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Abstract

This paper describes our system for the
SciVQA 2025 Shared Task on Scientific Visual
Question Answering. Our system employs an
ensemble of two Multimodal Large Language
Models and various few-shot example retrieval
strategies. The model and few-shot setting are
selected based on the figure and question type.
We also select answers based on the models’
confidence levels. On the blind test data, our
system ranks third out of seven with an average
F1 score of 85.12 across ROUGE-1, ROUGE-
L, and BERTS. Our code is publicly available.

1 Introduction

Visual Question Answering (VQA) requires sys-
tems to answer natural language questions about
visual content. The complexity of these questions
can range from binary questions to free-form and
open-ended questions. Existing VQA datasets ad-
dress various types of images, e.g., VQA v2 fo-
cuses on real-world photos (Goyal et al., 2017),
DocVQA focuses on scanned documents (Mathew
et al., 2021), while ChartQA (Masry et al., 2022)
and PlotQA (Methani et al., 2020) focus on charts.

In this paper, we describe our system submission
for the 2025 Shared Task on Scientific Visual Ques-
tion Answering (SciVQA) (Borisova et al., 2025).
The dataset? comprises 3000 real-world scientific
figure images, which were collected from the ACL-
Fig (Karishma et al., 2023) and SciGraphQA (Li
and Tajbakhsh, 2023).

Most existing VQA approaches that focus on
charts rely on models explicitly tuned for this do-
main (Liu et al., 2023; Han et al., 2023; Xia et al.,
2024; Zhang et al., 2024). In contrast, our ap-
proach uses Multimodal Large Language Models
(MLLMs) in a zero/few-shot setting without any
fine-tuning. We test several strategies for retrieving

"https://github.com/coling-unia/few-shot-scivqa2025
Zhttps://huggingface.co/datasets/katebor/SciVQA
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Figure 1: System overview. Abbreviations for few-shot
example selection: #s = #-shot, q = question similarity,
img = image similarity, f = filter for same figure type,
nf = no filtering (search in entire train set).

few-shot examples from the training set based on
question or question-and-image similarity. We find
that performance varies widely by question/figure
type and by MLLM. Our best-performing approach
first selects highly confident answers from a con-
figuration of an MLLM and a few-shot setting. For
all remaining instances, the system configuration
is varied by the instance’s question type. In the
official evaluation, our system ranks third.

2 Method

Our system is configurable to use different MLLMs
in either a zero-shot or a few-shot setting. These
settings are combined using an ensemble approach
(see Figure 1) that first selects all high-confidence
answers from a configuration that we find to
be well-calibrated, i.e., the predicted confidence
scores align well with the actual empirical accu-
racy on the development set. We approximate an-
swer confidence by exponentiating the mean log-
probability of all generated answer tokens. For
the remaining instances, the model configuration
is selected based on question type as identified on
the development set. The MLLM is prompted with
each image and the associated question (see Ap-
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Rank Submission R1-F1 RL-F1 BS-F1 Avg.
1. ExpertNeurons 80.49 80.43 98.49 8647
2. THAIii_LAB 78.99 7892 98.39 8543
3. Coling-UniA  78.62 78.56 98.17 85.12

Median 75.83 75775 98.36 83.31

Table 1: Overview of SciVQA @SDP 2025 results. Met-
rics: R1 = ROUGE-1, RL = ROUGE-L, BS = BERTS.

pendix A.2). Following the oracle-style setup of
the Shared Task, we also provide the model with
additional image metadata that is included in the
dataset, i.e., the image caption, figure type, and
whether the image contains multiple subfigures.
The task description depends on whether there are
pre-defined answer options for the questions. The
model is instructed to answer and to determine
whether it is possible to answer based solely on the
provided information.

To enhance the reproducibility, our selection
of MLLMs is constrained to open-weights mod-
els. We use InternVL3-78B (Zhu et al., 2025) and
Pixtral-Large-Instruct-2411.3> We run all models
using 16-bit quantization and a temperature of 0.

