o
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w h Universititsbibliothek

Estimating chess puzzle difficulty without past
game records using a human problem-solving
inspired neural network architecture

Anan Schiitt, Tobias Huber, Elisabeth André

Angaben zur Veroffentlichung / Publication details:

Schiitt, Anan, Tobias Huber, and Elisabeth André. 2024. “Estimating chess puzzle
difficulty without past game records using a human problem-solving inspired
neural network architecture.” In 2024 IEEE International Conference on Big Data
(BigData), 15-18 December 2024, Washington, DC, USA, edited by Chang-Tien Lu
Lu, Fusheng Wang, Bolong Zheng, and Yifeng Gao, 8396-8402. Piscataway, NJ:
Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/bigdata62323.2024.10826087.

Nutzungsbedingungen / Terms of use: licgercopyright
T,
Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under th A))ﬂ
conditions: I %.\ [=
Deutsches Urheberrecht ﬂ?.!? | &
Weitere Informationen finden Sie unter: / For more information see: & A
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/ i :

https://doi.org/10.1109/bigdata62323.2024.10826087
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Estimating Chess Puzzle Difficulty Without Past
Game Records Using a Human Problem-Solving
Inspired Neural Network Architecture

1%t Anan Schiitt

University of Augsburg
Augsburg, Germany
anan.schuett@uni-a.de

Abstract—For chess players to sharpen their tactical skills
effectively, they train on chess puzzles with a fitting difficulty
level. This paper presents an approach to estimate the difficulty
level of chess puzzles using a deep neural network. The proposed
approach achieved second place in the IEEE BigData Cup 2024
competition: Predicting chess puzzle difficulty. For the design of
our network architecture, we take inspiration from the human
problem-solving process for chess puzzles. We train the model
to predict the correct move as an auxiliary task to improve the
training process. We also predict themes, which are patterns in
chess puzzles as a second auxiliary task. Finally, we use the
uncertainty in the position, i.e. how incorrect the model’s move
prediction is, as a further input to guide the estimation of the
puzzle difficulty.

Index Terms—chess puzzle, difficulty estimation, neural net-
work

I. INTRODUCTION

A major part of learning chess is going through chess puz-
zles. A chess puzzle is a position or a sequence of consecutive
positions where only one correct series of moves leads to
a decisive advantage, which means either ending the game
in checkmate, or winning more material than the opponent.
In chess platforms, solving a puzzle happens interactively,
with the player playing the advantage-taking side against the
computer, whose responses are fixed beforehand. Solving a
puzzle often entails recognizing patterns (called themes) in
the position [29]. With puzzles, players learn to recognize
the themes that occur in critical positions and transfer this
recognition skill into their own games, as commonly advocated
by chess educators [6], [25].

In Figure 1 we show an example of a chess puzzle. One
prominent theme in this puzzle is the fork, which is when a
piece moves to attack two other pieces that are more valuable,
guaranteeing that one of them can be taken. However, the fork
is not apparent from the start. One needs to see one move
further to find the move rook to the h7 square, giving check
and forcing the king to move to h7 to take the rook. Then,
the knight can move to g5, “forking” the king on h7 and the
queen on d4, which forces the king to move again, after which
the knight can take the queen. Over this forcing sequence,

8396

2" Tobias Huber
Technische Hochschule Ingolstadt

Ingolstadt, Germany

Tobias.Huber @thi.de

3" Elisabeth André

University of Augsburg

Augsburg, Germany
elisabeth.andre @uni-a.de

Fig. 1. Example puzzle with the fork as a theme. The figure shows subsequent
positions where white makes a move. By sacrificing a rook, white can use its
knight to attack the black king and queen at the same time.

white trades his rook for the opponent’s queen, which is an
advantageous trade.

As puzzles encompass a huge set of positions, their diffi-
culty levels vary greatly, from simple two-move sequences to
complex positions with multiple overlapping themes. Thus, it
makes sense for players to only practice on puzzles that are
on their level to keep the player from being under-challenged
or over-challenged, which is necessary for achieving the state
of flow [2], [5]. For this, it is important to know the difficulty
level of chess puzzles. Investigating this problem for chess
puzzles also provides insights into other similar learning tasks
like practice exercises in mathematics or computer science
[18], [22], [24].

