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The ethical issues that arise in the development of Al technologies are closely linked to public
engagement. Although Twitter, as an online public sphere, provides a platform for exploring
Al ethics discourse, it is difficult for current research to effectively extract fine-grained but
meaningful information from the vast amount of social media data. To address this challenge,
this paper proposes a research framework for the fine-grained exploration of Al ethics dis-
course on Twitter. The framework consists of two main parts: (1) combining neural networks
with large-scale language models to construct a hierarchically structured topic framework
that not only extracts popular topics of public interest, but also highlights smaller, yet sig-
nificant voices; (2) using narrative metaphors to achieve the integration of fragmented
information across levels and topics, ultimately presenting a complete story to help the public
better understand the evolution of topics within Al ethics discourse. Our research has
revealed that the most significant concern in the current Al ethics discourse is the lag in Al-
related laws and ethical guidelines. It also shows that the integration of Al technology with
the humanities is essential to promote a good public society. Through cross-level fine-grained
mining, this study uncovers information hidden beneath the noise interference, which helps
policymakers make targeted adjustments or improvements to policies. In addition, this
research framework provides a reference for fine-grained mining of other specific issues in
social media data.
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Introduction

he essence of Al (Artificial Intelligence) technology is to

serve human beings. However, the current development of

Al is in the hands of technical and economic elites and
lacks active public engagement (Corbett et al., 2023; Dollbo, 2023;
Gilman, 2023). The public is reduced to consumers simply
waiting for a new generation of Al technology. If public discourse
and sentiment are ignored, the decision-making power on how to
better deploy AI will be fall into special interests (Rainie, 2018).
With the advent of the intelligent era, social media data are
increasingly rich in content and information dimensions, allow-
ing the possibility to study Al ethics from the public perspective
in an egalitarian manner (Manovich, 2012). Although social
media represents only the voices of the users, its powerful
influence makes it an important choice for studying public dis-
course (Chen et al.,, 2023; Fu et al., 2023; Hua et al.,, 2022; Liang
et al.,, 2017).

However, information extraction from Twitter data in various
fields often focuses on simple topic mining and sentiment ana-
lysis, which lacks in-depth exploration of the information beneath
the surface. For example, Twitter data has been used to study Al
ethics issues in blockchain, identifying only three main topics:
security, fairness, and emotional sentiments (Fu et al., 2022). The
analysis of tweets during the first month after the launch of
ChatGPT simply extracted ten topics that the public was inter-
ested in (Taecharungroj, 2023). Social media data is characterized
by its massive, unstructured, and diverse nature. Much mean-
ingful information is often drowned out by interference and
noise, limiting the ability of researchers to extract valuable
insights. A wealth of unpredictable, deep information is hidden
beneath the surface.

Considering the characteristics of social media data, this
study focuses on achieving cross-level, fine-grained exploration
of AI ethics discourse on Twitter. The hierarchical structure of
data refers to nested relationships organized according to cer-
tain logical or hierarchical connections. Data often has a hier-
archical structure or can be computed as such. Data at different
structural levels have varying degrees of semantic granularity,
and hierarchical data is more conducive to expressing fine-
grained exploration (Kontaxaki et al, 2010). Cross-level
information exploration investigates the relationships between
multiple levels, enabling flexible analysis of complex, large-scale
information at different granularities (Y Feng et al., 2023). Fine-
grained data refers to detailed information expressed through
specific scales and levels, often representing lower-level struc-
tures or smaller data units. Fine-grained exploration of Twitter
data can uncover hidden information buried in massive
amounts of data across multiple dimensions. This unantici-
pated data mining is an exploratory approach to data analysis
that provides new insights for problem solving and decision
optimization by revealing overlooked patterns or unforeseen
anomalies.

Visual analytics is an alternative data analysis tool in unanti-
cipated data mining (Keim et al., 2008). Especially in the fine-
grained exploration of social media data, even if adequate infor-
mation is obtained through fine-grained exploration, the infor-
mation is often too fragmented to be easily interpreted (Zuo et al.,
2022). A readable, efficient, and easy-to-understand narrative can
be constructed only by using visualization analysis methods to
assemble fragmented information. Based on the characteristics of
Al ethics data on Twitter, this study combines appropriate
visualization analysis methods from the perspectives of data
spatiality and topic evolution to achieve a cross-level, fine-grained
exploration of AI ethics discourse.

In this study, we aim to address the following two research
questions:
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1. What is the hierarchically structured topic related to Al
ethics discourse on Twitter?

2. How can cross-level fine-grained information in Al ethics
discourse on Twitter be effectively understood?

The second section provides an overview of the relevant
research, followed by an introduction to the research methods in
the third section. The results of the two research questions are
presented in the fourth section. The fifth section contains a dis-
cussion of the results. The limitations and implications of this
study are discussed in the sixth section, followed by a conclusion
in the final section.

Related work

The literature review of this paper is structured into three aspects.
Firstly, it delves into examining research about Al ethics within
the context of Twitter data. Secondly, it outlines the methodol-
ogies employed for topic extraction in tweets, analyzing their
merits and drawbacks. Lastly, it provides a comprehensive over-
view of visualization studies concerning social media data.

