
Efficient multi-agent collaboration with tool use for online
planning in complex table question answering

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, Heike Adel

Angaben zur Veröffentlichung / Publication details:

Zhou, Wei, Mohsen Mesgar, Annemarie Friedrich, and Heike Adel. 2025. “Efficient
multi-agent collaboration with tool use for online planning in complex table question
answering.” In Findings of the Association for Computational Linguistics: NAACL 2025 - Annual
Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics, 29 April - 4 May 2025, Albuquerque, NM, USA, edited by Luis Chiruzzo, Alan Ritter,
and Lu Wang, 945–68. Stroudsburg, PA: Association for Computational Linguistics (ACL).
https://doi.org/10.18653/v1/2025.findings-naacl.54.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
CC-BY 4.0: Creative Commons: Namensnennung
Weitere Informationen finden Sie unter: / For more information see:
https://creativecommons.org/licenses/by/4.0/deed.de

CC BY 4.0

https://doi.org/10.18653/v1/2025.findings-naacl.54
https://creativecommons.org/licenses/by/4.0/deed.de

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 945–968

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Efficient Multi-Agent Collaboration with Tool Use
for Online Planning in Complex Table Question Answering

Wei Zhou1,2 Mohsen Mesgar1 Annemarie Friedrich2 Heike Adel3
1Bosch Center for Artificial Intelligence, Renningen, Germany

2University of Augsburg, Germany 3Hochschule der Medien, Stuttgart, Germany
{wei.zhou|mohsen.mesgar}@de.bosch.com

annemarie.friedrich@uni-a.de adel-vu@hdm-stuttgart.de

Abstract

Complex table question answering (TQA)
aims to answer questions that require com-
plex reasoning, such as multi-step or multi-
category reasoning, over data represented in
tabular form. Previous approaches demon-
strate notable performance by leveraging either
closed-source large language models (LLMs)
or fine-tuned open-weight LLMs. However,
fine-tuning LLMs requires high-quality train-
ing data, which is costly to obtain. The
use of closed-source LLMs poses accessi-
bility challenges and leads to reproducibil-
ity issues. In this paper, we propose Multi-
Agent Collaboration with Tool use (MACT), a
framework that requires neither fine-tuning nor
closed-source models. In MACT, a planning
agent and a coding agent that also make use
of tools collaborate for TQA. MACT outper-
forms previous SoTA systems on three out of
four benchmarks and performs comparably to
the larger and more expensive closed-source
model GPT-4 on two benchmarks, even when
using only open-weight models without any
fine-tuning. Our extensive analyses prove the
effectiveness of MACT’s multi-agent collabo-
ration in TQA. We release our code publicly.1

1 Introduction

The goal of table question answering (TQA) is to
answer a question based on data represented in tab-
ular form, optionally also using additional textual
context. Recent studies on TQA focus more and
more on complex instances, as they are ubiquitous
in table data analysis (Zhu et al., 2021; Zhang et al.,
2024b; Lu et al., 2023). Solving those complex
instances requires performing multiple reasoning
steps and/or employing different reasoning strate-
gies (Ghosal et al., 2023). We refer to these aspects
as multi-step and multi-category reasoning, respec-
tively. An example requiring both types of reason-
ing is shown in the upper left part of Figure 1. To

1https://github.com/boschresearch/MACT

Planning
Agent Mp

Q: Which country in Europe features the
largest percentage change in export
between 2021 and 2020?
a1: Retrieval [Retrieve the export number
for France and Germany.]
o1:

Country 2021 (million) 2020 (million)

U.S.A. 2,827,816 2,308,447
Canada 485,700 405,577

France 683,817 552,748
Germany 1,353,626 1,092,044

a1
(1), ..., a1

(k)

1. Action
Generation

2. Action
Selection

3. Tool Selection/
Code Generation

5. Memory State
Update

o1:
Coding

Agent Mc

Tool
set T

Memory S
y

Country 2021 2020

France 683,817 552,748
Germany 1,353,626 1,092,044

Country 2021 2020

France 683,817 552,748
Germany 1,353,626 1,092,044

y1,...,yk

o1
(1), ..., o1

(k)^ ^

fe

Efficiency optimization

conf

inconf

a1: Intent [Instruction]
a1: Retrieval
[Retrieve the export number
for France and Germany.]

4. Observation
Computation

Figure 1: Overview of MACT, an iterative collaboration
framework for TQA that consists of five stages for each
iteration as well as an efficiency optimization module.

answer the question about the percentage change,
a system first needs to use factual knowledge to
extract countries in Europe. Then, numerical rea-
soning is applied to calculate the percentage change
and to carry out the comparison.

One popular approach for addressing those com-
plex instances in TQA is planning, where step-wise
plans are generated and used to guide the reasoning
process (Zhang et al., 2024c; Wang et al., 2024;
Wu and Feng, 2024; Zhu et al., 2024; Zhao et al.,
2024). State-of-the-art works in this direction ei-
ther fine-tune open-weight large language models
(LLMs) (Wu and Feng, 2024; Zhu et al., 2024) or
prompt closed-source commercial LLMs (Wang
et al., 2024; Zhang et al., 2024c; Zhao et al., 2024).
However, fine-tuning requires high-quality data,
which is usually expensive to obtain (Zhu et al.,
2021). Prompting closed-source commercial LLMs
can also be costly and poses challenges to repro-
ducibility. To the best of our knowledge, existing

945

https://github.com/boschresearch/MACT

methods leverage a single LLM to perform plan-
ning and reasoning, which is sub-optimal in par-
ticular if the LLM does not excel at mathematical
reasoning or coding (Wu and Feng, 2024). These
models struggle with answering questions requir-
ing complex reasoning.

To address these challenges, we propose MACT,
a multi-agent collaboration framework with tool
use, which neither depends on closed-source LLMs
nor requires fine-tuning. In fact, its backbone
LLMs can be exchanged flexibly. It incorporates
two agents (a planning agent and a coding agent)
and a set of tools (a Python interpreter, a calcu-
lator and Wikipedia search). The planning agent
performs online planning, i.e., it generates a plan
iteratively. This breaks down complex problems
and helps to address multi-step reasoning. The cod-
ing agent and the tool set assist with generating
faithful intermediate results. The agents work in
a collaborative setting, addressing the challenges
of multi-category reasoning as all agents can con-
centrate on the reasoning types they excel in. An
efficiency optimization module which allows the
framework to take informed shortcuts.

We conduct experiments on four popular TQA
benchmarks that include complex TQA instances.
Our framework outperforms previous SoTA sys-
tems on three out of four benchmarks. It achieves
comparable results to GPT-4 on two benchmarks
even when using only open-weight models with-
out any fine-tuning. In comparison to fine-tuned
SoTA TQA systems, it demonstrates considerably
better generalizability across datasets. Our analysis
proves the effectiveness of our proposed collabora-
tive setting of specialized agents. We find that the
efficiency optimization module can save up to 33%
of iterations without performance degradation.

2 Related Work

We review previous work for three core aspects
of MACT: planning, multi-agent collaboration and
LLMs with tool use. Table 1 compares MACT with
previous TQA systems.

Planning. We categorize previous work into
three groups based on planning strategies: Heuris-
tic coarse-grained planning consists of two pre-
defined steps of retrieving and aggregating (Ye
et al., 2023; Zhou et al., 2024). Online global
planning generates a plan in the first iteration and
revises it in the next one (Zhao et al., 2024). On-
line iterative planning conditions the generation

System
Onli

ne

pla
nn

ing
No fine

-

tun
ing

NL
pla

n
M

ult
i

ag
en

ts
Tools

Raven ✗ - - ✗ cal, SQL
Binder ✗ - - ✗ SQL/Python
Lever ✗ - - ✗ SQL
TableLlaMA ✗ - - ✗ ✗
Dater ✗ ✓ ✓ ✗ ✗
TAT-LLM ✗ ✗ ✓ ✗ cal
Chain of table ✓ ✓ ✗ ✗ ✗
Reactable ✓ ✓ ✗ ✗ SQL,

Python
Protrix ✓ ✗ ✓ ✗ SQL
TAPERA ✓ ✓ ✓ ✗ Python
MACT (ours) ✓ ✓ ✓ ✓ Python,

cal, Wiki

Table 1: Comparing MACT with previous works. NL
plan stands for using natural language to encode a plan,
cal=calculator, and Wiki=Wikipedia.

of the next step on the executed results of previ-
ous steps (Zhang et al., 2023a; Wang et al., 2024).
We opt for online iterative planning for complex
TQA, as it provides for more fine-grained steps
during problem solving (in contrast to heuristic
planning) and emphasizes the dependency among
steps (in contrast to online global planning), which
is crucial in complex TQA. In contrast to previ-
ous work using iterative planning, we introduce
an efficiency optimization module to minimize the
costs of the framework. To learn how to generate
plans, previous work either depends on fine-tuning
(Wu and Feng, 2024; Zhu et al., 2024), or strong
closed-source models, combined with in-context
learning (Wang et al., 2024; Zhang et al., 2023a;
Zhao et al., 2024). By contrast, MACT generates
effective plans using either closed-source or open-
weight models, without the need for fine-tuning.

Multi-agent collaboration. In multi-agent col-
laboration settings, multiple AI entities collabo-
rate towards a common goal (Talebirad and Nadiri,
2023). We use the term agent to refer to LLMs
that interact with executable tools, following Qiao
et al. (2024). As far as we know, none of the previ-
ous works in TQA utilize multi-agent collaboration.
The approaches most closely related to ours explore
collaboration among homogenous agents, i.e., all
agents use the same backbone but are prompted
differently (Liu et al., 2023; Zhao et al., 2024).
The effectiveness of this approach relies heavily
on strong (closed-source) backbone models. Our
work explores multi-agent collaboration for TQA,
without any constraint of model type.

946

Tool use. LLMs have been shown to be inef-
fective in retrieving information from long tables
(Zhou et al., 2024) and carrying out numerical rea-
soning (Imani et al., 2023). Making use of tools
can ensure faithful results of these operations. The
most common tools used in TQA are SQL inter-
preters (Cheng et al., 2022), Python with Pandas
dataframes (Gemmell and Dalton, 2023), and calcu-
lators (Zhu et al., 2024). In MACT, we use similar
tools. Inspired by Shinn et al. (2023), we further
add Wikipedia search as an additional tool to assist
questions requiring factual knowledge.

