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Abstract

Many physical phenomena in science and engineering, ranging from groundwater
flow in porous media to the mechanical behavior of composite materials, are
governed by partial differential equations (PDEs) with highly heterogeneous
coefficients that vary across multiple spatial scales. Accurately simulating such
multiscale problems poses significant computational challenges. Classical nu-
merical methods, such as the finite element method (FEM), require resolving
the finest scales, leading to excessively large systems. While analytical homoge-
nization offers effective macroscopic models under idealized assumptions (e.g.,
periodicity or scale separation), such assumptions are rarely valid in practical
applications.

This thesis is devoted to the numerical homogenization of elliptic diffusion
problems with highly heterogeneous coefficients, both deterministic and stochas-
tic. We focus on advancing the Super-Localized Orthogonal Decomposition
(SLOD) method, which enables accurate coarse-scale approximations without
relying on restrictive structural assumptions. SLOD builds upon the classical
Localized Orthogonal Decomposition (LOD) method by constructing basis func-
tions with super-exponential decay, achieved via carefully designed local source
terms. We analyze the approximation properties of SLOD and propose practical
stabilization strategies to ensure numerical robustness.

Building on this foundation, we develop a multilevel extension termed Hierar-
chical SLOD (HSLOD). This method constructs quasi-orthogonal hierarchical
basis functions, enabling a multiresolution decomposition of the solution space.
The hierarchical structure yields improved conditioning of the resulting linear
systems and facilitates efficient, parallelizable solvers. Furthermore, the hierarchi-
cal approach allows existing SLOD approximations to be improved incrementally
by adding further discretization levels.

In the stochastic setting, we extend both SLOD and HSLOD into a collocation-
type framework for numerical stochastic homogenization. The proposed methods
efficiently compute expected solutions to PDEs with random coefficients by
exploiting the super-exponential decay of the localized basis functions and the
simplicity of the collocation-type approach, which avoids assembling global
stiffness matrices. We derive rigorous error estimates by linking the methods to
results from quantitative stochastic homogenization theory. All of our theoretical
results are supported by comprehensive numerical experiments that demonstrate
the effectiveness of the proposed methods.






Acknowledgments

First and foremost, I would like to express my sincere gratitude to Daniel
Peterseim for offering me the opportunity to join his research group and for his
guidance, support, and encouragement throughout the past years. I am also
grateful to Axel Méalqvist for kindly agreeing to serve as the co-examiner of this
dissertation. Many thanks go to my co-authors José C. Garay, Moritz Hauck,
and Christoph Zimmer for the productive and enjoyable collaboration over the
last three years. A significant part of the results presented in this thesis grew out
of our joint work. I would also like to thank Camilla Belponer, Matthias Deiml,
Martin Hermann, and Fabian Kropfl for carefully proofreading this dissertation
and for their helpful comments and suggestions, which have greatly improved the
final version. Moreover, I am thankful to all current and former colleagues at the
Chair for Computational Mathematics, the Research Unit for Applied Analysis,
the Research Unit for High-Performance Scientific Computing, and the Chair
for Inverse Problems at the University of Augsburg. The collegial and friendly
atmosphere in these groups has made my time here especially enjoyable. T will
always look back fondly on the many inspiring discussions, the collaborative
spirit, the delicious Muffin Monday breaks, and the occasional game of table
soccer. | gratefully acknowledge financial support from the European Research
Council (ERC) through the Horizon 2020 research and innovation programme of
the European Union (Grant agreement No. 865751 — RandomMultiScales). Last
but not least, I would like to thank my family and friends for their continuous
support and encouragement throughout this journey.

Augsburg, Juli 2025 Hannah Mohr

vii






Contents

1
1.1.
1.2.
1.3.
I.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
3.3.

3.4.

3.5.

3.6.

4.1.

. Introduction
Motivation . . . . . . . . .
Literature review . . . . . . . . . .. ..o
Outline and contribution . . . . . . . . .. . ... ... ... ..

Deterministic coefficients

. Localized Orthogonal Decomposition
Model problem . . . . . . ...
Finite element method . . . . . . ... ... ... ... ...
Prototypical operator-dependent method . . . . . . .. .. ..
Orthogonal decomposition . . . . . ... ... ... ... ...
Localization strategy . . . . . . . . . . .. ... ...
Practical multiscale method . . . . . . . ... ... ... ...

. Super-Localized Orthogonal Decomposition
Localization strategy . . . . . . .. . ... ... ... ...
Practical multiscale method . . . . . . . ... ... ... ...
Decay of localization error . . . . . . . . ... ... ... ...
3.3.1. Super-exponential decay . . . . ... . ... ... ...
3.3.2. Pessimistic exponential decay . . . . . ... ... ...
Stable basis computation . . . . . ... ...,
3.4.1. Representative patches . . . . . . ... ... ... ...
3.4.2. Weighted L®>norm . . . ... ... ... ........
3.4.3. Domain extension . . . . . . . ... ... ... ... ..
3.4.4. Correction of LOD functions . . . . . . ... ... ...
Practical implementation . . . . . . . . ... .. ... ... ..
3.5.1. Random sampling and Singular Value Decomposition . .
3.5.2.  Minimization of the conormal derivative . . . . . . ..
Numerical experiments . . . . . . . . . . ... ... ... ...

Hierarchical Super-Localized Orthogonal Decomposition
Construction of the hierarchical basis . . . . .. .. ... ...
4.1.1. Strict a-orthogonal basis . . . . . . ... ... ... ..
4.1.2. Localization strategy . . . . . .. .. .. .. ... ...
4.1.3. Practical hierarchical basis . . . . . . .. .. ... ...

SN ==

11
12
13
14
15
17
18

21
22
25
28
28
32
33
34
35
36
38
39
40
41
43

47
48
48
50
52

X



Contents

4.2. Practical multiscale methods . . . . . . . ... ...

4.3. Error analysis . . . . . . .. .. oo

4.4. Additional compression strategies . . . . . . .. ... .. .. ..
4.4.1. Approximate inverse of block-diagonal stiffness matrix
4.4.2. Disregarding small entries in approximate inverse

4.5. Condition number of the hierarchical stiffness matrix . . . . ..

4.6. Numerical Experiments . . . . . . . . .. ... ... ... ...

II. Random coefficients

5. Super-Localized Numerical Stochastic Homogenization

5.1. Model problem . . . . ... ... ... oo
5.2. Numerical stochastic homogenization method . . . . . . . . ..
5.3. Error analysis . . . . . ... ... L
5.4. Error analysis using LOD techniques . . . .. ... ... .. ..
5.4.1. Localization error indicator . . . . . .. .. .. .. ...
5.4.2. Riesz stability . . . . ... ... 0oL
5.5. Practical implementation . . . . . . . .. ..o
5.5.1. Random sampling and Singular Value Decomposition . .
5.5.2. Stable local source terms . . . . . . ... ... L.
5.6. Numerical experiments . . . . . . . . . ... ... ... ... ..

. Hierarchical Super-Localized Numerical Stochastic Homoge-
nization

6.1. Numerical stochastic homogenization method . . . .. .. . ..
6.2. Error analysis . . . . . . .. ... L
6.3. Numerical Experiments . . . . . . . .. . ... ... ... ...

7. Conclusion and Outlook

Bibliography

107



List of Figures

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.

5.1

Prototypical basis functionsin 1D . . . . . . . ... .. ... ..
Element patches . . . . . . . . ... ... L.
LOD basis functionsin 1D . . . . . . . ... ... ...

SLOD basis functions in 1D . . . . .. ... ... L.
SLOD basis functions in 2D . . . . ... ..o
Decay of singular values . . . . .. .. ... ... ........
Support of Steklov eigenfunctions . . . . . . ... ... .. ...
Stability problems of SLOD basis functions . . . . . ... .. ..
SLOD basis functions using representative patches . . . . . . . .
Piecewise constant weighting function . . . . . . . . .. ... ..
SLOD basis functions using weighted L?*norm . . . . . ... ..
Extended domain for stabilization procedure . . . . . . . .. ..
SLOD basis functions using domain extension . . . . . . .. ..
SLOD basis functions via corrections of LOD functions . . . . .
Piecewise-constant diffusion coefficient . . . . . . ... ... ..
Error of the SLOD for different stabilization approaches . . . . .
Error of the SLOD Galerkin and collocation approximations

Error of the SLOD with respect to online time . . . . . . . . ..

Patches in the HSLOD context . . . . . . ... ... ... ...
HSLOD basis functionsin 1D . . . . . . . ... ... ... ...
HSLOD and HLOD basis functionsin 1D . . . . . . . . . . . ..
HSLOD basis functions in 2D . . . . . . . . .. ... ... ...
High-contrast channel coefficient and right-hand side f . . . . .
Sparsity pattern of the complete hierarchical stiffness matrix . .
Sparsity pattern of the system matrix associated with the local
source terms . . . . ... Lo e e e
Sparsity pattern of the inverse of the stiffness matrix . . . . . .
Errors of HSLOD and HLOD versus H;, . . . . . ... ... ..
Localization errors of HSLOD and HLOD . . . . ... ... ..
Errors of HSLOD and HLOD versus online-time . . . . . . . . .
Errors of the CG method versus online time . . . . . . ... ..
Errors of the trimmed CG method versus online time . . . . . .
Errors of HSLOD and HLOD versus Hy, for a coefficient with
high-contrast channels . . . . . .. ... ... ... .......

Expected SLOD basis functionsin 2D . . . . . .. ... ... ..

pel



List of Figures

Xii

5.2.
5.3.
5.4.
9.5.
5.6.
5.7.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

Singular values associated to an interior patch . . . . . . . . .. 101
Decay of the localization error indicator ¢ in 1D . . . . . . . .. 103
Decay of the localization error indicator o in 2D . . . . . . . .. 103
Decay of the Riesz stability constant Cyp, . . . . . . . . . .. .. 104
Error of the stochastic SLOD in 1D . . . . ... .. ... .... 105
Error of the stochastic SLOD in2D . . ... ... ... ..... 106
Expected HSLOD basis functionsin 2D . . . . . ... ... ... 109
Decay of the localization error indicator ¢ in 1D . . . . . . . .. 113
Decay of the localization error indicator ¢ in 2D . . . . . . . .. 114
Full error of the stochastic HSLOD in 1D . . . . . . .. ... .. 115
Coarse-scale error of the stochastic HSLOD in 1D . . . . . . .. 115
Full error of the stochastic HSLOD in2D . . . . . . ... .. .. 116
Coarse-scale error of the stochastic HSLOD in 2D . . . . . . .. 116



1. Introduction

1.1. Motivation

Many physical systems in science and engineering are governed by partial dif-
ferential equations (PDEs) whose coefficients vary on multiple spatial scales.
These variations may arise from material inhomogeneities, geometric complexity,
or randomness in the medium and are frequently observed in fields such as
geophysics, material science, hydrology, and biological tissue modeling. For
instance, modeling groundwater flow through porous rock formations requires
capturing the fine-scale pore geometry caused by variations in soil type, micro-
scopic inclusions, or heterogeneous subsurface structures; see [Hel97]. These
fine features can span several orders of magnitude smaller than the overall
geological domain and need to be resolved by numerical methods in order to
get accurate macroscopic approximation on the kilometer scale (c.f. [NHO6]).
Another example of multiscale phenomena is the elastic behavior of paper, where
macroscopic mechanical properties depend on the microscopic arrangement of
cellulose fibers [KMM™18]. Similarly, in composite materials, such as fiber-
reinforced concrete or polymers, the microscopic structure of short reinforcing
fibers significantly improves the tensile strength and overall performance of the
material, see for example [F1.96, BS07, LPR™21].

Numerical simulation of such systems poses a fundamental challenge: fully
resolving all scales involved is often computationally infeasible due to the resulting
high-dimensional discretization. Standard discretization techniques such as finite
element methods (FEMs) lose their efficiency when the mesh must resolve the
finest scale variations, leading to intractable memory and runtime requirements.
In many practical applications, however, the goal is not to resolve every fine-scale
feature but rather to capture the effective or macroscopic behavior of the PDE
solution. Therefore, one may try to average the coefficients at a coarser scale.
However, naive averaging often leads to macroscopic models whose effective
properties differ significantly from those of the original fine-scale system, see,
e.g., [MP20, Chapter 2].

To address this issue, homogenization theory offers a powerful analytical frame-
work. In its classical form, homogenization seeks to replace a highly oscillatory
PDE with an effective, or homogenized, equation that captures the large-scale
behavior of the solution. Under idealized assumptions such as periodicity, scale
separation, and statistical stationarity, this approach yields rigorous asymptotic
approximations and effective coefficients that can be computed through auxil-
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iary cell problems (see, for example, [JKO94, Tar09, BLB23|). However, these
assumptions are often violated in practical applications. Natural systems rarely
exhibit perfect periodicity or clear scale separation, as illustrated by the example
of groundwater flow through heterogeneous geological formations. Although
many manufactured composites often exhibit a clear separation of scales, e.g.,
between the size of the fibers and the size of the workpiece, and may even possess
a periodic microstructure, these idealized conditions are frequently violated in
practice. Material imperfections, random perturbations, or defects introduced
during manufacturing can disrupt periodicity and scale separation. Furthermore,
in many real-world scenarios, only partial or noisy data is available, obtained
through numerical simulations or experimental measurements rather than explicit
analytical models.

In such settings, numerical homogenization has emerged as a computational
counterpart to classical analytical homogenization. Instead of seeking explicit
formulas, these methods construct effective models or approximation spaces
directly from the problem data by identifying low-dimensional spaces that can
accurately approximate the solution. Typically, this is achieved by enriching
standard finite element spaces with fine-scale information extracted through
localized computations or solution operators associated with the governing PDE.
The resulting methods aim to solve the original multiscale problem on a coarse
computational grid without resolving all microscopic features explicitly, while
retaining high accuracy. Compared to classical FEMs, numerical homogenization
incurs only moderate computational overhead, such as basis functions with
slightly larger support or an increased number of basis functions per mesh entity.
Crucially, these methods are inherently non-asymptotic and do not rely on
assumptions of scale separation or periodicity, which makes them especially
appealing for real-world applications characterized by structural complexity or
data-driven models. An overview on the history of numerical homogenization
methods is given in the next section.

1.2. Literature review

The field of numerical homogenization has a long and distinguished history, rooted
in early efforts to design multiscale methods capable of addressing problems
lacking clear scale separation. A seminal contribution in this direction was
the development of generalized FEMs that incorporated fine-scale information
directly into the discrete solution space for one-dimensional problems [BO83|.
This approach was later extended to two-dimensional problems in [BCO94],
thereby laying the foundation for many modern multiscale techniques. A major
shift occurred in the mid-1990s with the emergence of a diverse class of numerical
homogenization methods. In what follows, we review key developments in this
area, following the classification and structure outlined in [AHP21], which also
provides a more comprehensive overview.
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Homogenization-based approaches

One prominent class of numerical multiscale methods is based on analytical
homogenization theory. A notable example is the Two-Scale Finite Element
Method introduced in [MS02]. This method draws inspiration from the theory of
two-scale convergence [Ngu89, All92] and constructs coarse-scale basis functions
that mimic the structure of test functions used in this analytical framework.
By design, the method is restricted to periodic microstructures. It was later
extended in [HS05] by incorporating the more general concept of multiscale
convergence [AB96], enabling the method to address a broader class of problems.
Further generalizations and developments can be found in [Hoa08, HS11, XH14,
CH18,TH19, TH20].

Another widely used method grounded in classical homogenization is the
Heterogeneous Multiscale Method (HMM), proposed in [EE03]. HMM seeks to
compute a macroscopic finite element approximation of the homogenized PDE by
capturing fine-scale information locally in small representative cells. The success
of HMM relies heavily on the assumption of scale separation and the availability
of representative cells, which is often the case in engineering applications. Since
these cells are much smaller than the coarse elements and cover only a small
fraction of the global domain, the method is highly efficient. The first rigorous
error analyses of HMM were established in [Abd05, Ohl05], and a comprehensive
overview of the method, its theory, and extensions can be found in [AEEVE12].

Variational approaches

One influential direction in numerical homogenization has been the development
of variational approaches. A seminal contribution in this area was the Variational
Multiscale Method (VMM), proposed in [Hug95]. This method aimed to stabilize
standard FEMs for multiscale problems by using local Green’s functions to
incorporate unresolved fine-scale effects into a coarse-scale variational formulation.
This early version of the method relied on the assumption that fine-scale features
were strongly localized within each coarse mesh element, allowing local correctors
to be computed independently. While this assumption is generally unrealistic,
the conceptual framework laid the groundwork for many modern multiscale
methods.

The initial limitation was overcome in [HFMQ98], where global corrector
Green’s functions were constructed from fine-scale residuals, and the solution
space was decomposed into a coarse finite element space and a fine-scale com-
plement. This decomposition was further formalized in [HS07] through the
use of projection operators, with the coarse and fine-scale spaces chosen as the
image and kernel of a projection, respectively. This led to an operator-based
representation of the global correctors, which in turn enabled the correction
of standard basis functions to incorporate fine-scale information. Although
these corrected basis functions are inherently global, numerical investigations
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in [Mal05, LM05, HS07, Mall1] revealed that they exhibit exponential decay away
from their coarse support. This observation justified their localization to ele-
ment patches for practical computations. Moreover, a posteriori error estimates
supporting this approach were developed in [LMO05, LM07, NPP08, LM09].

A rigorous proof of exponential decay for elliptic multiscale problems was
first provided in [MP14], leading to the formal introduction of the Localized
Orthogonal Decomposition (LOD) method. Subsequent work refined the local-
ization strategy in [HP13] and extended the framework in [HM14, HMP15, Pet16]
to accommodate a broader class of finite element spaces, boundary conditions
and non-symmetric and inf-sup stable problems. An alternative perspective on
LOD as an additive Schwarz method was presented in [KY16, KPY18], offering
another proof for the localization properties. The transition from conforming to
non-conforming spaces was addressed in [EGMP13] within the context of dis-
continuous Galerkin methods, and further generalized in [Mai20]. Higher-order
extensions of LOD were proposed in [Mai21] and refined in [DHM23].

A related line of work is the development of Rough Polyharmonic Splines
in [OZB14], which also feature exponentially decaying basis functions and similar
computational complexity to LOD. These ideas were extended to hierarchical
information games in [Owh15], giving rise to multiresolution numerical homoge-
nization techniques in [Owh17,0S19]. A multiresolution version of LOD was
then introduced in [FP20] and further refined in [HP22a]. For a comprehensive
overview of LOD, we refer the reader to the textbook [MP20] and the review
article [AHP21].

A recent advancement of the LOD method is the introduction of the Super-
Localized Orthogonal Decomposition (SLOD) in [HP22b] in the context of
elliptic diffusion problems. In contrast to the classical LOD, the SLOD enforces
localization more directly by minimizing the conormal derivative of the basis
functions on the boundaries of their local patches. This stabilization yields
super-exponentially decaying basis functions in practice. As a result, for a
given coarse mesh size H, an accuracy of O(H) can be achieved using basis
functions supported on patches of diameter O(H|log H|@~Y/4) where d is the
spatial dimension. In comparison, the classical LOD requires support of diameter
O(H|log H|) to reach the same accuracy. The SLOD approach has since been
generalized and extended in [FHKP23, BFP24, BHP24, FHP24, PWZ24].

Another influential direction in the development of numerical multiscale meth-
ods which is rooted in the variational multiscale formulation of [Hug95], originates
from the concept of residual-free bubbles, introduced in [BFHR97|. Residual-free
bubbles are smooth functions that vanish on the boundary of individual grid ele-
ments and are constructed by integrating local Green’s functions. These bubbles
can also be used to stabilize standard Galerkin methods in the presence of multi-
scale features. A closely related approach is the Multiscale Finite Element Method
(MsFEM), proposed in [HW97]. MsFEM can be viewed as a homogenization-
based reinterpretation of residual-free bubbles. Its core idea is to solve local
versions of the target PDE within each coarse mesh element, using the solutions
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as basis functions of the method. A key challenge in MsFEM lies in the choice
of boundary conditions for these local problems: mismatches between the coarse
mesh and the underlying microstructure can lead to large so-called resonance
errors. To mitigate this issue, oversampling strategies can be employed, whereby
the local PDEs are solved on patches that extend beyond the original coarse ele-
ments. A rigorous error analysis of MSFEM in periodic homogenization settings
with scale separation was established in [HWC99, EHW00, HWZ04, EH09, BLT14].
In non-periodic settings, important asymptotic convergence results were derived
in [Glo06, Glo08, Glo12]. A posteriori error estimators tailored to MSFEM were
developed in [HOS14, CL18, LRLBH22]. Moreover, an exponentially convergent
variant of the method was proposed in [CHW24]. For a comprehensive overview
of MsFEM, we refer to [CEH23].

Spectral approaches

Another important class of numerical homogenization methods are spectral
approaches, which aim to capture the relevant fine-scale information by solving
(local) spectral problems. A prominent example is the Multiscale Spectral
Generalized Finite Element Method (MS-GFEM), which goes back to [BL11].
The central idea is to partition the global computational domain into small
subdomains and define, on each subdomain, a suitable local compact operator
that accounts for the fine-scale features of the problem. By solving spectral
problems associated with these local operators, finite-dimensional approximation
spaces are constructed on each subdomain. These local spaces are then made
globally conforming by multiplying with a partition of unity. The resulting basis
can be used within a standard Galerkin framework. In contrast to variational
approaches such as LOD, the convergence of MS-GFEM is established in the
number of local basis functions and not in the diameter of the subdomains. The
method has been further developed in, among others, [BLSS20, MSD22, MAS23,
MM24, AMS25]. For a comprehensive overview of MS-GFEM, we refer to [Maz25].

A combination of MsFEM and MS-GFEM led to the development of the Gen-
eralized Multiscale Finite Element Method (GMsFEM), introduced in [EGH13].
The main idea is to enhance the accuracy of the multiscale space obtained from
residual-free bubbles computed with homogeneous Dirichlet boundary conditions
on the boundaries of coarse grid elements. To achieve this, additional bubbles
with boundary conditions induced by fine-scale nodal basis functions are com-
puted. From this typically large snapshot space, a small number of relevant basis
functions are selected by solving local spectral problems. Further developments
of GMSFEM can be found, for example, in [CEGL16, CEL19, CCE*20).

Stochastic homogenization approaches

Several numerical methods have been developed to solve PDEs with random coef-
ficients, including the stochastic FEM and the stochastic collocation method; see
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the review article [GWZ14] and references therein. These methods are effective
when the dimension of the stochastic input is low. However, their performance
deteriorates significantly in high-dimensional settings due to the so-called curse
of dimensionality, which remains a central challenge in uncertainty quantification.
To address this, stochastic homogenization has emerged as an alternative. Anal-
ogous to analytical homogenization, it aims to derive an effective deterministic
model that captures the macroscopic behavior of materials with microscopically
random properties, thereby circumventing the need to fully resolve fine-scale
uncertainties. The qualitative theory of stochastic homogenization for PDEs with
random coefficients dates back to the foundational works [Koz79, PV79, Yur86].
To go beyond mere qualitative results, researchers began to rigorously quantify
the error between the heterogeneous and homogenized models, leading to the
development of quantitative stochastic homogenization. This theory has yielded
optimal-order convergence rates for linear elliptic PDEs with random coefficients,
as established in [GO11,GO12, AKM17]. For nonlinear problems, (non-optimal)
convergence rates have been derived in [ACS14,AC18,AFK20]. Further important
developments in this area include [GNO14,AS16,GO17, GN0O20,DGO20,HMS21].
A comprehensive overview of the quantitative theory of stochastic homogeniza-
tion can be found in [AKM19]. In parallel, various numerical approaches have
been proposed for the computation of effective coefficients in the stochastic
setting, including [BP04, CELS15, BLBL16, LBLM16, Moul8, KKO20).

Several computational methods in stochastic homogenization that go beyond
the computation of homogenized coefficients have been developed, including
[ZCH15,HMZ19,AHKM21,LOW24]. In addition, several of the presented classical
multiscale frameworks such as HMM, VMM, MsFEM, and GMsFEM have
been adapted to the stochastic setting. Representative contributions include
[EMZ05] (HMM), [BJ11] (HMM and MsFEM), [CS08, GMP10,BLT14], and the
comprehensive review in [ACB*11] (MsFEM), as well as [JMSDO14] (VMM)
and [CEGL16,CELZ18] (GMsFEM). A notable development in this direction
is the combination of quantitative stochastic homogenization with the LOD, as
proposed and analyzed in [GP19, FGP21]. Specifically, using a reformulation
of the LOD based on a quasi-local discrete integral operator introduced in
[GP17], one can derive an effective deterministic model by taking expectations.
This model yields a coarse-scale approximation to the expected value of the
solution. Further applications of LOD in the context of numerical stochastic
homogenization are discussed, for example, in [FP20, MV22, KV25].

1.3. Outline and contribution

The goal of this thesis is to present and analyze recent advancements of the
SLOD, originally introduced in [HP22b]. These developments are carried out
in the context of elliptic diffusion problems with highly heterogeneous diffusion
coefficients, where classical discretization approaches, such as the FEM, often
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fail to efficiently resolve the multiscale nature of the solution.

The thesis is structured as follows. Chapter 2 motivates the need for multiscale
methods by illustrating the limitations of classical FEMs in the presence of
fine-scale features induced by highly heterogeneous coefficients. Moreover, we
introduce the concept of prototypical multiscale approximation spaces, which
are obtained by applying the global solution operator of the elliptic diffusion
problem to classical finite element spaces (e.g., piecewise constants). Although
these spaces yield ideal approximation properties, they are infeasible in practice
due to their globally supported basis functions. As a possible solution to this
issue, we present a short introduction of the LOD method. LOD turns the
ideal approach into a practical numerical scheme by introducing localization
techniques, which lead to basis functions that exhibit exponential decay away
from their associated coarse elements.

Chapter 3 introduces the SLOD method, an improvement over the classical
LOD. The key advancement lies in the super-exponential decay of the localized
basis functions observed in practice, which is achieved through a novel localization
strategy. This strategy identifies local source terms whose responses under the
local solution operator exhibit minimal conormal derivatives on patch boundaries.
We rigorously prove the super-exponential decay in the special case of a constant
diffusion coefficient. Furthermore, we discuss the challenges associated with
ensuring stability of the resulting basis, since stability is not guaranteed a priori.
We therefore propose and investigate several stabilization techniques to ensure
robustness in practical computations.

Building on the SLOD framework, Chapter 4 presents the Hierarchical SLOD
(HSLOD), an extension to multilevel settings. We construct a hierarchical basis
of the approximate solution space, consisting of superlocalized basis functions
that are quasi-orthogonal across hierarchy levels with respect to the energy
inner product. This hierarchical construction induces both a sparse compression
of the solution space and an orthogonal multiresolution decomposition of the
approximate solution operator. This decomposition effectively decouples different
scales and solution components. Consequently, the original PDE can be reduced
to a set of independent linear systems, one per level, which can be solved in
parallel, leading to significant computational efficiency. The condition numbers
for these systems are mesh-independent except for the first level.

In the second part of this thesis, we address random diffusion coefficients,
extending the SLOD methodology to a stochastic setting in Chapter 5. By
leveraging the SLOD localization strategy, we develop a novel collocation-type
stochastic homogenization method. This approach benefits from the super-
exponential decay of basis functions relative to the coarse mesh, enabling sub-
stantial computational savings during the sampling phase. The method is
particularly well-suited for parallel computing environments due to its simple
and communication-efficient structure: basis functions are computed locally with
minimal inter-patch communication. Additionally, we provide an error analysis
that links the proposed numerical method to the quantitative theory of stochas-
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tic homogenization, demonstrating both theoretical and practical convergence
properties.

