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Abstract. Social media has an increasingly significant importance in peo-
ple’s daily life during past few years. Social media data has been widely 
studied in a variety of disciplines for different applications, e.g., crisis man-
agement and urban planning. In this work, we focus on the extraction and 
analysis of traffic related events, especially negative traffic events(NTE), e.g. 
congestion, car accidents, from social media data. Firstly, we identify the 
terms related to NTEs. Secondly, based on those terms, an iterative lexicon-
based text mining technique is applied to extract NTEs from social media 
data. Thirdly, we calculate the statistics and visualize the spatiotemporal 
patterns of the NTEs. A web-based interactive visualization system is devel-
oped for visual analysis of NTEs. We use one year Sina Weibo data in 
Shanghai as our test data and present our preliminary results. 

Keywords. Social Media, Negative Traffic Events, Event Extraction, Visual 
Analytics, Spatiotemporal Mining, Text Mining 

1. Introduction
Social media has become part of people’s daily life and changed the spread 
of information (Seger, 2011; Tuten & Solomon, 2014). A wide range of top-
ics, e.g. food, work, traveling, sports, entertainment and emotion are posted 
by a large amount of users. Social media data has been studied and applied 
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in various disciplines, e.g., event detection (Sakaki, Okazaki, & Matsuo, 
2010), market prediction (Bollen, Mao, & Zeng, 2011), sentiment analysis 
(Agarwal, Xie, Vovsha, et al., 2011). 

Recently, social media data is also widely used as an information source for 
traffic condition detection, such as traffic congestion, accidents and road 
works (Wanichayapong, Pruthipunyaskul, Pattara-Atikom, & Chaovalit, 
2011; McHugh, 2015). A negative traffic event can be defined as a real-
world traffic-related occurrence that had a negative effect on people’s trav-
eling, i.e. car congestion, car accident, crowded metro/bus in peak hours 
and long waiting time for public transports. Detection and analysis of NTEs 
from social media data could improve traffic management and car naviga-
tion. 

In this study we focus on the detection and visual analysis of NTEs from 
social media data. Section 2 outlines methodology in NTE detection and 
visual analysis from social media data. Section 3 introduces the test data, 
the interactive visual system and results. Section 4 concludes the study and 
proposes further research ideas of possibilities for NTE analysis. 

2. Methodology
In this section, we will introduce the methodology for NTEs extraction and 
visual exploration, which mainly consists of data preprocessing, text min-
ing, spatial clustering, aggregation and visualization. Figure 1 shows the 
workflow of NTE extraction and visual analysis from social media data. 

Figure 1. The workflow for NTEs extraction and visual analysis. 

2.1. Negative Traffic Event Extraction and Clustering 
2.1.1 Pre-processing 

The raw social media data typically includes 36 parameters. Before data 
processing, data parameter selection and data cleaning are important steps. 
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To reduce the amount of the data volume, only relevant parameters are se-
lected for the analysis. As this work focuses on NTE extraction, time record, 
location and texts are the vital parameters. Therefore, those parameters are 
selected as inputs for the processing framework. Besides, raw data is often 
incomplete, inconsistent or contains abnormal values. Therefore, data 
cleaning is performed to remove those records. Also, in each text, some con-
tents are less or not helpful for event extraction, such as special characters, 
links, hashtags and punctuations. Those information is also removed during 
the pre-processing.  