3 Method

We propose MACT, a Multi-Agent Collaboration
framework enriched with a set of Tools for TQA.
Figure 1 provides an overview of the framework.
It consists of four major modules: a memory S,
a planning agent Mp, a coding agent Mc, and
a tool set T . Mp and Mc are instantiated by
(potentially) different LLMs. They collaborate
through five core stages: action generation, ac-
tion selection, tool selection/code creation, ob-
servation computation, and memory state update.
The stages are executed iteratively for a maxi-
mum of I iterations, where I is a hyper-parameter.
We control the overall efficiency of the collabora-
tion via an efficiency optimization module. For a
new TQA instance, we initialize the memory state
s0 = (table, question, texts), i.e., with the input
table, the question, and (if given) textual context.
All parts of the memory are represented as strings.
To represent the table as a string, we use pipes as
column separators.

3.1 Action Generation

To format our plans, we follow ReAct (Yao et al.,
2022) that consists of the generation of thoughts,
actions and observations. Our framework only re-
quires actions and observations, but following Yao
et al. (2022), who demonstrate performance gains
from generating thoughts with actions, we adopt
their prompting method. Thus, at each iteration
i ≤ I , we prompt Mp to generate a thought zi,
an action ai and an observation ôi: (zi, ai, ôi) ∼
Mp(zi, ai, ôi|si−1, ϕp, τp), where si−1 is the previ-
ous memory state, and ϕp and τp are the prompt
(provided in A.6) and temperature of the LLM used
for Mp, respectively. Note that ôi is not the fi-
nal observation. Instead, it is later used during
execution as a particular form of our proposed

collaboration between the planning and coding
agent (see 3.5). We sample from Mp k times, re-
sulting in k actions {ani }n≤k = {a1i , a2i , ..., aki }
and their corresponding estimated observations
{ôni }n≤k = {ô1i , ô2i , ..., ôki } in iteration i. Follow-
ing Yao et al. (2022), we define an action ai with
two parts: an intent and an instruction, e.g., “Re-
trieval [Retrieve the export number for France and
Germany].” The intent encodes the purpose of an
action, e.g., Retrieval denotes retrieving informa-
tion from the input table. The instruction (marked
with brackets) provides detailed specifications of
the intent. Table 2 shows the six types of intents
we define for our framework and examples for cor-
responding instructions.

The intents Retrieval and Calculation are com-
monly seen in previous works (Gemmell and Dal-
ton, 2023; Zhu et al., 2024). We use Retrieval for
any operations extracting information from a table,
including direct querying, filtering, and grouping.
Instructions that require calculation, counting or
comparison are captured by Calculation. To fulfill
the possible need for external (factual) knowledge
that is not present in the table or textual context, we
add the intent Search, which performs Wikipedia
searches to retrieve informative text passages. Read
covers the need for contextual reasoning in table-
text QA. It refers to instructions involving retriev-
ing information from the texts provided as part of
TQA instances. The intent Finish stops Mp from
generating more actions and ends the iterative exe-
cution of our framework, providing the final answer
in the corresponding instruction. Lastly, we use an
intent called Ask to retrieve an answer based on the
internal knowledge of the planning agent. If Mp

fails to generate a valid action at an iteration, it will
continue to generate the action at the next iteration
until reaching the maximum iteration number I ,
and return the most common prediction directly
from Mp as the final answer (See section 3.7).

3.2 Action Selection

From the set of k actions generated by Mp for
iteration i, we use a function fs to select the most
promising action a∗i = fs(si−1, {ani }n≤k). We use
self-consistency (SC) (Wang et al., 2022) as the
selection function, which outputs the most frequent
action from the set of sampled actions. In the case
of ties, we choose the most frequent action that was
sampled first. We provide a comparison with other
selection functions in A.4.

947

Intent Instruction: Format and
Example

Tool Selection Code Generation Tool Use/Execution

Retrieval textual description of what
to retrieve, e.g., “sale num-
bers of 2019”

t = Python Mc Python interpreter is run on gener-
ated code

Calculation formula or textual descrip-
tion of what to calculate,
e.g., “(135-114)/135”

t = Tcal if formula,
else t = Tpython

Mc if not formula Calculator is executed or Python in-
terpreter is run on code

Search entity name, e.g., “Tesla” t = Tsrh no Wikipedia API is called on entity
Read textual description of re-

quired information from in-
put texts, e.g., “when was
the target method adopted”

t = Null no Mp is prompted to extract informa-
tion from provided textual context

Finish final answer y t = Null no final answer is output and execution
stops

Ask textual description of re-
quired information from
Mp, e.g., “hours of a day”

t = Null no Mp is prompted for the information
need

Table 2: Overview of intents and instructions of actions and how they are executed within our framework.

3.3 Tool Selection and Use

The tool needed for executing action a∗i depends
on the intent of the action (see columns “Tool
Selection” and “Tool Use/Execution” of Table
2). To address the intents Search, Calculation
and Retrieval, we introduce a set of tools T =
{Tsrh, Tcal Tpython}. Tsrh is an API function
for Wikipedia search (Shinn et al., 2023) from
Langchain.2 The API takes a target entity specified
in the instruction and returns the first paragraph of
the corresponding Wikipedia entry. Tcal is a calcu-
lator, powered by a Python interpreter. It takes a
formula generated by Mp and outputs the answer.
Note that the instruction of Calculation can also be
a textual description, such as “Compute the average
number of medals for each country in the table.”
To better address these instructions, we introduce
a coding agent Mc with a Python interpreter, de-
noted as Tpython (see 3.4). We do not distinguish
formulas and text description. This means any in-
structions with the intent Calculation will be firstly
passed to Tcal. If Tcal fails to execute the instruc-
tion, Tpython is applied.

The intent Retrieval is also addressed by Mc

and Tpython, i.e., Mc generates Python code based
on a given instruction to retrieve target cells in
the tables and the Python interpreter returns the
executed results. Lastly, For Read, Ask and Finish,
no tool is used, denoted as t = Null in Table
2. The answers to the intents Read and Ask are
queried via Mp. For Read, Mp reads the answer
from a given textual context. For Ask, it responds

2https://rubydoc.info/gems/
langchainrb/Langchain/Tool/Wikipedia

based on its internal knowledge. No execution is
performed for Finish, as the intent ends MACT
with a final answer in its instruction.

3.4 Code Generation and Execution

To address textual instructions for Calculation ac-
tions as well as Retrieval actions, we integrate a
coding agent Mc, which is an LLM and translates
the instructions of a∗i into Python code snippets
ci ∼ Mc(ci|a∗i , si−1, ϕc, τc). The hyper-parameter
τc controls the temperature of the coding agent, and
ϕc is a static, pre-defined prompt (see A.6). We
sample k times from Mc to increase the robustness
of the system against generated syntax errors, re-
sulting in a set of code snippets C = {cni }n≤k. A
Python interpreter is run on each ci, creating a set
of executed solutions Ĉ = {ĉni }n≤k .

3.5 Observation Computation

The computation of the final observation oi de-
pends on the selected tool ti: if ti ∈ {Tcal, Tsrh},
the corresponding tool returns a deterministic re-
sult. If ti is Tpython, we select the most frequent
element from the combined set {ôni }n≤k ∪ Ĉ as
final observation, where {ôni }n≤k is the estimated
observations sampled from Mp. This strategy fea-
tures two levels of collaboration: from an ensemble
perspective, both Mp and Mc contribute to obtain
oi; from a pipeline perspective, Mc makes use of
the outputs (actions) of Mp. If neither T nor Mc are
needed to execute the action, the final observation
is the most frequent element in {ôni }n≤k.

948

https://rubydoc.info/gems/langchainrb/Langchain/Tool/Wikipedia
https://rubydoc.info/gems/langchainrb/Langchain/Tool/Wikipedia

3.6 Memory State Update and Iteration

After obtaining oi, we update the memory state
with the selected action and the observation of iter-
ation i: si = si−1 + [a∗i , oi]. The framework then
continues with the next iteration i + 1. Note that
adding the observation to the memory state also
allows Mp to build on top of results from Mc in
iteration i+ 1. If i > I , the execution stops with a
predicted answer directly from Mp. In 98% of the
cases, a final answer is given before i > I .

3.7 Efficiency Optimization

The iterative collaboration approach of Mp and
Mc is highly effective in practice as demonstrated
in our experiments. However, questions that do
not require multi-step or multi-category reason-
ing can also be answered directly by Mp. For
those instances, we propose an efficiency opti-
mization component that serves as a shortcut for
directly outputting an answer in the first itera-
tion.Whether the answer is output directly de-
pends on the confidence of Mp, which we ap-
proximate by the degree of self-consistency of
its estimated predictions Y = {y1, ..., yk}. Y is
obtained by accessing the whole reasoning trace
(consisting of j actions and estimated observa-
tions) that Mp generates for a given s0 until the
intent Finish is output: i.e., (ak1, ô

k
1, ...a

k
j , ô

k
j) ∼

Mp(a
k
1, ô

k
1, ...a

k
j , ô

k
j |s0, ϕp, τp). The output yk is

the instruction of the action akj with intent Finish.
To control the trade-off between performance and
computation time, we introduce a hyper-parameter
α ∈ [0..1]. If the degree of self-consistency, i.e.,
the number of occurrences of the most frequent
prediction in Y is larger than α ∗ k (high degree of
SC), Mp outputs this most frequent answer. Oth-
erwise, the collaborative framework as described
before is adopted. In short, the smaller α, the more
often the system is allowed to use the shortcut, and
the larger α, the more confident Mp needs to be in
order to take the shortcut.

4 Experiments

We assess the performance of MACT on four TQA
benchmarks in comparison to SoTA TQA systems.

Datasets. We choose four TQA datasets that
cover different reasoning complexities and domains
(See A.1 for more details). WTQ (Pasupat and
Liang, 2015) is the easiest dataset as it neither
requires multi-step nor multi-category reasoning.

However, it is a widely used benchmark for TQA in
the general domain and enables a fair comparison
with recent TQA systems. TAT (Zhu et al., 2021)
includes hybrid tabular and textual data. Most ques-
tions require numerical reasoning. CRT (Zhang
et al., 2023b) uses Wikipedia tables and involves
complex reasoning. SCITAB (Lu et al., 2023) con-
tains claims requiring compositional reasoning for
verification. We follow the original work to convert
it from the setting of fact verification to TQA.