Finally, in Chapter 6, we synthesize the ideas developed in the preceding
chapters to construct a hierarchical stochastic numerical homogenization method.
The collocation-type formulation is retained to preserve simplicity and compu-
tational efficiency, while the hierarchical structure improves the conditioning
of the system matrices associated with the local hierarchical source terms. We
provide an accompanying error analysis grounded in the quantitative theory of
stochastic homogenization and demonstrate the method’s convergence through
numerical experiments.

The work presented in this thesis emerged from a collaborative effort within the
project Computational Random Multiscale Problems, funded by the European
Research Council. Many of the results included here were developed jointly with
other project members and initially disseminated as preprints or journal articles.

In particular, the stochastic SLOD method described in Chapter 5 was devel-
oped in collaboration with Moritz Hauck and Daniel Peterseim and published in
Multiscale Modeling € Simulation [HMP25]. Likewise, the HSLOD method pre-
sented in Chapter 4 is a revised and extended version of the preprint [GMPZ24],
which resulted from a collaboration with José C. Garay, Christoph Zimmer, and
Daniel Peterseim. However, specific parts of the latter work were originally
developed and proven by José C. Garay. These include Theorem 4.3.2, the re-
sults in Section 4.4 concerning additional compression stages, and the condition
number estimate in Theorem 4.5.3, along with the two preceding lemmas. Their
presentation here has been adapted slightly for consistency with the overall style
of the thesis.

In contrast, certain parts of this thesis represent original contributions that
have not been previously published. These include the illustrative proof of the
super-exponential decay of the SLOD basis functions in the special case A =1
(Section 3.3.1) and a novel stabilization technique for SLOD basis functions
(Section 3.4.3), both presented in Chapter 3, as well as the entirety of Chapter 6.

The numerical experiments presented in this thesis were performed in MATLAB,
based on preliminary code developed at the Chair of Computational Mathematics
at the University of Augsburg.

Notation. Throughout this work, we adopt the following notational conventions.
We write C' > 0 to denote a generic constant that is independent of the mesh
sizes h and H, the oversampling parameter m, and the microscopic scale €. Such
constants may, however, depend on the dimension d, the domain D, and the
uniform bounds on the diffusion coefficient. We emphasize that the value of C'
may vary from one estimate to another. To simplify notation, we use the symbol
a < b (or equivalently b 2 a) to indicate that a < Cb for some constant C' > 0
as described above. If both a < b and a 2 b hold, we write a ~ b.
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2. Localized Orthogonal
Decomposition

Classical FEMs are widely used for solving PDEs. However, these methods
face significant challenges when applied to problems with highly heterogeneous
coefficients, particularly when these coefficients exhibit fine-scale variations. In
such cases, FEM often requires a mesh that is fine enough to resolve these small-
scale features, leading to high computational costs. Moreover, the convergence of
the FEM solution can be arbitrarily slow, especially when the solution exhibits
low regularity; cf. [BO0O].

One possible approach to overcome these limitations is the LOD method,
originally introduced in [MP14] and later refined in [HP13], within the context
of elliptic model problems (see also [MP20]). The main objective of the LOD
method is to deliver effective approximations of solutions to PDEs on a coarse
scale, particularly when the problem involves complex, heterogeneous coefficients
that vary on small scales. To this end, the LOD method constructs a problem-
adapted solution space. This is achieved by decomposing the given solution space
into an infinite-dimensional fine-scale space representing the unresolved small-
scale features and its finite-dimensional coarse complement in a problem-adapted
fashion. The coarse space captures essential fine-scale information, enabling an
accurate approximation of the solution. The final LOD approximation is then
obtained via, for example, a Galerkin projection using a localized version of the
coarse complementary space. This approach ensures reliable approximations on
arbitrarily coarse meshes, provided that the diameter of the patches, where the
basis functions of the localized complement space are computed, is increased
logarithmically with the desired accuracy.

Various LOD variants have been developed in relatively general settings (see,
e.g., the review articles [Pet16, AHP21] and the dissertation [Mai20]). In this
work, however, we limit ourselves to an overview of the lowest-order LOD method
from [Mai21, HP22a], tailored to elliptic diffusion problems. Our introduction to
the LOD is intentionally brief, as comprehensive expositions are already available;
cf. the textbook [MP20] and the review article [AHP21]. Before presenting the
LOD approach, we first introduce the classical FEM, highlight its limitations,
and discuss a prototypical operator-dependent method. The presentation in this
chapter is inspired by [AHP21, Hau23].
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2. Localized Orthogonal Decomposition

2.1. Model problem

We consider the prototypical elliptic diffusion problem
—div(AVu) = f (2.1)

subject to homogeneous Dirichlet boundary conditions on a polygonal Lipschitz
domain D € R? with d € {1,2,3}. Without loss of generality, we assume that
D is scaled to unit size. The diffusion coefficient A € L°°(D, R%*?) is a matrix-
valued function which is supposed to be symmetric and positive definite almost
everywhere. More precisely, we assume that there exist constants 0 < o < f < o0
such that

allnll3 < (A(x)n) -n < Blnll3 (2.2)

holds for all € R? and for almost all z € D.

We assume f € L?(D), the space of square-integrable functions on D. For any
subdomain S C D, we denote the L?-norm and inner product restricted to S
by || - lz2(s) and (-, -)z2(s), respectively. Furthermore, we denote by H*(D) with
k € Ny, the Sobolev space of functions in L?(D) that have square-integrable
weak derivatives up to order k. The H*-norm restricted to S C D is denoted by
| |fr(s)- Notably, H(D) = L*(D) and || - ||gocs) = [| - l|z2(s).

The solution space of the weak formulation of the elliptic diffusion problem
(2.1) is the Sobolev space V := H}(D) which is a closed subspace of H'(D) that
accounts for the homogeneous Dirichlet boundary conditions. The bilinear form
a:V xV — R associated with the model problem is given, for any w,v, € V, by

a(u,v) = /D(AVu) -Vudz.

Under the given assumptions on the diffusion coefficient A, the bilinear form
a(-,-) defines an inner product on V, inducing the energy norm || - ||, == y/a(-, ).
The weak formulation of (2.1) seeks u € V such that

a(u,v) = (f,v)r2(p) (2.3)

holds for all v € V. Due to the coercivity of a(-,-), the Lax-Milgram theorem
establishes the well-posedness of the model problem (2.3) and ensures the
existence of a unique solution u € V. Moreover, applying Friedrichs’ inequality
(see e.g. [Beb03]), yields the estimate

_,diam(D)

Vullr2py < a f”f”L?(D)-

We denote the solution operator of the problem by A~!: L?(D) — V, mapping
f € L*(D) to the unique solution u € V of (2.3).

12



2.2. Finite element method

2.2. Finite element method

The Galerkin FEM is the most widely used approach for computing numerical
solutions to second-order elliptic PDEs in variational form, such as (2.3). The
method seeks the best approximation of the solution within a finite-dimensional
subspace of V. The discretization is based on a sequence of meshes {7y} >0,
where each mesh is a finite subdivision of D into closed, convex and shape regular
elements (in the sense of [EG04, Definition 1.107]), with mesh size parameter
H. Although various types of meshes are possible, we focus on conforming
Cartesian meshes, where the mesh elements are d-rectangles. More precisely,
any (d — 1)-dimensional face of an element K € Ty is either a subset of the
boundary 0D, or a face of another element, see also [EG04, Definition 1.55].
In particular, we assume that the domain D allows a decomposition into such
elements. Additionally, we assume that the sequence of meshes is quasi-uniform
(see [EGO4, Definition 1.140]), meaning there exists a constant Cy, > 0 such that

= < i
H = e Hic < Co i, Hic
holds for all meshes, where Hy denotes the diameter of the element K.

On these meshes, we define the finite element space of first-order polynomials
as

Viem . — fy € V: VK € Ty : v|k is a polynomial of coordinate degree < 1}.
The P'-FEM seeks the Galerkin approximation uf™ € V™ such that

a’(u%}ma ’U) = (f7 'U)L2(D)

holds for all v € V¥™. The unique existence of ul™ € V™ is guaranteed

by the coercivity of the bilinear form a(-,-). Céa’s Lemma (see, e.g., [Cia78,
Theorem 2.4]) establishes the quasi-optimality of the finite element approximation
in V&m  Furthermore, under additional regularity assumptions on the domain
D and on the derivatives of the diffusion coefficient, the unique solution of
(2.3) satisfies u € H?(D). By applying classical interpolation results (see,
e.g., [EG17, Theorem 6.4]), we obtain the error estimate

lu —ug™ v S H||D?*ul|z2(py,

which indicates optimal first-order convergence. Note however, that if the
solution exhibits lower regularity, the convergence rate correspondingly decreases.
Moreover, when dealing with a highly heterogeneous diffusion coefficient A.,
that varies on some fine-scale ¢, the H?-seminorm of the true solution may also
depend on . This is illustrated in [MP20, Chapter 2], where a one-dimensional
diffusion problem on D = (0, 1) with homogeneous Dirichlet boundary conditions
is analyzed for a smooth but rapidly oscillating coefficient A.. In this setting,

13



2. Localized Orthogonal Decomposition

the true solution u. € H?*(D) satisfies | D?u.||12(py = e~'. Consequently, the
mesh size must resolve the microscopic scale, i.e., H < €, to ensure a meaningful
error bound. Notably, in the pre-asymptotic regime, where the mesh does not
resolve the oscillations of the coefficient, neither the macroscopic behavior of the
solution nor its microscopic features are well approximated. In fact, classical
FEMs can perform arbitrarily poorly for PDEs with rough coefficients, as shown
in [BO0O].

2.3. Prototypical operator-dependent method

The goal of this section is to construct a coarse-scale space with superior approxi-
mation properties compared to the previously introduced standard finite element
space. This improvement is achieved by incorporating problem-dependent shape
functions that encode fine-scale information a priori. Notably, we are not re-
stricted to a particular choice of the underlying space for the coarse space, nor
do we require it to be a subspace of H'(D). To keep the construction simple, we
choose the space of piecewise constant functions on the coarse mesh 7Ty, defined
as

PO(Ty) = {1k : K € Ty},

where 1, denotes the characteristic function of an element X € 7. The coarse-
scale shape functions are then obtained by applying the solution operator A~!
to P°(Tz). Hence, a natural definition of a prototypical problem-specific ansatz
space is given by

VY = span{A g : K € Ty} (2.4)

Using this space, the prototypical Galerkin method seeks a discrete approximation
ug € Vi such that

a(um,v) = (f,v)r2(p) (2.5)

holds for all v € V§;. The approximation error of this method satisfies the bound

IV (u = ug) L2y S H | £

H*(D)

for any f € H*(D) with s € {0, 1}, see, e.g., [AHP21, Example 3.10]. Notably,
this method is exact when the right-hand side satisfies f € P°(7Ty).

Despite its strong approximation properties, the canonical basis functions
{A g : K € Ty} of V% are inherently non-local. This is illustrated in
Figure 2.1 for the one-dimensional setup. Due to their global support, these
functions are impractical for computations. Consequently, we refer to (2.5)
as the ideal method, which serves as a theoretical benchmark rather than a
feasible numerical scheme. The construction of an approximately local basis
of the problem-specific ansatz space V§ is the true challenge of numerical
homogenization. Various strategies to accomplish this will be discussed in the
following.

14



2.4. Orthogonal decomposition

Figure 2.1.: Globally supported prototypical basis functions for the model prob-
lem (2.3) in one spatial dimension, for A =1 (top) and a piecewise
constant coefficient illustrated in gray (bottom).

2.4. Orthogonal decomposition

Before constructing a more practical basis for V¢, that can be well-approximated
by local functions, we first introduce the L?-orthogonal projection onto the space
of piecewise constants which is denoted by g : L?*(D) — PY(Ty). For all
K € Ty, the projection satisfies the local stability property

IHavll2r) < [Joll2), (2.6)
for all v € L?(K), as well as the local approximation property
lv = Tgvll 2y < 77 H|[ V|2 i), (2.7)

for all v € HY(K), see, e.g., [PW60, Beb03]. Given this projection, we introduce
the infinite-dimensional fine-scale space

W={weV: llyw =0},

which consists of microscopic functions that are not resolved by the coarse-scale
space V. Together, these two spaces form an a-orthogonal decomposition of V,

meaning that
V=VyeW

with the orthogonality property
a(Vi, W) =0,

15



2. Localized Orthogonal Decomposition

see, e.g., [AHP21, Theorem 3.5].

To incorporate fine-scale information into the coarse approximation space, the
LOD utilizes correction operators. The ideal correction operator C : V — W is
defined by

a(Cv,w) = a(v,w) (2.8)

for all v € ¥V and w € W. The well-posedness of (2.8) follows from the Lax—
Milgram theorem, since W is a closed subspace of V. A crucial observation is
that the correction operator can be decomposed into element-wise correctors.
More precisely, we can write

C= > Ck (2.9)

KeTy

where each element corrector Cx : V — W satisfies

a(Crv,w) = ag(v,w) = / (AVv) - Vw dz (2.10)

K
forallv € YV and w € W. A key property of the element correctors, first rigorously
established in [MP14], is their exponential decay away from the associated mesh
elements. This decay motivates their localization, which is discussed in the next
section.

An alternative characterization of the problem-specific ansatz space V§; can
be obtained using the correction operator C together with bubble functions
associated with coarse mesh elements. More precisely, for each element K € Ty,
we choose non-negative bubbles by € H}(K) with [Igzbgx = 1 such that

1ok llz2y S HII Vb |2y S 1k l| 2k, (2.11)

see, e.g. [AHP21, Example 3.11] for an explicit construction of these functions;
however, their exact representation is not important. The space of bubble
functions is then defined as

By = span{bx : K € Ty}.

Using this notation, the problem-specific approximation space V§, can be refor-
mulated as

Vi =(1-C)Buy, (2.12)

which is shown for example in [AHP21, Lemma 3.12]. This relation motivates
the definition of the ideal LOD basis functions as

Pt = (1- O (2.13)

for K € Ty. Although these functions are globally supported, they inherit the
exponential decay property of the element correctors.
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4

Figure 2.2.: Illustration of the m-th order patch N (K) for an element K € Ty,
shown in black. Varying shades of blue represent different patch
orders, ranging from m =1,...,4.

2.5. Localization strategy

The localization of the element correctors, and consequently the localization
of the LOD basis functions, is motivated by their exponential decay. The
localization approach relies on the concept of local patches in the coarse mesh
Tu, which are constructed based on neighborhood relations between elements.
Given a union of elements S C D, we define the first order element patch N*(.S)

of S by
N'(S)={T €Tu: TNS+#0}.

For any m = 2,3,4, ..., the m-th order patch N™(K) of the element K € Ty is
then recursively given by

N™(K) = N*(N""!(K)); (2.14)

see Figure 2.2 for an schematic illustration using a Cartesian mesh.
The submesh of 7y restricted to the patch N (K) is given by

Tunmx)y ={T € Tu : T CN"(K)}.

The restriction of the L?-orthogonal projection to this patch is denoted by
Oy nmky + LA(N™(K)) — P*(Tynm(k)). Note that in the remainder of this
thesis, we do not distinguish between locally defined L?- or H}-functions and
their extensions by zero to the whole domain.

To approximate correctors locally, we define the localized fine-scale subspaces
for each element K € 7Ty and oversampling parameter m € N as

Wicm = {w € Hy(N™(K)) : g nmyw = 0}. (2.15)
The localized element correctors C; K,m are then defined by solving

a(CAK,mva w) = aK(Uv w)

17



2. Localized Orthogonal Decomposition

for all v € V and w € Wkg,,,. This equation is identical to the original element
corrector definition (2.10) but now constrained to the localized fine-scale space
Wi m. Relation (2.9) motivates defining the localized corrector C,, as the sum
of these localized element correctors C, K,ms 1.€.,

é\m = Z éK,m-

KeTy

Due to the exponential decay of the element correctors C, K.m, the localized cor-
rector C,, provides an exponentially accurate approximation of the full corrector
C. More precisely, the localization error satisfies

I9(C = Gl ooy S m™? exp(~Cm)|| Vol 2o,

for all v € V, where C' > 0 is a constant independent of H and m. The
proof builds on classical LOD techniques and follows the arguments in [MP20,
Theorem 4.3] and [HP22a, Lemma 5.4]. A formulation adapted to the present
context can also be found in [DHM23, Lemma 5.2].

2.6. Practical multiscale method

Using the localization strategy from the previous section, we introduce localized
versions of the ideal LOD basis functions defined in (2.13), thereby transforming
the ideal numerical homogenization method (2.5) into a computationally feasible
scheme. However, instead of merely replacing the correctors with their localized
counterparts, we additionally employ a V-stable projection operator Py, first
introduced in [AHP21, Equation (3.13)]. This operator cures numerical pollution
effects at the cost of slightly increasing the support of the LOD basis functions;
see [HP22a, DHM23]. The construction of Py is based on the quasi-interpolation
operator Zy from which it inherits the V-stability. The quasi-interpolation is
defined as 7y = Ex o Iy, where £ denotes an averaging operator that maps
piecewise constants to the space of continuous piecewise linear functions. For
interior nodes z, it is defined as

1
Erv)(z) = #HKeTy: z€ K} KGZ olie2).

Tu:zeK

while for nodes on the Dirichlet boundary, we set (£5v)(2) := 0. The operator
Ey is well known from the theory of domain decomposition methods; see, e.g.,
[Osw93, Bre94]. Since Py should satisfy ker Py = ker Iy, we need to correct
Zyv such that the element-wise averages of v on Ty are preserved. This leads to
the definition
Pyv =Tyv + Z bK][ (v —Zyv)dx.
KeTy K

Since the operator Zy is quasi-local in the sense that it extends the support of a
function by only one layer of elements, the same property also holds for Py.
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Figure 2.3.: Ideal LOD basis for the model problem (2.3) in one spatial dimension,
for A =1 (top) and a piecewise constant coefficient illustrated in
gray (bottom). The localized counterparts with m = 1 for the
central basis functions are depicted in yellow.

Building on the ideal coarse space formulation from (2.12), we introduce the
localized, problem-adapted ansatz space V}f}fin of the LOD method for a given
oversampling parameter m € N, incorporating the projection operator Py, as

V}?% = (1—-C)PuBn.

The associated localized LOD basis functions for K € Ty are defined by

~

@1;;?m = (1—-C,)Pubx.

An illustration comparing ideal and localized LOD basis functions is provided in
Figure 2.3. The classical LOD then computes a Galerkin approximation in the
localized ansatz space; that is, it seeks ull‘}dm € V};’f}n such that

a(“ﬁ%»”) = (f,U)m(D)

holds for all v € Vg9,. Using standard LOD techniques (see, e.g., [MP20,
Theorem 5.2]), we obtain, for f € H*(D) with s € {0, 1}, the error estimate

IV (u = W) Iz2y S H(| fllre(py + m*? exp(—=Cm) || £l 22(p),

where the constant C' > 0 is independent of H and m. For a proof adapted to
the present context, we refer to [DHM23, Theorem 6.2]. This estimate implies
that choosing m 2 |log(H)| recovers the convergence rate of the ideal method.
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3. Super-Localized Orthogonal
Decomposition

In this chapter, we introduce an enhanced localization technique within the
LOD framework, building on the concepts presented in the previous chapter.
This refined approach, known as the Super-Localized Orthogonal Decomposition
(SLOD), was first introduced in [HP22b] for an elliptic diffusion problem. We
refer to [Hau23] for a more general setting. The key idea behind SLOD is to
identify local finite element source terms for all patches, ensuring that their
responses decay rapidly under the local solution operators. This decay is enforced
by minimizing the conormal derivatives of the responses at the patch boundaries.
The resulting local responses are taken as the SLOD basis functions.

A crucial advantage of SLOD is that, in practice, the localization error de-
cays super-exponentially as the patch size increases. Consequently, local basis
functions supported on patches of diameter O(H|log H|@~Y/) where d denotes
the spatial dimension, are sufficient to maintain optimal algebraic convergence
rates in H without pre-asymptotic effects. In contrast, the standard LOD frame-
work requires basis functions supported on patches of diameter O(H |log H|) to
achieve similar accuracy. Despite these empirical benefits, a rigorous proof of
the super-exponential decay of SLOD basis functions remains an open problem.
However, in the special case of a constant diffusion coefficient, we establish this
decay through an analysis based on Steklov eigenfunctions. Moreover, even
in the general heterogeneous setting, classical LOD techniques can be used to
show that the localization error of the SLOD basis functions decays at least
exponentially.

In the classical LOD, equivalently to solving local sub-scale correction problems,
the basis functions can also be obtained by solving local constrained energy
minimization problems, where the constraints impose a Kronecker delta condition
with respect to element averages, ensuring the stability of the LOD basis functions,
see [0S19,Mai2l]. In contrast, for the SLOD this constraint is removed to enforce
the decay of the basis functions in a more direct way. As a result, the stability
of the basis is not inherently guaranteed. To address this limitation, we explore
various stabilization techniques to ensure robustness while preserving the benefits
of the improved localization strategy.

The results in this chapter are largely drawn from [HP22b]|, whose presentation
we follow closely. In particular, Section 3.1 builds on [HP22b, Section 4|, while
Sections 3.2 and 3.3.2 are based on [HP22b, Sections 5-6]. Furthermore, Sec-
tion 3.4.1 and Section 3.5.1 are adapted from [HP22b, Appendix BJ. In addition,
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the stabilization technique presented in Section 3.4.2 and the first part of Sec-
tion 3.5.2 are based on [BFP24, Section 7]. The stabilization approach discussed
in Section 3.4.4 and the second part of Section 3.5.2 follow [GMPZ24, Sec-
tion 3.1]. In contrast, the results presented in Sections 3.3.1 and 3.4.3 are novel
contributions.

3.1. Localization strategy

As for the LOD, the SLOD localization strategy is based on local patches
as defined in (2.14). To simplify notation, we fix an element K € Ty, an
oversampling parameter m € N and define the m-th order patch of K as
Dy = N"(K), assuming that Dg does not coincides with the whole domain D.
The submesh Ty p,. consists of elements in the patch, and the L?( Dy )-orthogonal
projection onto piecewise constants is denoted by Iy p, : L*(Dx) — P°(Tu.py)-

The ideal SLOD basis function goilé?f}l € Vi, where V§; denotes the prototypical
problem-specific ansatz space defined in (2.4), is given by

Piom = AT g, with g3 = > erly, (3.1)

TETH7DK

where the coefficients (cr)rer;, ,, are to be determined. The localized ap-
proximation ¢3°4 € Hj(Dg) is the Galerkin projection of 39, onto Hg(Dg),
satisfying

oG = [ AV Vode = ¥ s (32)
Dk

for all v € H}(Dk).

Since the local function 3%, is generally a poor approximation of 3,
an appropriate choice of gﬁl(‘?ﬁl is crucial for accuracy in the energy norm. To
analyze this choice, we define the trace operator restricted to the closed subspace
Vo, = {v|p,: v € V} C V, consisting of functions with trace zero on the

boundary segment 0Dy N 0D, by
tr = trp, : Vp, — X = rangetr C H/?(0Dk). (3.3)
We refer to [LM72] for details. The space X is equipped with the norm
|lw||x = inf{||v]| g1 (pg) : v € V., trv =w}. (3.4)

Hence, the continuity of the trace operator follows regardless of the patch
geometry. Additionally, we define the A-harmonic extension tr~! as a continuous
right-inverse of tr. Given w € X, it satisfies trtr~* w = w and

ap,. (tr 1w, v) =0, (3.5)
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for all v € Hy(Dk).

The conormal derivative of u € H'(Dy) with divAVu € L*(Dg) is defined
as the functional v, u = AVu-n € X', where n is the outward normal to Dy,
satisfying

(Yo, u, trv) x1xx = (divAVU, v) 12(p ) + alu, v) (3.6)

for all v € H'(Dg). Using the definition of the conormal derivative, we can
know characterize the localization error.

Lemma 3.1.1 (Localization error of SLOD basis functions). The localization
error of the SLOD basis function satisfies

slod ~slod o ~slod _ slod -1
A(OKm = Piomr V) = = (Y0, Proms T V) x75x = (i T T 0) L2(De)

for allv e V.

Proof. Let v € V. From (3.5), and using that v — tr~'trv € H}(Dg) for all
v € V, we obtain that

(B30, v) = ap, (Picm, v — tr7trv) = (g3m, v — tr ' trv) 12(pye).

The combination with the weak formulation of (3.1), yields the assertion.  [J

Thus, the localization error is controlled by the quasi-orthogonality of g°%, to

Y =tr'X C Vp,, (3.7)

the space of A-harmonic functions in Dg. Equivalently, a small localization
error corresponds to a small X’-norm of the conormal derivative of $3°),. An
optimal choice for g3°], follows from the singular value decomposition (SVD) of

Iy py |y, which has rank at most N = #7y p,.. The SVD is given by

N

My pelyv=">_ 0k(v, W) (D) Gk
k=1

where oy > - -+ > o > 0 are singular values, g1, . .., gy are L*(Dg )-orthonormal
left singular vectors, and wy, ..., wy are H'(Dg)-orthonormal right singular
vectors. The left singular vector gy corresponding to the smallest singular value

oy is an optimal choice for g5°¢ in the sense that

gn € arg min sup (9:)12(Dg)- (3.8)
9EP (T, 0, )+ 19l 12y =1 VEY : [vll g1 (p ) =1

Thus, we define

0K = UK(Ha m) =ON = sup (gNa U)LQ(DK)v (39)
veY : HvHHl(DK):l
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Figure 3.1.: Truly local SLOD basis functions for the model problem (2.3) in
one spatial dimension, for A = 1 (top) and a piecewise constant
coefficient illustrated in gray (bottom). The L?-normalize right-hand
sides corresponding to the central basis functions are depicted in
different shades of yellow.

which quantifies the quasi-orthogonality between 9%?;}1 and Y. Moreover, it

provides a direct estimate of the X’-norm of the conormal derivative of @%‘?ﬁn,
up to a constant depending on the patch geometry.

In one spatial dimension, both the trace space and Y have at most two
dimensions. Consequently, for m = 1, we can select an L?-normalized local source
term g%‘?ﬁl € P°(Tu p, ) that is L*-orthogonal to Y, resulting in a local basis. This
means that goil(‘j% coincides with its localized counterpart @il(‘ff,z. For the Poisson
problem, this basis corresponds to quadratic B-splines; see [PT95, Chapter 2].
Figure 3.1 illustrates this case, along with an example of truly local SLOD
basis functions in one dimension for a piecewise constant diffusion coefficient A.
Whether a truly local basis for V§; exists in higher dimensions remains an open
question. Figure 3.2 illustrates localized SLOD basis functions along with their
L2-normalized local source terms for the model problem (2.3) in two dimensions
with a constant coefficient A = 1.

The potential non-uniqueness of the smallest singular value is evident in the
one-dimensional case, where for m > 2, multiple optimal choices for the local
source term exist by a simple counting argument. In higher dimensions, clusters
of small singular values may arise for certain patch geometries near the boundary
of the domain D. Numerical strategies to ensure stability of {gj°0, : K € T}
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3.2. Practical multiscale method

—

Figure 3.2.: SLOD basis functions for the model problem (2.3) with A =1 in
two spatial dimensions, shown for different coarse mesh sizes. The
oversampling parameter is set to m = 1 and the corresponding
L?-normalized right-hand sides are depicted in gray.

are discussed in Section 3.4. For the subsequent numerical analysis, we impose
the following assumption.

Assumption 3.1.2 (Riesz stability). The set {g3°% : K € T} is a Riesz basis
of P°(Tg), i.e., there exists a constant Cy, = C’rb(H, m) > 0 such that for all
possible choices of (¢x)ker, it holds that

2

slod
Z c gKm
KeTy

Ca! Y. i <

KeTy

20)

where Cy;, depends polynomially on H~! and m.

3.2. Practical multiscale method

Applying the SLOD localization strategy, we define a localized version of the
prototypical problem-specific ansatz space (2.4) as the span of the localized basis
functions @5°g, from (3.2). Given a fixed oversampling parameter m, we set

VSIOd = span{@il(osl c KeTy}CV.