Many platforms that offer chess puzzles already have a
system to provide puzzles at the appropriate difficulty level
to players [32], [33]. This is achieved using the Elo rat-
ing system [4], or a closely related variant like the Glicko
system [8]. These methods use historical data of players
attempting different puzzles to calculate players’ ability ratings
and puzzles’ difficulty ratings. Hence, these methods do not
work when we consider a newly generated position from a
newly played game or an authored position, since there is
no historical data to calculate with. This means new puzzles
will be matched virtually randomly with players, potentially
causing an annoying user experience.

In this paper, we propose a method to estimate the difficulty
level of chess puzzles without using historical data. We use
a deep convolutional neural network and weighted averaging

over the puzzle’s sequence of positions to predict the difficulty
level. Importantly, inspired by human puzzle-solving, we in-
clude puzzle theme and solution move prediction as auxiliary
tasks to help the network learn. We also use the cross-entropy
between the predicted and the true solution move as input to
the network to reflect the human decision process in chess,
which improves prediction performance. Our model achieved
second place in the IEEE BigData Cup 2024 competition [31].

II. RELATED WORK

At present, the difficulty ratings of chess puzzles are mostly
determined using systems such as the Elo system [4] or Glicko
system [8]. These systems work very similarly in principle.
The process starts by giving a puzzle without a known
difficulty rating a preliminary difficulty rating, usually a value
in the middle of the rating range. Then, players of different
ratings attempt the puzzle, to which the rating is updated,
depending on the outcome and the player’s rating. The process
repeats, making the difficulty rating landing close to the true
value. Systems such as these require many players to interact
with the puzzle to know the difficulty value, which might cause
mismatches between the player and the puzzle, deteriorating
the user experience. We address this by estimating the puzzle
difficulty without requiring any previous player attempts.

Previous works on estimating chess puzzle difficulty without
past game records have used the search tree of chess engines to
estimate a chess puzzle’s difficulty level [9], [27]. These works
focused on features such as search tree depth, spanning factor
of different nodes, and the engine’s evaluation score. While
some of these approaches already attempted to model the
human problem-solving process [27], their approach does not
fully capture how humans think, as human cognition differs
from that of a chess engine. Humans tend to make predictable
mistakes, since some chess moves seem counterintuitive to the
human eye, making players overlook them, such as moving
pieces backward [19]. Hristova et al. [11] studied different
factors that influence how difficult a chess puzzle is for
humans, and identified two main factors: how difficult it is to
spot the theme(s), and how many reasonable-looking variations
there are in the position. In this work, we aim to utilize these
human-centered factors but instead of using the search tree of
chess engines, we utilize a neural network.

Neural networks have shown similarities to human problem-
solving when applied to chess and other puzzle games.
Mcllroy-Young et al. [16], [17] trained and studied neural
networks that simulate how people of different ability levels
play chess, indicating that neural networks can imitate the
imperfect human decision process. Furthermore, Jenner et al.
[13] demonstrate that chess-playing neural networks show
signs of planning ahead, which is also part of the human
problem-solving process when playing chess. Neural networks
have also been applied to predict chess player ratings from
looking through a game [28] and to detect cheating [21].
Additionally, neural networks were used to assess the difficulty
rating of other puzzle games [3], [30]. To the best of our
knowledge, neural networks have not been used to estimate

8397

the difficulty of chess puzzles. Compared to a normal game of
chess, chess puzzles come with unique challenges like spotting
the theme of the puzzle [11]. As pointed out in the example
puzzle in Figure 1, the themes of a puzzle are not always
apparent from the starting position, increasing its difficulty
level for humans.

Continuing on the findings that neural networks can model
human behavior in chess, we apply a neural network to predict
chess puzzle difficulty. We advance previous neural network
approaches in chess by developing a novel architecture specif-
ically designed to target chess puzzles. This architecture is
inspired by the human problem-solving strategies observed
during chess puzzle-solving, as identified in the work of
Hristova et al. [11].

III. METHODS
A. Dataset & Data Preparation

We use a dataset of 3.6 million chess puzzles provided by
the Lichess database [34], containing the starting positions
and the difficulty levels calculated using the Glicko system.
In addition to that, the dataset also provides the sequence of
correct moves, the list of themes associated with the puzzle,
and the number of players who have attempted the puzzle.

