
Universität Augsburg

KABCROMUNGSHO0

Robustness of a
bisimulation-type faster-than

relation

Katrin Iltgen

Report 2009-08 Mai 2009

Institut für Informatik

1

Copyright c© Katrin Iltgen

Institut für Informatik

Universität Augsburg

D–86135 Augsburg, Germany

http://www.Informatik.Uni-Augsburg.DE

— all rights reserved —

2

1 Introduction

This thesis is based on Gerald Lüttgen’s and Walter Vogler’s paper ’Bisimu-
lation on speed: worst case efficiency’ [LV04] in which they introduce a novel
bisimulation-based faster-than preorder. Their study is conducted for the pro-
cess algebra TACS (Timed Asynchronous Communication System) that in-
cludes time as an aspect of system behaviour. TACS is obtained from Milner’s
process algebra CCS [Mil89], which is extended by a discrete time step, de-
noted with ’σ’. This clock prefix stands for a time unit to pass or a single
clock tick that specifies an upper bound for delays and therefore determines
an upper time bound on action occurrences. The process σ.P can let time pass
and then behave like P or skip the time step and at once behave like P , hence
σ.P can at most delay one time unit before behaving like P. As a result, asyn-
chronous processes can be compared concerning their performance by taking
their worst-case timing behaviour into account. Thereby only the worst case
behaviour is regarded where the relative speeds of system components are in-
determinate. Time is added to CCS solely to compare asynchronous systems
and to evaluate the performance of processes, but not in order to influence
the functional behaviour of CCS-processes. Particularly, actions are neither
enabled nor disabled during the progress of time. Moreover, action transitions
are regarded as instantaneous. In [LV04] a simple, concise faster-than preorder
on processes, called naive faster-than preorder, is defined. Its justification as
a good and elegant candidate for a faster–than preorder is formally under-
pinned, as it coincides with some alternative, more complicated definitions of
preorders, which also formalize the idea of faster–than and possibly are intu-
itively more convincing. These preorders are called delayed faster-than pre-
order and indexed faster-than preorder. As it turns out the naive faster-than
preorder is not a precongruence, hence [LV04] defines the coarsest precongru-
ence contained in it and axiomatizes this precongruence for the class of finite
and sequential processes. Further, [LV04] investigates a corresponding ’weak’
preorder, which abstracts from internal, unobservable actions, and character-
izes the coarsest precongruence contained in it.

In this thesis, we will introduce further alternatives for a process to let time
pass without however influencing its functional behaviour. While in [LV04], a
process may skip any desired number of time steps when performing an action
transition, in our new setting a process may also skip any desired number of
σ-prefixes when performing a time step; for example the process P ≡ σ.σ.σ.a.0
may now skip one σ-prefix when performing a time step and behave like σ.a.0
afterwards. Thereby the concept of time determinism as an important property
in [LV04] is lost and we will justify this with sensible reasons.
The main aim in this thesis is to study the candidates for faster-than preorders
that are established in [LV04] in our new setting and prove that they coincide
with the original preorders. Thus, we formally underpin the robustness of the

3

technically simple naive faster-than relation of [LV04]. For this, the crucial
technical device is the syntactic coherence that relates the resulting processes
of the original and new time steps. Moreover, we will introduce a third variant
of a naive faster-than preorder whose definition combines new and old clock
transitions and that provides small relations to demonstrate a naive faster-
than relationship. In our search for reducing the size of relations, we as well
introduce a ’naive faster-than relation up to’ which is inspired by Milner’s
’up-to’-technique. Regrettably, it will turn out that the indexed faster-than
preorder as a third candidate for a faster-than preorder is not robust against
the transition extension and this can be explained by the absence of time
determinism. Further, we will study the precongruence in our new setting and
show that it coincides with the original precongruence. Finally, it is quite easy
to carry over our proof techniques to the weak variants.

