said to be

linked (notation: {v,w} ⌣ {x, y}) if at least one of the following conditions is satisfied:

(i) The argument pairs {v,w}, {x, y} have a common element, that is, {v,w} ∩ {x, y} 6= ∅.

(ii) The integral IP,Q(.) involves an integration γ(i)(d(v1, . . . , vi)) for some i ≥ 2 and some

v1, . . . , vi ∈ V such that {v,w} ∩ {v1, . . . , vi} 6= ∅ and {x, y} ∩ {v1, . . . , vi} 6= ∅.

(iii) The integral IP,Q(.) involves an integration γ(1)(dv0) γ
(i)(d(v1, . . . , vi)) for some i ≥ 1 and

v0, . . . , vi ∈ V such that {v,w} ∩ {v0, . . . , vi} 6= ∅ and {x, y} ∩ {v0, . . . , vi} 6= ∅.

Note that the relation ⌣ is reflexive and symmetric.

The maximal order of each integration of linked argument pairs with ℓ arguments is

O
(
(bdn)⌈

ℓ
2
⌉|Wn|

)
. After reduction of the factorial cumulant measures we make use of the ex-

istence of the cumulant densities. There are at least ⌈ ℓ
2⌉ kernel functions k. By substitution

of the arguments of the kernel functions k we get a factor bdn for each function. Furthermore

there is exactly one variable occurring only in the indicator functions 1Wn (this is due to the

integral’s indecomposability and irreducibility). Integration over this variable yields the factor

|Wn|. Because of the boundedness of the total variations the integrals over the cumulant densi-

ties are also bounded. Therefore we obtain the order O((bdn)⌈
ℓ
2
⌉|Wn|) for each integration over ℓ

linked argument pairs. Note that without the existence of the cumulant densities one can only

derive the order O(|Wn|). For determining the order of the whole integral we also have to take

into account that some of the arguments t of the functions 1K(t) can be substituted, where each

substitution produces a factor bdn. Thus the highest-order terms are those in which as many

argument pairs as possible are not linked.

We will now use the concept of a cyclic linkage. Consider a product

m∏

i=1

f1(pi, qi)
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occurring in the integrand of IP,Q(.) and involving the argument pairs p1, q1, . . . , pm, qm ∈ V.

(Here f1(p, q) with argument pairs p = {u, v}, q = {x, y} is understood as f1(u, v, x, y).) This

product is said to be cyclically linked if there are an enumeration r1, . . . , r2m of

{p1, q1, . . . , pm, qm} and a permutation π of {1, . . . ,m} such that {r2i−1, r2i} = {pπ(i), qπ(i)}

for all i = 1, . . . ,m and such that

r2i ⌣ r2i+1mod 2m for all i ∈ {1, . . . ,m}

is an exhaustive list of the links between the argument pairs p1, q1, . . . , pm, qm.

We will now investigate the highest-order terms in µ∗∗jk−j,j for j = 0, . . . , k.

Let j = 0. Then the integrands of all highest-order integrals in µ∗∗0k,0 are cyclically linked. As an

example consider the integral

∫

(Rd)2k

2k−3∏

a=1
a odd

f1(xa, xa+1, xa+2, xa+3)f1(x2k−1, x2k, x1, x2)

2k−1∏

a=1
a odd

γ(2)(d(xa, xa+1)).

By disintegration and substitution we get

λk|Wn|
k

∫

(Rd)k

2k−3∏

a=1
a odd

∫

K

k

(
xa+1 − ta

bn

)

k

(
xa+3 − ta

bn

)

dta

×

∫

K

k

(
x2k − t2k−1

bn

)

k

(
x2 − t2k−1

bn

)

dt2k−1

2k−1∏

a=1
a odd

γ
(2)
red(dxa+1)

= (bdn)k|Wn|
kλk

∫

(Rd)2k

2k−3∏

a=1
a odd

1K(ta)k(xa+1)k

(

xa+3 +
ta+2 − ta

bn

)

1K(t2k−1)k(x2k)

× k

(

x2 +
t1 − t2k−1

bn

) 2k−1∏

a=1
a odd

c(2)(bnxa+1 + ta)

dx2dx4 . . . dx2kdt1dt3 . . . dt2k−1.
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By substituting t̃a+2 = ta+2−ta
bn

, a = 3, 5, . . . , 2k − 1, we see that this is equal to

(bdn)2k−1|Wn|
kλk

∫

(Rd)2k

2k−3∏

a=1
a odd

1K(bnta+2 + t1)k(xa+1)k(xa+3 + ta+2 − ta)1K(t1)k(x2k)

× k(x2 − t2k−1)

2k−1∏

a=3
a odd

c(2)(bnxa+1 + bnta + t1)c
(2)(bnx2 + t1)

dx2dx4 . . . dx2kdt1dt3 . . . dt2k−1.

The second-order cumulant density c(2) is continuous since the second-order product density

is continuous in K ⊕ bo(o, ε) for some ε > 0. Hence the above-mentioned integral is of order

O
(
(bdn)2k−1|Wn|

k
)
. Analogous arguments apply to the other terms in µ∗∗k,0.