There are three parts to representing the chess puzzle in
the prediction model. The first part is the position, which we
encode as a binary tensor of size 18x8x8, with each of the
18 channels representing different piece types or board status,
similar to [26]. There are six types of chess pieces: pawn,
rook, knight, bishop, queen, and king. We use one channel
for each piece type and for each player to encode which
square contains that piece type of that player, making up 12
channels. We also need to encode whether the two special
moves in chess: castling and en passant, are possible'. For this,
we use four channels to encode king- and queenside castling
rights for each player, where the corresponding channel is
filled with ones if castling on the respective side is still valid.
Lastly, there are two channels to represent en passant for the
person at play, one channel indicates whether en passant is
possible at all, and another one indicates at which square it
is possible. We normalize the positions so that the encoding
uses certain channels for the player at play, and other ones for
the opponent, instead of encoding by black/white pieces.

The second part of the puzzle representation is the move
number encoding. Here, we encode how many moves there
are since the start of the puzzle to the current position, and
how many moves there are left until the end. To this end, we
use two sets of one-hot encodings of length 15 (the maximum
length of a puzzle) where the 1 entry denotes the current move
and the number of remaining moves, respectively. By encoding
how many moves it has been since the start and how many
moves there still are until the end, the length of the puzzle is
implicitly encoded.

I Castling is a move where the king and a rook on one of the sides move
past each other, and en passant is a special type of pawn capture. These moves
have their specific conditions when they can be played.

Fig. 2. Diagram of our proposed network architecture.

The third part of the puzzle representation is the correct
move of each position. We encode the correct move at the
current position with two one-hot vectors of length 64, one
for the move’s starting square and one for the target square.

The labels of the prediction task also consist of three parts:
the Elo rating, the associated themes, and the correct next
move. We normalize the Elo ratings to have a mean of zero
and a standard deviation of one. We encode the associated
themes as binary vectors of length 61, and the correct next
move using the same method as in the input. Note that the
Elo rating and the themes are puzzle-level labels, meaning
the label is shared between the multiple positions inside the
puzzle. In contrast, the correct next move is a position-level
label.

B. Network Structure

The structure of the prediction network mainly takes inspi-
ration from the chess engine Leela [36]. The network has a
convolutional (abbreviated as conv in Diagram 2 and Table I)
layer, followed by a series of Resnet blocks [10] with squeeze-
and-excitation layers [12] as the main trunk. We refer to this
main trunk as ¢co . Following this main trunk, the network
has separate heads for different tasks, as depicted in Figure 2.
We provide the composition and the layer sizes of the different
blocks in Table I.

The core of the network processes chess positions, while
the Elo rating is a puzzle-level label, so there needs to be
an aggregation mechanism. For this, we use the weighted
average. Each position outputs one Elo rating estimate and
one weight value. The weight values of all the positions in a
puzzle are passed through the softmax function together to get
the actual weight for averaging. Formally, the last layer of the

8398

TABLE I
COMPOSITION AND LAYER SIZES OF THE BLOCKS INSIDE THE NEURAL

NETWORK
Block Layer list Layer sizes
Pre-Resnet conv layer Conv 18x128x3x3
Batch Norm + ReLU
Resnet block Conv 128x128x3x3
Batch Norm + ReLU
Conv 128x128x3x3
Batch Norm + ReLU
Squeeze-and-excitation Avg. pool
(part of Resnet) Dense 128x32
ReLU
Dense 32x256
Sigmoid & Identity
Theme & Move Conv 128x64x1x1
block Dense 4096x256
ReLU
Dense 256x61 / 256x128
Sigmoid
Elo conv block Conv 128x64x1x1
Dense 4096x256
ReLU
Elo dense layer Dense 414x1

Elo estimation head ¢.jo_dense Outputs two numbers for each
input position x; in the puzzle: v¢'® and w¢'®, which are the
prediction values and the prediction weights, respectively. To
aggregate the outputs, we apply the following operation:

elo
= —_— 1
E welo i

i Eje ’

elo

w
~elo e

Y (1

where the summations go over the positions in the puzzle.

Inspired by the human problem-solving process during
chess puzzles, we use two auxiliary tasks to help the network
develop a better understanding of the positions within the
puzzle: correct move prediction and theme prediction. For the
first auxiliary task, the network has a dense block ¢,y that
predicts which move the chess engine deems to be the best
move for position x¢°* within the puzzle. Note, that because
of the move encoding scheme we use, it is possible for the
network to output an illegal move. However, this possibility
doesn’t contradict our intention with the network. The second
auxiliary task is to predict the theme associated with the puzzle
using the theme block @ipeme. This auxiliary task uses the
same weight average method as described in Equation 1. For
theme prediction, the weights and values for aggregation are
vector outputs from the theme block.