This thesis is organised as follows. The next section presents the syntax and
semantics of the process algebra TACS, based on [LV04] and extended by
the novel transitions. Moreover, we get familiar with the nature of the new
transitions and point out some important properties. In Section 3, we com-
pare the previous time steps to the newly established time steps and develop
differences as well as the syntactic and semantic coherences. Subsequently,
we demonstrate the robustness of the naive faster-than preorder against the
transition extension in Section 4. Furthermore, we introduce a third variant
of a naive faster-than preorder, which also coincides with the original naive
faster-than preorder, and a ’naive faster-than relation up to’ in Section 4. Both
relations are a technique for reducing the size of relations needed to demon-
strate a naive faster-than relationship. Section 5 proves the robustness of the
delayed faster-than preorder, while Section 6 demonstrates the defect of the
extended indexed faster-than preorder. In Section 7 and 8, we will establish the
robustness of the precongruence and its corresponding weak variant. Finally,
we draw a short conclusion in Section 9.

2 TACS

In this section we introduce the syntax and the semantics of the process algebra
TACS as defined in [LV04].
As explained in the introduction, TACS extends CCS by a discrete time step,
denoted with ’σ’. The progress of time manifests itself in a clock transition as
a recurrent global synchronization event. Yet, we have to distinguish a clock
transition from a σ-prefix, which locally provides a process with the possibility
to wait.

4

2.1 Syntax of TACS

Definition 1 Let Λ be a countable set of action names or ports a, b, c.
Let Λ =df {a|a ∈ Λ} be the set of complementary action names a, b, c.
Let A =df Λ ∪ Λ ∪ {τ} be the set of all actions α, β, γ.
We define a =df a for all a ∈ Λ.

With every action a ∈ Λ we associate a complementary action a ∈ Λ. As in
CCS [Mil89] a complementary action pair a and a is a means for synchronized
actions, or local handshakes. If a shared transition of two processes occurs in
such a way that an action a is synchronised with an action a, this leads to the
unobservable, internal action τ . Being unobservable, τ has no complementary
action. As an example for a local handshake consider the transition
a.0 | (b.0 + a.c.0)

τ−→ 0 | c.0.

A TACS term is defined as follows:

Definition 2 Let V be a countably infinite set of variables. A term is defined
as

(1) 0
(2) x ∈ V
(3) α.P , α ∈ A (prefix)
(4) σ.P (clock prefix)
(5) P1 + P2 (choice)
(6) P1 |P2 (parallel composition)
(7) P \ L (restriction), where

L ⊆ Λ ∪ Λ is a finite restriction set.
(8) P [f] (relabeling), where

f is a finite relabeling function satisfying f(a) = a′ ⇒ f(a) = a′; f(τ) = τ ;
|{α | f(α) 6= α}| <∞

(9) µx.P (recursion)

in which P, P1 and P2 are terms.
P̂ is the set of all terms.

0 denotes the inactive process nil.

The binding strength of a σ-prefix is the same as for action-prefixes, i.e. the
binding of a σ-prefix is weaker than the binding of restriction and relabeling
operators, but dominates the binding strength of parallel composition, which
again is stronger than the binding of choice. The recursion operator µx. binds
as strong as a σ-prefix.

5

In TACS terms free and bound variables are defined in the usual fashion,
where the recursion operator µx. binds the variable x. The occurrence of a
variable x ∈ V is bound in a TACS term P ∈ P̂ if it falls within the scope of a
recursion operator µx. Closed terms are TACS terms which only contain bound
occurrences of variables. Conversely, open terms may include free variables.
A variable x ∈ V is called guarded in a TACS term P , if each occurrence of
the variable falls within the scope of an α-prefix for an α ∈ A. A TACS term
P is guarded, if all occurring variables are guarded. As an example, the term
µx.(a.(c.0+x) |µy.y) is not guarded, as y is not guarded. However, it is closed
as all occurrences of x and y are bound. The term µx.a.(c.y+x) is open, since
y is not bound, but guarded as x and y are guarded.
We require for terms of the form µx.P that x is guarded in P .

The set of processes, denoted with P , is defined as the set of all closed and
guarded TACS terms.

P [Q/x] denotes the simultaneous syntactic substitution of Q for all free occur-
rences of x, which is done by Barendregt’s convention with the usual care to
avoid the capturing of free variables, i.e. we may assume that no free variable
of Q is bound in P .

2.2 Semantics of TACS

The operational semantics of TACS is described by a labelled transition sys-
tem, which is defined as 〈P̂ ,A ∪ {σ},−→〉 where P̂ is the set of states, A∪{σ}
the alphabet and −→⊆ P̂ × (A ∪ {σ}) × P̂ the transition relation. In this
thesis, the transition relation defined in [LV04] is denoted with −→1. Further,
we call the newly established, extended transition relation −→2. The naming
is justified as the type-1-transitions were introduced at an earlier point of time
than the type-2-transitions and since the type-2-transitions extend the type-
1-transitions. For both types, the operational semantics involves two kind of
transitions, action transitions and clock transitions.

