
Acoustic emission-driven anomaly detection in
machining

Praveen Jai Bharath Nadkarni, Dhanalekshmi Prasad Yedurkar,
Matthias Merzkirch, Markus G. R. Sause

Angaben zur Veröffentlichung / Publication details:

Nadkarni, Praveen Jai Bharath, Dhanalekshmi Prasad Yedurkar, Matthias
Merzkirch, and Markus G. R. Sause. 2025. “Acoustic emission-driven anomaly
detection in machining.” In DGZfP AE-2025 - SCHALL 25 –
Schallemissionsanalyse und Zustandsüberwachung mit geführten Wellen, 27.–28.
März 2025, Dresden, Germany, 1–10. Mayen: NDT.net.
https://doi.org/10.58286/31631.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these
conditions:
CC-BY 4.0: Creative Commons: Namensnennung
Weitere Informationen finden Sie unter: / For more information see:
https://creativecommons.org/licenses/by/4.0/deed.de

CC BY 4.0

https://doi.org/10.58286/31631
https://creativecommons.org/licenses/by/4.0/deed.de


Media and Publishing Partner 

SCHALL 25 

This work is licensed under CC BY 4.0 
© 2025 The Authors  

1 

Acoustic Emission-Driven Anomaly Detection in 

Machining  

Praveen Jai Bharath NADKARNI 1, Dhanalekshmi YEDURKAR 1, Matthias 
MERZKIRCH 1, Markus G. R. SAUSE 1 

1 University of Augsburg, 86159, Augsburg, Germany 
Contact E-Mail: praveen.nadkarni@uni-a.de  

Abstract. In manufacturing, maintaining process stability and reducing machine 
downtime are critical for achieving high productivity and reliable product quality. 
This study aims to develop a robust anomaly detection framework integrated within 
condition monitoring for computer numerical control (CNC) turning centres for 
processes such as turning, drilling and reaming. The systematic approach begins 
with sensor selection, followed by the integration of acoustic emission (AE) sensors 
onto the machine. These sensors capture data at a high acquisition frequency that 
reveal subtle changes in tool conditions, workpiece interactions, and machine 
performance due to tool wear, material inconsistencies, and variations in machine 
data. The initial focus is on single-spindle machines as a proof of concept, with the 
goal of extending the sensor integration, data acquisition and machine learning 
models to multi-spindle configurations. The framework effectively distinguishes 
between normal operations and deviations by processing the AE signals and 
extracting key features in the time, frequency and time-frequency domains. 
Additionally, the system aims for real-time identification and aids in removal of 
faulty components, ensuring that only high-quality parts proceed through the 
production line. The investigations on the single-spindle machine provide a solid 
foundation for algorithm development, facilitating precise adjustments to the 
detection framework. These algorithms may be adapted to the more complex multi-
spindle scenario, which involves concurrent operations and increased signal 
interference, utilizing transfer learning to leverage the knowledge gained from the 
single-spindle setup for efficient adaptation in the multi-spindle context. By 
integrating acoustic emission sensor technology, condition monitoring, and artificial 
intelligence (AI)-supported data-driven analysis, this approach ensures a reliable 
solution for process monitoring, significantly improving productivity and 
operational reliability in manufacturing environment. 

Keywords: Condition Monitoring, Digital Signal Processing, Ultrasonic Sensors, 
CNC Machining, Quality Assurance  
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Introduction  

Tool condition monitoring (TCM) plays a crucial role in manufacturing for quality 
assurance (QA) by ensuring the tools consistently produce high quality components. TCM 
aids in extending tool life and reducing the need for frequent tool replacements. As a result, 
it reduces defective components and machine downtimes, streamline production processes, 
and ultimately saves time and money.  
 
The state-of-the-art methods in TCM are discussed in detail based on measured signals, 
sensors used, and signal processing techniques incorporated [1]. It is noteworthy to 
consider previous research works on TCM by statistical methods, as well as machine 
learning and deep learning algorithms applied to machining and tool monitoring [2]. 
Additionally, extensive research is carried out focussing on tool wear monitoring on milling 
machines in previous projects [3]. There has also been in-depth analysis on TCM for 
single-spindle turning machines [4] and condition monitoring for a multi-spindle drilling 
process. These studies have identified key trends, highlighted the potential of deep learning 
techniques and validated real-time monitoring approaches using sensor data including 
acoustic emission, contributing to enhanced machining efficiency and reliability. However, 
little work has been identified so far on the condition monitoring of a multi-spindle turning 
machine. The objectives include investigating a sensor data-based process monitoring 
system, using machine learning algorithms-based methods to detect, classify and quantify 
anomalies related to machining deviations and use of transfer models for data analysis of a 
single-spindle machine to the complex case of a multi-spindle machine. This study focuses 
on employing acoustic emission sensors which have already been proven highly effective in 
various applications within the manufacturing sector including the domains like sheet metal 
stamping [5], additive manufacturing [6] apart from machining. 

