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Abstract

Many physical phenomena in science and engineering, ranging from groundwater
flow in porous media to the mechanical behavior of composite materials, are
governed by partial differential equations (PDEs) with highly heterogeneous
coefficients that vary across multiple spatial scales. Accurately simulating such
multiscale problems poses significant computational challenges. Classical nu-
merical methods, such as the finite element method (FEM), require resolving
the finest scales, leading to excessively large systems. While analytical homoge-
nization offers effective macroscopic models under idealized assumptions (e.g.,
periodicity or scale separation), such assumptions are rarely valid in practical
applications.

This thesis is devoted to the numerical homogenization of elliptic diffusion
problems with highly heterogeneous coefficients, both deterministic and stochas-
tic. We focus on advancing the Super-Localized Orthogonal Decomposition
(SLOD) method, which enables accurate coarse-scale approximations without
relying on restrictive structural assumptions. SLOD builds upon the classical
Localized Orthogonal Decomposition (LOD) method by constructing basis func-
tions with super-exponential decay, achieved via carefully designed local source
terms. We analyze the approximation properties of SLOD and propose practical
stabilization strategies to ensure numerical robustness.

Building on this foundation, we develop a multilevel extension termed Hierar-
chical SLOD (HSLOD). This method constructs quasi-orthogonal hierarchical
basis functions, enabling a multiresolution decomposition of the solution space.
The hierarchical structure yields improved conditioning of the resulting linear
systems and facilitates efficient, parallelizable solvers. Furthermore, the hierarchi-
cal approach allows existing SLOD approximations to be improved incrementally
by adding further discretization levels.

In the stochastic setting, we extend both SLOD and HSLOD into a collocation-
type framework for numerical stochastic homogenization. The proposed methods
efficiently compute expected solutions to PDEs with random coefficients by
exploiting the super-exponential decay of the localized basis functions and the
simplicity of the collocation-type approach, which avoids assembling global
stiffness matrices. We derive rigorous error estimates by linking the methods to
results from quantitative stochastic homogenization theory. All of our theoretical
results are supported by comprehensive numerical experiments that demonstrate
the effectiveness of the proposed methods.
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1. Introduction

1.1. Motivation

Many physical systems in science and engineering are governed by partial dif-
ferential equations (PDEs) whose coefficients vary on multiple spatial scales.
These variations may arise from material inhomogeneities, geometric complexity,
or randomness in the medium and are frequently observed in fields such as
geophysics, material science, hydrology, and biological tissue modeling. For
instance, modeling groundwater flow through porous rock formations requires
capturing the fine-scale pore geometry caused by variations in soil type, micro-
scopic inclusions, or heterogeneous subsurface structures; see [Hel97]. These
fine features can span several orders of magnitude smaller than the overall
geological domain and need to be resolved by numerical methods in order to
get accurate macroscopic approximation on the kilometer scale (c.f. [NH06]).
Another example of multiscale phenomena is the elastic behavior of paper, where
macroscopic mechanical properties depend on the microscopic arrangement of
cellulose fibers [KMM+18]. Similarly, in composite materials, such as fiber-
reinforced concrete or polymers, the microscopic structure of short reinforcing
fibers significantly improves the tensile strength and overall performance of the
material, see for example [FL96,BS07,LPR+21].

Numerical simulation of such systems poses a fundamental challenge: fully
resolving all scales involved is often computationally infeasible due to the resulting
high-dimensional discretization. Standard discretization techniques such as finite
element methods (FEMs) lose their efficiency when the mesh must resolve the
finest scale variations, leading to intractable memory and runtime requirements.
In many practical applications, however, the goal is not to resolve every fine-scale
feature but rather to capture the effective or macroscopic behavior of the PDE
solution. Therefore, one may try to average the coefficients at a coarser scale.
However, naive averaging often leads to macroscopic models whose effective
properties differ significantly from those of the original fine-scale system, see,
e.g., [MP20, Chapter 2].

To address this issue, homogenization theory offers a powerful analytical frame-
work. In its classical form, homogenization seeks to replace a highly oscillatory
PDE with an effective, or homogenized, equation that captures the large-scale
behavior of the solution. Under idealized assumptions such as periodicity, scale
separation, and statistical stationarity, this approach yields rigorous asymptotic
approximations and effective coefficients that can be computed through auxil-
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1. Introduction

iary cell problems (see, for example, [JKO94,Tar09,BLB23]). However, these
assumptions are often violated in practical applications. Natural systems rarely
exhibit perfect periodicity or clear scale separation, as illustrated by the example
of groundwater flow through heterogeneous geological formations. Although
many manufactured composites often exhibit a clear separation of scales, e.g.,
between the size of the fibers and the size of the workpiece, and may even possess
a periodic microstructure, these idealized conditions are frequently violated in
practice. Material imperfections, random perturbations, or defects introduced
during manufacturing can disrupt periodicity and scale separation. Furthermore,
in many real-world scenarios, only partial or noisy data is available, obtained
through numerical simulations or experimental measurements rather than explicit
analytical models.

In such settings, numerical homogenization has emerged as a computational
counterpart to classical analytical homogenization. Instead of seeking explicit
formulas, these methods construct effective models or approximation spaces
directly from the problem data by identifying low-dimensional spaces that can
accurately approximate the solution. Typically, this is achieved by enriching
standard finite element spaces with fine-scale information extracted through
localized computations or solution operators associated with the governing PDE.
The resulting methods aim to solve the original multiscale problem on a coarse
computational grid without resolving all microscopic features explicitly, while
retaining high accuracy. Compared to classical FEMs, numerical homogenization
incurs only moderate computational overhead, such as basis functions with
slightly larger support or an increased number of basis functions per mesh entity.
Crucially, these methods are inherently non-asymptotic and do not rely on
assumptions of scale separation or periodicity, which makes them especially
appealing for real-world applications characterized by structural complexity or
data-driven models. An overview on the history of numerical homogenization
methods is given in the next section.

1.2. Literature review

The field of numerical homogenization has a long and distinguished history, rooted
in early efforts to design multiscale methods capable of addressing problems
lacking clear scale separation. A seminal contribution in this direction was
the development of generalized FEMs that incorporated fine-scale information
directly into the discrete solution space for one-dimensional problems [BO83].
This approach was later extended to two-dimensional problems in [BCO94],
thereby laying the foundation for many modern multiscale techniques. A major
shift occurred in the mid-1990s with the emergence of a diverse class of numerical
homogenization methods. In what follows, we review key developments in this
area, following the classification and structure outlined in [AHP21], which also
provides a more comprehensive overview.

2



1.2. Literature review

Homogenization-based approaches

One prominent class of numerical multiscale methods is based on analytical
homogenization theory. A notable example is the Two-Scale Finite Element
Method introduced in [MS02]. This method draws inspiration from the theory of
two-scale convergence [Ngu89,All92] and constructs coarse-scale basis functions
that mimic the structure of test functions used in this analytical framework.
By design, the method is restricted to periodic microstructures. It was later
extended in [HS05] by incorporating the more general concept of multiscale
convergence [AB96], enabling the method to address a broader class of problems.
Further generalizations and developments can be found in [Hoa08,HS11,XH14,
CH18,TH19,TH20].

Another widely used method grounded in classical homogenization is the
Heterogeneous Multiscale Method (HMM), proposed in [EE03]. HMM seeks to
compute a macroscopic finite element approximation of the homogenized PDE by
capturing fine-scale information locally in small representative cells. The success
of HMM relies heavily on the assumption of scale separation and the availability
of representative cells, which is often the case in engineering applications. Since
these cells are much smaller than the coarse elements and cover only a small
fraction of the global domain, the method is highly efficient. The first rigorous
error analyses of HMM were established in [Abd05,Ohl05], and a comprehensive
overview of the method, its theory, and extensions can be found in [AEEVE12].

Variational approaches

One influential direction in numerical homogenization has been the development
of variational approaches. A seminal contribution in this area was the Variational
Multiscale Method (VMM), proposed in [Hug95]. This method aimed to stabilize
standard FEMs for multiscale problems by using local Green’s functions to
incorporate unresolved fine-scale effects into a coarse-scale variational formulation.
This early version of the method relied on the assumption that fine-scale features
were strongly localized within each coarse mesh element, allowing local correctors
to be computed independently. While this assumption is generally unrealistic,
the conceptual framework laid the groundwork for many modern multiscale
methods.

The initial limitation was overcome in [HFMQ98], where global corrector
Green’s functions were constructed from fine-scale residuals, and the solution
space was decomposed into a coarse finite element space and a fine-scale com-
plement. This decomposition was further formalized in [HS07] through the
use of projection operators, with the coarse and fine-scale spaces chosen as the
image and kernel of a projection, respectively. This led to an operator-based
representation of the global correctors, which in turn enabled the correction
of standard basis functions to incorporate fine-scale information. Although
these corrected basis functions are inherently global, numerical investigations

3



1. Introduction

in [Mål05,LM05,HS07,Mål11] revealed that they exhibit exponential decay away
from their coarse support. This observation justified their localization to ele-
ment patches for practical computations. Moreover, a posteriori error estimates
supporting this approach were developed in [LM05,LM07,NPP08,LM09].

A rigorous proof of exponential decay for elliptic multiscale problems was
first provided in [MP14], leading to the formal introduction of the Localized
Orthogonal Decomposition (LOD) method. Subsequent work refined the local-
ization strategy in [HP13] and extended the framework in [HM14,HMP15,Pet16]
to accommodate a broader class of finite element spaces, boundary conditions
and non-symmetric and inf-sup stable problems. An alternative perspective on
LOD as an additive Schwarz method was presented in [KY16,KPY18], offering
another proof for the localization properties. The transition from conforming to
non-conforming spaces was addressed in [EGMP13] within the context of dis-
continuous Galerkin methods, and further generalized in [Mai20]. Higher-order
extensions of LOD were proposed in [Mai21] and refined in [DHM23].

A related line of work is the development of Rough Polyharmonic Splines
in [OZB14], which also feature exponentially decaying basis functions and similar
computational complexity to LOD. These ideas were extended to hierarchical
information games in [Owh15], giving rise to multiresolution numerical homoge-
nization techniques in [Owh17,OS19]. A multiresolution version of LOD was
then introduced in [FP20] and further refined in [HP22a]. For a comprehensive
overview of LOD, we refer the reader to the textbook [MP20] and the review
article [AHP21].

A recent advancement of the LOD method is the introduction of the Super-
Localized Orthogonal Decomposition (SLOD) in [HP22b] in the context of
elliptic diffusion problems. In contrast to the classical LOD, the SLOD enforces
localization more directly by minimizing the conormal derivative of the basis
functions on the boundaries of their local patches. This stabilization yields
super-exponentially decaying basis functions in practice. As a result, for a
given coarse mesh size H, an accuracy of O(H) can be achieved using basis
functions supported on patches of diameter O(H| logH|(d−1)/d), where d is the
spatial dimension. In comparison, the classical LOD requires support of diameter
O(H| logH|) to reach the same accuracy. The SLOD approach has since been
generalized and extended in [FHKP23,BFP24,BHP24,FHP24,PWZ24].

Another influential direction in the development of numerical multiscale meth-
ods which is rooted in the variational multiscale formulation of [Hug95], originates
from the concept of residual-free bubbles, introduced in [BFHR97]. Residual-free
bubbles are smooth functions that vanish on the boundary of individual grid ele-
ments and are constructed by integrating local Green’s functions. These bubbles
can also be used to stabilize standard Galerkin methods in the presence of multi-
scale features. A closely related approach is the Multiscale Finite Element Method
(MsFEM), proposed in [HW97]. MsFEM can be viewed as a homogenization-
based reinterpretation of residual-free bubbles. Its core idea is to solve local
versions of the target PDE within each coarse mesh element, using the solutions
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1.2. Literature review

as basis functions of the method. A key challenge in MsFEM lies in the choice
of boundary conditions for these local problems: mismatches between the coarse
mesh and the underlying microstructure can lead to large so-called resonance
errors. To mitigate this issue, oversampling strategies can be employed, whereby
the local PDEs are solved on patches that extend beyond the original coarse ele-
ments. A rigorous error analysis of MsFEM in periodic homogenization settings
with scale separation was established in [HWC99,EHW00,HWZ04,EH09,BLT14].
In non-periodic settings, important asymptotic convergence results were derived
in [Glo06,Glo08,Glo12]. A posteriori error estimators tailored to MsFEM were
developed in [HOS14,CL18,LRLBH22]. Moreover, an exponentially convergent
variant of the method was proposed in [CHW24]. For a comprehensive overview
of MsFEM, we refer to [CEH23].

Spectral approaches

Another important class of numerical homogenization methods are spectral
approaches, which aim to capture the relevant fine-scale information by solving
(local) spectral problems. A prominent example is the Multiscale Spectral
Generalized Finite Element Method (MS-GFEM), which goes back to [BL11].
The central idea is to partition the global computational domain into small
subdomains and define, on each subdomain, a suitable local compact operator
that accounts for the fine-scale features of the problem. By solving spectral
problems associated with these local operators, finite-dimensional approximation
spaces are constructed on each subdomain. These local spaces are then made
globally conforming by multiplying with a partition of unity. The resulting basis
can be used within a standard Galerkin framework. In contrast to variational
approaches such as LOD, the convergence of MS-GFEM is established in the
number of local basis functions and not in the diameter of the subdomains. The
method has been further developed in, among others, [BLSS20,MSD22,MAS23,
MM24,AMS25]. For a comprehensive overview of MS-GFEM, we refer to [Ma25].

A combination of MsFEM and MS-GFEM led to the development of the Gen-
eralized Multiscale Finite Element Method (GMsFEM), introduced in [EGH13].
The main idea is to enhance the accuracy of the multiscale space obtained from
residual-free bubbles computed with homogeneous Dirichlet boundary conditions
on the boundaries of coarse grid elements. To achieve this, additional bubbles
with boundary conditions induced by fine-scale nodal basis functions are com-
puted. From this typically large snapshot space, a small number of relevant basis
functions are selected by solving local spectral problems. Further developments
of GMsFEM can be found, for example, in [CEGL16,CEL19,CCE+20].

Stochastic homogenization approaches

Several numerical methods have been developed to solve PDEs with random coef-
ficients, including the stochastic FEM and the stochastic collocation method; see
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1. Introduction

the review article [GWZ14] and references therein. These methods are effective
when the dimension of the stochastic input is low. However, their performance
deteriorates significantly in high-dimensional settings due to the so-called curse
of dimensionality, which remains a central challenge in uncertainty quantification.
To address this, stochastic homogenization has emerged as an alternative. Anal-
ogous to analytical homogenization, it aims to derive an effective deterministic
model that captures the macroscopic behavior of materials with microscopically
random properties, thereby circumventing the need to fully resolve fine-scale
uncertainties. The qualitative theory of stochastic homogenization for PDEs with
random coefficients dates back to the foundational works [Koz79,PV79,Yur86].
To go beyond mere qualitative results, researchers began to rigorously quantify
the error between the heterogeneous and homogenized models, leading to the
development of quantitative stochastic homogenization. This theory has yielded
optimal-order convergence rates for linear elliptic PDEs with random coefficients,
as established in [GO11,GO12,AKM17]. For nonlinear problems, (non-optimal)
convergence rates have been derived in [ACS14,AC18,AFK20]. Further important
developments in this area include [GNO14,AS16,GO17,GNO20,DGO20,HMS21].
A comprehensive overview of the quantitative theory of stochastic homogeniza-
tion can be found in [AKM19]. In parallel, various numerical approaches have
been proposed for the computation of effective coefficients in the stochastic
setting, including [BP04,CELS15,BLBL16,LBLM16,Mou18,KKO20].

Several computational methods in stochastic homogenization that go beyond
the computation of homogenized coefficients have been developed, including
[ZCH15,HMZ19,AHKM21,LOW24]. In addition, several of the presented classical
multiscale frameworks such as HMM, VMM, MsFEM, and GMsFEM have
been adapted to the stochastic setting. Representative contributions include
[EMZ05] (HMM), [BJ11] (HMM and MsFEM), [CS08,GMP10,BLT14], and the
comprehensive review in [ACB+11] (MsFEM), as well as [JMSDO14] (VMM)
and [CEGL16,CELZ18] (GMsFEM). A notable development in this direction
is the combination of quantitative stochastic homogenization with the LOD, as
proposed and analyzed in [GP19, FGP21]. Specifically, using a reformulation
of the LOD based on a quasi-local discrete integral operator introduced in
[GP17], one can derive an effective deterministic model by taking expectations.
This model yields a coarse-scale approximation to the expected value of the
solution. Further applications of LOD in the context of numerical stochastic
homogenization are discussed, for example, in [FP20,MV22,KV25].

1.3. Outline and contribution

The goal of this thesis is to present and analyze recent advancements of the
SLOD, originally introduced in [HP22b]. These developments are carried out
in the context of elliptic diffusion problems with highly heterogeneous diffusion
coefficients, where classical discretization approaches, such as the FEM, often
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fail to efficiently resolve the multiscale nature of the solution.
The thesis is structured as follows. Chapter 2 motivates the need for multiscale

methods by illustrating the limitations of classical FEMs in the presence of
fine-scale features induced by highly heterogeneous coefficients. Moreover, we
introduce the concept of prototypical multiscale approximation spaces, which
are obtained by applying the global solution operator of the elliptic diffusion
problem to classical finite element spaces (e.g., piecewise constants). Although
these spaces yield ideal approximation properties, they are infeasible in practice
due to their globally supported basis functions. As a possible solution to this
issue, we present a short introduction of the LOD method. LOD turns the
ideal approach into a practical numerical scheme by introducing localization
techniques, which lead to basis functions that exhibit exponential decay away
from their associated coarse elements.

Chapter 3 introduces the SLOD method, an improvement over the classical
LOD. The key advancement lies in the super-exponential decay of the localized
basis functions observed in practice, which is achieved through a novel localization
strategy. This strategy identifies local source terms whose responses under the
local solution operator exhibit minimal conormal derivatives on patch boundaries.
We rigorously prove the super-exponential decay in the special case of a constant
diffusion coefficient. Furthermore, we discuss the challenges associated with
ensuring stability of the resulting basis, since stability is not guaranteed a priori.
We therefore propose and investigate several stabilization techniques to ensure
robustness in practical computations.

Building on the SLOD framework, Chapter 4 presents the Hierarchical SLOD
(HSLOD), an extension to multilevel settings. We construct a hierarchical basis
of the approximate solution space, consisting of superlocalized basis functions
that are quasi-orthogonal across hierarchy levels with respect to the energy
inner product. This hierarchical construction induces both a sparse compression
of the solution space and an orthogonal multiresolution decomposition of the
approximate solution operator. This decomposition effectively decouples different
scales and solution components. Consequently, the original PDE can be reduced
to a set of independent linear systems, one per level, which can be solved in
parallel, leading to significant computational efficiency. The condition numbers
for these systems are mesh-independent except for the first level.

In the second part of this thesis, we address random diffusion coefficients,
extending the SLOD methodology to a stochastic setting in Chapter 5. By
leveraging the SLOD localization strategy, we develop a novel collocation-type
stochastic homogenization method. This approach benefits from the super-
exponential decay of basis functions relative to the coarse mesh, enabling sub-
stantial computational savings during the sampling phase. The method is
particularly well-suited for parallel computing environments due to its simple
and communication-efficient structure: basis functions are computed locally with
minimal inter-patch communication. Additionally, we provide an error analysis
that links the proposed numerical method to the quantitative theory of stochas-
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1. Introduction

tic homogenization, demonstrating both theoretical and practical convergence
properties.

Finally, in Chapter 6, we synthesize the ideas developed in the preceding
chapters to construct a hierarchical stochastic numerical homogenization method.
The collocation-type formulation is retained to preserve simplicity and compu-
tational efficiency, while the hierarchical structure improves the conditioning
of the system matrices associated with the local hierarchical source terms. We
provide an accompanying error analysis grounded in the quantitative theory of
stochastic homogenization and demonstrate the method’s convergence through
numerical experiments.

The work presented in this thesis emerged from a collaborative effort within the
project Computational Random Multiscale Problems, funded by the European
Research Council. Many of the results included here were developed jointly with
other project members and initially disseminated as preprints or journal articles.

In particular, the stochastic SLOD method described in Chapter 5 was devel-
oped in collaboration with Moritz Hauck and Daniel Peterseim and published in
Multiscale Modeling & Simulation [HMP25]. Likewise, the HSLOD method pre-
sented in Chapter 4 is a revised and extended version of the preprint [GMPZ24],
which resulted from a collaboration with José C. Garay, Christoph Zimmer, and
Daniel Peterseim. However, specific parts of the latter work were originally
developed and proven by José C. Garay. These include Theorem 4.3.2, the re-
sults in Section 4.4 concerning additional compression stages, and the condition
number estimate in Theorem 4.5.3, along with the two preceding lemmas. Their
presentation here has been adapted slightly for consistency with the overall style
of the thesis.

In contrast, certain parts of this thesis represent original contributions that
have not been previously published. These include the illustrative proof of the
super-exponential decay of the SLOD basis functions in the special case A ≡ 1
(Section 3.3.1) and a novel stabilization technique for SLOD basis functions
(Section 3.4.3), both presented in Chapter 3, as well as the entirety of Chapter 6.

The numerical experiments presented in this thesis were performed in MATLAB,
based on preliminary code developed at the Chair of Computational Mathematics
at the University of Augsburg.

Notation. Throughout this work, we adopt the following notational conventions.
We write C > 0 to denote a generic constant that is independent of the mesh
sizes h and H, the oversampling parameter m, and the microscopic scale ε. Such
constants may, however, depend on the dimension d, the domain D, and the
uniform bounds on the diffusion coefficient. We emphasize that the value of C
may vary from one estimate to another. To simplify notation, we use the symbol
a ≲ b (or equivalently b ≳ a) to indicate that a ≤ Cb for some constant C > 0
as described above. If both a ≲ b and a ≳ b hold, we write a ≈ b.
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Deterministic coefficients





2. Localized Orthogonal

Decomposition

Classical FEMs are widely used for solving PDEs. However, these methods
face significant challenges when applied to problems with highly heterogeneous
coefficients, particularly when these coefficients exhibit fine-scale variations. In
such cases, FEM often requires a mesh that is fine enough to resolve these small-
scale features, leading to high computational costs. Moreover, the convergence of
the FEM solution can be arbitrarily slow, especially when the solution exhibits
low regularity; cf. [BO00].

One possible approach to overcome these limitations is the LOD method,
originally introduced in [MP14] and later refined in [HP13], within the context
of elliptic model problems (see also [MP20]). The main objective of the LOD
method is to deliver effective approximations of solutions to PDEs on a coarse
scale, particularly when the problem involves complex, heterogeneous coefficients
that vary on small scales. To this end, the LOD method constructs a problem-
adapted solution space. This is achieved by decomposing the given solution space
into an infinite-dimensional fine-scale space representing the unresolved small-
scale features and its finite-dimensional coarse complement in a problem-adapted
fashion. The coarse space captures essential fine-scale information, enabling an
accurate approximation of the solution. The final LOD approximation is then
obtained via, for example, a Galerkin projection using a localized version of the
coarse complementary space. This approach ensures reliable approximations on
arbitrarily coarse meshes, provided that the diameter of the patches, where the
basis functions of the localized complement space are computed, is increased
logarithmically with the desired accuracy.

Various LOD variants have been developed in relatively general settings (see,
e.g., the review articles [Pet16,AHP21] and the dissertation [Mai20]). In this
work, however, we limit ourselves to an overview of the lowest-order LOD method
from [Mai21,HP22a], tailored to elliptic diffusion problems. Our introduction to
the LOD is intentionally brief, as comprehensive expositions are already available;
cf. the textbook [MP20] and the review article [AHP21]. Before presenting the
LOD approach, we first introduce the classical FEM, highlight its limitations,
and discuss a prototypical operator-dependent method. The presentation in this
chapter is inspired by [AHP21,Hau23].
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2. Localized Orthogonal Decomposition

2.1. Model problem

We consider the prototypical elliptic diffusion problem

−div(A∇u) = f (2.1)

subject to homogeneous Dirichlet boundary conditions on a polygonal Lipschitz
domain D ∈ Rd with d ∈ {1, 2, 3}. Without loss of generality, we assume that
D is scaled to unit size. The diffusion coefficient A ∈ L∞(D,Rd×d) is a matrix-
valued function which is supposed to be symmetric and positive definite almost
everywhere. More precisely, we assume that there exist constants 0 < α ≤ β < ∞
such that

α∥η∥2
2 ≤ (A(x)η) · η ≤ β∥η∥2

2 (2.2)

holds for all η ∈ Rd and for almost all x ∈ D.
We assume f ∈ L2(D), the space of square-integrable functions on D. For any

subdomain S ⊆ D, we denote the L2-norm and inner product restricted to S
by ∥ · ∥L2(S) and (·, ·)L2(S), respectively. Furthermore, we denote by Hk(D) with
k ∈ N0, the Sobolev space of functions in L2(D) that have square-integrable
weak derivatives up to order k. The Hk-norm restricted to S ⊆ D is denoted by
∥ · ∥Hk(S). Notably, H0(D) = L2(D) and ∥ · ∥H0(S) = ∥ · ∥L2(S).

The solution space of the weak formulation of the elliptic diffusion problem
(2.1) is the Sobolev space V := H1

0 (D) which is a closed subspace of H1(D) that
accounts for the homogeneous Dirichlet boundary conditions. The bilinear form
a : V × V → R associated with the model problem is given, for any u, v,∈ V , by

a(u, v) :=

ˆ

D

(A∇u) · ∇v dx.

Under the given assumptions on the diffusion coefficient A, the bilinear form

a(·, ·) defines an inner product on V , inducing the energy norm ∥ · ∥a :=
√
a(·, ·).

The weak formulation of (2.1) seeks u ∈ V such that

a(u, v) = (f, v)L2(D) (2.3)

holds for all v ∈ V. Due to the coercivity of a(·, ·), the Lax–Milgram theorem
establishes the well-posedness of the model problem (2.3) and ensures the
existence of a unique solution u ∈ V. Moreover, applying Friedrichs’ inequality
(see e.g. [Beb03]), yields the estimate

∥∇u∥L2(D) ≤ α−1 diam(D)

π
∥f∥L2(D).

We denote the solution operator of the problem by A−1 : L2(D) → V , mapping
f ∈ L2(D) to the unique solution u ∈ V of (2.3).
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2.2. Finite element method

2.2. Finite element method

The Galerkin FEM is the most widely used approach for computing numerical
solutions to second-order elliptic PDEs in variational form, such as (2.3). The
method seeks the best approximation of the solution within a finite-dimensional
subspace of V. The discretization is based on a sequence of meshes {TH}H>0,
where each mesh is a finite subdivision of D into closed, convex and shape regular
elements (in the sense of [EG04, Definition 1.107]), with mesh size parameter
H. Although various types of meshes are possible, we focus on conforming
Cartesian meshes, where the mesh elements are d-rectangles. More precisely,
any (d − 1)-dimensional face of an element K ∈ TH is either a subset of the
boundary ∂D, or a face of another element, see also [EG04, Definition 1.55].
In particular, we assume that the domain D allows a decomposition into such
elements. Additionally, we assume that the sequence of meshes is quasi-uniform
(see [EG04, Definition 1.140]), meaning there exists a constant Cqu > 0 such that

H := max
K∈TH

HK ≤ Cqu min
K∈TH

HK ,

holds for all meshes, where HK denotes the diameter of the element K.
On these meshes, we define the finite element space of first-order polynomials

as

V fem
H := {v ∈ V : ∀K ∈ TH : v|K is a polynomial of coordinate degree ≤ 1}.

The P1-FEM seeks the Galerkin approximation ufem
H ∈ V fem

H such that

a(ufem
H , v) = (f, v)L2(D)

holds for all v ∈ V fem
H . The unique existence of ufem

H ∈ V fem
H is guaranteed

by the coercivity of the bilinear form a(·, ·). Céa’s Lemma (see, e.g., [Cia78,
Theorem 2.4]) establishes the quasi-optimality of the finite element approximation
in V fem

H . Furthermore, under additional regularity assumptions on the domain
D and on the derivatives of the diffusion coefficient, the unique solution of
(2.3) satisfies u ∈ H2(D). By applying classical interpolation results (see,
e.g., [EG17, Theorem 6.4]), we obtain the error estimate

∥u− ufem
H ∥V ≲ H∥D2u∥L2(D),

which indicates optimal first-order convergence. Note however, that if the
solution exhibits lower regularity, the convergence rate correspondingly decreases.
Moreover, when dealing with a highly heterogeneous diffusion coefficient Aε,
that varies on some fine-scale ε, the H2-seminorm of the true solution may also
depend on ε. This is illustrated in [MP20, Chapter 2], where a one-dimensional
diffusion problem on D = (0, 1) with homogeneous Dirichlet boundary conditions
is analyzed for a smooth but rapidly oscillating coefficient Aε. In this setting,
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2. Localized Orthogonal Decomposition

the true solution uε ∈ H2(D) satisfies ∥D2uε∥L2(D) ≈ ε−1. Consequently, the
mesh size must resolve the microscopic scale, i.e., H ≲ ε, to ensure a meaningful
error bound. Notably, in the pre-asymptotic regime, where the mesh does not
resolve the oscillations of the coefficient, neither the macroscopic behavior of the
solution nor its microscopic features are well approximated. In fact, classical
FEMs can perform arbitrarily poorly for PDEs with rough coefficients, as shown
in [BO00].

2.3. Prototypical operator-dependent method

The goal of this section is to construct a coarse-scale space with superior approxi-
mation properties compared to the previously introduced standard finite element
space. This improvement is achieved by incorporating problem-dependent shape
functions that encode fine-scale information a priori. Notably, we are not re-
stricted to a particular choice of the underlying space for the coarse space, nor
do we require it to be a subspace of H1(D). To keep the construction simple, we
choose the space of piecewise constant functions on the coarse mesh TH , defined
as

P0(TH) := {1K : K ∈ TH},
where 1K denotes the characteristic function of an element K ∈ TH . The coarse-
scale shape functions are then obtained by applying the solution operator A−1

to P0(TH). Hence, a natural definition of a prototypical problem-specific ansatz
space is given by

Va
H := span{A−1

1K : K ∈ TH}. (2.4)

Using this space, the prototypical Galerkin method seeks a discrete approximation
uH ∈ Va

H such that
a(uH , v) = (f, v)L2(D) (2.5)

holds for all v ∈ Va
H . The approximation error of this method satisfies the bound

∥∇(u− uH)∥L2(D) ≲ H1+s∥f∥Hs(D)

for any f ∈ Hs(D) with s ∈ {0, 1}, see, e.g., [AHP21, Example 3.10]. Notably,
this method is exact when the right-hand side satisfies f ∈ P0(TH).

Despite its strong approximation properties, the canonical basis functions
{A−1

1K : K ∈ TH} of Va
H are inherently non-local. This is illustrated in

Figure 2.1 for the one-dimensional setup. Due to their global support, these
functions are impractical for computations. Consequently, we refer to (2.5)
as the ideal method, which serves as a theoretical benchmark rather than a
feasible numerical scheme. The construction of an approximately local basis
of the problem-specific ansatz space Va

H is the true challenge of numerical
homogenization. Various strategies to accomplish this will be discussed in the
following.
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2.4. Orthogonal decomposition

Figure 2.1.: Globally supported prototypical basis functions for the model prob-
lem (2.3) in one spatial dimension, for A ≡ 1 (top) and a piecewise
constant coefficient illustrated in gray (bottom).