Finally, we include uncertainty in the current position as
input to the Elo dense layer. This acts as a proxy for the
number of reasonable-looking move variations in the current
position, which was shown to influence the human puzzle-
solving process [11]. We provide uncertainty by using the
cross-entropy between the network’s prediction and the correct
move label. Let

Smove

Yi = (bmove ((bCNN (Xfos))

2

pos
i

be the network’s move prediction for the current position x
Then the uncertainty is given by the cross-entropy

CE’;VLOU@ — _y;nove @ log(y;no’ue)7 (3)

pos
%

where y["°"¢ is the correct move in position x

by the puzzle representation.

The main task of the network is to output the Elo rating
of the puzzle. For this, the puzzle’s position x7°° is passed
through the main trunk ¢y and an Elo-specific CNN block
@elo_conv- The result of Peio conv 1S concatenated with the
uncertainty CE["°”® and the move number one-hot encoding
x;*™. In total, we get the Elo prediction for the input posi-
tion x?”* with corresponding move number one-hot encoding

x;*"™ through

as provided

(,U.elo7 wieIO)

; = 4)
¢elo_dense (¢elo_conv (¢CNN (XE)OS)) S5 X?um @ CETOUE)

C. Training Setup

The loss function we use for training consists of three parts,
as depicted by dashed lines in Figure 2. First is the mean
squared error for the difficulty rating prediction, representing
the main task. The two other parts are cross-entropy loss for
puzzle themes and correct next move, which can be seen as
auxiliary tasks.

We split the dataset into the training and validation sets,
with an 80:20 ratio. We do not dedicate a split as the test set,
since our target test set is the challenge’s dataset (see Section
IV-A).

We implement the model using PyTorch [20], and use the
Adam optimizer [14] for training. We train the model and
monitor the main validation loss, i.e. the mean squared error
of the difficulty rating. After each training epoch, we save the
model with the lowest main validation loss, and stop training
when there is no improvement after three epochs.

IV. EVALUATION

Our evaluation methods can be mainly divided into two
parts. The first is the main testing on the [EEE BigData
Cup test set, which counts toward the challenge. We perform
further evaluations on the validation set we have locally split
from the training set to gain more insights about our proposed
architecture.

A. IEEE BigData Cup

The goal of the challenge [31] is to predict the difficulty
rating of chess puzzles as closely as possible. The challenge
uses the mean squared error of the unnormalized Elo rating
(ranging from 399 - 3331) as the evaluation metric. As
the provided chess puzzle dataset is publicly available, the
challenge organizers prepared a separate test dataset.

The test dataset contains 2,282 puzzles that are derived from
real games using the same method as the public Lichess dataset
[34]. The labels in the test dataset are calculated using the
Glicko system [8] with solving attempts from approximately
20 - 50 attempts per puzzle. The test dataset is then again

8399

divided into two parts: the holdout test dataset and the final
test dataset. During the challenge, only the evaluation score on
the holdout test is known. The evaluation score on the final
test dataset is only reported after the challenge was over, and
is used to rank the solutions.

As the test dataset has relatively few attempts for each
calculation, the ratings might not be accurately computed for
every puzzle and might have a different distribution than the
public training dataset. Furthermore, by simulating the Glicko
system on a similar scale of data, we found that the ratings of
extremely easy and extremely hard puzzles regress toward the
population mean. To specifically correct our predictions for
this challenge’s distribution shift, we tested different linear
transformations to make rating predictions closer to the mean.
We then choose the linear transformation that is not too drastic
while still giving good predictions on the holdout test dataset.
To be precise, we apply the following transformation:

gtrans — c+g(y _ C) +s (5)

where g, ¢, and s are the gradient, center point, and shift of
the transformation, respectively.

We only apply this transformation for the evaluation on
the IEEE BigData Cup test dataset, and not on any of the
following evaluations.

B. Ablation Study on Validation Set

We use our own validation set to conduct an ablation
study and investigate the utility of different components in
our approach. As a first step, we evaluate our final model in
predicting the puzzle difficulty rating on the validation set. We
use the mean squared error of the unnormalized Elo rating for
evaluation, aligning with the /IEEE BigData Cup challenge.