Now let j = 1. Then each integrand of a highest-order term in µ∗∗1k−1,1 is a product of two parts:

First, a cyclically linked product of k−1 instances of f1, and second, one instance of the function

f̃2 whose argument pair is linked to at least one argument pair from the first part. One of these

highest-order integrals is

∫

(Rd)2k−2

2k−5∏

a=1
a odd

f1(xa, xa+1, xa+2, xa+3)f1(x2k−3, x2k−2, x1, x2)f̃2(x1, x2)

2k−3∏

a=1
a odd

α(2)(d(xa, xa+1)).

By applying disintegration and substitution as above and taking advantage of the boundedness

of the partial derivatives of order s of ̺ in K ⊕ bo(o, ε) for some ε > 0, one finds the above-

mentioned integral to be order O
(
(bdn)2k−2|Wn|

k−1
)

as n → ∞. Analogous arguments apply to

the remaining integrals.

Next let j = 2. Then each integrand of a highest-order term in µ∗∗2k−2,2 is a product of two parts:

First, a cyclically linked product of k−2 instances of f1, and second, a product of two instances

of the function f̃2 whose argument pairs are both linked to argument pairs from the first part.

For example, the integral

∫

(Rd)2k−4

2k−7∏

a=1
a odd

f1(xa, xa+1, xa+2, xa+3)f̃2(x2k−5, x2k−4)f̃2(x1, x2)

2k−5∏

a=1
a odd

α(2)(d(xa, xa+1))

is of asymptotic order O((bdn)2k−2|Wn|
k−1) and hence one of the highest-order terms for the case

j = 2.

For j = 3, . . . , k − 1 one obtains the asymptotic order O((bdn)2k−j |Wn|
k−j+1) by analogous

considerations.
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Finally, in the case j = k all integrands of the integrals in µ∗∗k0,k are products of k instances of

the function f̃2. Since these integrals are indecomposable the argument pairs occurring in the

integrand can be enumerated as p1, . . . , pk such that pi ⌣ pi+1 for i = 1, . . . , k − 1. Hence the

term µ∗∗k0,k is of order O((bdn)k|Wn|).

Altogether we have

µ∗∗jk−j,j = O((bdn)2k−j−1|Wn|
k−j) for j = 0, 1,

and

µ∗∗jk−j,j = O((bdn)2k−j|Wn|
k−j+1) for j = 2, . . . , k.

Together with (7.6) the kth cumulant hence satisfies

Γk(In(K)) = O(b−d
n |Wn|

−k) + 2kO(bs−d
n |Wn|

−k) +

k∑

j=2

(
k

j

)

2jO(bsjn |Wn|
1−k).

As a result the kth cumulant of b
d/2
n |Wn|

(
In(K)−EIn(K)

)
is of order O

(
(bdn)k/2−1+b

2s+ k
2
d

n |Wn|
)

for k ≥ 2. Due to the assumption b2s+d
n |Wn| → 0 the kth cumulant of b

d/2
n |Wn|(In(K)−EIn(K))

converges to zero for every k ≥ 3. This proves normal convergence. �

The following theorems state versions of the above central limit theorem for Poisson processes

and Neyman-Scott processes.

Theorem 7.1.9 Let Ψ ∼ Πλ be a stationary Poisson process in Rd with intensity λ. Then we

have

bd/2
n |Wn|

(
In(K) − EIn(K)

) d
−−−→
n→∞

N



0, 2λ4
(
|K| + |K ∩ Ǩ|

)
∫

Rd

k̃2(t)dt



 .

Proof: Using Corollary 7.1.2 it is easily seen that for the Poisson process the proof of The-

orem 7.1.8 requires neither the assumptions of Condition 5.1.2 K(d, s) nor the assumption

b2s+d
n |Wn| −−−→

n→∞
0 on the bandwidth. The remaining parts of the proof are analogous to that

of Theorem 7.1.8. �

Theorem 7.1.10 Let Ψ ∼ P be a Neyman-Scott process in Rd with intensity λp of the under-

lying Poisson process, random number of points M ∼ G in the typical cluster, and let f be the

Lebesgue density of the distribution of the difference of two independent random points of the

typical cluster (see page 13). The second-order product density ̺ is then given by (2.6). Let
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λ = λp EM denote the intensity of Ψ. Let EMk < ∞ for all k ≥ 1. Let f have bounded and

continuous partial derivatives of order s in K ⊕ bo(o, ε) for some ε > 0 and some s ≥ 1. Let the

kernel function k satisfy Condition 5.1.2 K(d, s), and let b2s+d
n |Wn| −−−→

n→∞
0.

Then we have

bd/2
n |Wn|

(
In(K) − EIn(K)

) d
−−−→
n→∞

N




0, 2λ2






∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt






∫

Rd

k̃2(t)dt




 .

Proof: The assumption EMk < ∞ for all k ≥ 1 implies Ψ to be Brillinger-mixing, see page 24.