2.4. Orthogonal decomposition

Before constructing a more practical basis for Va
H that can be well-approximated

by local functions, we first introduce the L2-orthogonal projection onto the space
of piecewise constants which is denoted by ΠH : L2(D) → P0(TH). For all
K ∈ TH , the projection satisfies the local stability property

∥ΠHv∥L2(K) ≤ ∥v∥L2(K), (2.6)

for all v ∈ L2(K), as well as the local approximation property

∥v − ΠHv∥L2(K) ≤ π−1H∥∇v∥L2(K), (2.7)

for all v ∈ H1(K), see, e.g., [PW60,Beb03]. Given this projection, we introduce
the infinite-dimensional fine-scale space

W := {w ∈ V : ΠHw = 0},
which consists of microscopic functions that are not resolved by the coarse-scale
space Va

H . Together, these two spaces form an a-orthogonal decomposition of V ,
meaning that

V = Va
H ⊕ W

with the orthogonality property

a(Va
H ,W) = 0,
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2. Localized Orthogonal Decomposition

see, e.g., [AHP21, Theorem 3.5].
To incorporate fine-scale information into the coarse approximation space, the

LOD utilizes correction operators. The ideal correction operator C : V → W is
defined by

a(Cv, w) = a(v, w) (2.8)

for all v ∈ V and w ∈ W. The well-posedness of (2.8) follows from the Lax–
Milgram theorem, since W is a closed subspace of V. A crucial observation is
that the correction operator can be decomposed into element-wise correctors.
More precisely, we can write

C =
∑

K∈TH

CK (2.9)

where each element corrector CK : V → W satisfies

a(CKv, w) = aK(v, w) :=

ˆ

K

(A∇v) · ∇w dx (2.10)

for all v ∈ V and w ∈ W . A key property of the element correctors, first rigorously
established in [MP14], is their exponential decay away from the associated mesh
elements. This decay motivates their localization, which is discussed in the next
section.

An alternative characterization of the problem-specific ansatz space Va
H can

be obtained using the correction operator C together with bubble functions
associated with coarse mesh elements. More precisely, for each element K ∈ TH ,
we choose non-negative bubbles bK ∈ H1

0 (K) with ΠHbK = 1K such that

∥bK∥L2(K) ≲ H∥∇bK∥L2(K) ≲ ∥1K∥L2(K), (2.11)

see, e.g. [AHP21, Example 3.11] for an explicit construction of these functions;
however, their exact representation is not important. The space of bubble
functions is then defined as

BH := span{bK : K ∈ TH}.

Using this notation, the problem-specific approximation space Va
H can be refor-

mulated as
Va

H = (1 − C)BH , (2.12)

which is shown for example in [AHP21, Lemma 3.12]. This relation motivates
the definition of the ideal LOD basis functions as

φlod
K = (1 − C)bK (2.13)

for K ∈ TH . Although these functions are globally supported, they inherit the
exponential decay property of the element correctors.
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1

2

3

4

Figure 2.2.: Illustration of the m-th order patch N
m(K) for an element K ∈ TH ,

shown in black. Varying shades of blue represent different patch
orders, ranging from m = 1, . . . , 4.

2.5. Localization strategy

The localization of the element correctors, and consequently the localization
of the LOD basis functions, is motivated by their exponential decay. The
localization approach relies on the concept of local patches in the coarse mesh
TH , which are constructed based on neighborhood relations between elements.
Given a union of elements S ⊂ D, we define the first order element patch N

1(S)
of S by

N
1(S) :=

⋃
{T ∈ TH : T ∩ S ̸= ∅} .

For any m = 2, 3, 4, . . . , the m-th order patch N
m(K) of the element K ∈ TH is

then recursively given by

N
m(K) := N

1(Nm−1(K)); (2.14)

see Figure 2.2 for an schematic illustration using a Cartesian mesh.
The submesh of TH restricted to the patch N

m(K) is given by

TH,Nm(K) := {T ∈ TH : T ⊂ N
m(K)}.

The restriction of the L2-orthogonal projection to this patch is denoted by
ΠH,Nm(K) : L2(Nm(K)) → P0(TH,Nm(K)). Note that in the remainder of this
thesis, we do not distinguish between locally defined L2- or H1

0 -functions and
their extensions by zero to the whole domain.

To approximate correctors locally, we define the localized fine-scale subspaces
for each element K ∈ TH and oversampling parameter m ∈ N as

WK,m := {w ∈ H1
0 (Nm(K)) : ΠH,Nm(K)w = 0}. (2.15)

The localized element correctors ĈK,m are then defined by solving

a(ĈK,mv, w) = aK(v, w)
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2. Localized Orthogonal Decomposition

for all v ∈ V and w ∈ WK,m. This equation is identical to the original element
corrector definition (2.10) but now constrained to the localized fine-scale space
WK,m. Relation (2.9) motivates defining the localized corrector Ĉm as the sum
of these localized element correctors ĈK,m, i.e.,

Ĉm :=
∑

K∈TH

ĈK,m.

Due to the exponential decay of the element correctors ĈK,m, the localized cor-
rector Ĉm provides an exponentially accurate approximation of the full corrector
C. More precisely, the localization error satisfies

∥∇(C − Ĉm)v∥L2(D) ≲ md/2 exp(−Cm)∥∇v∥L2(D),

for all v ∈ V, where C > 0 is a constant independent of H and m. The
proof builds on classical LOD techniques and follows the arguments in [MP20,
Theorem 4.3] and [HP22a, Lemma 5.4]. A formulation adapted to the present
context can also be found in [DHM23, Lemma 5.2].

2.6. Practical multiscale method

Using the localization strategy from the previous section, we introduce localized
versions of the ideal LOD basis functions defined in (2.13), thereby transforming
the ideal numerical homogenization method (2.5) into a computationally feasible
scheme. However, instead of merely replacing the correctors with their localized
counterparts, we additionally employ a V-stable projection operator PH , first
introduced in [AHP21, Equation (3.13)]. This operator cures numerical pollution
effects at the cost of slightly increasing the support of the LOD basis functions;
see [HP22a,DHM23]. The construction of PH is based on the quasi-interpolation
operator IH from which it inherits the V-stability. The quasi-interpolation is
defined as IH := EH ◦ ΠH , where EH denotes an averaging operator that maps
piecewise constants to the space of continuous piecewise linear functions. For
interior nodes z, it is defined as

(EHv)(z) :=
1

#{K ∈ TH : z ∈ K}
∑

K∈TH :z∈K

v|K(z),

while for nodes on the Dirichlet boundary, we set (EHv)(z) := 0. The operator
EH is well known from the theory of domain decomposition methods; see, e.g.,
[Osw93, Bre94]. Since PH should satisfy ker PH = ker ΠH , we need to correct
IHv such that the element-wise averages of v on TH are preserved. This leads to
the definition

PHv := IHv +
∑

K∈TH

bK

 

K

(v − IHv) dx.

Since the operator IH is quasi-local in the sense that it extends the support of a
function by only one layer of elements, the same property also holds for PH .
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Figure 2.3.: Ideal LOD basis for the model problem (2.3) in one spatial dimension,
for A ≡ 1 (top) and a piecewise constant coefficient illustrated in
gray (bottom). The localized counterparts with m = 1 for the
central basis functions are depicted in yellow.

Building on the ideal coarse space formulation from (2.12), we introduce the
localized, problem-adapted ansatz space V lod

H,m of the LOD method for a given
oversampling parameter m ∈ N, incorporating the projection operator PH , as

V lod
H,m := (1 − Ĉm)PHBH .

The associated localized LOD basis functions for K ∈ TH are defined by

φ̂lod
K,m = (1 − Ĉm)PHbK .

An illustration comparing ideal and localized LOD basis functions is provided in
Figure 2.3. The classical LOD then computes a Galerkin approximation in the
localized ansatz space; that is, it seeks ulod

H,m ∈ V lod
H,m such that

a(ulod
H,m, v) = (f, v)L2(D)

holds for all v ∈ V lod
H,m. Using standard LOD techniques (see, e.g., [MP20,

Theorem 5.2]), we obtain, for f ∈ Hs(D) with s ∈ {0, 1}, the error estimate

∥∇(u− ulod
H,m)∥L2(D) ≲ H1+s∥f∥Hs(D) +md/2 exp(−Cm)∥f∥L2(D),

where the constant C > 0 is independent of H and m. For a proof adapted to
the present context, we refer to [DHM23, Theorem 6.2]. This estimate implies
that choosing m ≳ | log(H)| recovers the convergence rate of the ideal method.
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Decomposition

In this chapter, we introduce an enhanced localization technique within the
LOD framework, building on the concepts presented in the previous chapter.
This refined approach, known as the Super-Localized Orthogonal Decomposition
(SLOD), was first introduced in [HP22b] for an elliptic diffusion problem. We
refer to [Hau23] for a more general setting. The key idea behind SLOD is to
identify local finite element source terms for all patches, ensuring that their
responses decay rapidly under the local solution operators. This decay is enforced
by minimizing the conormal derivatives of the responses at the patch boundaries.
The resulting local responses are taken as the SLOD basis functions.

A crucial advantage of SLOD is that, in practice, the localization error de-
cays super-exponentially as the patch size increases. Consequently, local basis
functions supported on patches of diameter O(H| logH|(d−1)/d), where d denotes
the spatial dimension, are sufficient to maintain optimal algebraic convergence
rates in H without pre-asymptotic effects. In contrast, the standard LOD frame-
work requires basis functions supported on patches of diameter O(H| logH|) to
achieve similar accuracy. Despite these empirical benefits, a rigorous proof of
the super-exponential decay of SLOD basis functions remains an open problem.
However, in the special case of a constant diffusion coefficient, we establish this
decay through an analysis based on Steklov eigenfunctions. Moreover, even
in the general heterogeneous setting, classical LOD techniques can be used to
show that the localization error of the SLOD basis functions decays at least
exponentially.

In the classical LOD, equivalently to solving local sub-scale correction problems,
the basis functions can also be obtained by solving local constrained energy
minimization problems, where the constraints impose a Kronecker delta condition
with respect to element averages, ensuring the stability of the LOD basis functions,
see [OS19,Mai21]. In contrast, for the SLOD this constraint is removed to enforce
the decay of the basis functions in a more direct way. As a result, the stability
of the basis is not inherently guaranteed. To address this limitation, we explore
various stabilization techniques to ensure robustness while preserving the benefits
of the improved localization strategy.

The results in this chapter are largely drawn from [HP22b], whose presentation
we follow closely. In particular, Section 3.1 builds on [HP22b, Section 4], while
Sections 3.2 and 3.3.2 are based on [HP22b, Sections 5–6]. Furthermore, Sec-
tion 3.4.1 and Section 3.5.1 are adapted from [HP22b, Appendix B]. In addition,
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the stabilization technique presented in Section 3.4.2 and the first part of Sec-
tion 3.5.2 are based on [BFP24, Section 7]. The stabilization approach discussed
in Section 3.4.4 and the second part of Section 3.5.2 follow [GMPZ24, Sec-
tion 3.1]. In contrast, the results presented in Sections 3.3.1 and 3.4.3 are novel
contributions.

3.1. Localization strategy

As for the LOD, the SLOD localization strategy is based on local patches
as defined in (2.14). To simplify notation, we fix an element K ∈ TH , an
oversampling parameter m ∈ N and define the m-th order patch of K as
DK := N

m(K), assuming that DK does not coincides with the whole domain D.
The submesh TH,DK

consists of elements in the patch, and the L2(DK)-orthogonal
projection onto piecewise constants is denoted by ΠH,DK

: L2(DK) → P0(TH,DK
).

The ideal SLOD basis function φslod
K,m ∈ Va

H , where Va
H denotes the prototypical

problem-specific ansatz space defined in (2.4), is given by

φslod
K,m = A−1gslod

K,m, with gslod
K,m :=

∑

T ∈TH,DK

cT1T , (3.1)

where the coefficients (cT )T ∈TH,DK
are to be determined. The localized ap-

proximation φ̂slod
K,m ∈ H1

0 (DK) is the Galerkin projection of φslod
K,m onto H1

0 (DK),
satisfying

aDK
(φ̂slod

K,m, v) :=

ˆ

DK

(A∇φ̂slod
K,m) · ∇v dx = (gslod

K,m, v)L2(DK), (3.2)

for all v ∈ H1
0 (DK).

Since the local function φ̂slod
K,m is generally a poor approximation of φslod

K,m,
an appropriate choice of gslod

K,m is crucial for accuracy in the energy norm. To
analyze this choice, we define the trace operator restricted to the closed subspace
VDK

:= {v|DK
: v ∈ V} ⊂ V, consisting of functions with trace zero on the

boundary segment ∂DK ∩ ∂D, by

tr = trDK
: VDK

→ X := range tr ⊂ H1/2(∂DK). (3.3)

We refer to [LM72] for details. The space X is equipped with the norm

∥w∥X := inf{∥v∥H1(DK) : v ∈ VDK
, tr v = w}. (3.4)

Hence, the continuity of the trace operator follows regardless of the patch
geometry. Additionally, we define the A-harmonic extension tr−1 as a continuous
right-inverse of tr. Given w ∈ X, it satisfies tr tr−1 w = w and

aDK
(tr−1w, v) = 0, (3.5)
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3.1. Localization strategy

for all v ∈ H1
0 (DK).

The conormal derivative of u ∈ H1(DK) with divA∇u ∈ L2(DK) is defined
as the functional γ∂nu = A∇u · n ∈ X ′, where n is the outward normal to DK ,
satisfying

⟨γ∂nu, tr v⟩X′×X = (divA∇u, v)L2(DK) + a(u, v) (3.6)

for all v ∈ H1(DK). Using the definition of the conormal derivative, we can
know characterize the localization error.

Lemma 3.1.1 (Localization error of SLOD basis functions). The localization
error of the SLOD basis function satisfies

a(φslod
K,m − φ̂slod

K,m, v) = −⟨γ∂nφ̂
slod
K,m, tr v⟩X′×X = (gslod

K,m, tr
−1tr v)L2(DK),

for all v ∈ V.

Proof. Let v ∈ V. From (3.5), and using that v − tr−1tr v ∈ H1
0 (DK) for all

v ∈ V , we obtain that

a(φ̂slod
K,m, v) = aDK

(φ̂slod
K,m, v − tr−1tr v) = (gslod

K,m, v − tr−1tr v)L2(DK).

The combination with the weak formulation of (3.1), yields the assertion.

Thus, the localization error is controlled by the quasi-orthogonality of gslod
K,m to

Y := tr−1X ⊂ VDK
, (3.7)

the space of A-harmonic functions in DK . Equivalently, a small localization
error corresponds to a small X ′-norm of the conormal derivative of φ̂slod

K,m. An
optimal choice for gslod

K,m follows from the singular value decomposition (SVD) of
ΠH,DK

|Y , which has rank at most N = #TH,DK
. The SVD is given by

ΠH,DK
|Y v =

N∑

k=1

σk(v, wk)H1(DK)gk,

where σ1 ≥ · · · ≥ σN ≥ 0 are singular values, g1, . . . , gN are L2(DK)-orthonormal
left singular vectors, and w1, . . . , wN are H1(DK)-orthonormal right singular
vectors. The left singular vector gN corresponding to the smallest singular value
σN is an optimal choice for gslod

K,m in the sense that

gN ∈ arg min
g∈P0(TH,DK

) : ∥g∥L2(DK )=1

sup
v∈Y : ∥v∥H1(DK )=1

(g, v)L2(DK). (3.8)

Thus, we define

σK = σK(H,m) := σN = sup
v∈Y : ∥v∥H1(DK )=1

(gN , v)L2(DK), (3.9)
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3. Super-Localized Orthogonal Decomposition

Figure 3.1.: Truly local SLOD basis functions for the model problem (2.3) in
one spatial dimension, for A ≡ 1 (top) and a piecewise constant
coefficient illustrated in gray (bottom). The L2-normalize right-hand
sides corresponding to the central basis functions are depicted in
different shades of yellow.

which quantifies the quasi-orthogonality between gslod
K,m and Y . Moreover, it

provides a direct estimate of the X ′-norm of the conormal derivative of φ̂slod
K,m,

up to a constant depending on the patch geometry.
In one spatial dimension, both the trace space and Y have at most two

dimensions. Consequently, for m = 1, we can select an L2-normalized local source
term gslod

K,m ∈ P0(TH,DK
) that is L2-orthogonal to Y , resulting in a local basis. This

means that φslod
K,m coincides with its localized counterpart φ̂slod

K,m. For the Poisson
problem, this basis corresponds to quadratic B-splines; see [PT95, Chapter 2].
Figure 3.1 illustrates this case, along with an example of truly local SLOD
basis functions in one dimension for a piecewise constant diffusion coefficient A.
Whether a truly local basis for Va

H exists in higher dimensions remains an open
question. Figure 3.2 illustrates localized SLOD basis functions along with their
L2-normalized local source terms for the model problem (2.3) in two dimensions
with a constant coefficient A ≡ 1.

The potential non-uniqueness of the smallest singular value is evident in the
one-dimensional case, where for m ≥ 2, multiple optimal choices for the local
source term exist by a simple counting argument. In higher dimensions, clusters
of small singular values may arise for certain patch geometries near the boundary
of the domain D. Numerical strategies to ensure stability of {gslod

K,m : K ∈ TH}
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3.2. Practical multiscale method

Figure 3.2.: SLOD basis functions for the model problem (2.3) with A ≡ 1 in
two spatial dimensions, shown for different coarse mesh sizes. The
oversampling parameter is set to m = 1 and the corresponding
L2-normalized right-hand sides are depicted in gray.

are discussed in Section 3.4. For the subsequent numerical analysis, we impose
the following assumption.

Assumption 3.1.2 (Riesz stability). The set {gslod
K,m : K ∈ TH} is a Riesz basis

of P0(TH), i.e., there exists a constant Crb = Crb(H,m) > 0 such that for all
possible choices of (cK)K∈TH

it holds that

C−1
rb

∑

K∈TH

c2
K ≤

∥∥∥∥∥
∑

K∈TH

cKg
slod
K,m

∥∥∥∥∥

2

L2(D)

,

where Crb depends polynomially on H−1 and m.

3.2. Practical multiscale method

Applying the SLOD localization strategy, we define a localized version of the
prototypical problem-specific ansatz space (2.4) as the span of the localized basis
functions φ̂slod

K,m from (3.2). Given a fixed oversampling parameter m, we set

Vslod
H,m := span{φ̂slod

K,m : K ∈ TH} ⊂ V .

The localized method then seeks the Galerkin approximation uslod
H,m ∈ Vslod

H,m

satisfying
a(uslod

H,m, v) = (f , v)L2(D), (3.10)

for all v ∈ Vslod
H,m.

Alternatively, we define a collocation-type SLOD approximation uslod,c
H,m ∈ Vslod

H,m

as
uslod,c

H,m =
∑

K∈TH

cK φ̂slod
K,m, (3.11)

where the coefficients (cK)K∈TH
correspond to the expansion of ΠHf in terms of

the local source terms gslod
K,m. This approach resembles collocation, as it ensures
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3. Super-Localized Orthogonal Decomposition

that the PDE holds on average within each element of TH , up to localization
errors. Like the Galerkin method, it requires solving only a coarse-scale linear
system, but with the advantage that assembling the system matrix depends solely
on the coarse functions gslod

K,m, avoiding the computation of inner products between
the SLOD basis functions φ̂slod

K,m. However, this reduction in computational cost
comes at the expense of losing the best-approximation property of the Galerkin
solution in Vslod

H,m with respect to the energy norm.
In the following, we derive an a posteriori error estimate for the two methods

introduced above, closely following [HP22b, Theorem 6.1]. The estimate involves
the quantity

σ = σ(H,m) := max
K∈TH

σK(H,m), (3.12)

which represents the maximal localization error over the coarse mesh; see (3.9).
It also depends on the Riesz stability constant Crb from Theorem 3.1.2, which
measures the linear independence of the local source terms {gslod

K,m : K ∈ TH}.
Both constants can be computed a posteriori, as outlined in Section 3.5.1.
Furthermore, we provide a priori upper bounds for σ in the next section.

Theorem 3.2.1 (A posteriori error estimate). Let {gslod
K,m : K ∈ TH} be stable

in the sense of Assumption 3.1.2. Then, for any f ∈ Hs(D) with s ∈ {0, 1}, the
SLOD Galerkin and collocation-type approximations uslod

H,m and uslod,c
H,m , defined in

(3.10) and (3.11), respectively, satisfy

∥u− uslod
H,m∥

a
≤ ∥u− uslod,c

H,m ∥
a

≲ H∥f − ΠHf∥L2(D) + C
1/2
rb md/2σ∥f∥L2(D)

≲
(
H1+s + C

1/2
rb md/2σ

)
∥f∥Hs(D)

with Crb(H,m) from Assumption 3.1.2. This result implies that both approxima-
tions converge to the exact solution at an algebraic rate in H, up to an additional
error due to localization.

Proof. The first inequality follows directly from Céa’s Lemma (see, e.g., [Cia78]),
which implies that the SLOD Galerkin approximation uslod

H,m is the best approxima-
tion of u in Vslod

H,m with respect to the energy norm. Using the triangle inequality,
we obtain

∥u− uslod
H,m∥

a
≤ ∥u− uslod,c

H,m ∥
a

≤ ∥u− ũ∥a + ∥ũ− uslod,c
H,m ∥

a
.

The particular choice ũ = A−1ΠHf , yields for the first term

∥u− ũ∥2
a = (f − ΠHf, u− ũ)L2(D)

≲ H∥f − ΠHf∥L2(D)∥u− ũ∥a

≲ H1+s∥f∥Hs(D)∥u− ũ∥a,

(3.13)

where we used the approximation property (2.7) of ΠH for the last two inequali-
ties.
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3.2. Practical multiscale method

For the second term, we use the fact that the prototypical method (2.5) is
exact for ΠHf . This allows us to represent ũ in terms of the ideal basis functions
φslod

K,m, namely

ũ =
∑

K∈TH

cK φslod
K,m,

where (cK)K∈TH
denote the coefficients of the expansion of ΠHf in terms of the

basis functions gslod
K,m. Defining e := ũ− uslod,c

H,m , we obtain

∥e∥2
a =

∑

K∈TH

cK a(φslod
K,m − φ̂slod

K,m, e). (3.14)

Using Theorem 3.1.1 and the definitions of σK(H,m) and σ(H,m) in (3.9)
and (3.12), respectively, we get

a(φslod
K,m − φ̂slod

K,m, e) = (gslod
K,m , tr−1tr e)

L2(Nm(K))

≤ σ ∥tr−1tr e∥H1(Nm(K))

≲ σ ∥e∥H1(Nm(K)),

(3.15)

where tr and tr−1 denote the trace and A-harmonic extension operators on N
m(K),

respectively. To prove the last inequality, we decompose tr−1tr e = e+ e0, where
e0 ∈ H1

0 (Nm(K)) satisfies a(e0, v) = −a(e, v) for all v ∈ H1
0 (Nm(K)). The

inequality then follows from

∥e0∥2
H1(Nm(K)) = ∥∇e0∥2

L2(Nm(K)) + ∥e0∥2
L2(Nm(K))

≲ a(e0, e0) ≤ |a(e, e0)|
≲ ∥e∥H1(Nm(K))∥e0∥H1(Nm(K)),

where we employed Friedrichs’ inequality and that D is of unit size.
Combining (3.14), (3.15), the discrete Cauchy–Schwarz inequality, Theo-

rem 3.1.2, and the finite overlap of the patches, we derive

∥e∥2
a =

∑

K∈TH

cK a(φslod
K,m − φ̂slod

K,m, e)

≲ σ
∑

K∈TH

cK∥e∥H1(Nm(K))

≤ σ
√ ∑

K∈TH

c2
K

√ ∑

K∈TH

∥e∥2
H1(Nm(K))

≲ C
1/2
rb md/2σ ∥e∥a∥f∥L2(D),

where we used Friedrichs’ inequality in the last step. In combination with (3.13),
the assertion directly follows.
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3. Super-Localized Orthogonal Decomposition
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Figure 3.3.: Decay of σ(H,m) as a function of the oversampling parameter m
for different values of the coarse mesh size H for the 2d experiment
(left) and the 3d experiment (right).

3.3. Decay of localization error

In the following, we analyze the behavior of the parameter σ defined in (3.12)
and, consequently, the decay of the localization error in the SLOD method.
Numerical experiments demonstrate that σ exhibits super-exponential decay as
m increases. Specifically, the results suggest that

σ(H,m) ≤ Cd(H,m) exp
(

− Cm
d

d−1

)
,

where Cd(H,m) > 0 depends at most polynomially on H−1 and m, while C > 0
is independent of both H and m. This behavior is illustrated in Figure 3.3,
which displays results for a two-dimensional example with a piecewise constant
diffusion coefficient and a three-dimensional case with a periodic coefficient. In
both settings, the diffusion coefficient A assumes values between α = 0.1 and
β = 1. Further details on the numerical setup can be found in Section 3.6.

However, no existing theoretical results confirm this observed behavior. For
the elliptic model problem in (2.3) with constant coefficient A ≡ 1, we rigorously
establish the super-exponential decay of σ using Steklov eigenfunctions, thereby
closing this theoretical gap. Additionally, we present the pessimistic exponential
decay bound for σ derived in [HP22b], which applies to more general settings
and can be proven using LOD techniques.

3.3.1. Super-exponential decay

We consider the elliptic model problem (2.3) with a constant coefficient A ≡ 1
and prove that the localization error of the SLOD decays super-exponentially.
This result is obtained by leveraging the super-exponential decay of Steklov
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3.3. Decay of localization error

DK

̂
DK

K

BK

̂
BK

Figure 3.4.: Visualization of the patches DK = N
m(K) and D̂K = N

⌊m/2⌋(K),
along with the balls BK and B̂K centered around K. The oversam-
pling parameter is chosen as m = 3.

eigenfunctions on a d-dimensional ball and builds on the arguments from [HP22b,
Section 7], where a mathematical motivation for the super-exponential decay of
σ is provided beyond the case A ≡ 1. Since the SLOD basis functions are truly
local in the one-dimensional case, we restrict our analysis to d ∈ {2, 3}.

To this end, we fix an oversampling parameter m ∈ N and extend the domain
D = (0, 1)d by m-layers of coarse mesh elements. For each K ∈ TH we define the
extended patch DK := N

m
ext(K), where the patches are constructed as described in

(2.14), but using an extension of the coarse mesh TH to the extended domain Dm.
On these patches, we solve the SLOD patch problems (3.2) with A ≡ 1, ignoring
global Dirichlet boundary conditions. By correcting the resulting functions φ̂ext

K,m

corresponding to boundary patches, we obtain the SLOD basis functions, which
satisfies global Dirichlet boundary conditions on the original domain D. In
Section 3.4.3 this ansatz is explained in more detail. In the following, we derive
the super-exponential decay of the localization error σext(H,m) corresponding
to the SLOD functions φ̂ext

K,m on the extended domain. The super-exponential
decay of the SLOD basis follows as a consequence, since σ is bounded by (a
multiple of) σext.

For each K ∈ TH , we define BK as the largest ball centered around K that
is fully contained within the extended patch DK = N

m
ext(K). Additionally, we

introduce D̂K := N
⌊m/2⌋
ext (K), with N

0
ext(K) := K, and define B̂K as the smallest

ball centered around K such that the relation D̂K ⊂ B̂K holds. An illustration
using a Cartesian mesh is provided in Figure 3.4. While the following analysis is
not limited to Cartesian meshes, the relation D̂K ⊂ B̂K ⊊ BK ⊂ DK must hold
for all K ∈ TH .

The Steklov eigenfunctions on the ball BK are solutions to the eigenvalue
problem

∆ψ = 0 in BK , with ∇ψ · n = λψ on ∂BK ,

where n denotes the outer normal unit vector. The eigenvalues {λj : j ∈ N0}
are non-negative and ordered such that 0 = λ0 ≤ λ1 ≤ . . . . The corresponding
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3. Super-Localized Orthogonal Decomposition

eigenfunctions form a basis of the Steklov spectrum and, in this specific case,
are given explicitly (see also [SAK23, Example 2.1]) by

ψj(r, θ1, . . . , θd−1) = r
− d−1

2
B

(
r

rB

)Cse(j,d)

Hj(θ1, . . . , θd−1), (3.16)

where the exponent Cse(j, d) is defined as

Cse(j, d) =





⌊j/2⌋, if d = 2,

⌊√
j⌋, if d = 3.

Here, rB is the radius of BK and {Hj(θ1, . . . , θd−1) : j ∈ N0} is an arbitrary
orthonormal basis (with increasing degree in j) of the vector space of all d-
dimensional spherical harmonics. We refer to [AH12, Section 2.1] for further
details on spherical harmonics.

The next lemma states the super-exponential decay of the Steklov eigenfunc-
tions in the interior of the Ball BK .

Lemma 3.3.1 (Decay of Steklov eigenfunctions). The Steklov eigenfunctions
{ψj : j ∈ N0} defined on the ball BK ⊂ N

m
ext(K) satisfy for all j ∈ N0 and all

K ∈ TH that
∥ψj∥L2(N

⌊m/2⌋
ext (K))

≤ Csd(H,m) exp(−Cj 1
d−1 ),

where C > 0 is a constant independent of H and m, while Csd depends polyno-
mially on H and m.

Proof. For a fixed K ∈ TH , we consider the smallest ball B̂K of radius r
B̂

centered

at K, such that D̂K ⊂ B̂K ⊊ BK . Using (2.6) and the fact that {Hj : j ∈ N0}
form an orthonormal basis with respect to L2(Sd−1), we obtain, for the case
d = 2, that

∥ψj∥L2(N
⌊m/2⌋
ext (K))

≤ ∥ψj∥L2(B̂K)
=

(
ˆ r

B̂

0

ˆ

S1

|ψj(r, θ)|2r dSdr

)1/2

≤
(
ˆ r

B̂

0

(
r

rB

)j

dr

)1/2

≤ Csd(H,m) exp(−Cj),

with C = − log
(√ r

B̂

rB

)
> 0. The case d = 3 follows analogously, where the

constant C satisfies C = − log
( r

B̂

rB

)
> 0.

Let YB denote the space of A-harmonic functions on BK . The Steklov spectrum
spanned by the L2(∂BK)-orthonormal and a-orthogonal set of Steklov eigen-
functions {ψj : j ∈ N0} is a complete subspace of YB, see [Auc05]. Arbitrary
functions in YB can be expanded as

v =
∞∑

j=0

(u, ψj)L2(∂BK)ψj, (3.17)
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3.3. Decay of localization error

where the sum converges in the H1(BK)-norm.
The next theorem, following the arguments of [HP22b, Theorem 7.3], states

the super-exponential decay of σext for the considered case A ≡ 1. For the proof,
we use the fact that every function in the space Y of A-harmonic functions on
DK is, restricted to BK , also an element of the space YB.