Following that, we compare different variations of the model
which were trained throughout the development of the final
version. Here, we again use the mean squared error of the
unnormalized Elo rating on the validation set. In each version
of the model, we use the same training procedure and the same
number of neurons unless stated otherwise.

The components of the model, as described in Section III-B,
that we compare here are:

e Move pred - These models use the correct move predic-
tion as an auxiliary task

e Move CE - These models use the cross-entropy between
the correct move label and predicted correct move as an
additional input to the Elo dense block

e Max-pool - These models use the maximum prediction
over all puzzle positions as the prediction for the puzzle-
level labels, i.e. the difficulty rating and the themes

o W-avg-pool - These models use the weighted average op-
eration to aggregate position predictions into the puzzle-
level prediction

e Filters - This states the number of filters in the Resnet
blocks of the model. This is the only number of neurons
we vary between models.

TABLE 11
FINAL RESULTS OF THE IEEE BIGDATA CUP, SHOWING THE FIRST FIVE
PLACES OUT OF 37.

Rank MSE Holdout = MSE Final
1 49141 104540
2 58810 120682
3 69890 123103
4 61381 129245
5 65136 132631

Note here that models that used neither Max-pool nor W-avg-
pool only used the first position of a puzzle as input, ignoring
the positions that occur while the puzzle progresses.

C. Position-level Difficulty

In addition to the puzzle’s difficulty level, our model also
implicitly learned the difficulty level for each position in
the puzzle. We are interested in whether the position-wise
difficulty level matches with human behavior. To this end,
we look through 100,000 randomly chosen puzzles in the
validation set and the corresponding game where the position
occurred. Each puzzle from the validation dataset is generated
from a position in a real game, which can be queried through
the Lichess API [35]. We analyze these positions, looking at
whether the player who got into the puzzle’s starting position
and standing to gain an advantage, can play on accurately in
his game. We refer to this player as the puzzle-taker in the
following.

Out of these 100,000 games, we only consider games where
the puzzle-taker made at least one correct move following the
puzzle, but then also made a mistake, which corresponds to
incorrectly solving the puzzle. Additionally, we only consid-
ered games with longer time controls (classical and rapid) to
filter out mistakes caused by time pressure. From this, we
split the positions the puzzle-taker faced into mistake positions
(the player made a mistake) and correct positions (moves
before the mistake). Here, we hypothesize that if our model
captures the difficulty for each position in the puzzle, then the
predicted difficulty of mistake positions should be higher than
the correct positions. To answer this, we compare the predicted
difficulty level of these positions by taking the predicted value
before the weighted average aggregation block. We pair up
the correct and mistake positions of the same puzzle and use
the Wilcoxon signed-rank test to check whether there is a
significant difference.

V. RESULTS

We submit the predictions on the test dataset for evaluation.
The challenge allowed three final submissions for evaluation.
Therefore, we submitted the following versions of the same
neural network with different linear transformation parameters
(see Equation 5):

o Gradient = 0.8, center point = 1600, shift = 0
o Gradient = 0.89, center point = 1649, shift = —7
e No transformation

8400

TABLE 111
EVALUATION RESULTS OF THE ABLATION STUDY. THE COLUMNS ARE
DESCRIBED IN SECTION IV-B

Filters Move pred Move CE ~ Max-pool W-avg-pool MSE
64 167759
64 v 152794
64 v v 122293
64 v v v 89144
128 v v v 74514
128 v v v 56537

Fig. 3. Predicted difficulty ratings of positions where players make a correct
move or a mistake.

Our best model out of the submitted three achieved a
mean squared error of 58810 on the holdout test dataset,
and 120682 on the final test dataset, landing on the second
place in the challenge. Note that we do not have access to
the final evaluation results from our other submissions and
do not know which of our submitted versions performed best.
For comparison, we provide the scores of the first 5 places in
Table II.

To check the quality of our predictions locally, we evaluated
the predictions on the local validation set without any trans-
formation. We achieved a mean squared error of 0.1916 on
the normalized Elo rating, corresponding to a mean squared
error of 56537 on the unnormalized Elo rating. For context,
the square root of 56537 is about 237, which is close to the
gap of 200 Elo points that the US Chess Federation uses to
separate players into classes [1].