By equation (3.6) it can be seen that the existence of the cumulant densities of order two and

higher is entailed by the existence of the density f . The assumptions on f imply boundedness

and continuity of the partial derivatives of order s of ̺ in K ⊕ bo(o, ε) for some ε > 0 and some

s ≥ 1. Thus all assumptions of Theorem 7.1.8 are satisfied, and the claim follows. �

An alternative approach for proving central limit theorems for the ISE in the setting of Poisson

cluster processes might be the following. Taking advantage of the m-dependence of Poisson

cluster processes with bounded cluster radius one may apply a truncation method to Poisson

cluster processes with unbounded cluster radius (see Heinrich [25], Heinrich [26], and Heinrich

and Werner [35]). Then the techniques for degenerate U -statistics used in Hall [22] and Fan

and Li [16] might be put to use. This approach might also be useful for the above central limit

theorems in the setting of absolutely regular point processes.

7.2 Central limit theorems for the integrated squared error of

the pair correlation function estimator

In this chapter we derive asymptotic representations for the mean and the variance of the

integrated squared error of the pair correlation function estimator under mild mixing conditions.

We will then present central limit theorems for the integrated squared error of the pair correlation

function estimator for Brillinger-mixing point processes and Poisson cluster processes. Since all

results can be proved analogously to those for the second-order product density estimator in the

previous section we will focus on some proofs for the above-mentioned asymptotic representations

for the mean and the variance. These results are derived in the first section. In the second section

we present the central limit theorems.

All results given in this chapter are valid for the estimators ĝn, ĝn,2, g̃n and g̃n,2, see Section 5.3,

despite the fact that we consider only one of these estimators in our proofs.
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7.2.1 Asymptotic representation of the mean and the variance

In this section we derive asymptotic representations of the mean and the variance of the ISE of

the estimated pair correlation function defined as

In(K) :=

∫

K

(ĝn(r) − λ2g(r))2dr,

where K ∈ B((0,∞)), |K| > 0, is a bounded set. Compared with the results for the second-

order product density, the symmetry of the Euclidean norm ‖.‖ causes an extra factor 2 for the

mean and an extra factor 4 for the variance of the ISE In(K).

The following lemma presents the desired asymptotic representation for the mean of the ISE

In(K) in the setting of Poisson processes.

Lemma 7.2.1 Let Ψ ∼ Πλ be a stationary Poisson process in Rd with intensity λ. Then we

have

bn|Wn|E
∫

K

(
g̃n(r) − λ2

)2
dr = 2λ2

∫

K

1

dωdrd−1
dr

∫

R

k2(x)dx+O(bn)

as n→ ∞.

Proof: For the Poisson process the pair correlation function g is the constant λ2. Hence the

estimator for the pair correlation function satisfies

E g̃n(r) = λ2

∞∫

−r/bn

k(s)g(r + bns)ds = λ2

∞∫

−r/bn

k(s)ds,

see the proof of Theorem 6.1.4. Since the kernel function k has bounded support and integrates

to one this entails E g̃n(r) = λ2 for r ∈ (0,∞) and sufficiently large n. By Fubini’s theorem the

mean of the ISE is

E
∫

K

(g̃n(r) − λ2)2dr =

∫

K

Var(g̃n(r))dr

for sufficiently large n. For the Poisson process we have γ(k) ≡ 0 for k ≥ 2, which implies

α(k)(d(x1, . . . , xk)) = λkd(x1, . . . , xk). Hence the variance satisfies

Var

(
∑∗

x,y∈Ψ

h1(x, y)

)

=

∫

(Rd)2

h1(x, y)[h1(x, y) + h1(y, x)]λ
2d(x, y)
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+

∫

(Rd)3

h1(x, y)[h1(x, z) + h1(y, z) + h1(z, x) + h1(z, y)]λ
3d(x, y, z),

see equation (4.2) with

h1(x, y) = h2(x, y) =
1Wn(x)1Wn(y)k

(
‖y−x‖−r

bn

)

|(Wn − x) ∩ (Wn − y)| ‖y − x‖d−1
.

Due to h1(x, y) = h1(y, x) this reduces to

Var

(
∑∗

x,y∈Ψ

h1(x, y)

)

= 2

∫

(Rd)2

h2
1(x, y)λ

2d(x, y) + 4

∫

(Rd)3

h1(x, y)h1(x, z)λ
3d(x, y, z).