TQA systems for comparison. We categorize
the recent TQA systems into two groups indicat-
ing if they require LLM fine-tuning or not. We
include the following baselines that require fine-
tuning: OmniTab (Jiang et al., 2022), TableLlama
(Zhang et al., 2024a), ProTrix (Wu and Feng, 2024),
TAT-LLM (Zhu et al., 2024) and TableLLM (Zhang
et al., 2024b). Except for OmniTab, which is
backboned by BART (Lewis et al., 2020), all oth-
ers build on top of LLaMA 7b (Touvron et al.,
2023). Our set of TQA baselines that do not re-
quire fine-tuning includes Dater (Ye et al., 2023),
Binder (Cheng et al., 2023), Chain-of-Table (Wang
et al., 2024), ReAcTable (Zhang et al., 2024c),
TabSQLify (Nahid and Rafiei, 2024), Plan-then-
Reason (Wu and Feng, 2024), Mix-SC (Liu et al.,
2023) and ARC (Zhang et al., 2023b). They all rely
on GPT-3.5-turbo.

Experimental settings. In MACT, the choice of
the planning and coding agent is flexible as no fine-
tuning is involved. We experiment with the best
open-weight LLMs available at the time of writing:
Qwen-2 72B (Yang et al., 2024) (planning agent)
and CodeLLaMA-34B (coding agent). They are
run on int4 and full precision, respectively. We
further use GPT-3.5-turbo as both the planning and
coding agents when comparing our method with
other TQA systems that use this model. τp and τc
are set to 0.6 for non-repetitive action generation.
We set the action and code generation size k to 5,
following Liu et al. (2023). The maximum number
of iteration I is set to 7, based on empirical results
on the development sets. For the efficiency compo-
nent, we set α to 1 to ensure high confidence of the
model. We explore the effects of different values
of α in Section 6. Two NVIDIA A100 GPUs are
used for running MACT.

949

5 Results

We first evaluate the performance of MACT in
direct comparison to recent TQA systems using
closed-source LLMs. Second, we examine how
our method performs compared to fine-tuned open-
weight LLMs.3 Following prior work, we use exact
match (EM) as the evaluation measure. Lastly, we
discuss the efficiency of MACT.

MACT outperforms TQA models on three out
of four datasets when using GPT-3.5 as the back-
bone. The upper part of Table 3 shows MACT
using GPT-3.5 as the planning and coding agent in
comparison to SoTA TQA systems using GPT-3.5
as the backbone LLM. MACT (GPT-3.5) surpasses
the examined TQA models, except for Mix-SC
on WTQ. This indicates the effectiveness of our
multi-agent strategy compared to single-agent TQA
models. We suspect that the performance gap be-
tween our approach and Mix-SC comes from data-
specific table-cleaning and answer format controls
in Mix-SC. In contrast, MACT does not include
any dataset-specific pre- or postprocessing steps to
keep it generally applicable to any dataset.

MACT outperforms out-of-the-box open-weight
LLMs across datasets, demonstrating the effec-
tiveness of specialized agents. The middle part
of Table 3 provides the results of MACT using
specialized agents (MACT (Qw+CL): Qwen-2 as
planning agent, CodeLLaMA as coding agent). As
baselines, we compare a setting without a special-
ized coding agent (MACT (Qw+Qw)) and a setting
without a general planning agent (MACT(CL+CL)).
As further baselines, we use the two LLMs on their
own as well in combination, with Chain-of-thought
prompting (Wei et al., 2022). For combination, the
single models are prompted five times and com-
bined using SC, as in Liu et al. (2023). This is a di-
rect multi-agent baseline without collaboration and
tool use. Both SC(Qw+CL) and MACT (Qw+CL)
achieve higher EM scores than individually prompt-
ing Qwen and CodeLLaMA, demonstrating the
positive effect of using multiple agents for plan-
ning and coding. Importantly, MACT (Qw+CL)
outperforms SC(Qw+CL) by approximately 6 EM
points on average across all datasets, highlighting
the superiority of our collaboration technique over

3We did not run ARC as no code is available. Results for
TAT-LLM is only reported on TAT as the model is specially
designed for TAT dataset that features both tables and texts as
inputs.

WTQ TAT CRT SCT

closed-source LLM backbones

GPT-3.5 45.8 39.7 39.3 48.9
Dater 52.8* 22.1 46.8 47.1
Binder 56.7* 0.9 1.24 29.1
Chain-of-Table 59.9* 20.5 33.9 27.6
ReAcTable 52.4* 9.26 29.8 32.1
TabSQLify 64.7* 13.7 42.0 50.9
Plan-then-Reason 65.2* 41.2 44.9 52.5
Mix-SC 73.6* 54.3 48.6 49.3
ARC - - 56.3* -
MACT 70.4 64.5 57.4 55.8

open-weight LLM backbones

Qwen (Qw-72b) 60.6 53.6 55.9 55.0
CodeLLaMA (CL-34b) 55.0 29.5 49.7 9.5
SC(Qw-72b+CL-34b) 69.0 56.7 61.4 54.4
MACT (Qw-72b+Qw-72b) 68.6 66.3 59.8 57.3
MACT (CL-34b+CL-34b) 55.2 54.1 43.5 45.0
MACT (Qw-72b+CL-34b) 72.6 66.2 64.4 59.8

GPT-4 72.9† 80.8† 58.7† 63.2†

Humans (Crowdsourcing) - 84.1† - 84.7†

Table 3: Exact Match results of models without fine-
tuning. SCT refers to SCITAB. The models are grouped
by the LLM they use as their backbone (top: GPT-3.5;
middle: open-weight LLMs as indicated in parentheses).
Performances marked with * are taken from the original
paper. Performances marked with †are taken from Wu
and Feng (2024), Zhu et al. (2024), Zhang et al. (2023b)
and Lu et al. (2023) for each dataset. We bold the best
performances in each group.

.

simply taking the most frequent predictions from
two independent agents. We also find that having
an expert coding agent for code generation (MACT
(Qw+Qw) vs. MACT (Qw+CL)) improves perfor-
mance considerably.

MACT with open-weight models delivers com-
parable performance as closed-source systems.
As shown in Table 3, by comparing MACT
(Qw+CL) with TQA systems that rely on closed-
source LLMs (in the upper part of Table 3), we find
that our model outperforms the examined TQA sys-
tems for three out of four datasets. Our multi-agent
TQA system is more cost-efficient and straightfor-
ward to replicate, while delivering superior perfor-
mance compared to closed-source TQA models. In
addition, we show two upper-bounds in the bottom
part of Table 3: The performance of human annota-
tors and directly prompting GPT-4 with the table
and question. As shown in Table 3, GPT-4 has
an advantage on TAT and SCITAB. On WTQ, we
observe comparable performances between MACT
(QW+CL) and GPT-4. On CRT, our method even

950

cWTQ TAT CRT SCT

OmniTab (BART 406m) c62.3* 17.1 20.6 29.1
TableLlama (LlaMA-7b) c29.9 17.4 26.9 38.6
Protrix (LlaMA-7b) c48.9* 26.8 40.2 42.4
TAT-LLM (LlaMA-7b) c- 69.6* - -

MACT (LlaMA-7b+CS-7b)c38.1 28.3 40.0 41.1
MACT (Qw-7b+CS-7b) c58.4 61.9 46.4 45.9

Table 4: Exact Match Results of MACT using different
LLM agents in comparison to fine-tuned TQA models.
Performances marked with * refer to the in-domain
setting (where fine-tuning took place). SCT refers to
SCITAB. CS refers to the deepseek-coder model.

outperforms GPT-4 by 5.7%. CRT is the most
complex dataset, requiring multi-step and multi-
category reasoning, which direct inference with
GPT-4 cannot generally solve. Our step-wise col-
laborative planning setting is well-suited to such
settings. In contrast, there is a large gap between
MACT and human performance in SCITAB. SC-
ITAB collects data from scientific papers, in which
abbreviations and domain-specific terms are com-
mon. These can pose challenges to current systems
and models. In TAT, MACT often finds the cor-
rect answer but struggles to output it in the correct
format (see Sec. 6).

MACT generalizes better across datasets than
fine-tuned TQA systems. Table 4 compares our
framework with prior fine-tuned TQA models. We
present results for MACT with different planning
and coding agents: Our standard setting (LlaMA-
7b+CS-7b) as well as with a stronger planner (Qw-
7b+CS-7b). In general, for fine-tuned TQA mod-
els, their performance on the dataset used for fine-
tuning is rather high while they suffer from a con-
siderable drop in EM when tested on other datasets.
This observation is in line with the findings by
Zhang et al. (2024a) and Huang et al. (2024). In
contrast, MACT does not use fine-tuned models
and can, thus, be applied to any dataset with a good
generalization performance. MACT demonstrates
comparable results to Protrix when using LlaMA-
7b as the planning agent, though it has not been
fine-tuned. As expected, using a better planning
agent leads to better results. This also shows the
robustness of MACT in terms of backbone models.

MACT adapts computational cost to instance
complexity. Table 5 compares MACT with other
approaches in terms of the total number of LLM
calls for each instance. For Binder and Dater, SC

cNumber of LLM calls per instance

Binder c 50
Dater c 100
Chain-of-Tablec 1-25
ReAcTable c 15-125
Mix-SC c 10-30
MACT c 5-65

Table 5: Number of LLM calls for different approaches.
We show lower and upper-bounds if not deterministic.

WTQ TAT CRT SCITAB

MACT (Qw-72b) 72.6 66.2 64.4 59.8

w/o Tsrh 72.0 66.2 64.6 59.6
w/o Tsrh + Tcal 71.3 62.8 63.9 58.2
w/o T+Mc 67.1 61.2 60.4 57.9

Table 6: Ablation study. Tsrh and Tcal refer to the
Wikipedia search tool and the calculator tool. T includes
the above two tools and a Python interpreter. Mc is the
coding agent.

is performed a fixed number of times regardless of
problem complexity. This results in a high number
of LLM calls per instance, making them inefficient.
In contrast, MACT provides flexibility in genera-
tion, as the number of iterations depends on the
problem’s complexity. For instance, most ques-
tions can be solved within three steps for WTQ
(see our analysis in A.3). This results in a total
of at most 25 LLM calls 4 for each instance. If
we incorporate the efficiency optimization module,
which potentially saves up to one-third of the iter-
ations (see Section 6), the total number of LLM
calls per instance is even lower (approximately 15),
making MACT comparable to other approaches in
terms of efficiency. The iterative nature of MACT
can lead to a higher upper-bound of LLM calls.
However, it also allows for solving more complex
problems, making the approach more tailored to
real-life requirements.

6 Analysis

We conduct various analyses of our framework to
back up our claims and contributions. Unless men-
tioned otherwise, all analyses are performed using
Qwen-2 72B as Mp, CodeLlama-34B as Mc, the
number of action generation k = 5, and selection
model fs = SC. To explicitly analyze the effects
of multi-agent collaboration with tool use, we do

42 steps involve action and execution generation, with
each five times, plus last step five times of action generation:
2*(5+5)+5.