Few-shot Example Retrieval. We evaluate dif-
ferent few-shot retrieval approaches. First, we use
question similarity to select examples from the
training data for the input instance. For ranking, we
use the cosine similarities of the questions” SBERT
embeddings (Reimers and Gurevych, 2019). Sec-
ond, we select examples based on the question-
image similarity using CLIP (Radford et al., 2021).
We compute CLIP embeddings for each question
and image, normalize them, compute the mean em-
bedding of each image-question pair, normalize
again, and determine the best-fit example using
cosine similarity. We also experimented with com-
puting similarities based on the image-question
embeddings directly provided by BLIP-2 (Li et al.,
2023). In case of similarity ties, we choose the first
instance in the order as they are provided in the
training set.

For both settings, we retrieve few-shot examples
from the training set in two variants: (1) We con-
sider only the subset of the training data that has
the same figure type, and, if possible, the same
number of sub-figures, as the input instance. (2)
We search for few-shot examples in the entire train-
ing set. In both cases, we exclude all instances

3https://huggingface.co/mistralai/Pixtral-Large-Instruct-
2411
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that use the input image from the set of few-shot
candidates. We do not filter training data based
on the question type. In the oracle-style setting of
the Shared Task, it would have been possible to
additionally filter based on question type. We do so
only indirectly by searching for questions and im-
ages with high embedding similarity, which makes
our approach more directly applicable to real-world
scenarios, where the question type may not be pro-
vided. Moreover, the question type “unanswerable”
directly reveals the gold answer.

Our retrieval method ranks instances. It can thus
be used to retrieve an arbitrary number of few-shot
examples. We evaluate the performance of these re-
trieval strategies in one-shot and two-shot settings.
When using two examples, the model is given one
answerable and one unanswerable example.

3 Development Results and Ablations

Since our approach does not require any fine-
tuning, we combine the training and validation sets
into one development set. This section describes
our careful experimentation and ablation studies on
the development set. For more information on the
dataset, see Appendix A.3.

We rely on the metrics of the Shared Task, F1,
Precision, and Recall of ROUGE-1, ROUGE-L
(Lin, 2004), and BERTScore (BERTS, Zhang et al.,
2020), respectively, to evaluate our approach. How-
ever, we focus on ROUGE-1 F1, as the BERTS
scores are similar for all approaches, and the
ROUGE-L scores are comparable to ROUGE-1.

We run our experiments on Nvidia A100 (80
GB) GPUgs, using up to 4 GPUs in parallel. The
total amount of GPU hours was about 3600h.

3.1 Retrieval of Few-Shot Examples

As shown in Figure 2, the degree to which the
question type of the retrieved few-shot examples
matches that of the input instance varies greatly
by question type. Searching for examples using
only question similarity leads to matching the input
instance’s question type far more often than search-
ing using image and question similarity. However,
this does not seem to make a marked difference
in overall performance. We found BLIP-2’s text-
image embeddings to primarily reflect the image
content, resulting in many ties.*

*Qur tie-breaking strategy leads to instances of the ques-
tion type “closed-ended infinite answer set visual” to be se-
lected, which comes first in the training set ordering for each
image.
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Figure 2: Percentage of selected one-shot example
matching the question type of the input instance. bin
= binary question, MC-4 = four answer options, inf =
infinite answer set, unansw. = unanswerable, (v) = vi-
sual, (nv) = non-visual, filtered = filter for same figure
type, not filtered = search in entire train set, q = question
similarity, img = image similarity.
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Figure 3: ROUGE-1 F1 scores per question type. Box-
plot: 1-shot and 2-shot question and question+image
similarity configurations of Pixtral-Large-2411. Blue
dots = Pixtral-Large-2411 (0-shot).

