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ABSTRACT

Difficulty adjustment in practice exercises has been shown to be
beneficial for learning. However, previous research has mostly in-
vestigated close-ended tasks, which do not offer the students mul-
tiple ways to reach a valid solution. Contrary to this, in order to
learn in an open-ended learning task, students need to effectively
explore the solution space as there are multiple ways to reach a
solution. For this reason, the effects of difficulty adjustment could
be different for open-ended tasks. To investigate this, as our first
contribution, we compare different methods of difficulty adjust-
ment in a user study conducted with 86 participants. Furthermore,
as the practice behavior of the students is expected to influence
how well the students learn, we additionally look at their practice
behavior as a post-hoc analysis. Therefore, as a second contribution,
we identify different types of practice behavior and how they link
to students’ learning outcomes and subjective evaluation measures
as well as explore the influence the difficulty adjustment methods
have on the practice behaviors. Our results suggest the usefulness
of taking into account the practice behavior in addition to only
using the practice performance to inform adaptive intervention and
difficulty adjustment methods.
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1 INTRODUCTION

Practice exercises are an important part of learning [14]. They
allow students to apply the information they learned to problems,
and thus better retain what they learned [35]. Since students who
work through practice exercises have their own prior knowledge
and learn at different rates, it makes sense to adapt the practice
exercises to suit them. In this regard, previous research has shown
that choosing the appropriate difficulty level of practice exercises
has positive effects on learning gains [38] and learning experience
[5, 23]. Additionally, when looking through the lens of the flow
theory [6], exercises that are too difficult for the student could cause
anxiety, while exercises that are too easy could cause boredom.
Therefore, avoiding both of these is important for reaching the
state of flow, which has been shown to improve learning outcomes
in different learning scenarios [10, 34].

To this end, there are many approaches to adjust the difficulty
level of practice exercises. One is to allow the students to choose
what difficulty they will get next, giving them autonomy. This
is supported by research that shows that including the learner’s
choice in a learning activity improves learning gain [37], mainly
in sports [3, 45]. Another approach is to estimate the student’s
ability level from their previous performance, and then automati-
cally serve them with a corresponding exercise. In the context of
computer-based education, this process of automatically adjust-
ing the difficulty level of exercises in this way, has been called by
different keywords, such as computer adaptive practice [22, 33],
adaptive curriculum [2], personalized task difficulty [46], or Dy-
namic Difficulty Adjustment (DDA) [17]. In this paper, we refer
to the automated and adaptive difficulty adjustment as Dynamic
Difficulty Adjustment (DDA) due to it being self-explanatory.

Although both self-determined difficulty and DDA have been
applied in different domains, to the best of our knowledge, studies
directly comparing these two approaches in the same application
are rare, with [37] being the only example we found. Moreover, we
are interested in difficulty adjustment in an open-ended task, which
is defined as a task with multiple ways to complete, and potentially
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multiple solutions. In this work, we evaluate the two approaches
of difficulty adjustment in an open-ended reasoning task, more
specifically, a graph theory task. The choice of the task is inspired
by the fact that there is an increasing emphasis on integrating
more constructivist and open-ended learning activities into the
curriculum to allow for a possibility for the students to become
aware of the knowledge construction process through exploration
and exploitation of the environment complemented by reflection
[44]. The exploratory nature of such tasks makes it non-trivial
to gauge students’ ability; hence, making it more challenging to
adapt the difficulty. On the other hand, an open-ended task requires
multiple actions from the student to solve, and so these actions
can be traced with other techniques to more deeply assess the
student. To our knowledge, adapting difficulty in such open-ended
reasoning tasks is not a widely explored topic in the literature yet,
the closest research that comes to our work is [15, 37], however,
there are important differences between the proposed work and
the previous works that we point out in Section 2.1. Thus, as a first
contribution in this paper: we extend the research in this direction by
evaluating the two aforementioned difficulty adjustment approaches
in an open-ended reasoning task to provide new insights into this
problem area.

In an open-ended task, students perform multiple fine-grained ac-
tions to complete a single exercise. While evaluating the submission
of the exercise indicates how well a student does, the fine-grained
actions a student performs, such as the string of click actions in a
computer application, is also a valuable piece of information. By
grouping students by how they interact with the learning system,
one can gain an insight into which behavior is helpful for learn-
ing [18, 41]. In the same sense, to better understand the students’
behavior that links to learning and to investigate the relationship
between the method of difficulty adjustment and the resulting be-
havior type, we further analyze the fine-grained data as a post-hoc
analysis. We discover the behavior types from clickstreams using
clustering, following [4, 24]. Ultimately, as a second contribution in
this paper, we identify different student practice behaviors that link
to learning differently in an open-ended reasoning task in an effort to
tie those behavioral differences back to difficulty adjustment.

