

## Project smartaqnet: combining existing datasets and a mobile measurement strategy into a smart urban air quality network

**Matthias Budde, Klaus Schäfer, Till Riedel, Josef Cyrys, Stefan Emeis, Thomas Gratza, Hans Grimm, Marcus Hank, Stefan Hinterreiter, Marcel Köpke, Erik Petersen, Andreas Philipp, Johanna Redelstein, Johannes Riesterer, Jürgen Schnelle-Kreis, Duick Young, Volker Ziegler, Michael Beigl**

### Angaben zur Veröffentlichung / Publication details:

Budde, Matthias, Klaus Schäfer, Till Riedel, Josef Cyrys, Stefan Emeis, Thomas Gratza, Hans Grimm, et al. 2018. "Project smartaqnet: combining existing datasets and a mobile measurement strategy into a smart urban air quality network." In 3rd International Conference on Atmospheric Dust - DUST 2018, May 29-31, 2018, Bari, Italy, edited by S. Fiore, 12. Bari: Digilabs.  
<https://scientevents.com/download/volume-8/>.

### Nutzungsbedingungen / Terms of use:

CC BY 3.0

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:

**CC-BY 3.0: Creative Commons - Namensnennung**

Weitere Informationen finden Sie unter: / For more information see:  
<https://creativecommons.org/licenses/by/3.0/deed.de>



## PROJECT SMARTAQNET: COMBINING EXISITING DATASETS AND A MOBILE MEASUREMENT STRATEGY INTO A SMART URBAN AIR QUALITY NETWORK

Matthias Budde\* (1), Klaus Schäfer (2), Till Riedel (1), Josef Cyrys (3), Stefan Emeis (4), Thomas Gratza (5), Hans Grimm (6), Markus Hank (7), Stefan Hinterreiter (6), Marcel Köpke (1), Erik Petersen (8), Andreas Philipp (8), Johanna Redelstein (8), Johannes Riesterer (1), Jürgen Schnelle-Kreis (9), Duick Young (4), Volker Ziegler (7), Michael Beigl (1)

(1) Karlsruhe Institute of Technology (KIT), Pervasive Computing Systems / TECO, (2) Atmospheric Physics Consultant, (3) Helmholtz Zentrum München, German Research Center for Environmental Health - Helmholtz Zentrum München GmbH, Institute of Epidemiology II, (4) Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Department Atmospheric Environmental Research, (5) City of Augsburg, Environmental Agency (Umweltamt), (6) Aerosol Akademie e.V., (7) GRIMM Aerosol Technik Airlring GmbH & Co. KG, (8) University of Augsburg, Institute of Geography, Chair for Physical Geography and Quantitative Methods, (9) German Research Center for Environmental Health - Helmholtz Zentrum München GmbH, Cooperation Group of Comprehensive Molecular Analytics

Air quality and the associated subjective and health-related quality of life are among the important topics of urban life in our time. In the past years, a paradigm shift towards integrating mobile PM monitors to form distributed sensing networks has begun in air quality sensing [1]. In addition to new and promising measurement approaches, large-scale basic data is becoming available as well. This potentially enables the collection of fine-granular data and the development of information on causal chains.

The "SmartAQnet" research initiative [2] focuses on the subject of data access and data-based applications. Central to this is the development and utilization of partial, already existing (but not yet combined) data on the one hand and the collection and integration of relevant missing data on the other hand. This includes the integration of third-party sources and the development of novel measuring devices, as well as an improvement of the overall data quality and the identification and implementation of meaningful interfaces between devices, databases and the end user. SmartAQnet creates a novel measurement and analysis concept within the model region of Augsburg, Germany. The project is funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI).

It connects open data, such as weather data or development plans, remote sensing of influencing factors, and new mobile measurement approaches, such as...

- distributed and/or participatory sensing with low-cost sensor technology (e.g. [3],[4]),
- so-called "scientific scouts" (newly developed autonomous, mobile smart dust measurement devices that are auto-calibrated to a high-quality reference instrument within an intelligent monitoring network) and
- demand-oriented measurements by light-weight UAVs

In addition to novel analytics, a prototypical technology stack is planned which, through modern analytics methods and Big Data and IoT technologies, enables application in a scalable way. On the data, new applications will be implemented. For this entire data-driven software chain, also new methods are explored. Specifically, these are big data analyses for quality improvement and model validation, as well as novel algorithms, e.g. for distributed calibration.

[1] Snyder E. G., Watkins T. H., Solomon P. A., Thoma E. D., Williams R. W., Hagler G. S. W., Shelow D., Hindin D. A., Kilaru V. J., and Preuss P. W. (2013) The changing paradigm of air pollution monitoring. *Environmental Science & Technology*, vol. 47, no. 20.

[2] Budde M., Riedel T., Beigl M., Schäfer K., Emeis S., Cyrys J., Schnelle-Kreis J., Philipp A., Ziegler V., Grimm H., Gratza T. (2017): SmartAQnet: Remote and In-Situ Sensing of Urban Air Quality. Proc. SPIE 10424, Remote Sensing of Clouds and the Atmosphere XXII, 104240C

[3] Nova Fitness Co., Ltd. (2015). SDS011 sensor. Version: V1.3, [Online]. <https://nettigo.pl/attachments/398> (visited on 01/24/2018).

[4] Budde M., Barbera P., El Masri R., Riedel T., Beigl M. (2013). Retrofitting Smartphones to be Used as Particulate Matter Dosimeters. International Symposium on Wearable Computers (ISWC'13), 139-140.