3.2 Impact of Few-Shot Examples

Table 2 compares the effectiveness of InternVL3-
78B and Pixtral-Large-2411 using various few-
shot settings with that of our ensemble approaches.
Adding few-shot examples generally improves per-
formance. We cannot report 2-shot results for
InternVL3-78B because its context window is too
small to incorporate two examples. Comparing
performance by question type reveals that adding
examples can be highly beneficial, e.g., for recog-
nizing unanswerable questions, though they can
also be distracting (see Figure 3 or Appendix A.1).
However, adding two examples is almost always
beneficial. Furthermore, using one answerable and
one unanswerable example helps the model to dis-
tinguish between these two types of instances, es-
pecially when compared to using only one example
(see Table 3).
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Figure 4: ROUGE-1 F1 scores per figure type of all
configurations (zero- and few-shot) of both MLLMs
visualized as boxplots.

3.3 Question/Figure Type Ensemble

To determine the best configuration of MLLM and
few-shot strategy for each pair of question type and
figure type, we systematically search for the opti-
mal ensemble settings by obtaining and analyzing
distributions of performance scores over subsets of
the data similar to cross-validation.

While there appears to be a general trend of en-
hanced performance with the use of examples (see
Table 2), our findings reveal considerable variations
in the performance of our configurations across dif-
ferent question and figure types (see Figure 3 and
Figure 4 or Appendix A.1). Therefore, we use the
results on the development set to systematically
identify the optimal combination of configurations
that work well across as many subsets of the data
as possible. The dataset consists of seven evenly
represented question types and various figure types
that are not evenly distributed. We record perfor-
mance scores for each figure type separately. To
avoid overfitting, we summarize all figure types
that encompass less than two percent of the total
number of figures into the figure type “others”,
which leads to nine groups with homogeneous fig-
ure types (line chart, tree, scatter plot, pie chart, bar
chart, architecture diagram, neural networks, confu-
sion matrix, graph) plus one group of the “others”,
i.e., 10 groups in total. For the largest figure type,
i.e., line chart, we divide the data into seven groups
by further dividing the data by question type. In
total, we divide the data into 16 groups (8 homoge-
neous figure types, 1 “others”, and 7 subsets with
line charts).

We split the data of each group into 5 folds and
compute performance scores. We repeat this pro-
cess at least 10 times with different splits until the
predicted best-performing configuration remains
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Setting | Configuration | RI-F1 RI1-P RI1-R | RL-F1 RL-P RL-R|BS-FI BS-P BS-R
Individual runs | InternVL (0s) 742 752 749 74.1  75.1 748 97.1 973 970
(dev set) InternVL (1s_g_f) 747 757 748 746 75.6 74.8 97.8 979 978
InternVL (1s_qg_nf) 745 755 746 744 754 746| 978 978 977
InternVL (1s_qg_img_f) 748 75.6 75.2 7477  75.6 751 97.8 978 978
InternVL (1s_q_img_nf) 747 757 751 746 756 750 97.8 978 978
InternVL (1s_qg_img_f, BLIP2) 75.0 76.0 75.2 749 76.0 75.1 97.9 98.0 979
Pixtral (0s) 714 725 724 712 724 722| 963 96.6 96.0
Pixtral (1s_q_f) 728 740 73.1 7277 739 730 975 976 975
Pixtral (1s_q_nf) 723 735 726 722 734 725 975 975 975
Pixtral (1s_q_img_f) 728 741 731 727 740 730| 974 975 973
Pixtral (1s_q_img_nf) 72.8 740 732 727 739 731 974 975 973
Pixtral (2s_q_f) 739 752 740 73.8 751 739| 977 978 977
Pixtral (2s_q_nf) 73.7 750 738 73.6 749 73.7 977 978 977
Pixtral (2s_q_img_f) 741 755 742 74.0 754 741 97.7 978 976
Pixtral (2s_q_img_nf) 73.8 752 739 73.7 75.1 738 97.6 978 976
Ensembles Question/Figure-Type Ensemble | 76.6 78.0 76.5 76.5 778 764 979 98.0 979
(dev set) Confidence-Informed Ensemble 769 78.2 76.8 76.8 78.1 76.8 98.0 981 979
Results on InvernVL (1s_q_img_f, BLIP2) 772 780 774 772 719 713 98.1 982 98.1
test set Question/Figure-Type Ensemble | 77.7 78.8 77.7 776 787 776 98.1 982 98.0
Confidence-Informed Ensemble 78.6 79.7 78.6 78.6 79.6 785 98.2 983 98.1