Overall, we are interested in three research questions.

e RQ1: How do the different difficulty adjustment methods
affect the learning outcomes and the subjective experience
of the students in an open-ended learning task?

o RQ2: What types of students’ practice behaviors exist in such
a task and how do they relate to the learning outcomes?

e RQ3: How does the method of difficulty adjustment influ-
ence the students’ practice behaviors?

2 RELATED WORKS
2.1 Difficulty Adjustment in Learning

Previous works have used difficulty adjustment mechanisms for
educational practice exercises. We divide the existing methods of
difficulty adjustment into two main categories: self-determined
and Dynamic Difficulty Adjustment (DDA). The self-determined
approach refers to allowing the student to select the difficulty level
of his exercises. The reasoning comes from the Self-determination
theory [8], which lists autonomy as a basic requirement of human
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psychology, and also an important component in learning [30].
Hughes et al. [16] studied how a student chooses difficulty levels
in a practice session of a first-person shooter and how the diffi-
culty level influences the post-test performance, but didn’t directly
address the learning gains. Chiviacowsky et al. [3] showed the effec-
tiveness of the self-determined approach in a motor-learning task,
comparing between a self-determined condition and a yoked con-
dition. A participant in the yoked condition doesn’t get to choose
the difficulty level, but instead gets the choices that a paired partic-
ipant from the self-determined condition. Still, the work addressed
a close-ended task, where there is no flexibility for exploratively
using different methods to complete the task.

The other category is DDA. Here, the difficulty level of a prac-
tice exercise depends on the performance on previous exercises.
Students who previously performed better get more challenging
exercises, while students who performed worse get easier exercises.
Romero et al. [36] implemented a DDA for a cardiac life support sim-
ulator, showing that adaptive training helps students learn the same
content in less time, improving efficiency. Sampayo-Vargas et al.
[38] showed improved learning gains through DDA in a Spanish vo-
cabulary practice application. Other works have shown increased
engagement with the practice exercises, which then lead to im-
proved learning gains. Klinkenberg et al. [22] showed increased
engagement and learning gains in basic arithmetic exercises, and
Pelanek et al. [33] in geography facts practice. However, these tasks
are also close-ended in nature, making the way a student interacts
with the learning application relatively fixed. There are also works
that explored open-ended tasks. Hooshyar et al. [15] applied DDA
in a block-based programming learning scenario. Still, they com-
pared an adaptive gamified learning session against a lecture of
the same content, and did not compare it against a non-adaptive
version of the same game.

The work that was closest to our scenario was from Salden et al.
[37]. They studied two difficulty adjustment methods in an open
learning scenario, namely an air traffic control task. They had a con-
dition with self-determination difficulty level and a DDA condition.
They found an increased learning gain between each condition and
their corresponding yoked conditions, but no significant differences
between the two difficulty adjustment conditions. We extend this
work by comparing against a more neutral baseline, and addition-
ally studying the behavior of the students during practice.

2.2 Effects of Practice Behavior on Learning

Previous works have shown that how a student interacts with the
learning application (which we henceforth call the practice be-
havior) affects how well a student will learn. Kaser and Schwartz
[21] explored students’ practice behavior in an open-ended educa-
tional game, where the student has to find out the algebraic rules
governing the results of a tug-of-war game. Students can input dif-
ferent tug-of-war configurations, which the game will simulate and
output the winner. There are differences in which configurations
students try out, as some more logically reveal more information
about the rules, and some seem more like unprincipled trial-and-
error. What configuration a student chooses to simulate predicts
how well they will learn. Other works in different domains have
also shown that practice behavior predicts the learning outcome,
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including in programming [9], video learning [31, 41], and English
[7]. As a further step in application, learning about the efficacy of
students’ behavior types can help derive a pedagogical policy to
help students learn better, by nudging the student’s behavior to be
more similar to the high-learning counterpart [20, 24]. We extend
the literature addressing direct behavior change by studying the
changes in practice behavior through another mechanism, which
is difficulty adjustment in our case.

To extract the behavior types, previous works have proposed
clustering methodologies. These types can then be analyzed and
linked to the learning outcomes. In an effort to gauge productive en-
gagement, Nasir et al. [28] proposed a forward-backward clustering
approach that reveals the link between higher learning gains and
multiple behavior types in an open-ended learning environment
underlying a reasoning task. Fratamico et al. [11] also used cluster-
ing to find behavior types in an electronic simulator, with different
types indicating differences in learning outcome. Additionally, they
used association rule mining [1] to find out the defining features of
the behavior types, creating a set of explanations that can inform
instructors. Taking inspiration from these works, we use clustering
on our dataset to discover types of practice behavior.

3 STUDY DESIGN

3.1 Research Question

We originally designed the user study to answer our first research
question about the effect of different methods for selecting exercise
difficulty on the learning gain and on the affective state of the
participants. We preregistered this study online!. Additionally, we
use the data from this study to investigate our second and third
research questions about what practice behaviors are indicative
of learning and how this ties with the difficulty selection method.
Due to this, we made some minor modifications in some of the
evaluation details from the initial preregistration, in particular how
we filter the participants.