Theorem 3.3.2 (Super-exponential decay). Let M ∈ N be the largest number
such that, for all m ≤ M , no extended patch includes the whole domain D. Then,
there exist a constant C > 0 independent of H and m, such that, for all m ≤ M ,
the localization error of the SLOD functions on the extended patches satisfies

σext(H,m) ≲ Csd(H,m)md− d
d−1 exp(−Cm d

d−1 )

with Csd(H,m) from Theorem 3.3.1.

Proof. For K ∈ TH we define D̂K := N
⌊m/2⌋
ext (K) and let N̂ = #T

H,D̂K
denote the

number of elements in D̂K . Let {ψj : j ∈ N0} be the set of Steklov eigenfunctions,
as defined in (3.16), on BK ⊂ DK .

We estimate σext
K by choosing a (possibly) suboptimal local source term for

the SLOD basis function. This choice is the L2-normalized g ∈ P0(T
H,D̂K

) such

that it is L2-orthogonal to the first N̂ − 1 Steklov eigenfunctions, i.e.,

g ⊥
L2(D̂K)

{ψ0, . . . , ψN̂−2
}.

If this choice is non-unique, one may require L2-orthogonality to even more
Steklov eigenfunctions until g is uniquely determined. This choice may not
coincide with the optimal one in (3.8) but suffices to derive an upper bound for
σext

K .
By (3.17) and Theorem 3.3.1, this choice yields, for all v ∈ YB, that

(g , v)
L2(D̂K)

=
(
g ,

∞∑

j=N̂−1

(v , ψj)L2(∂BK)ψj

)

L2(D̂K)

≤
∥∥∥∥

∞∑

j=N̂−1

(v , ψj)L2(∂BK)ψj

∥∥∥∥
L2(D̂K)

≤ ∥v∥L2(∂BK)

∞∑

j=N̂−1

∥ψj∥L2(D̂K)

≲ Csd(H,m) ∥v∥H1(BK)

∞∑

j=N̂−1

exp(−Cj 1
d−1 ),

where we used the trace inequality (see, e.g., [BS08, Chapter 1.6]) in the last
step. Rewriting the last sum as a (generalized) geometric sum with the base
θ := exp(−C) < 1 and estimating the sum against an integral, we get

∞∑

j=N̂−1

exp(−Cj 1
d−1 ) =

∞∑

j=N̂−1

θj
1

d−1
≲

ˆ ∞

N̂−1

θx
1

d−1
dx.
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3. Super-Localized Orthogonal Decomposition

Using a change of variables and integrating by parts such that the term xd−2

in the product xd−2θx also vanishes for the case d = 3 yields
ˆ ∞

N̂−1

θx
1

d−1
dx = (d− 1)

ˆ ∞

(N̂−1)
1

d−1

xd−2θx dx ≲ (N̂ − 1)
d−2
d−1 θ(N̂−1)

1
d−1

.

With the definition of θ and N̂ − 1 ≈ md, we obtain

σext
K (H,m) ≤ sup

v∈Y : ∥v∥H1(DK )=1
|(g , v)

L2(D̂K)
|

≤ sup
v∈YB : ∥v∥H1(BK )=1

|(g , v)
L2(D̂K)

|

≲ Csd(H,m)md− d
d−1 exp(−C ′m

d
d−1 ),

introducing C ′ > 0 that only differs from C by a constant factor. Taking the
maximum over all mesh elements K ∈ TH yields the assertion

Remark 3.3.3 (Theorem 3.3.2 in 1d). Interpreting d
d−1

as infinity for d = 1,
Theorem 3.3.2 is consistent with the earlier result that the SLOD basis is local
in one dimension.

3.3.2. Pessimistic exponential decay

A rigorous bound on the exponential decay of σ was first established in [HP22b].
In what follows, we outline the key ideas of the proof. To this end, we analyze a
non-stabilized version of the local LOD basis functions introduced in Section 2.6,
which are defined by

φ̂lod
K,m := (1 − Ĉm)bK (3.18)

for K ∈ TH . Each such LOD basis function possesses locally in DK = N
m(K) a

TH-piecewise constant right-hand side glod
K,m ∈ P0(TH,DK

). This result was shown
in [HP22b, Lemma A.2] using the saddle-point formulation from [OS19,Mai20],
which seeks φ̂lod

K,m along with a Lagrange multiplier λ ∈ P0(TH,DK
) such that

(
ADK

PT
DK

PDK
0

)(
φ̂lod

K,m

λ

)
=

(
0
1K

)
,

where the patch-local operators are defined as follows. The restricted solution
operator ADK

: H1
0 (DK) → H−1(DK) is given by ADK

u = aDK
(u, ·), where aDK

denotes the restriction of a to DK . The operator PDK
: H1

0 (DK) → P0(TH,DK
)

is defined by PDK
u = ΠH,DK

u. Its transpose, PT
DK

: P0(TH,DK
) → H−1(DK),

satisfies
⟨PT

DK
p, v⟩H−1(DK)×H1

0 (DK) := (p , v)L2(DK)

for all p ∈ P0(TH,DK
) and v ∈ H1

0 (DK). The LOD right-hand sides are then
given by

glod
K,m = S−1

DK
1K ∈ P0(TH,DK

)
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3.4. Stable basis computation

where SDK
denotes the Schur complement, defined as

SDK
: P0(TH,DK

) → P0(TH,DK
), p 7→ (PDK

A−1
DK

PT
DK

)p.

The following lemma, established in [HP22b, Lemma 6.4], proves the expo-
nential decay of σ using this choice of basis. Moreover, it confirms that the
corresponding local source terms glod

K,m satisfy Theorem 3.1.2. A full proof of the
lemma is given in [HP22b, Appendix A], and a more detailed discussion can be
found in [Hau23, Theorem 5.4.3].

Lemma 3.3.4 (Stability and exponential decay of classical LOD basis). Suppose
that m is chosen at least proportional to | logH|. Then, the local source terms of
the LOD basis functions satisfy

H4
∑

K∈TH

c2
K ≲

∥∥∥∥
∑

K∈TH

cK

glod
K,m

∥glod
K,m∥L2(D)

∥∥∥∥
2

L2(D)
(3.19)

for all (cK)K∈TH
. Furthermore, inserting the normalized versions of glod

K,m in
(3.9) yields

σ(H,m) ≲ H−1 exp(−Cm) (3.20)

with C > 0 independent of H and m.

Combining Theorem 3.2.1 and Theorem 3.3.4 yields an a priori error estimate
with convergence rates matching those of the classical LOD based on piecewise
constant finite elements; see Section 2.6.

3.4. Stable basis computation

An efficient implementation of the SLOD basis functions requires that the set
{gslod

K,m : K ∈ TH} is a stable basis of P0(TH) in the sense of Theorem 3.1.2
and that the local source terms can be computed with minimal communication
between the patches. As first discussed in [HP22b, Appendix B], stability issues
can arise whenever there are nested groups of patches near the boundary of the
domain D. Figure 3.5 illustrates such a scenario, considering D = (0, 1)2 with
a Cartesian mesh and m = 2. The patches corresponding to the elements at
positions1 (1, 1), (1, 2), and (2, 1) are all contained within the patch of element
(2, 2). This nesting results in an unfavorable selection of basis functions, as
the functions associated with the smallest singular values across the different
patches are nearly identical. In particular, they almost coincide with the basis
function expected for the patch of element (1, 1), leading to instability in the
basis representation. In the following subsections, we explore various solutions to

1Here, the position is a vector in {1, . . . , H−1}2 where the first and second components
determine the location in the x- and y-directions, respectively. The numbering is chosen
such that (1, 1) corresponds to the bottom-left element.
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3. Super-Localized Orthogonal Decomposition

0
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Figure 3.5.: Solutions of the patch problems (3.2) for right-hand sides corre-
sponding to the smallest singular values on the patches associated
with elements (1, 1), (2, 1), (1, 2) and (2, 2) (from left to right), for
the case A ≡ 1.

these stability issue and present efficient methods for computing the SLOD basis
functions. For simplicity, we henceforward consider D to be the unit hypercube
in d dimensions with d ≥ 2 discretized using a Cartesian mesh TH .

As outlined in Section 3.1, there are two general approaches to compute the
SLOD basis functions: minimizing the conormal derivative of the basis function
or selecting a local source term corresponding to the smallest singular value
of the operator ΠH,DK

|Y . Practical implementation details for both methods
are provided in Section 3.5. While the stabilization technique in Section 3.4.4
focuses on minimizing the conormal derivative, all other stabilization approaches
are formulated in the SVD setting but can be adapted to conormal derivative
minimization. A comparison of the different approaches based on numerical
experiments is provided in Section 3.6.

3.4.1. Representative patches

One possible approach to addressing the stability issues in the example above is
to consider only the largest patch, in this case, the patch of element (2, 2), and
to compute the functions corresponding to the four smallest singular values. A
visualization of these functions is provided in Figure 3.6. The resulting functions
are linearly independent and form a basis for a space that includes the functions
naturally expected for the four elements.

This stabilization procedure was introduced in [HP22b, Appendix B] and can
be easily generalized. The key idea is to identify groups of patches for which the
basis functions are computed simultaneously. To achieve this, all patches N

m(K)
where K has a distance of at least m layers to the boundary of D are treated
independently. In contrast, patches where K has exactly a distance of m − 1
layers to ∂D serve as representatives for corresponding groups of patches. Every
remaining patch N

m(K), meaning those where K has a distance of less than
m− 1 layers to ∂D, is uniquely assigned to that group, where the representative
patch of the group is a superset of the patch N

m(K). The basis functions are
then computed on the representative patch of each group and correspond to the
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3.4. Stable basis computation
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Figure 3.6.: Functions obtained by solving the patch problem (3.2) for the right-
hand sides corresponding to the four smallest singular values on the
patch of element (2, 2), for the case A ≡ 1.

functions associated with the k smallest singular values, where k denotes the
number of patches within the group.

3.4.2. Weighted L2-norm

The here presented stabilization technique achieves stability by an additional
optimization step and was first introduced in [BFP24, Section 7] for convection-
dominated diffusion problems. Instead of choosing gslod

K,m as in (3.8), we consider
local source terms associated with a certain range of the lowermost singular
value.

Given the singular values σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0 associated with the patch
DK , we consider all indices 1 ≤ i ≤ N such that

σi

σ1

≤ max
{(

σN

σ1

)1/p

, 10−10
}

and denote the resulting set of indices by I. Each index in the set I corresponds
to a potential candidate for a local source term. For the choice p = 1 only
the smallest singular value is considered. Since this optimization problem is
meaningful whenever multiple functions are considered, we restrict ourselves to
the choices p > 1.

Among these candidate functions, we choose the one that minimizes a weighted
L2(DK)-norm under the unit mass constraint. The weighted L2(DK)-norm is
defined using a piecewise constant weighting function that is zero in the central
element T and grows polynomially as the distance from the center increases.
This enforces a concentration of mass in the reference element K, resulting in
linearly independent local source terms {gslod

K,m : K ∈ TH} in practice. More
specifically, we introduce the distance function dist(K,T ) between the elements
K,T ∈ TH as

dist(K,T ) := H−1|MK −MT | ∈ Nd,

where MK ,MT ∈ Rd are the midpoints of the elements K and T , respectively.
The weighting function is then defined for each element T ∈ TH,DK

as

wK(T ) :=
∣∣∣dist(K,T )

∣∣∣
r

∞
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Figure 3.7.: Piecewise constant weighting function wK for an interior element
K ∈ TH with m = 2 in two spatial dimensions.
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Figure 3.8.: Functions obtained by solving the patch problem (3.2) for the right-
hand sides corresponding to small singular values, while minimizing
a weighted L2-norm on the associated patch, for the case A ≡ 1.

for a parameter r ≥ 1, where | · |∞ denotes the infinity norm on Rd. Figure 3.7
provides an illustration of this weighting function in two spatial dimensions for
the choice r = 6.

Figure 3.8 shows the SLOD basis functions computed using this weighting
function and p = 2, corresponding to the problematic functions in the exemplary
case. Notably, this stabilization technique yields basis functions that align with
intuitive expectations. However, the optimal choice of the parameters r and p
may vary depending on the specific problem.

3.4.3. Domain extension

In this section, we introduce a new stabilization technique for handling ho-
mogeneous Dirichlet boundary conditions. Unlike the approach proposed in
Section 3.4.1, this method produces basis functions that align with intuitive
expectations and is applicable to the stochastic setting discussed in Chapter 5.
Furthermore, the new stabilization technique does not introduce any additional
parameters. For simplicity, we focus on the computation of a stable SLOD basis
using Cartesian meshes, where we denote the side length of the elements by H
instead of their diameter. However, the proposed stabilization technique can be
extended to other types of meshes.
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3.4. Stable basis computation

A(x1, x2)

A(−x1,−x2) A(2− x1,−x2)

A(2− x1, 2− x2)A(−x1, 2− x2)

A(x1, 2− x2)

A(2− x1, x2)A(−x1, x2)

A(x1,−x2)

D

Dm

Figure 3.9.: Extension of the domain D = (0, 1)2 with the extended coarse mesh
T m

H and m = 2. Additionally the extension of the diffusion coefficient
A is displayed.

We extend the domain D = (0, 1)d by m-layers of coarse mesh elements. More
precisely, we have

Dm := {x ∈ Rd : |x−D|∞ < mH}.

By T m
H we denote the extension of the Cartesian coarse mesh TH to Dm. The

diffusion coefficient A is extended to the overlapping domain Dm by ’mirroring’
it at the boundaries of D. See Figure 3.9 for an illustration in two dimensions.
For each K ∈ TH we define the patch Dext

K := N
m
ext(K), where the patches

are constructed as described in (2.14), but using the extended coarse mesh
T m

H instead of TH . The SLOD patch problems (3.2) are then solved for all
patches with right-hand sides corresponding to the respectively smallest singular
value, ignoring global Dirichlet boundary conditions but including the extended
diffusion coefficient. We denote the resulting functions by φ̂ext

K,m ∈ H1
0 (Dext

K ) and
the corresponding local source terms by gext

K,m ∈ P0(T m
H,Dext

K
).

To account for the global Dirichlet boundary conditions, we need to correct all
functions corresponding to boundary patches. Therefore, we consider K ∈ TH

with ∂D ∩ int(Dext
K ) ̸= ∅ and extend φ̂ext = φ̂ext

K,m by zero to Rd. The corrected
localized SLOD basis function φ̂slod

K,m ∈ H1
0 (D) for d = 2, which satisfies global

Dirichlet boundary conditions, is defined as

φ̂slod
K,m(x1, x2) = φ̂ext(x1, x2) − φ̂ext(−x1, x2) − φ̂ext(x1,−x2)

− φ̂ext(2 − x1, x2) − φ̂ext(x1, 2 − x2) + φ̂ext(−x1,−x2)

+ φ̂ext(2 − x1,−x2) + φ̂ext(2 − x1, 2 − x2) + φ̂ext(−x1, 2 − x2),

for (x1, x2) ∈ D. The corresponding local source term gslod
K,m ∈ P0(TH) can be

computed by correcting gext
K,m in the same way. In three dimensions, the corrected
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Figure 3.10.: SLOD basis functions obtained by correcting the solutions of the
patch problems (3.2) for right-hand sides corresponding to the
smallest singular values on the extended patches associated with
the elements (1, 1), (2, 1), (1, 2) and (2, 2) (from left to right), for
the case A ≡ 1.

SLOD basis function and its corresponding local source term can be obtained
analogously by taking into account all correction terms corresponding to faces,
edges, and corners of the domain D. The global Dirichlet boundary conditions
of φ̂slod

K,m can be easily checked by noting that φ̂ext
K,m(x) = 0 for all x ∈ Rd \Dm.

The smallness of the conormal derivative of φ̂slod
K,m on ∂DK \ ∂D follows from the

smallness of the conormal derivative of φ̂ext
K,m on ∂Dext

K .
Figure 3.10 illustrates the SLOD basis functions for the problematic patches

associated with elements in the left corner of D = (0, 1)2, computed using this
new stabilization technique.

3.4.4. Correction of LOD functions

In the following, we present a stabilization technique which leads to a practically
stable SLOD basis by correcting local LOD basis functions. This stabilization
technique was proposed in [GMPZ24, Section 3] in the context of the hierarchical
SLOD.

Given DK := N
m(K), the local LOD basis function φ̂lod

K,m defined in (3.18)
satisfies

φ̂lod
K,m = A−1

DK
glod

K,m, with glod
K,m = S−1

DK
1K , (3.21)

where the patch-local operators ADK
and SDK

are defined in Section 3.3.2. For
T ∈ TH,DK

\ {K}, we define

φ̂
(K)
T,m := A−1

DK
gT,m, with gT,m = S−1

DK
1T . (3.22)

By construction, the SLOD basis function is in the span of these LOD functions
and can be computed using a linear combination of them. More precisely, we
define

φ̂slod
K,m := φ̂lod

K,m +
∑

T ∈TH,DK
\{K}

cT φ̂
(K)
T,m, (3.23)

where the coefficients (cT )T ∈TH,DK
\{K} are chosen such that φ̂slod

K,m has minimal
conormal derivative.
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Figure 3.11.: SLOD basis functions obtained by correcting LOD basis functions
for patches associated with the elements (1, 1), (2, 1), (1, 2) and
(2, 2) (from left to right), for the case A ≡ 1.

Note that, to guarantee stability of the SLOD basis, we additionally choose
the coefficients such that

∥z−1
K ΠHφ̂

slod
K,m − 1K∥L∞(D) ≤ δs, (3.24)

with

zK =

 

K

φ̂slod
K,m dx

and δs ≥ 0 small. Condition (3.24) impels the support of φ̂slod
K,m to be reasonably

concentrated around K, ensuring the linear independency and stability of the
SLOD basis. In contrast, the stability of the local LOD basis is given a priori,
as the LOD functions satisfy the Lagrange property

ΠHφ̂
lod
K,m = 1K , and ΠHφ̂

(K)
T,m = 1T

for T ∈ TH,DK
\ {K}. Hence, setting δs = 0 recovers the Riesz-stable standard

LOD basis. However, this choice yields basis functions that exhibit only expo-
nential decay. To retain stability while achieving super-localization, we aim to
select δs small enough to ensure Riesz stability, yet large enough to preserve
the desired super-exponential decay properties. In practice, we have found that
choosing δs = 0.5 strikes a good balance and satisfies these two requirements.

An illustration of the stabilized SLOD basis functions, computed using this
technique and associated with the problematic patches from the introductory
example, is given in Figure 3.11.

3.5. Practical implementation

In this section, we discuss the practical implementation of computing the SLOD
basis functions introduced in Section 3.1 with the two possible approaches
mentioned there. The first approach involves random sampling to approximate
the space Y from (3.7), followed by computing the SVD of the operator ΠH,DK

|Y ,
while the second approach is based on minimizing the conormal derivative of the
local SLOD basis functions.
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3. Super-Localized Orthogonal Decomposition

For a given oversampling parameter m, we consider a (possibly extended) patch
DK and denote the number of coarse elements within this patch by N := #TH,DK

.
In practical implementations, all local infinite-dimensional problems arising in
the derivation of the basis functions must be approximated in a finite-dimensional
setting. To achieve this, we discretize the domain using the P1-finite element
method on a fine mesh Th,DK

, obtained by uniformly refining TH,DK
. We denote

the nodes of the fine mesh Th,DK
by zj for j ∈ N := {1, . . . , n}. The corresponding

hat functions, denoted by {Λj : j ∈ N }, satisfy the nodal property Λj(zi) = δij

for all i, j ∈ N .

3.5.1. Random sampling and Singular Value

Decomposition

The random sampling approach to approximate the space Y that we explain
in the following was introduced in [HP22b, Appendix B] and is similar to
[BS18,CLLW20]. Approximating the space Y by harmonic polynomials [BL11]
or Steklov eigenfunctions [MSD22] would also be possible.

We assume that the nodes of the fine mesh Th are numbered in a manner
that enables the decomposition of the index set N into three disjoint subsets,
corresponding to Γ1 := ∂DK \ ∂D, Γ2 := ∂DK ∩ ∂D, and the interior DK \ ∂DK .
Specifically, we write N = N1 ∪ N2 ∪ N0, with

N1 := {1, . . . , n1}, N2 := {n1 + 1, . . . , n1 + n2}, N0 := {n1 + n2 + 1, . . . , n}.

To approximate the space Y from (3.7), we compute discrete A-harmonic ex-
tensions of random sample boundary data prescribed on Γ1. Denoting with
M ∈ N the number of samples, we define S1 ∈ Rn1×M to be the matrix having
sample vectors of length n1 as columns. The entries in each column correspond
to the nodal values of sample finite element boundary functions on Γ1. We use
independent and uniformly distributed nodal values within the interval [−1, 1].
For the numerical experiments in Section 3.6, we set the number of samples to
M = 5N .

Let Sn×M be the matrix whose columns are coordinate vectors of the discrete
A-harmonic extensions of the columns of S1. We can calculate the matrix S as

S =




S1

0

S0


 with S0 := −A−1

0 A1S1,

A0 := (aDK
(Λj,Λi))i,j∈N0 , A1 := (aDK

(Λj,Λi))i∈N1,j∈N0 and 0 denoting the
n2 ×M zero matrix. Next, the SVD of the matrix X := P(ST KS)−1/2 ∈ RN×M is
computed, where P ∈ RN×M is the column-wise application of the L2-projection
onto the characteristic functions {1T : T ∈ TH,DK

} to S. The matrix K ∈ Rn×n

is the sum of the stiffness matrix and the mass matrix with respect to Th,DK
.

It shall be noted that the term (ST KS)−1/2 guarantees that the right singular
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3.5. Practical implementation

vectors of X represent a set of H1(DK)-orthonormal functions. However, in
practice it seems reasonable to apply the SVD directly to P, i.e., (ST KS)−1/2

does not need to be computed, since numerical experiments show no noticeable
difference in the choice of basis and the resulting errors.

The reduced SVD of X reads

X = GΣHT

with G ∈ RN×N , Σ ∈ RN×M , and H ∈ RM×M . The last column of G is the
coordinate vector with respect to the basis {1T : T ∈ TH,DK

} of the local source
term corresponding to the smallest singular value of the (possibly extended)
patch DK .

Depending on the stabilization technique, different modifications may be
necessary. The last several columns of G may be considered in the case of repre-
sentative patches from Section 3.4.1. Alternatively, an additional optimization
step may be introduced by incorporating a weighted L2-norm (Section 3.4.2). In
the case of domain extension, the correction from Section 3.4.3 must be applied
for boundary patches. Once the right-hand side gslod

K,m is determined, the fully
discretized counterpart of φ̂slod

K,m can be obtained by solving a discretized version
of (3.2).

Remark 3.5.1 (Computation of the Riesz stability constant). Given the local
source terms {gslod

Ki,m
: i = 1, . . . ,#TH}, the Riesz stability constant Crb appearing

in Theorem 3.2.1 equals the reciprocal of the smallest eigenvalue of the matrix
R ∈ R#TH×#TH with entries given by Rij = (gslod

Ki,m
, gslod

Kj ,m)L2(D).

3.5.2. Minimization of the conormal derivative

Given an oversampling parameter m ∈ N, we consider an element K ∈ TH and
its corresponding (possibly extended) patch DK . To compute the SLOD basis
function φ̂slod

K,m, we first determine the local responses of the solution operator.
Specifically, for each element T ∈ TH,DK

within the patch, we compute the
response of the restricted solution operator A−1

DK
to its characteristic function

1T . By construction, φ̂slod
K,m lies in the span of these local responses A−1

DK
1T .

Next, we select φ̂slod
K,m from this low-dimensional space by minimizing the

conormal derivatives under a unit mass constraint. This minimization is realized
by computing the smallest generalized eigenvalue of the symmetric, positive
(semi-) definite matrices

(ˆ

∂DK

γ∂n(A−1
DK

1τ )γ∂n(A−1
DK

1T ) ds
)

τ,T ∈TH,DK

and (ˆ

DK

(A−1
DK

1τ )(A−1
DK

1T ) dx
)

τ,T ∈TH,DK

.

41



3. Super-Localized Orthogonal Decomposition

The corresponding generalized eigenvector provides the coordinate representation
of a possible right-hand side for φ̂slod

K,m with respect to the basis {1T : T ∈ TH}.
As in the previous subsection, depending on the stabilization technique, mul-

tiple smallest eigenvalues may be considered, or for boundary patches, the
additional correction must be applied. Once the right-hand side gslod

K,m is de-
termined, its coordinate vector provides the coefficients for expanding φ̂slod

K,m in
terms of the local responses of the restricted solution operator. Alternatively,
the fully discretized counterpart φ̂slod

K,m can be computed by solving a discretized
version of (3.2).

For the stabilization technique introduced in Section 3.4.4 which corrects LOD
basis functions, we choose an alternative approach to minimize the conormal
derivative. Let Γ := ∂DK \ ∂D, and denote by IΓ := {i ∈ N : zi ∈ Γ} the set of
indices corresponding to the nodes of the fine mesh Th that lie on Γ. We then
define the matrix

B :=
(
a(A−1

DK
1T ,Λi) − (1T ,Λi)L2(DT )

)

T ∈TH,DK
,i∈IΓ

.

For the right-hand side glod
K,m of the local LOD basis function given in (3.21), we

denote by gK its coefficient vector with respect to the basis {1T : T ∈ TH,DK
}.

Similarly, we collect the coefficient vectors of the local source terms gT,m for
T ∈ TH,DK

\ {K}, given in (3.22), as columns of the matrix G ∈ RN×(N−1). The
coefficient vector c = (cT )T ∈TH,DK

\{K} which minimizes the conormal derivative
in (3.23) is obtained as the least-squares solution of

BGc = −BgK ,

i.e.,

c = −
(
(BG)T BG

)−1
(BG)T BgK . (3.25)

To additionally satisfy the stability condition in (3.24), we express (BG)T BG

in terms of its SVD, given by

(BG)T BG =
r∑

i=1

σiuiv
T
i ,

where σi is the i-th singular value, with σ1 ≥ . . . ≥ σr, and ui and vi are the
corresponding left and right singular vectors, respectively. Here, r denotes the
rank of (BG)T BG. The coefficient vector ensuring a stable SLOD basis in (3.23)
is then computed as

c = −
( rK∑

i=1

σ−1
i viu

T
i

)
(BG)T BgK , (3.26)

where rK ≤ r is chosen iteratively to guarantee that condition (3.24) is satisfied.
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Figure 3.12.: Visualization of the piecewise constant coefficient A on a mesh with
mesh size 2−8. The lower bound of the coefficient is set to α = 0.1.

3.6. Numerical experiments

In this section, we present numerical experiments assessing the different variants
of computing the SLOD basis functions introduced in this chapter. We consider
the domain D = (0, 1)d, with d ∈ {2, 3}, discretized by uniform Cartesian
meshes TH , where the mesh size H denotes the side length of the elements rather
than their diameter. For the practical implementation, all infinite-dimensional
problems arising in the local patch computations are approximated by their
P1-finite element discretizations on a fine mesh with mesh size 2−10, obtained
through successive uniform refinements of the coarse mesh TH,DK

on the respective
patches. Based on the extensive numerical analysis of fine-scale discretizations
for the classical LOD, cf. [MP20,AHP21], we expect that the theoretical results
remain valid in the present setting.

For the numerical experiments in two dimensions, we choose A to be a
realization of a coefficient that is piecewise constant with respect to a mesh of
size 2−8. The element-wise values are independent and identically distributed
random variables taking values between α and β = 1, with different choices of
α. An illustration of the coefficient with α = 0.1 is provided in Figure 3.12. As
right-hand side, we consider

f(x1, x2) = 2π2 sin(x1) sin(x2).

Figure 3.13 presents the relative energy errors of the fully discrete numerical
approximations obtained by the Galerkin method (3.10), measured with respect
to the reference solution uh. The reference solution is computed using the
P1-FEM on the global fine mesh with mesh size h = 2−10. The figure compares
the approximation errors for the different practical variants of the SLOD method
introduced in this chapter. Specifically, it displays the errors resulting from the
various stabilization techniques discussed in Section 3.4, applied using either
the approach based on random sampling and the SVD or the approach based
on the minimization of the conormal derivative. Note that we only consider
combinations of H and m for which all patch-problems (3.2) are non-global.
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(b) Weighted L2-norm
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(c) Domain extension
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(d) Correction of LOD functions

Figure 3.13.: Relative energy errors of the SLOD Galerkin approximations as a
function of the coarse mesh size H for the different stabilization
techniques described in Section 3.4. The errors are shown for the
two approaches, based on either the Singular Value Decomposition
(SVD) or the minimization of the conormal derivative (CND), in
the 2d setting for various oversampling parameters m. The lower
bound on the diffusion coefficient is set to α = 0.1.
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Figure 3.14.: Relative energy errors of the SLOD Galerkin, the SLOD collocation
and the LOD Galerkin approximations as a function of the coarse
mesh size H for the 2d experiment. The lower bound on the
diffusion coefficient is set to α = 10−5.

All investigated variants exhibit similar relative energy errors, with the ex-
pected convergence rate for a smooth right-hand side f ∈ H1(D). In general,
the approach of minimizing the conormal derivative shows slightly larger errors
for small coarse mesh sizes compared to the SVD-based approach. Among
the stabilization techniques, the weighted L2-norm approach (see Section 3.4.2)
exhibits the largest deviations, being highly sensitive to parameter choices; in
this case, we used r = 6 and p = 2. No significant differences are observed
between the SVD-based method combined with stabilization techniques using
reference patches (see Section 3.4.1) or domain extension (see Section 3.4.3), and
the correction of the LOD basis functions via conormal derivative minimization
(see Section 3.4.4).

Figure 3.14 illustrates the relative energy errors of the SLOD Galerkin approx-
imation defined (3.10) and the SLOD collocation approximation from (3.11),
both computed using the SVD combined with the domain extension stabilization
technique, for a high-contrast piecewise constant coefficient A with α = 10−5.
Compared to the low-contrast case, the differences in the errors are marginal.
For reference, the relative energy errors of the stabilized LOD approximation
from Section 2.6 are also shown.

In Figure 3.15, the relative energy errors of the two SLOD approximations with
respect to the online computing time are illustrated for oversampling parameters
m = 3, 4. The markers indicate the considered coarse mesh sizes, ranging from
2−4 to 2−7. The online computing time includes only the representation of the
approximate solution and the right-hand side in terms of the basis functions,
as well as the solution of the coarse-scale linear system. When also accounting
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Figure 3.15.: Relative energy errors of the SLOD Galerkin and the SLOD collo-
cation approximations as a function of the online computing time t
in second for the 2d experiment. The lower bound on the diffusion
coefficient is set to α = 10−5. The markers indicate the considered
coarse mesh sizes, ranging from 2−4 to 2−7.

for the time required to assemble the system matrix, the computational savings
of the collocation variant compared to the Galerkin method become even more
apparent.