Al Ethics in Twitter Data. While Twitter may not fully represent
the entirety of the social media landscape (Dijck, 2013), it has
emerged as a prominent platform for individuals to express
opinions and engage in online discourse (Anger and Kittl, 2011).
Additionally, it serves as a valuable research tool for scholars
investigating various scientific topics (Chen et al., 2023; Fu et al,,
2022; Hua et al.,, 2022). Research on Al ethics utilizing Twitter
data has been focused either on specific topics in a domain, such
as security, equity, and emotional sentiments in the blockchain
domain, with the aim to address fairness concerns in blockchain
design related to transaction ordering (Fu et al., 2022), or on a
single category of ethical issues, such as using Twitter data to
examine the relationship between individual privacy settings and
self-disclosure on Twitter, considering cultural values across dif-
ferent contexts (Liang et al, 2017). Recent studies have also
investigated public discussions and reactions to ChatGPT (Haque
et al.,, 2022). Specifically, by analyzing tweets within a month of
ChatGPT’s launch, the study identified the most relevant topics
and sentiments of the public, and ethical challenges to be
addressed as ChatGPT develops (Taecharungroj, 2023). While
such studies shed light on prevailing topics of public discourse
and sentiment analysis on specific AI domains or ethical con-
cerns, few provide a comprehensive analysis of Al ethics-related
topics on Twitter.

Furthermore, research related to Twitter data often focuses on
two types of analysis: trending public discussion topics and
sentiment changes. For instance, in a blockchain study related to
Al ethics, the top 30 keywords associated with #Flashbots and
#MEV were extracted (Fu et al., 2022). The tweets about
ChatGPT were categorized into nine topics, ranging from “Future
Career & Opportunities” to “Disruptions for Software”, and the
corresponding sentiment distribution for each topic was pre-
sented in (Haque et al., 2022). Taecharungroj, (2023) employed
the LDA method to extract public topics on ChatGPT, mainly
focusing on news, technology, and reactions, and identified five
functional domains: creative writing, essay writing, prompt
writing, code writing, and answering questions. Topic extraction
and sentiment analysis played an important role in using Twitter
data to reveal public viewpoints and expressions on online social
platforms (Boon-Itt and Skunkan, 2020; Hua et al, 2022).
However, this information represents only a small part of Twitter
data and is often too fragmented to form coherent, readable
information. This study focuses on extracting fine-grained and
rich information from Twitter and attempts to present it in a
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more readable and coherent narrative, thereby providing a
comprehensive perspective for the public to understand Al ethics.

Topic mining. Topic extraction methods in Twitter data are
mainly divided into network-based methods and text-based
methods. Network-based topic classification methods include
social network analysis, graph mining, and topic propagation
models. Lee et al., (2011) identified the top five similar topics
among 18 popular categories on Twitter based on the number of
influential users in common and validated that network-based
classification modeling methods can achieve up to 70% classifi-
cation accuracy. Azam et al. (2015) proposed a social graph
generation method, treating tweets as nodes and using the Mar-
kov clustering technique to decompose the social graph into
various clusters, each corresponding to specific events, thereby
achieving event classification. Huang and Mu, (2014) employed a
combination of clustering algorithms with hashtag propagation
algorithms to detect topics on Twitter, to classify the tweets into
different clusters and then using a label propagation mechanism
to label tweets that overlap in different clusters. Finally, this
method was compared with other clustering algorithms, validat-
ing the accuracy of the label-propagation-based algorithm.

Text-based topic extraction from Twitter data includes
keyword extraction and topic modeling (Karami et al., 2020). A
representative method for keyword extraction is the TF-IDF
(Term Frequency-Inverse Document Frequency). Alsaedi et al.
(2016) proposed a novel temporal term TF-IDF method, which
can overcome the drawbacks of traditional methods that require
prior knowledge of the entire dataset by assuming that “words
with higher frequencies in documents within specific periods are
more likely to be selected for human-created document
summaries,” and validated the superiority of this method. With
regard to topic modeling for the extraction of topics from Twitter
data is often, LDA (Latent Dirichlet Allocation) is a commonly
used method. Chen et al. (2023) used the LDA method to obtain
topics related to “climate strikes” in Twitter data from 2018 to
2021, providing a reference for using social media to construct
political issues and collective actions. However, these topic
mining methods often suffer from a large amount of noise and a
single structured nature, failing to effectively mine valuable
information from social media data. Therefore, we proposed to
combine neural networks with large language models, presenting
hierarchical topic structure, and achieving fine-grained classifica-
tion of social media data.