3.2 Task

The task in our study is the maximum independent set (MIS) learn-
ing task, which we previously proposed in Schiitt et al. [40]. The
rules of this task are easy to explain, but can lead to a complex
exercise to solve, given a more complicated graph. The maximum
independent set of a graph G is the largest set of vertices Vjzs,
such that no two vertices u,v € Vjqrs are adjacent. In the graphical
interface of the study (Fig. 1), a graph is shown with all the vertices
in black, denoting that they are not selected. The participants’ task
is to find and select a set of vertices that form a valid MIS for the
graph, and then submit their selection. When the participant clicks
on an unselected vertex, we consider this action as adding that ver-
tex to the selection set. The participant can also unselect a vertex
from the selection set by clicking on a selected vertex. The last
action is reset (clear in the figure), which unselects every vertex,
emptying the selection set. It must be noted that there are several

Uhttps://aspredicted.org/cg92w.pdf for comparing the predef condition against the
self-det condition.

https://aspredicted.org/i6zm7.pdf for comparing predef and self-det conditions against
the DDA condition.
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Puzzle Study Puzzle Study

Figure 1: Main interface of the user study. The screen shows
the graph, the buttons for submission and reset, the number
of vertices to choose, and the number of vertices the partic-
ipant already chose. The left figure shows the screen upon
arriving on the page, with no vertex selected. The right figure
shows a valid solution to the graph.

Predefined diff

T} & Self determined

Consent form
&
Questionnaire
Pre-Test
Post-Test
Post-Questionnaire

N DDA

Figure 2: Stages of the user study.

sequences of actions that reach the same MIS, as well as there can
be multiple MIS solutions for the same problem.

The interface also displays the number of currently selected
vertices, the size of the correct MIS, and a button for submitting
the current selection of vertices. Note here that the button can be
clicked at any time, so the participant could submit an incorrect
answer. The participant thus has to manually check if he has a
correct solution before submitting. The participant is told that there
is a time limit, but they do not know how long it is (90 seconds).
This is to reduce the sensation of time, to not be in conflict with
flow. To indicate the time, a red flag is shown 5 seconds before
the time runs out. If the time runs out without a submission, it is
counted as an incorrect solution. After the submission, there is a
pop-up saying whether the solution was correct or incorrect.

Each practice exercise and each exercise in the pre- and post-test
is associated with a difficulty level, represented by a real number.
This value is important, as it is the main point of adjustment. The
difficulty level of an exercise is calculated from the attributes of the
graph, such as the number of edges and the size of the MIS. The
exact method of calculation is described in the appendix of [40].
This difficulty value is used to determine the test exercises, and used
for adjustment in the Predef and Self-det conditions, later described
in 3.4. The DDA condition relies on a knowledge tracing model
for adjustment, which includes its own method for determining
difficulty value.

3.3 Study Procedure

We conducted an online user study consisting of five stages, as
shown in Figure 2. The first stage is the consent form and de-
mographics questionnaire. Here, the participants state their age,
gender, field and degree of education, their experience with graph
theory, puzzle and strategy games, and programming, as well as
their affinity for mathematics and puzzle games. We provide the
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details about the questionnaire items in the appendix A. Then, the
participants are provided with a tutorial about the task that resem-
bles the part of a graph theory lecture that introduces the Maximum
Independent Set (MIS). To show that they understood the task, the
participants had to solve one tutorial exercise before moving on.
After that is the main phase of the study, containing a pre-test,
a practice stage, and a post-test. The pre-test and post-test each
contain one easy, one medium, and one hard exercise. These test
exercises are fixed for all the participants and all the conditions.
The tests provide a bonus payment to the participants, which is the
extrinsic motivation for the participants to practice. The practice
stage consists of 12 exercises that are chosen differently depending
on the participants’ condition, and do not provide bonus payment.
After the post-test comes the post-questionnaire, where the partic-
ipants have to complete the Flow Short Scale questionnaire [10]
and the NASA TLX questionnaire [13]. They are also prompted to
give some free text comments on their feelings about the practice
stage which is not reported in this paper due to space constraints.
We provide further details about the pre- and post-questionnaire,
listing all the questions in Appendix A.

3.4 Conditions

The difficulty levels of the practice exercises are selected differently,
depending on the condition the participant is in. The first condition
is the predefined difficulty level (Predef). The first practice exercise
is an easy one, then the second is slightly more difficult, and so
on until the hardest on the twelfth. The difficulty levels will be
in this sequence, no matter how well the participant does. The
second condition is the self-determined difficulty level (Self-det).
The first practice exercise is at a medium difficulty level. After
each exercise, the participants choose after each exercise whether
they want the next exercise to be easier, harder, or of the same
difficulty. The third condition is the dynamic difficulty adjustment
(DDA). In this condition, the difficulty level of each exercise is
determined by a DDA algorithm proposed in our previous work
[40]. The algorithm is based on knowledge tracing that tries to find
exercises whose difficulty level matches the participants’ ability
level by looking at the participant’s previous performance. Prior
work has demonstrated that the algorithm is successful in achieving
the desired success rate, appropriately adapting the difficulty to the
participants.