This yields

Var(g̃n(r))

=
1

b2nd
2ω2

d

Cov




∑∗

x,y∈Ψ

1Wn(x)1Wn(y)k
(
‖y−x‖−r

bn

)

|(Wn − x) ∩ (Wn − y)| ‖y − x‖d−1
,

∑∗

x,y∈Ψ

1Wn(x)1Wn(y)k
(
‖y−x‖−r

bn

)

|(Wn − x) ∩ (Wn − y)| ‖y − x‖d−1





=
2λ2

b2nd
2ω2

d

∫

(Rd)2

1Wn(x)1Wn(y)k2
(
‖y−x‖−r

bn

)

|(Wn − x) ∩ (Wn − y)|2 ‖y − x‖2(d−1)
d(x, y)

+
4λ3

b2nd
2ω2

d

∫

(Rd)3

1Wn(x)1Wn(y)1Wn(z)k
(
‖y−x‖−r

bn

)

k
(
‖z−x‖−r

bn

)

|(Wn − x) ∩ (Wn − y)| |(Wn − x) ∩ (Wn − z)|

×
1

‖y − x‖d−1 ‖z − x‖d−1
d(x, y, z)

=
2λ2

b2nd
2ω2

d

∫

Rd

k2
(
‖z‖−r

bn

)

|Wn ∩ (Wn − z)| ‖z‖2(d−1)
dz

+
4λ3

b2nd
2ω2

d

∫

(Rd)2

|Wn ∩ (Wn − v) ∩ (Wn − w)|k
(
‖v‖−r

bn

)

k
(
‖w‖−r

bn

)

|Wn ∩ (Wn − v)| |Wn ∩ (Wn − w)| ‖v‖d−1 ‖w‖d−1
d(v,w)
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=
2λ2

b2nd
2ω2

d

∞∫

0

∫

Sd−1

k2
(

s−r
bn

)

|Wn ∩ (Wn − sx)| sd−1
Hd−1(dx)ds

+
4λ3

b2nd
2ω2

d

∞∫

0

∞∫

0

∫

Sd−1

∫

Sd−1

|Wn ∩ (Wn − sy) ∩ (Wn − tz)|k
(

s−r
bn

)

k
(

t−r
bn

)

|Wn ∩ (Wn − sy)| |Wn ∩ (Wn − tz)|

Hd−1(dy)Hd−1(dz)ds dt

=
2λ2

bnd2ω2
d

∞∫

−r/bn

∫

Sd−1

k2(s)

|Wn ∩ (Wn − (bns+ r)x)| (bns+ r)d−1
Hd−1(dx)ds

+
4λ3

d2ω2
d

∞∫

−r/bn

∞∫

−r/bn

∫

Sd−1

∫

Sd−1

|Wn ∩ (Wn − (bns+ r)y) ∩ (Wn − (bnt+ r)z)|k(s)k(t)

|Wn ∩ (Wn − (bns+ r)y)| |Wn ∩ (Wn − (bnt+ r)z)|

Hd−1(dy)Hd−1(dz)ds dt.

Here Hd−1 denotes the (d − 1)-dimensional Hausdorff measure, while Sd−1 is the (d − 1)-

dimensional unit sphere. Due to |K| < ∞, the boundedness of the kernel function, the bound-

edness of its support, and Hd−1(S
d−1) = dωd, Lebesgue’s dominated convergence theorem yields

bn|Wn|

∫

K

Var(g̃n(r))dr = 2λ2

∫

K

1

dωdrd−1
dr

∫

R

k2(x)dx+O(bn)

as n→ ∞. This completes the proof. �

The following two lemmata present an asymptotic representation of the mean of the ISE In(K).

In the first lemma we assume the pair correlation function to be Lipschitz-continuous, whereas

the second lemma is based on the assumption that the derivative of order s of the pair correlation

function is bounded and continuous for some s ≥ 1. Compared to the first assumption the latter

assumption will be seen to imply a faster convergence when s ≥ 2.

Lemma 7.2.2 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ and
∥
∥γ

(k)
red

∥
∥ <∞

for k = 2, 3, 4. Let the pair correlation function g be Lipschitz-continuous in K ⊕ (−ε, ε) for

some ε > 0. Let the third- and fourth-order cumulant densities c(3) and c(4) exist.

Then we have

bn|Wn|E
∫

K

(
g̃n(r) − λ2g(r)

)2
dr = 2λ2

∫

K

g(r)

dωdrd−1
dr

∫

R

k2(x)dx+O(bn) +O(b3n|Wn|)

as n→ ∞.
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Proof: By Fubini’s theorem we have

E
∫

K

(
g̃n(r) − λ2g(r)

)2
dr =

∫

K

E
(
g̃n(r) − Eg̃n(r) + Eg̃n(r) − λ2g(r)

)2
dr

=

∫

K

Var(g̃n(r))dr +

∫

K

(Eg̃n(r) − λ2g(r))2dr.

For the second summand we find

bn|Wn|

∫

K

(
Eg̃n(r) − λ2g(r)

)2
dr = bn|Wn|λ

2

∫

K






∞∫

−r/bn

k(s)g(r + bns)ds






2

dr

= O(b3n|Wn|)

as n→ ∞ due to the Lipschitz-continuity of g in K⊕(−ε, ε) for some ε > 0 and the boundedness

of the kernel function. The asymptotic representation

bn|Wn|

∫

K

Var(g̃n(r))dr = 2λ2

∫

K

g(r)

dωdrd−1
dr

∫

R

k2(x)dx+O(bn)

can be shown as in Lemma 7.1.4, where the differences regarding the pair correlation function

can be handled as in Lemma 7.2.1. �

The following result can be proved analogously to Lemma 7.1.5.