As the structural operational rules that describe the operational semantics
refer to the urgent actions of processes, it is convenient to introduce the urgent
set of a process before. As in [LV04], we define the urgent set U(P) of a term
P ∈ P̂ , which includes the set of urgent actions of P , in Table 1. The urgent
actions of a processes are those actions in which a process can initially engage
and that are not in the scope of a σ-prefix. Note that an urgent τ also results
from the occurrence of the matching urgent communication actions a and a
according to the inductive definition for U(P |Q) in Table 1.

6

Table 1
Urgent action sets

U(σ.P) =df ∅ U(0) = U(x) =df ∅ U(P \ L) =df U(P) \ (L ∪ L)

U(α.P) =df {α} U(P +Q) =df U(P) ∪ U(Q) U(P [f]) =df {f(α) |α ∈ U(P)}

U(µx.P) =df U(P) U(P |Q) =df U(P) ∪ U(Q) ∪ {τ | U(P) ∩ U(Q) 6= ∅}

Table 2
Operational semantics for TACS (action transitions)

Act
−−

α.P
α−→i P

Pre
P

α−→i P
′

σ.P
α−→i P ′

Rec
P

α−→i P
′

µx.P
α−→i P ′[µx.P/x]

Sum1
P

α−→i P
′

P +Q
α−→i P ′

Sum2
Q

α−→i Q
′

P +Q
α−→i Q′

Com1
P

α−→i P
′

P |Q α−→i P ′|Q
Com2

Q
α−→i Q

′

P |Q α−→i P |Q′
Com3

P
a−→i P

′ Q
a−→i Q

′

P |Q τ−→i P ′|Q′

Rel
P

α−→i P
′

P [f]
f(α)−→i P ′[f]

Res
P

α−→i P
′

P \ L α−→i P ′ \ L
α /∈ L ∪ L

Table 3
Operational semantics for TACS (clock transitions)

tNil
−−

0 σ−→i 0
tRec

P
σ−→i P

′

µx.P
σ−→i P ′[µx.P/x]

tRes
P

σ−→i P
′

P \ L σ−→i P ′ \ L

tAct
−−

a.P
σ−→i a.P

tSum
P

σ−→i P
′ Q

σ−→i Q
′

P +Q
σ−→i P ′ +Q′

tRel
P

σ−→i P
′

P [f] σ−→i P ′[f]

tPre
−−

σ.P
σ−→i P

tCom
P

σ−→i P
′ Q

σ−→i Q
′

P |Q σ−→i P ′|Q′
τ /∈ U(P |Q)

tnew
P

σ−→2 P
′

σ.P
σ−→2 P ′

Now we are able to define the structural operational rules, abbreviated by SOS-
rules where SOS stands for Structured Operational Semantics. The SOS-rules
for action transitions are displayed in Table 2, the ones for clock transitions in

7

Table 3 for i ∈ {1, 2}. Both tables are adopted from [LV04] with the exception
of the new rule (tnew).
In the sequel we will use indexed SOS-rules in order to, for example, clearly dis-
tinguish the SOS-rule (tNil)1 for type-1-transitions from the SOS-rule (tNil)2

for type-2-transitions.

Furthermore, −→i
+ denotes the transitive closure of the transition relation

−→i for i ∈ {1, 2} and −→i
∗ stands for the reflexive and transitive closure.

The action transitions are exactly the same rules as for standard CCS, with
the exception of the new rule (Pre). The rule (Pre) is intuitively sensible as
σ.P has the same functional behaviour as P since σ.P can skip the time step
and functionally behave like P .
Now we have a closer look at some of the clock transition SOS-rules. The
inactive process may idle, i.e. perform a clock transition to itself. Analogously,
the term a.P for an a ∈ Λ∪Λ may wait for some communication partner when
performing a time step without changing its state. The process σ.P can wait
one time unit and afterwards behave like P . A process of the form P + Q can
only perform a time step if time progresses equally on both sides, whence the
progress of time does not determine choice but delays it. Processes involving
parallel composition of the form P |Q can only wait if all components are able
to let time pass and if the side condition τ /∈ U(P |Q) is fulfilled.