3.5 Dependent Metrics

We consider three main metrics in our study. First is the normalized
learning gain (NLG), which captures the difference in score between
the pre- and post-test. Each test has a full score of 3 points, and the
normalized learning gain is defined in Equation 1 [27].

t -
[m;_—p‘rpere if post > pre
NLG = post —pre . @
T lprSt < pre

The two other metrics come from the post-questionnaire the
participants have to fill out at the end. One of them is flow; the state
of being focused on the task and being less aware of extraneous fac-
tors, including the passage of time. For this, we use the Flow Short
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Scale to measure this [10]. The scale provides ten 7-point Likert
scale items, measuring different components of flow. We calculate
the flow score by taking the average score of all the scale items.
Secondly, we also measure the perceived difficulty (PDiff) of the
practice exercises, which is an item of the NASA TLX questionnaire
[13]. The participant chooses the perceived difficulty on a slider,
with values going from 0 to 20. The numbers are not shown on the
slider to the participant.

3.6 Participants and Compensation

We recruit 30 participants for each condition, totalling 90 partici-
pants. The participants are recruited on Prolific, and are required
to be fluent in English. To filter inattentive online participants, we
exclude participants who did not pass an attention check or had
a contiguous gap of inactivity of more than 3 minutes during the
puzzle phases. To account for outliers, we additionally remove par-
ticipants whose NLG differs more than two standard deviations
from the mean. In total, this leaves us with 86 participants with 28
in the Predef condition, 30 in the Self-det condition, and 28 in the
DDA condition. The participants include 46 males and 40 females,
with a mean age of 28.55. There were no meaningful differences
between the three conditions for age, programming experience,
puzzle and strategy gaming experience, and graph theory expe-
rience, as well as affinity for mathematics or puzzle games. The
DDA and Predef conditions had 43% and 39% percent of female
participants while the Self-det condition had 57%. The median time
the experiment took was 23 minutes, with the pre-test, practice,
and post-test together taking a median of 14 minutes. A majority of
the participants have a Bachelor’s degree as their highest education
level.

Each participant was paid £3.9 for a successful participation.
Additionally, for each correctly solved pre- and post-test exercise,
they were paid £0.1 - 0.2, depending on the time they needed. They
got a higher bonus if they completed the tests more quickly. This
totals up to a potential bonus of £1.2, and was communicated to
the participants before the pre-test.

4 ANALYSIS
4.1 Difficulty Adjustment Condition Analysis

We compare the different experimental conditions to see the effect
of the difficulty adjustment methods. More precisely, we look at the
three main dependent variables, namely the normalized learning
gain, flow, and the perceived difficulty. We use the ANOVA test if
normality and equal variance assumptions are fulfilled, and Kruskal-
Wallis H-test otherwise.

4.2 Practice Behavior Clustering Analysis

For the second part of our methodology that allows us to investigate
RQ2 and RQ3, we analyze the recorded learning trajectories from
the user study participants, finding groups of behavior. The data
from each participant consists of two parts: behaviors from the
practice phase, and the evaluation measures. Our methodology can
be summarized as follows: we first preprocess the data to prepare
it for clustering, including filtering incongruent participants and
outliers. We then cluster the participants by their behavior during
the practice phase. To ensure meaningful differences between the
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clusters, we statistically test whether the clusters differ in terms of
the evaluation measures. We then use association rule mining to
find the defining sets of behaviors pertaining to each cluster. Figure
3 illustrates the clustering method.

4.2.1 Feature Extraction & Preprocessing. To identify the different
types of participants, we extract behavior features from the log data
during the practice phase. These features needed to be formulated
as a fixed-length vector. To this end, we use the number of clicks of
each possible action in the exercises and the timing as elaborated
below.

There are three possible actions in the exercises: set, unset, and
reset. Set refers to adding an unset vertex into the selection. Unset
does the opposite, removing a set vertex from the selection. Reset
refers to clearing the entire selection. The counts of these three
actions, summing over all the practice exercises, make up three fea-
tures in our dataset. The fourth feature representing the participant
is the average time between two consecutive actions. This feature
cannot be calculated if a participant performs zero actions in one
of the exercises, so such participants are removed from the dataset.
These four behavior features together make up the feature vector
representing one participant.

After extracting the behavior features, we now remove outliers
from the dataset. The outliers are defined as those who have extreme
values in the four features that we use for clustering. We filter out
outliers using the Mahalanobis distance, used for multivariate data,
with the cutoff threshold & = 0.01, following [25]. Finally, to prepare
the data for clustering, we normalize all the features with min-max
normalization, such that all features lie inside the range [0, 1].