Visual analytics for AI ethical data analysis. Data visualization
is a data analysis technique that combines data analysis methods
(such as machine learning and data mining) with information
visualization. It is not only a tool for presenting data, but also a
research method for exploring data, discovering patterns, and
generating insights. For researchers, visual analytics is particularly
useful for unanticipated data mining, as it can reveal unforeseen
or easily overlooked results. Studies have shown that humans
process visual information much more effectively than textual
information (Yang and Jin, 2020). When applied to social media
data mining, visual analytics allows researchers to uncover hidden
patterns and potential relationships in the data without pre-
determining the results. Visual analytics presents the results of
data analysis to the public in a graphical format, making complex
data relationships intuitive and easy to understand. This sig-
nificantly lowers the barrier to understanding, especially for non-
technical users, and enables information to be communicated
quickly and clearly. In the field of AI ethics, the application of
visual analytics breaks down knowledge barriers and enables
people from different backgrounds to understand AI ethics-

related information. This serves as a basis for improving public
engagement with Al development.

As an effective tool for information discovery, visual analytics
emphasizes different aspects of information depending on its
developmental focus. Story maps typically refer to visual
explanations similar to the construction of semantic maps, webs,
or networks that present geographically relevant information,
events, or themes in a narrative format (Davis and McPherson,
1989; Freedman and Reynolds, 1980; Roth, 2021). Based on the
spatial characteristics of social media data, story maps use maps
to display the geographic distribution characteristics of the data.
For example, Kwon et al. (2023) conducted a comprehensive
analysis of how emotions evolve with topics and geographic
locations using time series analysis and geographic visualization
to capture the dynamic nature of emotions. This approach helped
to identify and visualize changes in emotional trends across
different geographical regions and topics on Twitter. In Al ethics
research, story maps are used to represent the geographic
distribution characteristics of Twitter data and to place the data
in a specific context through narrative techniques. For example,
maps can illustrate how Al ethics discourse spreads globally and
how cultural or political factors influence it.

Developing fine-grained information from massive social
media data is crucial for data mining (Kontaxaki et al., 2010).
Information granularity refers to the level of detail or abstraction
at which information is described or expressed. It reflects the
degree of precision in analyzing, processing, or presenting data or
information. The finer the granularity, the more detailed the
information (Kontaxaki et al., 2010). Exploring data at a granular
level can reveal more detailed information, but such fine-grained
exploration can lead to overly fragmented information, making it
difficult for people to understand effectively. This is one of the
main reasons why fine-grained information is often overlooked in
social media data mining. However, integrating fragmented
information and uncovering the abstract narratives hidden
beneath the surface is key to enabling people to recognize and
understand the importance of fine-grained information(J Feng
et al,, 2023). Chen (2018) proposed a story synthesis theory,
where complex information is integrated into a coherent story
using story synthesis support functions. Based on information
visualization methods, this study explores fine-grained informa-
tion related to Al ethics discourse in Twitter data by creating
topic evolution view and constructing narrative metaphors to
help the public intuitively understand the evolution of AI ethics
discourse.

Data and methodology

This section presents the research data and methods, discussing
the establishment of the dataset, construction of hierarchical topic
structures, presentation of the story map, and topic evolution
analysis. Figure 1 provides the entire framework of the study from
twitter data to visual analytics.

Dataset construction. To collect tweets related to Al ethics, we
used topic tags to identify discourse communities revolving
around specific topics (Chen et al., 2023; Jost et al., 2018). We
selected seven synonymous expressions (#Al ethics, #Artificial
Intelligence ethics, #Ethics of AI, #ai ethics, #Ethics In Al
#Ethical AI) (These search terms have spaces added for clarity,
but there are no spaces when searching on Twitter.) to focus on
Al ethics in general rather than a single ethical theme, and col-
lected tweets from 1 January 2015 to 31 December 2022, using
Python and the Twitter API (N=539,743). Only English-
language tweets were considered, including text, user location,
posting time, user occupation, user verification, and hashtag. We
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Fig. 1 The Research Framework from Twitter Data to Narrative Visualization.

geocoded the entire tweet dataset, converted textual location
descriptions into geographical coordinates, and constructed a
structured geographic spatial dataset.

Methodology. To address the two research questions, we con-
ducted tasks of hierarchical topic extraction, sentiment analysis,
and narrative visualization of the data.

Hierarchical topic extraction. Traditional topic extraction meth-
ods often require extensive data preprocessing and do not allow
for creating hierarchically structured topics. We adopt an
approach based on the combination of neural networks and large
language models to build hierarchically structured topics.

First, the raw text data is fed into the KeyBART model
(Kulkarni et al., 2022), and highly summarized vital phrases are
generated by setting the num_beams parameter to 10. The value
of num_beams determines the number of candidate sequences
considered at each step. Typically, the value of num_beams is set
between 3 and 10. Generally, a larger num_beams can improve
the quality of the generated text. The words within each phrase
were then lexically reduced using NLTK’s grammar reduction
library to align tags with similar grammatical morphology. Next,
the reduced labels were converted to vectors using the all-
MiniLM-L6-v2 model (Reimers and Gurevych, 2019), and
density-based spatial clustering was applied to the application
using a noise clustering approach to generate initial clusters
(Schubert et al.,, 2017). Next, the aligned labels are fed into the
LLAMA2 model to generate a hierarchical labeling structure
(Touvron et al., 2023), and the labels are mapped to the bottom
layer in the structure using the RoOBERTa-large-mnli model (Liu
et al., 2019). Finally, 64 labels at the bottom layer detected in the
given dataset are extracted as fine-grained topics. With the
hierarchical structure, the percentage of the number of original
tweets corresponding to each topic can be calculated. The method
realizes the conversion from raw text data to a hierarchical tag
structure. In the process, multiple models and algorithms are
utilized to align semantically similar tags, thus achieving efficient
processing and analysis of the dataset.