In [LV04] the Maximal Progress Assumption is employed. According to the
Maximal Progress Assumption a system can only let time pass, if it cannot
do any internal computation, but has to wait for a communication partner.
The approach in [LV04] differs from this strong concept insofar that a process
P can only perform a time step if it cannot engage in any urgent internal
computation or communication with the environment. As an example, a is
non-urgent in σ.a.0. The process can let time pass and thus can delay any
enabled communication on port a by one time unit, even a communication
with a process with an urgent a. However a is urgent in a.0, i.e. the process
a.0 must at once engage in a communication with a process with an urgent
action a. If such a communication partner does not exist or such a possible
communication partner performs an unshared action a or engages in an inter-
nal communication with a third port, the process is allowed to wait until some
other communication partner is ready. In summary, the system can always let
time pass if no urgent internal τ inhibits a time step, i.e. P

σ−→ if and only if
τ /∈ U(P). This approach concretises the intuition of upper–time bounds and
performance guarantee.

The newly established type-2-transitions extend the type-1-time steps by the
additional SOS-Rule (tnew). Intuitively, this new rule enables the processes to
skip σ-prefixes when performing a time step. As an example consider the pro-
cess P ≡ σ.σ.σ.a.b.0 that may now either skip one or two time steps when per-

8

forming a time step by type-2-transitions of the form σ.σ.σ.a.b.0
σ−→2 σ.a.b.0

or σ.σ.σ.a.b.0
σ−→2 a.b.0. Obviously, there is not an analogous type-1-time

step for every type-2 time step. In order to get an impression of the timing be-
haviour in our new setting, consider the following two examples displaying the
labelled transition system for the start processes σ.σσ.a.0 and σσ.a.0 | σ.σ.a.0,
restricted to clock transitions. The ’real’ type-2-time steps, that are not as well
type-1-time steps are illustrated as dashed arrows.

Fig. 1. new transitions

Fig. 2. new transitions for parallel composition

9

Observe, that processes involving parallel composition are often able to per-
form a variety of different type-2-time steps as pointed out in Figure 2.

Furthermore, both figures support the conjecture that the transition relation
−→2 restricted to clock transitions is transitive, which we will state and prove
in one of our next lemmas. Before proceeding, it is convenient to establish
a lemma that highlights the interplay between our transition relation and
substitution and that will be employed in some of the following proofs. Part (2)
and Part (3) are given in [LV04] for type-1-transitions and are studied now in
our new setting. Thereby, Part (3) is adopted in a simplified formulation. Part
(1) is a technical lemma that concerns the preservation of guarded variables
under substitution and which is needed for the proofs of Part (2) and Part
(3).

Lemma 3 Let P, P ′, Q ∈ P̂ and γ ∈ A ∪ {σ}.

(1) [LV04][Lemma 8(1)] If x is guarded in P , then U(P [Q/x]) = U(P).

(2) P
γ−→2 P

′ implies P [µy.Q/y]
γ−→2 P

′[µy.Q/y].

(3) y guarded in P and P [µy.Q/y]
γ−→2 P

′ implies

∃P ′′ ∈ P̂ . P γ−→2 P
′′ and P ′ ≡ P ′′[µy.Q/y].

Proof.

Part (1) is taken from [LV04], hence a proof is not necessary. Since Part (2)
and Part (3) are not proven in [LV04], we will prove it here at least for i = 2.
The proofs for case i = 1 are contained in them.
The proof of Part (2) is by induction on the inference length of P

γ−→2 P
′.

(1) Act If α.P1
α−→2 P1 by (Act), we can as well conclude (α.P1)[µy.Q/y] ≡

α.P1[µy.Q/y]
α−→2 P1[µy.Q/y] by (Act).

(2) Pre If σ.P1
α−→2 P ′, due to P1

α−→2 P ′ by Rule (Pre), then, by the
induction hypothesis, P1

α−→2 P ′ implies P1[µy.Q/y]
α−→2 P ′[µy.Q/y]

By using (Pre) we can conclude (σ.P1)[µy.Q/y] ≡ σ.P1[µy.Q/y]
α−→2

P ′[µy.Q/y].
(3) Sum1, Sum2 If P1 + P2

α−→2 P
′
1, due to P1

α−→2 P
′
1 by (Sum1), then by

the induction hypothesis, we get P1[µy.Q/y]
α−→2 P

′
1[µy.Q/y] and (P1 +

P2)[µy.Q/y] ≡ P1[µy.Q/y] + P2[µy.Q/y]
α−→2 P

′
1[µy.Q/y] by (Sum1).