Examining the model more closely, we present the results
from the ablation study in Table III. Finally, we present the
results comparing the predicted difficulty level of positions
where players made the correct move or a mistake in a real
game in Figure 3. We filtered only the interesting games,
as described in Section IV-C. This resulted in 3,489 data
points for comparison. The Wilcoxon signed-rank test shows
a significant difference between the two groups (z = —44.21,
p < 0.001). The test statistic corresponds to a coefficient of
determination 2 = 0.56, indicating a large effect size [7].

VI. DISCUSSION

With regards to the IEEE BigData Cup, our model has
achieved second place, showing that our model has a compet-
itive edge. While not the winner of the challenge, the ranking
shows that the model included many aspects important to
delivering good predictions for chess puzzle difficulty.

The experimental results in Table III show that our human
problem-solving inspired architectural decisions improve per-
formance greatly. The auxiliary tasks and the correct move
cross-entropy block helped in processing the positions more
precisely. This aligns with the insights from [11], that the
uncertainty of the correct move, i.e. the number of reasonable-
looking moves, is a good indicator of a puzzle’s difficulty.
Furthermore, the aggregation methods show the importance
of considering the puzzle as a sequence of positions. This
coincides with the example we raised in Section I, that the
idea of the puzzle might not be apparent from the starting
position.

In the same direction, Figure 3 suggests that the network
has not only learned to estimate the difficulty of the whole
puzzle, but also to distinguish the difficulty of positions within
the same puzzle. These results, along with those from the
ablation study, indicate that our network has incorporated the
human problem-solving process into its prediction, coinciding
with previous works that show that neural networks can mimic
human chess playing [16], [17].

In future works, it would be interesting to extend the diffi-
culty estimation network to also consider how human players
handle tactical positions. One potential question from this is
whether there is more than one dimension to the difficulty
rating. For example, some players might be extremely good
at certain themes but fail at others, similar to [15]. In addition
to estimating chess puzzle difficulty, the proposed network
could also contribute to problem-solving tasks in mathematics
and computer science [18], [22], [24], where students make
a sequence of decisions to solve their task, similar to chess
puzzles. Having a good estimate of difficulty levels could
help in sequencing the exercises that students should practice
[23]. The insights from our human problem-solving inspired
work could help in understanding the difficulty rating of such
exercises and the student’s learning progression.

VII. CONCLUSION

In this work, we proposed a novel neural network archi-
tecture for predicting the difficulty rating of chess puzzles
without historical data. We demonstrated the prediction perfor-
mance, receiving second place in the IEEE BigData Cup 2024
challenge. We also showed that our human puzzle-solving
inspired additions to the network architecture improved the
performance of the network. This affords further research to
consider human problem-solving characteristics when analyz-
ing difficulty levels. Finally, we demonstrated that our network
not only estimates the difficulty of the whole chess puzzles,
but also identifies difficult positions within the puzzles.

REFERENCES
[1]
[2]

US Chess Ratings Committee. The US chess title system. http://www.
glicko.net/ratings/titles.pdf, 2016. [Online; accessed 4 October 2024].
Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience,
volume 1990. Harper & Row New York, 1990.

Philipp Eisen. Simulating human game play for level difficulty estima-
tion with convolutional neural networks, 2017.

Arpad E. Elo. The Rating of Chessplayers, Past and Present. Arco Pub.,
New York, 1978.

[3]
[4]

8401

[5]
[6]
[7]

[8]
[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Stefan Engeser and Falko Rheinberg. Flow, performance and moderators
of challenge-skill balance. Motivation and emotion, 32:158-172, 2008.
Frank Erwich. 1001 chess exercises for club players: The Tactics
Workbook that also explains all the key concepts. New in Chess, 2019.
Catherine O Fritz, Peter E Morris, and Jennifer J Richler. Effect
size estimates: current use, calculations, and interpretation. Journal of
experimental psychology: General, 141(1):2, 2012.

Mark E Glickman. The Glicko system. Boston University, 16(8):9,
1995.