1. Material and Method  

The trials were conducted using a ferritic stainless steel 1.4003, provided by Berger 
Holding GmbH & Co. KG (Berger), ensuring material consistency throughout the study. 
The primary focus is monitoring the turning and reaming processes, which are kept 
identical to Berger’s standard procedures, except for adjustments needed by machine 
limitations. The reamer is an inhouse manufactured tool from Berger, while the turning 
insert is TCS27 from Tungaloy Corporation. 
 
Signals were recorded while using different tool conditions: new tools, used tools (which 
have reached the end of their designated lifespan) and the worn-out tools (which are used to 
machine with different parameters such that significant changes are seen in recorded 
signals). The signals from the acoustic emission sensors need to be synchronised with the 
machine data such as spindle rotational speed, current etc., along with the quality inspection 
data facilitating labels for the machined parts. At Berger, the quality inspection process is 
done by a robotic inspection cell. For the trials at University of Augsburg, the labels are 
determined by the type of the tool used. Data analysis, signal processing and development 
of prediction models for multiple sensor data are done using the MATLAB-based software 
framework— sensor data transformation, reduction, extraction, analysis and management 
(STREAM), formerly known as ultra-high-ultrasonics (UHU) framework [7,8]. 
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2. Sensor Selection and Placement  

The data acquisition utilizes primarily the ultrasonic, acoustic emission sensors 1045S from 
Fujicera alongside VS900-M from Vallen Systeme GmbH, which are both wide band 
frequency sensors known for their flat response across a broad range of frequencies as seen 
in Figure 1. Due to their ability to capture signals across a wide spectrum and their robust 
casing, these sensors are suited for the trials. The sensors are spring-loaded and mounted 
with Korasilon coupling agent to ensure stable signal transmission. Before mounting on the 
machines, the sensors are first tested in a mobile sensor verification setup [9]. In this setup, 
sensors are subjected to pulse signals to record their signature responses. Furthermore, at 
any point, the sensors can be verified to ensure proper functioning and accurate data 
acquisition. 
 

 
a) b) 

Figure 1. Sensor sensitivity curves of acoustic emission sensors in the frequency domain a) Fujicera 1045S   
b) Vallen VS900-M 

The measurement system PROfile from BCMtec GmbH is utilised for data acquisition, 
which connects to a network switch via a power over ethernet (PoE) cable and includes a 
dedicated software for streamlined data recording. The responses are recorded at 1 MHz 
sampling rate for ± 50 mV and ± 5 V inputs, with a selectable range of 100 kHz to 2 MHz. 
 
Initially, a sensor was mounted at a generic location on the turret to evaluate its 
effectiveness in process monitoring. Subsequently, the sensors were also placed directly on 
the tool holders, as close to the tool as possible, to enhance monitoring accuracy, see 
Figures 2 to 4. 
 
The adapters for sensor mounting were installed without modifying the machine. This was 
achieved by utilising a false tool holder on the turret and retrofitting adapters using of 
existing holes on the tool holders. To fabricate the adapters, acrylonitrile styrene acrylate 
(ASA), a weather resistant material was used which is also stable in the environments with 
cutting fluids. It is suggested to avoid materials like polylactic acid (PLA), polycarbonate 
(PC) and polyamide-based ONYX filaments for such environments as they are 
hygroscopic, making them unsuitable for such conditions [10]. The 3D-printed adapters 
from PLA, ONYX and ASA were also tested in a climate chamber under varying 
conditions, with temperatures ranging from 5 °C to 70 °C, and relative humidity levels 
between 0 % and 70 %. These tests were conducted across different cycles, ensuring 
exposure to a range of temperatures and humidity variations. Only the adapters made from 
ASA remained stable, while those made from PLA deformed. ONYX did not show visible 
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deformation but appeared to absorb moisture. The use of 3D-printed adapters allowed rapid 
prototyping, cost-effectiveness, and design flexibility.  
 
Figure 2 illustrates the experimental setup at University of Augsburg, featuring a single-
spindle machine DMG MORI CTX Alpha 500 with two data acquisition boxes along with 
the sensor integration where four sensors are placed at different location on the turret. One 
Vallen VS900-M sensor is positioned at generic location as shown in Figure 3 while the 
remaining three Fujicera 1045S sensors are mounted directly on the tool holders. Figure 4 
provides a closer view of some of these sensor arrangements, namely reamer tool holder on 
position 5 and turning insert tool holder on position 12. 
 

 
Figure 2. Setup on single-spindle turning machine DMG MORI CTX Alpha 500 at University of Augsburg 

 
Figure 3. Sensor mounted using an adapter at a generic location on turret (Position 2)  

   
a) b) c) 

Figure 4. Sensor integration on tool holders a) Reamer tool holder (Position 5) b) Turning insert tool holder 
(Position 12) – front view with insert c) Turning insert tool holder (Position 12) – back view with sensor 
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At the company Berger, the setup follows a similar approach, where the adapters are used 
to mount the sensors directly onto the tools being monitored. Figure 5 illustrates the 
machining chamber of a multi-spindle turning machine by TORNOS Multi Swiss 8 x 26, 
where the adapters in cyan are placed on position 3 where the workpiece is turned and at 
position 6 where the reaming occurs. These adapters are strategically placed to monitor the 
turning and reaming process respectively. A closer view of the sensor integration at Berger 
is depicted in Figure 6. 
 