Remark 3.6.1 (Numerical setup in 3d). For the three-dimensional experiment
in Section 3.3, we use the simpler periodic coefficient

A(x1, x2, x3) =
1

10
+

9

20

( 3∏

i=1

sin(28πxi) + 1
)

and a fine mesh with mesh size 2−8 for the P1-finite element discretization. The
periodicity of the diffusion coefficient on a mesh with mesh size 2−7 is exploited in
the numerical implementation to reduce computational costs: the basis functions
need to be computed only for O(md) reference patches. The remaining basis
functions can then be obtained by translation; see [GP15].
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Orthogonal Decomposition

The SLOD introduced in the previous chapter provides a powerful framework for
constructing highly localized basis functions. In this chapter, we extend these
ideas by introducing a hierarchical variant of the SLOD, referred to as HSLOD,
which enables the efficient computation of approximate solutions to the elliptic
model problem.

The HSLOD is built upon a sequence of nested meshes and their associated
function spaces. The hierarchical basis spans the finest-level function space
while incorporating basis functions from all coarser levels. This hierarchical
structure is particularly advantageous in the presence of multiple scales within
the diffusion matrix A. A key property of the hierarchical method is that its basis
functions are (quasi-)orthogonal across levels with respect to the bilinear form a.
As a result, the associated stiffness matrix exhibits a block-diagonal structure,
where each diagonal block corresponds to a different level of the hierarchy. This
decomposition effectively decouples contributions from different levels, allowing
them to be computed independently and in parallel. Moreover, given a SLOD or
HSLOD approximate solution, it provides the flexibility to incrementally refine
the approximation by adding additional discretization levels, thereby improving
accuracy in a systematic manner.

The construction of hierarchical basis functions that induce an orthogonal
multiresolution decomposition of the solution operator was first introduced in
the framework of gamblets, see [Owh15,Owh17,OS19]. This concept was later
connected with the LOD framework in [FP20], leading to the development of
a hierarchical LOD. A stabilized multiresolution LOD, which is not limited
to elliptic problems, was subsequently introduced in [HP22a]. We combine
the concepts of hierarchical a-orthogonal basis functions with the localization
strategy of the SLOD, leading to super-exponentially decaying basis functions in
practice, as the size of the patches on which the functions are defined is increased.
The proposed HSLOD method achieves greater sparsity in the compressed
representation of the solution space compared to gamblets-based and hierarchical
LOD methods. This leads to a higher sparsity in the block-diagonal stiffness
matrix, reducing both memory consumption and computational cost while
maintaining accuracy.

Furthermore, we use the new stabilization strategy introduced in Section 3.4.4
for computing SLOD basis functions. The hierarchical basis is then constructed
as a linear combination of these stabilized functions. This approach ensures that
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4. Hierarchical Super-Localized Orthogonal Decomposition

the hierarchical stiffness matrix remains well-conditioned (up to the contrast).
Beyond improving numerical robustness, the stabilization also enhances the
overall quality and efficiency of the method, enabling the reliable treatment of
challenging scenarios, such as high-contrast channels in the diffusion coefficient.

While the presentation has been slightly adapted for consistency and com-
pleteness, the content of this chapter is primarily based on the preprint article

[GMPZ24] J. C. Garay, H. Mohr, D. Peterseim, and C. Zimmer. Hierarchical
Super-Localized Orthogonal Decomposition Method. arXiv preprint
2407.18671, 2024.

4.1. Construction of the hierarchical basis

In this section, we focus on the construction of an a-orthogonal hierarchical
basis corresponding to the elliptic model problem (2.3). Therefore, we need
to adapt some definitions to the multilevel setting. Let T1 denote a Cartesian
mesh of D with mesh size H1, and consider a sequence of successively refined
meshes {Tℓ}ℓ∈{1,...,L}, where L ∈ N and each refinement satisfies Hℓ+1 = Hℓ/2
for ℓ ≤ L− 1. We denote by Πℓ : L2(D) → P0(Tℓ) the L2-orthogonal projection
onto the space of piecewise constant functions with respect to the mesh Tℓ.

The prototypical operator-adapted ansatz space Va
ℓ on level ℓ is given by

applying the solution operator A−1 to P0(Tℓ), i.e.,

Va
ℓ := span{A−1

1K : K ∈ Tℓ}.

In the following, we derive a hierarchical basis of Va
L, which includes basis

functions from all coarser levels. Therefore, we first outline a procedure to
generate a hierarchical basis, ensuring that the basis functions are a-orthogonal
across levels, regardless of their support. We then consider localization strategies
using the SLOD method to develop a basis suitable for practical applications.

4.1.1. Strict a-orthogonal basis

In this subsection, we construct globally supported hierarchical basis functions
that are fully a-orthogonal across levels, leading to a block-diagonal hierarchical
stiffness matrix. Therefore, we define Nℓ := #Tℓ as the number of elements in
the mesh Tℓ. The number of hierarchical basis functions corresponding to level ℓ
is then denoted by N b

ℓ , given by

N b
ℓ :=




N1, if ℓ = 1,

(2d − 1)Nℓ−1, if ℓ > 1.

Thus, at each level, we must determine N b
ℓ linearly independent basis functions

that are a-orthogonal to all basis functions associated with coarser levels.
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4.1. Construction of the hierarchical basis

To achieve this, we define each basis function ψa
ℓ,i ∈ Va

L by

ψa
ℓ,i = A−1

∑

K∈Tℓ

c
(ℓ,i)
K 1K , (4.1)

for any level 1 ≤ ℓ ≤ L and i ∈ {1, . . . , N b
ℓ }. The non-trivial coefficients c

(ℓ,i)
K

are chosen such that {c(1,i)
K 1K}i∈{1,...,N1} forms a basis of P0(T1). For levels ℓ > 1,

the coefficients are constructed to enforce the a-orthogonality condition across
different levels, i.e.,

a(ψa
ℓ,i, ψ

a
p,j) = 0 for all 1 ≤ p < ℓ (4.2)

Investigating this condition, we observe that

a(ψa
ℓ,i, ψ

a
p,j) =

( ∑

K∈Tp

c
(p,j)
K 1K , ψ

a
ℓ,i

)

L2(D)
=

∑

K∈Tp

c
(p,j)
K

ˆ

K

ψa
ℓ,i dx = 0.

Therefore, the a-orthogonality condition (4.2) is satisfied if

ˆ

K

ψa
ℓ,i dx = 0 for all K ∈ Tℓ−1, (4.3)

since any element of Tp with p < ℓ is a union of elements from Tℓ−1.
By defining αK,T :=

´

K
A−1

1T dx and using the definition of ψa
ℓ,i from (4.1),

we can rewrite condition (4.3) as

∑

T ∈Tℓ

c
(ℓ,i)
T αK,T = 0 for all K ∈ Tℓ−1.

Let D(ℓ) ∈ RNℓ−1×Nℓ such that D(ℓ)
n,m = αKn,Tm and c(ℓ,i) = (c

(ℓ,i)
Tm

)m∈{1,...Nℓ}, with
Kn ∈ Tℓ−1, Tm ∈ Tℓ. Hence, the a-orthogonality condition is satisfied for any
level ℓ > 1 if

D(ℓ)c(ℓ,i) = 0 for all i ∈ {1, . . . , N b
ℓ }, (4.4)

which implies that c(ℓ,i) ∈ ker(D(ℓ)). Note that rank(D(ℓ)) ≤ Nℓ−1. Consequently,
dim(ker(D(ℓ))) ≥ Nℓ −Nℓ−1 = N b

ℓ . Hence, there exists infinity many choice of
coefficient vectors that satisfy condition (4.2). In principle, any set of N b

ℓ linearly
independent vectors from ker(D(ℓ)) can be chosen to form a basis for Va

L at level
ℓ > 1, while any basis of P0(T1) can be used for the coarsest level. However,
the resulting basis functions ψa

ℓ,i are generally globally supported, leading to a
(block-diagonal) stiffness matrix that lacks sparsity. Therefore, an ideal choice
would be a set of coefficient vectors for which the associated hierarchical basis
functions are locally supported. We study the feasibility of such an option in
the following.

49



4. Hierarchical Super-Localized Orthogonal Decomposition

4.1.2. Localization strategy

To construct locally supported functions that satisfy the a-orthogonality condi-
tion, we adopt the localization strategy associated with the SLOD introduced in
Chapter 3. Accordingly, the corresponding piecewise-constant right-hand sides
of the hierarchical basis functions must also undergo localization. However, it is
generally not feasible to achieve both strict a-orthogonality and full localization
simultaneously. To preserve locality, the a-orthogonality condition may need to
be partially relaxed. A practical compromise thus balances adherence to orthog-
onality and locality against computational cost, permitting minor deviations to
enable an efficient scheme based on purely local computations. For computing the
local HSLOD basis using the SLOD localization strategy, various approaches can
be explored. One option is to define local variants of the matrices D(ℓ) from (4.4)
based on the concept of patches, and then determine coefficient vectors within
the corresponding kernels such that the associated HSLOD basis functions have
a minimal conormal derivative. This approach, however, introduces potential
stability issues.

Our ansatz employs linear combinations of SLOD basis functions defined in
(3.2) to approximately satisfy both localization and a-orthogonality. To extend
this concept to the multilevel case, we generalize the definition of patches. In
accordance with (2.14), we recursively define the m-th order patch on level ℓ for
an element K ∈ Tℓ as

N
m
ℓ (K) := N

1
ℓ(N

m−1
ℓ (K)) with N

1
ℓ(K) :=

⋃
{T ∈ Tℓ : T ∩K ̸= ∅}. (4.5)

For the hierarchical basis functions on level ℓ = 1, we use local SLOD functions
defined on T1. In the following we give an Ansatz for the HSLOD basis derivation
for ℓ > 1. Those HSLOD functions are defined on patches corresponding to
elements T ∈ Tℓ−1 of the coarser level. On each such patch, 2d − 1 hierarchical
basis functions need to be defined. To formalize this, we introduce the quantity

Ji :=
⌊
i− 1

2d − 1

⌋
+ 1, (4.6)

which indicates the reference element TJi
∈ Tℓ−1 and, consequently, the patch.

For convenience, we fix the oversampling parameter m ∈ N and refer to the m-th
order patch of TJi

∈ Tℓ−1 on level ℓ− 1 simply as D
(ℓ−1)
Ji

:= N
m
ℓ−1(TJi

).

On level ℓ > 1, we define the local HSLOD basis functions ψ̂hslod
ℓ,i,m ∈ H1

0 (D
(ℓ−1)
Ji

)
for each i ∈ {1, . . . , N b

ℓ } as a linear combination of local SLOD functions. These
SLOD functions are defined on the mesh Tℓ and are supported strictly within
the patch D

(ℓ−1)
Ji

. In contrast to HSLOD functions, the patches associated with
SLOD basis functions at level ℓ are constructed as unions of elements from
Tℓ. We denote by D

(ℓ)
K the patch N

m
ℓ (K) on which the SLOD function φ̂slod

ℓ,K,m,
corresponding to K ∈ Tℓ, is supported. Furthermore, for each element TJi

∈ Tℓ−1,
we define the set

S
(ℓ)
Ji

:= {K ∈ Tℓ : supp(φ̂slod
ℓ,K,m) ⊂ D

(ℓ−1)
Ji

}.
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4.1. Construction of the hierarchical basis

Figure 4.1.: Illustration of the various patches in the HSLOD context on the mesh
Tℓ, with the coarser mesh Tℓ−1 represented using bold lines. Specifi-

cally, it shows the patch D
(ℓ−1)
Ji

( ) corresponding to a hierarchical
basis function associated with the reference element TJi

∈ Tℓ−1 ( ) .

Additionally, it depicts the patch D
(ℓ)
K ( ) surrounding K ∈ S

(ℓ)
Ji

( ).

The set S
(ℓ)
Ji

( ) corresponding to the patch D
(ℓ−1)
Ji

is also highlighted.

An illustration of the different patches introduced in this section, along with the
set S

(ℓ)
Ji

, is provided in Figure 4.1.

We define the HSLOD basis function ψ̂hslod
ℓ,i,m ∈ H1

0 (D
(ℓ−1)
Ji

) as

ψ̂hslod
ℓ,i,m =

∑

K∈S
(ℓ)
Ji

d
(ℓ,i)
K φ̂slod

ℓ,K,m, (4.7)

where the non-trivial coefficients (d
(ℓ,i)
K )

K∈S
(ℓ)
Ji

are chosen such that

Πℓ−1ψ̂
hslod
ℓ,i,m = 0. (4.8)

This condition is locally equivalent to (4.3) and ensures that the a-orthogonality
condition is satisfied to some extent. Specifically, it guarantees a-orthogonality
when the support of a basis function on a finer mesh is fully contained within
the support of a basis function on a coarser mesh; see also Theorem 4.1.1 below.

Although #S
(ℓ)
Ji
> #T

ℓ−1,D
(ℓ−1)
Ji

implies that there are infinitely many choices

of non-trivial coefficients that satisfy (4.8), not all such choices yield a stable
HSLOD basis. To ensure stability, specifically, the linear independence of the
2d − 1 hierarchical basis functions associated with the patch, we select functions
whose masses are centered within the reference coarse element TJi

∈ Tℓ−1, but
are concentrated in different elements of the refined mesh Tℓ. First, we define
the set of descendants of an element T ∈ Tℓ−1 as

des(T ) := {K ∈ Tℓ : K ⊂ T}.
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4. Hierarchical Super-Localized Orthogonal Decomposition

Let d̃es(T ) be any subset of des(T ) such that #d̃es(T ) = 2d − 1. Additionally,

we define a subset of descendants of the patch D
(ℓ−1)
Ji

as

d̃es(D
(ℓ−1)
Ji

) := {K ∈ d̃es(T ) : T ∈ T
ℓ−1,D

(ℓ−1)
Ji

},

and take Π̃ℓ : H1
0 (D

(ℓ−1)
Ji

) → P0(d̃es(D
(ℓ−1)
Ji

)) as the L2(d̃es(D
(ℓ−1)
Ji

))-orthogonal
projection onto piecewise constants.

To construct a stable HSLOD basis, we choose the coefficients in (4.7) such

that, in addition to satisfying (4.8), ψ̂hslod
ℓ,i,m fulfills

Π̃ℓψ̂
hslod
ℓ,i,m = 1Ki

, (4.9)

where Ki ∈ Tℓ is a descendent of the reference element TJi
with Ki ∈ d̃es(TJi

).
After enforcing condition (4.8), we are left with at most

#S
(ℓ)
Ji

− #T
ℓ−1,D

(ℓ−1)
Ji

≤ #d̃es(D
(ℓ−1)
Ji

)

degrees of freedom. Consequently, condition (4.9) cannot, in general, be satisfied
exactly, except in the one-dimensional case. Instead, we determine the non-
trivial coefficients such that the algebraic form of this condition is satisfied in
the least-squares sense.

This construction ensures that the HSLOD basis functions supported on the
same patch are linearly independent. In addition, it drives the coefficients
d

(ℓ,i)
K to be small for elements that are near the boundary of the patch. As a

consequence, the conormal derivative of ψ̂hslod
ℓ,i,m on the interior patch boundary

ΣJi
:= ∂D

(ℓ−1)
Ji

\∂D is small, since each SLOD basis function φ̂slod
ℓ,K,m with K ∈ S

(ℓ)
Ji

has a small conormal derivative on ΣJi
.

4.1.3. Practical hierarchical basis

To handle the case ℓ = 1 consistently with all other levels, we extend the
definition of the quantity Ji in (4.6) by setting Ji = i for ℓ = 1, and use the
generalized formulation

Ji :=

⌊
i− 1

(2d − 1)min(ℓ−1,0)

⌋
+ 1. (4.10)

Hence, the hierarchical basis functions ψ̂hslod
ℓ,i,m are defined on patches D

(ℓ−1)
Ji

which, at all levels, are associated with elements TJi
∈ Tmax(ℓ−1,1). We define the

normalized HSLOD function ψ̂ℓ,i,m ∈ H1
0 (D

(ℓ−1)
Ji

) as

ψ̂ℓ,i,m = ψ̂hslod
ℓ,i,m /∥ψ̂hslod

ℓ,i,m ∥a. (4.11)
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4.1. Construction of the hierarchical basis

In addition, introducing the normalized coefficients

d̂
(ℓ,i)
K = d

(ℓ,i)
K /∥ψ̂hslod

ℓ,i,m ∥a, (4.12)

the hierarchical basis function can be written as the linear combination

ψ̂ℓ,i,m =
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K φ̂slod

ℓ,K,m. (4.13)

In particular, for ℓ = 1, we have S
(ℓ)
Ji

= {Ti}, so that the hierarchical basis
function coincides with the (normalized) SLOD function associated with the
element Ti ∈ T1.

Note that the localized hierarchical basis functions are, in general, not a basis
for the prototypical ansatz space Va

L. However, by using the same coefficients

d̂
(ℓ,i)
K that define ψ̂ℓ,i,m, a basis for Va

L can be constructed using the global SLOD
functions defined in (3.1), as

ψℓ,i,m =
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K φslod

ℓ,K,m. (4.14)

The prolongation by zeros of the above coefficient vector defining the hierarchical
basis functions to RNℓ is not necessarily an element of ker(D(ℓ)) as defined in
Section 4.1.1. Consequently, the stiffness matrix associated with the global
functions ψℓ,i,m will, in general, not be block-diagonal.

Analogous to the construction of the hierarchical basis functions, a local source
term associated to ψ̂ℓ,i,m and ψℓ,i,m can be defined as

gℓ,i,m =
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K gslod

ℓ,K,m ∈ P0(T
ℓ,D

(ℓ−1)
Ji

), (4.15)

where gslod
ℓ,K,m ∈ P0(T

ℓ,D
(ℓ)
K

) is the L2(D
(ℓ)
K )-normalized local source term of φ̂slod

ℓ,K,m.

An example of the hierarchical basis functions in one dimension is illustrated in
Figure 4.2 for the model problem (2.3) with a constant diffusion coefficient A ≡ 1
along with an example for a piecewise constant coefficient. For visualization
purposes, the HSLOD basis functions shown are not normalized with respect to
the energy norm but are instead scaled to be of the same order. Different colors
indicate the levels to which the basis functions are associated to. The considered
mesh sizes range from H1 = 1 to H4 = 2−3. Figure 4.3 shows the HSLOD basis
functions associated to the fifth level in the hierarchy (with mesh size H5 = 2−4),
as well as the corresponding hierarchical LOD (HLOD) functions for the same
parameters. The comparison illustrates the smaller conormal derivatives of the
HSLOD basis functions. In Figure 4.4, the hierarchical basis functions in two
dimensions along with their corresponding L2-normalized local source terms
are displayed. The figure depicts HSLOD basis functions across three levels
(ℓ = 1, . . . , 3) corresponding to mesh sizes Hℓ = 2−2, . . . , 2−4.
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4. Hierarchical Super-Localized Orthogonal Decomposition

Figure 4.2.: Local (scaled) HSLOD basis functions for the model problem (2.3)
in one spatial dimension, for A ≡ 1 (top) and a piecewise constant
coefficient illustrated in gray (bottom), shown for levels ℓ = 1 ( )
up to ℓ = 4 ( ). The oversampling parameter is set to m = 1.

In the following, we analyze the quality of the local HSLOD basis with respect
to a-orthogonality and localization error. To this end, we introduce the quantity

ζ = ζ(HL,m) := max
ℓ∈{1,...,L}

max
i∈{1,...,Nb

ℓ
}

√√√√
∑

K∈S
(ℓ)
Ji

|d̂(ℓ,i)
K |2. (4.16)

Furthermore, let σℓ,K denote the localization error associated with the SLOD
function φ̂slod

ℓ,K,m, as defined in (3.9). A global measure of the localization error of
SLOD functions across levels is then given by

σ = σ(HL,m) := max
ℓ∈{1,...,L}

max
K∈Tℓ

σℓ,K . (4.17)

As shown in Section 3.3, σ can be expected to decay super-exponentially, and is
shown to decay at least exponentially, see Theorem 3.3.4. More precisely, we
have

σ ≲ H−1
L exp(−Cm).

An upper bound on ζ will be provided in Section 4.5.
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4.1. Construction of the hierarchical basis

Figure 4.3.: Local HSLOD (top) and HLOD (bottom) basis functions for the
model problem (2.3) with A ≡ 1 in one spatial dimension, associated
to the level with mesh size 2−4. The oversampling parameter is set
to m = 1.

Figure 4.4.: HSLOD basis functions and their corresponding L2-normalized local
source terms for the model problem (2.3) with a constant coefficient
A ≡ 1 in two spatial dimensions. Basis functions associated to levels
ℓ = 1 (left) up to ℓ = 3 (right) are illustrated. The oversampling
parameter is set to m = 1.
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4. Hierarchical Super-Localized Orthogonal Decomposition

The next lemma investigates the a-orthogonality condition and gives an
estimate of the off-block diagonal entries of the stiffness matrix associated
with the HSLOD basis functions. Of course, the a-inner product of two basis
functions can only be non-zero if the corresponding patches are at least partially
overlapping.

Lemma 4.1.1 (Orthogonality condition of HSLOD functions). Let ψ̂ℓ,i,m and

ψ̂p,j,m be two hierarchical basis functions defined on levels ℓ < p with partially
overlapping patches, i.e., N

m
ℓ−1(TJi

) ∩ N
m
p−1(TJj

) ̸= ∅. Then, it holds that

a(ψ̂ℓ,i,m, ψ̂p,j,m)





= 0 if N
m
p−1(TJj

) ⊂ N
m
ℓ−1(TJi

),

≲ md/2ζσ otherwise,
(4.18)

where ζ is given in (4.16) and σ is given in (4.17).

Proof. If the support of the finer-level basis function ψ̂p,j,m is entirely contained

within N
m
ℓ−1(TJi

), i.e., ψ̂p,j,m ∈ H1
0 (Nm

ℓ−1(TJi
)), then, since gℓ,i,m ∈ P0(Tℓ), condi-

tion (4.8) implies

a(ψ̂ℓ,i,m, ψ̂p,j,m) = (gℓ,i,m, ψ̂p,j,m)L2(D) = 0.

For the case where the supports of ψ̂ℓ,i,m and ψ̂p,j,m partially overlap, we use

the representation of ψ̂ℓ,i,m from (4.13) to obtain that

a(ψ̂ℓ,i,m, ψ̂p,j,m) =
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K a(φ̂slod

ℓ,K,m, ψ̂p,j,m).

By applying the definition of the conormal derivative from (3.6), along with (4.8)
and (3.4), we can deduce for each term separately that

a(φ̂slod
ℓ,K,m, ψ̂p,j,m) = ⟨γ∂nφ̂

slod
ℓ,K,m, tr(ψ̂p,j,m|

D
(ℓ)
K

)⟩X′×X + (gslod
ℓ,K,m, ψ̂p,j,m)

L2(D
(ℓ)
K )

≤ ∥γ∂nφ̂
slod
ℓ,K,m∥X′∥tr(ψ̂p,j,m|

D
(ℓ)
K

)∥X

≤ ∥γ∂nφ̂
slod
ℓ,K,m∥X′∥ψ̂p,j,m∥H1(D)

≲ σ,

where we used the fact that the HSLOD basis functions are normalized to one,
and that σ is a measure of the conormal derivative of φ̂slod

ℓ,K,m, see Section 3.1.

Here, tr denotes the trace operator on D
(ℓ)
K , the patch associated with φ̂slod

ℓ,K,m. In
combination with the Cauchy–Schwarz inequality and (4.16), the claim follows
as

a(ψ̂ℓ,i,m, ψ̂p,j,m) ≲
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K σ ≤

√
|S(ℓ)

Ji
|
( ∑

K∈S
(ℓ)
Ji

|d̂(ℓ,i)
K |2

)1/2

σ ≲ md/2ζσ.
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The next lemma quantifies the approximation quality of the localized basis by
providing an upper bound on the localization error between the local HSLOD
basis functions ψ̂ℓ,i,m and their global counterparts ψℓ,i,m in the energy-norm.

Lemma 4.1.2 (Localization error of HSLOD functions). Let ψ̂ℓ,i,m and ψℓ,i,m be
hierarchical basis functions as defined in (4.13) and (4.14). Then the following
estimate holds

∥ψℓ,i,m − ψ̂ℓ,i,m∥a ≲ md/2ζσ,

where ζ is given in (4.16) and σ is given in (4.17).

Proof. From the definitions of the HSLOD basis functions (4.13) and (4.14),
together with (3.15), Friedrichs’ inequality, and the Cauchy–Schwarz inequality,
it follows that

∥ψℓ,i,m − ψ̂ℓ,i,m∥a =
∥∥∥∥
∑

K∈S
(ℓ)
Ji

d̂
(ℓ,i)
K

(
φslod

ℓ,K,m − φ̂slod
ℓ,K,m

) ∥∥∥∥
a

≤ max
K∈S

(ℓ)
Ji

{∥∥∥φslod
ℓ,K,m − φ̂slod

ℓ,K,m

∥∥∥
a

} ∑

K∈S
(ℓ)
Ji

|d̂(ℓ,i)
K |

≲ md/2ζσ.

This implies that md/2ζσ serves as a measure of the localization error of the
HSLOD basis functions. Furthermore, Theorem 4.1.1 indicates that smaller
localization errors correspond to near-complete a-orthogonality across levels.

4.2. Practical multiscale methods

Using the localized basis functions from the previous section, we now intro-
duce two possible multiscale methods based on this hierarchical basis. Before
introducing the methods, we first define, for 1 ≤ ℓ ≤ L,

V̂ℓ,m := span{ψ̂ℓ,i,m : i = 1, . . . , N b
ℓ },

which will serve as the level-wise ansatz spaces in the following. The overall
ansatz space is then defined as

V̂ML
L,m := V̂1,m ⊕ · · · ⊕ V̂L,m.

For simplicity, we refer to the hierarchical basis functions of V̂ML
L and Va

L using
their global indices. Thus, with

i =




j, if ℓ = 1,

#Tℓ−1 + j, if ℓ > 1,
(4.19)
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4. Hierarchical Super-Localized Orthogonal Decomposition

we have the relations

ψ̂i,m = ψ̂ℓ,j,m and ψi,m = ψℓ,j,m (4.20)

with corresponding local source terms gi,m = gℓ,j,m. Using global indices, we refer

to the patches associated with the hierarchical basis functions as Di = D
(ℓ−1)
Jj

.
With this notation established, we are now ready to define the two multiscale
methods.

Level-wise Galerkin method. In this hierarchical approach, we first seek, for
each level, the sub-scale solution uℓ,m ∈ V̂ℓ,m, which satisfies

a(uℓ,m, v) = (f, v)L2(D)

for all v ∈ V̂ℓ,m. The approximate solution to the model problem (2.3) is then
given by the sum of these Galerkin approximations, i.e.,

uML
L,m = u1,m + · · · + uL,m. (4.21)

Hence, this approach leverages the nearly block-diagonal structure of the stiffness
matrix associated with the HSLOD basis, effectively neglecting the off-block
diagonal entries.

Collocation-type method. A collocation-type discrete approximation to (2.3)
is given by

ucol
L,m =

NL∑

i=1

ciψ̂i,m, (4.22)

where (ci)i∈{1,...,NL} are the coefficients of the expansion of ΠLf in the basis func-
tions {gi,m : i = 1, . . . NL} of P0(TL). Note that, unlike the level-wise Galerkin
method, the collocation-type method does not exploit the a-orthogonality of
the hierarchical basis. This is because the a-orthogonality of the HSLOD basis
functions does not generally imply the L2-orthogonality of the corresponding
local source terms gi,m. Therefore, it is not possible to improve an existing
collocation-type approximation by solely considering an additional fine level in
the hierarchy. This aspect is further examined in Section 4.6.

As in the case of the SLOD method, a minimal requirement for ensuring the
stability and convergence of both hierarchical multiscale methods is that the set
{gi,m : i = 1, . . . , NL} spans P0(TL) in a stable way. In practical implementations,
this condition is enforced via (4.9). For the subsequent numerical analysis,
we impose the following assumption for the hierarchical setting, in line with
Theorem 3.1.2.
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4.3. Error analysis

Assumption 4.2.1 (Riesz stability). The set {gi,m : i = 1, . . . , NL} is a Riesz
basis of P0(TL), i.e., there exists a constant Crb = Crb(HL,m) > 0 such that for
all possible choices of (ci)i∈{1,...,NL} it holds that

C−1
rb

NL∑

i=1

c2
i ≤

∥∥∥∥∥

NL∑

i=1

cigi,m

∥∥∥∥∥

2

L2(D)

,

where Crb depends polynomially on H−1
L and m.

4.3. Error analysis

In this section, we present an error analysis of the previously introduced methods.
We begin by establishing an error bound for the collocation-type variant and then
use this result to derive the error analysis for the level-wise Galerkin method. In
both cases, several HSLOD-specific quantities arise in an a posteriori manner,
which will be further examined in Section 4.5.

Theorem 4.3.1 (Error bound of the collocation-type variant). Let the set
{gi,m : i = 1, . . . , NL} be stable in the sense of Theorem 4.2.1. Then, for any
f ∈ Hs(D) with s ∈ {0, 1}, the solution of the collocation-type method introduced
in (4.22) satisfies

∥u− ucol
L,m∥a ≲ HL ∥f − ΠLf∥L2(D) + C

1/2
rb

√
Lmdζσ∥f∥L2(D)

≲
(
H1+s

L + C
1/2
rb

√
Lmdζσ

)
∥f∥Hs(D)

with Crb from Theorem 4.2.1. This result implies that the collocation-type
approximation converges to the exact solution at an algebraic rate in HL, up to
an additional error due to localization.

Proof. By using the triangle inequality with ũ = A−1ΠLf , we obtain that

∥u− ucol
L,m∥a ≤ ∥u− ũ∥a + ∥ũ− ucol

L,m∥a. (4.23)

Using the same arguments as in Theorem 3.2.1, we can estimate the first term as

∥u− ũ∥a ≲ H∥f − ΠLf∥L2(D) ≲ H1+s∥f∥Hs(D). (4.24)

For the second term of (4.23), we use the exactness of the prototypical method
for ΠLf , see Section 2.3. Hence, we can represent ũ using the global HSLOD
basis functions as

ũ =
NL∑

i=1

ciψi,m,

where (ci)i∈{1,...,NL} are the coefficients of the expansion of ΠLf in the basis
functions gi.m. With the definition of the collocation-type method in (4.22) we
obtain

∥ũ− ucol
L,m∥2

a =
NL∑

i=1

ci a(ψi,m − ψ̂i,m, ũ− ucol
L,m). (4.25)
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4. Hierarchical Super-Localized Orthogonal Decomposition

Let e := ũ− ucol
L,m. Using the relations (4.20), the definitions of the HSLOD

functions (4.13) and (4.14), (3.15) and the Cauchy–Schwarz inequality, it follows
that

a(ψi,m − ψ̂i,m, e) = a(ψℓ,j,m − ψ̂ℓ,j,m, e)

=
∑

K∈S
(ℓ)
Jj

d̂
(ℓ,j)
K a(φ̂slod

ℓ,K,m − φslod
ℓ,K,m, e)

≲ σ
∑

K∈S
(ℓ)
Jj

d̂
(ℓ,j)
K ∥e∥

H1(D
(ℓ)
K )

≤ σ

√√√√√
∑

K∈S
(ℓ)
Jj

|d̂(ℓ,j)
K |2

√√√√
∑

K∈S
(ℓ)
Jj

∥e∥2

H1(D
(ℓ)
K )

≲ md/2ζσ∥e∥
H1(D

(ℓ−1)
Jj

)
,

(4.26)

where D
(ℓ)
K is the associated patch to φ̂slod

ℓ,K,m and D
(ℓ−1)
Jj

is the one corresponding

to ψ̂ℓ,j,m. For the last step, we used (4.16), the fact that

D
(ℓ)
K ⊂ D

(ℓ−1)
Jj

for K ∈ S
(ℓ)
Jj
,

and the finite overlap of patches.
Referring back to the global indices of the basis functions yields the rela-

tion Di = D
(ℓ−1)
Jj

. Combining this with (4.25) and (4.26) and applying the
Cauchy–Schwarz inequality, we obtain

∥ũ− ucol
L,m∥2

a ≲ md/2ζσ
NL∑

i=1

ci∥ũ− ucol
L,m∥H1(Di)

≤ md/2ζσ

√√√√
NL∑

i=1

c2
i

√√√√
NL∑

i=1

∥ũ− ucol
L,m∥2

H1(Di)

≲ C
1/2
rb

√
Lmdζσ∥f∥L2(D)∥ũ− ucol

L,m∥a.