The localized method then seeks the Galerkin approximation u%ofn € VSlOd

satisfying
a(“iﬂ?ﬂ”) = (f> U)LQ(D)’ (3.10)
forall v € VSIOd

Alternatively, we define a collocation-type SLOD approximation
as

slod ,C e VSIOd

G T ex s 1)
KeTy

where the coefficients (cx)ger, correspond to the expansion of Il f in terms of
the local source terms gSIOd This approach resembles collocation, as it ensures
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3. Super-Localized Orthogonal Decomposition

that the PDE holds on average within each element of Ty, up to localization
errors. Like the Galerkin method, it requires solving only a coarse-scale linear
system, but with the advantage that assembling the system matrix depends solely
on the coarse functions gﬁ?ﬁw avoiding the computation of inner products between
the SLOD basis functions goSIOd However, this reduction in computational cost
comes at the expense of losmg the best-approximation property of the Galerkin
solution in V5% with respect to the energy norm.

In the followmg, we derive an a posteriori error estimate for the two methods
introduced above, closely following [HP22b, Theorem 6.1]. The estimate involves
the quantity

=o(H,m) = max ox(H,m), (3.12)

which represents the maximal localization error over the coarse mesh; see (3.9).
It also depends on the Riesz stability constant C}, from Theorem 3.1.2, which
measures the linear independence of the local source terms {gSk’d . K € Ty}
Both constants can be computed a posteriori, as outlined in Section 3.5.1.
Furthermore, we provide a priori upper bounds for ¢ in the next section.

Theorem 3.2.1 (A posteriori error estimate). Let {35, : K € Ty} be stable

in the sense of Assumption 3.1.2. Then, for any f € HS(D) with s € {0,1}, the

SLOD Galerkin and collocation-type approzimations w3y, and uilfgf, defined in

(3.10) and (3.11), respectively, satisfy
lu — uslod < flu— usloch
S H|\f = f| oy + Cif” m20 || f |20y
S (Y + O m0) || f ey
with Cy,(H, m) from Assumption 3.1.2. This result implies that both approxima-

tions converge to the exact solution at an algebraic rate in H, up to an additional
error due to localization.

Proof. The first inequality follows directly from Céa’s Lemma (see, e.g., [CiaT8]),
which implies that the SLOD Galerkin approximation uSIOd is the best approxima-
tion of u in VSIOd with respect to the energy norm. Usmg the triangle inequality,
we obtain

lu =il < llu = wirlll, < llu—all, + & = uinlll,-
The particular choice @ = A1l f, yields for the first term
Ju—a|? = (f — Mg f,u— @)y

H| f = Og fllr2mylu — il (3.13)

S
S H| S

ws(pyllu — ila,

where we used the approximation property (2.7) of IIy for the last two inequali-
ties.
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3.2. Practical multiscale method

For the second term, we use the fact that the prototypical method (2.5) is

exact for Iy f. This allows us to represent @ in terms of the ideal basis functions
slod

©Km> hamely
~ slod
U= ) Ccx¢@Km
KeTy

where (cx)ker, denote the coefficients of the expansion of Il f in terms of the

basis functions g3°%. Defining e :== @ — uilfs;C, we obtain
lells = >" ex al@in — @kms €)- (3.14)
KeTh

Using Theorem 3.1.1 and the definitions of ox(H,m) and o(H,m) in (3.9)
and (3.12), respectively, we get

a( slod ~slod 6) _ slod

Prm — PKm> - (gK,m’ tI‘_ltl” e)LQ(Nm(K))

< o ||trMtr el g nm i) (3.15)
S o llellarm i,

where tr and tr~! denote the trace and A-harmonic extension operators on N™(K),
respectively. To prove the last inequality, we decompose tr~!tre = e + ¢y, where
ep € HY(N™(K)) satisfies a(eg,v) = —a(e,v) for all v € HI(N™(K)). The
inequality then follows from

2 2

HeOHiIl(Nm(K)) = IVeollLaum ey + ll€ollz2nm x)
< aleo, e0) < la(e, eo)]

S ”€||H1(N’”(K))H60||H1(N7”(K))7

where we employed Friedrichs’ inequality and that D is of unit size.
Combining (3.14), (3.15), the discrete Cauchy-Schwarz inequality, Theo-
rem 3.1.2, and the finite overlap of the patches, we derive

lel? = 3 exalgied — @ied e)
KeTy

S o Y ckllellmoemay
KeTy

< o Z i Z HeH%l(Nm(K))

KeTy KeTy

1/2
< Gl mo el NNl 2.

where we used Friedrichs’ inequality in the last step. In combination with (3.13),
the assertion directly follows.
O

27



3. Super-Localized Orthogonal Decomposition
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Figure 3.3.: Decay of o(H,m) as a function of the oversampling parameter m
for different values of the coarse mesh size H for the 2d experiment
(left) and the 3d experiment (right).

3.3. Decay of localization error

In the following, we analyze the behavior of the parameter o defined in (3.12)
and, consequently, the decay of the localization error in the SLOD method.
Numerical experiments demonstrate that o exhibits super-exponential decay as
m increases. Specifically, the results suggest that

o(H,m) < Ca(H,m) exp ( — Cm1),

where Cy(H, m) > 0 depends at most polynomially on H~* and m, while C' > 0
is independent of both H and m. This behavior is illustrated in Figure 3.3,
which displays results for a two-dimensional example with a piecewise constant
diffusion coefficient and a three-dimensional case with a periodic coefficient. In
both settings, the diffusion coefficient A assumes values between o« = 0.1 and
£ = 1. Further details on the numerical setup can be found in Section 3.6.

However, no existing theoretical results confirm this observed behavior. For
the elliptic model problem in (2.3) with constant coefficient A = 1, we rigorously
establish the super-exponential decay of o using Steklov eigenfunctions, thereby
closing this theoretical gap. Additionally, we present the pessimistic exponential
decay bound for o derived in [HP22b], which applies to more general settings
and can be proven using LOD techniques.

3.3.1. Super-exponential decay

We consider the elliptic model problem (2.3) with a constant coefficient A =1
and prove that the localization error of the SLOD decays super-exponentially.
This result is obtained by leveraging the super-exponential decay of Steklov
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3.3. Decay of localization error

Dk B

DK BK

Figure 3.4.: Visualization of the patches Dx = N™(K) and Dy = N™/2/(K),
along with the balls Bx and By centered around K. The oversam-
pling parameter is chosen as m = 3.

eigenfunctions on a d-dimensional ball and builds on the arguments from [HP22b,
Section 7], where a mathematical motivation for the super-exponential decay of
o is provided beyond the case A = 1. Since the SLOD basis functions are truly
local in the one-dimensional case, we restrict our analysis to d € {2, 3}.

To this end, we fix an oversampling parameter m € N and extend the domain
D = (0,1)¢ by m-layers of coarse mesh elements. For each K € Ty we define the
extended patch Dy = NI} (K'), where the patches are constructed as described in
(2.14), but using an extension of the coarse mesh 7Ty to the extended domain D™,
On these patches, we solve the SLOD patch problems (3.2) with A = 1, ignoring
global Dirichlet boundary conditions. By correcting the resulting functlons o
corresponding to boundary patches, we obtain the SLOD basis functions, which
satisfies global Dirichlet boundary conditions on the original domain D. In
Section 3.4.3 this ansatz is explained in more detail. In the following, we derive
the super-exponential decay of the localization error c®™*(H, m) corresponding
to the SLOD functions gpe"t on the extended domain. The super-exponential
decay of the SLOD basis follows as a consequence, since o is bounded by (a
multiple of) o

For each K € Ty, we define Bk as the largest ball centered around K that
is fully contained within the extended patch Dy = N7 (K). Additionally, we

introduce Dy == NL7/2 (K), with NJ, (K) = K, and define By as the smallest
ball centered around K such that the relation DK C BK holds. An illustration
using a Cartesian mesh is provided in Figure 3.4. While the following analysis is
not limited to Cartesian meshes, the relation DK C B k © Bx C Dg must hold
for all K € Tg.

The Steklov eigenfunctions on the ball Bg are solutions to the eigenvalue

problem
AY =0in Bg, with Vv -n = M) on 0Bk,

where n denotes the outer normal unit vector. The eigenvalues {); : j € Ny}
are non-negative and ordered such that 0 = A\g < A\; < .... The corresponding
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3. Super-Localized Orthogonal Decomposition

eigenfunctions form a basis of the Steklov spectrum and, in this specific case,
are given explicitly (see also [SAK23, Example 2.1]) by

_d—1 T Cse(j,d)
Di(r, 0, Bar) =15 2 <TB> Hi(01,. .., 00), (3.16)

where the exponent Cy. (7, d) is defined as

1j/2], ifd=2,
V7], ifd=3.

Here, rp is the radius of Bx and {H;(61,....04-1): j € Ng} is an arbitrary
orthonormal basis (with increasing degree in j) of the vector space of all d-
dimensional spherical harmonics. We refer to [AH12, Section 2.1] for further
details on spherical harmonics.

The next lemma states the super-exponential decay of the Steklov eigenfunc-
tions in the interior of the Ball B.

Cie(j, d) = {

Lemma 3.3.1 (Decay of Steklov eigenfunctions). The Steklov eigenfunctions
{vj : j € No} defined on the ball B C NI (K) satisfy for all 7 € Ny and all
K € Ty that

1
51l 2 iz gy < Csa(Hym) exp(=Cj ),

where C' > 0 is a constant independent of H and m, while Cyq depends polyno-
mially on H and m.

Proof. For a fixed K € Ty, we consider the smallest ball By of radius 5 centered
at K, such that Dy C Bk C Bg. Using (2.6) and the fact that {H;: j €Ny}
form an orthonormal basis with respect to L?(S%"!), we obtain, for the case

d = 2, that

ra 1/2
B
||77/}j||L2(NLm/2J(K)) < H%HLQ(J?K) = </ /S1 |77Z)j(7“, 0)|2’f‘ deT‘)
ext 0

— , 1/2
([ ()

0 B
< Csa(H, m) exp(—Cj),

with C' = —log (@) > 0. The case d = 3 follows analogously, where the
constant C' satisfies C' = —log (:—E) > 0. O

Let Yg denote the space of A-harmonic functions on Bg. The Steklov spectrum
spanned by the L?(0Bf)-orthonormal and a-orthogonal set of Steklov eigen-
functions {¢; : j € Ny} is a complete subspace of Yp, see [Auc05]. Arbitrary
functions in Yy can be expanded as

o0

v= Z(uv¢j)L2(83K)¢j7 (3'17)

J=0
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3.3. Decay of localization error

where the sum converges in the H'(By)-norm.

The next theorem, following the arguments of [HP22b, Theorem 7.3|, states
the super-exponential decay of o®* for the considered case A = 1. For the proof,
we use the fact that every function in the space Y of A-harmonic functions on
Dy is, restricted to By, also an element of the space Yp.

Theorem 3.3.2 (Super-exponential decay). Let M € N be the largest number
such that, for allm < M, no extended patch includes the whole domain D. Then,
there exist a constant C' > 0 independent of H and m, such that, for all m < M,
the localization error of the SLOD functions on the extended patches satisfies

o™ (H,m) < Csqq(H,m) mi—atT eXp(—C’m%)
with Csq(H,m) from Theorem 3.5.1.

Proof. For K € Ty we define Dy = Ngﬁm (K) and let N = #THﬁK denote the

number of elements in Dy. Let {1; : j € No} be the set of Steklov eigenfunctions,
as defined in (3.16), on Bx C Dk.

We estimate o$** by choosing a (possibly) suboptimal local source term for
the SLOD basis function. This choice is the L*normalized g € IP’O(THJA)K) such

that it is L2-orthogonal to the first N — 1 Steklov eigenfunctions, i.e.,
g —LLQ(ﬁK) {¢07 R 7wﬁ_2}‘

If this choice is non-unique, one may require L?-orthogonality to even more
Steklov eigenfunctions until ¢ is uniquely determined. This choice may not

coincide with the optimal one in (3.8) but suffices to derive an upper bound for

ot

By (3.17) and Theorem 3.3.1, this choice yields, for all v € Yj, that

e}

(g’U)LQ(ﬁK) = <g, Z ( wj)m(aBK)wj)L%ﬁK)
j=N-1
< | 2 @ s,
J=N-1 L?(Dk)
o0
< ”UHL?(aBK) Z ijHL?(ﬁK)
j=N-1
> 1
S CalH,m) [[vllmsgy Y. exp(—=Cj7T),
j=N-1

where we used the trace inequality (see, e.g., [BS08, Chapter 1.6]) in the last
step. Rewriting the last sum as a (generalized) geometric sum with the base
= exp(—C') < 1 and estimating the sum against an integral, we get

> exp(—C’jﬁ): > giTt g/A 0" da.

j=N—-1 j=N—-1 N=1
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3. Super-Localized Orthogonal Decomposition

Using a change of variables and integrating by parts such that the term 2?2

in the product z%726* also vanishes for the case d = 3 yields

1

o0 1 e} . s Y
/A 0° " da = (d — 1)/ 2207 dz < (N — 1)1 g® -7
(

~ 1
N-1 N-1)@—1

With the definition of  and N — 1 ~ m¢, we obtain

o(Hm) S s (g ey
veY: ”v”Hl(DK):l
< sup 19+ V) 12,
VeV ol 1 ) =1 » V) L2(Dy)

d

< Coa(H,m) md—aT exp(—C'ma-T1),

introducing C” > 0 that only differs from C' by a constant factor. Taking the
maximum over all mesh elements K € Ty yields the assertion O]

Remark 3.3.3 (Theorem 3.3.2 in 1d). Interpreting % as infinity for d = 1,
Theorem 3.3.2 is consistent with the earlier result that the SLOD basis is local
in one dimension.

3.3.2. Pessimistic exponential decay

A rigorous bound on the exponential decay of o was first established in [HP22b].
In what follows, we outline the key ideas of the proof. To this end, we analyze a
non-stabilized version of the local LOD basis functions introduced in Section 2.6,
which are defined by

-~

PRe, = (1= Cn)br (3.18)
for K € Ty. Each such LOD basis function possesses locally in D = N™(K) a

Tu-piecewise constant right-hand side gi, € P(Tx,p, ). This result was shown

in [HP22b, Lemma A.2] using the saddle-point formulation from [0S19, Mai20],

which seeks ¢, along with a Lagrange multiplier A € P°(7,p, ) such that

Pp, 0 y ) T\ )

where the patch-local operators are defined as follows. The restricted solution
operator Ap, : H}(Dg) — H (D) is given by Ap,u = ap, (u,-), where ap,
denotes the restriction of a to Dg. The operator Pp,.: H}(Dx) — P°(Tu.p,)
is defined by Pp,u = Iy p,u. Its transpose, PgK: P(Tu.p,) — H (D),
satisfies
<Png7U>H—1(DK)xH5(DK) = (p, U)L2(DK)
for all p € P°(Typ,) and v € Hj(Dg). The LOD right-hand sides are then
given by
98 = Spi L € P(Tinyc)
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3.4. Stable basis computation

where Sp,. denotes the Schur complement, defined as
Syt PUTupg) = P (Tunk)s  p = (PpeApy Ph ).

The following lemma, established in [HP22b, Lemma 6.4], proves the expo-
nential decay of ¢ using this choice of basis. Moreover, it confirms that the
corresponding local source terms glf‘éﬁn satisfy Theorem 3.1.2. A full proof of the
lemma is given in [HP22b, Appendix A], and a more detailed discussion can be

found in [Hau23, Theorem 5.4.3].

Lemma 3.3.4 (Stability and exponential decay of classical LOD basis). Suppose
that m is chosen at least proportional to |log H|. Then, the local source terms of
the LOD basis functions satisfy

lod

g
WY G| X e
KeTy KeTy ||gK’m||L2(D)

2

(3.19)

L*(D)

for all (cx)kery,. Furthermore, inserting the normalized versions of g}‘}fim mn

(3.9) yields
o(H,m) < H 'exp(—Cm) (3.20)

with C' > 0 independent of H and m.

Combining Theorem 3.2.1 and Theorem 3.3.4 yields an a priori error estimate
with convergence rates matching those of the classical LOD based on piecewise
constant finite elements; see Section 2.6.

3.4. Stable basis computation

An efficient implementation of the SLOD basis functions requires that the set
{938, « K € Ty} is a stable basis of P°(7Ty) in the sense of Theorem 3.1.2
and that the local source terms can be computed with minimal communication
between the patches. As first discussed in [HP22b, Appendix B], stability issues
can arise whenever there are nested groups of patches near the boundary of the
domain D. Figure 3.5 illustrates such a scenario, considering D = (0, 1)? with
a Cartesian mesh and m = 2. The patches corresponding to the elements at
positions! (1,1), (1,2), and (2, 1) are all contained within the patch of element
(2,2). This nesting results in an unfavorable selection of basis functions, as
the functions associated with the smallest singular values across the different
patches are nearly identical. In particular, they almost coincide with the basis
function expected for the patch of element (1,1), leading to instability in the
basis representation. In the following subsections, we explore various solutions to

'Here, the position is a vector in {1,..., H~1}? where the first and second components
determine the location in the z- and y-directions, respectively. The numbering is chosen
such that (1,1) corresponds to the bottom-left element.
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3. Super-Localized Orthogonal Decomposition

10
5
0

Figure 3.5.: Solutions of the patch problems (3.2) for right-hand sides corre-
sponding to the smallest singular values on the patches associated
with elements (1,1), (2,1), (1,2) and (2,2) (from left to right), for
the case A = 1.

these stability issue and present efficient methods for computing the SLOD basis
functions. For simplicity, we henceforward consider D to be the unit hypercube
in d dimensions with d > 2 discretized using a Cartesian mesh Ty.

As outlined in Section 3.1, there are two general approaches to compute the
SLOD basis functions: minimizing the conormal derivative of the basis function
or selecting a local source term corresponding to the smallest singular value
of the operator IIy p, |y. Practical implementation details for both methods
are provided in Section 3.5. While the stabilization technique in Section 3.4.4
focuses on minimizing the conormal derivative, all other stabilization approaches
are formulated in the SVD setting but can be adapted to conormal derivative
minimization. A comparison of the different approaches based on numerical
experiments is provided in Section 3.6.

3.4.1. Representative patches

One possible approach to addressing the stability issues in the example above is
to consider only the largest patch, in this case, the patch of element (2,2), and
to compute the functions corresponding to the four smallest singular values. A
visualization of these functions is provided in Figure 3.6. The resulting functions
are linearly independent and form a basis for a space that includes the functions
naturally expected for the four elements.

This stabilization procedure was introduced in [HP22b, Appendix B] and can
be easily generalized. The key idea is to identify groups of patches for which the
basis functions are computed simultaneously. To achieve this, all patches N™(K)
where K has a distance of at least m layers to the boundary of D are treated
independently. In contrast, patches where K has exactly a distance of m — 1
layers to 0D serve as representatives for corresponding groups of patches. Every
remaining patch N”(K'), meaning those where K has a distance of less than
m — 1 layers to 0D, is uniquely assigned to that group, where the representative
patch of the group is a superset of the patch N™(K). The basis functions are
then computed on the representative patch of each group and correspond to the
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3.4. Stable basis computation

Figure 3.6.: Functions obtained by solving the patch problem (3.2) for the right-
hand sides corresponding to the four smallest smgular values on the
patch of element (2,2), for the case A = 1.

functions associated with the & smallest singular values, where k£ denotes the
number of patches within the group.

3.4.2. Weighted L?-norm

The here presented stabilization technique achieves stability by an additional
optimization step and was first introduced in [BFP24, Section 7] for convection-
dominated diffusion problems. Instead of choosing g%"f}l as in (3.8), we consider
local source terms associated with a certain range of the lowermost singular
value.

Given the singular values o1 > 09 > -+ > oy > 0 associated with the patch

Dy, we consider all indices 1 <7 < N such that

) 1/p
i < max { (U—N> , 10_10}
o1 g1

and denote the resulting set of indices by Z. Each index in the set Z corresponds
to a potential candidate for a local source term. For the choice p = 1 only
the smallest singular value is considered. Since this optimization problem is
meaningful whenever multiple functions are considered, we restrict ourselves to
the choices p > 1.

Among these candidate functions, we choose the one that minimizes a weighted
L?*(Dg)-norm under the unit mass constraint. The weighted L*(Dj)-norm is
defined using a piecewise constant weighting function that is zero in the central
element T and grows polynomially as the distance from the center increases.
This enforces a concentration of mass in the reference element K, resulting in
linearly independent local source terms {g5°5 : K € Ty} in practice. More
specifically, we introduce the distance function dist(K,T") between the elements
K, T €Ty as

dist(K,T) :== H My — My| € N¢,

where My, My € R? are the midpoints of the elements K and T, respectively.
The weighting function is then defined for each element T € Ty p,. as

wie(T) = |dist (K, T)\;
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Figure 3.7.: Piecewise constant weighting function wg for an interior element
K € Ty with m = 2 in two spatial dimensions.

- |

Figure 3.8.: Functions obtained by solving the patch problem (3.2) for the right-
hand sides corresponding to small singular values, Whlle minimizing
a weighted L2-norm on the associated patch, for the case A = 1.

for a parameter r > 1, where | - |, denotes the infinity norm on R?. Figure 3.7
provides an illustration of this weighting function in two spatial dimensions for
the choice r = 6.

Figure 3.8 shows the SLOD basis functions computed using this weighting
function and p = 2, corresponding to the problematic functions in the exemplary
case. Notably, this stabilization technique yields basis functions that align with
intuitive expectations. However, the optimal choice of the parameters r and p
may vary depending on the specific problem.

3.4.3. Domain extension

In this section, we introduce a new stabilization technique for handling ho-
mogeneous Dirichlet boundary conditions. Unlike the approach proposed in
Section 3.4.1, this method produces basis functions that align with intuitive
expectations and is applicable to the stochastic setting discussed in Chapter 5.
Furthermore, the new stabilization technique does not introduce any additional
parameters. For simplicity, we focus on the computation of a stable SLOD basis
using Cartesian meshes, where we denote the side length of the elements by H
instead of their diameter. However, the proposed stabilization technique can be
extended to other types of meshes.
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A(ml,Z‘— x2)
A
A(—.’L‘l,Q—Jjg) - <*A(2—$1,2—$2)
A(—$1,:L'2) ™ A(ml,xg) < A(2 — xl,xg)
D

A(—fﬂl, —xg) f*Dm - A(2 — X1, —CE2)

i

\

A(l‘l, —(Eg)

Figure 3.9.: Extension of the domain D = (0,1)? with the extended coarse mesh
Tt and m = 2. Additionally the extension of the diffusion coefficient
A is displayed.

We extend the domain D = (0, 1)¢ by m-layers of coarse mesh elements. More
precisely, we have

D" :={x €R?: |z — D|o < mH}.

By 7" we denote the extension of the Cartesian coarse mesh 7y to D™. The
diffusion coefficient A is extended to the overlapping domain D™ by 'mirroring’
it at the boundaries of D. See Figure 3.9 for an illustration in two dimensions.
For each K € Ty we define the patch D$* := N7 (K), where the patches
are constructed as described in (2.14), but using the extended coarse mesh

2 instead of Ty. The SLOD patch problems (3.2) are then solved for all
patches with right-hand sides corresponding to the respectively smallest singular
value, ignoring global Dirichlet boundary conditions but including the extended
diffusion coefficient. We denote the resulting functions by ¢¢,, € H} (D) and
the corresponding local source terms by g, € Po( f?,lD;gt)-

To account for the global Dirichlet boundary conditions, we need to correct all
functions corresponding to boundary patches. Therefore, we consider K € Ty
with 0D Nint(D§') # 0 and extend ¢™* = $F by zero to R%. The corrected
localized SLOD basis function ¢5°, € Hj(D) for d = 2, which satisfies global

Dirichlet boundary conditions, is defined as

oo (T, T2) = @™ (1, T2) — ¢ (—w1, 12) — ™ (21, —22)
~ext

— @FN2 = w1, m9) — P (21,2 — @) + O (—w1, —12)
+ @%N2 — wq, —x9) + P72 — 31,2 — X)) + P (—x1,2 — 1),

for (x1,22) € D. The corresponding local source term g%‘fﬁn € P%(Ty) can be

computed by correcting g}, in the same way. In three dimensions, the corrected
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3. Super-Localized Orthogonal Decomposition
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Figure 3.10.: SLOD basis functions obtained by correcting the solutions of the
patch problems (3.2) for right-hand sides corresponding to the
smallest singular values on the extended patches associated with
the elements (1,1),(2,1), (1,2) and (2,2) (from left to right), for
the case A = 1.

SLOD basis function and its corresponding local source term can be obtained
analogously by taking into account all correction terms corresponding to faces,
edges, and corners of the domain D. The global Dirichlet boundary conditions
of ¢33, can be easily checked by noting that ¢3, (z) = 0 for all z € R*\ D™
The smallness of the conormal derivative of @58, on dDg \ 0D follows from the
smallness of the conormal derivative of ¢%' on dDF".

Figure 3.10 illustrates the SLOD basis functions for the problematic patches
associated with elements in the left corner of D = (0,1)?, computed using this
new stabilization technique.

3.4.4. Correction of LOD functions

In the following, we present a stabilization technique which leads to a practically
stable SLOD basis by correcting local LOD basis functions. This stabilization
technique was proposed in [GMPZ24, Section 3] in the context of the hierarchical
SLOD.
Given Dg = N™(K), the local LOD basis function @4, defined in (3.18)
satisfies
PRe, = Aph gt with g%, = Sphly, (3.21)

where the patch-local operators Ap, and Sp, are defined in Section 3.3.2. For
T € Tup, \ {K}, we define

o) = AT grm, with g = Splis. (3.22)
By construction, the SLOD basis function is in the span of these LOD functions
and can be computed using a linear combination of them. More precisely, we
define

~slo ~lo ~(K
Ghm =Pt X oréha, (3.23)
T€TH, D \{K}

where the coefficients (CT)TGTH by \(K} are chosen such that gpSIOd has minimal
conormal derivative.
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Figure 3.11.: SLOD basis functions obtained by correcting LOD basis functions
for patches associated with the elements (1,1),(2,1),(1,2) and
(2,2) (from left to right), for the case A = 1.

Note that, to guarantee stability of the SLOD basis, we additionally choose
the coefficients such that

2 T @5cm — Lkl Le(py < b, (3.24)

with
2K = ][ gbil(oi dz
K

and d5 > 0 small. Condition (3.24) impels the support of @?{% to be reasonably
concentrated around K, ensuring the linear independency and stability of the
SLOD basis. In contrast, the stability of the local LOD basis is given a priori,
as the LOD functions satisfy the Lagrange property

Hp@d, =1k, and Mx@i) = 1p

for '€ Tup, \ {K}. Hence, setting 6, = 0 recovers the Riesz-stable standard
LOD basis. However, this choice yields basis functions that exhibit only expo-
nential decay. To retain stability while achieving super-localization, we aim to
select &, small enough to ensure Riesz stability, yet large enough to preserve
the desired super-exponential decay properties. In practice, we have found that
choosing 65 = 0.5 strikes a good balance and satisfies these two requirements.

An illustration of the stabilized SLOD basis functions, computed using this
technique and associated with the problematic patches from the introductory
example, is given in Figure 3.11.

3.5. Practical implementation

In this section, we discuss the practical implementation of computing the SLOD
basis functions introduced in Section 3.1 with the two possible approaches
mentioned there. The first approach involves random sampling to approximate
the space Y from (3.7), followed by computing the SVD of the operator Il p, |y,
while the second approach is based on minimizing the conormal derivative of the
local SLOD basis functions.
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3. Super-Localized Orthogonal Decomposition

For a given oversampling parameter m, we consider a (possibly extended) patch
Dy and denote the number of coarse elements within this patch by N := #7u p, .
In practical implementations, all local infinite-dimensional problems arising in
the derivation of the basis functions must be approximated in a finite-dimensional
setting. To achieve this, we discretize the domain using the P!-finite element
method on a fine mesh 7}, p,., obtained by uniformly refining 7y p,. We denote
the nodes of the fine mesh 7, p,. by z; for j € N == {1,...,n}. The corresponding
hat functions, denoted by {A; : j € N}, satisfy the nodal property A;(z;) = d;;
for all 4,5 € N.