951

Figure 2: Distribution of action intents by dataset.

not use efficiency optimization, which means all
instances undergo the iterative collaboration be-
tween Mp and Mc with tool use. Further analysis
to support our choices of the sampling size k and
the maximum number of iterations I are in A.2 and
A.3. A case study can be found in A.5.

Effect of Multi-Agent-Collaboration with Tool
Use. We explore the effectiveness of specialized
agents and tool use in MACT by conducting an
ablation study with three scenarios: ablating only
Tsrh (Wikipedia search API), ablating Tsrh and
Tcal (calculator), and further ablating the coding
agent Mc with a Python interpreter. In cases where
Mc or/and tools are ablated, the most frequent esti-
mated observations from Mp are used as the final
observations. Our results in Table 6 show that both
the tools and the coding agent contribute to the
performance of the framework. Nevertheless, they
contribute differently to the final performance. For
instance, ablating the search tool barely influences
the results whereas there are large performance
drops when further ablating the coding agent and
the Python interpreter. We find that the search tool
is barely used whereas the coding agent is called in
almost every query. Since Wikipedia is a common
pre-training corpus for LLMs, most information
might have already been encoded in the LLM. Nev-
ertheless, the search tool can still be helpful given
LLMs are known to suffer from hallucinations and
the knowledge encoded might not be updated in
time. For more specialized domains and sources,
the search tool may be crucial. We further ob-
serve that the ablation affects WTQ and TAT more
than CRT and SCITAB. This might be attributed
to dataset features: CRT contains many yes-no
questions and SCITAB has been converted from
a ternary classification dataset. Thus, chances for

20

40

60

80

100

Value of α

E
M

0.2 0.4 0.6 0.8 1

60

70

80

It
er
at
io
n
ra
ti
o
(%

)

WTQ TAT CRT SCITAB

EM

Ratio

Figure 3: EM (line chart) and iteration ratio (bar chart)
against different α. The iteration ratio is calculated by
dividing the number of iterations when using efficiency
optimization with a specific α by the number of itera-
tions when not using it (without shortcuts).

guessing the correct final answers are higher than
in datasets with a more diverse answer distribution,
such as WTQ and TAT. By evaluating our frame-
work on instances from CRT that have answers
other than yes/no, we find a performance drop of
8.23 when ablating both tools and the coding agent.

Analysis of Intent Distribution. We report the
distribution of the intents of the selected actions for
each dataset in Figure 2. We observe that Retrieve
and Calculate are the most frequent intents, along
with Finish. This indicates that our proposed sec-
ond agent, the coding agent Mc is used frequently.
Different datasets also require different intents. In
particular, the framework needs to use the intent
Read for solving instances in TAT, where textual
descriptions are given while this is not the case
for the other datasets. We notice that the Search
intent is used only few times across datasets. This
might be because most instances were designed to
be solved using the given table and text informa-
tion. However, when looking into the individual
cases where Search is used, we still find it useful.
For instance, one question from WTQ asks about
the number of athletes from American but no infor-
mation about nationality is given in the table. In
this case, Search assists with answering the ques-
tion by adding the nationality for each athlete from
Wikipedia. Though the intents Read, Search and
Ask are less used compared to others, we still in-
corporate them to adapt to various use cases that
might occur in real-life use cases.

952

Effect of Efficiency Optimization. To investi-
gate the trade-off between efficiency and accu-
racy, we plot the model performance against α ∈
{0.2, 0.4, 0.6, 0.8, 1} in Figure 3. We also plot the
ratio of the total number of iterations taken to ter-
minate from each tested α to the total number of
iterations taken when not using the optimization,
i.e., letting the planning agent decide via the Finish
action when to stop the execution. The best perfor-
mance is reached for α = 1, i.e., when requiring
all estimated results to agree with each other to
stop the iteration. For SCITAB, for instance, we
save approximately 40% of the iterations when set-
ting α to 1 without losing performance compared
to not using the optimization component (59.8%
vs. 59.7%). On average, adding the efficiency op-
timization module saves up to 33% of iterations.
This shows the effectiveness of the optimization
and that users can individually tune the desired
trade-off of performance and computation time.

Error Analysis. We randomly sample 50
instances that MACT fails per dataset and conduct
an error analysis. About half of the errors come
from invalid or wrong code generated by the
coding agent Mc. Either Mc fails to make sense
of instructions or of complex table structure. The
second error type can be attributed to evaluation.
We find that about one-third of failures come from
strict evaluation metrics (EM). This influences the
performance of MACT particularly on the TAT
dataset, as it features long text strings as answers.
The evaluation challenge has been discussed in
many previous works (Wu and Feng, 2024; Li
et al., 2024). To estimate the upper-bound of our
method, we use GPT-4 as evaluator to determine
if a predicted answer is semantically the same as
the reference answer. This results in an accuracy
of 87.8% on the TAT dataset, compared to 66.2%
with EM. The remaining error cases can be largely
attributed to the failure of the planning agent in
decomposing questions correctly. For instance,
one question asks for the score range (min-max)
of the top 10 finishers. Apart from retrieving
the min and max scores of the top 10 finishers,
the planner continues to generate the action:
Calculate[Calculate the range of
the scores in the observation 1.].
This leads to a wrong prediction.

7 Conclusions

We have proposed MACT, a multi-agent collabo-
ration with tool use for table question answering.
Unlike previous work, MACT neither requires fine-
tuning nor does it depend on closed-source models.
In our experiments, our framework demonstrates
good generalizability across different benchmark
datasets and outperforms a number of state-of-the-
art approaches, including closed-source commer-
cial models and fine-tuned models. To boost ef-
ficiency, we introduce an efficiency optimization
module that saves up to 33% of the iterations in
our analysis. In our experiments and analyses, we
show that multi-agent collaboration with tools is
an effective approach for table question answering.

8 Limitations

MACT is evaluated mainly with single table set-
tings due to the scarcity of datasets featuring multi-
table complex reasoning. Though the framework
can be extended easily to deal with multiple ta-
bles by concatenating them in the inputs, it is still
not clear how effective our approach will be in a
multi-table setting. Secondly, we only study TQA
in the context of English, while there exist many
multi-lingual TQA benchmarks and challenges.

Acknowledgements

This work was partially supported by the EU
Project SMARTY (GA 101140087).

References

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding
language models in symbolic languages. ICLR,
abs/2210.02875.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir R. Radev, Marilyn Ostendorf, Luke Zettle-
moyer, Noah A. Smith, and Tao Yu. 2022. Bind-
ing language models in symbolic languages. ArXiv,
abs/2210.02875.

Carlos Gemmell and Jeff Dalton. 2023. ToolWriter:
Question specific tool synthesis for tabular data. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
16137–16148, Singapore. Association for Compu-
tational Linguistics.

953

https://api.semanticscholar.org/CorpusID:252734772
https://api.semanticscholar.org/CorpusID:252734772
https://doi.org/10.18653/v1/2023.emnlp-main.1003
https://doi.org/10.18653/v1/2023.emnlp-main.1003

Deepanway Ghosal, Preksha Nema, and Aravindan
Raghuveer. 2023. ReTAG: Reasoning aware table
to analytic text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 6310–6324, Singapore.
Association for Computational Linguistics.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173, Singapore. Association for Com-
putational Linguistics.

Hui Huang, Yingqi Qu, Hongli Zhou, Jing Liu, Muyun
Yang, Bing Xu, and Tiejun Zhao. 2024. On the limi-
tations of fine-tuned judge models for llm evaluation.
ArXiv, abs/2403.02839.

Shima Imani, Liang Du, and H. Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932–942, Seattle,
United States. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Qianlong Li, Chen Huang, Shuai Li, Yuanxin Xiang,
Deng Xiong, and Wenqiang Lei. 2024. Graphotter:
Evolving llm-based graph reasoning for complex ta-
ble question answering.

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. ArXiv, abs/2312.16702.

Xinyuan Lu, Liangming Pan, Qian Liu, Preslav Nakov,
and Min-Yen Kan. 2023. SCITAB: A challenging
benchmark for compositional reasoning and claim
verification on scientific tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 7787–7813, Singapore.
Association for Computational Linguistics.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024. Tab-
SQLify: Enhancing reasoning capabilities of LLMs

through table decomposition. In 2024 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Annual Meeting of the Association for Computational
Linguistics.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch for qa via self-planning.
ArXiv, abs/2401.05268.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: language agents with verbal re-
inforcement learning. In Neural Information Pro-
cessing Systems.

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-
agent collaboration: Harnessing the power of intelli-
gent llm agents. ArXiv, abs/2306.03314.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Huai hsin Chi, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in
language models. ArXiv, abs/2203.11171.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
ICLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. ArXiv,
abs/2201.11903.

Zirui Wu and Yansong Feng. 2024. Protrix: Building
models for planning and reasoning over tables with
sentence context. ArXiv, abs/2403.02177.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,

954

https://doi.org/10.18653/v1/2023.emnlp-main.389
https://doi.org/10.18653/v1/2023.emnlp-main.389
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://arxiv.org/abs/2403.02839
https://arxiv.org/abs/2403.02839
https://api.semanticscholar.org/CorpusID:257427208
https://api.semanticscholar.org/CorpusID:257427208
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:274437685
https://api.semanticscholar.org/CorpusID:266573579
https://api.semanticscholar.org/CorpusID:266573579
https://api.semanticscholar.org/CorpusID:266573579
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://openreview.net/forum?id=nmX0MjIs2H
https://openreview.net/forum?id=nmX0MjIs2H
https://openreview.net/forum?id=nmX0MjIs2H
https://api.semanticscholar.org/CorpusID:9027681
https://api.semanticscholar.org/CorpusID:9027681
https://arxiv.org/abs/2401.05268
https://arxiv.org/abs/2401.05268
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:259088724
https://api.semanticscholar.org/CorpusID:259088724
https://api.semanticscholar.org/CorpusID:259088724
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:268248610
https://api.semanticscholar.org/CorpusID:268248610
https://api.semanticscholar.org/CorpusID:268248610

Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024. Qwen2 technical
report. ArXiv, abs/2401.05268.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv, abs/2210.03629.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. Pro-
ceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024a. TableLlama: Towards open large general-
ist models for tables. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6024–6044, Mexico City, Mexico. Association
for Computational Linguistics.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bo-
han Zhang, Guanlin Li, Zijun Yao, Kangli Xu, Jin-
chang Zhou, Daniel Zhang-li, Jifan Yu, Shu Zhao,
Juan-Zi Li, and Jie Tang. 2024b. Tablellm: Enabling
tabular data manipulation by llms in real office usage
scenarios. ArXiv, abs/2403.19318.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023a.
Reactable: Enhancing react for table question answer-
ing. Proceedings of the VLDB Endowment.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2024c.
Reactable: Enhancing react for table question answer-
ing. Proc. VLDB Endow., 17(8):1981–1994.