2.1.2 Event Extraction based on Text Mining Method 

To extract negative traffic event, a text mining method is designed and ap-
plied to the preprocessed data. The detail of the method is described in the 
following: 

a) Tokenization is generally the necessary first step in text processing
(Xue et al., 2003). It segments character streams into meaningful
terms (tokens). TF-IDF (term frequency–inverse document fre-
quency) (Forman, 2008) is the most widely used machine learning
method for text mining. Jieba1 is a Python package used for text to-
kenization in this work. It is based on a prefix dictionary structure to
achieve efficient word graph scanning, build a directed acyclic graph
for all possible word combinations. Following this, the most proba-
ble combinations are identified based on the TF-IDF. For unknown
words, a Hidden Markov Model is used with the Viterbi algorithm.

b) Stop word filtering is to eliminate stop words, which are unlikely to
assist further semantic understanding of computer algorithms, and
those words also appear frequently in the text (Fox, 1989). The stop
word list2 used in this work includes 1609 words.

c) NTE identification is to extract NTE-related texts. We assume that
NTE-related texts must contain two features: traffic objects (tObj)
and traffic status (tSta). Specifically, tObj includes vehicle names,
such as car, bus, metro and cab. tSta includes nouns, verbs and ad-
jectives commonly used in NTE describing, such as crash and
crowded. Firstly, NTE-related candidates are identified as records
contains both tObj and tSta tokens. Secondly, a manual check is per-

1 https://github.com/fxsjy/jieba 

2 http://blog.csdn.net/shijiebei2009/article/details/39696571 
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formed to remove NTE-unrelated records from candidates. After 
each round of NTE identification, tSta is updated based on token 
frequency analysis. The NTE identification processing is iterative 
with the updated tSta. 

d) Semantic classification of NTEs is to classify NTEs by their semantic
meaning. As the NTE-status are related to tSta, NTEs are classified
according to tSta classification. tSta tokens are classified into differ-
ent semantic groups, such as congestion, accident, peak hours.

2.1.3 Clustering and Aggregation 

Clustering and aggregation of NTEs refer to the group of the similar NTEs 
that helped to access the importance and impact of certain topics. Grid-
based clustering and DBSCAN clustering methods are applied to drive high-
level spatial patterns, because those two clustering methods do not require 
a pre-knowledge of spatial distribution of data. Grid-based clustering and 
statistical aggregation could generate clustering patterns quickly (Grabusts 
& Borisov, 2002). With DBSCAN, NTEs at different scales of arbitrary pat-
terns could be generated, such as district scale and street scale (Ester, 
Kriegel, Sander, et al., 1996). Besides, NTEs could also be categorized by 
different time periods of a day. By visualizing NTEs according to different 
time periods, temporal distribution of NTEs could be explored and ana-
lyzed. 

2.2. Visualization 
Visualization provides a powerful mean of data understanding. By mapping 
data attributes to visual properties such as position, size, shape, and color, 
visualization designers leverage perceptual skills to help users discern and 
interpret hidden patterns (Card, Mackinlay, & Shneiderman, 1999). 

In this work, to allow the visual exploration of the large amount of extracted 
NTE patterns for domain experts (e.g. traffic investigator), we design and 
develop an interactive web-based system with spatial and temporal visuali-
zation components, including a map view, a histogram view with a time 
slider, and a statistical view showing information visualizations like chord 
diagrams. We apply scatter plot maps, temporal histograms, heatmaps and 
chord diagrams to reveal the semantic, temporal and spatial NTE patterns 
and the correlations among different NTE categories. A scatter plot map is 
to show datasets on maps using dots. It is simple and accurate to represent 
the spatial distribution of data (Anselin, Syabri, & Kho, 2006). A heatmap is 
a graphical representation of data where the individual values are repre-
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sented as colors. A chord diagram could show the correlation among cate-
gories. We can answer some important questions by exploring the NTEs in 
this system, for instance: Where are NTE hotspots? Which area contains 
most Congestion? When is the most busy time for traffic? 

3. Experiments

3.1. Test Data 
In this study we use Sina Weibo (WB) data as our test dataset. WB is a Chi-
nese microblogging website, with over 297 million active users per month 
until 2016 (Center, 2016). The dataset has all the records in Shanghai in 
2014, in total 11590886 records. It was saved in the form of CSV (Comma-
separated values) file. Data description is shown in Table 1. The original 
data contains four fields of information: time, location, massage and user. 