3.5.1. Random sampling and Singular Value
Decomposition

The random sampling approach to approximate the space Y that we explain
in the following was introduced in [HP22b, Appendix B] and is similar to
[BS18, CLLW20]. Approximating the space Y~ by harmonic polynomials [BL11]
or Steklov eigenfunctions [MSD22] would also be possible.

We assume that the nodes of the fine mesh 7}, are numbered in a manner
that enables the decomposition of the index set A into three disjoint subsets,
corresponding to I'y :== 0Dk \ 0D, I'y .= 0D NOD, and the interior Dy \ 0Dy
Specifically, we write N' = N; U Ny U Ny, with

M={1,....m}, No={n1+1,...;n1+n2}t, No={ni+na+1,...,n}

To approximate the space Y from (3.7), we compute discrete A-harmonic ex-
tensions of random sample boundary data prescribed on I';. Denoting with
M € N the number of samples, we define S; € R"*M to be the matrix having
sample vectors of length n; as columns. The entries in each column correspond
to the nodal values of sample finite element boundary functions on I';. We use
independent and uniformly distributed nodal values within the interval [—1,1].
For the numerical experiments in Section 3.6, we set the number of samples to
M =5N.

Let S™M he the matrix whose columns are coordinate vectors of the discrete
A-harmonic extensions of the columns of S;. We can calculate the matrix S as

S
S = 0 with SO = —AalAlsl,
So

Ay = (ap,(Nj, N))ijenys A1 = (apg(Aj, Ai))ien jen, and 0 denoting the
ny X M zero matrix. Next, the SVD of the matrix X := P(STKS)1/2 € RV*M ig
computed, where P € RV*M s the column-wise application of the L2-projection
onto the characteristic functions {17 : T' € Ty p, } to S. The matrix K € R**"
is the sum of the stiffness matrix and the mass matrix with respect to 7 p, -
It shall be noted that the term (STKS)~/2 guarantees that the right singular
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3.5. Practical implementation

vectors of X represent a set of H'(Dg)-orthonormal functions. However, in
practice it seems reasonable to apply the SVD directly to P, i.e., (STKS)_l/ 2
does not need to be computed, since numerical experiments show no noticeable
difference in the choice of basis and the resulting errors.

The reduced SVD of X reads

X = GXH”

with G € RVN 8 € RV*M and H € RM*M | The last column of G is the
coordinate vector with respect to the basis {11 : T € Ty p, } of the local source
term corresponding to the smallest singular value of the (possibly extended)
patch Dg.

Depending on the stabilization technique, different modifications may be
necessary. The last several columns of G may be considered in the case of repre-
sentative patches from Section 3.4.1. Alternatively, an additional optimization
step may be introduced by incorporating a weighted L?-norm (Section 3.4.2). In
the case of domain extension, the correction from Section 3.4.3 must be applied

for boundary patches. Once the right-hand side gil(f’% is determined, the fully

discretized counterpart of @?1(021 can be obtained by solving a discretized version

of (3.2).

Remark 3.5.1 (Computation of the Riesz stability constant). Given the local
source terms {g%‘z(}n :i=1,...,#7Tg}, the Riesz stability constant C\y, appearing
in Theorem 3.2.1 equals the reciprocal of the smallest eigenvalue of the matrix

R € R#7m#Tn with entries given by Ry = (935, 9%5) 12(0)-

3.5.2. Minimization of the conormal derivative

Given an oversampling parameter m € N, we consider an element K € Ty and
its corresponding (possibly extended) patch Dg. To compute the SLOD basis
function ¢35, we first determine the local responses of the solution operator.
Specifically, for each element 7" € Ty p, within the patch, we compute the
response of the restricted solution operator ABL to its characteristic function

17. By construction, 9521(‘7’21 lies in the span of these local responses AB;]IT.

Next, we select 95?1{‘?21 from this low-dimensional space by minimizing the
conormal derivatives under a unit mass constraint. This minimization is realized
by computing the smallest generalized eigenvalue of the symmetric, positive

(semi-) definite matrices

([ oAz 1000, (AL 1) ds)
0Dk

T T€TH, D

and

( /D (B 1) (A 1) o)

T,TGTH,DK
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3. Super-Localized Orthogonal Decomposition

The corresponding generalized eigenvector provides the coordinate representation
of a possible right-hand side for (pSIOd with respect to the basis {1 : T € Ty}.

As in the previous subsection, dependmg on the stabilization technique, mul-
tiple smallest eigenvalues may be considered, or for boundary patches, the
additional correction must be applied. Once the right-hand side gSIOSI is de-
termined, its coordinate vector provides the coefficients for expanding gpSIOd in
terms of the local responses of the restricted solution operator. Alternatlvely,
the fully discretized counterpart go“‘)d can be computed by solving a discretized
version of (3.2).

For the stabilization technique introduced in Section 3.4.4 which corrects LOD
basis functions, we choose an alternative approach to minimize the conormal
derivative. Let I := 0D \ 0D, and denote by Ir := {i € N: z; € I'} the set of
indices corresponding to the nodes of the fine mesh 7, that lie on I'. We then
define the matrix

B = <a(AB}K]lT,Ai) — (17, Ai)L2(DT))

TGTH,DK g€l

For the right-hand side glOd of the local LOD basis function given in (3.21), w
denote by g its coefficient vector with respect to the basis {1 : T € ’TH,DK}.
Similarly, we collect the coefficient vectors of the local source terms g, for
T € Tup, \ {K}, given in (3.22), as columns of the matrix G € RV*(N=1)_ The
coefficient vector ¢ = (cr)rer;, p, \{k} which minimizes the conormal derivative
in (3.23) is obtained as the least-squares solution of

BGc = —Bggy,
ie.,
-1
c=-((BG)"BG) (BG)'Bg. (3.25)
To additionally satisfy the stability condition in (3.24), we express (BG)"BG
in terms of its SVD, given by
(BG)TBG = ZO_iUiUiT,
i=1

where o; is the i-th singular value, with oy > ... > 0,, and u; and v; are the
corresponding left and right singular vectors, respectively. Here, r denotes the
rank of (BG)?BG. The coefficient vector ensuring a stable SLOD basis in (3.23)
is then computed as

(ZU v )BG)TBgK, (3.26)

where rx < r is chosen iteratively to guarantee that condition (3.24) is satisfied.
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3.6. Numerical experiments

Figure 3.12.: Visualization of the piecewise constant coefficient A on a mesh with
mesh size 27%. The lower bound of the coefficient is set to o = 0.1.

3.6. Numerical experiments

In this section, we present numerical experiments assessing the different variants
of computing the SLOD basis functions introduced in this chapter. We consider
the domain D = (0,1)4, with d € {2,3}, discretized by uniform Cartesian
meshes Ty, where the mesh size H denotes the side length of the elements rather
than their diameter. For the practical implementation, all infinite-dimensional
problems arising in the local patch computations are approximated by their
P!-finite element discretizations on a fine mesh with mesh size 2719, obtained
through successive uniform refinements of the coarse mesh 7y p,. on the respective
patches. Based on the extensive numerical analysis of fine-scale discretizations
for the classical LOD, cf. [MP20, AHP21], we expect that the theoretical results
remain valid in the present setting.

For the numerical experiments in two dimensions, we choose A to be a
realization of a coefficient that is piecewise constant with respect to a mesh of
size 278. The element-wise values are independent and identically distributed
random variables taking values between a and § = 1, with different choices of
a. An illustration of the coefficient with v = 0.1 is provided in Figure 3.12. As
right-hand side, we consider

f(z1,25) = 277 sin(z) sin ().

Figure 3.13 presents the relative energy errors of the fully discrete numerical
approximations obtained by the Galerkin method (3.10), measured with respect
to the reference solution wu,. The reference solution is computed using the
PL-FEM on the global fine mesh with mesh size h = 271, The figure compares
the approximation errors for the different practical variants of the SLOD method
introduced in this chapter. Specifically, it displays the errors resulting from the
various stabilization techniques discussed in Section 3.4, applied using either
the approach based on random sampling and the SVD or the approach based
on the minimization of the conormal derivative. Note that we only consider
combinations of H and m for which all patch-problems (3.2) are non-global.
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Figure 3.13.: Relative energy errors of the SLOD Galerkin approximations as a
function of the coarse mesh size H for the different stabilization
techniques described in Section 3.4. The errors are shown for the
two approaches, based on either the Singular Value Decomposition
(SVD) or the minimization of the conormal derivative (CND), in
the 2d setting for various oversampling parameters m. The lower
bound on the diffusion coefficient is set to a = 0.1.
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Figure 3.14.: Relative energy errors of the SLOD Galerkin, the SLOD collocation
and the LOD Galerkin approximations as a function of the coarse
mesh size H for the 2d experiment. The lower bound on the
diffusion coefficient is set to a = 1072,

All investigated variants exhibit similar relative energy errors, with the ex-
pected convergence rate for a smooth right-hand side f € H!(D). In general,
the approach of minimizing the conormal derivative shows slightly larger errors
for small coarse mesh sizes compared to the SVD-based approach. Among
the stabilization techniques, the weighted L?-norm approach (see Section 3.4.2)
exhibits the largest deviations, being highly sensitive to parameter choices; in
this case, we used r = 6 and p = 2. No significant differences are observed
between the SVD-based method combined with stabilization techniques using
reference patches (see Section 3.4.1) or domain extension (see Section 3.4.3), and
the correction of the LOD basis functions via conormal derivative minimization
(see Section 3.4.4).

Figure 3.14 illustrates the relative energy errors of the SLOD Galerkin approx-
imation defined (3.10) and the SLOD collocation approximation from (3.11),
both computed using the SVD combined with the domain extension stabilization
technique, for a high-contrast piecewise constant coefficient A with av = 1075.
Compared to the low-contrast case, the differences in the errors are marginal.
For reference, the relative energy errors of the stabilized LOD approximation
from Section 2.6 are also shown.

In Figure 3.15, the relative energy errors of the two SLOD approximations with
respect to the online computing time are illustrated for oversampling parameters
m = 3,4. The markers indicate the considered coarse mesh sizes, ranging from
274 to 277. The online computing time includes only the representation of the
approximate solution and the right-hand side in terms of the basis functions,
as well as the solution of the coarse-scale linear system. When also accounting
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Figure 3.15.: Relative energy errors of the SLOD Galerkin and the SLOD collo-
cation approximations as a function of the online computing time ¢
in second for the 2d experiment. The lower bound on the diffusion
coefficient is set to a = 107°. The markers indicate the considered
coarse mesh sizes, ranging from 274 to 277,

for the time required to assemble the system matrix, the computational savings
of the collocation variant compared to the Galerkin method become even more
apparent.

Remark 3.6.1 (Numerical setup in 3d). For the three-dimensional experiment
in Section 3.3, we use the simpler periodic coefficient

Az, 29, x3) = +(Hsm 7rxz+1>

and a fine mesh with mesh size 278 for the P!-finite element discretization. The
periodicity of the diffusion coefficient on a mesh with mesh size 277 is exploited in
the numerical implementation to reduce computational costs: the basis functions
need to be computed only for O(m?) reference patches. The remaining basis
functions can then be obtained by translation; see [GP15].
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Orthogonal Decomposition

The SLOD introduced in the previous chapter provides a powerful framework for
constructing highly localized basis functions. In this chapter, we extend these
ideas by introducing a hierarchical variant of the SLOD, referred to as HSLOD,
which enables the efficient computation of approximate solutions to the elliptic
model problem.

The HSLOD is built upon a sequence of nested meshes and their associated
function spaces. The hierarchical basis spans the finest-level function space
while incorporating basis functions from all coarser levels. This hierarchical
structure is particularly advantageous in the presence of multiple scales within
the diffusion matrix A. A key property of the hierarchical method is that its basis
functions are (quasi-)orthogonal across levels with respect to the bilinear form a.
As a result, the associated stiffness matrix exhibits a block-diagonal structure,
where each diagonal block corresponds to a different level of the hierarchy. This
decomposition effectively decouples contributions from different levels, allowing
them to be computed independently and in parallel. Moreover, given a SLOD or
HSLOD approximate solution, it provides the flexibility to incrementally refine
the approximation by adding additional discretization levels, thereby improving
accuracy in a systematic manner.

The construction of hierarchical basis functions that induce an orthogonal
multiresolution decomposition of the solution operator was first introduced in
the framework of gamblets, see [Owh15, Owh17,0S19]. This concept was later
connected with the LOD framework in [FP20], leading to the development of
a hierarchical LOD. A stabilized multiresolution LOD, which is not limited
to elliptic problems, was subsequently introduced in [HP22a]. We combine
the concepts of hierarchical a-orthogonal basis functions with the localization
strategy of the SLOD, leading to super-exponentially decaying basis functions in
practice, as the size of the patches on which the functions are defined is increased.
The proposed HSLOD method achieves greater sparsity in the compressed
representation of the solution space compared to gamblets-based and hierarchical
LOD methods. This leads to a higher sparsity in the block-diagonal stiffness
matrix, reducing both memory consumption and computational cost while
maintaining accuracy.

Furthermore, we use the new stabilization strategy introduced in Section 3.4.4
for computing SLOD basis functions. The hierarchical basis is then constructed
as a linear combination of these stabilized functions. This approach ensures that
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4. Hierarchical Super-Localized Orthogonal Decomposition

the hierarchical stiffness matrix remains well-conditioned (up to the contrast).
Beyond improving numerical robustness, the stabilization also enhances the
overall quality and efficiency of the method, enabling the reliable treatment of
challenging scenarios, such as high-contrast channels in the diffusion coefficient.

While the presentation has been slightly adapted for consistency and com-
pleteness, the content of this chapter is primarily based on the preprint article

[GMPZ24] J. C. Garay, H. Mohr, D. Peterseim, and C. Zimmer. Hierarchical
Super-Localized Orthogonal Decomposition Method. arXiv preprint
2407.18671, 2024.

4.1. Construction of the hierarchical basis

In this section, we focus on the construction of an a-orthogonal hierarchical
basis corresponding to the elliptic model problem (2.3). Therefore, we need
to adapt some definitions to the multilevel setting. Let 77 denote a Cartesian
mesh of D with mesh size Hy, and consider a sequence of successively refined
meshes {7;}oeq1,..1}, where L € N and each refinement satisfies Hy 1 = Hy/2
for ¢ < L — 1. We denote by II, : L?*(D) — PY(7;) the L*-orthogonal projection
onto the space of piecewise constant functions with respect to the mesh 7.

The prototypical operator-adapted ansatz space V{ on level ¢ is given by
applying the solution operator A~! to P(7y), i.e.,

Vi = span{A "1 : K € T;}.

In the following, we derive a hierarchical basis of V{, which includes basis
functions from all coarser levels. Therefore, we first outline a procedure to
generate a hierarchical basis, ensuring that the basis functions are a-orthogonal
across levels, regardless of their support. We then consider localization strategies
using the SLOD method to develop a basis suitable for practical applications.

4.1.1. Strict a-orthogonal basis

In this subsection, we construct globally supported hierarchical basis functions
that are fully a-orthogonal across levels, leading to a block-diagonal hierarchical
stiffness matrix. Therefore, we define N, :== #7, as the number of elements in
the mesh 7,. The number of hierarchical basis functions corresponding to level ¢
is then denoted by N?, given by

Nb o Nl; lfg == 1,
CT 0= 1Ny, 0> 1

Thus, at each level, we must determine N? linearly independent basis functions
that are a-orthogonal to all basis functions associated with coarser levels.
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To achieve this, we define each basis function ¢7; € Vi by

U =AY e, (4.1)

KeT,

for any level 1 < ¢ < L and i € {1,...,N?}. The non-trivial coefficients c%’i)
are chosen such that {cg’i)]lK}ie{17.,,7Nl} forms a basis of PY(77). For levels ¢ > 1,
the coefficients are constructed to enforce the a-orthogonality condition across
different levels, i.e.,

a(w?,m ;,j) =0 forall 1<p</ (4.2)

Investigating this condition, we observe that

a(yy;, vy ( > cK’])]l ¢€z> . ) (m)/ Yy dx = 0.
KeT,

KeT,

Therefore, the a-orthogonality condition (4.2) is satisfied if
/ Yy, de =0 forall K €Ty, (4.3)
K

since any element of 7, with p < ¢ is a union of elements from 7,_;.
By defining akr := [, A~'1y dz and using the definition of ¢§; from (4.1),
we can rewrite condition (4.3) as

ZCT OéKT—O forall K € T,_4.
TeT,

Let D® e RNe=1%Ne gych that Dﬁf)m = ak, 1, and clbi) = (cgj))me{l,mm}, with
K, € Ty_1, T,, € T;. Hence, the a-orthogonality condition is satisfied for any
level ¢ > 1 if

DWc) =0 forall ie{1,...,N}, (4.4)

which implies that c¢(“? € ker(D®). Note that rank(D®) < N,_,. Consequently,
dim(ker(D®)) > N, — N,_; = N!. Hence, there exists infinity many choice of
coefficient vectors that satisfy condition (4.2). In principle, any set of N} linearly
independent vectors from ker(D(*)) can be chosen to form a basis for V§ at level
¢ > 1, while any basis of P(7;) can be used for the coarsest level. However,
the resulting basis functions ¢y, are generally globally supported, leading to a
(block-diagonal) stiffness matrix that lacks sparsity. Therefore, an ideal choice
would be a set of coefficient vectors for which the associated hierarchical basis
functions are locally supported. We study the feasibility of such an option in
the following.
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4.1.2. Localization strategy

To construct locally supported functions that satisfy the a-orthogonality condi-
tion, we adopt the localization strategy associated with the SLOD introduced in
Chapter 3. Accordingly, the corresponding piecewise-constant right-hand sides
of the hierarchical basis functions must also undergo localization. However, it is
generally not feasible to achieve both strict a-orthogonality and full localization
simultaneously. To preserve locality, the a-orthogonality condition may need to
be partially relaxed. A practical compromise thus balances adherence to orthog-
onality and locality against computational cost, permitting minor deviations to
enable an efficient scheme based on purely local computations. For computing the
local HSLOD basis using the SLOD localization strategy, various approaches can
be explored. One option is to define local variants of the matrices D from (4.4)
based on the concept of patches, and then determine coefficient vectors within
the corresponding kernels such that the associated HSLOD basis functions have
a minimal conormal derivative. This approach, however, introduces potential
stability issues.

Our ansatz employs linear combinations of SLOD basis functions defined in
(3.2) to approximately satisfy both localization and a-orthogonality. To extend
this concept to the multilevel case, we generalize the definition of patches. In
accordance with (2.14), we recursively define the m-th order patch on level ¢ for
an element K € 7, as

NZ'(K) == NANPY(K)) with NYEK) = J{T €Ti: TNK £0}. (45)

For the hierarchical basis functions on level ¢ = 1, we use local SLOD functions
defined on 7;. In the following we give an Ansatz for the HSLOD basis derivation
for ¢ > 1. Those HSLOD functions are defined on patches corresponding to
elements T' € T;_; of the coarser level. On each such patch, 2¢ — 1 hierarchical
basis functions need to be defined. To formalize this, we introduce the quantity

i—1
Ji = bd_ 1J +1, (4.6)
which indicates the reference element 1), € 7,_; and, consequently, the patch.
For convenience, we fix the oversampling parameter m € N and refer to the m-th
order patch of T;, € Ty on level £ — 1 simply as D%_l) =N}, (T},).

On level ¢ > 1, we define the local HSLOD basis functions @1?‘;,? € H(}(Df,f_l))
for each i € {1,..., N}} as a linear combination of local SLOD functions. These
SLOD functions are defined on the mesh 7; and are supported strictly within
the patch D{(Jffl). In contrast to HSLOD functions, the patches associated with
SLOD basis functions at level ¢ are constructed as unions of elements from
T;. We denote by D'? the patch N'(K) on which the SLOD function i m
corresponding to K € 7Ty, is supported. Furthermore, for each element 77, € T,_1,
we define the set

S = (K e To: supp(#39d,,) DY VY.
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Figure 4.1.: Illustration of the various patches in the HSLOD context on the mesh
T;, with the coarser mesh 7,_; represented using bold lines. Specifi-
cally, it shows the patch Df,f_l) (®) corresponding to a hierarchical

basis function associated with the reference element 7, € Ty (®) .
Additionally, it depicts the patch D%) (@) surrounding K € SS? ().
The set Sf,? (©) corresponding to the patch D%_l) is also highlighted.

An illustration of the different patches introduced in this section, along with the
set, Sf,f), is provided in Figure 4.1.
We define the HSLOD basis function @flgg € HY( Dgéi—l)) as
Dot = 3 A e (4.7)
K eSF,?

where the non-trivial coefficients (d%’i)) xes® are chosen such that
Ji

IT,_qpsiod — 0 (4.8)

Lim

This condition is locally equivalent to (4.3) and ensures that the a-orthogonality
condition is satisfied to some extent. Specifically, it guarantees a-orthogonality
when the support of a basis function on a finer mesh is fully contained within
the support of a basis function on a coarser mesh; see also Theorem 4.1.1 below.

Although #SS? > #’72,_17 Pl implies that there are infinitely many choices

of non-trivial coefficients that satisfy (4.8), not all such choices yield a stable
HSLOD basis. To ensure stability, specifically, the linear independence of the
2¢ — 1 hierarchical basis functions associated with the patch, we select functions
whose masses are centered within the reference coarse element 7, € T,_1, but
are concentrated in different elements of the refined mesh 7,. First, we define
the set of descendants of an element 7" € 7,_; as

des(T) ={K eT,: KCT}.

o1



4. Hierarchical Super-Localized Orthogonal Decomposition

Let des(T') be any subset of des(T') such that #des(T) = 27 — 1. Additionally,

we define a subset of descendants of the patch D%il) as

des(DY V) == {K € des(T) : T € T, oo}
M, - gi(nt¢1b 0(Joc( DED 2(Jec( DED
and take Il, : Hy(Dj ) — P%(des(Dj ")) as the L*(des(D; ~))-orthogonal
projection onto piecewise constants.
To construct a stable HSLOD basis, we choose the coefficients in (4.7) such
that, in addition to satisfying (4.8), ¢sled fulfills

Lim

ool = i, (4.9)
where K; € T; is a descendent of the reference element T, with K; € des(T,).
After enforcing condition (4.8), we are left with at most

#SL(J? - #7;_17,3‘(]2;1) < #(%JS(D%_*D)

degrees of freedom. Consequently, condition (4.9) cannot, in general, be satisfied
exactly, except in the one-dimensional case. Instead, we determine the non-
trivial coefficients such that the algebraic form of this condition is satisfied in
the least-squares sense.

This construction ensures that the HSLOD basis functions supported on the
same patch are linearly independent. In addition, it drives the coefficients
d%’i) to be small for elements that are near the boundary of the patch. As a

consequence, the conormal derivative of ¥§5°d on the interior patch boundary

Yy, = 8D%_1) \&D is small, since each SLOD basis function ¢33, with K € ng)
has a small conormal derivative on X ,.

4.1.3. Practical hierarchical basis

To handle the case ¢ = 1 consistently with all other levels, we extend the
definition of the quantity J; in (4.6) by setting J; = ¢ for £ = 1, and use the
generalized formulation

i—1
Jy = {(2‘1 — 1)min(z_170)J +1. (4.10)

Hence, the hierarchical basis functions @121‘,;? are defined on patches fo:l)

which, at all levels, are associated with elements T, € Trax(e—1,1)- We define the
normalized HSLOD function zﬁglm € H&(D%_*l)) as

Deim = Diion /198500 - (4.11)
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4.1. Construction of the hierarchical basis

In addition, introducing the normalized coefficients

(A 4 7 hslo
die? = di) |l (4.12)

Li,m

the hierarchical basis function can be written as the linear combination

~ 504) A
Veim= Y. Aol . (4.13)
Kes'H

In particular, for £ = 1, we have ng) = {T;}, so that the hierarchical basis
function coincides with the (normalized) SLOD function associated with the
element T; € 7.

Note that the localized hierarchical basis functions are, in general, not a basis
for the prototypical ansatz space Vj. However, by using the same coefficients
J%’i) that define lge,i,m, a basis for V§ can be constructed using the global SLOD
functions defined in (3.1), as

Voim =Y. dw?oied (4.14)
Kes®

The prolongation by zeros of the above coefficient vector defining the hierarchical
basis functions to R™ is not necessarily an element of ker(D(®) as defined in
Section 4.1.1. Consequently, the stiffness matrix associated with the global
functions vy, ,, will, in general, not be block-diagonal.

Analogous to the construction of the hierarchical basis functions, a local source
term associated to @me and v, can be defined as

54,1
Grim = 3 i g7 € BT, ), (4.15)
Kest) 1

¢
An example of the hierarchical basis functions in one dimension is illustrated in

Figure 4.2 for the model problem (2.3) with a constant diffusion coefficient A = 1
along with an example for a piecewise constant coefficient. For visualization
purposes, the HSLOD basis functions shown are not normalized with respect to
the energy norm but are instead scaled to be of the same order. Different colors
indicate the levels to which the basis functions are associated to. The considered
mesh sizes range from H; = 1 to H, = 273. Figure 4.3 shows the HSLOD basis
functions associated to the fifth level in the hierarchy (with mesh size Hs = 27%),
as well as the corresponding hierarchical LOD (HLOD) functions for the same
parameters. The comparison illustrates the smaller conormal derivatives of the
HSLOD basis functions. In Figure 4.4, the hierarchical basis functions in two
dimensions along with their corresponding L2-normalized local source terms
are displayed. The figure depicts HSLOD basis functions across three levels
(¢=1,...,3) corresponding to mesh sizes H, =272 ... 274

where g§'%,, € P°(T, jo) is the L2(DY)-normalized local source term of Piled
K b Pl K 7 7
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4. Hierarchical Super-Localized Orthogonal Decomposition

Figure 4.2.: Local (scaled) HSLOD basis functions for the model problem (2.3)
in one spatial dimension, for A =1 (top) and a piecewise constant
coefficient illustrated in gray (bottom), shown for levels ¢/ = 1 (@)
up to £ =4 (). The oversampling parameter is set to m = 1.

In the following, we analyze the quality of the local HSLOD basis with respect
to a-orthogonality and localization error. To this end, we introduce the quantity

=((Hp,m):= max max 42, 4.16
=l = o, o, [ 5 0 (4.16)
Ji

Furthermore, let o, i denote the localization error associated with the SLOD
function 3%, as defined in (3.9). A global measure of the localization error of
SLOD functions across levels is then given by
=o(H = : 4.17
7= oL M) = 0, R e 4
As shown in Section 3.3, o can be expected to decay super-exponentially, and is
shown to decay at least exponentially, see Theorem 3.3.4. More precisely, we
have
o < Hptexp(—Cm).

An upper bound on ¢ will be provided in Section 4.5.
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4.1. Construction of the hierarchical basis

Figure 4.3.: Local HSLOD (top) and HLOD (bottom) basis functions for the
model problem (2.3) with A = 1 in one spatial dimension, associated
to the level with mesh size 27%. The oversampling parameter is set
tom = 1.

£/

Figure 4.4.: HSLOD basis functions and their corresponding L2-normalized local
source terms for the model problem (2.3) with a constant coefficient
A =1 in two spatial dimensions. Basis functions associated to levels
¢ =1 (left) up to £ = 3 (right) are illustrated. The oversampling
parameter is set to m = 1.
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4. Hierarchical Super-Localized Orthogonal Decomposition

The next lemma investigates the a-orthogonality condition and gives an
estimate of the off-block diagonal entries of the stiffness matrix associated
with the HSLOD basis functions. Of course, the a-inner product of two basis
functions can only be non-zero if the corresponding patches are at least partially
overlapping.