4.2.2  Clustering. We use k-means to cluster the participants, using
the scikit-learn library [32]. For this, we need to decide on the num-
ber of clusters, which we do by using the kneedle algorithm [39],
the mathematical formulation of the commonly used elbow method.
The kneedle algorithm finds the point of maximum curvature on
the curve of the inertia against the number of clusters. The inertia
is the sum of squared distances to the closest cluster center of each
point.

4.2.3 Between-Cluster Comparisons. Here we apply statistical tests
to check for differences between the clusters in terms of learning
gain and subjective experience. First, we perform an omnibus test
on three variables: learning gain, flow, and perceived difficulty. We
use the ANOVA test or the Kruskal-Wallis H-test, as described in
Section 4.1. Since we are particularly interested in the learning gain,
we also perform pairwise comparisons, using either the two-sample
t-test or the Mann-Whitney U-test, depending on the normality. We
correct the pairwise comparisons by using the Benjamini-Hochberg
procedure.

4.24 Association Rule Mining. After obtaining the clusters, we ex-
amine them more closely by finding out how the behavior features
cause the different participants to land in different clusters. We use
the Apriori algorithm [1] for association rule mining (ARM). ARM
takes sets of items as input, called transactions, and outputs the
extracted association rules. An association rule has a left-hand side
(LHS) and a right-hand side (RHS), each of which is a set of items.
A rule indicates that if a transaction contains the LHS, then it is
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likely to also contain the RHS. This approach was previously used
to point out differences between behavior clusters in [19, 24].

To apply association rule mining, we need to transform a feature
vector X representing a participant into a set of items, called trans-
action T. The behavior feature vector is written below in Equation
2:

X= (xSet XUnset  XReset xTimeBthlicks) (2)

where x;ype is the different features. To convert this feature vector
into a transaction, each feature x;pe is transformed into an item
type;, where j € hi, med, low, depending on the value x;yp.. We
use a discretizer available from [32] based on 1-dimensional k-
means of each feature to decide on the item. x;yp, gets translated
to typey,; if x¢ype is closest to the highest centroid from k-means,
and similar for the medium and lower centroid. T contains the 4
items from the behavior features, plus one more item, c;, indicating
that the participant is clustered into cluster i. We then feed the
transactions into the Apriori algorithm, obtaining the association
rules. We consider only rules with at most four behavior feature
items on the left-hand side, and exactly one cluster item on the
right-hand side. To filter rules that explain the clusters sufficiently
well, we require the mined rules to have confidence of at least 0.6
and per-cluster support of 0.5, as defined in Equations 3 and 4 [19].

Confidence = p(RHS Cc T|LHS Cc T) (3)

I{T : (LHS U RHS) € T}|
[{T : RHS € T}|

Confidence is the probability that a participant is clustered into
the cluster on the right-hand side of the rule, given that the partic-
ipant fulfills the left-hand side. Per-cluster support indicates the
ratio of participants that the rule holds for that cluster, which is
the right-hand side.

©)

Per-cluster support =

4.3 Cluster and Condition Comparison

To check whether the conditions have an effect on the participants’
behavior during the practice phase, and by extension on the evalu-
ation measures, we look at the clusters and the conditions together.
More precisely, we look at how many participants in each cluster
come from each condition, forming a contingency table. We apply
the Chi-Square test on the contingency table to find if the diffi-
culty adjustment methods influence the practice behavior of the
participants. This analysis is designed to address RQ3.

5 RESULTS

5.1 Difficulty Adjustment Condition Analysis

We first present the comparison between the different difficulty
adjustment methods, Predef, Self-det, and DDA. Because of non-
normality as described in 4.1, we apply the ANOVA test for flow and
Kruskal-Wallis (KW) H-test on learning gains and self-perceived
difficulty. We also report 5? as the effect size (estimated 5? in case of
KW H-test), as described in [43]2. The plots are shown in Figure 4.
Here we observe that there is no significant difference for learning
gain (KW H-test, H(2) = 1.31, p = 0.52, 5% = -0.008), flow (ANOVA,

2The classic effect size labels small, medium, and large are associated with threshold
values for 7% of 0.010, 0.059, 0.14 or for Cohen’s d of 0.2, 0.5, 0.8 [12].
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Figure 3: The clustering method. The practice behavior is extracted from recorded practice sessions, and then used for clustering.
We compare the evaluation measures on the clusters to validate the differences between clusters and mine rules to see the

defining characteristics of each cluster.

F = 0.479, p = 0.94, % = 0.001), or perceived difficulty level (KW
H-test, H(2) = 1.47, p = 0.48, 5* = -0.006).