Lemma 7.2.3 Let Ψ ∼ P be a 4-stationary point process in Rd with intensity λ and
∥
∥γ

(k)
red

∥
∥ <∞

for k = 2, 3, 4. Let the derivative of order s of the pair correlation function g be bounded and

continuous in K ⊕ (−ε, ε) for some ε > 0 and some s ≥ 1. Let the third- and fourth-order

cumulant densities c(3) and c(4) exist, and let the kernel function satisfy Condition 5.1.2 K(1, s).

Then we have

bn|Wn|E
∫

K

(g̃n(r) − λ2g(r))2dr = 2λ2

∫

K

g(r)

dωdrd−1
dr

∫

R

k2(x)dx+O(bn) +O(b1+2s
n |Wn|)

as n→ ∞. �
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Recall the convolution

k̃ : R → R, t 7→

∫

R

k(x)k(t − x)dx

of the kernel function k, see page 43. The following lemma gives an asymptotic representation

for the variance of the ISE In(K) in the setting of Poisson processes.

Lemma 7.2.4 Let Ψ ∼ Πλ be a stationary Poisson process in Rd with intensity λ. Then we

have

Var

(

b1/2
n |Wn|

∫

K

(
ĝn(r) − λ2

)2
dr

)

−−−→
n→∞

8λ4

∫

K

(
1

dωdrd−1

)2

dr

∫

R

k̃2(x)dx.

Proof: In Corollary 7.1.2 we found the representation of the second cumulant Γ2(In(K)) =

(bdn|Wn|)
−4µ∗∗2,0, where In(K) denoted the ISE of the estimated second-order product density.

Now In(K) denotes the ISE of the estimated pair correlation function, and the integrals in µ∗∗2,0

involve the functions

f1 : (Rd)4 → R, (x1, x2, x3, x4) 7→
1Wn(x1)1Wn(x3)1{x1 6=x2,x3 6=x4}
d2 ω2

d ‖x2 − x1‖d−1‖x4 − x3‖d−1

×

∫

K

k

(
‖x2 − x1‖ − r

bn

)

k

(
‖x4 − x3‖ − r

bn

)

dr,

and

f2 : (Rd)2 → R, (x1, x2) 7→
1Wn(x1)1{x1 6=x2}
dωd ‖x2 − x1‖d−1

∫

K

k

(
‖x2 − x1‖ − r

bn

)

λ2g(r)dr,

instead of the functions f1, f2 from Lemma 7.1.1. Furthermore we have the constants C1 :=

(bn|Wn|)
−2 and C2 := −2(bn|Wn|)

−1 instead of C1, C2 from Lemma 7.1.1. Given these adapta-

tions arguments analogous to those in Lemma 7.1.1 and Corollary 7.1.2 yield the representation

Γ2(In(K)) = (bn|Wn|)
−4µ∗∗2,0.

The definitions of decomposability and irreducibility of integrals are adapted in a straightforward

manner. The terms of highest order in Γ2(In(K)), scaled with bn|Wn|
2, are

λ4

b3n|Wn|2

∫

(Rd)4

f1(x1, x2, x3, x4)[f1(x1, x2, x3, x4) + f1(x1, x2, x4, x3)

+ f1(x2, x1, x3, x4) + f1(x2, x1, x4, x3) + f1(x3, x4, x1, x2)

+ f1(x3, x4, x2, x1) + f1(x4, x3, x1, x2) + f1(x4, x3, x2, x1)]d(x1, x2, x3, x4).
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Due to symmetry this equals

8λ4

b3n|Wn|2

∫

(Rd)4

f2
1 (x1, x2, x3, x4)d(x1, x2, x3, x4)

=
8λ4

b3n

∫

R

∫

R

∫

Rd

∫

Rd

1K(r1)1K(r2)

d4ω4
d‖x‖

2(d−1)‖y‖2(d−1)

× k

(
‖x‖ − r1

bn

)

k

(
‖y‖ − r1

bn

)

k

(
‖x‖ − r2

bn

)

k

(
‖y‖ − r2

bn

)

dxdy dr1 dr2

=
8λ4

bn

∫

R

∫

R

∫

R

∫

R

1(−r1/bn,∞)(s)1(−r1/bn,∞)(t)1K(r1)1K(r2)

d2ω2
d(bns+ r1)d−1(bnt+ r1)d−1

× k(s)k(t)k

(

s+
r1 − r2
bn

)

k

(

t+
r1 − r2
bn

)

ds dt dr1 dr2

= 8λ4

∫

R

∫

R

∫

R

∫

R

1(−x−r2/bn,∞)(s)1(−x−r2/bn,∞)(t)1K(bnx+ r2)1K(r2)

d2ω2
d(bns+ bnx+ r2)d−1(bnt+ bnx+ r2)d−1

× k(s)k(t)k(s + x)k(t+ x)ds dt dxdr2

which converges to

8λ4

∫

K

(
1

dωdrd−1

)2

dr

∫

R

k̃2(x)dx.