 
Figure 5. Setup on multi spindle turning machine TORNOS Multi Swiss 8 x 26 with sensor integration on 

Position 3 and Position 6 tool holders at Berger Holding GmbH & Co. KG 

 
Figure 6. Sensor mounted using an adapter on the turning insert tool holder (Position 3)  
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3. Results and Discussion  

Initial AE signals were recorded during machining at University of Augsburg and are 
analysed to detect any notable changes. Figure 7 depicts the acoustic emission sensor data 
using good tools for one sequence of machining operations on single-spindle machine 
comprising of facing, roughing, turning, pilot drilling, pre-drilling, reaming, pre-drilling 
(distinct from the earlier step), drilling and finally slotting. The sensor is placed at a generic 
location on turret as shown in Figure 3.  
 

 
Figure 7. Acoustic emission sensor data (top: amplitude-time plot, bottom: spectrogram) using a good tool for 
one sequence of machining operations, on single-spindle machine  

3.1 Effect of sensor placement 

The amplitudes of the signals captured simultaneously during the turning exhibit significant 
variations depending on sensor placement. Figure 8 presents a comparison of signals 
recorded at different sensor locations during the turning process, section marked in 
Figure 7. These locations include the generic location as shown in Figure 3, as well as the 
sensor integrated directly on the tool holder of the insert as shown in Figure 4 b) and 
Figure 4 c). Notably, the magnitude of responses from the generic location, see Figure 8 a), 
are approximately 10 % of the readings obtained from the sensor mounted directly on the 
turning insert tool holder, see Figure 8 b). 
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a) 

    
b) 

   
 
Figure 8. Acoustic emission sensor data comparison (top: amplitude-time plot, bottom: spectrogram) for 
turning and location of sensor placement a) Generic location on turret on single-spindle machine as shown in 
Figure 3.  b) At turning insert tool holder as shown in Figure 4 c) 

3.2 Effect of various tool conditions 

The integration of the sensors directly on the tool holders demonstrated improved 
sensitivity. Based on this, further analysis considers the impact of different tool conditions. 
In Figure 9, the sensor data comparison between different types of tools is shown for the 
turning process, section marked in Figure 7 with the sensor mounted on the turning tool 
insert holder. Figure 9 a) shows the signals recorded during turning with good tools, while 
Figure 9 b) corresponds to used tools and the Figure 9 c) is with worn-out tools. A clear 
difference in observed in, e.g. the maximum amplitudes, with the signals from good tools 
exhibiting lower values compared to others. Further detailed analysis and feature extraction 
are required, including extraction of additional features such as root mean square (RMS) 
values, spectral power density or partial powers to gain deeper insights into signal 
variations [3].  
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a) 

 
b) 
 

 
c) 

 
Figure 9. Acoustic emission sensor data comparison (top: amplitude-time plot, bottom: spectrogram) for 
turning with different types of tools used a) Good tool b) Used tool c) Worn-out tool, on single-spindle 
machine 
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5. Summary and Outlook 

Real-time, inline process monitoring is essential for improving accuracy and efficiency. 
This work lays the foundation for developing data driven models that leverage anomaly 
detection in the acoustic emission data to identify defective parts. For industrial sensor 
integration with enhanced durability during extensive data collection and real-time 
monitoring, the 3D-printed adapters are suggested to be replaced with more robust adapters. 
A further analysis is necessary once extensive data is gathered from both the acoustic 
emission sensors and machine data. Digital signal processing (DSP) using digital filtering 
techniques is required to gain a clearer understanding of these variations. In-depth feature 
extraction, data pre-processing, and model refinement shall be crucial to enhance the 
accuracy and robustness of the anomaly detection system. Such robust system then aids in 
segregating the defective parts, thereby ensuring only quality products reach the consumer. 
Additionally, frequent anomaly detection can serve as an indicator for timely tool 
replacement. The machine learning models trained on the data from the single-spindle aim 
to also aid in the detection of anomalies in the multi-spindle machines. This comprehensive 
approach will ultimately facilitate better decision-making and more precise tool 
management. 
Further, for data fusion within a data infrastructure, the ultrasonic data needs to be 
synchronised with the machine data and the signals for individual machining process shall 
be trimmed and labelled for good and bad parts. This shall enable further analysis using 
time series data classifications. The developed models aim to be robust enough to identify 
the anomalies with minimal training on the newer use cases. Extracted features can be 
further evaluated using supervised learning techniques such as support vector machine 
(SVM) and decision tree (DT). Additionally, this work seeks to lay the groundwork for 
building time series-based foundation models focussed on acoustic emission signals. 
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