Table 2: Results of individual runs vs. ensembles on development and test set
selection: #s = #-shot, q = question similarity, img = image similarity, f = filter for same figure type, nf = no filtering
(search in entire train set). Metrics: R1 = ROUGE-1, RL = ROUGE-L, BS = BERTS, P = Precision, R = Recall.
Question/Figure-Type Ensemble refers to the approach described in section 3.3 and Confidence-Informed Ensemble

. Abbreviations for few-shot example

to that of section 3.4.

Approach | Precision
Pixtral (0s) 93.0
Pixtral (1s_q_f) 89.2
Pixtral (1s_q_img_f) 89.3
Pixtral (Is_q_img_nf) 90.3
Pixtral (1s_q_nf) 88.7
Pixtral (2s_q_f) 92.7
Pixtral (2s_q_img_f) 94.1
Pixtral (2s_q_img_nf) 93.7
Pixtral (2s_q_nf) 93.3

Table 3: Precision of instances predicted to be unan-
swerable.

constant. In each fold, we calculate the ROUGE-1
F1 score for all configurations, then subtract the
highest score achieved in that fold. For each config-
uration, we then compute the mean of these scores
across all folds and all runs. The best-performing
configuration is identified by the highest score. For
the final chosen configuration of this ensemble, re-
fer to Table 8 in Appendix A.1.

3.4 Confidence-Informed Ensemble

Figure 6 shows that InternVL3-78B (1s_q_img_f,
BLIP2) with examples derived from BLIP-2, which
focus primarily on image similarity as explained in
Sec. 3.1, is meaningfully calibrated. This means
that high confidence scores indicate highly likely
correct instances (refer to Appendix A.1 for de-
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Figure 5: Number of instances having received high con-
fidence answer of InternVL3-78B (1s_q_img_f, BLIP)
by question type.

tailed results). Thus, for our final submission, we
directly use all predictions from this model with
a confidence score of at least 90%, which corre-
sponds to approximately half of the instances, in
the initial stage. As shown in Figure 5, the num-
ber of high-confidence instances varies by question
type. The model is most confident on identifying
unanswerable questions, while it is least sure about
its answers for questions with infinite answers sets
about the image’s visual features. After remov-
ing high-confidence instances, the performance per
question type varies widely between our configrua-
tions (see Appendix A.1 for detailed results). The
best configuration per question type does not seem
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Figure 6: Calibration plot for InternVL3-78B
(1s_q_img_f, BLIP) showing that instances with confi-
dence score > 0.9 have high expected accuracy.

to depend on whether the question incorporates vi-
sual or non-visual features. Since the vast majority
of the remaining instances are of figure type line
chart, we do not perform cross-validation to de-
termine the optimal configuration of approaches.
Instead, we select the best-performing approach for
each question type, while also trying to reduce the
number of approaches required.

As can be seen in Figure 1, we use the following
models for the remaining instances: Pixtral-Large-
2411 (2s_q_f) for binary questions, Pixtral-Large-
2411 (2s_q_img_f) for questions with an infinite
answer set, and InternVL3-78B (1s_g_f) for all
others.

4 Results on Test Set

Table 2 also shows the results of our approaches on
the test set, indicating that our ensembling strate-
gies improve the performance compared to using
only one approach to answer all questions. On
the test set, we also find the confidence-informed
ensemble to work best, while the question/figure
type ensemble outperforms the simple InternVL
model not as strongly as on the development set.
The confidence-informed ensemble is the approach
submitted for the leaderboard, ranking third in the
official evaluation (almost on par with the second-
ranking system) as shown in Table 1, and outper-
forming the baseline by about 4 percentage points.