For the last inequality we used Theorem 4.2.1, Friedrichs’ inequality, and the
finite overlap of patches per level. The combination of (4.23), (4.24) and the
previous estimate yields the assertion.

In contrast to the collocation-type variant, the level-wise Galerkin method
(4.21) exploits the nearly blockwise structure of the stiffness matrix associated

with the HSLOD basis functions ψ̂i,m by disregarding the off-block diagonal
entries. To evaluate the error introduced by this approximation, we first establish
the following lemma, which quantifies the impact of neglecting the off-block
diagonal entries in a matrix.
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4.3. Error analysis

Lemma 4.3.2 (Disregarding off-block diagonal entries). Let A ∈ Rn×n a sym-
metric positive definite (SPD) matrix, and let Ā ∈ Rn×n be the block-diagonal
matrix whose diagonal blocks coincide with those of A. Denote by Nb ∈ N the
number of diagonal blocks of Ā, and by ni ∈ N the number of rows of its i-th
diagonal block. Define ∆A := A − Ā, and let ∆Ai be the rectangular submatrix
of ∆A consisting of the rows of ∆A corresponding to the indices of the i-th
diagonal block of A. Let b ∈ Rn be arbitrary, x ∈ Rn such that Ax = b, and
x̄ ∈ Rn such that Āx̄ = b. Then, the error bound

∥x − x̄∥2 ≤
( Nb∑

i=1

λ−2
min (Aii) ∥∆Ai∥2

2∥x∥2
2

) 1
2

holds, where Aii ∈ Rni×ni is the i-th diagonal block of Ā and A.

Proof. Let x = [xT
1 , . . . ,x

T
Nb

]T , x̄ = [x̄T
1 , . . . , x̄

T
Nb

]T , and b = [bT
1 , . . . ,b

T
Nb

]T ,

where xi, x̄i,bi ∈ Rni . Since the diagonal blocks of Ā and A coincide, we have
∆Aii := Aii − Āii = 0. This implies that bi = Aiixi + ∆Aix. Since bi = Aiix̄i,
it follows that Aii(xi − x̄i) + ∆Aix = 0, or equivalently xi − x̄i = −A−1

ii ∆Aix.
Taking norms, we get that

∥xi − x̄i∥2 ≤ ∥A−1
ii ∥2∥∆Ai∥2∥x∥2 = λ−1

min

(
Aii

)
∥∆Ai∥2∥x∥2.

Thus, the assertion follows by noticing that ∥x − x̄∥2
2 =

∑Nb

i=1 ∥xi − x̄i∥2
2.

The next lemma provides a result that will be useful for bounding the Euclidean
norm of the coefficient vectors of basis functions in subsequent error estimates.
This result follows from the Rayleigh quotient bounds of the Gram matrix of a
basis and is closely related to Theorem 4.2.1.

Lemma 4.3.3 (Rayleigh quotient bounds of the Gram matrix). Let V be an
inner product space with norm ∥ · ∥V induced by the inner product (·, ·)V . Let
{bi : i = 1, . . . , n} be a basis of V. Then, for any finite sequence of real numbers
(ci)i∈{1,...,n}, it holds that

λmin(B)
n∑

i=1

|ci|2 ≤
∥∥∥∥∥

n∑

i=1

cibi

∥∥∥∥∥

2

V

≤ λmax(B)
n∑

i=1

|ci|2,

where B ∈ Rn×n is the Gram matrix with Bij = (bi, bj)V .

Proof. Let v =
∑n

i=1 cibi ∈ V be arbitrary. Then, we have that

∥v∥2
V = (v, v)V =

n∑

i=1

ci

n∑

j=1

cj(bi, bj)V = cT Bc

with c = [c1, . . . , cn]T ∈ Rn. Since B is symmetric, and {bi : i = 1, . . . , n} forms
a basis of V , it follows that cT Bc = ∥v∥2

V > 0 for any c ∈ Rn \ {0}. Thus, B is
an SPD matrix. Consequently, the associated Rayleigh quotient is bounded by

λmin(B) ≤ cT Bc

cT c
≤ λmax(b),
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4. Hierarchical Super-Localized Orthogonal Decomposition

where λmin(B) and λmax(B) are the smallest and largest eigenvalues of B, respec-
tively, satisfying 0 < λmin(B) ≤ λmax(B). This directly yields the assertion.

Let AL ∈ RNL×NL be the full stiffness matrix associated with the HSLOD basis
functions with (AL)ij = a(ψ̂i,m, ψ̂j,m). Let AML

L ∈ RNL×NL be the corresponding
block-diagonal stiffness matrix with

(AML
L )ij =




a(ψ̂i,m, ψ̂j,m) if level(ψ̂i,m) = level(ψ̂j,m),

0 otherwise.

The a posteriori error bound of the level-wise Galerkin method is then given by
the following theorem.

Theorem 4.3.4 (Error bound of level-wise Galerkin method). Let the set
{gi,m : i = 1, . . . , NL} be stable in the sense of Theorem 4.2.1. Then, for any
f ∈ Hs(D) with s ∈ {0, 1}, the solution of the level-wise Galerkin method
introduced in (4.21) satisfies

∥u− uML
L,m∥a ≲ H1+s

L ∥f∥Hs(D)

+ C
1/2
rb

√
Lmdζσ∥f∥L2(D)

+
(

1 +H−d
L ζσ

λmin(AL)

)1/2

H−d
L λ−1

min

(
AML

L

)√
Lmdζσ∥f∥L2(D)

with Crb from Theorem 4.2.1. This result implies that the level-wise Galerkin
approximation converges to the exact solution at an algebraic rate in HL, up
to additional errors due to localization and the truncation of off-block diagonal
entries in the hierarchical stiffness matrix.

Proof. Let û be the Galerkin approximation in the space V̂ML
L,m, i.e., for all

v ∈ V̂ML
L,m it holds that

a(û, v) = (f, v)L2(D).

Hence, û is the approximate solution associated with the full stiffness matrix
AL ∈ RNL×NL . Using the triangle inequality, we get that

∥u− uML
L,m∥a ≤ ∥u− û∥a + ∥û− uML

L,m∥a. (4.27)

By applying Céa’s Lemma and Theorem 4.3.1, we obtain for the first term that

∥u− û∥a ≤ ∥u− ucol
L,m∥a ≲ H1+s

L ∥f∥Hs(D) + C
1/2
rb

√
Lmdζσ∥f∥L2(D). (4.28)

To approximate the second term in (4.27), we express both û ∈ V̂ML
L and

uML
L,m ∈ V̂ML

L using the HSLOD basis functions. Therefore, we define the right-

hand side vector f := [(f, ψ̂1,m)L2(D), · · · , (f, ψ̂NL,m)L2(D)]
T . Then, the Galerkin

solutions admit the representations

û =
NL∑

i=1

ĉiψ̂i,m and uML
L,m =

NL∑

i=1

cML
i ψ̂i,m,
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4.4. Additional compression strategies

where [ĉ1, . . . , ĉNL
]T = ĉ = A−1

L f and [cML
1 , . . . , cML

NL
]T = cML = (AML

L )−1f . We
define the coefficient difference by cd = ĉ − cML.

Let ∆ML
L := AL − AML

L denote the matrix of discarded off-block entries. For
each level ℓ, let ∆ℓ be the rectangular submatrix of ∆ML

L consisting of the rows

corresponding to those in the ℓ-th diagonal block of AML
L . Moreover, let A

(L)
ℓℓ be

the ℓ-th diagonal block of AML
L and AL. From Theorem 4.3.2, Theorem 4.3.3,

and Friedrichs’ inequality, it follows that

∥û− uML
L,m∥2

a =
∥∥∥∥

NL∑

i=1

(ĉi − cML
i )ψ̂i

∥∥∥∥
2

a
= cT

d ALcd = cdAML
L cd + cT

d ∆ML
L cd

≤
(
∥AML

L ∥2 + ∥∆ML
L ∥2

)
∥cd∥2

2

≤
(
∥AML

L ∥2 + ∥∆ML
L ∥2

) L∑

ℓ=1

∥∆ℓ∥2
2

λ2
min

(
A

(L)
ℓℓ

)∥ĉ∥2
2

≲
(
∥AML

L ∥2 + ∥∆ML
L ∥2

)
L∥∆ML

L ∥2
2λ

−2
min

(
AML

L

) ∥f∥2
L2(D)

λmin(AL)
.

By construction, the localized hierarchical basis functions are normalized with
respect to the energy norm. Consequently, for any i, j ∈ {1, . . . , NL} we have

|a(ψ̂i,m, ψ̂j,m)| ≤ 1. This implies that all entries of the matrix AML
L are uniformly

bounded in absolute value. Applying Gershgorin’s Circle Theorem and exploiting
the finite overlap patches, we deduce that

∥AML
L ∥2 = max{|λmin

(
AML

L

)
|, |λmax

(
AML

L

)
|} ≲ md. (4.29)

Since ∆ML
L is symmetric as well, Gershgorin’s Circle Theorem together with

Theorem 4.1.1 yields that

∥∆ML
L ∥2 = max{|λmin

(
∆ML

L

)
|, |λmax

(
∆ML

L

)
|} ≲ H−d

L md/2ζσ, (4.30)

leading to the error estimate

∥û− uML
L,m∥a ≲

(
1 +H−d

L ζσ

λmin(AL)

)1/2

H−d
L λ−1

min

(
AML

L

)√
Lmdζσ∥f∥L2(D).

Combining this with (4.27) and (4.28) concludes the proof.

4.4. Additional compression strategies

If the block-diagonal stiffness matrix AML
L is well conditioned, additional com-

pression steps to the level-wise Galerkin method introduced in (4.21) are possible.
In this scenario, the inverse of AML

L can be well approximated by a sparse matrix.
Consequently, computing the approximate solution of (2.3) using the inverse
approximation reduces to the computation of a matrix-vector product.

In this section, we propose two additional compression steps and quantify the
resulting approximation error. The first compression step is to approximate the
inverse using the Conjugate Gradient (CG) method.
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4. Hierarchical Super-Localized Orthogonal Decomposition

4.4.1. Approximate inverse of block-diagonal stiffness

matrix

The inverse of the block-diagonal matrix AML
L is itself a block-diagonal matrix,

with diagonal blocks being the inverses of the corresponding blocks of AML
L .

Notably, the inverse of each block is generally a full matrix (a property derivable
from the Cayley-Hamilton theorem, which relates a matrix and its characteristic
polynomial). The i-th column of the inverse of the ℓ-th diagonal block of AML

L

can be computed by solving the linear system

A
(L)
ℓℓ c

(i)
ℓ = ei,

where A
(L)
ℓℓ denotes the j-th diagonal block of AML

L and ei is the i-standard basis
vector. If we solve the above linear system iteratively with CG, we obtain the
following error bound

∥∥∥c(i)
ℓ − c

(i,k)
ℓ

∥∥∥
A

(L)
ℓℓ

≤ 2




√
κ
(
A

(L)
ℓℓ

)
− 1

√
κ
(
A

(L)
ℓℓ

)
+ 1




k

∥∥∥c(i)
ℓ − c

(i,0)
ℓ

∥∥∥
A

(L)
ℓℓ

,

where the k-th CG iterate is denoted by c
(i,k)
ℓ . Thus, the column c

(i)
ℓ could be

well approximated with a few CG iterations, provided the condition number
of A

(L)
ℓℓ is small. Consequently, we can accurately approximate the inverse of

the diagonal block A
(L)
ℓℓ by a cheaply computable sparse matrix S

(k)
ℓℓ ∈ RNb

ℓ ×Nb
ℓ ,

where
S

(k)
ℓℓ = [c

(1,k)
ℓ , · · · , c(Nb

ℓ ,k)

ℓ ].

The approximate inverse of AML
L is then given by the block diagonal matrix

S(k) ∈ RNL×NL with diagonal blocks S
(k)
11 , . . . ,S

(k)
LL.

The following estimate quantifies the sparsity degree of the blocks of the
approximate inverse S(k), under the assumption of Cartesian meshes. If the CG
iterations are initialized with c

(i,0)
ℓ = 0, the number of non-zero entries in the

k-th iterate can be bounded as

nnz
(
c

(i,k)
ℓ

)
≤ (1 + 4mk)d(2d − 1), (4.31)

where the bound is tight (i.e., attained for some i ≤ N b
ℓ ) provided k is such that

the right-hand side of the inequality remains below N b
ℓ .

Remark 4.4.1 (Non-zero entries in CG approximation). The bound in (4.31)

can be derived by interpreting A
(L)
ℓℓ as the adjacency matrix of a weighted graph

G. Then, for k ≥ 1, the number of nonzeros in c
(i,k)
ℓ equals the number of vertices

in G that are reachable from vertex i via a path (a sequence of edges) of length
at most 4mk, considering the vertex i connected to itself.
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4.4. Additional compression strategies

Using this CG approximation, we set [cCG
i , . . . , cCG

NL
]T = cCG = S(k)f with

f := [(f, ψ̂1)L2(D), · · · , (f, ψ̂NL
)L2(D)]

T and define the corresponding approximate
solution to the model problem (2.3) by

uCG
L,m :=

NL∑

i=1

cCG
i ψ̂i,m. (4.32)

Theorem 4.4.2 (Error bound using CG approximation). Let δCG > 0 and

k ∈ N be such that
∥∥∥(AML

L )−1 − S(k)
∥∥∥

2
≤ δCG, where S(k) denotes the approximate

inverse obtained via k CG iterations. Then, for any right-hand side f ∈ L2(D),
the additional error incurred by using the approximate solution uCG

L,m from (4.32)
instead of the level-wise Galerkin solution uML

L,m from (4.21) is bounded by

∥uML
L,m − uCG

L,m∥a ≲
(
1 +H−d

L ζσ
)1/2√

LmdδCG∥f∥L2(D).

Proof. Using the fact that supp(ψ̂i,m) ⊂ Di, Friedrichs’ inequality and the finite
overlap of patches per level, we obtain that

∥f∥2
2 ≤

NL∑

i=1

∥f∥2
L2(Di)

∥ψ̂i,m∥2
L2(Di)

≲ Lmd∥f∥2
L2(D),

since ∥ψ̂i,m∥a = 1 by construction.
As before, we can write the level-wise Galerkin solution as

uML
L,m =

NL∑

i=1

cML
i ψ̂i

with [cML
1 , . . . , cML

NL
]T = cML = (AML

L )−1f . We set cd = cML − cCG and define the
matrix of discarded off-block entries as ∆ML

L := AL − AML
L . Using (4.29) and

(4.30), we obtain that

∥uML
L,m − uCG

L,m∥2
a =

∥∥∥∥
NL∑

i=1

(cML
i − cCG

i )ψ̂i

∥∥∥∥
2

a
= cT

d

(
AML

L + ∆ML
L

)
cd

≤
(
∥AML

L ∥2 +
∥∥∥∆ML

L

∥∥∥
2

)
∥cd∥2

2

≲ md
(
1 +H−d

L ζσ
) (

∥(AML
L )−1 − S(k

δCG )∥2∥f∥2

)2

≲ md
(
1 +H−d

L ζσ
)(√

Lmd/2δCG∥f∥L2(D)

)2
.

As a direct consequence, the statement follows.

4.4.2. Disregarding small entries in approximate inverse

In this section, we introduce the second compression stage, which consists of
neglecting small entries in the approximate inverse S(k), which is obtained via
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the CG method. Let Sϵ ∈ RNL×NL denote this matrix resulting from discarding
all entries of S(k) whose absolute value is smaller than a given tolerance ϵ > 0.
Furthermore, let Nϵ be the maximal number of entries in any row or column of
S(k) with absolute value smaller than ϵ. Then, it follows that

∥Sϵ − S(k)∥2 ≤
√

∥Sϵ − S(k)∥1∥Sϵ − S(k)∥∞ ≤ Nϵϵ. (4.33)

We set [c
(ϵ)
i , . . . , c

(ϵ)
NL

]T = c(ϵ) = Sϵf and define the corresponding approximate
solution to the model problem (2.3) by

u
(ϵ)
L,m :=

NL∑

i=1

c
(ϵ)
i ψ̂i. (4.34)

With the same procedure employed in Theorem 4.4.2, and using (4.33), we obtain
the following approximation result.

Theorem 4.4.3 (Error bound using truncated approximate inverse). Let ϵ > 0.
Then, for any right-hand side f ∈ L2(D), the additional error incurred by using

the truncated matrix Sϵ, leading to the approximate solution u
(ϵ)
L,m from (4.34),

instead of the CG approximation S(k), is bounded by

∥uCG
L,m − u

(ϵ)
L,m∥a ≲

(
1 +H−dζσ

)1/2√
LmdNϵϵ∥f∥L2(D).

Collecting the approximation results from Section 4.3 and the additional
compression steps discussed above, we derive the following error estimate for the
approximate solution incorporating all compression steps.

Corollary 4.4.4 (Overall error estimate). Let {gi,m : i = 1, . . . , NL} be stable in
the sense of Theorem 4.2.1. For any f ∈ Hs(D) with s ∈ {0, 1}, the approximate

solution u
(ϵ)
L,m defined in (4.34) satisfies

∥u− u
(ϵ)
L,m∥a ≲

(
Hs+1

L + C
1/2
rb

√
Lmdζσ

)
∥f∥Hs(D)

+ md
√
L(1 +H−d

L ζσ)

×
(

ζσ

Hd
Lλ

1/2
min(AL)λmin

(
AML

L

) + δCG +Nϵϵ
)

∥f∥L2(D),

where δCG > 0 and ϵ > 0 are small parameters proportional to the prescribed
accuracy.

4.5. Condition number of the hierarchical

stiffness matrix

In this section, we analyze the conditioning of the diagonal blocks of the hierar-
chical stiffness matrix AML

L . The analysis is inspired by techniques developed
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in [FP20, Lemma 6]. The resulting theorem shows that the condition numbers
of these blocks are independent of the mesh size, except for the block associated
with the first level. Condition (4.8) plays a crucial role in this. Additionally, this
result provides further insight into the accuracy of the error estimates established
in the preceding sections.

We consider the level-wise defined HSLOD basis functions ψ̂hslod
ℓ,i,m from (4.7) and

their normalized counterparts ψ̂ℓ,i,m from (4.11). We can write the L2-orthogonal
projection onto piecewise constants of those functions as

Πℓψ̂
hslod
ℓ,i,m =

∑

K∈Tℓ

p
(i)
K 1K and Πℓψ̂ℓ,i,m =

∑

K∈Tℓ

p̂
(i)
K 1K . (4.35)

Using the above coefficient vectors, we define the matrices Pℓ, P̂ℓ ∈ RNℓ×Nb
ℓ with

(Pℓ)ij = p
(j)
Ki

and (P̂ℓ)ij = p̂
(j)
Ki
. (4.36)

From (4.11), it follows that P̂ℓ = PℓNℓ where Nℓ ∈ RNb
ℓ ×Nb

ℓ is the diagonal

matrix such that (Nℓ)ii = ∥ψ̂hslod
ℓ,i,m ∥−1

a .
In the following we want to give an estimate of the condition number and

the smallest eigenvalue of the blocks A
(L)
ℓℓ of the hierarchical stiffness matrix.

Therefore, we provide first the following two lemmas, giving an estimate for the
smallest eigenvalues of the matrices Nℓ and PT

ℓ Pℓ, respectively.

Lemma 4.5.1 (Smallest eigenvalue of Nℓ). For each level 1 ≤ ℓ ≤ L, the

smallest eigenvalue of the diagonal matrix Nℓ ∈ RNb
ℓ ×Nb

ℓ with (Nℓ)ii = ∥ψ̂hslod
ℓ,i,m ∥−1

a

satisfies
λmin(Nℓ) ≳ m−dH

1−d/2
ℓ .

Proof. Analogous to (3.23), the SLOD basis functions used in the construction
of the hierarchical basis can be obtained by applying a correction to the LOD
functions; see Section 3.4.4. We denote these SLOD functions by φ̃slod

ℓ,K,m, and
their, with respect to the local source terms, normalized counterparts by φ̂slod

ℓ,K,m.

According to the definition of ψ̂hslod
ℓ,i,m in (4.7), we have

ψ̂hslod
ℓ,i,m =

∑

K∈S
(ℓ)
Ji

d̃
(i)
K φ̃

slod
ℓ,K,m, (4.37)

where d̃
(i)
K = d

(i)
K /∥g̃slod

ℓ,K,m∥L2(D). We collect these coefficients into the vector

d̃(i) = (d̃
(i)
K )

K∈S
(ℓ)
Ji

.

For a fixed oversampling parameter m ∈ N and a fixed level 1 ≤ ℓ ≤ L,
we denote by DJi

= N
m
ℓ−1(TJi

) the patch associated to the hierarchical basis

function ψ̂hslod
ℓ,i,m . Consider the SLOD function φ̃slod

ℓ,K,m for some K ∈ S
(ℓ)
Ji

. The
L2-orthogonal projection of φ̃slod

ℓ,K,m onto P0(Tℓ−1,DJi
) can be written as

Πℓ−1φ̃
slod
ℓ,K,m =

∑

T ∈Tℓ−1,DJi

q
(K)
T 1T ,
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and the projection onto P0(Tℓ,DJi
) as

Πℓφ̃
slod
ℓ,K,m =

∑

T ∈Tℓ,DJi

c
(K)
T 1T . (4.38)

Using these coefficients, we define the matrices Q ∈ RNq×Ns and C ∈ RNc×Ns by

setting Qpj = q
(Kj)
Tp

and Cpj = c
(Kj)
Tp

, where

Nq = #Tℓ−1,DJi
, Nc = #Tℓ,DJi

and Ns = #S
(ℓ)
Ji
.

Finally, let B ∈ RNs×#Ker(Q) be the matrix whose columns form an orthonormal
basis of Ker(Q).

Using condition (4.8), we deduce that d̃(i) = By for some y ∈ R#Ker(Q). To
satisfy condition (4.9), we require

CBy = eKi
− e

K̃
, (4.39)

where eKi
, e

K̃
∈ RNc are canonical unit vectors, with all entries zero except for

those corresponding to the elements Ki ∈ d̃es(TJi
) and K̃ ∈ des(TJi

) \ d̃es(TJi
),

respectively. Since CB is, in general, a rectangular matrix, equation (4.39) can
typically only be solved in the least-squares sense. The least-squares solution is
given by

y =
(
(CB)T CB

)−1
(CB)T (eKi

− e
K̃

). (4.40)

Note that all entries of the matrices C, B, and the vectors eKi
, e

K̃
are mesh-

independent. Moreover, from (3.24), the absolute values of the entries of C

are uniformly bounded by 1. Consequently, from the expression in (4.40), it
follows that the entries of d̃(i) are also mesh-independent. Additionally, according
to [FP20, Equation (2.9)], the energy norm of LOD basis functions is of order

O
(
H

d/2−1
ℓ

)
, which, by construction of the SLOD functions, implies

∥φ̃slod
ℓ,K,m∥a = O

(
H

d/2−1
ℓ

)
.

Combining this with the representation in (4.37), we obtain

∥ψ̂hslod
ℓ,i,m ∥a ≤

∑

K∈S
(ℓ)
Ji

|d̃(i)
K |∥φ̃slod

ℓ,K,m∥a ≲ NsH
d/2−1
ℓ ≲ mdH

d/2−1
ℓ ,

where we used Ns = #S
(ℓ)
Ji

≲ md. From the definition of Nℓ, the assertion follows
directly.

Lemma 4.5.2 (Smallest eigenvalue of PT
ℓ Pℓ). The smallest eigenvalue of the

matrix PT
ℓ Pℓ ∈ RNb

ℓ ×Nb
ℓ , where the matrix Pℓ is defined in (4.36), satisfies for

each level 1 ≤ ℓ ≤ L that
λmin(PT

ℓ Pℓ) = O(1).
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Proof. Combining (4.35), (4.37) and (4.38), we deduce that

p
(i)
K =

∑

T ∈S
(ℓ)
Ji

d̃
(i)
T c

(T )
K

for K ∈ Tℓ,DJi
. Since both c

(T )
K and d̃

(i)
T are mesh independent, it follows that

p
(i)
K is O(1). Furthermore, for ℓ > 1, if conditions (4.8) and (4.9) were exactly

satisfied, we would have

p
(i)
Ki

=
∑

T ∈Tℓ

d̃
(i)
T c

(T )
Ki

= 1 for Ki ∈ d̃es(TJi
),

p
(i)

K̃
=

∑

T ∈Tℓ

d̃
(i)
T c

(T )

K̃
= −1 for K̃ ∈ des(TJi

) \ d̃es(TJi
),

p
(i)
K =

∑

T ∈Tℓ

d̃
(i)
T c

(T )
K = 0 for all K /∈ {Ki, K̃}.

This implies that PT
ℓ Pℓ would be block diagonal, with each block of dimension

(2d−1)×(2d−1), where the diagonal entries are all equal to 2 and the off-diagonal
entries are all equal to 1. Thus, the smallest eigenvalue of each block would be 1
and consequently, λmin(PT

ℓ Pℓ) = 1. In general, however, condition (4.9) cannot
be satisfied exactly but only in the least-squares-error sense. Nevertheless, if
the least-squares error is sufficiently small, λmin(PT

ℓ Pℓ) should remain well away
from 0.

At level ℓ = 1, the basis functions correspond to standard SLOD basis functions,
and hence P1 = C. From condition (3.24), we know that C = I + δ, where I

is the identity matrix and δ has zero diagonal entries and off-diagonal entries
bounded by δs in absolute value. Therefore, C is a perturbed identity matrix. If
δs from condition (3.24) is small enough, the smallest eigenvalue of CT C will
remain far from 0, ensuring that the basis at level ℓ = 1 is well-behaved.

Note that the entries of the i-th column of Pℓ reflect the degree to which the
function ψ̂ℓ,i,m is concentrated in each element of Tℓ. Consequently, the smallest
eigenvalue λmin(PT

ℓ Pℓ) serves as an indicator of the linear independence of the

basis set {ψ̂ℓ,i,m : i = 1, . . . , N b
ℓ }, and hence, of the overall basis quality. The

closer this value is to 1 and the farther it is from 0, the more linearly independent
(and numerically stable) the basis functions are.

We are now prepared to derive an upper bound for the condition number of
the hierarchical stiffness matrix.

Theorem 4.5.3 (Condition number of the block-diagonal stiffness matrix). The

condition number of the diagonal blocks A
(L)
ℓℓ of the hierarchical stiffness matrix

AML
L is mesh independent for ℓ > 1 and O(H−2

1 ) for ℓ = 1. More precisely, it
holds that

κ
(
A

(L)
ℓℓ

)
≲




m3dλmin(PT

ℓ Pℓ)
−1 ℓ > 1,

m3dH−2
1 λmin(PT

1 P1)
−1 ℓ = 1,

(4.41)
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with λmin(PT
ℓ Pℓ) = O(1) for all 1 ≤ ℓ ≤ L. Furthermore, the smallest eigenvalue

of A
(L)
ℓℓ satisfies

λmin

(
A

(L)
ℓℓ

)
≳




m−2dλmin(PT

ℓ Pℓ) ℓ > 1,

m−2dH2
1λmin(PT

1 P1) ℓ = 1,
(4.42)

Proof. First, using the Rayleigh quotient and the definitions of the matrices Pℓ

and P̂ℓ from (4.36), we obtain for any level ℓ ≥ 1 and all x ∈ RNb
ℓ \ {0} that

xT P̂T
ℓ P̂ℓx = xT NℓP

T
ℓ PℓNℓx ≥ λmin(PT

ℓ Pℓ)x
T N2

ℓx

≥ λmin(PT
ℓ Pℓ)λmin(N2

ℓ)x
T x.

Consequently, using Theorem 4.5.1 yields

λmin(P̂T
ℓ P̂ℓ) ≥ λmin(PT

ℓ Pℓ)λmin(N2
ℓ) ≳ m−2dH2−d

ℓ λmin(PT
ℓ Pℓ) (4.43)

with λmin(PT P) = O(1), see Theorem 4.5.2.
Using the Rayleigh quotient bound and |K| ≳ Hd

ℓ for K ∈ Tℓ, we establish for
an arbitrary c = (ci)i∈{1,...,Nb

ℓ
} ∈ RNb

ℓ that

∥∥∥∥
Nb

ℓ∑

i=1

ciΠℓψ̂ℓ,i,m

∥∥∥∥
2

L2(D)
≳ Hd

ℓ cT P̂T
ℓ P̂ℓc ≥ Hd

ℓ λmin(P̂T
ℓ P̂ℓ)

Nb
ℓ∑

i=1

c2
i .

On the other hand, applying the stability and approximation properties (2.6)
and (2.7) of the L2-orthogonal projection Πℓ, (4.8), and the fact that Hℓ−1 = 2Hℓ,
we obtain for ℓ > 1 that

∥∥∥∥
Nb

ℓ∑

i=1

ciΠℓψ̂ℓ,i,m

∥∥∥∥
2

L2(D)
≤
∥∥∥∥

Nb
ℓ∑

i=1

ciψ̂ℓ,i,m

∥∥∥∥
2

L2(D)

=
∥∥∥∥(1 − Πℓ−1)

Nb
ℓ∑

i=1

ciψ̂ℓ,i,m

∥∥∥∥
2

L2(D)

≲ H2
ℓ−1

∥∥∥∥
Nb

ℓ∑

i=1

ciψ̂ℓ,i,m

∥∥∥∥
2

a
≲ H2

ℓ

∥∥∥∥
Nb

ℓ∑

i=1

ciψ̂ℓ,i,m

∥∥∥∥
2

a
.

(4.44)

Combining the previous three inequalities yields

∥∥∥∥
Nb

ℓ∑

i=1

ciψ̂ℓ,i,m

∥∥∥∥
2

a
≳ m−2dλmin(PT

ℓ Pℓ)

Nb
ℓ∑

i=1

c2
i .

Theorem 4.3.3 then implies the first line of (4.42). The case ℓ = 1 follows almost
analogously, where we use Friedrichs’ inequality after the first line of (4.44).