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.
2023b. CRT-QA: A dataset of complex reasoning
question answering over tabular data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2131–2153,
Singapore. Association for Computational Linguis-
tics.

Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen
Zhao. 2024. TaPERA: Enhancing faithfulness and in-
terpretability in long-form table QA by content plan-
ning and execution-based reasoning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 12824–12840, Bangkok, Thailand. Association
for Computational Linguistics.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2024. Freb-tqa: A fine-grained robustness
evaluation benchmark for table question answering.
ArXiv, abs/2404.18585.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang,
Moxin Li, and Tat seng Chua. 2024. Tat-llm: A spe-
cialized language model for discrete reasoning over
tabular and textual data. ArXiv, abs/2401.13223.

955

https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:256416408
https://api.semanticscholar.org/CorpusID:256416408
https://api.semanticscholar.org/CorpusID:256416408
https://doi.org/10.18653/v1/2024.naacl-long.335
https://doi.org/10.18653/v1/2024.naacl-long.335
https://api.semanticscholar.org/CorpusID:268732926
https://api.semanticscholar.org/CorpusID:268732926
https://api.semanticscholar.org/CorpusID:268732926
https://api.semanticscholar.org/CorpusID:263605799
https://api.semanticscholar.org/CorpusID:263605799
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.14778/3659437.3659452
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://api.semanticscholar.org/CorpusID:269449921
https://api.semanticscholar.org/CorpusID:269449921
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://api.semanticscholar.org/CorpusID:267200238
https://api.semanticscholar.org/CorpusID:267200238
https://api.semanticscholar.org/CorpusID:267200238

A Appendix

A.1 Datasets

Table A.1 shows their statistics and characteristics.
WTQ (Pasupat and Liang, 2015), TAT (Zhu et al.,
2021), CRT (Zhang et al., 2023b) and SCITAB
(Lu et al., 2023) are publicly available under the
licenses of CC-BY-SA-4.05, MIT and MIT, respec-
tively. These licenses all permit us to compose,
modify, publish, and distribute additional annota-
tions upon the original dataset.

Dataset #Test M-step M-category Domain

WTQ 4,344 ✗ ✗ General
TAT 1,663 ✓ ✗ Financial
CRT 728 ✓ ✓ General
SCITAB 1,162 ✓ ✓ Scientific

Table 7: We use four datasets that vary in reasoning com-
plexity (M-step: multi-step, M-category: multi-category
reasoning) and domain. #Test refers to the number of
test instances.

A.2 Effect of Sampling Size

Figure 6 shows the effect of the number of gener-
ated actions k on the results. Generally, we find that
a larger k results in better performance. However,
the performance gain is small when increasing k
from 5 to 10. We even observe a slight performance
drop for SCITAB when increasing k from 5 to 10.
Based on these observations, we argue k = 5 is a
good choice for the number of generated action in
MACT.

A.3 Analysis of Iteration Number
Distribution

We analyze the distribution of numbers of iterations
for each dataset in Figure 7. Most of instances can
be solved within seven iterations. Dataset-wise,
CRT and SCITAB seem to require more iterations
than WTQ and TAT, indicating their difficulties in
terms of multi-step reasoning.

A.4 Choice of Selection Model.

In MACT, we use SC as the action selection model
(see Section Action Selection). We now provide
results for alternative selection models that have
been introduced by prior work. In particular, we
compare to LLM-based selection (Yao et al., 2023),
log probability (Zhang et al., 2024c), roll-out (Hao
et al., 2023) and a combination of all strategies
(Hao et al., 2023). In the LLM strategy, an LLM

WTQ TAT CRT SCITAB

SC 72.6 (2) 66.2 (2) 64.4 (1) 59.8 (1)
LLM 70.7 (4) 66.2 (2) 58.4 (5) 56.8 (4)
LOG_P 70.1 (5) 64.9 (5) 61.4 (3) 57.2 (3)
ROLL_OUT 71.9 (3) 65.9 (4) 60.2 (4) 55.5 (5)
COMBINED 72.7 (1) 66.6 (1) 62.6 (2) 57.4 (2)

Table 8: Results using different selection models. We
put the relative ranking of the models per dataset in
parentheses.

evaluator is utilized to select the best action. For
consistency with our other results, we use Qwen-
72b as the evaluator. We use the same prompts
as the original work (Yao et al., 2023). Log prob-
ability (LOG_P) has been widely used to assist
sub-path selection (Zhang et al., 2024c; Hao et al.,
2023). However, it can only be used for open-
weight LLMs, as it requires access to log proba-
bilities. ROLL_OUT estimates future answers by
rolling out the current reasoning path and selects
the action that leads to the most frequent future an-
swer. For the COMBINED method, we use majority
voting among all individual selection models. The
results in Table 8 show that for WTQ and TAT, SC
and COMBINED lead to the best performance. For
CRT and SCITAB, SC outperforms COMBINED,
caused by the comparably poorer performance of
LLM, LOG_P and ROLL_OUT on these datasets.
SC is more efficient than COMBINED as the latter
requires running all selection models, including
the computationally expensive LLM. Overall, this
analysis confirms that SC as selection model is a
good choice.

A.5 Case Study
We present two reasoning traces selected from CRT
and WTQ in Figure 4 and 5, respectively. Figure 4
presents a case involving complex reasoning, where
models need to identify top ten finishers, calculate
percentage of drivers for each constructor and re-
turn the constructor with the highest percentage. In
Figure 5, we observe the planning agent has the
ability to self-correct in Thought 3.

A.6 MACT Prompts
We provide the prompts used for the planning agent
for the examined datasets (WTQ, TAT, CRT and
SCITAB) in Figures 8, 9, 10, and 11. Figure 12 and
Figure 13 show the prompts used for the coding
agent for the action intents Retrieval and Calcula-
tion, respectively.

956

Question: Which constructor had the highest percentage of its drivers finish the race in the top ten?
Thought 1: I need to find the number of drivers who finished the race in the top ten for each constructor.
Action 1: Retrieval[Retrieve the rows for the top ten finishers.]
Observation 1:

Thought 2: I need to calculate the percentage of drivers for each constructor among the top ten finishers.
Action 2: Calculation[Calculate the percentage of drivers for each constructor among the top ten finishers.]
Observation 2:

Thought 3: I need to identify the constructor with the highest percentage.
Action 3: Retrieval[Retrieve the constructor with the highest percentage.]
Observation 3:

Thought 4: The constructor with the highest percentage is Ferrari.
Action 4: Finish[Ferrari.]

Constructor Percentage

ferrari 40.0

maserati 30.0

connaught lea francis 10

cooper bristol 10

cooper alta 10

Constructor Percentage

ferrari 40.0

driver constructor laps time / retired grid

alberto ascari ferrari 90 2:50:00 1

juan manuel fangio maserati 90 + 1:00 4

nino farina ferrari 88 + 2 laps 5

jos maserati 88 + 2 laps 2

mike hawthorn ferrari 87 + 3 laps 3

felice bonetto maserati 82 + 8 laps 16

prince bira connaught - lea -
francis

82 + 8 laps 19

ken wharton cooper - bristol 80 + 10 laps 11

peter whitehead cooper - alta 79 + 11 laps 14

louis rosier ferrari 78 + 12 laps 24

driver constructor laps time / retired grid

alberto ascari ferrari 90 2:50:00 1

juan manuel
fangio

maserati 90 + 1:00 4

nino farina ferrari 88 + 2 laps 5

jos maserati 88 + 2 laps 2

mike hawthorn ferrari 87 + 3 laps 3

felice bonetto maserati 82 + 8 laps 16

prince bira connaught - lea
- francis

82 + 8 laps 19

ken wharton cooper - bristol 80 + 10 laps 11

peter
whitehead

cooper - alta 79 + 11 laps 14

louis rosier ferrari 78 + 12 laps 24

jimmy stewart cooper - bristol 79 spun off 15

tony rolt connaught - lea
- francis

70 halfshaft 10

luigi villoresi ferrari 65 axle 6

onofre maserati 65 engine 7

alan brown cooper - bristol 56 overheating 21

peter collins hwm - alta 56 spun off 23

jack fairman hwm - alta 54 clutch 27

… … … … …

Figure 4: An instance selected from CRT featuring complex reasoning.

Question: how many competitions are listed before 2006?
Thought 1: I need to retrieve the number of competitions that happened before 2006 .
Action 1: Retrieval[retrieve the competitions that happened before 2006.]
Observation 1:

Thought 2: I need to count the number of competitions retrieved in observation 1.
Action 2: Calculation[count the number of competitions in the table of observation 1.]
Observation 2: 11

Thought 3:The number of competitions listed before 2006 is 1 (World Youth Championships).
 However, the result returned in observation 2 is 11, which is not correct.
 There's a single competition before 2006, so the correct answer should be 1.
Action 3: Finish[1]

Year Competition Venue Position Notes

2005 World Youth
Championships

Marrakech
, Morocco

6th 5.05

2006 World Junior
Championships

Beijing,
China

5th 5.30 m

2008 Olympic Games Beijing,
China

10th 5.45 m

2009 European U23
Championships

Kaunas,
Lithuania

8th 5.15 m

… … … … …

Year Competition Venue Position Notes

2005 World Youth
Championships

Marrakech, Morocco 6th 5.05

Figure 5: An instance selected from WTQ. We find the planning agent can perform self-correct given previous
reasoning traces.

957

1 3 5 10
55

60

65

70

75

Number of action generation

E
M

WTQ TAT CRT SCITAB

Figure 6: EM against different action generation size.

WTQ TAT CRT SCITAB

0

50

100

Data sets

Percentage

7

6

5

4

3

2

1

Figure 7: The distribution of number of iterations for
each dataset.

958

Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and

Action can be four types:

(1) Retrieve[cells], which retrieves certain cell(s) from the table and returns the retrieved cells in string format.

(2) Calculate[formular/instruction], which carries out calculations based on the formular, or the instruction and returns the calculated results.

(3) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists.

(4) Finish[answer], which returns the answer and finishes the task.