5 Discussion and Conclusion

This paper described our submission to the SciVQA
2025 Shared Task. Our results show that MLLMs
are highly effective at answering questions about
scientific figures. However, performance varies
greatly by question type. Results on finite answer
sets are considerably better than on infinite ones. In

particular, answering infinite answer set questions
about visual features of images remains challeng-
ing, highlighting the need for a more sophisticated
approach.

The use of few-shot examples improves perfor-
mance. However, there are no major performance
differences between retrieving the examples by
question or question-image similarity.

Limitations

Since the ACL-Fig and SciGraphQA datasets, on
which the figures in this Shared Task are based,
rely on images published several years ago, some
of these images may have already been exposed to
MLLMs during training.

Another limitation is performance on unanswer-
able questions. Although our approach performed
best on this question type, it is difficult to deter-
mine if it would perform equally well on real-world
unanswerable questions. This is because the unan-
swerable questions in this dataset follow a differ-
ent pattern than the answerable ones. For exam-
ple, they mostly refer to material unavailable to
the model and often do not focus on the images’
visual/non-visual features.
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A Appendix

A.1 Detailed Results on Development Set

Table 4 shows the detailed results of the different
zero- and few-shot approaches on the development
set, broken down by question type. Performance
varies greatly between question types, indicating
that questions with an infinite answer set are more
difficult. Furthermore, performance depends on the
MLLM and few-shot configuration used. Mostly,
using examples is beneficial for performance.

As shown in Table 5, the performance of the
different configurations also depends on the figure
type of the image.

Table 6 reports the ROUGE-1 F1 score per con-
fidence bin and the relative proportion of respec-
tive bin of the development set. Interestingly, the
configuration that uses BLIP-2 to retrieve similar
examples is well-calibrated for high confidence. In
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general, InternVL3-78B appears to be better cali-
brated than Pixtral-Large-2411 for our task.

The performance of different approaches per
question type can be seen in Table 7 after having re-
moved all instances of InternvL.3-78B (1s_q_img_f,
BLIP) with a confidence of > 90%. Performance
is worse compared to Table 4 since the high con-
fidence answers are removed. Nevertheless, there
are still large performance differences between the
different approaches.

Table 8 shows the best configurations per figure
and question type identified via cross-validation for
the Question/Figure Type Ensemble.

A.2 Detailed Prompt

Figure 7 shows the prompt used in our approach.
Its formatting depends on the annotated metadata,
i.e., whether the instance has annotated answer
options and whether the figure consists of multiple
subfigures.

A.3 Dataset Characteristics

The dataset consists of 3000 real-world figures ex-
tracted from English scientific publications avail-
able in the ACL Anthology and arXiv. The figures
can be categorized into different figure types such
as line chart, tree, or scatter plot. These figure
types are not evenly distributed. For example, line
chart makes up 65% of all figures in the develop-
ment set (see Figure 8).

Each figure is annotated with seven questions.
Two binary questions (one focusing on visual fea-
tures and one focusing on non-visual features), two
questions with four answer options respectively
(one visual and one non-visual), two questions with
infinite answer sets (one visual and one non-visual),
and one unanswerable question. The unanswer-
able questions are not subdivided into visual and
non-visual questions, and they generally follow a
different pattern than the answerable ones. For ex-
ample, they mostly refer to material unavailable to
the model and often do not focus on the images’
visual/non-visual features.
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Approach \binary (nv) binary(v) MC-4 (nv) MC-4 (v) inf (nv) inf (v) unanswerable