The case for Rule (Sum2) is analogous.
(4) Com1, Com2 Theses cases are analogous to (Sum1) and (Sum2).

(5) Com3 Consider the case that P1|P2
τ−→2 P

′
1|P ′2, due to P1

a−→2 P
′
1 and

P2
a−→2 P

′
2 by (Com3). We may assume P1[µy.Q/y]

a−→2 P
′
1[µy.Q/y] and

P2[µy.Q/y]
a−→2 P

′
2[µy.Q/y] by induction.

(P1|P2)[µy.Q/y] ≡ P1[µy.Q/y]|P2[µy.Q/y]
τ−→2 P

′
1[µy.Q/x]|P ′2[µy.Q/x] ≡

(P ′1|P ′2)[µy.Q/y] follows by application of Rule (Com3).

10

(6) Res Let P1 \ L
α−→2 P

′
1 \ L, due to P1

α−→2 P
′
1 by Rule (Res), where the

side condition α 6∈ L ∪ L is fulfilled. Then, by the induction hypothesis,
P1

α−→2 P
′
1 implies P1[µy.Q/y]

α−→2 P
′
1[µy.Q/y].

By using (Res) we can conclude (P1 \ L)[µy.Q/y] ≡ P1[µy.Q/y] \ L α−→2

P ′1[µy.Q/y] \ L ≡ (P ′1 \ L)[µy.Q/y], since α 6∈ L ∪ L.

(7) Rel If P1[f]
f(α)−→2 P

′
1[f], due to P1

α−→2 P
′
1 by Rule (Rel), then, by the

induction hypothesis, P1
α−→2 P

′
1 implies P1[µy.Q/y]

α−→2 P
′
1[µy.Q/y].

By using (Rel) we can conclude (P1[f])[µy.Q/y] ≡ P1[µy.Q/y][f]
f(α)−→2

P ′1[µy.Q/y][f] ≡ (P ′1[f])[µy.Q/y].
(8) Rec Consider the case that µx.P1

α−→2 P
′
1[µx.P1/x], due to P1

α−→2 P
′
1

by (tRec). Since x is neither free in µx.P1 nor in P ′1[µx.P1/x] we can
assume that x 6≡ y. By Barendregt’s convention we can assume that
there is no free occurrence of x in Q. We may assume by induction
that P1[µy.Q/y]

α−→2 P
′
1[µy.Q/y]. By application of rule (Rec) we ob-

tain µx.(P1[µy.Q/y])
α−→2 P

′
1[µy.Q/y][µx.(P1[µy.Q/y])/x]. Since x 6≡ y

and there is no free occurrence of x in Q, we get
P ′1[µy.Q/y][µx.P1[µy.Q/y]/x] ≡ P ′1[µx.P1/x][µy.Q/y].
Further, µx.(P1[µy.Q/y]) ≡ (µx.P1)[µy.Q/y] obviously holds, since x 6≡ y
and there is no free occurrence of x in Q.

(9) tNil If 0
σ−→2 0 by Rule (tNil) we infer 0[µy.Q/y] ≡ 0

σ−→2 0 ≡
0[µy.Q/y] as well by Rule (tNil).

(10) tAct If a.P1
σ−→2 a.P1 by (tAct) we can as well conclude (a.P1)[µy.Q/y] ≡

a.P1[µy.Q/y]
σ−→2 a.P1[µy.Q/y] ≡ (a.P1)[µy.Q/y] by (tAct).

(11) tPre If σ.P1
σ−→2 P1 by (tPre), then the time step (σ.P1)[µy.Q/y] ≡

σ.P1[µy.Q/y]
σ−→2 P1[µy.Q/y] can be as well inferred by (tPre).

(11a) (tnew) If σ.P1
σ−→2 P ′, due to P1

σ−→2 P ′ by (tnew), then we may

assume P1[µy.Q/y]
σ−→2 P

′[µy.Q/y] by induction and (σ.P1)[µy.Q/y] ≡
σ.P1[µy.Q/y]

σ−→2 P
′[µy.Q/y] by (tnew).