5.2 Practice Behavior Clustering Analysis

Now we turn to the clustering results. There are 6 students who
didn’t click in at least one of the practice exercises, and therefore
cannot be used for clustering based on the average time between
clicks. Removing the outliers by the Mahalanobis distance removes
5 more. After this, 75 participants remain for clustering. The kneedle
algorithm reports that the optimal number of clusters is 5. K-means
results in five clusters with sizes 24, 14, 9, 8, 20, respectively.

Figure 5 shows the learning gain, the self-reported flow, and
the perceived difficulty of the practice phase for each cluster. To
determine the differences in each measure, we apply a statistical
test, either ANOVA or KW H-test, along with the effect size, as
described in 5.1. For NLG, there is a significant difference between
the clusters (KW H-test, H(4) = 18.43, p = 0.0010, 5? = 0.206). For
flow, there is no significant difference (ANOVA, F = 1.0378, p = 0.39,
1? = 0.056). Finally, there is also a significant difference in perceived
difficulty (ANOVA, F = 5.21, p = 0.0010, 5? = 0.229).

To get more comprehensive differences among the clusters in

terms of NLG, we apply statistical tests between each pair of clusters.

Because of non-normality, we use Mann-Whitney (MW) U-tests for
this. We report the test results and the probability of superiority
(PS)? as effect sizes [12]. To account for the large number of tests,
we use Benjamini-Hochberg correction to correct the significance
of the tests. Through this, we obtain three significant pairs: Clusters
0-4 (MW, U = 103.5, p = 0.0007, PS = 0.784), 1-4 (MW, U = 62.0, p

=0.005, PS = 0.779), and 3-4 (MW, U = 27.5, p = 0.006, PS = 0.828).

From this, we interpret cluster 4 to have high NLG, and clusters 0,
1, and 3 to have low NLG. To verify grouping clusters 0, 1, and 3
together, we look at the differences between them. The PSs between
these three clusters are classified as small or negligible (0-1: PS =
0.600, 0-3: PS = 0.518, 1-3: PS = 0.580) [12] so we consider them
all as having low learning gains. As for cluster 2, we can’t make

3Probability of superiority is associated with the effect size labels small, medium, and
large by the threshold values of 0.56, 0.64, and 0.71.
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a statement about their NLG compared to other groups from the
statistical tests.

Table 1 shows the association rules of the practice behavior
clustering extracted by the Apriori algorithm. We only present
rules whose left-hand side is not totally contained within another
rule, which is more specific and describes the cluster with higher
confidence. These rules point out the defining behavior of each
cluster. In addition to the rules, we report the confidence and the
per-cluster support, as defined in Equations 3 and 4.

Through clustering and the association rules, from Figure 5 and
Table 1, we identify five behavior types during the practice phase,
each of which leads to different learning gains. Using the left-hand
side of the rules addressing the clusters as well as looking at the
normalized learning gain (NLG) of each cluster, we give the clusters
representative names to refer to them further on in the paper. From
the low number of actions exhibited by the participants in cluster
0, the short time between the actions, as well as low NLG, we call
cluster 0 the few-shot rushers. Participants in cluster 1, also exhibited
low NLG, performed few actions, and took a long time between
the actions, can be termed as the strugglers. Contrarily, participants
in cluster 2 did a lot of sets and unsets, took a short time between
the actions, and yielded a relatively high NLG, so we call them the
fast explorers. Participants in cluster 3, which also had low NLG
like clusters 0 and 1, use a low amount of unsets. This is also the
only cluster in which the participants made moderate use of resets.
They chose to clear their whole selection instead of backtracking
more carefully with unsets. We thus call cluster 3 the board-clearers.
Finally, participants in cluster 4 had medium sets, unsets, and time
between clicks, as well as high NLG, which is why we call them
the thoughtful searchers.

5.3 Cluster-Condition Relationship

Table 2 shows the number of participants in each condition and
each cluster. Because of the small sample size and the large contin-
gency table, we cannot apply the Chi-squared test and the Fisher’s
exact test to check for significant differences [42]. However, we
can observe that other than cluster 3, clusters have comparable
participants from each condition.
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Table 1: Rules extracted from the Apriori algorithm.

Left hand side Right hand side Confidence Per-cluster support
{Set; v Unsety,,,, Resetjyq,} co 0.577 0.625
{TimeBtwClicks;,.,,, Reset;,,,} co 0.800 0.571
{TimeBtwClicksy;, Unset;,,,, Resetjy,,} c1 1.000 0.500
{TimeBtwClicksp;, Setj.y, Unsetyy,,} c1 1.000 0.500
{Reset},,, Sety;, Unsety;} ) 1.000 0.667
{TimeBtwClicks;,.,, Sety;, Reset,,,} c2 1.000 0.667
{TimeBtwClicks,,eq, Seteq, Unsetyg,,} c3 0.500 0.800
{TimeBtwClicks,,,cq, Set,eq, Resetp,eq} c3 0.500 1.000
{Set;eq, Unsety,,,, Reset,,eq} c3 0.625 1.000
{TimeBtwClicks,,,eq, Setyeq, Unset,, .4, Resetyy,,} ¢4 0.700 1.000