Lemma 4.1.1 (Orthogonality condition of HSLOD functions). Let Qﬂ“m and

zﬁm}m be two hierarchical basis functions defined on levels ¢ < p with partially
overlapping patches, i.e., Ny (T5,) "NJ*\(T,) # 0. Then, it holds that

=0 Zf N;nfl(TJﬂ - Nﬂl<TJi)7

<m¥%Co  otherwise,

a(@é,i,ma @[A}p,j,m) { (418)

where ¢ is given in (4.16) and o is given in (4.17).

Proof. 1f the support of the finer-level basis function ﬁp,j,m is entirely contained
within N7, (T7,), i.e., Uy im € HE (NP (T,)), then, since gy € P°(T;), condi-
tion (4.8) implies

a(Veim, Upjm) = (9eims Upjm) L2y = 0.

For the case where the supports of ﬁglm and zﬁp,jym partially overlap, we use
the representation of 1, ,, from (4.13) to obtain that

G(W,i,m,%,j,m) = Z dg{ )a(¢€}[gm>¢p,j,m)'
Kes®
By applying the definition of the conormal derivative from (3.6), along with (4.8)

and (3.4), we can deduce for each term separately that

a(@?}?{d,mﬂ Ap,j,m) = <78n952}(])<d,m7tr(&p,j,m’[)%)»X’xX + (QE}%W Ap,j,m)Lz(D%))

< on 3580 0 psnl o)l x

< o @ smllx 1¥pamll 21 ()
S0

where we used the fact that the HSLOD basis functions are normalized to one,

and that o is a measure of the conormal derivative of @594, see Section 3.1.

Here, tr denotes the trace operator on D%), the patch associated with @§%,,. In
combination with the Cauchy—Schwarz inequality and (4.16), the claim follows
as

; N2
) 7, 76,8 ¢ 5L
G(W,z‘,m, 7#p,j,m) S, Z d(K )O' < |SL(71)’( Z ’dg( )|2> o 5 md/2CO'.

Kes'H Kes®
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4.2. Practical multiscale methods

The next lemma quantifies the approximation quality of the localized basis by
providing an upper bound on the localization error between the local HSLOD
basis functions ¢y, and their global counterparts 1 ;,, in the energy-norm.

Lemma 4.1.2 (Localization error of HSLOD functions). Let @Ehm and Yy m be
hierarchical basis functions as defined in (4.13) and (4.14). Then the following
estimate holds

||Q/}£,i,m - QZJZ,i,mHa 5 md/2C(77
where ¢ is given in (4.16) and o is given in (4.17).
Proof. From the definitions of the HSLOD basis functions (4.13) and (4.14),

together with (3.15), Friedrichs’ inequality, and the Cauchy—Schwarz inequality,
it follows that

n 7(Lsi slod aslod
[Yim = brimla = | X a9 (58,0 - 615
KeS(fi) ¢
lod ~slod (4,0
< max {[@i, - a0} X 1k
Kesy, Kes)
d/2
< m¥%¢o.

O

This implies that m%?Co serves as a measure of the localization error of the
HSLOD basis functions. Furthermore, Theorem 4.1.1 indicates that smaller
localization errors correspond to near-complete a-orthogonality across levels.

4.2. Practical multiscale methods

Using the localized basis functions from the previous section, we now intro-
duce two possible multiscale methods based on this hierarchical basis. Before
introducing the methods, we first define, for 1 < /¢ < L,

1}&7” = span{@zg,im ci=1,... ,Né’}7

which will serve as the level-wise ansatz spaces in the following. The overall
ansatz space is then defined as

DML Dy @@ V.

For simplicity, we refer to the hierarchical basis functions of VM and V¢ using
their global indices. Thus, with

i=1{7 | ie=1, (4.19)
#72—1 + 7 it £ > 17
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4. Hierarchical Super-Localized Orthogonal Decomposition

we have the relations

@Ei,m = &Z,j,m and wi,m = w@,j,m (420)

with corresponding local source terms g¢; ,,, = gr,j.m. Using global indices, we refer
to the patches associated with the hierarchical basis functions as D; = D%_l).
With this notation established, we are now ready to define the two multiscale

methods.

Level-wise Galerkin method. In this hierarchical approach, we first seek, for
each level, the sub-scale solution ug,, € Vi ,, which satisfies

CL(U&m, v) = (fa U>L2(D)

for all v € Vy,,. The approximate solution to the model problem (2.3) is then
given by the sum of these Galerkin approximations, i.e.,

u% = Uy + -+ UL (4.21)

Hence, this approach leverages the nearly block-diagonal structure of the stiffness
matrix associated with the HSLOD basis, effectively neglecting the off-block
diagonal entries.

Collocation-type method. A collocation-type discrete approximation to (2.3)

is given by
Np,

ut, = 3" cihim, (4.22)
i=1

where (c,-)ie{lm ~;} are the coefficients of the expansion of Iy f in the basis func-
tions {gim : ¢ =1,... Np} of P°(7;). Note that, unlike the level-wise Galerkin
method, the collocation-type method does not exploit the a-orthogonality of
the hierarchical basis. This is because the a-orthogonality of the HSLOD basis
functions does not generally imply the L2-orthogonality of the corresponding
local source terms g;,,. Therefore, it is not possible to improve an existing
collocation-type approximation by solely considering an additional fine level in
the hierarchy. This aspect is further examined in Section 4.6.

As in the case of the SLOD method, a minimal requirement for ensuring the
stability and convergence of both hierarchical multiscale methods is that the set
{gim: i=1,..., N} spans P°(7;) in a stable way. In practical implementations,
this condition is enforced via (4.9). For the subsequent numerical analysis,
we impose the following assumption for the hierarchical setting, in line with
Theorem 3.1.2.
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4.3. Error analysis

Assumption 4.2.1 (Riesz stability). The set {g;, : i =1,...,N.} is a Riesz
basis of PY(7), i.e., there exists a constant Cy, = Cyp,(Hr, m) > 0 such that for
all possible choices of (¢;)ieq1,...,n,} it holds that

Np Np
—1 2
C’rb Z & S Z CiGim
=1 =1

where C,;, depends polynomially on H; ' and m.

2

Y

L2(D)

4.3. Error analysis

In this section, we present an error analysis of the previously introduced methods.
We begin by establishing an error bound for the collocation-type variant and then
use this result to derive the error analysis for the level-wise Galerkin method. In
both cases, several HSLOD-specific quantities arise in an a posteriori manner,
which will be further examined in Section 4.5.

Theorem 4.3.1 (Error bound of the collocation-type variant). Let the set
{gim : 1 =1,...,NL} be stable in the sense of Theorem 4.2.1. Then, for any
f € H*(D) with s € {0,1}, the solution of the collocation-type method introduced
in (4.22) satisfies
lu—uhlle £ Hellf =TLf gy + CiVIm ol [l 20)
S (H™+ c:fﬁm%) 1f x5 ()

with Cyu, from Theorem 4.2.1. This result implies that the collocation-type
approximation converges to the exact solution at an algebraic rate in Hy, up to
an additional error due to localization.

Proof. By using the triangle inequality with @ = A1l f, we obtain that
= w5 Mo < = alla + 13— s, (4.23)
Using the same arguments as in Theorem 3.2.1, we can estimate the first term as
= @l S HIf ~ TS izy < 1 aeco- (4.24)

For the second term of (4.23), we use the exactness of the prototypical method
for I, f, see Section 2.3. Hence, we can represent @ using the global HSLOD
basis functions as

where (¢;)icq1,..,n,} are the coefficients of the expansion of Iz f in the basis
functions g;,,. With the definition of the collocation-type method in (4.22) we
obtain

1% — w2 = Zcz (Wi = i, @ = U, (4.25)
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4. Hierarchical Super-Localized Orthogonal Decomposition

Let e == @ — uf’,,. Using the relations (4.20), the definitions of the HSLOD
functions (4.13) and (4.14), (3.15) and the Cauchy-Schwarz inequality, it follows
that

a(Vign — Vi €) = a(Wejm — Vojm,e)
= Y A7 al@ — i)

Kes“
5 o Z d o || ||H1(D(Z)
Kes(z) (4.26)
Ae7-
S g Z ’dg(])|2 Z He”?{l(l)%))
Kes\) Kes\)
< m*(o||

eHHl(D‘(’Z;l))’

where D\ i is the associated patch to @39 and D(Ji_l) is the one corresponding
t0 ¥y jm. For the last step, we used (4.16), the fact that

DY c DYV for K eSY,

and the finite overlap of patches.

Referring back to the global indices of the basis functions yields the rela-
tion D; = D%_l). Combining this with (4.25) and (4.26) and applying the
Cauchy—Schwarz inequality, we obtain

N

1a —uills S m¥?Co Y cilld —ui,lm o)
=1

Np,
< md/Qcanc%JZHu g 2 )
1/2
< CYAVImCo| fll i — us, -

For the last inequality we used Theorem 4.2.1, Friedrichs’ inequality, and the
finite overlap of patches per level. The combination of (4.23), (4.24) and the
previous estimate yields the assertion. O

In contrast to the collocation-type variant, the level-wise Galerkin method
(4.21) exploits the nearly blockwise structure of the stiffness matrix associated
with the HSLOD basis functions z[)lm by disregarding the off-block diagonal
entries. To evaluate the error introduced by this approximation, we first establish
the following lemma, which quantifies the impact of neglecting the off-block
diagonal entries in a matrix.
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4.3. Error analysis

Lemma 4.3.2 (Disregarding off-block diagonal entries). Let A € R™" a sym-
metric positive definite (SPD) matriz, and let A € R™™ be the block-diagonal
matriz whose diagonal blocks coincide with those of A. Denote by Nj, € N the
number of diagonal blocks of A, and by n; € N the number of rows of its i-th
diagonal block. Define AA == A — A, and let AA; be the rectangular submatriz
of AA consisting of the rows of AA corresponding to the indices of the i-th
diagonal block of A. Let b € R™ be arbitrary, x € R™ such that Ax = b, and
x € R" such that AxX = b. Then, the error bound

I~ [z < (mem D 1AA )

holds, where Ay € R™*" s the i-th diagonal block of A and A.

Proof. Let x = [x{,...,x{.]", x = [x{,...,x{.]", and b = [b{,...,b{. |,
where x;,%;,b; € R™. Since the diagonal blocks of A and A coincide, we have
it follows that A (x; —X;) + AA;x = 0, or equivalently x; — %; = —A;;'AAX.
Taking norms, we get that

i = ill2 < [|AG 2l AA allx]l2 = Ai (A ) 1A 2][x]|2-
Thus, the assertion follows by noticing that ||x — x[|2 = >M [x; — %12 O

The next lemma provides a result that will be useful for bounding the Euclidean
norm of the coefficient vectors of basis functions in subsequent error estimates.
This result follows from the Rayleigh quotient bounds of the Gram matrix of a
basis and is closely related to Theorem 4.2.1.

Lemma 4.3.3 (Rayleigh quotient bounds of the Gram matrix). Let V be an
inner product space with norm || - ||y induced by the inner product (-,-)y. Let
{b;: i=1,...,n} be a basis of V. Then, for any finite sequence of real numbers

.....

mm Z |Cz|2 max Z |Cz|2
v

where B € R™" is the Gram matriz with B;; = (b;, b;)y.
Proof. Let v =>3"", ¢;b; € V be arbitrary. Then, we have that

o[ = (v,0)y =Y (b, bj)y = ¢ Be

=1 j=1

with ¢ = [cy, ..., c,]T € R™ Since B is symmetric, and {b; : i = 1,...,n} forms
a basis of V, it follows that ¢’Bc = |[v||?, > 0 for any ¢ € R"\ {0}. Thus, B is
an SPD matrix. Consequently, the associated Rayleigh quotient is bounded by
c'Be
c’c

)\min(B) S S )\max<b)7
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4. Hierarchical Super-Localized Orthogonal Decomposition

where A\pin(B) and A\pax(B) are the smallest and largest eigenvalues of B, respec-
tively, satisfying 0 < Apin(B) < Apax(B). This directly yields the assertion. [

Let A € RVNXNL he the full sEiffness matrix associated with the HSLOD basis
functions with (Az)i; = a(¥im, ¥jm). Let AY € RVNeXNe he the corresponding
block-diagonal stiffness matrix with

(AL, {a(z&-,m, Bim) i level (Yin) = level (i,0),
S

otherwise.

The a posteriori error bound of the level-wise Galerkin method is then given by
the following theorem.

Theorem 4.3.4 (Error bound of level-wise Galerkin method). Let the set
{gim: 1 =1,...,Np} be stable in the sense of Theorem 4.2.1. Then, for any
[ € H*(D) with s € {0,1}, the solution of the level-wise Galerkin method
introduced in (4.21) satisfies

lu —upmlle S H 1+3Hf|

HS

1/2\/_m Collfll2y

L+ Hy%o\Y2 1 (i d
+ <>\mm(AL)) Hy )‘min(AL )\/Zm Collflle2(p)
with Cyy, from Theorem 4.2.1. This result implies that the level-wise Galerkin
approximation converges to the exact solution at an algebraic rate in Hy, up
to additional errors due to localization and the truncation of off-block diagonal
entries in the hierarchical stiffness matriz.

Y

Proof. Let 4 be the Galerkin approximation in the space VLm, i.e., for all
UNS ]A}%/I,I;L it holds that
( ) (f7 )L2 (D)-

Hence, 4 is the approximate solution associated with the full stiffness matrix
A € RVNoXNe | Using the triangle inequality, we get that

lu = uimlla < llu—alla + 1@ — upyllo- (4.27)

By applying Céa’s Lemma and Theorem 4.3.1, we obtain for the first term that
(o) + Cil VImCo|| fllapy.  (4.28)

lu = lla < flu— i lla < HL™IIF]

To approxnnate the second term in (4.27), we express both 4 € \A/%ﬂ and
up', € VML using the HSLOD basis functions. Therefore, we define the right-

hand side vector f == [(f, ¢ m)2y, - (f, Uy, m)r2(py]”. Then, the Galerkin
solutions admit the representations

Ny, R Ny, R
@ => éahim and ui{}n =>" i,
i=1 =1
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4.4. Additional compression strategies

where [¢y,...,¢y,]" = ¢ = A7'f and [, .. AT = MY = (AT We
define the coefficient difference by ¢, =¢ —c¢ L

Let AM .= A, — AME denote the matrix of discarded off-block entries. For
each level ¢, let A, be the rectangular submatrix of AMY consisting of the rows

corresponding to those in the (-th diagonal block of AYL. Moreover, let A be
the /-th diagonal block of AY and Aj. From Theorem 4.3.2, Theorem 4.3.3,
and Friedrichs’” inequality, it follows that

Np

S — M

=1

< (IAY™ 2 + 1AY ]]2)lleal3

~ A3
< AML + AML || 2112
< (1AL + 1A% H);Am(A el

|t — uIXH;an =clAicy= chlchd + chAIZILcd

111220y
Amin(AL)

By construction, the localized hierarchical basis functions are normalized with
respect to the energy norm. Consequently, for any 4,j € {1,..., N} we have
(s m,jm)| < 1. This implies that all entries of the matrix A} are uniformly
bounded in absolute value. Applying Gershgorin’s Circle Theorem and exploiting
the finite overlap patches, we deduce that

1A} ]z = max{ Amin (AL, [Amax (AF) [} S m”. (4.29)

~J

S (IAY o+ 1A l2) IAY A (ARY) 2%

Since AMY is symmetric as well, Gershgorin’s Circle Theorem together with
Theorem 4.1.1 yields that

1A} o = max{[Amin (AF) |, Pmax (AF") [} S HL“m2Co, (4.30)

leading to the error estimate

A 1+H—d<-0. 1/2
Ji =il S (Stay ) HE N (AY) VI Col i)

Combining this with (4.27) and (4.28) concludes the proof. O

4.4. Additional compression strategies

If the block-diagonal stiffness matrix A is well conditioned, additional com-
pression steps to the level-wise Galerkin method introduced in (4.21) are possible.
In this scenario, the inverse of AM: can be well approximated by a sparse matrix.
Consequently, computing the approximate solution of (2.3) using the inverse
approximation reduces to the computation of a matrix-vector product.

In this section, we propose two additional compression steps and quantify the
resulting approximation error. The first compression step is to approximate the
inverse using the Conjugate Gradient (CG) method.
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4. Hierarchical Super-Localized Orthogonal Decomposition

4.4.1. Approximate inverse of block-diagonal stiffness
matrix

The inverse of the block-diagonal matrix A} is itself a block-diagonal matrix,
with diagonal blocks being the inverses of the corresponding blocks of AML.
Notably, the inverse of each block is generally a full matrix (a property derivable
from the Cayley-Hamilton theorem, which relates a matrix and its characteristic
polynomial). The i-th column of the inverse of the ¢-th diagonal block of AML
can be computed by solving the linear system

AP —e,
where A%) denotes the j-th diagonal block of AM and e; is the i-standard basis
vector. If we solve the above linear system iteratively with CG, we obtain the
following error bound

<(AP) 1

(@) _ (k)
Hce Cy ‘AE? = K(Aéf)) 1

0 -

where the k-th CG iterate is denoted by céi’k). Thus, the column céi) could be
well approximated with a few CG iterations, provided the condition number
of A%) is small. Consequently, we can accurately approximate the inverse of
the diagonal block A%) by a cheaply computable sparse matrix Sélz) € RNOXNY
where N
SEIZ) = [Célyk)v e 7C2 “ )]'
The approximate inverse of AMY is then given by the block diagonal matrix
S*k) € RN:*Ne with diagonal blocks S%. ... S,

The following estimate quantifies the sparsity degree of the blocks of the
approximate inverse S®), under the assumption of Cartesian meshes. If the CG
iterations are initialized with cy’o) = 0, the number of non-zero entries in the
k-th iterate can be bounded as

mnz(cf™) < (1 +4mk)*(2* - 1), (4.31)

where the bound is tight (i.e., attained for some i < N}) provided k is such that
the right-hand side of the inequality remains below N}.

Remark 4.4.1 (Non-zero entries in CG approximation). The bound in (4.31)
can be derived by interpreting A%) as the adjacency matrix of a weighted graph
G. Then, for k > 1, the number of nonzeros in cé"”“) equals the number of vertices
in G that are reachable from vertex i via a path (a sequence of edges) of length

at most 4mk, considering the vertex ¢ connected to itself.
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4.4. Additional compression strategies

Using this CG approximation, we set [¢f¢, ..., c¢{F¢]" = ¢%¢ = SWf with
f=[(f, zﬁl)Lz(D), e (f, &NL)LQ(D)]T and define the corresponding approximate
solution to the model problem (2.3) by

uLm = ZCCG%m (432)

Theorem 4.4.2 (Error bound using CG approximation). Let §¢ > 0 and
k € N be such that H(A}/IL)’1 — S("“)H2 < 0°C, where S denotes the approzimate

inverse obtained via k CG iterations. Then, for any right-hand side feL*D),
the additional error incurred by using the approm'mate solution u$S ~ from (4.32)
instead of the level-wise Galerkin solution uL from (4.21) is bounded by

1/2
s — S 1o < (1 + Hy o) "V Im 6| £l 2o

Proof. Using the fact that supp(¢;,,) C D;, Friedrichs’ inequality and the finite
overlap of patches per level, we obtain that

Np
I£13 < D172 10iml720, S LI £1172(p)
=1

since || m|la = 1 by construction.
As before, we can write the level-wise Galerkin solution as

N

ML ML 7
U m = Zcz ;

=1

with [}, .. N = ME = (AYY) 7L We set ¢q = ¢MP — ¢ and define the
matrix of discarded off-block entries as AME = Ap — AML Using (4.29) and
(4.30), we obtain that

Nr

PG CG)wz
=1

(A" 2+ HNLALHQ)ncdH%

< md(l + HL‘ng) (H(AIZIL)—l B S(kch)”2||f||2>2
< m(1+ Hy%o) (VIm®26% | 2m))

As a direct consequence, the statement follows. O

=cy (AML AI}fL) c

HuLm - uLmH2 =

IA

4.4.2. Disregarding small entries in approximate inverse

In this section, we introduce the second compression stage, which consists of
neglecting small entries in the approximate inverse S, which is obtained via

65



4. Hierarchical Super-Localized Orthogonal Decomposition

the CG method. Let S, € RV:XNe denote this matrix resulting from discarding
all entries of S®) whose absolute value is smaller than a given tolerance e > 0.
Furthermore, let N, be the maximal number of entries in any row or column of
S®*) with absolute value smaller than e. Then, it follows that

1Sc = $® > < /IS = SWL[ISc — SV < Nee. (4.33)

We set [cl(-e), e ,cgf,)L]T = c(© = S.f and define the corresponding approximate
solution to the model problem (2.3) by

Ny, R
), =3 . (4.34)
=1

With the same procedure employed in Theorem 4.4.2, and using (4.33), we obtain
the following approximation result.

Theorem 4.4.3 (Error bound using truncated approximate inverse). Let € > 0.
Then, for any right-hand side f € L*(D), the additional error incurred by using

the truncated matriz S, leading to the approximate solution uS-j)m from (4.34),
instead of the CG approzimation S¥), is bounded by

€ _ 1/2
S5, = uidlle S (1+ H %) " VIm Neel| | 12(p)-

Collecting the approximation results from Section 4.3 and the additional
compression steps discussed above, we derive the following error estimate for the
approximate solution incorporating all compression steps.

Corollary 4.4.4 (Overall error estimate). Let {gim : ¢ =1,..., N} be stable in
the sense of Theorem 4.2.1. For any f € H*(D) with s € {0,1}, the approzimate
solution ug‘)m defined in (4.34) satisfies

lu—u e <

S (Hi 4+ CVImCo)||f|
+ md\/L(l + H;%o)
x ( co
HEA (A L) Amin (AYT)

H*(D)

+6% 4 Nee) £l 200

where §°¢ > 0 and € > 0 are small parameters proportional to the prescribed
accuracy.

4.5. Condition number of the hierarchical
stiffness matrix

In this section, we analyze the conditioning of the diagonal blocks of the hierar-
chical stiffness matrix AM. The analysis is inspired by techniques developed
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4.5. Condition number of the hierarchical stiflness matrix

in [FP20, Lemma 6]. The resulting theorem shows that the condition numbers
of these blocks are independent of the mesh size, except for the block associated
with the first level. Condition (4.8) plays a crucial role in this. Additionally, this
result provides further insight into the accuracy of the error estimates established

in the preceding sections. R
We consider the level-wise defined HSLOD basis functions 95 from (4.7) and

£,i,m
their normalized counterparts 1//;(71‘7,-,1 from (4.11). We can write the L?-orthogonal
projection onto piecewise constants of those functions as

?ilﬁf > PK "k and Hﬂ/;e,z‘,m = > ]55;?]11(. (4.35)
KeT, KeT;

Using the above coefficient vectors, we define the matrices Py, P, € RNV with
(Po)y =pi, and  (Py)y; = pit. (4.36)

From (4.11), it follows that P, = P,N, where N, € RN*N! is the diagonal
matrix such that (N); = [[{¥F3ed] 1.

In the following we want to give an estimate of the condition number and
the smallest eigenvalue of the blocks A%) of the hierarchical stiffness matrix.
Therefore, we provide first the following two lemmas, giving an estimate for the

smallest eigenvalues of the matrices N, and P7 Py, respectively.

Lemma 4.5.1 (Smallest eigenvalue of Ny). For each level 1 < ¢ < L, the
smallest eigenvalue of the diagonal matriz N, € RNV with (N, = ||1ﬂ?31$,f}||g1
satisfies

Amin(N¢) = m =2 H, >,

Proof. Analogous to (3.23), the SLOD basis functions used in the construction
of the hierarchical basis can be obtained by applying a correction to the LOD
functions; see Section 3.4.4. We denote these SLOD functions by &%, and

their, with respect to the local source terms, normalized counterparts by G§%,,.

According to the definition of @DhSlOd (4.7), we have

b = 2 ARG, (4.37)
KeS(Ji)
where di) = d'/| 3%l L2py- We collect these coefficients into the vector
3(4)
d - (dK )KES(JO'

For a fixed oversampling parameter m € N and a fixed level 1 < ¢ < L,
we denote by D; = Nj*,(7},) the patch associated to the hierarchical basis

function 54, Consider the SLOD function @93, for some K € SL(]?. The

Lim
L% orthogonal projection of gozh;?m onto P*(7,_1.p Ji) can be written as
- K
HZ 1¥ ;l(])gm = Z Q(T )]]-T7
T€Te-1,p,
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4. Hierarchical Super-Localized Orthogonal Decomposition

and the projection onto P*(7;p, ) as

M5, = > o 1r (4.38)

TG'E,DJZ_

Using these coefficients, we define the matrices Q € RNe*Ns and C € RNexNs by

setting Q,; = q(Tfj) and C,; = C(Tfj), where

Nq - #nfl’Dt’i’ Ne = #E’Dh and N, = #ng)

Finally, let B € RV-*#Ker(Q) he the matrix whose columns form an orthonormal
basis of Ker(Q).

Using condition (4.8), we deduce that d¥) = By for some y € R#K(Q) To
satisfy condition (4.9), we require

CBy = ek, — ez, (4.39)

where ey, ez € R™e are canonical unit vectors, with all entries zero except for
those corresponding to the elements K; € des(T7,) and K € des(T7,) \ des(T7,),
respectively. Since CB is, in general, a rectangular matrix, equation (4.39) can
typically only be solved in the least-squares sense. The least-squares solution is
given by

vy = ((CB)'CB) ' (CB)"(ex, — ez, (4.40)

Note that all entries of the matrices C, B, and the vectors eg,, ez are mesh-
independent. Moreover, from (3.24), the absolute values of the entries of C
are uniformly bounded by 1. Consequently, from the expression in (4.40), it
follows that the entries of d are also mesh-independent. Additionally, according
to [FP20, Equation (2.9)], the energy norm of LOD basis functions is of order

O(H j / 271), which, by construction of the SLOD functions, implies
~slo d/2—1
||90€{Ig,m||a = O(He/ )
Combining this with the representation in (4.37), we obtain

lE e < 32 MR NGE e S NHT S mHP,
Kes'H

where we used Ny = #ng) < m?. From the definition of Ny, the assertion follows
directly. O]

Lemma 4.5.2 (Smallest eigenvalue of PTP,). The smallest eigenvalue of the
matriz PT P, € RNIXNE where the matriz P, is defined in (4.36), satisfies for
each level 1 < ¢ < L that

)\min(PeTpe) = 0(1)-
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4.5. Condition number of the hierarchical stiflness matrix

Proof. Combining (4.35), (4.37) and (4.38), we deduce that

% (@) (T
W= Y

Test)

for K € Typ g Since both cg) and czgf) are mesh independent, it follows that
pg? is O(1). Furthermore, for ¢ > 1, if conditions (4.8) and (4.9) were exactly
satisfied, we would have

p&?z = Zd&f)c@:l for K; € des(T7,),
TET;
W= APl = -1 for K € des(Ty,) \ des(T.
Py > TCr or K € des(T},) \ des(T},),
TeT,
P = S dPED =0 forall K ¢ {K;, K}.
TeT,

This implies that P? P, would be block diagonal, with each block of dimension
(24—1) x (2¢—1), where the diagonal entries are all equal to 2 and the off-diagonal
entries are all equal to 1. Thus, the smallest eigenvalue of each block would be 1
and consequently, Ayin(P7P) = 1. In general, however, condition (4.9) cannot
be satisfied exactly but only in the least-squares-error sense. Nevertheless, if
the least-squares error is sufficiently small, Apin(P?Py) should remain well away
from 0.