Sentiment analysis. To better illustrate the story map related to AI
ethics, we employ the TweetNLP integrated platform for
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sentiment analysis of Twitter data (Camacho-collados et al,
2022). The core of TweetNLP is based on Transformer language
models, which no longer rely on generic models or train language
models from scratch but continue the training from RoBERTa
and XLM-R checkpoints on Twitter-specific corpora (Conneau
et al, 2020; Liu et al,, 2019), providing more reliable analysis
results (Devlin et al., 2019; Nguyen et al., 2020).

The sentiment analysis of TweetNLP aims to predict the
sentiment of a tweet, including three labels: positive, neutral, or
negative. Through TweetNLP, we predict the sentiment class of
each tweet and provide a score to explain the confidence of the
prediction. Moreover, tweets categorized with sentiment are
further used to extract keywords of positive or negative
sentiments, which helps to analyze the reasons for different
sentiments.

Data visualization methods

Story mapping: To extract richer and more meaningful infor-
mation from Twitter data, we visualize the data on maps to reveal
hidden spatial narratives. Story maps intertwine geographic
locations with relevant information to narrate spatial distribution
stories. This paper primarily maps tweets related to Al ethics,
including their topics and sentiments, onto corresponding spatial
locations, supplemented with relevant text and image information
to present a story map of Al ethics.

Topic evolution view: The data processing of Twitter data typi-
cally yields fragmented information, making it challenging to
form a coherent and understandable narrative. Therefore, we
construct a topic evolution view to integrate scattered informa-
tion into a comprehensive story that allows the investigation of
the development and significance of the Al ethics discourse. Since
fragmented social media information may overlook deep
semantic understanding when analyzed merely by computing
relevance or highest frequency, we employ semantic similarity
calculation to analyze the evolution of Al ethics discourse. We
select specific keywords as starting words, such as the keywords
appearing most frequently in January 2015, and calculate the top
five keywords with the highest semantic similarity to the starting
word annually as its evolutionary words. This paper utilizes the
all-MiniLM-L6-V2 model to convert text labels into vectors
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Fig. 2 A Hierarchical Thematic Structure of Al Ethics Twitter Discourse.

(Reimers and Gurevych, 2019), and then use vector representa-
tions to compute the similarity between two text fragments, with
the cosine similarity formula as follows:

A-B

Cosine Similarity(A,B) = —————
4 AIEL

(1

where A and B are the vector representations of the two text
labels, - denotes the dot product of the vectors, and ||A || and ||
B|| are the norms (ie., lengths) of the vectors A and B,
respectively.

Results

The findings of this paper consist of an overview of the hier-
archical topic structure, a story map with geographic locations,
and a topic evolution view integrating fragmented information.

Overview of hierarchical topic structure. To address our first
research question (RQ1), about how Al ethics discourse is framed
within Twitter discourse overall, we extracted all relevant tweets
and clustered them into a hierarchical topic structure, as shown in
Fig. 2. This structure consists of three layers. The first layer
comprises seven main topics: Legal & Ethical, Society & Culture,
Technology, Science & Research, Health & Safety, Education &
Learning, and Business & Economics. Figure 2 presents a clear
and intuitive visualization of the hierarchical structure of Al
ethics discourse through the visualization of the sunburst chart.
This shows the categories of each topic and the containment
relationships between the hierarchies. Furthermore, the under-
lying 64 fine-grained topics (lowest level) have not been over-
looked, covering mainstream public discourse and issues of small

Legal & Ethical

Science & Research

Health & Safety

Business & Economics

but critical scope, such as Intellectual Property in Al and Gender
Discrimination.

Table 1 is a codebook for the topic of Al ethics discourse. It
describes each category of topics in the top-level structure and
provides examples of topics discussed within each category. An
in-depth analysis of the topics of the hierarchical structure can be
found in the Discussion section.

In addition to the fine-grained hierarchical structure analysis,
the temporal trend of topic discussions over time also conveys
rich meaning. we chose stream chart and bar chart to illustrate
the changes of the seven main topics related to Al ethics from 1
January 2015 to 31 December 2022 as Fig. 3A shows. The overall
volume of discussions on Al ethics was relatively low during
2015-2016, gradually increasing from 2017 and peaking in early
2020. There was a slight decline in 2020, possibly influenced by
the pandemic outbreak, which may have diverted substantial
discourse resources. After 2020, the discourse on Al ethics
remained relatively stable. Figure 3B shows that among the seven
topics, a significant portion of the discussions revolve around
“Legal & Ethical,” surpassing 90% of the total tweet volume. The
remaining six topics have relatively similar amount of discussion,
with “Business & Economics” being the least discussed. This
skewed distribution, where a few categories (also called heads)
contain a large number of samples, while most categories (also
called tails) have very few samples, conforms to a long-tail
distribution (Anderson, 2012). The long-tail distribution of topics
related to Al ethics reveals that although public concern in this
field is focused on Legal & Ethical discussions, niche topics such
as Education & Learning and Business & Economics are also
significant and should not be overlooked (Agarwal et al., 2012;
Mustafaraj et al., 2011).
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Table 1 The codebook of Al ethics discourse on the top level.