You may take as many steps as necessary.

Here are some examples:

Table:

| Parish | Locality | Parish Priest | Founded | Closed |

| St Mary | Bacup | Fr Frank Thorpe | 1852 | ---- |

| Our Immaculate Mother & St Anselm | Whitworth | Fr Frank Thorpe | 1860 | ---- |

| St Joseph | Stacksteads | ---- | 1947 | 2005 |

| St Joseph & St Peter | Newchurch-In-Rossendale | Fr Philip Boast | 1915 | ---- |

| The Immaculate Conception | Haslingden | Fr Canon John Mackie | 1854 | ---- |

| St Veronica (Chapel of Ease) | Helmshore | Served from The Immaculate Conception | 1959 | ---- |

| St James the Less | Rawtenstall | Fr David Lupton, Rural Dean | 1828 | ---- |

Context:

Question: what's the number of parishes founded in the 1800s?

Thought 1: I need to retrieve the parishes founded 1800s. Since the time 1800s spans from 1800 to 1899, I need to retrieve the parishes whose

Found time is between 1800-1899.

Action 1: Retrieve[retrieve the parishes whose Found time is between 1800-1899]

Observation 1: | Parish | Founded |

| St Mary | 1852 |

| Our Immaculate Mother & St Anselm | 1860 |

| The Immaculate Conception | 1854 |

| St James the Less | 1828 |

Thought 2: I need to count the number of parishes retrieved in observation 1.

Action 2: Calculate[count the number of parishes in the table of observation 1]

Observation 2: 4

Thought 3: The question asks the number of parishes founded in 1800s. The answer is obtained in observation 2, which is 4.

Action 2: Finish[4]

Table:

| Election | Number of popular votes | % of popular votes | Total elected seats | +/− |

| 1988 | 139,982 | 22.16 | 61 / 264 | |

| 1991 | 170,757 | 32.11 | 83 / 272 | 22 |

| 1994 | 242,557 | 35.34 | 121 / 346 | 38 |

| 1999 | 271,251 | 33.45 | 122 / 390 | 1 |

| 2003 | 459,640 | 44.67 | 194 / 400 | 72 |

| 2007 | 445,781 | 39.15 | 127 / 405 | 30 |

| 2011 | 464,512 | 39.34 | 103 / 412 | 18 |

Context:

Question: what is the total number of popular votes cast in 2003?

Thought 1: I need to retrieve the number of popular votes in the election year 2003.

Action 1: Retrieve[retrieve the number of popular votes in the election year 2003]

Observation 1: | Election | Number of popular votes |

| 2003 | 459,640 |

Thought 2: The question asks the total number of popular votes in 2003. The answer is retrieved from the observation 1, which is 459,640.

Action 2: Finish[459,640]

Table:

| Year | Competition | Venue | Position | Notes |

| 1989 | European Indoor Championships | The Hague, Netherlands | 10th | |

| 1989 | World Indoor Championships | Budapest, Hungary | 9th | |

| 1991 | World Indoor Championships | Lisbon, Portugal | 6th | |

| 1991 | World Championships | Tokyo, Japan | 5th | 5.75 m NR |

| 1992 | European Indoor Championships | Genoa, Italy | 5th | |

| 1993 | World Championships | Stuttgart, Germany | 11th | |

959

Context:

Question: what peter widen's is the highest finish in all indoor championships?

Thought 1: I need to retrieve peter widen's finish position from the table.

Action 1: Retrieve[retrieve peter widen's position from the table]

Observation 1: | Position |

| 10th |

| 9th |

| 6th |

| 5th |

| 5th |

| 11th |

Thought 2: The question asks the highest finish. Since I already have a table of finished position in observation 1, I need to compare the

finished positions to find out the highest ranking, which is 5th.

Action 2: Finish[5th]

(END OF EXAMPLES)

Now generating the Thought, Action, Observation for the following instance:

Table:

{table}

Context: {context}

Question: {question}

{memory}

Figure 8: MACT: Planning agent prompt for WTQ.

960

Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and

Action can be four types:

(1) Retrieve[cells], which retrieves certain cell(s) from the table and returns the retrieved cells in string format.

(2) Look up[information], which looks up the information in the context (if any) and returns the information in string format.

(3) Calculate[formular/instruction], which carries out calculations based on the formular, or the instruction and returns the calculated results.

(4) Finish[answer], which returns the answer and finishes the task.

You may take as many steps as necessary.

Here are some examples:

Table:

 | | 2019 | | 2018

In thousands | $ | % | $ | %

Drinkable Kefir other than ProBugs | $ 71,822 | 77% | $ 78,523 | 76%

Cheese | 11,459 | 12% | 11,486 | 11%

Cream and other | 4,228 | 4% | 5,276 | 5%

ProBugs Kefir | 2,780 | 3% | 2,795 | 3%

Other dairy | 1,756 | 2% | 3,836 | 4%

Frozen Kefir (a) | 1,617 | 2% | 1,434 | 1%

Net Sales | $ 93,662 | 100% | $ 103,350 | 100%

Context: Paragraph 1: Our product categories are: Paragraph 2: Drinkable Kefir, sold in a variety of organic and non-organic sizes, flavors, and

types, including low fat, non-fat, whole milk, protein, and BioKefir (a 3.5 oz. kefir with additional probiotic cultures). Paragraph 3: European-

style soft cheeses, including farmer cheese in resealable cups. Paragraph 4: Cream and other, which consists primarily of cream, a byproduct of

making our kefir. Paragraph 5: ProBugs, a line of kefir products designed for children. Paragraph 6: Other Dairy, which includes Cupped Kefir and

Icelandic Skyr, a line of strained kefir and yogurt products in resealable cups. Paragraph 7: Frozen Kefir, available in soft serve and pint-size

containers. Paragraph 8: Lifeway has determined that it has one reportable segment based on how our chief operating decision maker manages the

business and in a manner consistent with the internal reporting provided to the chief operating decision maker. The chief operating decision

maker, who is responsible for allocating resources and assessing our performance, has been identified collectively as the Chief Financial Officer,

the Chief Operating Officer, the Chief Executive Officer, and Chairperson of the board of directors. Substantially all of our consolidated

revenues relate to the sale of cultured dairy products that we produce using the same processes and materials and are sold to consumers through a

common network of distributors and retailers in the United States. Paragraph 9: Net sales of products by category were as follows for the years

ended December 31: Paragraph 10: (a) Includes Lifeway Kefir Shop sales Paragraph 11: Significant Customers – Sales are predominately to companies

in the retail food industry located within the United States. Two major customers accounted for approximately 22% and 21% of net sales for the

years ended December 31, 2019 and 2018, respectively. Two major customers accounted for approximately 17% of accounts receivable as of December

31, 2019 and 2018. Our ten largest customers as a group accounted for approximately 57% and 59% of net sales for the years ended December 31, 2019

and 2018, respectively.

Question: What is the change in the net sales for cheese between 2018 and 2019?

Thought 1: I need to retrive the net sales for cheese for 2018 and 2019.

Action 1: Retrieve[net sales for cheese for 2018 and 2019]

Observation 1: | 2019 | 2018 |

| 11459 | 11486 |

Thought 2: I need to substract the net sales for cheese for 2019 from 2018, which results in the formular: [11459 - 11486]

Action 2: Calculate[11459 - 11486]

Observation 2: -27

Thought 3: The question asks for change in the net sales for cheese between 2018 and 2019. The answer is in the observation 2, which is -27. The

unit/scale of the number is thousand, therefore the answer is -27 thousands.

Action 3: Finish[-27 thousands]

Table:

 | | Three Months Ended | | % Variation |

 | December 31, 2019 | September 29, 2019 | December 31, 2018 | Sequential | Year-Over-Year

 | | | (Unaudited, in millions) | |

Automotive and Discrete Group (ADG) | $924 | $894 | $967 | 3.3% | (4.5)%

Analog, MEMS and Sensors Group (AMS) | 1,085 | 968 | 988 | 12.1 | 9.9

Microcontrollers and Digital ICs Group (MDG) | 742 | 688 | 689 | 7.9 | 7.6

Others | 3 | 3 | 4 | — | —

Total consolidated net revenues | $2,754 | $2,553 | $2,648 | 7.9% | 4.0%

Context: Paragraph 1: On a sequential basis, ADG revenues were up 3.3%, driven by an increase in volumes of approximately 8%, partially offset by

a decrease in average selling prices of approximately 5%, mostly attributable to product mix. Paragraph 2: AMS revenues increased 12.1% driven by

Analog and Imaging products. AMS increase was due to an increase of approximately 5% in average selling prices, entirely due to product mix, and

to higher volumes of approximately of 7%. Paragraph 3: MDG revenues increased by 7.9%, mainly driven by Microcontrollers, due to both higher

average selling prices of approximately 6%, entirely due to

961

product mix, and higher volumes of approximately 2%. Paragraph 4: On a year-over-year basis, fourth quarter net revenues increased

by 4.0%. ADG revenues decreased 4.5% compared to the year-ago quarter on lower revenues in both Automotive and Power Discrete. The decrease was

entirely due to lower average selling prices of approximately 4%, while volumes remained substantially flat. The decrease in average selling

prices was a combination of less favorable product mix and lower selling prices. Paragraph 5: AMS fourth quarter revenues grew 9.9% year-over-

year, mainly driven by Analog and Imaging. The increase was entirely due to higher average selling prices of approximately 18%, entirely

attributable to product mix,

partially offset by lower volumes of approximately 8%. MDG fourth quarter revenues increased by 7.6%, mainly driven by Microcontrollers. The

increase was due to higher average selling prices of approximately 9%,

entirely due to improved product mix.

Question: What led to increase in the revenue of ADG on sequential basis?

Thought 1: I need to look up what led to increase in the revenue of ADG on sequential basis in the context.

Action 1: Look up[what led to increase in the revenue of ADG on sequential basis]

Observation 1: On a sequential basis, ADG revenues were up 3.3%, driven by an increase in volumes of approximately 8%, partially offset by a

decrease in average selling prices of approximately 5%, mostly attributable to product mix.

Thought 2: The question asks what led to increase in the revenue of ADG on sequential basis, the answer is in the observation 1, which is: an

increase in volumes of approximately 8%, partially offset by a decrease in average selling prices of approximately 5%, mostly attributable to

product mix. There is no unit or scale needed as the answer is not a number.

Action 2: Finish[an increase in volumes of approximately 8%, partially offset by a decrease in average selling prices of approximately 5%, mostly

attributable to product mix.]