InternVL (0s) 78.9 80.9 76.6 79.3 66.4 51.2 86.2
InternVL (1s_g_f) 82.0 80.8 76.9 799 634 493 90.4
InternVL (1s_q_nf) 82.0 81.0 76.3 79.1 63.5 50.0 89.5
InternVL (1s_q_img_f) 80.4 81.3 76.3 79.3 65.3 495 91.2
InternVL (1s_q_img_nf) 80.6 80.8 76.3 78.6  65.7 50.1 91.0
InternVL (1s_q_img_f, BLIP) 82.7 80.6 76.7 790 674 518 87.0
Pixtral (0s) 78.6 77.9 71.8 740 662 53.8 77.4
Pixtral (1s_q_f) 80.2 79.5 71.7 739 674 534 83.4
Pixtral (1s_q_nf) 79.9 78.5 71.2 74.1 67.5 53.1 82.0
Pixtral (1s_q_img_f) 80.3 79.0 71.9 750 67.1 53.1 83.2
Pixtral (1s_q_img_nf) 79.9 79.0 72.3 75.1 67.3 532 83.0
Pixtral (2s_q_f) 82.9 80.7 72.1 749 68.1 54.0 84.4
Pixtral (2s_q_nf) 82.1 80.3 71.9 750 68.0 54.6 84.0
Pixtral (2s_q_img_f) 81.5 80.4 72.6 75.8 679 55.2 85.4
Pixtral (2s_q_img_nf) 81.6 80.0 72.4 75.9 68.1 54.1 84.5

Table 4: Results (ROUGE-1 F1 scores) on development set by question type. v=visual, nv= non-visual.

A h architecture bar confusion h line neural th pie scatter ¢

pproac diagram chart matrix EMPY chart networks © ' chart plot ree
InternVL (0s) 83.9 777 77.0 754 722 789 734 874 78.0 76.2
InternVL (1s_q_f) 86.2 77.3 76.7 76.8 72.5 792 745 89.2 75.6 78.6
InternVL (1s_q_nf) 85.0 76.4 78.6 774 725 79.2 734 88.0 76.2 778
InternVL (1s_q_img_f) 86.2 76.6 784 7177 72.6 78.8 744 887 77.1 78.2
InternVL (1s_q_img_nf) 85.4 76.1 78.3 78.0 72.6 79.7 739 88.0 76.9 79.2
InternVL (1s_q_img_f, BLIP) 87.0 76.3 78.8 77.1 72.8 81.6 744 88.1 77.9 78.1
Pixtral (Os) 80.6 72.8 71.5 66.7 70.3 76.0 70.1 82.8 75.3 70.1
Pixtral (1s_q_f) 84.7 73.8 715 679 713 775 72.0 82.1 76.7 73.5
Pixtral (1s_q_nf) 833 734 7777 69.8 71.0 77.1 70.3 81.6 75.7 72.6
Pixtral (1s_q_img_f) 82.8 73.3 78.1 70.7 71.4 777 714 809 76.9 73.9
Pixtral (1s_q_img_nf) 84.1 71.8 78.0 70.3 71.5 762 71.6 80.6 76.9 74.3
Pixtral (2s_q_f) 83.6 76.2 799 714 723 79.6 727 82,6 774 745
Pixtral (2s_q_nf) 839 735 774 72.6 723 78.6 723 83.7 77.8 74.2
Pixtral (2s_q_img_f) 852 75.4 804 71.7 725 789 719 844 789 757
Pixtral (2s_q_img_nf) 84.3 74.2 80.8 713 723 793 722 84.0 77.6 73.8

Table 5: Results (ROUGE-1 F1 scores) on development set by figure type.
Approach | 03.04 0405 0506 06207 0.7_0.8 0.8_0.9 0.9_1.0
InternVL (0s) 15.2 (0.1) 34.5(1.2) 48.7 (5.3) 55.4 (13.6) 69.9 (21.2) 73.3 (18.2) 87.9 (40.4)

InternVL (1s_g_f)
InternVL (1s_q_nf)
InternVL (1s_q_img_f)
InternVL (1s_q_img_nf)
InternVL (1s_q_img_f, BLIP)
Pixtral (0s)

Pixtral (1s_q_f)

Pixtral (1s_q_nf)

Pixtral (1s_q_img_f)
Pixtral (1s_q_img_nf)
Pixtral (2s_qg_f)

Pixtral (2s_q_nf)

Pixtral (2s_q_img_f)
Pixtral (2s_q_img_nf)