�

The asymptotic representation for the variance of the ISE under some mild mixing conditions

is given without proof.

Lemma 7.2.5 Let Ψ ∼ P be an 8-stationary point process in Rd with
∥
∥γ

(k)
red

∥
∥ < ∞ for k =

2, . . . , 8 and intensity λ. Let the derivative of order s of the pair correlation function g be

bounded and continuous in K ⊕ (−ε, ε) for some ε > 0 and some s ≥ 1. Let the third- and

fourth-order cumulant densities c(3) and c(4) exist. Furthermore let b2s+1
n |Wn| → 0, and let the

kernel function satisfy Condition 5.1.2 K(1, s).

Then we have

Var

(

b1/2
n |Wn|

∫

K

(
ĝn(r) − λ2g(r)

)2
dr

)

−−−→
n→∞

8λ4

∫

K

(
g(r)

dωdrd−1

)2

dr

∫

R

k̃2(x)dx.

�
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7.2.2 Central limit theorems

In this section we present central limit theorems for the ISE of the estimated pair correlation

function for the Poisson process, for Poisson cluster processes and for Brillinger-mixing point

processes. The proofs of the following results are analogous to those given in Section 7.1.3.

Theorem 7.2.6 Let Ψ ∼ P be a Brillinger-mixing point process in Rd with intensity λ. Let the

derivative of order s of the pair correlation function g be bounded and continuous in K⊕ (−ε, ε)

for some ε > 0 and some s ≥ 1. Furthermore let all cumulant densities c(k), k ≥ 2, exist. Let

the kernel function k satisfy Condition 5.1.2 K(1, s), and let b2s+1
n |Wn| → 0.

Then we have

b1/2
n |Wn|

(
In(K) − EIn(K)

) d
−−−→
n→∞

N



0, 8λ4

∫

K

(
g(r)

dωdrd−1

)2

dr

∫

R

k̃2(x)dx



 .

�

Theorem 7.2.7 Let Ψ ∼ Πλ be a stationary Poisson process in Rd with intensity λ. Then we

have

b1/2
n |Wn|

(
In(K) − EIn(K)

) d
−−−→
n→∞

N



0, 8λ4

∫

K

(
1

dωdrd−1

)2

dr

∫

R

k̃2(x)dx



 .

�

Theorem 7.2.8 Let Ψ ∼ P be a Neyman-Scott process in Rd with intensity λp of the underlying

Poisson process, random number of points M ∼ G in the typical cluster, and let f be the Lebesgue

density of the distribution of the distance between two independent random points of the typical

cluster (see page 13). The pair correlation function g is then given by (2.7). Let λ = λp EM

denote the intensity of Ψ. Let EMk < ∞ for all k ≥ 1. Let the derivative of order s of f be

bounded and continuous in K ⊕ (−ε, ε) for some ε > 0 and some s ≥ 1. Let the kernel function

k satisfy Condition 5.1.2 K(1, s), and let the bandwidth satisfy b2s+1
n |Wn| −−−→

n→∞
0.

Then we have

b1/2
n |Wn|

(
In(K) − EIn(K)

) d
−−−→
n→∞

N



0, 8λ4

∫

K

(
g(r)

dωdrd−1

)2

dr

∫

R

k̃2(x)dx



 .

�
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8
Asymptotic goodness-of-fit tests

An important task for the analysis of point processes is model identification. Given a realization

of a point process Ψ ∼ P , one is interested in whether a hypothetical distribution P0 of a point

process is a “good fit” for the unknown “real” distribution P (see Diggle [13], for example). In

this chapter we will explain how to use the limit theorems in Chapters 6 and 7 for constructing

goodness-of-fit tests for point processes in order to get a decision rule for the test problem

H0 : P = P0 versus H1 : P 6= P0.

Let Ψ ∼ P be a point process in Rd and let (Tn)n∈N with Tn = Tn(Ψ) be a sequence of random

variables with

Tn
d

−−−→
n→∞

N(0, σ2) for some σ2 > 0

under P = P0. Let Φ−1
µ,σ2 denote the quantile function of the normal distribution with mean

µ ∈ R and variance σ2 ≥ 0. Then

ϕ(Tn) =







1

0
for |Tn|







>

≤
Φ−1

0,σ2(1 − α/2)

is an asymptotic significance test at the level α ∈ (0, 1) for the test problem H0 : P = P0 versus

H1 : P 6= P0. Likewise, the weak convergence

Tn
d

−−−→
n→∞

χ2
q for some q ∈ N
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under P = P0 gives rise to the test

ϕ(Tn) =







1

0
for Tn







6∈ [F−1
χ2

q
(α/2), F−1

χ2
q

(1 − α/2)],

∈ [F−1
χ2

q
(α/2), F−1

χ2
q

(1 − α/2)],

where F−1
χ2

q
denotes the quantile function of the χ2-distribution with q degrees of freedom. The

test ϕ is an asymptotic significance test at the level α ∈ (0, 1) for testing H0 : P = P0 versus

H1 : P 6= P0.