Matej Guid and Ivan Bratko. Search-based estimation of problem
difficulty for humans. In Artificial Intelligence in Education: 16th
International Conference, AIED 2013, Memphis, TN, USA, July 9-13,
2013. Proceedings 16, pages 860-863. Springer, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Dayana Hristova, Matej Guid, and Ivan Bratko. Assessing the difficulty
of chess tactical problems. International Journal on Advances in
Intelligent Systems, 7(3):728-738, 2014.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132-7141, 2018.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott
Emmons, and Stuart Russell. Evidence of learned look-ahead in a chess-
playing neural network. arXiv preprint arXiv:2406.00877, 2024.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
Andrew Lan, Tom Goldstein, Richard Baraniuk, and Christoph Studer.
Dealbreaker: A nonlinear latent variable model for educational data. In
International Conference on Machine Learning, pages 266-275. PMLR,
2016.

Reid Mcllroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton An-
derson. Aligning superhuman AI with human behavior: Chess as a
model system. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1677-1687,
2020.

Reid Mcllroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and
Ashton Anderson. Learning personalized models of human behavior in
chess. arXiv preprint arXiv:2008.10086, 2020.

Jauwairia Nasir, Barbara Bruno, Mohamed Chetouani, and Pierre Dil-
lenbourg. What if social robots look for productive engagement? auto-
mated assessment of goal-centric engagement in learning applications.
International Journal of Social Robotics, 14(1):55-71, 2022.
Emmanuel Neiman and Yochanan Afek. Invisible chess moves: Discover
your blind spots and stop overlooking simple wins. New in Chess, 2014.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z. Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 8024-8035, 2019.

Reyhan Patria, Sean Favian, Anggoro Caturdewa, and Derwin
Suhartono. Cheat detection on online chess games using convolutional
and dense neural network. In 2021 4th International Seminar on
Research of Information Technology and Intelligent Systems (ISRITI),
pages 389-395. IEEE, 2021.

Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas.
Autonomously generating hints by inferring problem solving policies.
In Proceedings of the second (2015) ACM conference on Learning@
Scale, pages 195-204, 2015.

Mary McCaslin Rohrkemper. Self-regulated learning and academic
achievement: A Vygotskian view. In Self-regulated learning and
academic achievement, pages 143—-167. Springer, 1989.

Anan Schiitt, Tobias Huber, Ilhan Aslan, and Elisabeth André. Fast
dynamic difficulty adjustment for intelligent tutoring systems with small

datasets. In Proceedings of the 16th International Conference on
Educational Data Mining, pages 482-489, 2023.

[25] Yasser Seirawan and Jeremy Silman. Play winning chess. Gloucester
Pub. plc, 2007

[26] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140-1144, 2018

[27] Simon Stoiljkovikj, Ivan Bratko, and Matej Guid. A computational
model for estimating the difficulty of chess problems. In Proceedings
of the third annual conference on advances in cognitive systems ACS,
page 7, 2015.

[28] Tim Tijhuis, Paris Mavromoustakos Blom, and Pieter Spronck. Predict-
ing chess player rating based on a single game. In 2023 IEEE Conference
on Games (CoG), pages 1-8. IEEE, 2023.

[29] Daniel A Wagner and Martin J Scurrah. Some characteristics of human
problem-solving in chess. Cognitive psychology, 2(4):454-478, 1971.

[30] Xuan Wei. Difficulty level classification of sudoku puzzles based
on convolutional neural network. Academic Journal of Computing &
Information Science, 6(11):35-39, 2023

[31] Jan Zysko, Maciej Swiechowski, Sebastian Stawicki, Katarzyna Jagieta,
Andrzej Janusz, and Dominik élgzak. IEEE Big Data Cup 2024
report: Predicting chess puzzle difficulty at KnowledgePit.ai. In IEEE
International Conference on Big Data, Big Data 2024, Washington DC,
USA, December 15-18, 2024. 1EEE, 2024.

[32] Chess - #1 platform for online chess. https//www.chess.com, 2005.
[Online; accessed 1 October 2024].

[33] Lichess - a free/libre, open-source chess server. https//www.lichess.org,
2010. [Online; accessed 1 October 2024].

[34] Lichess open database. https://database.lichess.org/#puzzles, 2010. [On-
line; accessed 1 October 2024].

[35] Lichess.org API. https://lichess.org/api, 2010. [Online; accessed 4
October 2024].

[36] Leela Chess Zero Neural Network Topology. https:/lczero.org/dev/
backend/nn/, 2020. [Online; accessed 20 September 2024].

8402

	Estimating chess puzzle difficulty without past game records using a human problem-solving inspired neural network architecture
	Anan Schütt, Tobias Huber, Elisabeth André
	Nutzungsbedingungen / Terms of use:
	licgercopyright