Table:

 | March 31, |

 | 2019 | 2018

Raw materials | $74.5 | $26.0

Work in process | 413.0 | 311.8

Finished goods | 224.2 | 138.4

Total inventories | $711.7 | $476.2

Context: Paragraph 1: Inventories Paragraph 2: The components of inventories consist of the following (in millions): Paragraph 3: Inventories are

valued at the lower of cost and net realizable value using the first-in, first-out method. Inventory impairment charges establish a new cost basis

for inventory and charges are not subsequently reversed to income even if circumstances later suggest that increased carrying amounts are

recoverable.

Question: What was the percentage change in total inventories between 2018 and 2019?

Thought 1: I need to retrieve the total inventories of 2018 and 2019 respectively.

Action 1: Retrieve[total inventories of 2018 and 2019]

Observation 1: | 2019 | 2018 |

| $711.7 | $476.2 |

Thought 2: I need to calculate the percentage using the formular: [((711.7-476.2)/476.2)*100]

Action 2: Calculate[((711.7-476.2)/476.2)*100]

Observation 2: 49.45.

Thought 3: The question asks for percentage change of total inventories between 2018 and 2019. The answer is in the observation 2, which is 49.45.

The unit/scale of the number is percentage, therefore the answer is 49.45%

Action 3: Finish[49.45%]

(END OF EXAMPLES)

Now generating the Thought, Action, Observation for the following instance:

Table:

{table}

Context: {context}

Question: {question}

{memory}

Figure 9: MACT: Planning agent prompt for TAT.

962

Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and

Action can be four types:

(1) Retrieve[cells], which retrieves certain cell(s) from the table and returns the retrieved cells in string format.

(2) Calculate[formular/instruction], which carries out calculations based on the formular, or the instruction and returns the calculated results.

(3) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists.

(4) Finish[answer], which returns the answer and finishes the task.

You may take as many steps as necessary.

Here are some examples:

Table:

| rank | player | county | tally | total | matches | average |

| 1 | pádraig horan | offaly | 5 - 17 | 32 | 4 | 8 |

| 2 | billy fitzpatrick | kilkenny | 2 - 24 | 30 | 4 | 7.5 |

| 3 | tony o ’sullivan | cork | 0 - 28 | 28 | 4 | 7 |

| 4 | p j molloy | galway | 3 - 11 | 20 | 2 | 10 |

| 5 | christy heffernan | kilkenny | 3 - 9 | 18 | 4 | 4.5 |

| 5 | pat horgan | cork | 0 - 18 | 18 | 4 | 4.5 |

Table tittle: 1982 all - ireland senior hurling championship

Question: How many players in the 1982 all-Ireland senior hurling championship had a higher average score per game than the overall average score

per game of the competition?

Thought 1: I need to first get the overall average score per game of the competition.

Action 1: Calculate[Calculate the overall average score of the competition.]

Observation 1: 6.916666666666667

Thought 2: I need to retrieve the part of the table that only includes players with a higher average score than 6.916666666666667.

Action 2: Retrieve[Retrieve rows where the average score is larger than 6.92.]

Observation 2: | rank | player | county | tally | total | matches | average |

| 1 | pádraig horan | offaly | 5 - 17 | 32 | 4 | 8 |

| 2 | billy fitzpatrick | kilkenny | 2 - 24 | 30 | 4 | 7.5 |

| 3 | tony o ’sullivan | cork | 0 - 28 | 28 | 4 | 7 |

| 4 | p j molloy | galway | 3 - 11 | 20 | 2 | 10 |

Thought 3: I need to count the number of rows in the observatoin 2.

Action 3: Calculate[Count the number of rows in the observation 2.]

Observation 3: 4.

Thought 4: The question asks the number of players having a larger average scores than the overall average score. From the observation 3, we know

that the answer is 4.

Action 4: Finish[4.]

Table:

| season | competition | round | opponent | home | away |

| 2013 - 14 | uefa europa league | 3q | hapoel ramat gan | 0 - 0 | 1 - 0 |

| 2013 - 14 | uefa europa league | play - off | pasching | 2 - 0 | 2 - 1 |

| 2013 - 14 | uefa europa league | group h | sevilla | 1 - 2 | - |

| 2013 - 14 | uefa europa league | group h | slovan liberec | - | 1 - 2 |

| 2013 - 14 | uefa europa league | group h | freiburg | - | 1 - 1 |

Table title: g.d. estoril praia.

Question: Was there a correlation between GD Estoril Praia’s performance in home games and away games during the 2013-14 UEFA Europa League

competition? Answer with only ’Yes’ or ’No’ that is most accurate and nothing else.

Thought 1: I need to first find the column of "home" and "away".

Action 1: Retrieve[Retrieve the the column of "home" and "away".]

Observation 1: | home | away |

| 0 - 0 | 1 - 0 |

| 2 - 0 | 2 - 1 |

| 1 - 2 | - |

| - | 1 - 2 |

| - | 1 - 1 |

Thought 2: I need to compare the outcome of "home" and "away" games in observation 1. I do not find there is no correlation between "home" and

"away" games. As a result, the answer is No.

Action 2: Finish[No.]

963

Table:

| Country | Export 2021(million) | Export 2020(million) |

| U.S.A | 2,827,816 | 2,308,471 |

| Canada | 485,700 | 405,577 |

| France | 683,817 | 552,748 |

| Germany | 1,353,626 | 1,092,044 |

Table title: Export of different countries.

Question: Which country in Europe features the largest percentage change in export number between 2021 and 2020?

Thought 1: I need to identify the rows where the countries are in Europe. Since France and Germany are in Europe, I need to extract rows where the

countries is either France or Germany.

Action 1: Retrieve[Retrieve tne rows where the country are either France or Germany.]

Observation 1: | Country | Export_2021 | Export_2020 |

| France| 683,817 | 552,748 |

| Germany | 1,353,626 | 1,092,044 |

Thought 2: I need to calculate the percentage change of export between 2021 and 2022 in observation 1.

Action 2: Calculate[Calculate tne percentage change between 2021 and 2022 in the observation 1.]

Observation 2: | Country | Percentage_change |

| France| 23.71 |

| Germany | 23.95 |

Thought 3: The question asks the country in Europe that features the largest percentage change. From observation 2, we can see that Germany has

the largest percentage change 23.95%. Therefore the answer is Germany.

Action 3: Finish[Germany.]

(END OF EXAMPLES)

Now generating the Thought, Action, Observation for the following instance:

Table:

{table}

Context: {context}

Question: {question}

{memory}

Figure 10: MACT: Planning agent prompt for CRT.

964

Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and

Action can be four types:

(1) Retrieve[cells], which retrieves certain cell(s) from the table and returns the retrieved cells in string format.

(2) Calculate[formular/instruction], which carries out calculations based on the formular, or the instruction and returns the calculated results.

(3) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists.

(4) Finish[answer], which returns the answer and finishes the task.

You may take as many steps as necessary.

Here are some examples:

Table:

| Model | Training data | Overall | Easy | Hard |

| BERT-large-FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) |

| BERT-large-FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) |

| BERT-large-FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) |

| RoBERTa-large-FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) |

| RoBERTa-large-FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) |

| RoBERTa-large-FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) |

Context: Table caption: Table 5: Results of fine-tuned models on Balanced COPA. Easy: instances with superficial cues, Hard: instances without

superficial cues.

Claim: RoBERTa-large outperforms BERT-large when fine-tuned on full and balanced COPA.

Question: Is the above claim true or false ?

Thought 1: I need to retrieve the performance of RoBERTa-large and BERT-large on full and balanced COPA. The B-COPA is the acronym of the balanced

COPA. Therefore, I need to retrieve Retrieve the rows where model is BERT-large-FT or RoBERTa-large-FT and training data is COPA or B-COPA.

Action 1: Retrieve[Retrieve the rows where model is BERT-large-FT or RoBERTa-large-FT and training data is COPA or B-COPA.]

Observation 1: | Model | Training data | Overall | Easy | Hard |

| BERT-large-FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) |

| BERT-large-FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) |

| RoBERTa-large-FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) |

| RoBERTa-large-FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) |

Thought 2: In observation 1, RoBERTa-large has an overall performance of 87.7 on COPA. BERT-large has an overall performance of 76.5 on COPA.

Therefore, RoBERTa-large outperforms BERT-large on COPA. For balanced COPA, RoBERTa-large has an overall performance of 89.0, BERT-large has an

overall performance of 74.5. RoBERTa-large outperforms BERT-large on balanced COPA. Since RoBERTa-large outperforms BERT-large on both full and

balanced COPA, the claim is true.

Action 2: Finish[True]

Table:

| Model | Training data | Overall | Easy | Hard |

| BERT-large-FT | B-COPA | 74.5 (±0.7) | 74.7 (±0.4) | 74.4 (±0.9) |

| BERT-large-FT | B-COPA (50%) | 74.3 (±2.2) | 76.8 (±1.9) | 72.8 (±3.1) |

| BERT-large-FT | COPA | 76.5 (±2.7) | 83.9 (±4.4) | 71.9 (±2.5) |

| RoBERTa-large-FT | B-COPA | 89.0 (±0.3) | 88.9 (±2.1) | 89.0 (±0.8) |

| RoBERTa-large-FT | B-COPA (50%) | 86.1 (±2.2) | 87.4 (±1.1) | 85.4 (±2.9) |

| RoBERTa-large-FT | COPA | 87.7 (±0.9) | 91.6 (±1.1) | 85.3 (±2.0) |

Context: Table caption: Table 5: Results of fine-tuned models on Balanced COPA. Easy: instances with superficial cues, Hard: instances without

superficial cues.

Claim: The difference between RoBERTa-large-FT and BERT-large-FT is 3.8 points on B-COPA, which is significantly smaller than the difference in

COPA.

Question: Is the above claim true or false?

Thought 1: I need to retrieve the performance of RoBERTa-large-FT and BERT-large-FT on B-COPA and COPA.

Action 1: Retrieve[Retrieve the overall performance of BERT-large-FT and RoBERTa-large-FT on COPA and B-COPA training set.]

Observation 1: | Model | Training data | Overall |

| BERT-large-FT | B-COPA | 74.5 (±0.7) |

| BERT-large-FT | COPA | 76.5 (±2.7) |

| RoBERTa-large-FT | COPA | 87.7 (±0.9) |

| RoBERTa-large-FT | B-COPA | 89.0 (±0.3) |

Thought 2: I need to compare the performance difference between RoBERTa-large-FT and BERT-large-FT on B-COPA.