Detail Example

Top Level Percentage Definition

Legal & Ethical 36.7% This section refers to the part of the Al ethics discourse that
relates to legal and ethical guidelines. This section focuses on
developing and applying Al technologies in compliance with laws,
regulations, and ethical guidelines.

Society & Culture  16.2% This section refers to the part of the Al ethics discourse that is
relevant to social and cultural studies. It is concerned with the
impact of Al on social structures, cultural values and human
interactions.

Technology 15.1% This section relates to Al technologies that have an ethical
component. It focuses on whether the design, development and
use of Al systems meet ethical standards to ensure safety,
transparency, and interpretability.

Science & 11.5% This section deals with the part of the Al ethics discourse that

Research relates to science and research. The section focuses on the
categories of science and research areas involved in Al ethics.

Health & Safety 9.6% This section addresses the health and safety content addressed in
Al ethical discourse. It focuses on using Al in healthcare, public
health, and safety.

Education & 6.8% This section is the category of education and learning in the Al

Learning ethics discourse. It focuses on Al technologies’ new changes and
impacts on education and learning.

Business & 4.1% This section is the business and economic part of the Al ethics

Economics discourse. It looks at the use of Al in business applications and the

impact on employee rights and the market economy as it creates

Intellectual Property in Al, Al Legal Issue,
Leagal Framework

Gender Discrimination, Public Good Society,
Ethnic Studies.

Neurocontroller, VR/Augmented Reality,
Cryptocurrency

Interdisciplinary Studies, Empirical Research,
Bioinformatic

Work Safety, Suicide Prevention, Disease
Prevention

E-learning Teleformacion, Collaborative
Learning Community, Educational
Entrepreneurship

Fintech, Human Resource Management,
Market Research

value and improves efficiency.

Topic dynamics in seven categories from 2015 to 2022

Distribution of the number of topics in the seven categories of tweets

B ez & Ethical

Society & Culture

600000
500000

Technology

I science & Research

| Health & safety

I 5usiness & Economics

400000

300000

200000

100000

The number of seven topics exhibits a long-tail distribution. That is, most
of the tweets related to Al ethics focus on "Legal & Ethical".

2015 2016 2017 2018 2019 2020 2021 2022

Fig. 3 Temporal Trend and Distribution of Al Ethics Topics on Twitter. A Trend of the number of the seven topics over time; B graph of the distribution of

the seven topics, with their numbers ranked from highest to lowest.

Visual analytics of Al ethics discourse in Twitter. To answer
RQ2, this study presents coherent and readable visual analytics
from two parts, including story map and topic evolution
diagram.

Story Map: The World and The United States as Examples. We
constructed a global story map and a more detailed story map of
the United States, which has the highest tweet volume, as an
example. Among them, the global story map combines main-
stream Al ethics discourse with geospatial information, present-
ing the distribution of seven topics worldwide. The American
Story Map integrates mainstream Al ethics discourse, sentiment
information, and spatial locations, built upon the changes in the
number of tweets related to Al ethics in the United States from
2015 to 2022.

Figure 4 illustrates the distribution of Al ethics-related tweets
worldwide. Most AI ethics discourse is concentrated in the
United States and Europe. Some countries, such as China and
Cuba, have limited use of Twitter, so their distribution data may
not provide accurate references. The surrounding maps in Fig. 4
display the distribution of the seven topics worldwide, they are
generally similar but with some subtle differences. For instance,
discussions on “Health & Safety” in African countries are more
prevalent compared to “Technology” and “Business & Econom-
ics,” while India has more discussions on “Technology” and
“Education & Learning” compared to other topics.

To analyze the information conveyed by the story map in
Twitter data further, we present an example using the United
States. Figure 5A displays the distribution of AI ethics-related
tweets in the United States. We observe that the discussion of Al
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Fig. 4 Global Distribution of Al Ethics Twitter Data and Distribution of Seven Topics Worldwide.

ethics topics is most concentrated in California, New York, and
Massachusetts. This concentration might be attributed to the
large population size, numerous high-tech companies, and the
abundance of universities in these three states. Considering the
“long-tail distribution” characteristic of the seven topics related to
Al ethics, although the tail-end topics constitute a relatively small
proportion, they still reveal significant information. After
excluding the most discussed topic “Legal & Ethical,” we illustrate
the distribution of the remaining topics in Fig. 5B. More than
50% of states focus on “Science & Culture,” with “Technology” as
the next prominent topic. Interestingly, New Mexico is most
interested in the “Health & Safety” topic. This may be due to the
diverse social and cultural backgrounds of the different federal
states. For example, California and Washington State are home to
numerous large tech companies. Still, California’s industries
include globally renowned tourism and film industries, while
Washington State is known for aerospace and agriculture,
resulting in differing Al ethics discourse between the two states.