Since |a(ψ̂ℓ,i,m, ψ̂ℓ,j,m)| ≤ 1 for all i, j ∈ {1, . . . , N b
ℓ }, the Gershgorin Circle

Theorem implies that λmax

(
A

(L)
ℓℓ

)
≲ md. Combining this upper bound with the

lower bound from (4.42) establishes the condition number estimate stated in
(4.41) for the hierarchical blocks.
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The above theorem, in combination with Theorem 4.5.2, indicates that the
condition number of the diagonal blocks A

(L)
ℓℓ , and thus of the full matrix AML

L ,
is influenced by the degree of linear independence of the basis functions at level
ℓ. It is also worth noting that the contrast of the diffusion coefficient may affect
the conditioning via the hidden constants in the stated estimates.

Moreover, by applying Weyl’s inequality, we can bound the smallest eigenvalue
of the full hierarchical stiffness matrix AL from below in terms of the smallest
eigenvalue of the block-diagonal matrix AML

L . The latter can, in turn, be
estimated using Theorem 4.5.3. Let ∆ML

L := AL − AML
L . Then, using the

estimate (4.30), we obtain that

λmin(AL) ≥ λmin(AML
L ) − max{|λmin(∆ML

L )|, |λmax(∆ML
L )|}

≳ λmin(AML
L ) −H−dmd/2ζσ.

In the last step, we examine ζ, providing an upper bound on the Euclidean
norm of the coefficient vectors from (4.12) defining the hierarchical basis functions.

Using Theorem 4.3.3 and the definition of ψ̂ℓ,i,m in (4.13) yields that

∑

K∈S
(ℓ)
Ji

|d̂(ℓ,i)
K |2 ≤ λ−1

min

(
Aslod

ℓ,m )
∥∥∥ψ̂ℓ,i,m

∥∥∥
2

a
= λ−1

min

(
Aslod

ℓ,m ),

where Aslod
ℓ,m ∈ RNb

ℓ ×Nb
ℓ denotes the stiffness matrix associated with the SLOD

basis functions φ̂slod
ℓ,K,m at level ℓ. According to the case ℓ = 1 in (4.42), its

smallest eigenvalue is bounded from below.
As a consequence, assuming stability and sufficient linear independence of the

basis functions, we obtain an a priori error estimate. In particular, due to the
exponential decay of the localization error indicator σ, the error matches that of
classical SLOD or LOD methods, provided the oversampling parameter is chosen
sufficiently large, i.e., m ≳ | log(HL)|.

4.6. Numerical Experiments

In this section, we present numerical experiments to validate our theoretical
findings. For practical implementation, all infinite-dimensional problems arising
in the solution of local patch problems are replaced by their P1-finite element
discretizations on a fine mesh Th with mesh size 2−10, obtained through successive
uniform refinements of TL. For stability of the SLOD basis, we employ condition
(3.24) with δs = 0.5. Additionally, we compute a reference solution uh using the
standard finite element method on Th with P1-finite elements.

We consider two types of coefficients: a highly-heterogeneous piecewise constant
one, and coefficients with high-contrast channels; see Figure 3.12 and Figure 4.5
for an example of each, respectively. In all cases, we utilize uniform Cartesian
meshes over the unit square D = (0, 1)2 where the mesh size denotes the side
length of the elements.
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Figure 4.5.: Coefficient with high-contrast channels (left) and piecewise constant
right-hand side f ∈ L2(D) with respect to the mesh with mesh size
2−6 (right).

In our numerical experiments, we consider two types of right-hand sides. First,
the same smooth right-hand side f ∈ H1(D) as in the previous chapter, given by

f(x1, x2) = 2π2 sin(x1) sin(x2). (4.45)

Second, we employ a piecewise constant right-hand side f ∈ L2(D) with respect
to the mesh Tf with mesh size 2−6; see Figure 4.5. More precisely, we choose
f =

∑6
ℓ=0 fℓ with fℓ ∈ P0(Tℓ) and Hℓ = 2−ℓ, where the values of each contribution

fℓ are randomly chosen within the interval [−1, 1]. With this choice, we ensure
that the contribution of each level to the approximate solution is non-zero.

Highly heterogeneous piecewise-constant coefficients

In our first set of experiments, we select a high-contrast coefficient A which is
piecewise constant with respect to the mesh of mesh size 2−8. The coefficient
assumes independent and identically distributed element values ranging between
α = 10−4 and β = 1. In the specific realization we consider, these boundary
values are almost assumed, resulting in an actual contrast of 9.2 · 103.

Figure 4.6 illustrates the complete stiffness matrix associated with the HSLOD
basis for different values of the patch order m. As discussed in Section 4.1, the
practical hierarchical method does not yield a fully a-orthogonal basis, leading to
the appearance of some non-zero off-block-diagonal entries in the stiffness matrix.
However, the a-inner product between two non-orthogonal basis functions at
distinct levels is small and diminishes further with increasing m. Consequently,
the block-diagonal approximation, which is obtained by discarding all off-block-
diagonal entries, serves as an accurate approximation to the full stiffness matrix,
particularly for larger values of m.

Figure 4.7 shows the system matrix corresponding to the piecewise constant
local source terms used in the collocation-type HSLOD approximation. While
this matrix exhibits the same structural pattern as the full stiffness matrix, its

72



4.6. Numerical Experiments
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Figure 4.6.: Sparsity pattern of the complete hierarchical stiffness matrix for
varying patch orders m.
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Figure 4.7.: Sparsity pattern of the system matrix associated to the local source
terms for varying patch orders m.

off-block-diagonal entries remain relatively large and do not decay with increasing
oversampling parameter m. As a result, the contributions from different levels in
the collocation-type formulation cannot be computed independently, requiring
the entire system matrix to be assembled and considered as a whole. Nonetheless,
the hierarchical structure leads to a significant improvement in the conditioning
of the system matrix compared to the standard SLOD approach.

Small condition numbers of the diagonal blocks of the stiffness matrix are
crucial for the fast computation of their approximate inverses using the CG
method. The condition numbers of the diagonal blocks are presented in Table 4.1.
Consistent with Theorem 4.5.3, these blocks exhibit good conditioning, with
condition numbers remaining stable across finer levels. This stability enables a
reliable approximation of the inverse using only a few CG iterations.

The inverse of the block-diagonal stiffness matrix, its CG approximation,
and the sparsification of this approximation according to Section 4.4.2 are
illustrated in Figure 4.8. The number of non-zero entries in the sparsified CG
approximation of the hierarchical stiffness matrix is reduced by more than a
factor of ten compared to the complete block-diagonal inverse, and by nearly a
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Table 4.1.: Properties of the diagonal blocks of the HSLOD stiffness matrix
and the relative energy error of the approximate solution u

(ϵ)
h,ℓ,m as

defined in (4.34) for a piecewise constant coefficient with m = 2. The
approximate solution is computed using ℓ levels of the hierarchy, with
a maximum of seven CG iterations to approximate the inverse blocks
of the hierarchical stiffness matrix and an entry cut-off tolerance of
ϵ = 10−5.

ℓ 1 2 3 4 5 6

Hℓ 2−1 2−2 2−3 2−4 2−5 2−6

cond(AL
ℓℓ) 4 5 17 20 17 18

∥uh − u
(ϵ)
h,ℓ,m∥a/∥uh∥a 0.2297 0.0491 0.0117 0.0029 0.0007 0.0002

nnz = 1.00663e+07 nnz = 9.84645e+06 nnz = 1.00263e+06
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

Figure 4.8.: Sparsity pattern and number of nonzeros of the inverse of the stiff-
ness matrix after the different compression stages. Left: inverse of
block-diagonal matrix; middle: CG approximation of each inverted
block after seven iterations; right: discarding entries of the CG
approximation with absolute value smaller than 10−5. The patch
order is set to m = 2.

factor of ten compared to the number of non-zero entries in the finite element
stiffness matrix used to compute uh. In Table 4.1, we present the relative energy
error of the approximate solution for the smooth right-hand side of (4.45) using
this sparsified inverse approximation.

Figure 4.9 displays the relative energy errors of the level-wise Galerkin method
and the collocation-type approximation, defined in (4.21) and (4.22), respectively,
for various patch orders m and coarse mesh sizes HL applied to both types
of right-hand sides f . For comparison, we also include the relative energy
errors of the HLOD method, which is computed using the level-wise Galerkin
approach. Since the HSLOD basis functions incorporate corrections to the
standard LOD functions, the HLOD method corresponds to the case where
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Figure 4.9.: Relative energy errors of the HSLOD and the HLOD in dependence
of the mesh size HL for the highly-heterogeneous piecewise constant
coefficient. Left: errors for a smooth right-hand side, right: errors
for a piecewise constant right-hand side.

these corrections are omitted. Due to condition (4.8), this version of the HLOD
method exhibits a similar error behavior to the stabilized HLOD approach
introduced in [HP22a], which is based on [FP20]. Furthermore, this stabilized
method achieves higher accuracy than the gamblets-based approach of [Owh17],
as discussed in [HP22a, Section 8.2]. Notably, both HSLOD methods consistently
outperform the HLOD across all displayed parameters m, demonstrating superior
accuracy.

Although the error analysis bounds the error of the level-wise Galerkin method
by that of the collocation-type approximation, practical results show that, when
a difference is observed, the collocation variant typically yields slightly larger
errors. This suggests that the error introduced by neglecting the off-block-
diagonal entries in the stiffness matrix is negligible. For a smooth right-hand
side, the error in the energy norm obtained with the HSLOD methods exhibit the
optimal convergence rate of O(H2

L) for m > 1. In the case of a piecewise constant
right-hand side f ∈ L2(D), the expected error rate of O(HL) is observed, provided
that no mesh in the hierarchy resolves the underlying mesh of f . However, if
the finest mesh in the hierarchy does resolve Tf , the HSLOD solution is exact
up to localization error (collocation variant) plus an additional error due to
omitting the off-block-diagonal entries in the stiffness matrix (level-wise Galerkin
method). Both errors scale proportionally to σ (cf. Theorem 4.3.4), leading to
super-exponential decay with respect to the localization parameter m and thus
significantly smaller errors for the HSLOD methods compared to the HLOD.
This is also illustrated in Figure 4.10, which shows the relative energy errors of
the HSLOD and HLOD methods as a function of m, using six levels in the mesh
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Figure 4.10.: Relative energy errors of the HSLOD and the HLOD methods as
a function of the oversampling parameter m, for a highly hetero-
geneous piecewise constant coefficient and a piecewise constant
right-hand side. The mesh hierarchy consists of six levels with
HL = 2−6.

hierarchy with HL = 2−6.
Figures 4.11 to 4.13 show the relative energy errors of the HSLOD and HLOD

methods, plotted against the online computing time in seconds or the number of
nonzero entries in the approximate inverse of the stiffness matrix, for various
numbers of compression stages. The markers indicate the hierarchy levels, with
mesh sizes ranging from H = 2−1 to H = 2−7. The comparison between the
level-wise Galerkin and the collocation-type methods is shown in Figure 4.11.
After a few levels, the level-wise Galerkin method outperforms the collocation-
type method in terms of online computation time because, for the collocation-
type method, at each level the whole system matrix must be considered, and
contributions from different levels cannot be computed independently. It is
important to note, however, that the assembly of the system matrices, which
is more costly for the Galerkin method, is not included in the reported online
times.

The benefit of additional compression stages with respect to online performance
is clearly visible. Figure 4.12 presents the energy error using the CG method
with up to seven iterations, while Figure 4.13 shows results for the trimmed CG
method, where entries with absolute value below 10−5 in the CG approximation
are neglected. In this case, the reduction in the number of nonzero entries in the
approximate inverse is also apparent.

It is also noteworthy that variations in the parameters α or β do not produce
significant differences in the error plots or condition numbers. Hence, for this
type of coefficient, the HSLOD method performs well even in the presence of
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Figure 4.11.: Relative energy errors of the HSLOD and the HLOD methods as a
function of the online computing time, for a highly heterogeneous
piecewise constant coefficient and a smooth right-hand side.
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Figure 4.12.: Relative energy errors ∥uh − uCG
h,L,m∥a/∥uh∥a of the HSLOD and

the HLOD methods, using the CG method to approximate the
inverse stiffness matrix, as a function of the online computing time
(left) and the number of nonzero entries in the approximate inverse
(right) for a highly heterogeneous piecewise constant coefficient and
a smooth right-hand side.
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Figure 4.13.: Relative energy errors ∥uh − u
(ϵ)
h,L,m∥a/∥uh∥a of the HSLOD and

HLOD methods, using the trimmed CG method to approximate the
inverse stiffness matrix, as a function of the online computing time
(left) and the number of nonzero entries in the approximate inverse
(right) for a highly heterogeneous piecewise constant coefficient and
a smooth right-hand side.

high contrasts in the coefficient.

High-contrast channels

Next, we consider the coefficient from Figure 4.5, which exhibits high-contrast
channels, leading to increasing difficulty in the problem. The channels are defined
on a mesh with mesh size 2−5. The precise definition of the coefficient is as
follows:

A(x) = A(x1, x2) := A1(x1, x2) + A1(x2, x1),

with

A1(x) :=




β/2, x ∈ [ 8

32
, 9

32
] × [ 1

32
, 31

32
] ∪ [10

32
, 11

32
] × [ 1

32
, 31

32
]

1/2, elsewhere.

For this setup with the smooth right-hand side from (4.45), Figure 4.14
shows the relative energy errors of the HSLOD and HLOD methods for various
combinations of contrast and patch order. We observed that for higher contrasts,
larger values of m are necessary to achieve the optimal convergence rate of
O(H2

L). As in the case of the highly-heterogeneous piecewise constant coefficient,
the HSLOD consistently outperforms the HLOD for all cases shown, leading
to improvements over [PS16] in particular. Especially for higher contrasts, the
superiority of the HSLOD is evident.
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Figure 4.14.: Relative energy errors of the HSLOD and HLOD methods as a
function of the mesh size HL, for a coefficient with high-contrast
channels and a smooth right-hand side. Left: results for a fixed
contrast with β = 104; right: results for various combinations of m
and β.

The condition numbers of the blocks of the HSLOD stiffness matrix for the
same combinations of m and β as in the right panel of Figure 4.14 are shown
in Table 4.2. For these cases, the condition numbers grow with increasing β for
levels with mesh sizes close to the width of the channels. For the other levels,
however, the condition numbers remain stable over different contrasts. Note
that this stability is only observed when the patch order is increased for higher
contrasts, leading to our choice of m = k + 1 for β = 10k.

Table 4.2.: Condition numbers of the blocks of the stiffness matrix for the high-
contrast channel coefficient for varying contrasts and patch orders,
rounded to two significant figures.

Hℓ 2−1 2−2 2−3 2−4 2−5 2−6 2−7

β = 102,m = 3 3 8 24 110 51 17 17

β = 103,m = 4 3 8 370 1100 680 76 56

β = 104,m = 5 4 7 120 21.000 3.000 26 26

β = 105,m = 6 4 7 120 1.7 · 106 33.000 21 21
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Part II.

Random coefficients





5. Super-Localized Numerical

Stochastic Homogenization

In this part of the thesis, we consider the prototypical random diffusion problem

−div(A∇u) = f

subject to homogeneous Dirichlet boundary conditions, where microscopic fea-
tures of the problem are encapsulated in the random diffusion coefficient A.
In the following, we present a computationally simple and efficient numeri-
cal stochastic homogenization method tailored for such problems, based on a
collocation-type formulation of the SLOD introduced in Chapter 3.

In the deterministic case, the SLOD method constructs an almost local basis
by applying the solution operator to P0(TH), the space of piecewise constants on
a coarse mesh TH . This involves selecting locally supported piecewise constant
right-hand sides whose localized responses have minimal conormal derivative.
The stochastic setting requires modifying this approach by choosing deterministic
local source terms that minimize the expected conormal derivative of the localized
responses.

A key advantage of the collocation-type formulation, in contrast to Galerkin
methods, is that it eliminates the need to assemble a global stiffness matrix,
which would require communication between basis functions defined on different
coarse patches. Instead, only a system of linear equations on the coarse mesh
corresponding to the local source terms needs to be solved. This enables each
patch to be processed independently, significantly improving parallelization and
accelerating the method’s assembly process. Moreover, the favorable localization
properties of the SLOD allow for an efficient sampling procedure.

In the case of a random diffusion coefficient with a small correlation length,
and under the standard assumptions of quantitative stochastic homogenization,
we provide an error estimate for the coarse-scale approximation of the presented
method. This estimate incorporates certain SLOD-specific quantities in an
a posteriori manner. The proof is grounded in the framework of quantitative
stochastic homogenization (see, e.g., [GO11,GO12,GNO14,GNO20]). To further
analyze key components of the error such as the localization error and the Riesz
stability constant, we use classical LOD techniques [MP14,HP13,AHP21], and
additionally conduct an a priori error analysis for the expected overall localization
error. However, similar to the deterministic SLOD setting, the a priori stability
of the basis functions cannot be guaranteed. Nevertheless, a practical solution
to address this issue in implementation is provided.

83
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The content and presentation of this chapter are largely based on the journal
article

[HMP25] M. Hauck, H. Mohr, and D. Peterseim. A simple collocation-type
approach to numerical stochastic homogenization. Multiscale Model.
Simul., 23(1):374–396, 2025

with significant sections taken verbatim.

5.1. Model problem

In this part of the thesis, we consider the prototypical random diffusion problem

{−div(A(ω)(x)∇u(ω)(x)) = f(x), x ∈ D

u(ω)(x) = 0, x ∈ ∂D

}
for almost all ω ∈ Ω, (5.1)

where (Ω,F ,P) denotes the underlying probability space, f ∈ L2(D) is a deter-
ministic right-hand side and D is a d-dimensional bounded polygonal Lipschitz
domain with d ∈ {1, 2, 3}. Without loss of generality, we assume that D is scaled
to unit size. The diffusion coefficient A is an Rd×d-valued random field that is
pointwise symmetric, Bochner measurable, and satisfies uniform ellipticity and
boundedness conditions. Specifically, there exist constants 0 < α ≤ β < ∞ such
that, for almost all ω ∈ Ω, the inequality

α∥η∥2
2 ≤ (A(ω)(x)η) · η ≤ β∥η∥2

2 (5.2)

holds for all η ∈ Rd and almost all x ∈ Rd.
Subsequently, we introduce a shorthand notation for norms and inner products

of Bochner spaces. Let X be a Hilbert space equipped with the inner product
(·, ·)X . In this case, the Bochner space L2(Ω;X), denoting the space of X-valued
random fields with finite second moments, is also a Hilbert space with the inner
product

(v,w)L2(Ω;X) := E
[
(v(ω),w(ω))X

]
.

We write ∥ · ∥2
L2(Ω;X) := (·, ·)L2(Ω;X) for the induced norm of this inner product.

The weak formulation of the model problem (5.1) seeks an H1
0 (D)-valued

random field u such that for almost all ω ∈ Ω it holds that

aω(u(ω), v) :=

ˆ

D

(A(ω)∇u(ω)) · ∇v dx = (f , v)L2(D) (5.3)

for all v ∈ H1
0 (D). Under the given assumptions, the bilinear from aω depends

continuously on A and, in particular, is measurable as a function of ω. Hence,
the above problem can be reformulated in the Hilbert space L2(Ω;H1

0 (D)). The
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Lax–Milgram theorem then proves its well-posedness, i.e., there exists a unique
solution u ∈ L2(Ω;H1

0 (D)) satisfying

∥∇u∥L2(Ω;L2(D)) ≤ α−1 diam(D)

π
∥f∥L2(D). (5.4)

For the sake of readability, we indicate the dependence of stochastic variables
from now on only by a bold symbol.

5.2. Numerical stochastic homogenization

method

In the following section, we determine deterministic local source terms that
minimize the expected conormal derivative of the localized responses, adapting
the approach from Section 3.1 to the stochastic setting. For the derivation of
basis functions, we consider a fixed element K ∈ TH and oversampling parameter
m ∈ N, assuming that the patch DK := N

m(K), as defined in (2.14), does not
cover the entire domain. The deterministic source term corresponding to K is
denoted by gslod

K,m ∈ P0(TH,DK
), where the submesh TH,DK

consists of elements
T ∈ TH contained in the patch DK .

The global response φslod
K,m ∈ L2(Ω;H1

0 (D)) to gslod
K,m is given for almost all

ω ∈ Ω by
a(φslod

K,m, v) = (gslod
K,m , v)

L2(D)
(5.5)

for all v ∈ H1
0 (D). Its localized counterpart φ̂slod

K,m ∈ L2(Ω;H1
0 (DK)) is for almost

all ω ∈ Ω defined by
a(φ̂slod

K,m, v) = (gslod
K,m , v)

L2(DK)
(5.6)

for all v ∈ H1
0 (DK). The right choice of gslod

K,m is again crucial for the approxima-
tion properties of the local version φ̂slod

K,m.
Analogous to (3.3), we denote the classical trace operator restricted to the

complete subspace H1
Γ(DK) ⊂ H1(DK), consisting of functions with trace zero

on the boundary segment Γ := ∂DK ∩ ∂D, by

tr = trDK
: H1

Γ(DK) → X := range tr ⊂ H1/2(∂DK).

As an extension operator, we henceforth consider the A-harmonic extension
operator tr−1 : L2(Ω;X) → L2(Ω;H1

Γ(DK)) defined as follows: for almost all
ω ∈ Ω and for any given b ∈ L2(Ω;X), we set

(tr tr−1b)(ω) = b(ω)

and require that

a(tr−1b, v) = 0 for all v ∈ H1
0 (DK). (5.7)
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The space of locally A-harmonic functions satisfying homogeneous Dirichlet
boundary conditions on Γ is then given by

Y := tr−1L2(Ω;X) ⊂ L2(Ω;H1
Γ(DK)).

Similar to Theorem 3.1.1, we derive the identity

a(φslod
K,m − φ̂slod

K,m,v) = (gslod
K,m,v)L2(DK) − a(φ̂slod

K,m,v) = (gslod
K,m, tr−1trv)L2(DK).

Taking the expectation yields, for any v ∈ L2(Ω;H1
0 (D)), that

E
[
a(φslod

K,m − φ̂slod
K,m,v)

]
=
(
gslod

K,m,ΠH,DK
E[tr−1trv]

)
L2(DK)

. (5.8)

As a consequence, the (almost) L2-orthogonality of the local source term gslod
K,m

to the space E[Y ] ⊂ H1
Γ(DK) ensures a small expected localization error for the

basis function φ̂slod
K,m.

Therefore, we can obtain an optimal choice of gslod
K,m by performing an SVD

of the compact operator (ΠH,DK
◦ E)|Y : Y → P0(TH,DK

) restricted to the
complete subspace Y . Note that the rank of (ΠH,DK

◦ E)|Y is less than or equal
to N := #TH,DK

. Hence, the SVD is given by

(ΠH,DK
◦ E)|Y v =

N∑

k=1

σk(v,wk)L2(Ω;H1(DK))gk (5.9)

where σ1 ≥ · · · ≥ σN ≥ 0 are the singular values, g1, . . . , gN form an orthonormal
set of left singular vectors in L2(DK), and w1, . . . ,wN are the corresponding
L2(Ω;H1(DK))-orthonormal right singular vectors.

The left singular vector gN is an optimal choice for the local source term
gslod

K,m and the corresponding smallest singular value σN is a measure of the quasi-
orthogonality between gslod

K,m and E[Y ]. Hence, we define

σK(H, ε,m) := σN = sup
v∈Y : ∥v∥L2(Ω;H1(DK ))=1

(gN ,E[v])L2(DK), (5.10)

where the parameter ε > 0 denotes the correlation length of the random coefficient
A, which will be rigorously introduced in Theorem 5.3.1 below.

We emphasize that the practical implementation of the SVD in (5.9) is
challenging due to the stochasticity involved. A feasible approach based on
sampling is described in Section 5.5. For the error analysis in the following
section, we introduce the quantity

σ := σ(H, ε,m) := max
K∈TH

σK(H, ε,m), (5.11)

which is an indicator for the overall localization error.
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Figure 5.1.: Illustration of the localized basis functions E[φ̂slod
K,m] obtained by the

presented stochastic homogenization method on successively refined
meshes for a piecewise constant random coefficient with a correlation
length of ε = 2−7 in two spatial dimensions. Various values of the
oversampling parameter are depicted with m = 1 (left), m = 2
(middle), and m = 3 (right). The corresponding L2-normalized local
source terms gslod

K,m are shown in gray.

Given that, in expectation, φ̂slod
K,m closely approximates the response of the

global solution operator applied to gslod
K,m, it is reasonable to define the approxi-

mation of a non-Galerkin, collocation-type numerical stochastic homogenization
method by

ūslod
H,m :=

∑

K∈TH

cKΠHE[φ̂slod
K,m], (5.12)

where (cK)K∈TH
are the coefficients of the expansion of ΠHf in terms of the basis

functions {gslod
K,m : K ∈ TH}. An illustration of the deterministic basis functions

E[φ̂slod
K,m] can be found in Figure 5.1.

5.3. Error analysis

In this section, we conduct an error analysis of the presented stochastic homog-
enization method. To do so, we first outline the necessary assumptions and
lemmas, which will lead to the final error analysis at the end of the section.

We begin by specifying the structural conditions on the randomness of the coef-
ficient field A, which are required to apply results from the theory of quantitative
stochastic homogenization. For simplicity, these conditions are formulated for
coefficient fields defined on Rd. Therefore, the following assumptions implicitly
assume that the coefficient field is defined on the entire space Rd, though a
random field defined on the bounded domain D can be obtained by restriction.

Assumption 5.3.1 (Stationarity and decorrelation). Assume that the random
coefficient field A is

• stationary, i.e., the law of the shifted coefficient field A(ω)(· + x) coincides
with the law of A(ω)(·) for all x ∈ Rd,
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• quantitatively decorrelated on scales larger than ε in the sense of the spectral
gap inequality with correlation length ε > 0, i.e., there exists a constant
ρ > 0 such that for any Fréchet differentiable random variable F = F (A)
the estimate

E
[
|F − E[F ]|2

]
≤ εd

ρ
E



ˆ

Rd

(
 

Bε(x)

∣∣∣∣∣
∂F

∂A
(x̃)

∣∣∣∣∣ dx̃
)2

dx


 (5.13)

holds.

For an introduction to the notion of Fréchet derivatives, we refer the reader
exemplarily to [Dei85, Chapter 2]; see also [JO22, Section 3.1] for a definition
in the present context. We emphasize that the conditions in Theorem 5.3.1 on
the random coefficient A are standard in the theory of quantitative stochastic
homogenization; see, e.g., the work [GNO20].

The error analysis of the presented numerical stochastic homogenization me-
thod is based on the so-called Calderón–Zygmund estimates, which are a popular
tool in the theory of quantitative stochastic homogenization. Such estimates
were established for an equation on the full space Rd in [DO20], extending earlier
results from [AD16, DGO20]. For annealed Calderón–Zygmund estimates we
refer to [JO22, WX24], where the latter work considers the case of Lipschitz
domains. Contrary to the Calderón–Zygmund estimate given below, these
annealed estimates involve only a loss in stochastic integrability and not in
spatial integrability. Since such annealed estimates only lead to better (hidden)
constants in the final error bounds, we will henceforth stick to a suboptimal
Calderón–Zygmund estimate similar to [FGP21, Lemma 4.8], where an a priori
error analysis for a related numerical stochastic homogenization method in the
context of LOD is performed. The proof of the following estimate, which is beyond
the scope of this thesis, is analogous to the full-space case [DO20, Theorem 6.1]
and uses the boundary regularity theory of [FR17,JRS24] as well as a classical
regularity theory at edges and corners.

Lemma 5.3.2 (Calderón–Zygmund estimate). Let d ∈ {2, 3}, and let A be a
random coefficient field subject to (5.2) and Theorem 5.3.1. Let Q ⊂ Rd be a
box, let h ∈ L2(Ω;L2(Q)), and let u ∈ L2(Ω;H1

0 (Q)) be a solution to the linear
elliptic PDE

−∇ · (A∇u) = ∇ · h on Q,

u ≡ 0 on ∂Q.

Then, for any 2 ≤ p < ∞ and any p < q < ∞, there holds a regularity estimate
of the form

 

Q

E



(
 

Bε(x)

|∇u|2 dx̃

)p/2

 dx ≲

(
 

Q

E



(
 

Bε(x)

|h|2 dx̃

)q/2

 dx

)p/q

,

where the hidden constant depends on the bounds α, β of A, the constant ρ from
Theorem 5.3.1 and p and q.
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5.3. Error analysis

To handle the stochasticity in the error analysis, we need to estimate the
variance of the random variables (φ̂slod

K,m,1T )L2(T ) for any K ∈ TH and T ∈ TH,DK
,

where 1T denotes the indicator function of the element T . To achieve this, we
employ the spectral gap inequality (5.13) from Theorem 5.3.1. The following
lemma provides a representation of the Fréchet derivative of (φ̂slod

K,m,1T )L2(T ), a
crucial element for this particular step.

Lemma 5.3.3 (L2-representation of Fréchet derivative). Let v ∈ L2(Ω;H1
0 (DK))

for almost all ω ∈ Ω be defined as the weak solution to

{
− div(A∇v) = 1T in DK ,

v = 0 on ∂DK .
(5.14)

The L2-representation of the Fréchet derivative of (φ̂slod
K,m,1T )L2(T ) is then given

by
∂

∂A
(φ̂slod

K,m,1T )L2(T ) = −∇φ̂slod
K,m ⊗ ∇v,

where ⊗ : Rd × Rd → Rd×d denotes the outer product.

Proof. Let ω ∈ Ω be fixed. We rewrite the Fréchet derivative of (φ̂slod
K,m,1T )L2(T )

with respect to L2(Rd;Rd×d) as

∂

∂A
(φ̂slod

K,m,1T )L2(T )(δA) =
(∂φ̂slod

K,m

∂A
(δA),1T

)

L2(T )

=

ˆ

DK

(A∇v) · ∇∂φ̂slod
K,m

∂A
(δA) dx,

where we tested the weak formulation of (5.14) with
∂φ̂slod

K,m

∂A
(δA)(ω) ∈ H1

0 (DK).
To further simplify the expression on the right-hand side, we differentiate the
local patch problems given in (5.6) with respect to A using the product rule.
This gives for any w ∈ H1

0 (DK) that

ˆ

DK

(
δA∇φ̂slod

K,m

)
· ∇w dx+

ˆ

DK

A∇∂φ̂slod
K,m

∂A
(δA) · ∇w dx = 0.

Using the test function w = v(ω) ∈ H1
0 (DK) and combining the previous two

identities, we get

∂

∂A
(φ̂slod

K,m,1T )L2(T )(δA) = −
ˆ

DK

(
δA∇φ̂slod

K,m

)
· ∇v dx.

This expression directly characterizes the L2-representation of the Fréchet deriva-
tive of (φ̂slod

K,m,1T )L2(T ), and therefore yields the assertion.
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5. Super-Localized Numerical Stochastic Homogenization

Another ingredient in the error analysis is the following regularity result
for the localized basis functions. The result is needed to further estimate the
term we get after applying the spectral gap inequality. The proof of this result
relies on the condition that the patches take the form of d-dimensional bricks,
cf. Theorem 5.3.2. This condition can be guaranteed, for example, by considering
a brick-shaped domain equipped with a Cartesian mesh.