Action 2: Calculate[89.0-74.5]

Observation 2: 14.5

965

Thought 3: I need to compare the performance difference between RoBERTa-large-FT and BERT-large-FT on COPA.

Action 3: Calculate[87.7-76.5]

Observation 3: 11.2

Thought 4: The difference between RoBERTa-large-FT and BERT-large-FT on B-COPA is 14.5 (in the observation 2). This is significantly larger than

the difference on COPA, which is 11.2 (in the observation 3). Therefore , the Claim is false.

Action 4: Finish[False]

Table:

| Model | Joint Acc. |

| COMER | 88.64% |

| - Hierachical-Attn | 86.69% |

| - MLP | 83.24% |

Context: Table caption: Table 4: The ablation study on the WoZ 2.0 dataset with the joint goal accuracy on the test set. For ''- Hierachical-Attn

'', we remove the residual connections between the attention modules in the CMR decoders and all the attention memory access are based on the

output from the LSTM. For ``- MLP '', we further replace the MLP with a single linear layer with the non-linear activation.

Claim: [CONTINUE] The effectiveness of our hierarchical attention design is proved by an accuracy drop of 1.95% after removing residual

connections and the hierarchical stack of our attention modules.

Question: Is the above claim true or false?

Thought 1: I need to retrieve the perfomance of COMER with the hierarchical attention design.

Action 1: Retrieve[Retrieve the joint acc. of the model COMER.]

Observation 1: 88.64%.

Thought 2: I need to retrieve the perfomance of COMER without the hierarchical attention design. From the context, I find that the model under the

name ''- Hierachical - Attn '' corresponds to the model without the residual connections between the attention modules. So I need to retrieve the

joint acc. of the model ''- Hierachical-Attn''.

Action 2: Retrieve[Retrieve the joint acc. of the model - Hierachical-Attn.]

Observation 2: 86.69%.

Thought 3: I need to calculate the difference in model performances of COMER and - Hierachical-Attn.

Action 3: Calculate[88.64-86.69]

Observation 3: 1.95.

Thought 4: Since the claim mentioned after removing residual connections and the hierarchical stack of our attention modules, there is an accuracy

drop of 1.95%. This is true from the observation 3. Therefore the claim is True.

Action 4: Finish[True]

(END OF EXAMPLES)

Now generating the Thought, Action, Observation for the following instance:

Table:

{table}

Context: {context}

Question: {question}

{memory}

Figure 11: MACT: Planning agent prompt for SCITAB.

966

You are given an instruction and a table in pandas dataframe format. Write python code in one code block to retrieve the most relevant rows or/and

columns according to the instruction. Return the result in pandas dataframe format and rename it after 'new_table'. Do not use print in the code.

Below are two examples:

Instruction: extract the score of the game between the teams on 6 February 1922.

Table dateframe code: import pandas as pd

data={"Tie no": ["1", "2", "3", "Replay", "4", "5", "6", "7", "8", "9", "10", "11", "Replay", "12", "Replay", "13", "Replay", "Replay", "14",

"Replay", "15", "16"], "Home team": ["Liverpool", "Preston North End", "Southampton", "Cardiff City", "Leicester City", "Nottingham Forest",

"Aston Villa", "Bolton Wanderers", "Swindon Town", "Tottenham Hotspur", "Barnsley", "Northampton Town", "Stoke", "Brighton & Hove Albion",

"Huddersfield Town", "Bradford City", "Notts County", "Notts County", "Crystal Palace", "Millwall", "Southend United", "Bradford Park Avenue"],

"Score": ["0\u20131", "3\u20131", "1\u20131", "2\u20130", "2\u20130", "3\u20130", "1\u20130", "1\u20133", "0\u20131", "1\u20130", "3\u20131",

"2\u20132", "3\u20130", "0\u20130", "2\u20130", "1\u20131", "0\u20130", "1\u20130", "0\u20130", "2\u20130", "0\u20131", "2\u20133"], "Away team":

["West Bromwich Albion", "Newcastle United", "Cardiff City", "Southampton", "Fulham", "Hull City", "Luton Town", "Manchester City", "Blackburn

Rovers", "Watford", "Oldham Athletic", "Stoke", "Northampton Town", "Huddersfield Town", "Brighton & Hove Albion", "Notts County", "Bradford

City", "Bradford City", "Millwall", "Crystal Palace", "Swansea Town", "Arsenal"], "Date": ["28 January 1922", "28 January 1922", "28 January

1922", "1 February 1922", "28 January 1922", "28 January 1922", "28 January 1922", "28 January 1922", "28 January 1922", "28 January 1922", "28

January 1922", "28 January 1922", "1 February 1922", "28 January 1922", "1 February 1922", "28 January 1922", "1 February 1922", "6 February

1922", "28 January 1922", "1 February 1922", "28 January 1922", "28 January 1922"]}

df=pd.DataFrame(data)

Code: ```Python

Filter based on the date

filtered_df = df[df['Date'] == '6 February 1922']

Rename the dataframe

new_table = filtered_df

```

Instruction: retrieve the number of passengers for Los Angeles and Saskatoon from the table in 2013.

Table dataframe code: import pandas as pd

data={"Rank": ["1", "2", "3", "4", "5", "6", "7", "8", "9"], "City": ["United States, Los Angeles", "United States, Houston", "Canada, Calgary",

"Canada, Saskatoon", "Canada, Vancouver", "United States, Phoenix", "Canada, Toronto", "Canada, Edmonton", "United States, Oakland"],

"Passengers": ["14,749", "5,465", "3,761", "2,282", "2,103", "1,829", "1,202", "110", "107"], "Ranking": ["", "", "", "4", "", "1", "1", "", ""],

"Airline": ["Alaska Airlines", "United Express", "Air Transat, WestJet", "", "Air Transat", "US Airways", "Air Transat, CanJet", "", ""]}

df=pd.DataFrame(data)

Code: ```Python

# Filter the rows for Los Angeles and Saskatoon in 2013

filter_la = (df['City'] == 'United States, Los Angeles') & (df['Rank'] == '1')

filter_sask = (df['City'] == 'Canada, Saskatoon') & (df['Rank'] == '4')

# Apply the filter and store the result in 'new_table'

new_table = df.loc[filter_la | filter_sask, ['City', 'Passengers']]

# Rename the columns as required

new_table.columns = ['City', 'Passengers_2013']

```

Now please write code for the following instruction.

Instruction:{instruction}

Table dataframe code:{table_df}

Code:

Figure 12: MACT: Coding agent prompt for retrieval.

967

According to the instruction, write python code in one code block to perform calculations based on the given pandas dataframe. Return the final

result after the variable name final_result. The final result can be of either pandas dataframe or string type. Do not use other data type. Do not

use print statement in the code block.

Below are two examples:

Instruction: count how many buildings have a height under 200 ft.

Dataframe code: import pandas as pd

data={"Rank": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21=", "21=", "23",

"24", "25", "26", "27", "28", "29", "30"], "Name": ["Rhodes State Office Tower", "LeVeque Tower", "William Green Building", "Huntington Center",

"Vern Riffe State Office Tower", "One Nationwide Plaza", "Franklin County Courthouse", "AEP Building", "Borden Building", "Three Nationwide

Plaza", "One Columbus Center", "Columbus Center", "Capitol Square", "Continental Center", "PNC Bank Building", "Miranova Condominiums", "Fifth

Third Center", "Motorists Mutual Building", "Midland Building", "The Condominiums at North Bank Park", "Lincoln Tower Dormitory", "Morrill Tower

Dormitory", "Hyatt Regency Columbus", "Key Bank Building", "Adam's Mark Hotel", "Town Center", "8 East Broad Street", "Huntington Building", "Ohio

Judicial Center", "16 East Broad Street"], "Height\\nft / m": ["629 / 192", "555 / 169", "530 / 162", "512 / 156", "503 / 153", "485 / 148", "464

/ 141", "456 / 139", "438 / 134", "408 / 124", "366 / 112", "357 / 109", "350 / 107", "348 / 106", "317 / 97", "314 / 96", "302 / 92", "286 / 87",

"280 / 85", "267 / 81", "260 / 79", "260 / 79", "256 / 78", "253 / 77", "243 / 74", "226 / 69", "212 / 64.6", "202 / 59.4", "200 / 57.9", "180 /

64.4"], "Floors": ["41", "47", "33", "37", "32", "40", "27", "31", "34", "27", "26", "25", "26", "26", "25", "26", "25", "21", "21", "20", "26",

"26", "20", "20", "16", "17", "17", "13", "14", "13"], "Year": ["1973", "1927", "1990", "1984", "1988", "1976", "1991", "1983", "1974", "1989",

"1987", "1964", "1984", "1973", "1977", "2001", "1998", "1973", "1970", "2007", "1967", "1967", "1980", "1963", "1961", "1974", "1906", "1926",

"1933", "1900"], "Notes": ["Has been the tallest building in Columbus and the tallest mid-block skyscraper in Ohio since 1973. Tallest building

constructed in Columbus in the 1970s.", "Tallest building constructed in Columbus in the 1920s.", "Tallest building constructed in Columbus in the

1990s.", "Tallest building constructed in Columbus in the 1980s.", "", "", "", "", "", "", "", "Tallest building constructed in Columbus in the

1960s. Was built as the Bank One Tower.", "", "", "", "Tallest residential building in the state of Ohio. Tallest building built in the 2000s.",

"", "", "", "", "", "", "", "", "", "", "", "", "", ""]}

df=pd.DataFrame(data)

Information:

Code: ```Python

Conversion of height from string to numeric

df['Height'] = df['Height\\nft / m'].str.split(' / ').str[0].astype(int)

Filter buildings with height under 200 ft

buildings_under_200ft = df[df['Height'] < 200]

Counting the number of buildings

final_result = len(buildings_under_200ft)

```

Instruction: calculate the average of gold medals for the top 5 nations.

Dataframe code: import pandas as pd

data={"Rank": ["1", "2", "3", "4", "5"], "Nation": ["United States", "Jamaica", "Netherlands", "Bahamas", "Ukraine"], "Gold": ["5", "4", "2", "1",

"1"], "Silver": ["6", "1", "0", "1", "0"], "Bronze": ["5", "1", "0", "0", "1"], "Total": ["16", "6", "2", "2", "2"]}

df=pd.DataFrame(data)

Code: ```Python

top_5_medals = df.["Gold"].astype(int).sum()

final_result = top_5_medals / 5

```

Now generate python code according to the following instruction.

Instruction: {instruction}

Dataframe code: {table_df}

Code:

Figure 13: MACT: Coding agent prompt for calculation.

968