Table 2: Number of participants in each cluster and each 6 DISCUSSION

condition. To answer RQ1, we compared the results of the difficulty adjustment

methods on the practice exercises in terms of learning gains and

Cluster 0 Cluster 1 Cluster 2 Cluster3 Cluster 4 subjective measures. Here, as mentioned in section 5.1, we found no

Predef 7 3 4 1 8 significant differences between the three conditions. This suggests

Self-det 8 3 2 6 6 that in our open-ended reasoning context, the different methods
DDA 9 6 3 1 6

of adjusting difficulty don’t seem to play a role in influencing the
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evaluation measures. This is not in line with our initial assump-
tions and motivations in the paper, and also not in line with other
previous literature [22, 36, 37]. We hypothesize that the lack of a
difference could be due to the simplicity of the task, in that there
aren’t many rules to learn. Our practice task stands in contrast to
tasks in previous works, where there are many rules or mechanisms
that the student needs to understand to successfully complete the
task. If there were many rules to learn, easier levels could act as a
scaffold to support students to learn a few things at a time, as was
suggested in [38]. One more potential difference is the recruitment
of the participants. Previous studies set their experiments inside
an actual learning environment, whereas we recruited participants
online, who might not be as intrinsically motivated to practice.
Despite these potential explanations of our outcomes, we were still
interested in investigating the influence of the practice phase more
closely by analyzing students’ practice behavior via clustering.

To investigate RQ2, we see if the data reveals associations be-
tween certain student practice behaviors and learning. From our
results, clustering showed groups of behavior types, which are
linked to different learning gains, as listed in Section 5.2. These
results agree with previous works [4, 29]. Looking at the differ-
ent characteristics, we found one cluster that learned significantly
well: the thoughtful searchers. The defining feature of this cluster
is using many sets and unsets and taking some time between the
actions. This suggests going through different options to explore
the environment and taking time to think about what to do next or
what has been done, i.e., exhibiting reflection. This goes in line with
what previous literature also highlights regarding the connection
between exploratory and reflective behavior in open-ended tasks
with learning [29]. Next up is the cluster that couldn’t be defined
as low- or high-learning: the fast explorers. They also used a lot
of sets and unsets, but did so quickly. This seems to indicate that
while they explored a lot, they gave less thought to each action that
they did. Looking at their learning gain, they seem to have done
better than low-learners, but not as well as the thoughtful searchers.
This indicates that their behavior is in the right direction, but they
could still improve more, if they were nudged to spend more time
to reflect on their actions.

There are also three clusters that didn’t learn well. Two low-
learning clusters, the few-shot rushers and the strugglers, both used
few sets, unsets, and resets. In line with the aforementioned line of
thought, a lack of exploration, i.e., not using enough actions during
practice sensibly may lead to poor learning. Interestingly, the third
low-learning cluster, the board-clearers, used a moderate number of
sets, but a low number of unsets, choosing to use resets instead. This
seems to indicate that using resets is counterproductive for learning.
Aside from that, we also exploratively found that the board-clearers
have higher pre-test scores than other clusters. Potentially, this
could have contributed to the lower learning gain of this cluster as
there is less margin to improve.

Having seen the differences between the behavior types, they
suggest that student’s behaviors can also inform about the student’s
learning in addition to just the practice exercise outcomes.

In order to answer the third RQ, we looked at how the students
from the three conditions are distributed across the behavioral
clusters as shown in Table 2. As mentioned in the previous section,
since it is not possible to apply the Chi-squared or the Fisher’s exact
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test to the data because of the small sample size in relation to the
contingency table, we look at the trends. Judging from the numbers,
the overall distribution seems to be uniform across the clusters with
the exception of board-clearers, cluster 3, which seems to have most
students from the Self-det condition. It is interesting to note that
this is the only cluster with higher pre-test scores and a relatively
high number of resets suggesting a trend that when difficulty is
adjusted based on students’ perceived notion of difficulty (Self-det
condition), a behavior of excessively resetting the environment
might suggest the students come with a higher prior knowledge.
This may inform the intervention scheme as the action of resetting
the environment can mean different things for learning.

Our work has some limitations. Firstly, we have only used data
from one user study on one task. It would be valuable to see results
from other open reasoning tasks, and with more participants. In
particular, we weren’t able to use statistical tests to address RQ3
because of the sparsity of participants. Secondly, the user study
we used recruited participants through crowdsourcing, and was
not embedded as a part of a curriculum that students have to go
through. This might limit the generalizability of the results, particu-
larly in comparing different difficulty adjustment methods. Thirdly,
the features we have used in this work are summative features,
aggregating over all the exercises. Although the features were able
to explain differences between participants, they don’t account for
the differences in exercises’ difficulty levels and the sequence of
exercises.