Lemma 5.3.4 (L4-regularity of localized basis functions). Let A be a random
coefficient field subject to Theorem 5.3.1. Then, assuming that the patches DK

take the form of bricks, the localized basis functions φ̂slod
K,m satisfy that

ˆ

DK

E

[( 

Bε(x)

|∇φ̂slod
K,m|2 dx̃

)2
]

dx ≲ (mH)4−d .

Proof. In order to apply Theorem 5.3.2, we need to construct a function hK

such that the localized basis function φ̂slod
K,m is the weak solution to

∇ · (A∇φ̂slod
K,m) = ∇ · hK on DK

subject to homogeneous Dirichlet boundary conditions on ∂DK . To this end, one
may choose hK := ∇r for r solving the Laplace problem −∆r = gslod

K,m subject to
homogeneous Dirichlet boundary conditions on ∂DK . With Theorem 5.3.2 we
then obtain that

ˆ

DK

E

[( 

Bε(x)

|∇φ̂slod
K,m|2 dx̃

)2
]

dx ≲ |DK |1−4/q
(ˆ

DK

|hK |q dx
)4/q

for any 4 < q < ∞. Using standard elliptic regularity on convex domains yields
that

∥∇hK∥L2(DK) = ∥D2r∥L2(DK) ≲ ∥gslod
K,m∥L2(DK) = 1,

since gslod
K,m is L2-normalized. Using the Cauchy–Schwarz inequality and Friedrichs’

inequality on DK for r ∈ H1
0 (DK), we get that

∥∇r∥2
L2(DK) = (gslod

K,m, r)L2(DK) ≤ ∥gslod
K,m∥L2(DK)∥r∥L2(DK)

≲ mH∥gslod
K,m∥L2(DK)∥∇r∥L2(DK).

(5.15)

With the definition of hK it follows directly that

∥hK∥L2(DK) ≲ mH∥gslod
K,m∥L2(DK) = mH.

Applying the Sobolev embedding (q = 6 is the critical exponent for d = 3) and a
scaling argument (the embedding constant scales with the diameter of DK), we
obtain that

ˆ

DK

|hK |q dx ≲ (mH)d−qd/2∥hK∥q
L2(DK) + (mH)d+q(2−d)/2∥∇hK∥q

L2(DK)

≲ (mH)d+q(2−d)/2.

Combining the previous inequalities and setting q = 5 gives the assertion.
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5.3. Error analysis

The following theorem provides an a posteriori error bound for the proposed
numerical stochastic homogenization method. For the error analysis, we assume
that the set

{
gslod

K,m : K ∈ TH

}
is Riesz stable in the sense of Theorem 3.1.2. The

error estimate involves the localization indicator σ from (5.11) and the Riesz
stability constant Crb, which quantifies the linear independence of the local
source terms. Both constants can be computed a posteriori, as described in
Section 5.5 and Theorem 3.5.1. Moreover, Section 5.4 provides a worst-case
a priori upper bound for σ. In practical implementations, the Riesz stability of
the local source terms can be ensured as discussed in Section 5.5.

Theorem 5.3.5 (A posteriori error bound). Let A be a random coefficient field
subject to Theorem 5.3.1, and let the set {gslod

K,m : K ∈ TH} be stable in the sense
of Theorem 3.1.2. Then, the solution ūslod

H,m of the presented numerical stochastic
homogenization method, as given by (5.12), satisfies, for any f ∈ L2(D), that

∥u− ūslod
H,m∥L2(Ω,L2(D)) ≲

(
H + C

1/2
rb md/2

(
σ + εd/2m2H(4−d)/2

))
∥f∥L2(D)

with the constant Crb(H,m) from Theorem 3.1.2 and the localization indicator
σ(H, ε,m) from (5.11).

Proof. For the error analysis, we introduce the function

uH,m :=
∑

K∈TH

cKφ̂
slod
K,m, (5.16)

where (cK)K∈TH
are the coefficients of the representation of ΠHf in terms of the

local source terms {gslod
K,m : K ∈ TH}. Using the triangle inequality, we obtain

that

∥u−ūslod
H,m∥L2(Ω,L2(D))

≤ ∥u− ΠHu∥L2(Ω,L2(D)) + ∥ΠH(u− uH,m)∥L2(Ω,L2(D))

+ ∥ΠHuH,m − ūslod
H,m∥L2(Ω,L2(D))

=: Ξ1 + Ξ2 + Ξ3.

(5.17)

In the subsequent analysis, we will estimate the terms Ξ1, Ξ2, and Ξ3 separately.
For the term Ξ1, we obtain using the approximation property (2.7) of the operator
ΠH and the stability estimate (5.4) that

Ξ2
1 = E

[
∥u− ΠHu∥2

L2(D)

]
≲ H2 E

[
∥∇u∥2

L2(D)

]
≲ H2∥f∥2

L2(D).

For estimating the term Ξ2, we first apply the L2-stability of ΠH (cf. (2.6))
and Friedrichs’ inequality. Then, following the lines of the convergence proof of
the SLOD in the deterministic setting, cf. Theorem 3.2.1, we obtain that

Ξ2 ≲ ∥∇(u− uH,m)∥L2(Ω,L2(D)) ≲ (H + C
1/2
rb md/2σ)∥f∥L2(D).
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5. Super-Localized Numerical Stochastic Homogenization

In order to estimate term Ξ3, we recall definitions (5.12) and (5.16) and use
the Cauchy–Schwarz inequality to obtain, setting e := ΠHuH,m − ūslod

H,m, that

Ξ2
3 =

∑

K∈TH

cK E
[(

ΠHφ̂
slod
K,m − ΠHE[φ̂slod

K,m], e
)

L2(DK)

]

≤
∑

K∈TH

|cK |∥ΠHφ̂
slod
K,m − ΠHE[φ̂slod

K,m]∥L2(Ω,L2(DK))∥e∥L2(Ω,L2(DK)).
(5.18)

Algebraic manipulations then yield for the first term of each summand on the
right-hand side of the previous inequality that

∥ΠHφ̂
slod
K,m − ΠHE[φ̂slod

K,m]∥2
L2(Ω,L2(DK))

= E

[ˆ

DK

( ∑

T ⊂DK

(
(φ̂slod

K,m,1T )L2(T ) − E[(φ̂slod
K,m,1T )L2(T )]

)|T |−1
1T

)2
dx

]

=
∑

T ⊂DK

|T |−1 E
[(

(φ̂slod
K,m,1T )L2(T ) − E[(φ̂slod

K,m,1T )L2(T )]
)2]

.

(5.19)

Applying the spectral gap inequality (5.13) and using the L2-representation of
the Fréchet derivative from Theorem 5.3.3, we obtain that

E
[(

(φ̂slod
K,m,1T )L2(T ) − E[(φ̂slod

K,m,1T )L2(T )]
)2]

≲ εd E

[ˆ

DK

(  

Bε(x)

∣∣∇φ̂slod
K,m ⊗ ∇v

∣∣dx̃
)2

dx

]

≤ εd
(ˆ

DK

E

[(  

Bε(x)
|∇φ̂slod

K,m|2dx̃
)2
]

dx

)1/2( ˆ

DK

E

[(  

Bε(x)
|∇v|2dx̃

)2
]

dx

)1/2

,

where we used the Cauchy–Schwarz inequality. Theorem 5.3.4 can be employed
to bound the first factor on the right-hand side of the preceding inequality. For
estimating the second factor, we note that problem (5.14) for v ∈ L2(Ω;H1

0 (DK))
has the same structure as problem (5.6) for the localized basis functions. Conse-
quently, a result analogous to Theorem 5.3.4 also holds for v, leading to

ˆ

DK

E

[( 

Bε(x)

|∇v|2dx̃
)2
]

dx ≲ (mH)4−d∥1T ∥4
L2(DK).

Inserting the estimates for φ̂slod
K,m and v, and using that ∥1T ∥2

L2(DK) = |T |, we get
that

E

[(
(φ̂slod

K,m,1T )L2(T ) − E[(φ̂slod
K,m,1T )L2(T )]

)2
]
≲ εd(mH)4−d|T |.

Consequently, we can bound the term in (5.19) as

∥ΠHφ̂
slod
K,m − ΠHE[φ̂slod

K,m]∥2
L2(Ω,L2(DK)) ≲ εdm4H4−d. (5.20)
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5.4. Error analysis using LOD techniques

Inserting this estimate into (5.18), applying the Cauchy-Schwarz inequality,
recalling the finite overlap of the patches, and utilizing Theorem 3.1.2, we finally
obtain for Ξ3 that

Ξ2
3 ≲ εd/2m2H(4−d)/2

√ ∑

K∈TH

c2
K

√ ∑

K∈TH

∥ΠHuH,m − ūslod
H,m∥2

L2(Ω,L2(DK))

≲ εd/2m2+d/2H(4−d)/2C
1/2
rb ∥f∥L2(D) Ξ3.

The assertion follows immediately after combining the estimates for Ξ1, Ξ2, and
Ξ3.

5.4. Error analysis using LOD techniques

In this section, we apply the framework of LOD theory to derive an upper bound
for the localization error indicator σ, which appears in the error estimate stated
in Theorem 5.3.5. For this purpose, we consider the lowest-order LOD basis
functions, see also Section 3.3.2, instead of the previously introduced basis. In
addition, we further estimate the Riesz stability constant Crb associated to this
choice of LOD basis functions.

Analogous to (2.15), we define the space of fine-scale functions supported
on DK as

WK,m := {w ∈ H1
0 (DK) : ΠH,DK

w = 0}.
The local LOD basis function corresponding to the element K ∈ TH is then given
by

φ̂lod
K,m := (1 − ĈK,m)bK ∈ L2(Ω;H1

0 (DK)), (5.21)

where ĈK,mbK ∈ L2(Ω; WK,m) denotes the fine-scale correction of the bubble
function bK defined in (2.11). For almost all ω ∈ Ω, the correction satisfies

a(ĈK,mbK , w) = a(bK , w) for all w ∈ WK,m. (5.22)

Note that the well-posedness of the operator ĈK,m is a consequence of the
Lax–Milgram theorem, recalling that WK,m is a closed subspace of H1

0 (DK).
The upper bound on σ derived below relies on the fact that the LOD basis

function φ̂lod
K,m has (locally in DK) a TH-piecewise constant source term

glod
K,m := −divA∇φ̂lod

K,m ∈ L2(Ω;P0(TH,DK
));

see Section 3.3.2.

5.4.1. Localization error indicator

Similar to the previous section, the presence of stochasticity requires additional
lemmas before deriving an upper bound on σ. In particular, the following lemma
provides the L2-representation of the Fréchet derivative of (glod

K,m,1T )L2(T ), which
is essential for applying the spectral gap inequality from Theorem 5.3.1.
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5. Super-Localized Numerical Stochastic Homogenization

Lemma 5.4.1 (Fréchet derivative of LOD right-hand sides). The L2-repre-
sentation of the Fréchet derivative of (glod

K,m,1T )L2(T ) is given by

∂

∂A
(glod

K,m,1T )L2(T )

= ∇bK ⊗ ∇bT − ∇ĈK,mbK ⊗ ∇bT − ∇bK ⊗ ∇ĈK,mbT + ∇ĈK,mbK ⊗ ∇ĈK,mbT .

Proof. Using that glod
K,m is piecewise constant, the identity ΠHbT = 1T , and the

definition of φ̂lod
K,m, we obtain that

(glod
K,m,1T )L2(T ) = (glod

K,m, bT )L2(T ) = a(φ̂lod
K,m, bT ) = a((1 − ĈK,m)bK , bT ).

Hence, the Fréchet derivative of (glod
K,m,1T )L2(T ) equals

∂

∂A
(glod

K,m,1T )L2(T )(δA) =
∂

∂A
a(bK , bT )(δA) − ∂

∂A
a(ĈK,mbK , bT )(δA). (5.23)

The first term is easily calculated, yielding

∂a(bK , bT )

∂A
(δA) =

ˆ

DK

δA∇bK · ∇bT dx. (5.24)

For the second term, we obtain with the product rule that

∂a(ĈK,mbK , bT )

∂A
(δA) =

ˆ

DK

δA∇ĈK,mbK · ∇bT dx

+

ˆ

DK

A∇∂ĈK,mbK

∂A
(δA) · ∇bT dx.

Using the definition of the corrections of the bubble functions from (5.22), the

fact that
∂ĈK,mbK

∂A
(δA) ∈ WK,m, and the symmetry of A, yields for the second

term of the above inequality that

ˆ

DK

A∇∂ĈK,mbK

∂A
(δA) · ∇bT dx =

ˆ

DK

A∇∂ĈK,mbK

∂A
(δA) · ∇ĈK,mbT dx.

Furthermore, by differentiating (5.22), we get for any w ∈ WK,m that

ˆ

DK

δA∇bK · ∇w dx =

ˆ

DK

δA∇ĈK,mbK · ∇w dx +

ˆ

DK

A∇∂ĈK,mbK

∂A
(δA) · ∇w dx.

Combining the three equalities above and using the test function w = ĈK,mbT ,
we obtain that

∂a(ĈK,mbK , bT )

∂A
(δA) =

ˆ

DK

δA∇ĈK,mbK · ∇bT dx+

ˆ

DK

δA∇bK · ∇ĈK,mbT dx

−
ˆ

DK

δA∇ĈK,mbK · ∇ĈK,mbT dx.
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5.4. Error analysis using LOD techniques

The L2-representation of the Fréchet derivative of a(ĈK,mbK , bT ) is therefore
given by

∂

∂A
a(ĈK,mbK , bT ) = ∇ĈK,mbK ⊗ ∇bT + ∇bK ⊗ ∇ĈK,mbT − ∇ĈK,mbK ⊗ ∇ĈK,mbT .

The combination with (5.23) and (5.24) yields the assertion.

The following regularity result for the LOD correction operators is needed to
estimate the terms appearing after applying the spectral gap inequality in the
proof of the upper bound on σ.

Lemma 5.4.2 (L4-regularity estimate for LOD correction operators). Let A be
a random coefficient field subject to Theorem 5.3.1. Then, the corrections of the
bubble functions ĈK,mbK satisfies the following regularity estimate

ˆ

DK

E



(
 

Bε(x)

|∇ĈK,mbK |2 dx̃

)2

 dx ≲

(
m

H

)4−d

.

Proof. First, let ω ∈ Ω be arbitrary but fixed. In order to apply Theorem 5.3.2, we
need to establish the appropriate right-hand side, which results in the equation
for ĈK,mbK taking the form as in Theorem 5.3.2. Naturally, ĈK,mbK solves,
together with the Lagrange multiplier pK,m ∈ P0(TH,DK

) the following saddle-
point problem

(
ADK

PT
DK

PDK
0

)(
ĈK,mbK

pK,m

)
=

(
ADK

bK

0

)
(5.25)

with the patch-local operators defined in Section 3.3.2
It is a direct consequence that ĈK,mbK solves

∇ · (A∇ĈK,mbK) = ∇ · (A∇bK) + PT
DK
pK,m,

which, for some qK,m ∈ L2(DK), can be rewritten as

∇ · (A∇ĈK,mbK) = ∇ · (A∇bK + qK,m).

To see this, we set qK,m := ∇v, where v solves −∆v = pK,m with homogeneous
Dirichlet boundary conditions in a ball of radius CmH, where the constant
C > 0 is chosen such that the ball contains DK .

Furthermore, the local LOD source terms satisfy glod
K,m = pK,m; see [HP22b,

Appendix A]. By applying the estimate

∥glod
K,m∥L2(Ω,L2(DK)) ≲ Hd/2−2, (5.26)

which follows from taking the expectation of the corresponding deterministic
identity in [HP22b, Lemma A.2] and following the proofs in [FGP21, Lemma 4.9]
and Theorem 5.3.4, we obtain that

∥∇qK,m∥L2(DK) = ∥D2v∥L2(DK) ≲ ∥pK,m∥L2(DK) ≲ Hd/2−2.
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5. Super-Localized Numerical Stochastic Homogenization

Additionally, applying the Cauchy–Schwarz inequality and Friedrichs’ inequality
on DK for v ∈ H1

0 (DK), we get, analogue to (5.15) the bound

∥qK,m∥L2(DK) ≲ mH∥pK,m∥L2(DK) ≲ mHd/2−1,

which leads to the estimate
ˆ

DK

|qK,m|q dx ≲ (mH)d−qd/2∥qK,m∥q
L2(DK) + (mH)d+q(2−d)/2∥∇qK,m∥q

L2(DK)

≲ md+q(2−d)/2Hd−q.

Moreover, using ∥∇bK∥L∞ ≈ H−1 we obtain that
´

K
|A∇bK |q dx ≲ Hd−q.

Therefore, applying Theorem 5.3.2 for Q = DK , p = 4 and h = A∇bK − qK,m

yields that

ˆ

DK

E



(
 

Bε(x)

|∇ĈK,mbK |2 dx̃

)2

 dx

≲ |DK |(q−4)/q

(
E



ˆ

DK

|A∇bK |q dx+

ˆ

DK

|qK,m|q dx



)4/q

≲

(
m

H

)4−d

,

which is the assertion.

Now, we are finally ready to present an upper bound on σ using LOD basis
functions.

Lemma 5.4.3 (Upper bound on σ). Choosing an L2-normalized version of
glod

K,m := E[glod
K,m] in (5.10) yields the upper bound

σ ≲ m2H−1 exp(−Cm) +m4
(
ε

H

)d/2

(5.27)

with C > 0 independent of H and m, provided that ε satisfies the smallness
assumption

εd ≲ m−8Hd. (5.28)

Proof. For all v ∈ Y ⊂ L2(Ω;H1
Γ(DK)) it holds that E[tr−1trv] = E[v]. Hence,

by inserting glod
K,m = E[glod

K,m] into (5.10), we obtain that

σK(H, ε,m) ≤ 1

∥glod
K,m∥L2(DK)

sup
v∈L2(Ω;H1

Γ(DK))

∥v∥L2(Ω;H1(DK ))=1

(glod
K,m,E[tr−1trv])L2(DK).

Note that by dividing by the norm of glod
K,m, we account for the fact that glod

K,m

may not be normalized. We denote by A
−1
DK

: L2(Ω;L2(DK)) → L2(Ω;H1
0 (DK))

96



5.4. Error analysis using LOD techniques

the local solution operator defined on the patch DK , which satisfies the stability
estimate

∥∇A
−1
DK
g∥L2(Ω,L2(DK)) ≲ ∥g∥L2(Ω,L2(DK)), (5.29)

for g ∈ L2(Ω;L2(DK)).
Therefore, we obtain for any v ∈ L2(Ω;H1

Γ(DK)) that

(glod
K,m,E[tr−1trv])L2(DK)

= E[(glod
K,m,v)L2(DK) − a(A−1

DK
glod

K,m,v)]

+ E[(glod
K,m − glod

K,m,v)L2(DK) − a(A−1
DK

(glod
K,m − glod

K,m),v)]

=: Ξ1 + Ξ2.

To estimate the term Ξ1, we apply the deterministic result from the proof
of [HP22b, Lemma 6.4] for any ω ∈ Ω and use the Cauchy–Schwarz inequality
to get that

Ξ1 ≲ H−1 exp(−Cm)∥v∥L2(Ω,H1(DK)) ∥glod
K,m∥L2(Ω,L2(DK)),

where C > 0 is independent of H and m. Using the estimate (5.26) yields that

Ξ1 ≲ Hd/2−3 exp(−Cm) ∥v∥L2(Ω,H1(DK)).

For the term Ξ2, we obtain using (5.29) and the Cauchy–Schwarz inequality
that

Ξ2 ≲ ∥glod
K,m − glod

K,m∥L2(Ω,L2(DK))∥v∥L2(Ω,H1(DK)).

In order to estimate the first factor on the right-hand side, we proceed similarly
as in the proof of Theorem 5.3.5 to obtain that

∥glod
K,m − glod

K,m∥2
L2(Ω,L2(DK))

=
∑

T ⊂DK

|T |−1 E

[(
(glod

K,m,1T )L2(T ) − E
[
(glod

K,m,1T )L2(T )

] )2
]
.

Using the spectral gap inequality (5.13), we obtain for each summand that

E

[(
(glod

K,m,1T )L2(T ) − E[(glod
K,m,1T )L2(T )]

)2
]

≲ εd E

[
ˆ

Rd

( 

Bε(x)

∣∣∣∣
∂(glod

K,m,1T )L2(T )

∂A
(x̃)
∣∣∣∣dx̃

)2

dx

]
.

(5.30)

The L2-representation of the Fréchet derivative of (glod
K,m,1T )L2(T ) is derived

in Theorem 5.4.1. It consists of a sum of outer products of the gradients
of combinations of bK , bT , ĈK,mbK and ĈK,mbT . To estimate the summands
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involving bubble functions, we utilize the property (2.11) for all T ⊂ DK and
derive the estimate

ˆ

DK

( 

Bε(x)

|∇bT |2 dx̃
)2

dx ≲ Hd−4. (5.31)

To proceed with the estimation of (5.30), we need to estimate the four terms
resulting from the summands of the Fréchet derivative, cf. Theorem 5.4.1. In
the following, we present the estimate for the second term, noting that all
other estimates follow analogously. By employing the regularity result from
Theorem 5.4.2 and (5.31), we obtain that

E

[ˆ

DK

(  

Bε(x)
|∇ĈK,mbK ⊗ ∇bT | dx̃

)2
dx

]

≤
( ˆ

DK

E

[(  

Bε(x)
|∇ĈK,mbK |2 dx̃

)2
]

dx

)1/2( ˆ

DK

(  

Bε(x)
|∇bT |2 dx̃

)2
dx

)1/2

≲ m2−d/2Hd−4,

where we used the Cauchy–Schwarz inequality. Note that all four terms can be
majorized by m4−dHd−4, which results from estimating the last summand. The
combination of the previous estimates yields that

∥glod
K,m − glod

K,m∥L2(Ω,L2(DK)) ≲

( ∑

T ⊂DK

|T |−1 εdm4−dHd−4
)1/2

≲ εd/2m2H−2. (5.32)

Using the estimate

∥glod
K,m∥L2(Ω,L2(DK)) ≳ m−2Hd/2−2,

which can be obtained by taking the expectation of the corresponding deter-
ministic identity from [HP22b, Lemma A.2], we derive a lower bound for the
L2-norm of glod

K,m by computing

∥glod
K,m∥2

L2(DK) = ∥glod
K,m∥2

L2(Ω,L2(DK))

≥ 1

2
∥glod

K,m∥2
L2(Ω,L2(DK)) − ∥glod

K,m − glod
K,m∥2

L2(Ω,L2(DK))

≳
1

2
m−4Hd−4 −m4H−4εd ≳ m−4Hd−4.

(5.33)

Here, we used the reverse triangle inequality, the weighted Young’s inequality for
showing that for a, b ≥ 0 it holds that |a− b|2 ≥ a2

2
− b2, as well as the smallness

assumption (5.28). Finally, combining all estimates leads to

σK ≲
1

∥glod
K,m∥L2(DK)

(
Hd/2−3 exp(−Cm) +m2H−2εd/2

)

≲ m2H−1 exp(−Cm) +m4
(
ε

H

)d/2

.

The assertion follows directly when taking the maximum over all K ∈ TH .
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5.4. Error analysis using LOD techniques

Combining this a priori result for σ with Theorem 5.3.5 yields the error estimate
given in the following corollary. The Riesz constant Crb can be computed a
posteriori, cf. Section 5.5.

Corollary 5.4.4 (Combined error bound). Suppose that the assumptions of
Theorems 5.3.5 and 5.4.3 are fulfilled and that m ≳ | logH| holds. Then, the
solution ūslod

H,m of the proposed numerical stochastic homogenization method, as
given in (5.12), satisfies, for any f ∈ L2(D), that

∥u− ūslod
H,m∥L2(Ω,L2(D)) ≲

(
H + C

1/2
rb m4+d/2

(
ε

H

)d/2 )
∥f∥L2(D).

5.4.2. Riesz stability

In the next step, we show that the local source terms corresponding to the LOD
basis functions are Riesz stable in the sense of Theorem 3.1.2.

Lemma 5.4.5 (Riesz stability of LOD source terms). Suppose that m is chosen
such that m ≳ | log(H)| and that ε satisfies the smallness assumption

εd ≲ m−(8+d)H4+d. (5.34)

Then, for the local source terms glod
K,m = E[glod

K,m], we obtain for all (cK)K∈TH
that

H4
∑

K∈TH

c2
K ≲

∥∥∥∥∥
∑

K∈TH

cK

glod
K,m

∥glod
K,m∥L2(DK)

∥∥∥∥∥

2

L2(D)

. (5.35)

Proof. We begin the proof by noting that applying the weighted Young inequality
twice gives the elementary estimate |a−b−c|2 ≥ 1

4
|a|2−|b|2−|c|2 for any a, b, c ≥ 0.

Combining this with the inverse triangle inequality, we obtain that

∥∥∥∥
∑

K∈TH

cK

glod
K,m

∥glod
K,m∥L2(DK)

∥∥∥∥
2

L2(D)

=

∥∥∥∥
∑

K∈TH

cK

glod
K,m

∥glod
K,m∥L2(DK)

∥∥∥∥
2

L2(Ω,L2(D))

≥ 1

4

∥∥∥∥
∑

K∈TH

cK

glod
K,m

∥glod
K,m∥L2(DK)

∥∥∥∥
2

L2(Ω,L2(D))

−
∥∥∥∥
∑

K∈TH

cK

glod
K,m − glod

K,m

∥glod
K,m∥L2(DK)

∥∥∥∥
2

L2(Ω,L2(D))

−
∥∥∥∥
∑

K∈TH

cK

(
glod

K,m

∥glod
K,m∥L2(DK)

−
glod

K,m

∥glod
K,m∥L2(DK)

)∥∥∥∥
2

L2(Ω,L2(D))

=:
1

4
Ξ1 − Ξ2 − Ξ3.

For estimating the term Ξ1 from below, we use the corresponding deterministic
result from [HP22b, Lemma 6.4] and take the expectation which yields that

Ξ1 ≳ H4
∑

K∈TH

c2
K .
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5. Super-Localized Numerical Stochastic Homogenization

To estimate the term Ξ2 from above, we use the finite overlap of the patches DK

as well as estimates (5.32) and (5.33) to get that

Ξ2 ≲ m4+dH4−d
∑

K∈TH

c2
K ∥glod

K,m − glod
K,m∥2

L2(Ω,L2(DK)) ≲ m8+dεdH−d
∑

K∈TH

c2
K .

The estimate for Ξ3 can be derived similarly using again the finite overlap of the
patches DK , the reverse triangle inequality, (5.32) and (5.33). We obtain that

Ξ3 =

∥∥∥∥∥
∑

K∈TH

cK

glod
K,m(∥glod

K,m∥L2(DK) − ∥glod
K,m∥L2(DK))

∥glod
K,m∥L2(DK)∥glod

K,m∥L2(DK)

∥∥∥∥∥

2

L2(Ω,L2(D))

≲ md
∑

K∈TH

c2
K E


∥glod

K,m − glod
K,m∥2

L2(DK)

∥glod
K,m∥2

L2(DK)


 ≲ m8+dεdH−d

∑

K∈TH

c2
K .

Combining the previous estimates and using the smallness assumption (5.34)
yields the assertion.

5.5. Practical implementation

To effectively implement the presented numerical stochastic homogenization
method, it is crucial to employ an efficient sampling strategy for the space Y
and ensure that the local source terms {gslod

K,m : K ∈ TH} form a stable basis of
P0(TH). These aspects will be addressed in the following two subsections.

5.5.1. Random sampling and Singular Value

Decomposition

We consider an arbitrary patch DK and denote by N := #TH,DK
the number of

coarse elements contained in this patch. In practical implementations, all local
infinite-dimensional problems involved in the construction of the basis functions
must be replaced by finite-dimensional approximations. To obtain these, we
discretize using the P1-finite element method on the fine mesh Th,DK

, which is
obtained by uniform refinement of TH,DK

. We denote by n the number of nodes
in Th,DK

.
To handle the stochasticity in the definition of the space Y , our implementation

drawsMs samples of the random coefficientA and, for each sample, closely follows
the methodology outlined in Section 3.5.1 for the deterministic case. Specifically,
for each i = 1, . . . ,Ms, we generate a matrix Si ∈ Rn×Mbd , whose columns
represent the coordinate vectors of the discrete A(ωi)-harmonic extensions of
Mbd ∈ N samples of random boundary data on ∂DK\∂D. We then compute
the matrices Pi ∈ RN×Mbd by applying the L2-orthogonal projection onto the
characteristic functions {1T : T ∈ TH,DK

} column by column to Si. Finally, we
compute the SVD of the matrix X := [P1, . . . ,PMs ], yielding coordinate vectors
of potential right-hand sides gslod

K,m.
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Figure 5.2.: Singular values associated to an interior patch for a Tε-piecewise
constant random coefficient with ε = 2−7 in two spatial dimensions.
The coarse mesh size is set to H = 2−4.

The localized deterministic basis functions are then computed as empirical
means, again using Ms samples of the random coefficient, by solving discretized
versions of (5.6). In the numerical experiments presented in Section 5.6, the
number of random boundary samples is set to Mbd = 3N . For the number of
random coefficient samples, we use Ms = 5000. The coefficient samples are
obtained via a quasi-Monte Carlo sampling strategy based on direction numbers
provided in [JK08,JK03].

5.5.2. Stable local source terms

Next, we address the practical implementation of stabilizing the local source
terms {gslod

K,m : K ∈ TH}. To this end, we combine two stabilization techniques
discussed in Section 3.4. The first step involves using extended patches, as
described in Section 3.4.3, on which we perform an SVD to identify candidate
local source terms. However, due to the stochastic nature of the problem, the
smallest singular value is typically less well separated from the rest compared
to the deterministic setting, particularly for larger values of m, as illustrated in
Figure 5.2. To address this issue, we include all candidate functions associated
with singular values that lie within a specified threshold above the smallest
singular value. Among these, we select the function that minimizes a weighted
L2(DK)-norm, subject to a unit mass constraint. This selection follows the
procedure outlined in Section 3.4.2, where we fix the parameters r = 6 and
p = 1.3. Note that in the one-dimensional numerical experiments, only the
second stabilization technique based on minimizing the weighted L2-norm is
used, with parameters r = 6 and p = 2.
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5. Super-Localized Numerical Stochastic Homogenization

Remark 5.5.1 (Uniform Cartesian meshes). Note that in the case of uni-
form Cartesian meshes, the computational complexity of the method can be
significantly reduced when utilizing the stationarity of the coefficient A, cf. The-
orem 5.3.1, similar to the case of periodic coefficients in the deterministic setting.
In fact, only O(md) reference patches need to be considered for the computa-
tion of the basis functions and local source terms of the method. All other
basis functions and local source terms can then be obtained by translation; see,
e.g., [GP15].

5.6. Numerical experiments

The following numerical experiments are intended to demonstrate the effectiveness
of the presented numerical homogenization method. In our implementation, we
consider uniform Cartesian meshes of the domain D = (0, 1)d with d ∈ {1, 2}.
Note that in this section, we use H to denote the side length of the elements
instead of their diameter. For the solution of the local patch problems and the
computation of the reference solution uh we employ the P1-finite element method
on the fine mesh Th with h = 2−12 for d = 1 and h = 2−10 for d = 2. We denote
by ūslod

h,H,m the fully discrete numerical approximation to E[u]. In the following
all expected values are replaced by appropriate empirical means.