18.5 (0.1) 30.2 (0.8) 30.3 (2.9)
22.9(0.1) 25.0 (0.9) 31.1 (3.1)
21.2 (0.1) 30.9 (0.8) 37.6 (3.4)
15.9 (0.1) 28.3 (0.8) 38.7 (3.3)
19.6 (0.2) 27.3 (1.0) 34.0 (3.5)
25.0 (0.0) 24.7 (0.3) 34.6 (1.8)

0.0 (0.0) 31.1(0.3) 33.7 (1.6)
11.4 (0.0) 32.6 (0.3) 32.8 (1.6)
16.3 (0.0) 25.8 (0.3) 39.5 (1.8)
19.0 (0.0) 23.5(0.3) 40.0 (1.7)

0.0 (0.0) 24.1(0.2) 37.8 (1.2)

0.0 (0.0) 20.1 (0.2) 31.4(1.2)
14.3 (0.0) 25.6 (0.1) 33.6 (1.4)

0.0 (0.0) 28.8 (0.2) 34.2 (1.4)

45.4 (7.4) 56.8 (14.1) 66.4 (16.2) 88.0 (58.5)
45.5(7.2) 55.5 (14.1) 66.3 (16.2) 88.1 (58.4)
48.8 (8.4) 57.6 (14.8) 68.6 (16.5) 88.1 (55.9)
48.1 (8.4) 56.1 (14.7) 69.2 (16.7) 88.3 (55.9)
45.8 (8.3) 55.4(15.3) 68.6(17.8) 91.1 (53.9)
45.4(6.0) 61.2 (17.3) 64.5 (24.6) 83.0 (50.0)
433 (5.6) 54.6 (13.4) 61.8 (19.9) 84.7 (59.2)
42.1(5.6) 52.9 (13.5) 61.7 (19.9) 84.5 (59.1)
45.5(6.2) 55.9 (13.8) 62.9 (20.8) 84.8 (57.1)
46.9 (6.2) 54.3 (14.0) 63.2 (20.5) 85.0 (57.1)
40.8 (4.6) 52.8 (12.3) 62.1 (19.2) 84.9 (62.5)
42.3 (4.6) 52.3 (11.8) 60.9 (19.6) 85.0 (62.6)
47.2(5.2) 55.1 (12.6) 61.9 (20.3) 85.6 (60.4)
42.8 (5.1) 52.6 (12.8) 63.1 (19.9) 85.4 (60.7)

Table 6: Results (ROUGE-1 F1 scores) per confidence bin. The values in brackets indicate the relative proportion of
instances in each bin.
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Approach

\binary (nv) binary(v) MC-4 (nv) MC-4 (v) inf (nv) inf (v) unanswerable

InternVL (0s) 64.8 68.8 60.6 62.0 50.6 45.0 343
InternVL (1s_q_f) 70.7 68.3 61.0 63.1 469 42.0 48.6
InternVL (1s_q_img_f) 67.8 69.2 60.1 622 499 423 50.2
InternVL (1s_q_img_nf) 68.2 67.9 59.6 60.8 50.1 43.0 50.8
InternVL (1s_g_nf) 70.2 68.5 60.4 620 473 428 42.8
Pixtral (0s) 67.8 67.1 58.1 584 523 48.1 29.8
Pixtral (1s_q_f) 70.3 68.9 57.2 57.7 53.8 48.0 38.2
Pixtral (Is_q_img_f) 71.4 69.0 57.6 59.2 538 48.0 322
Pixtral (1s_qg_img_nf) 70.3 68.0 58.8 59.3 53.8 48.1 33.1
Pixtral (1s_q_nf) 70.1 67.0 56.8 58.1 53.6 47.8 34.7
Pixtral (2s_q_f) 74.0 70.8 57.5 58.9 548 484 36.8
Pixtral (2s_q_img_f) 72.5 69.4 58.2 59.9 552 495 39.0
Pixtral (2s_qg_img_nf) 72.7 69.0 58.4 60.0 554 484 35.8
Pixtral (2s_q_nf) 73.2 69.9 57.4 59.0 545 49.5 37.0

Table 7: Results (ROUGE-1 F1 scores) on development set by question type after removing high confidence
instances of run with InternVL3-78B (1s_q_img_f with BLIP-2).