In both cases the test ϕ is an asymptotic significance test at the level α in the sense that we

have limn→∞ E0 ϕ(Tn) = α, where E0 denotes the mean under the null hypothesis. Note that

for fixed n (especially for small n) we may have E0 ϕ(Tn) > α, which implies that ϕ is not a

significance test at the level α. We may also have E0 ϕ(Tn) ≪ α for small n; then ϕ is still a

significance test at the level α but will be hardly useful since it will reject the null hypothesis

too rarely.

We will sketch how the above procedure is implemented for Theorem 7.2.7. This leads to a test

for complete spatial randomness, that is, H0 : P = Πλ versus H1 : P 6= Πλ.

Corollary 8.1 Let Ψ ∼ P be a point process in Rd and let K ∈ B((0,∞)) be a bounded Borel

set with |K| > 0. Then

ϕ(Tn) =







1

0
for |Tn|







>

≤
Φ−1

0,σ2(1 − α/2)

with

Tn = b1/2
n |Wn|





∫

K

(ĝn(r) − λ2)2dr −
1

bn|Wn|
2λ2

∫

K

1

dωdrd−1
dr

∫

R

k2(x)dx





and

σ2 = 8λ4

∫

K

(
1

dωdrd−1

)2

dr

∫

R

k̃2(x)dx

is an asymptotic significance test at the level α ∈ (0, 1) for testing H0 : P = Πλ versus H1 : P 6=

Πλ, where λ > 0.

Proof: This is an immediate consequence of the asymptotic representation for the mean (see

Lemma 7.2.1) and the central limit theorem for the integrated squared error of the estimated

pair correlation function (see Theorem 7.2.7). �



9
Summary and outlook

In this work we have established normal convergence of empirical product densities of order

two and higher (see Chapter 6) and the integrated squared error of the empirical second-order

product density and of the empirical pair correlation function (see Chapter 7) for Brillinger-

mixing point processes. The examples given in Section 3.4 show that the setting of Brillinger-

mixing point processes covers many popular point process models under rather mild additional

assumptions.

The estimated product densities of order two and higher are asymptotically normal, and their

asymptotic variances depend only on the respective theoretical product density, the intensity,

and the kernel function. Although the normal convergence itself is not a novel result (see

Jolivet [40]), we have corrected the assumptions needed for this normal convergence, namely,

Brillinger-mixing, continuity of the respective product density, and boundedness conditions on

the cumulant densities. We have also presented asymptotic representations for means and vari-

ances of the estimated product densities. Furthermore we have derived the normal convergence

of the integrated squared error In(K) of the estimated second-order product density and of the

estimated pair correlation function. The assumptions needed for the asymptotic normality of

In(K) of the estimated second-order product density are Brillinger-mixing, continuity of the

second-order product density ̺ in a neighborhood of the set K, boundedness and continuity of

the partial derivatives of order s of ̺ for some s ≥ 1 in a neighborhood of the set K, existence

of all cumulant densities, and conditions on the kernel and on the bandwidth (namely Condi-

tion 5.1.2 K(d, s) and b2s+d
n |Wn| −−−→

n→∞
0). Analogous assumptions are needed for deriving the

asymptotic normality of In(K) of the estimated pair correlation function.

An analogue to the normal convergence of the integrated squared error of the estimated second-

order product density is given by the asymptotic normality of the integrated squared error of
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probability density estimators, see Hall [22], Nadaraya [47], and Horváth [37]. The sufficient

conditions stated in Nadaraya [47] and Horváth [37] are similar to the ones needed here.

An extension of the results on the asymptotic behavior of estimated product densities in Chapter

6 might be obtained by replacing the assumption of Brillinger-mixing by that of α- or β-mixing.

The methods used in Hall [22] for proving a central limit theorem for the integrated squared

error of nonparametric probability density estimators might be useful for deriving analogous

results in the setting of β-mixing point processes.

In the present work we have studied summary statistics for stationary point processes only. An

interesting question is whether the asymptotic approach used in the present work can be applied

to summary statistics for inhomogeneous point processes, for instance, to the inhomogeneous

K-function introduced in Baddeley et al. [1].

An important question concerning the applicability of the asymptotic goodness-of-fit tests pre-

sented in Chapter 8 is how large the observation window has to be for a satisfactory approxi-

mation in the central limit theorem. An answer may be found through simulation studies. The

approximation will depend on several factors such as the distribution of the underlying point

process—in particular the intensity and the second product density—, the choice of the band-

width and the kernel function, and the choice of the points of evaluation (u1, . . . , uq)
′ for the test

statistic (∆n(ui))
q
i=1 or the choice of the set K for the test statistic In(K). Given a hypothetical

distribution P0 and the associated test problem H0 : P = P0 versus H1 : P 6= P0 it is obvi-

ous how to investigate the type-I error (that is, the probability of rejecting the null hypothesis