The random coefficients A that are considered in the following numerical ex-
periments are piecewise constant with respect to the uniform Cartesian meshes Tε

with mesh sizes ε ∈ {2−5, 2−6, 2−7, 2−8, 2−9}. These coefficients take independent
and identically distributed element values in the interval [0.1, 1]. We further con-
sider the sequence of coarse meshes TH with mesh sizes H ∈ {2−3, 2−4, 2−5, 2−6}.
Note that we only consider coarse mesh sizes H > ε for which the coarse mesh
does not resolve the minimal length scale of the random coefficient. We also
exclude combinations of H and m for which a patch coincides with the whole
domain D.

To calculate the reference solution, we use Ms = 5000 samples of the coefficient
on the whole domain D, which is consistent with the number of samples used
for the local patch problems. However, in contrast to the quasi-Monte Carlo
strategy employed for the local patches, these samples are generated using a
standard Monte Carlo sampling approach.

Numerical investigation of σ and Crb

We begin by examining the behavior of the localization error indicator σ as a
function of the coarse mesh size H and the correlation length ε. To this end,
we use the sequences of coarse meshes and correlation lengths introduced above.
The values of σ for the numerical experiments in one and two dimensions are
shown in Figures 5.3 and 5.4, respectively. The plots display the decay of σ for
fixed ε and varying H (left), as well as for fixed H and varying ε (right). In both
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Figure 5.3.: Depiction of σ for a Tε-piecewise constant random coefficient in one
spatial dimensions. Left: in dependence of the coarse mesh size H
for ε = 2−7; Right: in dependence of the correlation length ε for
H = 2−4.
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Figure 5.4.: Depiction of σ for a Tε-piecewise constant random coefficient in two
spatial dimensions. Left: in dependence of the coarse mesh size H
for ε = 2−7; Right: in dependence of the correlation length ε for
H = 2−4.
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Figure 5.5.: Depiction of the Riesz stability constant Crb of the stochastic SLOD
as a function of the coarse mesh size H for a Tε-piecewise constant
random coefficient with ε = 2−7 in the 1d setting (left) and the 2d
setting (right).

cases one observes a scaling like (ε/H)d/2, which numerically validates the upper
bound for σ stated in Theorem 5.4.3. It is worth noting that the stochastic
component dominates the error, such that the first term in (5.27), which decays
exponentially in the patch size m, is not visible in the plots. If σ were plotted as
a function of m, one would observe a decay rate roughly proportional to 1/m.

Next we examine the behavior of the Riesz stability constant Crb of the local
SLOD source terms {gslod

K,m : K ∈ TH} as a function of H. The Riesz stability
constant can be computed as outlined in Theorem 3.5.1. In Figure 5.5, we observe
that Crb scales like H−4 in both the one- and two-dimensional settings, which
is consistent with the results for the stochastically averaged LOD source terms
established in Theorem 5.4.5. Moreover, our numerical experiments indicate no
dependency of the Riesz stability constant on either the correlation length ε
or the localization parameter m, further confirming the conclusions drawn in
Theorem 5.4.5.

Numerical validation of convergence

To numerically verify the convergence of the presented numerical stochastic
homogenization method, we consider the source terms

f(x) = 2π2 sin(x), f(x, y) = 2π2 sin(x) sin(y) (5.36)

104



5.6. Numerical experiments

2
-6

2
-5

2
-4

2
-3

10
−1

10
0

H

m = 1

m = 2

m = 3

m = 4

2
-9

2
-8

2
-7

2
-6

2
-5

10−1.4

10−1.3

10−1.2

10−1.1

10−1

10−0.9

10−0.8

ε

m = 1
m = 2
m = 3
m = 4

O(
√
ε)

Figure 5.6.: Plot of the relative L2-errors of the presented SLOD method for a
Tε-piecewise constant random coefficient in one spatial dimension.
Left: errors as functions of the coarse mesh size H for fixed ε = 2−7;
Right: errors in dependency of the correlation length ε for fixed
H = 2−4.

in one and two spatial dimensions, respectively. Figures 5.6 and 5.7 display the
resulting relative L2-errors

∥ΠHuh − ūslod
h,H,m∥L2(Ω;L2(D))/∥uh∥L2(Ω;L2(D)),

which are computed using the L2-orthogonal projection of the reference solution
uh. This corresponds to the error considered in Theorem 5.3.5, where the first
term Ξ1 in the decomposition (5.17) is omitted. For fixed H and varying ε we
observe the rate εd/2, which is in agreement with Theorem 5.4.4. In the converse
setting, where ε is fixed and H is varied, the expected negative dependence on H
is not observed. In the one-dimensional case, the error remains nearly constant
with respect to H, provided that the coarse mesh is sufficiently coarse compared
to ε. In two dimensions, a negative dependence on H is observed; however, it is
significantly weaker than the theoretical rate of H−3 predicted by Theorem 5.4.4.
Instead, the error appears to scale approximately like H−0.15.
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Figure 5.7.: Plot of the relative L2-errors of the presented SLOD method for a Tε-
piecewise constant random coefficient in two spatial dimensions. Left:
errors as functions of the coarse mesh size H for fixed ε = 2−7; Right:
errors as functions of the correlation length ε for fixed H = 2−4.
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6. Hierarchical Super-Localized

Numerical Stochastic

Homogenization

In this chapter, we combine the methodologies developed in the previous chapters
to construct a novel numerical stochastic homogenization method for elliptic
PDEs with random coefficients. Specifically, we integrate the hierarchical struc-
ture introduced in Chapter 4 with the construction of super-localized basis
functions in the stochastic setting from Chapter 5.

The core idea is to define a hierarchical basis composed of linear combinations
of stochastic SLOD basis functions, which are associated with different levels in
the mesh hierarchy. This hierarchical basis spans the approximation space at
the finest level and inherits the favorable properties of the super-localized basis
functions, such as rapid decay and locality.

To retain the simplicity and scalability of the stochastic SLOD method from
Chapter 5, we again employ a collocation-type formulation to approximate the
expected value of the solution. In doing so, we avoid the need to assemble a
global stiffness matrix. As a result, the expected basis functions can be computed
independently, enabling a highly parallel implementation. Instead of a global
stiffness matrix, we assemble a system matrix associated with the deterministic
source terms of the hierarchical basis functions to compute the coefficients in
the collocation-type approximation. As confirmed by numerical experiments,
the hierarchical structure significantly improves the conditioning of this system
matrix compared to the standard two-level stochastic SLOD approach from
Chapter 5, in which the two scales correspond to the fine-scale features of the
random coefficient and the macroscopic approximation scale.

Using tools from quantitative stochastic homogenization theory, we derive an
a posteriori error estimate for the coarse-scale approximation provided by the
proposed hierarchical method. Furthermore, we conduct numerical experiments
to validate our theoretical findings. These experiments indicate that the hierar-
chical formulation enhances the robustness and stability of the method, as the
fine-level approximations benefit from the lower variances of the basis functions
associated with coarser levels.
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6. Hierarchical Super-Localized Numerical Stochastic Homogenization

6.1. Numerical stochastic homogenization

method

In this section, we develop a hierarchical method for the prototypical diffusion
problem (5.1), building on the principles of SLOD by integrating the approaches
introduced in Chapters 4 and 5. The hierarchical basis functions are constructed
over a sequence of nested Cartesian meshes {Tℓ}ℓ∈{1,...,L} with L ∈ N, covering
the domain D, where each mesh Tℓ has mesh size Hℓ. The refinement is uniform,
with each level satisfying Hℓ+1 = Hℓ/2 for ℓ ≤ L− 1. We denote by Nℓ := #Tℓ

the number of elements in the mesh at level ℓ.
The number of hierarchical basis functions corresponding to level ℓ, denoted

by N b
ℓ , is defined as

N b
ℓ :=




N1, if ℓ = 1,

(2d − 1)Nℓ−1, if ℓ > 1.

At level ℓ = 1, we use the stochastic SLOD functions φ̂slod
1,K,m ∈ L2(Ω;H1

0 (DK)),
defined in (5.6) and associated with elements K ∈ T1, as hierarchical basis
functions. Hence, the stochastic HSLOD functions at this level are given by

ψ̂hslod
1,i,m = φ̂slod

1,Ki,m

for i = 1, . . . , N1

For levels ℓ > 1, the hierarchical basis functions are constructed as linear com-
binations of stochastic SLOD functions, following the approach in Section 4.1.2.
These stochastic HSLOD functions are defined on patches N

m
ℓ−1(TJi

), as intro-
duced in (4.5), and correspond to elements TJi

∈ Tℓ−1 from the coarser mesh
level. Here, the index Ji identifies the reference element and is specified in (4.10).
On each such patch, 2d − 1 basis functions need to be defined. To simplify
notation, we fix the oversampling parameter m ∈ N and refer to the m-th order
patch of TJi

∈ Tℓ−1 on level ℓ− 1 simply as D
(ℓ−1)
Ji

:= N
m
ℓ−1(TJi

).

For each i ∈ {1, . . . , N b
ℓ }, the hierarchical basis function ψ̂hslod

ℓ,i,m is constructed
exclusively from stochastic SLOD functions φ̂slod

ℓ,K,m, which are defined on patches
composed of elements from the finer mesh Tℓ, with their support entirely contained
in the patch D

(ℓ−1)
Ji

. More precisely, for each element TJi
∈ Tℓ−1, we define the

set
S

(ℓ)
Ji

:= {K ∈ Tℓ : supp(φ̂slod
ℓ,K,m) ⊂ D

(ℓ−1)
Ji

}.
With this notation, the HSLOD basis function ψ̂hslod

ℓ,i,m ∈ L2(Ω;H1
0 (D

(ℓ−1)
Ji

)) is
defined by

ψ̂hslod
ℓ,i,m :=

∑

K∈S
(ℓ)
Ji

d
(ℓ,i)
K φ̂slod

ℓ,K,m, (6.1)

where the non-trivial coefficients are chosen such that E[ψ̂hslod
ℓ,i,m ] satisfies the

conditions given in (4.8) and (4.9). The corresponding deterministic local source
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6.1. Numerical stochastic homogenization method

Figure 6.1.: Illustration of the localized hierarchical basis functions E[ψ̂hslod
ℓ,i,m ] on

successively refined meshes for a piecewise constant random coeffi-
cient with a correlation length of ε = 2−7 in two spatial dimensions.
The oversampling parameter is set to m = 2. The corresponding
right-hand sides ghslod

ℓ,i,m are shown in gray.

term ghslod
ℓ,i,m is defined analogously as a weighted sum of the deterministic local

source terms associated with the stochastic SLOD functions φ̂slod
ℓ,K,m, using the

same coefficients as in (6.1). An illustration of the deterministic hierarchical basis

functions E[ψ̂hslod
ℓ,i,m ] and their associated local source terms is given in Figure 6.1.

For the error analysis following in the next section, we define the quantity

ζ = ζ(HL,m) := max
ℓ∈{1,...,L}

max
i∈{1,...,Nb

ℓ
}

√√√√
∑

K∈S
(ℓ)
Ji

|d(ℓ,i)
K |2. (6.2)

In addition, let σℓ,K denote the expected localization error associated with the
stochastic SLOD function φ̂slod

ℓ,K,m, as defined in (5.10). A global measure of the
localization error across all levels and elements is then given by

σ = σ(HL, ε,m) := max
ℓ∈{1,...,L}

max
K∈Tℓ

σℓ,K , (6.3)

where ε > 0 denotes the correlation length of the random coefficient A; see
Theorem 5.3.1. According to Theorem 5.4.3, where an upper bound for the
localization error at each level is provided, σ satisfies

σ ≲ m2H−1
L exp(−Cm) +m4

(
ε

HL

)d/2

(6.4)

with C > 0 independent of HL and m, provided that ε satisfies the smallness
assumption

εd ≲ m−8Hd
L.

For simplicity, we refer to the hierarchical basis functions using their global
indices. Thus, with

i =




j, if ℓ = 1,

#Tℓ−1 + j, if ℓ > 1,
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we have the relation
ψ̂hslod

i,m = ψ̂hslod
ℓ,j,m (6.5)

with corresponding local source term ghslod
i,m = ghslod

ℓ,j,m . Using global indices, we

refer to the patches associated with the hierarchical basis functions as Di = Dℓ−1
Jj

.
With this notation established, we are now ready to define the novel collocation-
type hierarchical method by

ūhslod
L,m =

NL∑

i=1

ciΠLE[ψ̂hslod
i,m ], (6.6)

where (ci)i∈{1,...,NL} are the coefficients of the expansion of ΠLf in terms of the
local source terms ghslod

i,m .

6.2. Error analysis

In this section, we perform an error analysis of the proposed numerical stochastic
homogenization method. To this end, we assume that the local source terms
{ghslod

i,m : i = 1, . . . , NL} are Riesz stable in the sense of Theorem 4.2.1. In
addition, we impose structural assumptions on the randomness of the coefficient
field A, as specified in Theorem 5.3.1. The following theorem provides an
a posteriori error bound for the proposed hierarchical method. The bound
involves the quantity ζ, as defined in (6.2), as well as the Riesz stability constant
Crb. Both of these quantities can be computed a posteriori, as outlined in
Section 6.3.

Theorem 6.2.1 (A posteriori error bound). Let A be a random coefficient field

satisfying the conditions in Theorem 5.3.1, and assume that the set
{
ghslod

i,m : i = 1, . . . , NL

}

is Riesz stable in the sense of Theorem 4.2.1. Then, for any f ∈ L2(D), the
solution ūhslod

L,m of the hierarchical numerical stochastic homogenization method
defined in (6.6) satisfies the error estimate

∥u− ūhslod
L,m ∥L2(Ω,L2(D)) ≲

(
HL + C

1/2
rb ζmd

√
L
(
σ +m2

( ε

HL

)d/2))∥f∥L2(D),

where Crb(HL,m) is the stability constant from Theorem 4.2.1.
Moreover, if the additional smallness condition

εd ≲ m−8Hd
L

is satisfied and m ≳ | log(HL)| holds, the error bound simplifies to

∥u− ūhslod
L,m ∥L2(Ω,L2(D)) ≲

(
HL + C

1/2
rb ζm4+d

√
L
( ε

HL

)d/2)∥f∥L2(D).
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Proof. For the error analysis, we follow the ideas of the proof of Theorem 5.3.5
and introduce the function

uL,m :=
NL∑

i=1

ciψ̂
hslod
i,m , (6.7)

where (ci)i∈{1,...,NL} are the coefficients of the expansion of ΠLf in terms of the
local source terms ghslod

i,m . To simplify notation, we introduce for any subset
S ⊆ D the short-hand notation

∥ · ∥Ω,S := ∥ · ∥L2(Ω,L2(S)).

Using the triangle inequality yields

∥u− ūhslod
L,m ∥Ω,D

≤ ∥u− ΠLu∥Ω,D + ∥ΠL(u− uL,m)∥Ω,D + ∥ΠLuL,m − ūhslod
L,m ∥Ω,D

=: Ξ1 + Ξ2 + Ξ3.

(6.8)

For the first summand Ξ1, we obtain using the approximation property (2.7) of
the operator ΠL and the stability estimate (5.4) that

Ξ2
1 = E

[
∥u− ΠLu∥2

L2(D)

]
≲ H2

L E
[
∥∇u∥2

L2(D)

]
≲ H2

L ∥f∥2
L2(D).

For estimating the term Ξ2, we first apply the L2-stability of ΠL, cf. (2.6), and
Friedrichs’ inequality. Then, following the lines of the convergence proof of the
HSLOD in the deterministic setting, cf. Theorem 4.3.1, we obtain that

Ξ2 ≲ ∥∇(u− uL,m)∥Ω,D ≲ (HL + C
1/2
rb

√
Lmdζσ)∥f∥L2(D).

In order to estimate the term Ξ3, we recall definitions (6.6) and (6.7) and use

the Cauchy–Schwarz inequality and the fact that supp(ψ̂hslod
i,m ) ⊂ Di to obtain,

setting e := ΠLuL,m − ūhslod
L,m , that

Ξ2
3 =

NL∑

i=1

ci E

[(
ΠLψ̂

hslod
i,m − ΠLE[ψ̂hslod

i,m ], e
)

L2(Di)

]

≤
NL∑

i=1

|ci|∥ΠLψ̂
hslod
i,m − ΠLE[ψ̂hslod

i,m ]∥Ω,Di
∥e∥Ω,Di

.

(6.9)

To estimate the first norm in each summand separately, we use relation (6.5),
the definition (6.1), the fact that supp(φ̂slod

ℓ,K,m) ⊂ DK , and the Cauchy–Schwarz
inequality to get that

∥ΠLψ̂
hslod
i,m − ΠLE[ψ̂hslod

i,m ]∥2
Ω,Di

=
∑

K∈SJj

d
(ℓ,j)
K E

[(
ΠLφ̂

slod
ℓ,K,m − ΠLE[φ̂slod

ℓ,K,m], ΠLψ̂
hslod
ℓ,j,m − ΠLE[ψ̂hslod

ℓ,j,m ]
)

L2(DK)

]

≤
∑

K∈SJj

|d(ℓ,j)
K |∥ΠLφ̂

slod
ℓ,K,m − ΠLE[φ̂slod

ℓ,K,m]∥Ω,DK
∥ΠLψ̂

hslod
ℓ,j,m − ΠLE[ψ̂hslod

ℓ,j,m ]∥Ω,DK
.
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Following the steps leading to estimate (5.20) in the proof of Theorem 5.3.5
yields

∥ΠLφ̂
slod
ℓ,K,m − ΠLE[φ̂slod

ℓ,K,m]∥2
Ω,DK

=
∑

T ∈TL,DK

|T |−1E
[
((φ̂slod

ℓ,K,m,1T )L2(T ) − E[(φ̂slod
ℓ,K,m,1T )L2(T )])

2
]

≲ (mHℓ)
4−dεd|{T ∈ TL : T ⊂ DK}| ≲ m4

( ε

HL

)d
,

where we used that Hℓ = HL2L−ℓ. The combination of the previous two estimates,
the Cauchy–Schwarz inequality, and the finite overlap of patches gives

∥ΠLψ̂
hslod
i,m − ΠLE[ψ̂hslod

i,m ]∥2
Ω,Di

≲ m2εd/2H
−d/2
L

√√√√
∑

K∈SJj

|d(ℓ,j)
K |2

√√√√
∑

K∈SJj

∥ΠLψ̂
hslod
i,m − ΠLE[ψ̂hslod

i,m ]∥2
Ω,DK

≲ m2+d/2εd/2H
−d/2
L ζ∥ΠLψ̂

hslod
i,m − ΠLE[ψ̂hslod

i,m ]∥Ω,Di
.

Inserting into (6.9), applying the Cauchy–Schwarz inequality once more, using
Theorem 4.2.1, and employing the finite overlap of patches per level, we obtain
that

Ξ2
3 ≲ m2+d/2εd/2H

−d/2
L ζ

√√√√
NL∑

i=1

|ci|2
√√√√

NL∑

i=1

∥ΠLuL,m − ūhslod
L,m ∥2

Ω,Di

≲ C
1/2
rb

√
Lm2+dζεd/2H

−d/2
L ∥f∥L2(D) Ξ3.

By combining the estimates for Ξ1, Ξ2, and Ξ3, we obtain the first error bound
stated in the theorem. Additionally, incorporating Theorem 5.4.3 and adapting
it to the hierarchical setting (cf. (6.4)), results in the second error estimate.

6.3. Numerical Experiments

In the following, we present a series of numerical experiments to illustrate the
effectiveness of the proposed hierarchical numerical homogenization method.
To this end, we compare its performance with the two-level stochastic SLOD
method introduced in Chapter 5. We consider uniform Cartesian meshes of
the domain D = (0, 1)d with spatial dimension d ∈ {1, 2}. From this point on,
we use H to denote the side length of the mesh elements, rather than their
diameter. The random coefficients A are piecewise constant with respect to
uniform Cartesian meshes Tε with mesh sizes ε ∈ {2−6, 2−7, 2−8, 2−9}. The values
of A are independently and identically distributed on each element, taking values
uniformly in the interval [0.1, 1].

The SLOD basis functions are computed according to the procedure outlined
in Section 5.5, using the P1-finite element method on the fine mesh Th, which is
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Figure 6.2.: Depiction of σ for a Tε-piecewise constant random coefficient in one
spatial dimensions. Left: in dependence of the coarse mesh size HL

for ε = 2−7; Right: in dependence of the correlation length ε for
HL = 2−5.

generated by successive uniform refinements of the coarse mesh. Specifically, we
set h = 2−12 for d = 1 and h = 2−10 for d = 2. The hierarchical basis functions
are then obtained as a linear combination of the SLOD functions, where the
coefficients are chosen such that the conditions given in (4.8) and (4.9) hold. The
resulting fully discrete numerical approximation of E[u] is denoted by ūhslod

h,L,m. In
the experiments, all expectations are approximated by empirical means.

To compute the reference solution, we use Ms = 1000 samples of the coefficient
field on the entire domain D, generated via standard Monte Carlo sampling. For
the local patch problems, we use Ms = 1000 quasi-Monte Carlo samples of the
coefficient.

Numerical investigation of σ, ζ and Crb

Numerical experiments, illustrated in Figures 6.2 and 6.3, show that σ decays
proportionally to (ε/HL)d/2, consistent with the theoretical upper bound derived
in (6.4) and the observations discussed in Section 5.6.

The quantity ζ is defined as the maximum Euclidean norm of the coefficient
vectors used in the basis construction and can therefore be computed easily.
However, to enhance the numerical linear independence of the 2d − 1 hierar-
chical basis functions associated with each patch, we incorporate an additional
orthonormalization step with respect to the Euclidean inner product after en-
forcing conditions (4.8) and (4.9). As a result of this procedure, we obtain ζ = 1
in all numerical experiments.

In the hierarchical setting, the Riesz stability constant Crb remains essentially
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Figure 6.3.: Depiction of σ for a Tε-piecewise constant random coefficient in two
spatial dimensions. Left: in dependence of the coarse mesh size HL

for ε = 2−7; Right: in dependence of the correlation length ε for
HL = 2−5.

unchanged with the addition of refinement levels. Consequently, no dependence
on the parameter HL is observed in either one- or two-dimensional cases. Sim-
ilar to the two-level stochastic SLOD setting, the constant Crb is also largely
independent of the correlation length ε, and no significant dependence on the
oversampling parameter m is evident.

Numerical validation of convergence

To numerically verify the convergence of the proposed stochastic homogenization
method, we consider the smooth right-hand sides introduced in (5.36), as in the
previous section. The hierarchy employs successively refined meshes, with the
mesh size of the coarsest level generally set to H1 = 2−3. However, for small
values of ε and larger oversampling parameters m, this choice does not yield
good approximations in two dimensions. Therefore, for ε = 2−8 in 2D, we instead
use H1 = 2−4.

The relative L2-errors

∥uh − ūhslod
h,L,m∥L2(Ω;L2(D))

∥uh∥L2(Ω;L2(D))

, (6.10)

considered in Theorem 6.2.1 are shown in Figures 6.4 and 6.6 for the one- and
two-dimensional settings, respectively. In addition, Figures 6.5 and 6.7 display
the relative L2-errors

∥ΠLuh − ūhslod
h,L,m∥L2(Ω;L2(D))

∥uh∥L2(Ω;L2(D))

, (6.11)
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Figure 6.4.: Relative L2-errors ∥uh −ūhslod
h,L,m∥L2(Ω;L2(D))/∥uh∥L2(Ω;L2(D)) of the pro-

posed HSLOD method for a Tε-piecewise constant random coefficient
in one spatial dimension. Left: errors as functions of the coarse
mesh size HL for fixed ε = 2−7; Right: errors in dependency of the
correlation length ε for fixed HL = 2−5.
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Figure 6.5.: Relative L2-errors ∥ΠLuh − ūhslod
h,L,m∥L2(Ω;L2(D))/∥uh∥L2(Ω;L2(D)) of the

proposed HSLOD method for a Tε-piecewise constant random co-
efficient in one spatial dimension. Left: errors as functions of the
coarse mesh size HL for fixed ε = 2−7; Right: errors in dependency
of the correlation length ε for fixed HL = 2−5.
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Figure 6.6.: Relative L2-errors ∥uh −ūhslod
h,L,m∥L2(Ω;L2(D))/∥uh∥L2(Ω;L2(D)) of the pro-

posed HSLOD method for a Tε-piecewise constant random coefficient
in two spatial dimensions. Left: errors as functions of the coarse
mesh size HL for fixed ε = 2−7; Right: errors as functions of the
correlation length ε for fixed HL = 2−5.
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Figure 6.7.: Relative L2-errors ∥ΠLuh − ūhslod
h,L,m∥L2(Ω;L2(D))/∥uh∥L2(Ω;L2(D)) of the

proposed HSLOD method for a Tε-piecewise constant random co-
efficient in two spatial dimensions. Left: errors as functions of the
coarse mesh size HL for fixed ε = 2−7; Right: errors as functions of
the correlation length ε for fixed HL = 2−5.
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Table 6.1.: Condition numbers of the full system matrix associated with the
local source terms for different numbers of hierarchy levels in two
dimensions, rounded to two significant figures. The correlation length
is set to ε = 2−7 and the oversampling parameter to m = 2.

HL 2−3 2−4 2−5 2−6

stochastic SLOD 510 7.2 · 103 1.1 · 105 1.9 · 106

stochastic HSLOD 510 1.1 · 103 1.6 · 103 2.6 · 103

computed using the L2-orthogonal projection ΠLuh of the reference solution.
This corresponds to the error reported in Theorem 6.2.1 with the first term
Ξ1 from the decomposition in (6.8) omitted. It also matches the error metric
considered in Section 5.6.

When considering the full error from (6.10), the first term is dominant, partic-
ularly in the two-dimensional case. This results in an overall error decay rate
of O(HL). The one-dimensional case also shows a dependence on HL, though
this decay is much weaker. For the complementary setting, where the number
of hierarchy levels is fixed and the correlation length ε is varied, the decay in ε
is approximately O(

√
ε) in one dimension and remains nearly constant in two

dimensions.
When excluding the first term of the error, i.e., when considering the truncated

error (6.11), the observed behavior aligns well with the results presented in
Section 5.6. Notably, the hierarchical construction appears to produce more
stable approximations, particularly in the one-dimensional case or when finer
levels are included in the hierarchy, compared to the two-level stochastic SLOD
method, which is highly sensitive to the correct parameter choice (especially in
1D) within the stabilization procedure described in Section 5.5. Furthermore,
the hierarchical method already yields good approximations with the minimal
choice m = 1.

Another advantage of the proposed hierarchical method is the significantly
improved conditioning of the system matrix associated with the deterministic
local source terms of the hierarchical basis functions, compared to the two-level
stochastic SLOD. This system matrix is used to compute the coefficients in the
collocation-type approximation. The improvement is demonstrated in Table 6.1,
which presents the condition numbers of the full system matrices for both the
stochastic SLOD and stochastic HSLOD methods in two dimensions, considering
a coefficient with correlation length ε = 2−7 and an oversampling parameter
m = 2. The lowest level in the hierarchy has a mesh size of 2−3, and the condition
numbers are shown for different numbers of hierarchy levels. Note that variations
in ε or m do not significantly affect the conditioning.

117





7. Conclusion and Outlook

This thesis has explored the development and analysis of advanced numerical
multiscale methods for solving elliptic diffusion problems with highly heteroge-
neous and, in some cases, random coefficients. Central to this work are several
extensions of the SLOD method, originally introduced in [HP22b].

We began by identifying the key challenges posed by classical FEMs when
applied to problems with fine-scale heterogeneities. In particular, the failure of
traditional approaches to capture multiscale features efficiently motivated the
need for more sophisticated discretization schemes. The concept of multiscale
approximation spaces derived from global solution operators was introduced as a
theoretical ideal. Although such spaces offer excellent approximation properties,
their global nature renders them impractical for computation. The LOD method
was introduced as a viable alternative, using localization strategies to construct
exponentially decaying basis functions, thus enabling a practical and scalable
multiscale method.

The SLOD method, introduced in the subsequent chapter, improves upon LOD
by achieving super-exponential decay of localized basis functions in practice. This
enhancement is accomplished through a refined localization strategy based on
minimizing conormal derivatives on patch boundaries. We rigorously established
this decay property in the case of a constant diffusion coefficient in Theorem 3.3.2.
Furthermore, we proposed new stabilization techniques which are also effective
in the stochastic or hierarchical settings in Sections 3.4.3 and 3.4.4.

In extending the SLOD framework to hierarchical settings, we developed the
HSLOD method. Starting from an existing SLOD approximation, this hier-
archical approach enables systematic accuracy improvement by incorporating
additional discretization levels. The hierarchical construction produces a sparse
and quasi-orthogonal basis, which facilitates an efficient multiresolution decom-
position of the solution space. The resulting stiffness matrix is block-diagonal,
with mesh-independent condition numbers for all but the first block (see Theo-
rem 4.5.3). Assuming stability and linear independence of the basis functions,
conditions that are practically ensured by the criterion in (4.9), we derived an
error estimate that matches those of the classical SLOD and LOD methods.

The final part of this thesis addressed stochastic settings, where the diffusion
coefficients are modeled as random fields. Building on the SLOD framework,
we developed a stochastic homogenization method tailored to such problems.
By exploiting the super-exponential decay of the localized basis functions, the
method enables efficient sampling and achieves significant computational savings.
Its collocation-type formulation eliminates the need to assemble a global stiff-
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ness matrix, thereby greatly enhancing parallelization and reducing the overall
assembly cost. A rigorous error analysis, grounded in the theory of quantitative
stochastic homogenization, is provided in Theorem 5.3.5. Additionally, leverag-
ing LOD techniques, we derived an a priori estimate for the localization error
indicator, as presented in Theorem 5.4.3.

Building on the concepts developed in the preceding chapters, we introduced
a novel hierarchical stochastic homogenization method. The hierarchical design
improves the conditioning of the system matrix associated with the local source
terms, enhancing both stability and computational efficiency. A rigorous error
analysis is presented in Theorem 6.2.1, and the theoretical results are supported
by numerical experiments.

Looking ahead, several promising directions and open questions emerge from
this work. A particularly challenging problem is the extension of the super-
localization results for SLOD basis functions to more general settings. While
the current result relies on the assumption A ≡ 1, it remains an open ques-
tion whether similar decay properties hold under more general, possibly rough,
coefficients or in domains with irregular boundaries. One potential avenue
involves tools from spectral geometry; however, this typically requires strong
regularity assumptions on both the coefficient field and the domain boundary
(cf. [HL01,PST15,GT16]), limiting its general applicability. Closely related is
the open problem of designing a stabilization technique for SLOD basis functions
that a priori guarantees both super-exponential decay and stability of the basis.

Another natural extension lies in adapting the HSLOD and stochastic ho-
mogenization methods to Helmholtz-type problems. Given the encouraging
performance of SLOD-based approaches in deterministic Helmholtz settings
(see [FHP24]), it is reasonable to expect that these hierarchical and stochastic
variants could also provide significant benefits for modeling wave propagation in
heterogeneous media.
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