Figure 5C, D present the distribution of positive and negative
sentiments related to AI ethics discourse in various states.
Interestingly, the top five states with the strongest positive
sentiment are the same as the top five states with the strongest
negative sentiment: California, New York, Massachusetts,
Washington, and Texas. This result reflects the consistent
intensity of public sentiment; regions expressing positive senti-
ments do not necessarily have reduced negative sentiments.
Furthermore, we explored the content discussed behind these
positive and negative sentiments and displayed them using word
clouds. Figures 5E, F show the word clouds corresponding to
positive sentiment and negative sentiment respectively. This
indicates that people discuss similar topics with different
sentiments, focusing on data, humans, and artificial intelligence.
However, those expressing positive sentiments are more likely to
see the positive impacts of data and AI on humanity, while those
expressing negative sentiments demonstrate more ethical con-
cerns and are also more concerned about the potential problems

with data. Figure 5G provides statistical information on the trend
of Al ethics discourse in the United States over time, serving as
background information for the story map.

Topic evolution view. We integrated fragmented AI ethics dis-
course information into readable and coherent narratives. Figure
6A depicts the evolution of Al ethics discourse worldwide over
time, with some critical events related to AI as background
information. Figure 6B, C illustrate the evolution of AI ethics
discourse from 2015 to 2022. The horizontal axis represents the
timeline, while the vertical axis indicates the magnitude of each
topic. Since this topic evolution diagram aims to display the
evolution of topics, time and quantity serve as reference infor-
mation for the distribution of topic bubbles. We first extracted the
main topics from the discourse in January 2015, identifying
“Internet” as the most discussed one in that month. Then, by
calculating semantic similarity, we selected five topics semanti-
cally most related to “Internet” in 2015, such as Al-tech, Crypto,
etc. The topic with the latest timestamp in the previous year then
evolved into the following year’s five topics, and so on.

Figure 6 takes ‘Internet’, the most frequent keyword in AI
ethics discourse in January 2015, as an example of how the story
metaphor framework can be used to build fragmented informa-
tion into easy-to-understand stories in cross-level fine-grained
social media data mining. For other topics, we can also select an
event that happened at a particular time and explore the topic
discussions or other events triggered by the event. This paper
starts with the evolution of the ‘Internet’. Through the
consolidation of fragmented information related to AI ethics
from 2015 to 2022, combined with background information, we
present a topic evolution view. In 2015, the formal launch of
Ethereum and incidents such as hacking of Bitcoin exchanges
sparked discussions on “Crypto” and “Cryptocurrency” related to
AT technology. In 2016, following the theft of Ether from the
DAO, an Ethereum-based intelligent contract organization,
attention towards financial technology continued to rise.
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Fig. 5 Story maps of Al ethics discourse in the United States. A The overall distribution of Al ethics discourse in the United States. B The distribution of
the seven topics of Al ethics discourse across US states. € The distribution of positive sentiments in Al ethics discourse across US states. D The
distribution of negative sentiments in Al ethics discourse across US states. E The word cloud distribution of positive sentiments in Al ethics discourse.
F The word cloud distribution of negative sentiments in Al ethics discourse. G The normalized curve showing the number of Al ethics-related tweets over
time in the USA, with significant Al-related events annotated for context.
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The curve of the number of tweets around the world over time
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Fig. 6 Topic evolution view of Al ethics discourse on Twitter. A The normalized curve showing the number of Al ethics-related tweets over time in the
world, with significant Al-related events annotated for context. B, C Topic evolution graphs on Twitter from 2015 to 2022, using the topic “Internet” as an
example. B shows period from 2015 to 2018, while € shows the period from 2019 to 2022. The same color represents topics belonging to the same
category within the seven topics of Al ethics discourse. The x-axis in the figure represents the timeline, indicating the appearance of topics over time, while
the y-axis represents the number of topics. The higher the bubble representing a topic is distributed on the Y-axis in the graph, the larger its relative
quantity. Note that this graph is a schematic, and the time and quantity do not represent precise values.
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Blockchain technology gradually began to be used in the financial
sector to ensure security and compliance. In 2017, the continued
development of AI technology drew multidisciplinary attention.
Single-discipline advancements were no longer sufficient to
address complex real-world issues, leading to an emphasis on
interdisciplinary research. In 2018, public discussions on ethics
reached unprecedented levels. In May of the same year, the
European Union formally implemented the General Data
Protection Regulation (GDPR), setting a benchmark for Al ethics
regulations. In addition to “Ethics,” the public showed increased
interest in cultural and economic-related topics. In 2019, the
trade war triggered fluctuations in the global economic market.
Bitcoin plummeted, leading to widespread closures of mining
operations. The strengthening of the US dollar and continuous
interest rate hikes by the Federal Reserve caused emerging market
currencies to collapse. Topics such as “Economic Studies,”
“Business Analytics,” and “Market Research” became focal points
of discussion. In 2020, the outbreak of COVID-19 consumed a
significant portion of social media resources, resulting in fewer
discussions related to Al ethics. As the pandemic spread, many
countries implemented surveillance and tracking measures to
control its spread, leading to ethical debates on privacy and
surveillance. The pandemic-induced home isolation and remote
work shifted learning and work patterns, making topics like
“Ethics & Artificial Intelligence,” “Collaborative Learning Com-
munity,” and “E-Learning Teleformacion” new focal points of
discussion. In 2021, the global gaming platform Roblox became
the first metaverse concept stock listed on the New York Stock
Exchange, sparking discussions on “Augmented Reality” and
“Virtual Reality.” In April of the same year, the European Union
proposed the Artificial Intelligence Act (EU AI Act), the world’s
first comprehensive legislative attempt to address the phenom-
enon and risks of artificial intelligence. The establishment of this
AT regulatory framework led to an increase in discussions on
“Ethical AL” In 2022, DeepMind successfully predicted the
structures of approximately 200 million proteins from 1 million
species using AlphaFold, covering almost all known proteins on
Earth, ushering humanity into a new era of digital biology. In
April, the international academic journal Science revealed the
mystery of human genes, announcing the completion of the first
complete map of the human genome. Topics such as “Neuro-
muscular Network,” “Molecular Biology,” “Cellular Biology,” and
“Ergonomic Design” became focal points of discussion.