when it is actually true) by simulation studies. The type-II error (that is, the probability of

not rejecting the null hypothesis when the alternative hypothesis is actually true) is difficult

to handle since the true distribution P can differ from P0 in many different ways. Hence the

type-II error can only be studied for some special cases. For example, if P = Πλ and P0 = Πλ0

with λ 6= λ0, an investigation of the type-II error for different combinations of λ and λ0 is a

sensitivity analysis of the test procedure with respect to the intensity of the underlying Poisson

process. Another example of such a sensitivity analysis is given in Grabarnik and Chiu [18] who

consider the null hypothesis of a Poisson process and the alternative hypothesis of a mixture of

a conditional Strauss point process and Matérn’s cluster process. Furthermore our tests should

be compared with alternative tests for the null hypothesis of complete spatial randomness as

well as with alternative test procedures (such as simulation tests, for example) involving null

hypotheses other than the stationary Poisson process.



A
Properties of the sequence of

observation windows

In Chapters 6 and 7 we implicitly used some properties of the sequence of observation windows

(Wn)n∈N to derive asymptotic results for the estimated product densities and the estimated pair

correlation function. More precisely, these properties were needed for deriving the asymptotic

order of some integrals occurring in the proofs in Chapters 6 and 7 by Lebesgue’s dominated

convergence theorem. These properties—which have already been studied in David [10]—are

presented in the following.

Let ∂W denote the boundary of a set W ⊆ Rd. For convex sets A,B ⊆ Rd let A ⊖ B = {x ∈

Rd : B+x ∈ A} denote Minkowski subtraction and A⊕B = {x+ y : x ∈ A, y ∈ B} Minkowski

addition.

Lemma A.1 Let W ⊆ Rd be a convex set and let r ≥ 0. Then we have

|W \ (W ⊖ b(o, r))| ≤ rHd−1(∂W ).

Proof: SinceW is convex the function V (x) = |W\(W⊖b(o, x))| is differentiable for x ∈ [0, ρ(W ))

with V ′(x) = Hd−1(∂(W ⊖ b(0, x))), see Hadwiger [19], page 207. Due to the monotonicity of

Hd−1 we have

|W \ (W ⊖ b(o, r))| =

r∫

0

Hd−1(∂(W ⊖ b(o, x)))dx ≤ r Hd−1(∂W )
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for r ∈ [0, ρ(W )). Because of the convexity of W we find |W \ (W ⊖ b(0, r))| = 0 ≤ rHd−1(∂W )

for r ≥ ρ(W ). �

Lemma A.1 is illustrated in Figure A.1.

Figure A.1: Example to Lemma A.1

W

W ⊖ b(0, r)

r

r

W

r

|W \ (W ⊖ b(0, r))| rH1(∂W )

The inequality |W \(W⊖b(o, r))| ≤ rHd−1(∂W ) from Lemma A.1 for the special case of a
rectangleW . On the left-hand side we see W with the set W \(W⊖b(o, r)) shaded in gray.
In the middle rH1(∂W ) corresponds to the union of the hatched regions. These hatched
regions are flipped over along the edges of W , resulting in the figure on the right-hand
side. Hence we see that we have |W \ (W ⊖ b(o, r))| = rHd−1(∂W ) + 4r2.

For a convex set W , the relation between |W | and Hd−1(∂W ) is

ρ(W )

d
≤

|W |

Hd−1(∂W )
≤ ρ(W ), (A.1)

see Wills [65], Lemma 1 and 2.

The following lemma and remark justify the applicability of Lebesgue’s dominated convergence

theorem in the proofs of the asymptotic results in Chapters 6 and 7.

Lemma A.2 Let (Wn)n∈N be a sequence of convex sets in Rd with ρ(Wn) −−−→
n→∞

∞ and let

y, z ∈ Rd. Let (bn)n∈N be a sequence of positive real numbers with bn −−−→
n→∞

0. Then we have

|Wn ∩ (Wn − bny − z)|

|Wn|
−−−→
n→∞

1.
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Proof: Since Wn is convex we have |Wn ∩ (Wn − bny − z)| ≥ |Wn ⊖ b(o, ‖bny + z‖)|. Together

with Lemma A.1 and the triangle inequality we find

0 ≤ 1 −
|Wn ∩ (Wn − bny − z)|

|Wn|

≤
|Wn \ (Wn ⊖ b(o, ‖bny + z‖))|

|Wn|

≤ ‖bny + z‖
Hd−1(∂Wn)

|Wn|

≤ bn‖y‖
Hd−1(∂Wn)

|Wn|
+ ‖z‖

Hd−1(∂Wn)

|Wn|
.

Due to formula (A.1) and the assumptions ρ(Wn) −−−→
n→∞

∞ and bn −−−→
n→∞

∞ the right-hand side

converges to zero. This proves the claim. �

Remark A.1 Under the assumptions of Lemma A.2 the sequence |Wn|
|Wn∩(Wn−bny−z)| converges

to 1 for arbitrary y, z ∈ Rd and is hence bounded. �
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