At level £ = 1, the basis functions correspond to standard SLOD basis functions,
and hence P; = C. From condition (3.24), we know that C = I+ ¢, where I
is the identity matrix and 0 has zero diagonal entries and off-diagonal entries
bounded by d, in absolute value. Therefore, C is a perturbed identity matrix. If
ds from condition (3.24) is small enough, the smallest eigenvalue of CTC will
remain far from 0, ensuring that the basis at level £ = 1 is well-behaved. O

Note that the entries of the i-th column of P, reflect the degree to which the
function 1[)gzm is concentrated in each element of 7,. Consequently, the smallest
eigenvalue )\min(PgTPg) serves as an indicator of the linear independence of the
basis set {@glm :i=1,...,N?}, and hence, of the overall basis quality. The
closer this value is to 1 and the farther it is from 0, the more linearly independent
(and numerically stable) the basis functions are.

We are now prepared to derive an upper bound for the condition number of
the hierarchical stiffness matrix.

Theorem 4.5.3 (Condition number of the block-diagonal stiffness matrix). The
condition number of the diagonal blocks A%) of the hierarchical stiffness matrix
AMY s mesh independent for £ > 1 and O(Hy?) for £ = 1. More precisely, it
holds that
L
w(Ai) 5

~

sd)__(PTP,)-! (> 1
{m (P7 Pe) =5 (4.41)

MY H A (PTP1) 1 £ =1,
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4. Hierarchical Super-Localized Orthogonal Decomposition

with Amin(PTPy) = O(1) for all 1 < ¢ < L. Furthermore, the smallest eigenvalue
(L) .
of Ay’ satisfies

24N in(PTP)) (>1
Auin(ALF) 2 47 Smimie ’ 4.42
(ai) 2 {m‘QdHf)\min(PlTPl) (=1, (4.42)

Proof. First, using the Rayleigh quotient and the definitions of the matrices P,
and P, from (4.36), we obtain for any level £ > 1 and all x € RY? \ {0} that

xTPIPx = x'N,PIP,Nyx > A\pin (PTP,)x" N2x
> Amin (PP o) Amin(ND)xx.
Consequently, using Theorem 4.5.1 yields
Amin(PTP,) > Ao (PP ) Auin (N2) > m 2 {2740 0 (PTP) (4.43)

with Apin(PTP) = O(1), see Theorem 4.5.2.
Using the Rayleigh quotient bound and |K| > H{ for K € T;, we establish for
an arbitrary ¢ = (¢;);cqy ey € € R that

b
Né

Z HgCTpgng Z Héi)\mm(f)gp[) Z C?.

=1

b
Ny . 2

> elliheim

i=1 L2(D)

On the other hand, applying the stability and approximation properties (2.6)
and (2.7) of the L?-orthogonal projection I1,, (4.8), and the fact that H, | = 2H,
we obtain for ¢ > 1 that

R 2 Ny 2
LLeg i m < CiWeim
e, L2(D) ; Ve, L2(D)
Ny 2
= (1 =TI, CZ.A im (4.44)
H( ¢ 1); Ve L2(D)
< H@ 1 Zczwfzm N

Combining the previous three inequalities yields

b
NZ

ZCszm

i=1
Theorem 4.3.3 then implies the first line of (4.42). The case ¢ = 1 follows almost
analogously, where we use Friedrichs’ inequality after the first line of (4.44).
Since ’a(iﬂgﬂ"m,&g’j’mﬂ < 1 for all 4,5 € {1,..., N}}, the Gershgorin Circle
Theorem implies that A\p.x (A%)) < m<. Combining this upper bound with the

pe m_2d)\mm P Py) Zc

lower bound from (4.42) establishes the condition number estimate stated in
(4.41) for the hierarchical blocks. O
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The above theorem, in combination with Theorem 4.5.2, indicates that the
condition number of the diagonal blocks A%), and thus of the full matrix AN
is influenced by the degree of linear independence of the basis functions at level
(. 1t is also worth noting that the contrast of the diffusion coefficient may affect
the conditioning via the hidden constants in the stated estimates.

Moreover, by applying Weyl’s inequality, we can bound the smallest eigenvalue
of the full hierarchical stiffness matrix Ay from below in terms of the smallest
eigenvalue of the block-diagonal matrix AM:. The latter can, in turn, be
estimated using Theorem 4.5.3. Let AML .= A, — AME. Then, using the
estimate (4.30), we obtain that

Amin(AL) > Amin(AIZIL) - max{‘)‘min(AiAL)’a |>‘maX(A¥[L)|}
2 )\min(All\//[L) - Hﬁdmd/2CO_'

~

In the last step, we examine (, providing an upper bound on the Euclidean
norm of the coefficient vectors from (4.12) defining the hierarchical basis functions.
Using Theorem 4.3.3 and the definition of 1, ,, in (4.13) yields that

S0 AV < Ak (AT [ = Ak (AT,

K eSffi)

where Aol € RN:*N? denotes the stiffness matrix associated with the SLOD
basis functions @79, at level £. According to the case ¢ = 1 in (4.42), its
smallest eigenvalue is bounded from below.

As a consequence, assuming stability and sufficient linear independence of the
basis functions, we obtain an a priori error estimate. In particular, due to the
exponential decay of the localization error indicator o, the error matches that of
classical SLOD or LOD methods, provided the oversampling parameter is chosen
sufficiently large, i.e., m 2 |log(Hp)|.

4.6. Numerical Experiments

In this section, we present numerical experiments to validate our theoretical
findings. For practical implementation, all infinite-dimensional problems arising
in the solution of local patch problems are replaced by their P!-finite element
discretizations on a fine mesh 7, with mesh size 271, obtained through successive
uniform refinements of 7;. For stability of the SLOD basis, we employ condition
(3.24) with 0, = 0.5. Additionally, we compute a reference solution wuy, using the
standard finite element method on 7, with P!'-finite elements.

We consider two types of coefficients: a highly-heterogeneous piecewise constant
one, and coefficients with high-contrast channels; see Figure 3.12 and Figure 4.5
for an example of each, respectively. In all cases, we utilize uniform Cartesian
meshes over the unit square D = (0, 1)? where the mesh size denotes the side
length of the elements.
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4. Hierarchical Super-Localized Orthogonal Decomposition

Figure 4.5.: Coeflicient with high-contrast channels (left) and piecewise constant
right-hand side f € L?(D) with respect to the mesh with mesh size
270 (right).

In our numerical experiments, we consider two types of right-hand sides. First,
the same smooth right-hand side f € H'(D) as in the previous chapter, given by

f(z1,15) = 27 sin(x1) sin(a). (4.45)

Second, we employ a piecewise constant right-hand side f € L?(D) with respect
to the mesh 7; with mesh size 279; see Figure 4.5. More precisely, we choose
f =% fowith f, € P°(T;) and H, = 2~*, where the values of each contribution
fe are randomly chosen within the interval [—1,1]. With this choice, we ensure
that the contribution of each level to the approximate solution is non-zero.

Highly heterogeneous piecewise-constant coefficients

In our first set of experiments, we select a high-contrast coefficient A which is
piecewise constant with respect to the mesh of mesh size 278, The coefficient
assumes independent and identically distributed element values ranging between
a = 10"* and 8 = 1. In the specific realization we consider, these boundary
values are almost assumed, resulting in an actual contrast of 9.2 - 103,

Figure 4.6 illustrates the complete stiffness matrix associated with the HSLOD
basis for different values of the patch order m. As discussed in Section 4.1, the
practical hierarchical method does not yield a fully a-orthogonal basis, leading to
the appearance of some non-zero off-block-diagonal entries in the stiffness matrix.
However, the a-inner product between two non-orthogonal basis functions at
distinct levels is small and diminishes further with increasing m. Consequently,
the block-diagonal approximation, which is obtained by discarding all off-block-
diagonal entries, serves as an accurate approximation to the full stiffness matrix,
particularly for larger values of m.

Figure 4.7 shows the system matrix corresponding to the piecewise constant
local source terms used in the collocation-type HSLOD approximation. While
this matrix exhibits the same structural pattern as the full stiffness matrix, its
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Figure 4.6.: Sparsity pattern of the complete hierarchical stiffness matrix for
varying patch orders m.
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Figure 4.7.: Sparsity pattern of the system matrix associated to the local source
terms for varying patch orders m.

off-block-diagonal entries remain relatively large and do not decay with increasing
oversampling parameter m. As a result, the contributions from different levels in
the collocation-type formulation cannot be computed independently, requiring
the entire system matrix to be assembled and considered as a whole. Nonetheless,
the hierarchical structure leads to a significant improvement in the conditioning
of the system matrix compared to the standard SLOD approach.

Small condition numbers of the diagonal blocks of the stiffness matrix are
crucial for the fast computation of their approximate inverses using the CG
method. The condition numbers of the diagonal blocks are presented in Table 4.1.
Consistent with Theorem 4.5.3, these blocks exhibit good conditioning, with
condition numbers remaining stable across finer levels. This stability enables a
reliable approximation of the inverse using only a few CG iterations.

The inverse of the block-diagonal stiffness matrix, its CG approximation,
and the sparsification of this approximation according to Section 4.4.2 are
illustrated in Figure 4.8. The number of non-zero entries in the sparsified CG
approximation of the hierarchical stiffness matrix is reduced by more than a
factor of ten compared to the complete block-diagonal inverse, and by nearly a
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4. Hierarchical Super-Localized Orthogonal Decomposition

Table 4.1.: Properties of the diagonal blocks of the HSLOD stiffness matrix
and the relative energy error of the approximate solution u,(f)gm as
defined in (4.34) for a piecewise constant coefficient with m = 2. The
approximate solution is computed using ¢ levels of the hierarchy, with
a maximum of seven CG iterations to approximate the inverse blocks
of the hierarchical stiffness matrix and an entry cut-off tolerance of

e=107"%.
/¢ 1 2 3 4 5 6
H, 21 22 273 24 275 26
cond(Aé:Z) 4 5 17 20 17 18
|lup — ugf)gmHa/HuhHa 0.2297 | 0.0491 | 0.0117 | 0.0029 | 0.0007 | 0.0002

10—10

R

1z — 1.00663¢. 07 1z — 9.846450 106 17 — 100263606 -

Figure 4.8.: Sparsity pattern and number of nonzeros of the inverse of the stiff-
ness matrix after the different compression stages. Left: inverse of
block-diagonal matrix; middle: CG approximation of each inverted
block after seven iterations; right: discarding entries of the CG
approximation with absolute value smaller than 107°. The patch
order is set to m = 2.

factor of ten compared to the number of non-zero entries in the finite element
stiffness matrix used to compute uy. In Table 4.1, we present the relative energy
error of the approximate solution for the smooth right-hand side of (4.45) using
this sparsified inverse approximation.

Figure 4.9 displays the relative energy errors of the level-wise Galerkin method
and the collocation-type approximation, defined in (4.21) and (4.22), respectively,
for various patch orders m and coarse mesh sizes H; applied to both types
of right-hand sides f. For comparison, we also include the relative energy
errors of the HLOD method, which is computed using the level-wise Galerkin
approach. Since the HSLOD basis functions incorporate corrections to the
standard LOD functions, the HLOD method corresponds to the case where
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Figure 4.9.: Relative energy errors of the HSLOD and the HLOD in dependence
of the mesh size H, for the highly-heterogeneous piecewise constant
coefficient. Left: errors for a smooth right-hand side, right: errors
for a piecewise constant right-hand side.

these corrections are omitted. Due to condition (4.8), this version of the HLOD
method exhibits a similar error behavior to the stabilized HLOD approach
introduced in [HP22a|, which is based on [FP20]. Furthermore, this stabilized
method achieves higher accuracy than the gamblets-based approach of [Owh17],
as discussed in [HP22a, Section 8.2]. Notably, both HSLOD methods consistently
outperform the HLOD across all displayed parameters m, demonstrating superior
accuracy.

Although the error analysis bounds the error of the level-wise Galerkin method
by that of the collocation-type approximation, practical results show that, when
a difference is observed, the collocation variant typically yields slightly larger
errors. This suggests that the error introduced by neglecting the off-block-
diagonal entries in the stiffness matrix is negligible. For a smooth right-hand
side, the error in the energy norm obtained with the HSLOD methods exhibit the
optimal convergence rate of O(H?#) for m > 1. In the case of a piecewise constant
right-hand side f € L?(D), the expected error rate of O(Hp) is observed, provided
that no mesh in the hierarchy resolves the underlying mesh of f. However, if
the finest mesh in the hierarchy does resolve 7, the HSLOD solution is exact
up to localization error (collocation variant) plus an additional error due to
omitting the off-block-diagonal entries in the stiffness matrix (level-wise Galerkin
method). Both errors scale proportionally to o (cf. Theorem 4.3.4), leading to
super-exponential decay with respect to the localization parameter m and thus
significantly smaller errors for the HSLOD methods compared to the HLOD.
This is also illustrated in Figure 4.10, which shows the relative energy errors of
the HSLOD and HLOD methods as a function of m, using six levels in the mesh
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Figure 4.10.: Relative energy errors of the HSLOD and the HLOD methods as
a function of the oversampling parameter m, for a highly hetero-
geneous piecewise constant coefficient and a piecewise constant

right-hand side. The mesh hierarchy consists of six levels with
H; = 276,

hierarchy with H; = 276.

Figures 4.11 to 4.13 show the relative energy errors of the HSLOD and HLOD
methods, plotted against the online computing time in seconds or the number of
nonzero entries in the approximate inverse of the stiffness matrix, for various
numbers of compression stages. The markers indicate the hierarchy levels, with
mesh sizes ranging from H = 27! to H = 277. The comparison between the
level-wise Galerkin and the collocation-type methods is shown in Figure 4.11.
After a few levels, the level-wise Galerkin method outperforms the collocation-
type method in terms of online computation time because, for the collocation-
type method, at each level the whole system matrix must be considered, and
contributions from different levels cannot be computed independently. It is
important to note, however, that the assembly of the system matrices, which
is more costly for the Galerkin method, is not included in the reported online
times.

The benefit of additional compression stages with respect to online performance
is clearly visible. Figure 4.12 presents the energy error using the CG method
with up to seven iterations, while Figure 4.13 shows results for the trimmed CG
method, where entries with absolute value below 10~ in the CG approximation
are neglected. In this case, the reduction in the number of nonzero entries in the
approximate inverse is also apparent.

It is also noteworthy that variations in the parameters o or 5 do not produce
significant differences in the error plots or condition numbers. Hence, for this
type of coefficient, the HSLOD method performs well even in the presence of
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Figure 4.11.: Relative energy errors of the HSLOD and the HLOD methods as a
function of the online computing time, for a highly heterogeneous
piecewise constant coefficient and a smooth right-hand side.
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Figure 4.12.: Relative energy errors |[u, — uf,$ ,,|la/||uslla of the HSLOD and
the HLOD methods, using the CG method to approximate the
inverse stiffness matrix, as a function of the online computing time
(left) and the number of nonzero entries in the approximate inverse
(right) for a highly heterogeneous piecewise constant coefficient and
a smooth right-hand side.
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Figure 4.13.: Relative energy errors ||uj, — uEf)LmHa/HuhHa of the HSLOD and
HLOD methods, using the trimmed CG method to approximate the
inverse stiffness matrix, as a function of the online computing time
(left) and the number of nonzero entries in the approximate inverse
(right) for a highly heterogeneous piecewise constant coefficient and
a smooth right-hand side.

high contrasts in the coefficient.

High-contrast channels

Next, we consider the coefficient from Figure 4.5, which exhibits high-contrast
channels, leading to increasing difficulty in the problem. The channels are defined
on a mesh with mesh size 27°. The precise definition of the coefficient is as
follows:

Ax) = Az, x2) = Ar(x1, 22) + A1 (22, 11),

with

) {a/z, v €[5 Al x [ BIU S, 8] x (5, 2]
1/2, elsewhere.

For this setup with the smooth right-hand side from (4.45), Figure 4.14
shows the relative energy errors of the HSLOD and HLOD methods for various
combinations of contrast and patch order. We observed that for higher contrasts,
larger values of m are necessary to achieve the optimal convergence rate of
O(H?). As in the case of the highly-heterogeneous piecewise constant coefficient,
the HSLOD consistently outperforms the HLOD for all cases shown, leading
to improvements over [PS16] in particular. Especially for higher contrasts, the
superiority of the HSLOD is evident.
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Figure 4.14.: Relative energy errors of the HSLOD and HLOD methods as a
function of the mesh size Hy, for a coefficient with high-contrast
channels and a smooth right-hand side. Left: results for a fixed
contrast with 3 = 10%; right: results for various combinations of m

and f.

The condition numbers of the blocks of the HSLOD stiffness matrix for the
same combinations of m and [ as in the right panel of Figure 4.14 are shown
in Table 4.2. For these cases, the condition numbers grow with increasing g for
levels with mesh sizes close to the width of the channels. For the other levels,
however, the condition numbers remain stable over different contrasts. Note
that this stability is only observed when the patch order is increased for higher
contrasts, leading to our choice of m = k + 1 for 3 = 10*.

Table 4.2.: Condition numbers of the blocks of the stiffness matrix for the high-
contrast channel coefficient for varying contrasts and patch orders,
rounded to two significant figures.

H, 2-1 |22 [273 [o—4 25 276 |27
B=10.m=3 |3 8 24 110 51 17 17
B=103m=4 |3 8 370 | 1100 680 76 56
B=10"m=5 | 4 7 120 | 21.000 |3.000 |26 26
B=10°0,m=6 | 4 7 120 | 1.7-10° |33.000 |21 21
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Part 11.

Random coefficients






5. Super-Localized Numerical
Stochastic Homogenization

In this part of the thesis, we consider the prototypical random diffusion problem
—div(AVu) = f

subject to homogeneous Dirichlet boundary conditions, where microscopic fea-
tures of the problem are encapsulated in the random diffusion coefficient A.
In the following, we present a computationally simple and efficient numeri-
cal stochastic homogenization method tailored for such problems, based on a
collocation-type formulation of the SLOD introduced in Chapter 3.

In the deterministic case, the SLOD method constructs an almost local basis
by applying the solution operator to P°(7z), the space of piecewise constants on
a coarse mesh 7. This involves selecting locally supported piecewise constant
right-hand sides whose localized responses have minimal conormal derivative.
The stochastic setting requires modifying this approach by choosing deterministic
local source terms that minimize the expected conormal derivative of the localized
responses.

A key advantage of the collocation-type formulation, in contrast to Galerkin
methods, is that it eliminates the need to assemble a global stiffness matrix,
which would require communication between basis functions defined on different
coarse patches. Instead, only a system of linear equations on the coarse mesh
corresponding to the local source terms needs to be solved. This enables each
patch to be processed independently, significantly improving parallelization and
accelerating the method’s assembly process. Moreover, the favorable localization
properties of the SLOD allow for an efficient sampling procedure.

In the case of a random diffusion coefficient with a small correlation length,
and under the standard assumptions of quantitative stochastic homogenization,
we provide an error estimate for the coarse-scale approximation of the presented
method. This estimate incorporates certain SLOD-specific quantities in an
a posteriori manner. The proof is grounded in the framework of quantitative
stochastic homogenization (see, e.g., [GO11,GO12,GNO14,GNO20]). To further
analyze key components of the error such as the localization error and the Riesz
stability constant, we use classical LOD techniques [MP14, HP13, AHP21], and
additionally conduct an a priori error analysis for the expected overall localization
error. However, similar to the deterministic SLOD setting, the a priori stability
of the basis functions cannot be guaranteed. Nevertheless, a practical solution
to address this issue in implementation is provided.
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5. Super-Localized Numerical Stochastic Homogenization

The content and presentation of this chapter are largely based on the journal
article

[HMP25] M. Hauck, H. Mohr, and D. Peterseim. A simple collocation-type
approach to numerical stochastic homogenization. Multiscale Model.
Simul., 23(1):374-396, 2025

with significant sections taken verbatim.

5.1. Model problem

In this part of the thesis, we consider the prototypical random diffusion problem

{ div(Aw)@)Vaw)(@) = /(z), =z € D} for almost all w € Q, (5.1)
u(w)(z) =0, x € 0D

where (92, F,P) denotes the underlying probability space, f € L*(D) is a deter-
ministic right-hand side and D is a d-dimensional bounded polygonal Lipschitz
domain with d € {1,2,3}. Without loss of generality, we assume that D is scaled
to unit size. The diffusion coefficient A is an R?*“-valued random field that is
pointwise symmetric, Bochner measurable, and satisfies uniform ellipticity and
boundedness conditions. Specifically, there exist constants 0 < a < 3 < oo such
that, for almost all w € €2, the inequality

allnllz < (A(w)(@)n) -1 < Blnl3 (5.2)

holds for all € R? and almost all x € R,

Subsequently, we introduce a shorthand notation for norms and inner products
of Bochner spaces. Let X be a Hilbert space equipped with the inner product
(-,-)x. In this case, the Bochner space L?(£2; X), denoting the space of X-valued
random fields with finite second moments, is also a Hilbert space with the inner
product

(v, W) 2(0x) = B[ (v(w), w(w))x].

We write || - H%Q(Q;X) = (-, *)r2(a;x) for the induced norm of this inner product.
The weak formulation of the model problem (5.1) seeks an H{(D)-valued
random field w such that for almost all w € Q2 it holds that

(W), v) = /D (A(@)Vu(©)) - Vods = (f, )2 (5.3)

for all v € H}(D). Under the given assumptions, the bilinear from a,, depends
continuously on A and, in particular, is measurable as a function of w. Hence,
the above problem can be reformulated in the Hilbert space L?(Q; Hj(D)). The
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5.2. Numerical stochastic homogenization method

Lax—Milgram theorem then proves its well-posedness, i.e., there exists a unique
solution w € L?(Q; H} (D)) satisfying

2D e, (5.4)

HVU’HLQ(Q;LQ(D)) S (8%
For the sake of readability, we indicate the dependence of stochastic variables
from now on only by a bold symbol.

5.2. Numerical stochastic homogenization
method

In the following section, we determine deterministic local source terms that
minimize the expected conormal derivative of the localized responses, adapting
the approach from Section 3.1 to the stochastic setting. For the derivation of
basis functions, we consider a fixed element K € Ty and oversampling parameter
m € N, assuming that the patch Dy := N"(K), as defined in (2.14), does not
cover the entire domain. The deterministic source term corresponding to K is
denoted by gSIOd € P(Tu.p, ), where the submesh Ty p,. consists of elements
TeTy contained in the patch Dg.

The global response @3, € L*(%; Hj(D)) to gis, is given for almost all

w € Q by

slod slod
(SOK m) U) (gKm ) U)LZ(D) (55)

for all v € H}(D). Its localized counterpart @3, € L*(Q; H}(Dk)) is for almost
all w € Q defined by

(cﬁ}l(og’w U) (g;éo’rcrll ) U>L2(DK) (56)

for all v € Hj(Dg). The right choice of g%°% is again crucial for the approxima-
tion properties of the local version @3,

Analogous to (3.3), we denote the classical trace operator restricted to the
complete subspace Hi(Dy) C H'(Dg), consisting of functions with trace zero
on the boundary segment I' .= 0Dx N OD, by

tr = trp, : Hi(Dg) — X = rangetr ¢ H/*(0Dg).

As an extension operator, we henceforth consider the A-harmonic extension
operator tr~': L?(Q; X) — L*(Q; HA(Dg)) defined as follows: for almost all
w € Q and for any given b € L?(Q; X), we set

(trtr—'b)(w) = b(w)
and require that

a(tr 'b,v) =0 forallv e Hy(Dg). (5.7)
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5. Super-Localized Numerical Stochastic Homogenization

The space of locally A-harmonic functions satisfying homogeneous Dirichlet
boundary conditions on I' is then given by

Y =tr 'L*(Q; X) C L*(Q; HA(Dk)).

Similar to Theorem 3.1.1, we derive the identity

a’(QDil((,)?n - @il(?gm U) = (gil(?%a IU)LQ(DK) - a’(@?{?ﬁw ’U) = (gil((,)?m triltrv)LQ(DK)-

Taking the expectation yields, for any v € L*(Q; H} (D)), that

E[a(eis — #icn.v)] = (9308, i b, Eltr~trv]) (5.8)

L2(Dg)

As a consequence, the (almost) L*-orthogonality of the local source term g%‘?ﬁl

to the space E[Y] C H{(Dg) ensures a small expected localization error for the
basis function G°g,.

Therefore, we can obtain an optimal choice of g%‘fﬁl by performing an SVD
of the compact operator (g p, o E)ly : Y — PY(Tgp,) restricted to the
complete subspace Y. Note that the rank of (Il p, o E)|y is less than or equal

to N := #7Tu p,. Hence, the SVD is given by

N
(Mg o E)ly v = Z 01 (V, Wk) L2(0; 11 (D)) Ik (5.9)

k=1
where 01 > --- > oxn > 0 are the singular values, g1, ..., gy form an orthonormal
set of left singular vectors in L?*(Dg), and wy,...,wy are the corresponding

L3(Q2; HY(Dg))-orthonormal right singular vectors.
The left singular vector gy is an optimal choice for the local source term
g%‘jﬁl and the corresponding smallest singular value o is a measure of the quasi-

orthogonality between g3°, and E[Y]. Hence, we define

ox(H,e,m) =0y = sup (v, E[v]) 22(Dy) (5.10)

veY : HvHL2(Q;H1(DK)):1

where the parameter € > 0 denotes the correlation length of the random coefficient
A, which will be rigorously introduced in Theorem 5.3.1 below.

We emphasize that the practical implementation of the SVD in (5.9) is
challenging due to the stochasticity involved. A feasible approach based on
sampling is described in Section 5.5. For the error analysis in the following
section, we introduce the quantity

o =0(H,e,m) = max ox(H,e,m), (5.11)

KeTy

which is an indicator for the overall localization error.
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5.3. Error analysis

Figure 5.1.: Tllustration of the localized basis functions E[@5°%] obtained by the
presented stochastic homogenization method on successively refined
meshes for a piecewise constant random coefficient with a correlation
length of ¢ = 277 in two spatial dimensions. Various values of the
oversampling parameter are depicted with m = 1 (left), m = 2
(middle), and m = 3 (right). The corresponding L*mnormalized local

source terms ¢3°d are shown in gray.

Given that, in expectation, gbil{‘fsl closely approximates the response of the

global solution operator applied to gil(?,‘fl, it is reasonable to define the approxi-
mation of a non-Galerkin, collocation-type numerical stochastic homogenization
method by

U = > cxaE[@in], (5.12)

KeTy

where (ck)ker;, are the coefficients of the expansion of ITy f in terms of the basis
functions {g%%, : K € Tu}. An illustration of the deterministic basis functions

E[@35,] can be found in Figure 5.1.

5.3. Error analysis

In this section, we conduct an error analysis of the presented stochastic homog-
enization method. To do so, we first outline the necessary assumptions and
lemmas, which will lead to the final error analysis at the end of the section.
We begin by specifying the structural conditions on the randomness of the coef-
ficient field A, which are required to apply results from the theory of quantitative
stochastic homogenization. For simplicity, these conditions are formulated for
coefficient fields defined on R?. Therefore, the following assumptions implicitly
assume that the coefficient field is defined on the entire space R?, though a
random field defined on the bounded domain D can be obtained by restriction.

Assumption 5.3.1 (Stationarity and decorrelation). Assume that the random
coefficient field A is

« stationary, i.e., the law of the shifted coefficient field A(w)(- + x) coincides
with the law of A(w)(+) for all x € R?,
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5. Super-Localized Numerical Stochastic Homogenization

o quantitatively decorrelated on scales larger than ¢ in the sense of the spectral
gap inequality with correlation length € > 0, i.e., there exists a constant
p > 0 such that for any Fréchet differentiable random variable ' = F'(A)

the estimate
holds.

For an introduction to the notion of Fréchet derivatives, we refer the reader
exemplarily to [Dei85, Chapter 2]; see also [JO22, Section 3.1] for a definition
in the present context. We emphasize that the conditions in Theorem 5.3.1 on
the random coefficient A are standard in the theory of quantitative stochastic
homogenization; see, e.g., the work [GNO20].