7 CONCLUSION

In this work, we have compared three different methods of difficulty
adjustment, applying them in an open reasoning task. Secondly,
we have identified different types of practice behaviors in the task
using clustering. Thirdly, we have examined the link between be-
havior types and difficulty adjustment methods. Our results suggest
some interesting insights and takeaways for the community: (i) Dif-
ferences in the way exercises are presented to students based on
difficulty might not always lead to differences in learning gains, par-
ticularly in open-ended reasoning tasks, contrasting some previous
works. (i) As we observe differences in the behaviors that link to
high and low learning, this suggests the usefulness of complement-
ing in-task performance measures with students’ behavior types
to inform the difficulty adjustment interventions in open-ended
learning environments.

As future works, one straightforward continuation is to design
an intervention to lead students to practice behaviors indicative
of improved learning. Further evaluation of intervention methods
could yield guidelines for adaptive application designs. Another
interesting line is to more deeply understand the impact of difficulty
on the practice behavior at the per-exercise level, rather than at the
per-condition level as we did. Results from there could potentially
allow us to understand the impact of difficulty levels more deeply.
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Table 3: Comparison of different learning outcomes of the three conditions and five clusters in numbers, written as (Mean =+

SD).
Predef Self-det DDA Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
NLG 0.41 £ 0.45 0.41 £ 0.38 0.32 £ 0.37 0.22 £ 0.43 0.31 £ 0.29 0.56 + 0.29 0.21 £ 0.27 0.70 £ 0.37
Flow 5.10 + 0.85 5.02 + 0.99 5.07 + 0.69 498 + 0.83 4.79 + 0.64 5.29 +£0.71 5.45 + 0.84 5.06 + 0.88
Pev. dlﬁr. 12.21 £4.28 12.70 £3.32 13.25+3.77 14.21 £3.43 1436 +3.20 13.00+2.71 10.38 +£1.50 10.50 +3.72

A QUESTION ITEMS IN THE USER STUDY

We list the items in the pre- and post-questionnaire of the user
study here.

A.1 Pre-Questionnaire

The pre-questionnaire is the first thing the participant does in the
study. The questionnaire starts out by asking about the demograph-
ics: age, gender, and degree and field of study. The answers for
gender, degree, and field of study are chosen from a drop-down
list. Then it asks about previous experience with mathematics and
computer science, asking the participant to choose how well each
statement describes him on a 7-point Likert scale. The items are:

I have heard of graph theory before.

I like mathematics.

I like puzzle games.

I know how to procedurally solve puzzles (Sudoku, Rubik’s
cube, etc.).

T have experience in programming.

o T have played strategy games before (Chess, Go, Red Alert,
etc.).

The Likert scale also contains an attention check item, where the
participant is told to pick the fourth option. If a participant doesn’t
pick the right item, their data is removed from the analysis. The
participant must answer every item to continue to the next page.

A.2 Post-Questionnaire

The post-questionnaire is the very last page of the study. It asks
about the experience during the practice phase. The first set of
questions comes from the Flow Short Scale [10], prompting the
participant to state how much they agree with each statement
about their feelings while doing the exercises on a 7-point Likert
scale:

I feel just the right amount of challenge.

My thoughts/activities run fluidly and smoothly.

I don’t notice time passing.

I have no difficulty concentrating.

My mind is completely clear.

I am totally absorbed in what I am doing,.

The right thoughts/movements occur of their own accord.
I know what I have to do each step of the way.

I feel that I have everything under control.

I am completely lost in thought.

Again, the Likert scale contains an attention check item. The ques-
tionnaire proceeds by asking about the need for cognition, with
items taken from [26]. The participant should answer how charac-
teristic or uncharacteristic each item is for them on a 5-point Likert
scale:
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e I would prefer complex to simple problems.

o Ilike to have the responsibility of handling a situation that

requires a lot of thinking.

Thinking is not my idea of fun.

o I would rather do something that requires little thought than
something that is sure to challenge my thinking abilities.

e Ireally enjoy a task that involves coming up with new solu-
tions to problems.

o I would prefer a task that is intellectual, difficult, and impor-
tant to one that is somewhat important but does not require
much thought.

Then comes the NASA TLX questionnaire [13], where participants
describe their feelings on a continuous slider. The questions are:
e How mentally demanding was the task?
e How hurried or rushed was the pace of the task?
e How successful were you in accomplishing what you were
asked to do?
e How hard did you have to work to accomplish your level of
performance?
e How insecure, discouraged, irritated, stressed, and annoyed
were you?
e How difficult was the task overall?
Finally, there are two free-text questions: “Please give comments
about the difficulty level of the puzzles and their impact on your
training” and “Please give an impression of how you felt during the
puzzles”. As in the pre-questionnaire, the participant must answer
every item to continue to end the study.

B RESULTS IN TABLES

We provide the results from Figures 4 and 5 as numbers in Tables 3.
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