Discussion

The implications of Al ethics discourse in Twitter

The absence and urgency of Al ethics laws and regulations. Ana-
lysis of AI ethics discourse in Twitter reveals that the topic of
Legal & Ethical (36.7%) has the highest public attention among
AT ethics-related discussions. Public discourse highlights concern
about the lagging development of Al-related laws. In particular,
the rapid advancement of AI technology has outpaced public
understanding and acceptance, leading to discomfort regarding
issues such as opacity in decision-making processes (black-box
effect) and potential privacy risks. The high level of public
concern about laws and ethical regulations indicates that trust
mechanisms still need to be established, and the public hopes
that explicit external constraints (such as laws and ethical
guidelines) can ensure the safe and controllable development of
AT technology. Through fine-grained data mining, it was found
that the public pays significant attention to intellectual property
rights within AT ethics laws (see Table 1). These findings suggest
that as AI technologies develop, the widespread availability of
creative tools allows more people to quickly produce content.
However, the issue of ownership over Al-generated content has

10

complicated intellectual property protection (Abdikhakimov,
2023; Ballardini et al., 2019). For example, there is no consensus
on the creator identity and copyright ownership of Al-generated
texts, images, or music, and the boundaries of technology usage
still need to be clarified (Epstein et al., 2023). The existing legal
system is no longer sufficient to meet the demands of the current
era and requires innovation and adjustment in legislation and
regulation. Furthermore, AI laws and ethical regulations allow
the public to understand and participate in technology govern-
ance (Atkinson et al., 2020; Surden, 2019). The high level of
attention indicates that the public hopes to express their con-
cerns through these mechanisms and influence the direction and
limits of AI technology use. This also suggests that the public
expects to play a more active role in technology governance
rather than simply being passive recipients of technology
applications.

Emphasizing the integration of technology and the humanities.
Society & Culture (16.2%) ranks second among the Al ethics
discourse topics in Twitter data, surpassing Technology (15.1%).
This indicates that the public is equally concerned about the
impact of Al on social values, cultural dissemination, and human
interaction patterns. Through fine-grained information mining,
we found that public discussions include Gender Discrimination,
Public Good Society, and Ethnic Studies. These results suggest
that the public may be concerned about issues such as cultural
homogenization or social fragmentation caused by AI This
means academics and policymakers must prioritize discussions
on these issues, studying AI's adaptability and inclusiveness in
diverse societies. The integration of technology and humanities
plays an indispensable role in the development of AL The
humanities provide in-depth social insights and ethical frame-
works, helping technology developers and decision-makers avoid
potential social risks and ensure that AI technologies positively
impact all groups. Additionally, this highlights future research
directions, such as addressing gender bias and racial dis-
crimination through integrating technology and humanities,
promoting fairness in Al technology, and improving technology
transparency and accountability to foster a sense of social
responsibility. Combining the Science & Research topic with
fine-grained information exploration, we discovered the Inter-
disciplinary Studies topic, which shows that interdisciplinary
collaboration is key to better advancing AI technology for the
public good, achieving a dual enhancement of technological
innovation and social value.

Promoting multilateral cooperation and public discussion. The
complexity of Al ethics issues requires the participation of gov-
ernments, businesses, academia, and the public. The research
findings suggest the establishment of cross-sector collaboration
platforms to jointly address the ethical challenges of Al tech-
nology through open dialogue, knowledge sharing and joint
action. Public opinion expressed through social media provides
real-time feedback on policy and technology development. This
‘bottom-up’ flow of information can help fill the blind spots in
top-down designs, making Al ethics more responsive to practical
needs. Such multilateral collaboration contributes to building a
more comprehensive ethical framework, enhancing public trust in
Al technology, and increasing societal acceptance of technological
innovation.