The error analysis of the presented numerical stochastic homogenization me-
thod is based on the so-called Calderén—-Zygmund estimates, which are a popular
tool in the theory of quantitative stochastic homogenization. Such estimates
were established for an equation on the full space R? in [DO20], extending earlier
results from [AD16,DGO20]. For annealed Calderén—Zygmund estimates we
refer to [JO22, WX24], where the latter work considers the case of Lipschitz
domains. Contrary to the Calderon—Zygmund estimate given below, these
annealed estimates involve only a loss in stochastic integrability and not in
spatial integrability. Since such annealed estimates only lead to better (hidden)
constants in the final error bounds, we will henceforth stick to a suboptimal
Calderén—Zygmund estimate similar to [FGP21, Lemma 4.8], where an a priori
error analysis for a related numerical stochastic homogenization method in the
context of LOD is performed. The proof of the following estimate, which is beyond
the scope of this thesis, is analogous to the full-space case [DO20, Theorem 6.1]
and uses the boundary regularity theory of [FR17,JRS24] as well as a classical
regularity theory at edges and corners.

Lemma 5.3.2 (Calder6n-Zygmund estimate). Let d € {2,3}, and let A be a
random coefficient field subject to (5.2) and Theorem 5.5.1. Let Q C R® be a
boz, let h € L*(Q; L*(Q)), and let uw € L*(2; HY(Q)) be a solution to the linear
elliptic PDE

oF .

Iﬂw—Ewﬂ]<;

df)de] (5.13)

-V-(AVu)=V-h onQ,
u=0 on 0Q).
Then, for any 2 < p < oo and any p < q < 0o, there holds a regularity estimate

of the form
p/2 q/2 p/q
][E (7[ |vu\2dgz> dx§<][E (7[ |h|2d53> dx) ,
Q Be(x) Q Be(x)

where the hidden constant depends on the bounds o, 8 of A, the constant p from
Theorem 5.3.1 and p and q.
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5.3. Error analysis

To handle the stochasticity in the error analysis, we need to estimate the
variance of the random variables (@35, 11) 27y for any K € Ty and T' € Ty p,
where 11 denotes the indicator function of the element T". To achieve this, we
employ the spectral gap inequality (5.13) from Theorem 5.3.1. The following
lemma provides a representation of the Fréchet derivative of (95?1(0%’ 17)2(m), a

crucial element for this particular step.

Lemma 5.3.3 (L2-representation of Fréchet derivative). Let v € L*(Q; H}(Dk))
for almost all w € Q2 be defined as the weak solution to

(5.14)

—d1V<AV’U) :]lT m DK,
v =0 on0Dk.

The L*-representation of the Fréchet derivative of (@300, 1) r2(ry is then given

by

aiA@szlffm I7) 2y = — V@i @ Vv,

where ®@: R? x R4 — R4 denotes the outer product.

Proof. Let w € Q be fixed. We rewrite the Fréchet derivative of (@35, L) r2r)
with respect to L?(R%; R?*?) as

O (gt ), (5,4):( Piin (5.4 1 )
IA Prm> LT)L2(T) 9A y L )
g
= A : T (5A)d
[, (ave) vERR A ae
. L ogred
where we tested the weak formulation of (5.14) with gA‘ (0A)(w) € H}(Dg).

To further simplify the expression on the right-hand side, we differentiate the
local patch problems given in (5.6) with respect to A using the product rule.
This gives for any w € H}(Dy) that

a ~slod
/ (6AV<,5§1(°§,L) -Vwdr + / Ay ZPKm (§A) - Vwdr = 0.
DK ’ DK aA

Using the test function w = v(w) € H}(Dg) and combining the previous two
identities, we get

a . Aslo
871(90%‘?%, I7)r2r)(0A) = —/ (5Av¢il<,fn> -Vodz.
Dy
This expression directly characterizes the L2-representation of the Fréchet deriva-
tive of (@35, L7)12(r), and therefore yields the assertion. O
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5. Super-Localized Numerical Stochastic Homogenization

Another ingredient in the error analysis is the following regularity result
for the localized basis functions. The result is needed to further estimate the
term we get after applying the spectral gap inequality. The proof of this result
relies on the condition that the patches take the form of d-dimensional bricks,
cf. Theorem 5.3.2. This condition can be guaranteed, for example, by considering
a brick-shaped domain equipped with a Cartesian mesh.

Lemma 5.3.4 (L*-regularity of localized basis functions). Let A be a random
coefficient field subject to Theorem 5.53.1. Then, assuming that the patches D
take the form of bricks, the localized basis functions LpSlOd satisfy that

2
/ E[( f o veiapa)
DK E(I)

Proof. In order to apply Theorem 5.3.2, we need to construct a function hg

such that the localized basis function g&il(o,‘; is the weak solution to

dz < (mH)*™

V- (AV@EY) =V - hix on Dg

subject to homogeneous Dirichlet boundary conditions on dDg. To this end, one
may choose hy = Vr for r solving the Laplace problem —Ar = g5°% subject to
homogeneous Dirichlet boundary conditions on 0Dg. With Theorem 5.3.2 we

then obtain that
dr < |DK|1—4/q</
D

| E|(f weipar)
Dy B.(z)

for any 4 < g < oco. Using standard elliptic regularity on convex domains yields
that

4/q
|hK|qu)

K

IVhicllz2o) = 1Dl 200 S il 2 = 1,
slod

since gy, 18 L?-normalized. Using the CauchnyChwarz inequality and Friedrichs
inequality on Dy for r € H}(Dg), we get that

)

IVE72p) = (95 T2 0s) < 950wl 2o 17l 220k

o (5.15)
S mH gl 22 0) )

With the definition of hj it follows directly that
1hxcll 2oy S MH |93 22(py) = mH.

Applying the Sobolev embedding (¢ = 6 is the critical exponent for d = 3) and a
scaling argument (the embedding constant scales with the diameter of D), we
obtain that

/D (| S (mH) " 2 he |G ) + (mE )TV he |3
K
< (mH)d+q(27d)/2_

Combining the previous inequalities and setting ¢ = 5 gives the assertion. [
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5.3. Error analysis

The following theorem provides an a posteriori error bound for the proposed
numerical stochastic homogenization method. For the error analysis, we assume
that the set { QSIOd K e ’TH} is Riesz stable in the sense of Theorem 3.1.2. The
error estimate involves the localization indicator ¢ from (5.11) and the Riesz
stability constant C},, which quantifies the linear independence of the local
source terms. Both constants can be computed a posteriori, as described in
Section 5.5 and Theorem 3.5.1. Moreover, Section 5.4 provides a worst-case
a priori upper bound for ¢. In practical implementations, the Riesz stability of
the local source terms can be ensured as discussed in Section 5.5.

Theorem 5.3.5 (A posteriori error bound). Let A be a random coefficient field
subject to Theorem 5.3.1, and let the set {g3°5, : K € Ty} be stable in the sense
of Theorem 3.1.2. Then, the solution ujfs, of the presented numerical stochastic
homogenization method, as given by (5.12), satisfies, for any f € L*(D), that

—slo 1/2
||u — U}IL%HL%Q,LQ(D)) 5 (H+ Crb/ md/2(0' —|—5d/2 4 d) /2))||f||L2

with the constant Cy,(H, m) from Theorem 3.1.2 and the localization indicator
o(H,e,m) from (5.11).

Proof. For the error analysis, we introduce the function

Upm = Y, CKPC s (5.16)

KeTy

where (cx)ker;, are the coefficients of the representation of IIy f in terms of the
local source terms {g3°% : K € Tg}. Using the triangle inequality, we obtain
that

lw—3 | 2 0.r2(0)
< [lu — Hpu| 2,20y + [ Ha(w — wam)| 220,020
—slod (5.17)
+ | Hgwmm — UH,mHLZ(Q,LQ(D))
= El + EQ + Eg.
In the subsequent analysis, we will estimate the terms =1, =5, and =3 separately.

For the term =1, we obtain using the approximation property (2.7) of the operator
1Ty and the stability estimate (5.4) that

2} = E[|lu—Taulizn)] S HE[|Vul? ]| S HIf720)-

For estimating the term Z,, we first apply the L2-stability of Iy (cf. (2.6))
and Friedrichs’ inequality. Then, following the lines of the convergence proof of
the SLOD in the deterministic setting, c¢f. Theorem 3.2.1, we obtain that

2o S IV (u — wmm) 220y S (H + C*m™20) || 1l 12(0)
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5. Super-Localized Numerical Stochastic Homogenization

In order to estimate term =3, we recall definitions (5.12) and (5.16) and use
the Cauchy—Schwarz inequality to obtain, setting e := Ilgup,, — u%"ﬂn, that

= 3 ex B[ (gl ~ MaBIER. €) o, )
KeTy

< >0 lerlIMaiem — THE@R] | L2 ,2mon el 2.2 0y
KeTy

(5.18)

Algebraic manipulations then yield for the first term of each summand on the
right-hand side of the previous inequality that

T @3 — HHEW?I(OS@] IZ2(.L2(D5))

B[ [ (5 (@ )i — U@ ) T ) da
Dx TcD (5.19)

_ . N 2
> T IE[ (@55 1) 121y — E[(@5%m, 1) 12(7))) }
TCDg

Applying the spectral gap inequality (5.13) and using the L2-representation of
the Fréchet derivative from Theorem 5.3.3, we obtain that

E[((Qoil(omvﬂT)Lz(T) E[(@?{%JT)B(T)Dﬂ
5sdEU (][ Vgien, © Voldz) dx]
Dy B.(z)
1/2 9 1/2
ged(/ E (][ IVgied de) }dx) (/ E (][ yvuPdaz) ]dx) :
DK s( DK 5(50)

where we used the Cauchy—Schwarz inequality. Theorem 5.3.4 can be employed
to bound the first factor on the right-hand side of the preceding inequality. For
estimating the second factor, we note that problem (5.14) for v € L?(Q2; H} (D))
has the same structure as problem (5.6) for the localized basis functions. Conse-
quently, a result analogous to Theorem 5.3.4 also holds for v, leading to

/DK E[(][E(x) \WPdf:)Z

slod

dz S (mH)* ™| 1)1 (py)-

Inserting the estimates for %

and v, and using that [|17(/7:p,) = [T, we get
that

2
E| (@58, 1) o) — BU@HS Ir)an)]) | S e'mt) =47,
Consequently, we can bound the term in (5.19) as

g% — MaBISR 7200205y S em*H* . (5.20)
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Inserting this estimate into (5.18), applying the Cauchy-Schwarz inequality,
recalling the finite overlap of the patches, and utilizing Theorem 3.1.2, we finally
obtain for =3 that

E?;SgdmmZH(%d)/Z Z k Z I, — uHm”L2(QL2(DK
KeTy KeTy

< g2y 2+d/2 pp(4—d) /201/2

£l z2(p) E3-

The assertion follows immediately after combining the estimates for =, =5, and
=3. O

5.4. Error analysis using LOD techniques

In this section, we apply the framework of LOD theory to derive an upper bound
for the localization error indicator o, which appears in the error estimate stated
in Theorem 5.3.5. For this purpose, we consider the lowest-order LOD basis
functions, see also Section 3.3.2, instead of the previously introduced basis. In
addition, we further estimate the Riesz stability constant C)}, associated to this
choice of LOD basis functions.

Analogous to (2.15), we define the space of fine-scale functions supported
on Dy as

WK’m = {U} € Hé(DK) : HH,DKw = 0}

The local LOD basis function corresponding to the element K € Ty is then given
by
¢S, = (1 = Cxm)bi € L*(Q; Hy(Dk)), (5.21)
where C Kmbr € L3(Q; Wi m) denotes the fine-scale correction of the bubble
function by defined in (2.11). For almost all w € €2, the correction satisfies
a(Crmbrc, w) = albg,w) for all w € Wi . (5.22)

Note that the well-posedness of the operator C Kkm 1s a consequence of the

Lax-Milgram theorem, recalling that Wi, is a closed subspace of H}(Dg).
The upper bound on ¢ derived below relies on the fact that the LOD basis

function cplOd has (locally in Dg) a Ty-piecewise constant source term

g5, = —divAVeRS € L*(Q:P°(Tup,)):
see Section 3.3.2.

5.4.1. Localization error indicator

Similar to the previous section, the presence of stochasticity requires additional
lemmas before deriving an upper bound on . In particular, the following lemma
provides the L*-representation of the Fréchet derivative of (g}, 17)z2(r), which
is essential for applying the spectral gap inequality from Theorem 5.3.1.

93



5. Super-Localized Numerical Stochastic Homogenization

Lemma 5.4.1 (Fréchet derivative of LOD right-hand sides). The L*-repre-
sentation of the Fréchet derivative of (g, )27y is given by

9 1
9A (R 11) r2(7)
= Vb ® Vbr — Va]gmb}( Q@ Vbr — Vb ® Va]gmbT + V@K,mbK & Va]gmbT.

Proof. Using that g}‘}fim is piecewise constant, the identity 1150y = 11, and the

definition of cﬁlf%flm, we obtain that

(glfc{)im I7r)r2r) = (Q}?,dm br) 2y = a(‘ﬁ%‘m, br) = a((1 — Cxm)bi, br).
Hence, the Fréchet derivative of (g9, 1r) r2(r) equals

0 0 0 ~
aj(gﬁfm, L17)r2(r)(6A) = aa(bebT)(éA) — aa(cK,mbm br)(0A). (5.23)

The first term is easily calculated, yielding

8a(bK, bT)

0A :/ 0AVbg - Vbr dz. 5.24
o4 A= [ 5AVbVor (524)

For the second term, we obtain with the product rule that

0A Dg ’

2 b
4 [ ay%rmbi

0A) - Vbrde.
. a4 (0A) - Vbr

Using the definition of the corrections of the bubble functions from (5.22), the

fact that ac’gixl”((éA) € Wk .m, and the symmetry of A, yields for the second
term of the above inequality that

Avw(&A) by dz = AVM

§A) - VCxmbr dz.
D 0A D oA 04 VCrmbr

Furthermore, by differentiating (5.22), we get for any w € Weg,, that

SAVb - Vwdr = | 5AVCx by - Vuwrds+ [ Ay2EEmbK

0A) - Vwdz.
Dy Dy Dy 0A (04)

Combining the three equalities above and using the test function w = C Kmbr,

we obtain that

Oa(éKymbK, bT)
0A

(0A) = / SAVC g mbr - Vbr da + / 5 AVby - VCo by d
Dy D

K

- / SAVCy mbr - VCxembr d.
Dy
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5.4. Error analysis using LOD techniques

The L?-representation of the Fréchet derivative of a(a Kkmbrc, br) is therefore
given by

9 . . . .
Oja(cK’mbK’ bT) = VCKmbK Q Vbr + Vb ® VCKanT — VCK,mbK X VCKmbT.
The combination with (5.23) and (5.24) yields the assertion. O

The following regularity result for the LOD correction operators is needed to
estimate the terms appearing after applying the spectral gap inequality in the
proof of the upper bound on o.

Lemma 5.4.2 (L*-regularity estimate for LOD correction operators). Let A be
a random coefficient field subject to Theorem 5.5.1. Then, the corrections of the
bubble functions Ck mbx satisfies the following reqularity estimate

R 2 m 4—d
/ E (7[ |VCK7mbK|2d;i> dx§<> .

Proof. First, let w € ) be arbitrary but fixed. In order to apply Theorem 5.3.2, we
need to establish the appropriate right-hand side, which results in the equation
for C kmbr taking the form as in Theorem 5.3.2. Naturally, C K,mbi solves,
together with the Lagrange multiplier px ,, € P°(Tu.p, ) the following saddle-

point problem
Ap, Ph X aK,mbK _ (Apy b
( Pp, 0 Pkm ) 0 (5.25)

with the patch-local operators defined in Section 3.3.2
It is a direct consequence that Cg ,,,bx solves

V- (AVCk nbr) =V - (AVbg) + Ph Picm,
which, for some qg , € L*(Dkg), can be rewritten as
V- (AVCxmbr) = V - (AVby + qrc.m).-

To see this, we set gk, == Vv, where v solves —Av = pg,,, with homogeneous
Dirichlet boundary conditions in a ball of radius C'mH, where the constant
C > 0 is chosen such that the ball contains Dp.

Furthermore, the local LOD source terms satisfy gll‘éfim = Pk.m; see [HP22b,
Appendix A]. By applying the estimate

1975012 (220500 S HY*2, (5.26)

which follows from taking the expectation of the corresponding deterministic
identity in [HP22b, Lemma A.2] and following the proofs in [FGP21, Lemma 4.9
and Theorem 5.3.4, we obtain that

IV @k o) = 1ID*0 ] 20s) S IPxmllao,) S HY? 2.
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5. Super-Localized Numerical Stochastic Homogenization

Additionally, applying the Cauchy—Schwarz inequality and Friedrichs’ inequality
on Dy for v € H} (D), we get, analogue to (5.15) the bound

K mlz2(0) S MH || Premll 20y S mHY?,
which leads to the estimate
/D g m|?dz S (mH)" 2| qiem| S,y + (MH) D2V e 92,
K
< ppdt+a@-d)/2 rd—q

Moreover, using ||Vbg| 1~ ~ H™' we obtain that [, |[AVbg|?dz S H* 7.
Therefore, applying Theorem 5.3.2 for ) = Dk, p =4 and h = AVbx — qx.m

yields that
R 2
<(2)

/ E
Dk
4/q
/ |AVbK|qda:+/ |qK,m|quD
DK DK

< | Dyc|a=/a (]E

4—d
< ()
~ H ?

which is the assertion. OJ

Now, we are finally ready to present an upper bound on ¢ using LOD basis
functions.

Lemma 5.4.3 (Upper bound on o). Choosing an L?-normalized version of

g, = E[giS,] in (5.10) yields the upper bound

o\ d/2
o <m*H 'exp(—Cm) +m* (H) (5.27)
with C' > 0 independent of H and m, provided that ¢ satisfies the smallness

assumption
el <mBHY (5.28)

Proof. For allv € Y C L*(Q; H(Dg)) it holds that E[tr~'tr v] = E[v]. Hence,
by inserting g, = E[gj],] into (5.10), we obtain that

1 _
R (g Eftr~"trv]) p2(p,0-
19RS 22 (D) wer2(@;m (D))

vl 2 (0 m1 (D ) =1

UK(H,&m)

Note that by dividing by the norm of gll‘éfim, we account for the fact that gl‘)d

may not be normalized. We denote by Ay : L*(Q; L*(Dg)) — L*(; H&(DK))

96



5.4. Error analysis using LOD techniques

the local solution operator defined on the patch Dy, which satisfies the stability
estimate

IVADgll2@.r20i) S NI9ll22@. L2010, (5.29)
for g € L*(Q; L*(Dg)).
Therefore, we obtain for any v € L*(Q; HL(Dy)) that
(9K Eltr ™ tr v]) 20y
- E[(glfg'?m’ v>L2(DK) - a’<A51<g}?',dm’ ’U)}
+E[(9R% — 9Km V) 1201 — @(AD, (9K — K> V)]

= = + Zo.

To estimate the term Z;, we apply the deterministic result from the proof
of [HP22b, Lemma 6.4] for any w €  and use the Cauchy—Schwarz inequality
to get that

=1 S H  exp(=Cm)||v] 20,11 (0re)) 1985l 20,0200
where C' > 0 is independent of H and m. Using the estimate (5.26) yields that
=1 S HYP P exp(=Cm) |[v]| 20,1 (0c))-

For the term =5, we obtain using (5.29) and the Cauchy—Schwarz inequality
that

22 S l9Rs, — gz o) 12 m (o) -

In order to estimate the first factor on the right-hand side, we proceed similarly
as in the proof of Theorem 5.3.5 to obtain that

||9};3,Cln - gll(é,dm”%Q(Q,LQ(DK))

2
= > 7T E{((le?,dma]lT)LQ(T) —E |(g}% 1r)12n)| ) }
TCDg

Using the spectral gap inequality (5.13), we obtain for each summand that

2
E[((glﬁfﬂmy 17) 2y — E[(gi%5,, ]lT)m(T)])

’Sng[/Rd(]i@ diz>2dx].

The L?-representation of the Fréchet derivative of (g4, 1r) 2(r) is derived
in Theorem 5.4.1. It consists of a sum of outer products of the gradients
of combinations of bx, br, Cxmbx and Ck,,br. To estimate the summands

G Rm 1) 121 (5.30)

9A (7)

97



5. Super-Localized Numerical Stochastic Homogenization

involving bubble functions, we utilize the property (2.11) for all 7' C D and

derive the estimate
2
/ (7[ |VbT\2d:?;> doe < HTH (5.31)
Dy B (z)

To proceed with the estimation of (5.30), we need to estimate the four terms
resulting from the summands of the Fréchet derivative, cf. Theorem 5.4.1. In
the following, we present the estimate for the second term, noting that all
other estimates follow analogously. By employing the regularity result from
Theorem 5.4.2 and (5.31), we obtain that

~ 2
E[ / ( ][ VCxembi ® Vbr| d7) dx]
Dg B:(z)

~ 2 1/2 2 1/2
< (/ E{(][ VCicmbic|* di) ]da:) (/ (][ Vbr|? d7) dx)
DK Bg($) DK 5(11,‘)

< m2-4/2 ppd—4

where we used the Cauchy-Schwarz inequality. Note that all four terms can be
majorized by m*=¢H4* which results from estimating the last summand. The
combination of the previous estimates yields that

1/2
195 — 98l 20,0205 )) S ( AR Edm4de4> < el2m2H2. (5.32)
TCDgk

Using the estimate

||gllgfimHL2(Q,L2(DK)) Z m_sz/2_2>

which can be obtained by taking the expectation of the corresponding deter-

ministic identity from [HP22b, Lemma A.2], we derive a lower bound for the

L?-norm of g9, by computing

||9}C<),dm||%2(DK) = HglIC{)fim”%Q(Q,L?(DK))
1 (0] O (o]
= iugll(:imH%Q(Q,LQ(DK)) - HglK,dm - QIKinH%?(QLZ(DK)) (5.33)
Z ;m_4Hd_4 o m4H_4€d Z m_4Hd_4.

Here, we used the reverse triangle inequality, the weighted Young’s inequality for
2

showing that for a,b > 0 it holds that |a — b[* > % — b, as well as the smallness

assumption (5.28). Finally, combining all estimates leads to

1
OK SJ
||glod

— (Hd/2_3 exp(—Cm) + m2H_26d/2)
K,m||L2(DK)

d/2
<m?H ' exp(—Cm) + m* <2> :

The assertion follows directly when taking the maximum over all K € Ty. O
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5.4. Error analysis using LOD techniques

Combining this a priori result for o with Theorem 5.3.5 yields the error estimate
given in the following corollary. The Riesz constant C;, can be computed a
posteriori, cf. Section 5.5.

Corollary 5.4.4 (Combined error bound). Suppose that the assumptions of
Theorems 5.8.5 and 5.4.3 are fulfilled and that m 2 |log H| holds. Then, the
solution u51°7dn of the proposed numerical stochastic homogenization method, as
given in (5.12), satisfies, for any f € L*(D), that

d/2
HU—UHmHLQ (Q,L2(D)) S <H+Cl/2 4+d/2 <H> )Hf“LQ(D)

5.4.2. Riesz stability

In the next step, we show that the local source terms corresponding to the LOD
basis functions are Riesz stable in the sense of Theorem 3.1.2.

Lemma 5.4.5 (Riesz stability of LOD source terms). Suppose that m is chosen
such that m 2 |log(H)| and that € satisfies the smallness assumption

g < (D) gatd, (5.34)

Then, for the local source terms glOd = ]E[glfé%] we obtain for all (cx)ker, that

lod 2
9K m
HY Y eS| D ex lodK : (5.35)
KeTy KeTy g HL2 (0x) | 22(D)

Proof. We begin the proof by noting that applying the weighted Young inequality
twice gives the elementary estimate [a—b—c|*> > {|a|*—|b]*—|c|? for any a, b, ¢ > 0.
Combining this with the inverse triangle inequality, we obtain that

‘ Z o IR gllgdm 2 _ H gllgdm 2
et N9RS L2 12 (o) KGTH ||glOdl 2Dy 220,22 (D))
g gRS, — aRs, 117
- HKeTH 19228 22 pse) | 2.2 (0 ‘KETH 973112 (D) | 202,200y

lod

H ( e s
KGTH HQIOd ”L2(DK) ||9K,mHL2(DK)

L2(Q,L2(D))

For estimating the term =; from below, we use the corresponding deterministic
result from [HP22b, Lemma 6.4] and take the expectation which yields that

=2 HY > o

KeTy
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5. Super-Localized Numerical Stochastic Homogenization

To estimate the term =, from above, we use the finite overlap of the patches Dy
as well as estimates (5.32) and (5.33) to get that

o S m*T Z CK ||910d glfc()C:nHL%Q,L?(DK)) S m®* el Z Ci('
KeTy KeTy

The estimate for =3 can be derived similarly using again the finite overlap of the
patches Dy, the reverse triangle inequality, (5.32) and (5.33). We obtain that

2
9% (lgR5 2 o) — 119551 L2(Ds))
Z CK lod
KeTy Hg ||L2 (Dk) ||gKmHL2(DK) L2(Q,L2(D))
< d 2 | ||9lOd gll(;deLQ (Dx) | < p8+ddpr—d 2
sSm Z Cx H Tod H S mo% Z Cre-
KeTy IK,mIL2(Dy) KeTy

Combining the previous estimates and using the smallness assumption (5.34)
yields the assertion. O]

5.5. Practical implementation

To effectively implement the presented numerical stochastic homogenization
method, it is crucial to employ an efficient sampling strategy for the space Y
and ensure that the local source terms { gSIOd : K € Ty} form a stable basis of
P°(Tx). These aspects will be addressed in the following two subsections.

5.5.1. Random sampling and Singular Value
Decomposition

We consider an arbitrary patch Dy and denote by N := #7Ty p, the number of
coarse elements contained in this patch. In practical implementations, all local
infinite-dimensional problems involved in the construction of the basis functions
must be replaced by finite-dimensional approximations. To obtain these, we
discretize using the P'-finite element method on the fine mesh 7j, p,., which is
obtained by uniform refinement of 7y p,. We denote by n the number of nodes
in 77L,DK .

To handle the stochasticity in the definition of the space Y, our implementation
draws M, samples of the random coefficient A and, for each sample, closely follows
the methodology outlined in Section 3.5.1 for the deterministic case. Specifically,
for each i = 1,...,M,, we generate a matrix S; € R™Mw  whose columns
represent the coordinate vectors of the discrete A(w;)-harmonic extensions of
M,y € N samples of random boundary data on 0Dg\0D. We then compute
the matrices P; € RY*Mwa by applying the L?-orthogonal projection onto the
characteristic functions {11 : T € Ty p, } column by column to S;. Finally, we
compute the SVD of the matrix X := [Py,..., Py ], yielding coordinate vectors
of potential right-hand sides gSIOd.

100



5.5. Practical implementation

10%F

ree o m=1
r “oons o m=2|]
Feo m=3 4
L 0... o m=4|
10! f.‘ \"' E
[ e 1
~
© “
109 . e :
“ LY
. ~ o~
L)
[]
o
Soony

1071} ‘ e W

L ]

Il Il Il \.

0 20 40 60 80

k

Figure 5.2.: Singular values associated to an interior patch for a T.-piecewise
constant random coefficient with e = 277 in two spatial dimensions.
The coarse mesh size is set to H = 274

The localized deterministic basis functions are then computed as empirical
means, again using M, samples of the random coefficient, by solving discretized
versions of (5.6). In the numerical experiments presented in Section 5.6, the
number of random boundary samples is set to My; = 3N. For the number of
random coefficient samples, we use M; = 5000. The coefficient samples are
obtained via a quasi-Monte Carlo sampling strategy based on direction numbers

provided in [JKO08, JKO03].