Figure Type\ inf (V) inf (nv) bin (v) bin (nv) MC-4 (v) MC-4 (nv) unansw.

line chart PixFral Pixtral Pixtral Pixtral InternVL InternVL Inter_nVL
(2s_q_img_f)  (2s_q_nf) (2s_q_1) (2s_q_D) (Is_q_f) (Is_q_f) (Is_q_img_f)

trec IntemVL IntemVL InteanL IntemVL InteynVL InteanL Inte?nVL
(1s_g_img_nf) (1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (Is_q_img_nf) (Is_q_img_nf)

scatter plot Pixtral Pixtral Pixtral Pixtral Pixtral Pixtral Pixtral

(2s_q_img_f) (2s_q_img_f) (2s_q_img f) (2s_q_img_f) (2s_q_img f) (2s_q_img_f) (2s_q_img_f)

ie chart InternVL InternVL InternVL InternVL InternVL InternVL InternVL

P (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f)

bar chart InternVL InternVL InternVL InternVL InternVL InternVL InternVL

(0s) (0s) (0s) (0s) (0s) (0s) (0s)

architecture InternVL InternVL InternVL InternVL InternVL InternVL InternVL

diagram (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f)

neural InternVL InternVL InternVL InternVL InternVL InternVL InternVL
networks |(1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (Is_q_img_nf) (Is_q_img_nf) (Is_q_img_nf) (1s_q_img_nf)

confusion Pixtral Pixtral Pixtral Pixtral Pixtral Pixtral Pixtral

matrix (2s_qg_img_nf) (2s_q_img_nf) (2s_q_img_nf) (2s_q_img_nf) (2s_q_img_nf) (2s_q_img_nf) (2s_q_img_nf)

h InternVL InternVL InternVL InternVL InternVL InternVL InternVL
grap (1s_g_img_nf) (1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (1s_q_img_nf) (Is_q_img_nf)

others InternVL InternVL InternVL InternVL InternVL InternVL InternVL

(Is_q_f) (Is_q_f) (Is_gq_f) (Is_q_f) (Is_q_f) (Is_q_f) (Is_q_f)

Table 8: Best configurations for combination of figure type and question type identified via cross-validation for
Question/Figure Type Ensemble.
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System Message: You are an assistant answering questions about (semi-)structured figures such as charts and diagrams. Answer the question

as precisely as possible.

User Message: Image: {image}

Question: {question}’

if image_metadatal’answer_options’]:
Answer options: {answer_options}

Additional Information:
- The caption of the image is 'image_metadata['caption].

if image_metadatal"”compound”]:

- The figure image contains {image_metadata['figs_numb’]} (sub)figures which can be separated and constitute individual figures.
else:

- The figure image contains a single figure object which cannot be decomposed into multiple subfigures.

- The figure type is '{image_metadata[figure_type’l}.

Task:
You are presented with a figure and an associated question.

if image_metadatal’answer_options:’]:
Your task is to select the correct answer options based on the figure. One or more answer options are correct. Only respond with
the key(s) of the correct answer option(s), so e.g., 'A,C’ if answer options A and C are correct.

else:
Your task is to answer the question based on the figure.

You should only use the information in the figure to answer the question. Do not use any external knowledge or information. If the figure does not
provide enough information to answer the question, respond with ’It is not possible to answer this question based only on the provided data.’. If
you can answer the question, simply provide the answer without further explanation and do not repeat the question.

Answer:

Figure 7: The zero-shot prompt is formatted based on the annotated metadata via conditional statements. The
MLLM is not given the if-else logic; it is only given the indented text inside the block. Bold text is not part of the
prompt for the LLM either; it only indicates which parts of the prompt belong to the system or user message. Values
in brackets are placeholders for the respective instance’s actual values.

others

graph
confusion matrix
neural networks

architecture diagram

bar chart

pie chart

scatter plot

line chart tree

Figure 8: Figure type distribution on development set.
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