Visual analytics in social media data mining. Our work
demonstrates the importance of using visual analysis methods for
Al ethics discourse data mining on Twitter and provides a
reference for mining social media data on other topics.

| (2025)12:212 | https://doi.org/10.1057/541599-025-04469-9



ARTICLE

Visual ~analytics helps to mine social media data in
unanticipated ways. Social media data is vast and diverse, and
extracting information directly from text may miss hidden pat-
terns or subtle trends. Visual analytics helps to explore infor-
mation from social media data where the results cannot be
predicted in advance. Graphically presenting the data helps
researchers eliminate the interference of irrelevant information
and effectively extract the hidden key insights.

Visual analytics helps the public better understand the deeper
layers of information about AI ethics. Using the topic evolution
view in Fig. 6C as an example, this study demonstrates how to
explore topics beneath the surface of vast social media data
through a layered data structure and integrate the findings into a
cohesive narrative. Taking the topic “Internet,” which saw sig-
nificant discussion in January 2015, as an example, we illustrate
how to help the public understand the evolution of topics, explore
connections between different themes, and dynamically achieve
cross-level topic evolution, effectively linking and integrating
fragmented data. Research in AI ethics relies on active public
engagement. Visual analysis facilitates easier communication and
knowledge sharing among experts from various fields and enables
the public to understand and directly participate. Thus, visual
analysis is an essential method in AI ethics research.

Transferability of visual analytics to other social media topics. This
study applies visualization analysis methods to present results
based on the characteristics of Al ethics discourse data on
Twitter, focusing on spatial distribution and topic evolution.
These methods are not limited to AI ethics topics but have high
transferability to studies of other social media topics, such as
political orientation analysis and pandemic spread analysis. Our
visualization analysis approach provides a cross-level, fine-
grained presentation of information, enabling researchers to
deeply analyze topics, gain insights into public opinion, under-
stand topic evolution trends, and accordingly develop or adjust
policies.

Limitation

Although our results have effectively answered the two research
questions, they still have some limitations with regard to data
and methods. First, our approach of crawling data using key-
words related to AI ethics may not fully capture all relevant
tweets. For instance, content without Al ethics-related hashtags
added by the tweet publishers would not be retrieved. Moreover,
the public’s use of social media platforms is unbalanced. For
example, it may be more difficult for economically under-
developed regions to use social media platforms, resulting in
limited accessible data. Second, Public opinions expressed on
social media still require vigilance regarding the issue of insuf-
ficient sample representativeness. Social media users are only
partially representative of the general public, and may be pre-
dominantly composed of younger individuals, urban dwellers, or
specific interest groups. Older adults, low-income populations, or
users from remote areas may have lower levels of social media
participation, leading to biases in the data sample. However,
although younger users on Twitter are more active, curious, and
expressive about emerging technology issues, its user base also
has a significant proportion of older people (Sloan et al., 2013).
Furthermore, Twitter users are diverse in age, occupation, and
geographical distribution (Sloan et al., 2015). As such, Twitter is
an effective platform for understanding public discourse on Al
technology development (Anger and Kittl, 2011). Third, the
representation of the AI ethics topic evolution view is limited.
The evolution of AI ethics events should ideally include

information such as the time and volume of discussion for each
topic. However, our results involve exploring topics at a granular
level, leading to significant differences in discussion volume for
each topic. Additionally, restrictions in visualization effects and
methods make it difficult to accurately represent the temporal
distribution of topics within a constrained space. What we have
created is only an illustrative view of the evolution of Al ethics
discourse by combining time and discussion volume for
each topic.

Conclusion and outlook

This study fills a gap in the literature by investigating the cross-
level, fine-grained exploration of Al ethics discourse on Twitter.
As ethical issues arising from the development of AI technologies
receive increasing attention, our research provides insights into
public concerns about AI ethics and the evolution of related
topics. By integrating neural networks with large-scale language
models, this study extracts hierarchical thematic structures of Al
ethics discourse on Twitter, enabling fine-grained analysis across
levels. Furthermore, the study employs visualization techniques to
address the challenge of fragmented fine-grained information in
social media. The construction of narrative metaphors - topic
evolution - helps the public to better understand the deeper
aspects of the AI ethics discourse. The findings offer valuable
insights for AI policymaking and demonstrate the feasibility of
fine-grained information mining in social media data.

The exploration of Al ethics and social media data is just at the
beginning. The essence of AI technology is to serve humanity,
and the public ethical concerns and discussions sparked by Al are
worthy of attention. For example, future research could combine
news and Twitter data to analyze Al ethics issues. Investigating
public discussions and feedback on Twitter regarding a specific
AT ethics news case can help policymakers formulate more spe-
cific guidance to address and mitigate ethical concerns from the
public perspective.
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