5.5.2. Stable local source terms

Next, we address the practical implementation of stabilizing the local source
terms {gi°n, : K € Ty} To this end, we combine two stabilization techniques
discussed in Section 3.4. The first step involves using extended patches, as
described in Section 3.4.3, on which we perform an SVD to identify candidate
local source terms. However, due to the stochastic nature of the problem, the
smallest singular value is typically less well separated from the rest compared
to the deterministic setting, particularly for larger values of m, as illustrated in
Figure 5.2. To address this issue, we include all candidate functions associated
with singular values that lie within a specified threshold above the smallest
singular value. Among these, we select the function that minimizes a weighted
L?*(Dg)-norm, subject to a unit mass constraint. This selection follows the
procedure outlined in Section 3.4.2, where we fix the parameters r = 6 and

= 1.3. Note that in the one-dimensional numerical experiments, only the
second stabilization technique based on minimizing the weighted L2-norm is
used, with parameters r = 6 and p = 2.
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5. Super-Localized Numerical Stochastic Homogenization

Remark 5.5.1 (Uniform Cartesian meshes). Note that in the case of uni-
form Cartesian meshes, the computational complexity of the method can be
significantly reduced when utilizing the stationarity of the coefficient A, cf. The-
orem 5.3.1, similar to the case of periodic coefficients in the deterministic setting.
In fact, only O(m?) reference patches need to be considered for the computa-
tion of the basis functions and local source terms of the method. All other
basis functions and local source terms can then be obtained by translation; see,
e.g., [GP15].

5.6. Numerical experiments

The following numerical experiments are intended to demonstrate the effectiveness
of the presented numerical homogenization method. In our implementation, we
consider uniform Cartesian meshes of the domain D = (0,1)? with d € {1,2}.
Note that in this section, we use H to denote the side length of the elements
instead of their diameter. For the solution of the local patch problems and the
computation of the reference solution u;, we employ the P*-finite element method
on the fine mesh 7;, with h = 2712 for d = 1 and h = 2719 for d = 2. We denote
by @)% ,,, the fully discrete numerical approximation to E[u]. In the following
all expected values are replaced by appropriate empirical means.

The random coefficients A that are considered in the following numerical ex-
periments are piecewise constant with respect to the uniform Cartesian meshes 7.
with mesh sizes e € {275,276, 277,278 279}, These coefficients take independent
and identically distributed element values in the interval [0.1,1]. We further con-
sider the sequence of coarse meshes T with mesh sizes H € {273,274,275 276}
Note that we only consider coarse mesh sizes H > ¢ for which the coarse mesh
does not resolve the minimal length scale of the random coefficient. We also
exclude combinations of H and m for which a patch coincides with the whole
domain D.

To calculate the reference solution, we use M; = 5000 samples of the coefficient
on the whole domain D, which is consistent with the number of samples used
for the local patch problems. However, in contrast to the quasi-Monte Carlo
strategy employed for the local patches, these samples are generated using a
standard Monte Carlo sampling approach.

Numerical investigation of ¢ and C,

We begin by examining the behavior of the localization error indicator o as a
function of the coarse mesh size H and the correlation length €. To this end,
we use the sequences of coarse meshes and correlation lengths introduced above.
The values of ¢ for the numerical experiments in one and two dimensions are
shown in Figures 5.3 and 5.4, respectively. The plots display the decay of o for
fixed € and varying H (left), as well as for fixed H and varying e (right). In both
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26 25 24 23 29 9-8 97 96 95
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Figure 5.3.: Depiction of o for a T.-piecewise constant random coefficient in one
spatial dimensions. Left: in dependence of the coarse mesh size H
for e = 277; Right: in dependence of the correlation length e for
H =21
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Figure 5.4.: Depiction of o for a T.-piecewise constant random coefficient in two
spatial dimensions. Left: in dependence of the coarse mesh size H
for e = 277; Right: in dependence of the correlation length e for
H =21
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Figure 5.5.: Depiction of the Riesz stability constant C'y, of the stochastic SLOD
as a function of the coarse mesh size H for a 7.-piecewise constant
random coefficient with ¢ = 277 in the 1d setting (left) and the 2d
setting (right).

cases one observes a scaling like (¢/H)%?, which numerically validates the upper
bound for o stated in Theorem 5.4.3. It is worth noting that the stochastic
component dominates the error, such that the first term in (5.27), which decays
exponentially in the patch size m, is not visible in the plots. If o were plotted as
a function of m, one would observe a decay rate roughly proportional to 1/m.
Next we examine the behavior of the Riesz stability constant C'y, of the local
SLOD source terms {g%"% : K € Ty} as a function of H. The Riesz stability
constant can be computed as outlined in Theorem 3.5.1. In Figure 5.5, we observe
that Cyy, scales like H~ in both the one- and two-dimensional settings, which
is consistent with the results for the stochastically averaged LOD source terms
established in Theorem 5.4.5. Moreover, our numerical experiments indicate no
dependency of the Riesz stability constant on either the correlation length e

or the localization parameter m, further confirming the conclusions drawn in
Theorem 5.4.5.

Numerical validation of convergence

To numerically verify the convergence of the presented numerical stochastic
homogenization method, we consider the source terms

f(z) =2n%sin(z), f(x,y) = 2r*sin(x)sin(y) (5.36)
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Figure 5.6.: Plot of the relative L?-errors of the presented SLOD method for a
T.-piecewise constant random coeflicient in one spatial dimension.
Left: errors as functions of the coarse mesh size H for fixed € = 277;

Right: errors in dependency of the correlation length ¢ for fixed
H =21

in one and two spatial dimensions, respectively. Figures 5.6 and 5.7 display the
resulting relative L2-errors

My, — @55 | 2 22 (o)) / 1| 220522 (D))

which are computed using the L2-orthogonal projection of the reference solution
uyp,. This corresponds to the error considered in Theorem 5.3.5, where the first
term =; in the decomposition (5.17) is omitted. For fixed H and varying ¢ we
observe the rate %2, which is in agreement with Theorem 5.4.4. In the converse
setting, where € is fixed and H is varied, the expected negative dependence on H
is not observed. In the one-dimensional case, the error remains nearly constant
with respect to H, provided that the coarse mesh is sufficiently coarse compared
to €. In two dimensions, a negative dependence on H is observed; however, it is
significantly weaker than the theoretical rate of H 2 predicted by Theorem 5.4.4.
Instead, the error appears to scale approximately like H %17,
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Figure 5.7.: Plot of the relative L?-errors of the presented SLOD method for a 7.-
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6. Hierarchical Super-Localized
Numerical Stochastic
Homogenization

In this chapter, we combine the methodologies developed in the previous chapters
to construct a novel numerical stochastic homogenization method for elliptic
PDEs with random coefficients. Specifically, we integrate the hierarchical struc-
ture introduced in Chapter 4 with the construction of super-localized basis
functions in the stochastic setting from Chapter 5.

The core idea is to define a hierarchical basis composed of linear combinations
of stochastic SLOD basis functions, which are associated with different levels in
the mesh hierarchy. This hierarchical basis spans the approximation space at
the finest level and inherits the favorable properties of the super-localized basis
functions, such as rapid decay and locality.

To retain the simplicity and scalability of the stochastic SLOD method from
Chapter 5, we again employ a collocation-type formulation to approximate the
expected value of the solution. In doing so, we avoid the need to assemble a
global stiffness matrix. As a result, the expected basis functions can be computed
independently, enabling a highly parallel implementation. Instead of a global
stiffness matrix, we assemble a system matrix associated with the deterministic
source terms of the hierarchical basis functions to compute the coefficients in
the collocation-type approximation. As confirmed by numerical experiments,
the hierarchical structure significantly improves the conditioning of this system
matrix compared to the standard two-level stochastic SLOD approach from
Chapter 5, in which the two scales correspond to the fine-scale features of the
random coefficient and the macroscopic approximation scale.

Using tools from quantitative stochastic homogenization theory, we derive an
a posteriori error estimate for the coarse-scale approximation provided by the
proposed hierarchical method. Furthermore, we conduct numerical experiments
to validate our theoretical findings. These experiments indicate that the hierar-
chical formulation enhances the robustness and stability of the method, as the
fine-level approximations benefit from the lower variances of the basis functions
associated with coarser levels.
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6.1. Numerical stochastic homogenization
method

In this section, we develop a hierarchical method for the prototypical diffusion
problem (5.1), building on the principles of SLOD by integrating the approaches
introduced in Chapters 4 and 5. The hierarchical basis functions are constructed

-----

the domain D, where each mesh 7, has mesh size H,. The refinement is uniform,
with each level satisfying Hy, 1 = Hy/2 for ¢ < L — 1. We denote by N, = #7,
the number of elements in the mesh at level /.
The number of hierarchical basis functions corresponding to level ¢, denoted
by N?, is defined as
b. Nl, lf £ - 1,
CT @ = 1)N,y, i > 1

At level £ =1, we use the stochastic SLOD functions ¢}'%,, € L*(; Hj(Dk)),
defined in (5.6) and associated with elements K € 7Ti, as hierarchical basis
functions. Hence, the stochastic HSLOD functions at this level are given by

7hslod __  aslod
lim — ¥Y1,K;m
fori=1,..., NV

For levels ¢ > 1, the hierarchical basis functions are constructed as linear com-
binations of stochastic SLOD functions, following the approach in Section 4.1.2.
These stochastic HSLOD functions are defined on patches Nj*,(7),), as intro-
duced in (4.5), and correspond to elements T, € T;—; from the coarser mesh
level. Here, the index J; identifies the reference element and is specified in (4.10).
On each such patch, 2¢ — 1 basis functions need to be defined. To simplify
notation, we fix the oversampling parameter m € N and refer to the m-th order
patch of T, € T;—1 on level £ — 1 simply as Dgf_l) =N}, (T,).

For each i € {1,..., N}}, the hierarchical basis function 1,5]221‘,’3 is constructed
exclusively from stochastic SLOD functions @§'%',,, which are defined on patches
composed of elements from the finer mesh 7,, with their support entirely contained
in the patch D%_l). More precisely, for each element T, € 7,_;, we define the
set

S = {K € T - supp(¢sd,,) € DIV},
With this notation, the HSLOD basis function 1%121?7? e L*(Q; H&(Dl(f_fl))) is
defined by ‘
ppled = 3~ AV, (6.1)
K ES%)

where the non-trivial coefficients are chosen such that EJ A?ili’f] satisfies the

conditions given in (4.8) and (4.9). The corresponding deterministic local source
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6.1. Numerical stochastic homogenization method

7 hslod
Lim

successively refined meshes for a piecewise constant random coeffi-
cient with a correlation length of ¢ = 277 in two spatial dimensions.
The oversampling parameter is set to m = 2. The corresponding

Figure 6.1.: Illustration of the localized hierarchical basis functions E| ] on

hslod
li,m

right-hand sides g are shown in gray.

term g?j% is defined analogously as a weighted sum of the deterministic local
source terms associated with the stochastic SLOD functions g&j}‘}(d’m, using the
same coefficients as in (6.1). An illustration of the deterministic hierarchical basis
functions E| A?j{ﬁf] and their associated local source terms is given in Figure 6.1.

For the error analysis following in the next section, we define the quantity

=((Hp,m) := max max a2, 6.2
¢ C( L ) ¢e{L,....L} ie{1,...,N}} Kgg:“)‘ K ‘ ( )
Ji

In addition, let oy x denote the expected localization error associated with the
stochastic SLOD function ¢§'%,, as defined in (5.10). A global measure of the
localization error across all levels and elements is then given by
= H = .

o=o0(Hp,e,m) EEI{III??,(L} max oy k, (6.3)
where € > 0 denotes the correlation length of the random coefficient A; see
Theorem 5.3.1. According to Theorem 5.4.3, where an upper bound for the
localization error at each level is provided, o satisfies

o \d/2
o <m?H; ' exp(—Cm) + m* (H) (6.4)
L

with C' > 0 independent of H; and m, provided that e satisfies the smallness
assumption
e <mPHE
For simplicity, we refer to the hierarchical basis functions using their global
indices. Thus, with

4 if0=1,
7 =
#72—1 +]7 1f€> 17
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6. Hierarchical Super-Localized Numerical Stochastic Homogenization

we have the relation

7hslod __ 7hslod
iwm — FLjim (65>
with corresponding local source term gthd = ghihﬁff Using global indices, we

refer to the patches associated with the hierarchical basis functions as D; = DE L
With this notation established, we are now ready to define the novel collocatlon—
type hierarchical method by

—hslod Z CZHLE hslod (66)

where (¢;)ieq1,..,n,} are the coefficients of the expansion of Iy, f in terms of the

local source terms g/5i°d.

6.2. Error analysis

In this section, we perform an error analysis of the proposed numerical stochastic
homogenization method. To this end, we assume that the local source terms
{ghbl"d : 4 = 1,...,N} are Riesz stable in the sense of Theorem 4.2.1. In
addltlon, we impose structural assumptions on the randomness of the coefficient
field A, as specified in Theorem 5.3.1. The following theorem provides an
a posteriori error bound for the proposed hierarchical method. The bound
involves the quantity ¢, as defined in (6.2), as well as the Riesz stability constant
C,. Both of these quantities can be computed a posteriori, as outlined in
Section 6.3.

Theorem 6.2.1 (A posteriori error bound). Let A be a random coefficient field

satisfying the conditions in Theorem 5.5.1, and assume that the set {gthd ce=1,..

is Riesz stable in the sense of Theorem 4.2.1. Then, for any f € L*(D), the
solution uhﬁ'k’d of the hierarchical numerical stochastic homogenization method
defined in (6.6) satisfies the error estimate

—hslod

lw — @50t 2,2y S (He + Crlfémd\/z(ﬁ+m2(;)d/2))|\f”w(m,

where Cy,(Hp, m) is the stability constant from Theorem 4.2.1.
Moreover, if the additional smallness condition

el <mEHY
is satisfied and m 2 |log(Hyp)| holds, the error bound simplifies to

£ \d/2
e — @ot 22 m)) S (He + Crlb/QCleer\/Z(Hi) IFllz2)
L
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6.2. Error analysis

Proof. For the error analysis, we follow the ideas of the proof of Theorem 5.3.5
and introduce the function

Np,
- Z Ci"ﬁb?ﬁ?da (67)
=1

-----

local source terms g7, To simplify notation, we introduce for any subset
S C D the short- hand notation

hslod

I lles = 1 - 229y

Using the triangle inequality yields

lw — a5 llo.

<|

=l +52+:3.

(w—wrm)llop+ [Mtrm — apretlon (6.8)

For the first summand Z;, we obtain using the approximation property (2.7) of
the operator I1;, and the stability estimate (5.4) that

E% = E[Hu - HLUH%Q(D)} S HEE[HVUH%Q(D)} S Hi ||fH%2(D)-

For estimating the term =, we first apply the L2-stability of IIy, cf. (2.6), and
Friedrichs’ inequality. Then, following the lines of the convergence proof of the
HSLOD in the deterministic setting, cf. Theorem 4.3.1, we obtain that

% S IV —wrm)llon S (Hp + CHPVIm?Co)| £l 2

In order to estimate the term =3, we recall definitions (6 6) and (6.7) and use
the Cauchy—Schwarz inequality and the fact that supp( hSlOd) C D; to obtain,

setting e == I up, — uj"ed, that

N
E% _ Zci ERH hslod — I, E| hslod]’ e)L2(Di)}

Z‘Cl‘HHL hslod —T1I E[ hslod}

(6.9)

| /\

To estimate the first norm in each summand separately, we use relation (6.5),
the definition (6.1), the fact that supp(@§'%,,) C Dx, and the Cauchy-Schwarz
inequality to get that

Mgttt — TGS 2,

l, N “ N N
> dyE[(m sozl%m T R[5, Tk — TLE[ES) o ]

KES.Ij
0,5 « . A o
< S0 1Mol — LRI o, ps T 08 — T E[bpsiod)
KESJ].
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6. Hierarchical Super-Localized Numerical Stochastic Homogenization

Following the steps leading to estimate (5.20) in the proof of Theorem 5.3.5
yields

”HL Azl%im - HLE[@;lggm] H?Z Dk

= Y TITE[(@85 1) ey — BG5S, 1) 1))

T€TL, Dy

£ \d
< (mH)" %' {T €T, : T C Di}| < m4<H—> ,
L

where we used that H, = H;2¢. The combination of the previous two estimates,
the Cauchy—-Schwarz inequality, and the finite overlap of patches gives

||H ,lphslod II ]E[,l/)hslod]HQD
sm%d/?Hgd”J > |d%’”|2¢ > IMagplied = TR b,

KESJ. KESJJ.

< m2td/2.4/2 - d/QCHH hslod —1I,E] hslod]”Q

s Lg e

Inserting into (6.9), applying the Cauchy—Schwarz inequality once more, using
Theorem 4.2.1, and employing the finite overlap of patches per level, we obtain
that

E% 5 m2+d/2€d/2H£d/2 \JZ |c ’2$ Z HHLuLm _ uhslod”ﬂy b,
S CYPVIm* e H || fll 2oy E

By combining the estimates for =1, =5, and Z3, we obtain the first error bound
stated in the theorem. Additionally, incorporating Theorem 5.4.3 and adapting
it to the hierarchical setting (cf. (6.4)), results in the second error estimate. [

6.3. Numerical Experiments

In the following, we present a series of numerical experiments to illustrate the
effectiveness of the proposed hierarchical numerical homogenization method.
To this end, we compare its performance with the two-level stochastic SLOD
method introduced in Chapter 5. We consider uniform Cartesian meshes of
the domain D = (0, 1)¢ with spatial dimension d € {1,2}. From this point on,
we use H to denote the side length of the mesh elements, rather than their
diameter. The random coefficients A are piecewise constant with respect to
uniform Cartesian meshes 7; with mesh sizes ¢ € {276,277,278 272}, The values
of A are independently and identically distributed on each element, taking values
uniformly in the interval [0.1, 1].

The SLOD basis functions are computed according to the procedure outlined
in Section 5.5, using the P'-finite element method on the fine mesh 7y, which is
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10°

10—0.2

A 2 27 26

Figure 6.2.: Depiction of o for a T.-piecewise constant random coefficient in one
spatial dimensions. Left: in dependence of the coarse mesh size Hp,

for ¢ = 277; Right: in dependence of the correlation length e for
H; = 279,

generated by successive uniform refinements of the coarse mesh. Specifically, we
set h =2712 for d = 1 and h = 271° for d = 2. The hierarchical basis functions
are then obtained as a linear combination of the SLOD functions, where the
coefficients are chosen such that the conditions given in (4.8) and (4.9) hold. The
resulting fully discrete numerical approximation of E[u] is denoted by u*°% . In
the experiments, all expectations are approximated by empirical means.

To compute the reference solution, we use My = 1000 samples of the coefficient
field on the entire domain D, generated via standard Monte Carlo sampling. For
the local patch problems, we use My = 1000 quasi-Monte Carlo samples of the

coeflicient.

Numerical investigation of o,( and C};

Numerical experiments, illustrated in Figures 6.2 and 6.3, show that o decays
proportionally to (¢/H)%?, consistent with the theoretical upper bound derived
in (6.4) and the observations discussed in Section 5.6.

The quantity ¢ is defined as the maximum Euclidean norm of the coefficient
vectors used in the basis construction and can therefore be computed easily.
However, to enhance the numerical linear independence of the 2¢ — 1 hierar-
chical basis functions associated with each patch, we incorporate an additional
orthonormalization step with respect to the Euclidean inner product after en-
forcing conditions (4.8) and (4.9). As a result of this procedure, we obtain ¢ =1
in all numerical experiments.

In the hierarchical setting, the Riesz stability constant C;, remains essentially
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6. Hierarchical Super-Localized Numerical Stochastic Homogenization

10°

Figure 6.3.: Depiction of o for a 7.-piecewise constant random coefficient in two
spatial dimensions. Left: in dependence of the coarse mesh size Hp,

for e = 277; Right: in dependence of the correlation length e for
H; = 279,

unchanged with the addition of refinement levels. Consequently, no dependence
on the parameter Hy, is observed in either one- or two-dimensional cases. Sim-
ilar to the two-level stochastic SLOD setting, the constant C}, is also largely
independent of the correlation length e, and no significant dependence on the
oversampling parameter m is evident.

Numerical validation of convergence

To numerically verify the convergence of the proposed stochastic homogenization
method, we consider the smooth right-hand sides introduced in (5.36), as in the
previous section. The hierarchy employs successively refined meshes, with the
mesh size of the coarsest level generally set to H; = 273. However, for small
values of € and larger oversampling parameters m, this choice does not yield
good approximations in two dimensions. Therefore, for e = 278 in 2D, we instead
use H; = 274
The relative L2-errors

lwn — @05 L2020y

(6.10)

|wnllL2@:r2(py)

considered in Theorem 6.2.1 are shown in Figures 6.4 and 6.6 for the one- and
two-dimensional settings, respectively. In addition, Figures 6.5 and 6.7 display

the relative L%-errors Lod
-5 NS1O
[Ty — 45| L2 iz (p))

: 6.11
lwnllL20:L2(py) o1
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Relative L?-errors ||uy, —
posed HSLOD method for a 7.-piecewise constant random coefficient
in one spatial dimension. Left: errors as functions of the coarse
mesh size H;, for fixed ¢ = 277; Right: errors in dependency of the
correlation length e for fixed Hy = 275.
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proposed HSLOD method for a 7:-piecewise constant random co-
efficient in one spatial dimension. Left: errors as functions of the
coarse mesh size Hj, for fixed e = 277; Right: errors in dependency
of the correlation length ¢ for fixed Hj, = 275,
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posed HSLOD method for a T.-piecewise constant random coefficient
in two spatial dimensions. Left: errors as functions of the coarse
mesh size H;, for fixed ¢ = 277; Right: errors as functions of the
correlation length ¢ for fixed H; = 275,
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6.3. Numerical Experiments

Table 6.1.: Condition numbers of the full system matrix associated with the
local source terms for different numbers of hierarchy levels in two
dimensions, rounded to two significant figures. The correlation length
is set to € = 277 and the oversampling parameter to m = 2.

H; 23 24 275 26
stochastic SLOD 510 7.2-10% | 1.1-10° | 1.9-106
stochastic HSLOD 510 1.1-10%° [ 1.6-10% | 2.6-10°

computed using the L?-orthogonal projection Il u; of the reference solution.
This corresponds to the error reported in Theorem 6.2.1 with the first term
=) from the decomposition in (6.8) omitted. It also matches the error metric
considered in Section 5.6.

When considering the full error from (6.10), the first term is dominant, partic-
ularly in the two-dimensional case. This results in an overall error decay rate
of O(HL). The one-dimensional case also shows a dependence on Hp, though
this decay is much weaker. For the complementary setting, where the number
of hierarchy levels is fixed and the correlation length ¢ is varied, the decay in &
is approximately O(4/€) in one dimension and remains nearly constant in two
dimensions.

When excluding the first term of the error, i.e., when considering the truncated
error (6.11), the observed behavior aligns well with the results presented in
Section 5.6. Notably, the hierarchical construction appears to produce more
stable approximations, particularly in the one-dimensional case or when finer
levels are included in the hierarchy, compared to the two-level stochastic SLOD
method, which is highly sensitive to the correct parameter choice (especially in
1D) within the stabilization procedure described in Section 5.5. Furthermore,
the hierarchical method already yields good approximations with the minimal
choice m = 1.

Another advantage of the proposed hierarchical method is the significantly
improved conditioning of the system matrix associated with the deterministic
local source terms of the hierarchical basis functions, compared to the two-level
stochastic SLOD. This system matrix is used to compute the coefficients in the
collocation-type approximation. The improvement is demonstrated in Table 6.1,
which presents the condition numbers of the full system matrices for both the
stochastic SLOD and stochastic HSLOD methods in two dimensions, considering
a coefficient with correlation length ¢ = 277 and an oversampling parameter
m = 2. The lowest level in the hierarchy has a mesh size of 272, and the condition
numbers are shown for different numbers of hierarchy levels. Note that variations
in € or m do not significantly affect the conditioning.
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7. Conclusion and Outlook

This thesis has explored the development and analysis of advanced numerical
multiscale methods for solving elliptic diffusion problems with highly heteroge-
neous and, in some cases, random coefficients. Central to this work are several
extensions of the SLOD method, originally introduced in [HP22b].

We began by identifying the key challenges posed by classical FEMs when
applied to problems with fine-scale heterogeneities. In particular, the failure of
traditional approaches to capture multiscale features efficiently motivated the
need for more sophisticated discretization schemes. The concept of multiscale
approximation spaces derived from global solution operators was introduced as a
theoretical ideal. Although such spaces offer excellent approximation properties,
their global nature renders them impractical for computation. The LOD method
was introduced as a viable alternative, using localization strategies to construct
exponentially decaying basis functions, thus enabling a practical and scalable
multiscale method.

The SLOD method, introduced in the subsequent chapter, improves upon LOD
by achieving super-exponential decay of localized basis functions in practice. This
enhancement is accomplished through a refined localization strategy based on
minimizing conormal derivatives on patch boundaries. We rigorously established
this decay property in the case of a constant diffusion coefficient in Theorem 3.3.2.
Furthermore, we proposed new stabilization techniques which are also effective
in the stochastic or hierarchical settings in Sections 3.4.3 and 3.4.4.

In extending the SLOD framework to hierarchical settings, we developed the
HSLOD method. Starting from an existing SLOD approximation, this hier-
archical approach enables systematic accuracy improvement by incorporating
additional discretization levels. The hierarchical construction produces a sparse
and quasi-orthogonal basis, which facilitates an efficient multiresolution decom-
position of the solution space. The resulting stiffness matrix is block-diagonal,
with mesh-independent condition numbers for all but the first block (see Theo-
rem 4.5.3). Assuming stability and linear independence of the basis functions,
conditions that are practically ensured by the criterion in (4.9), we derived an
error estimate that matches those of the classical SLOD and LOD methods.

The final part of this thesis addressed stochastic settings, where the diffusion
coefficients are modeled as random fields. Building on the SLOD framework,
we developed a stochastic homogenization method tailored to such problems.
By exploiting the super-exponential decay of the localized basis functions, the
method enables efficient sampling and achieves significant computational savings.
Its collocation-type formulation eliminates the need to assemble a global stiff-
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ness matrix, thereby greatly enhancing parallelization and reducing the overall
assembly cost. A rigorous error analysis, grounded in the theory of quantitative
stochastic homogenization, is provided in Theorem 5.3.5. Additionally, leverag-
ing LOD techniques, we derived an a priori estimate for the localization error
indicator, as presented in Theorem 5.4.3.

Building on the concepts developed in the preceding chapters, we introduced
a novel hierarchical stochastic homogenization method. The hierarchical design
improves the conditioning of the system matrix associated with the local source
terms, enhancing both stability and computational efficiency. A rigorous error
analysis is presented in Theorem 6.2.1, and the theoretical results are supported
by numerical experiments.

Looking ahead, several promising directions and open questions emerge from
this work. A particularly challenging problem is the extension of the super-
localization results for SLOD basis functions to more general settings. While
the current result relies on the assumption A = 1, it remains an open ques-
tion whether similar decay properties hold under more general, possibly rough,
coefficients or in domains with irregular boundaries. One potential avenue
involves tools from spectral geometry; however, this typically requires strong
regularity assumptions on both the coefficient field and the domain boundary
(cf. [HLO1,PST15,GT16]), limiting its general applicability. Closely related is
the open problem of designing a stabilization technique for SLOD basis functions
that a priori guarantees both super-exponential decay and stability of the basis.

Another natural extension lies in adapting the HSLOD and stochastic ho-
mogenization methods to Helmholtz-type problems. Given the encouraging
performance of SLOD-based approaches in deterministic Helmholtz settings
(see [FHP24)), it is reasonable to expect that these hierarchical and stochastic
variants could also provide significant benefits for modeling wave propagation in
heterogeneous media.
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