Categories Parameters 
Time idNearByTimeLine, createdAT, createdATUnixTime, 
Location geoTYPE, distance, Latitude, Longitude, NAME_1, NAME_2, NAME_3 

Message 
msgID, msgmid, msgtext, msgin_reply_to_status_id, 
msgin_reply_to_user_id, msgin_ reply_to_screen_name, msgfavorited, 
msgsource 

User 

userID, userscreen_name, userprovince, usercity, userlocation, userde-
scription, userfollowers_count, userfriends_count, userstatuses_count, 
userfavourites_count, usercreated_at, usergeo_enabled, userverified, 
userbi_followers_count, userlang, userclient_mblogid 

Data example: 95, 2014-07-17 04:28:57, 1405571337, 31.192111595703125, 
121.68149358007813, Shanghai, Shanghai, Pudong 3154521583132051, 
3154521583132051, Morning! http://t.cn/RPzg4sq, 0, 0, , 0, , Point, 8200, 3963897579, 
muamuamua, 31, 15, Shanghai , , 18, 95, 70, 0, 2013-12-30 14:22:56, 1, 0, 3, zh-cn, , 

Table 1. Data Description 

Categories No Cabs No Cars Congestions Accident Peak 
No Cabs 498 3 40 0 14 
No Cars 3 654 55 2 12 
Congestions 40 55 10232 83 371 
Accident 0 1 83 911 7 
Peak 14 12 398 7 605 

Table 2. A Grey Shaded Matrix 
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We apply the NET extraction methods proposed in Section 2 to our dataset 
and get 14297 extracted NTEs. In total we have five categories of our NTEs, 
namely Congestion, Accident, Peak, No car and No Cab. Table 2 shows the 
confusion matrix of extracted NTEs. The cell background colors stand for 
the numbers of NTEs, and the darker the cell is, the larger the number is. 
Congestion takes the largest part of NTEs. Interestingly, a large number of 
Peak records do also belong to Congestion. 

(a) The interface of the system 

(b) A heatmap of NTEs 

Figure 2. The interactive visual analysis system. 

3.2. Visual Analysis Results 
Figure 2(a) shows the graphic user interface of ”WeiboVis”. The left part is a 
navigation panel, users can choose map categories from the navigator. The 
right part of the interface is the mapping panel which shows the corre-
sponding visualizations according to users’ settings. Figure 2(b) shows the 
NTE heatmap in entire Shanghai. From the map we can see that NTEs dis-
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tributed radically. There is one big cluster located in the city center, some 
smaller clusters located in the outskirt areas. Generally, the density of the 
NTEs are distributed radically. The peak grid is located in city center, in-
cluding 37 NTEs. The average NTE number of all the grids is 3.01. 

To show the correlations among different semantic categories intuitively, 
we visualize it with a chord diagram shown in Figure 3. The overview of the 
number of NTEs in each category as well as the correlation between pairs of 
categories can be easily observed. Interestingly, nearly half of Peak events 
are also associated with Congestion. 

Figure 3. A chord diagram view of correlation among the NTEs semantic categories. 

4. Conclusion and Future Work
This study presented a novel approach for NTE extraction from social me-
dia data and spatiotemporal analysis. Specifically, a semi-automatic itera-
tive text mining method was designed and performed to extract NTEs from 
texts. Aggregations were driven based on clustering methods. Visual analyt-
ic methods were proposed to explore temporal, spatial and semantic pat-
terns. 

In the future, the accuracy of text mining could be improved. Besides, more 
semantic analysis could be done, for instance, analyzing NTEs with human 
emotions. Moreover, binding auxiliary data into social media data to analy-
sis more patterns, e.g. with weather data, we can explore the relationship 
between NTEs and bad weather (i.e. rain, snow and etc.). Beside, usability 
tests will be done to evaluate the developed web-based visual analytical sys-
tem. 
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