(12) tSum If P1 + P2
σ−→2 P ′1 + P ′2, due to P1

σ−→2 P ′1 and P2
σ−→2 P ′2

by (tSum), then by the induction hypothesis, we get P1[µy.Q/y]
σ−→2

P ′1[µy.Q/y] as well as P2[µy.Q/y]
σ−→2 P

′
2[µy.Q/y] and hence conclude

that (P1 + P2)[µy.Q/y] ≡ P1[µy.Q/y] + P2[µy.Q/y]
σ−→2 P

′
1[µy.Q/y] +

P ′2[µy.Q/y] ≡ (P ′1 + P ′2)[µy.Q/y] by (tSum).
(13) tCom If P1|P2

σ−→2 P
′
1 | P ′2, due to P1

σ−→2 P
′
1 and P2

σ−→2 P
′
2 by (tCom),

then by the induction hypothesis, we get P1[µy.Q/y]
σ−→2 P

′
1[µy.Q/y] as

well as P2[µy.Q/y]
σ−→2 P

′
2[µy.Q/y] and hence conclude that

(P1|P2)[µy.Q/y] ≡ P1[µy.Q/y] |P2[µy.Q/y]
σ−→2 P

′
1[µy.Q/y]|P ′2[µy.Q/y] ≡

(P ′1|P ′2)[µy.Q/y] by (tCom). Additionally we must check the side condi-
tion, which is fulfilled as τ /∈ U(P1|P2) implies τ /∈ U(P1[µy.Q/y]|P2[µy.Q/y])
by Part (1) of this lemma as y is guarded in P1 and P2.

(14) tRes Analogous to (Res) without regarding the side condition.
(15) tRel Analogous to (Rel).
(16) tRec Analogous to (Rec)

11

The proof of Part (3) is by induction on the structure of P .

(1) P ≡ 0. The inactive process 0[µy.Q/y] ≡ 0 is not able to perform an
action transition. Any clock transitions is of the form 0[µy.Q/y]

σ−→2 0.
Then P ′′ ≡ 0 since 0

σ−→2 0 and 0 ≡ 0[µy.Q/y].
(2) P ≡ x. If x 6= y, then x[µy.Q/y] ≡ x. Otherwise, if x = y, then y is not

guarded in P ≡ x.
(3) P ≡ α.P1. Any α-transition is of the form

(α.P1)[µy.Q/y] ≡ α.P1[µy.Q/y]
α−→2 P1[µy.Q/y] by (Act). Thus, P ′′ ≡

P1 as α.P1
α−→2 P1 by Rule (Act) and P1[µy.Q/y] ≡ P1[µy.Q/y] obviously

holds.
If (α.P1)[µy.Q/y] performs a time step
(α.P1)[µy.Q/y] ≡ α.P1[µy.Q/y]

σ−→2 α.P1[µy.Q/y] ≡ (α.P1)[µy.Q/y] by
(tAct), then α 6= τ and P ′′ ≡ α.P1 with α.P1

σ−→2 α.P1 by Rule (tAct)
and (α.P1)[µy.Q/y] ≡ (α.P1)[µy.Q/y].

(4) P ≡ σ.P1 Any action transition is of the form σ.P1[µy.Q/y]
α−→2 P

′, due

to P1[µy.Q/y]
α−→2 P

′ by (Pre). We can assume by induction that there
exists a P ′′ with P1

α−→2 P
′′ and P ′ ≡ P ′′[µy.Q/y]. By (Pre) we infer

σ.P1
α−→2 P

′′ from P1
α−→2 P

′′.
Any clock transition of σ.P1[µy.Q/y] can either be performed by Rule
(tPre) or Rule (tnew).
Let σ.P1[µy.Q/y]

σ−→2 P1[µy.Q/y] by (tPre).
Then, P ′′ ≡ P1 with σ.P1

σ−→2 P1 by (tPre) and P1[µy.Q/y] ≡ P1[µy.Q/y].
Consider the case that σ.P1[µy.Q/y]

σ−→2 P
′, due to P1[µy.Q/y]

σ−→2 P
′

by (tnew). We may assume that there exists some P ′′ in such a way that
P1

σ−→2 P
′′ as well as P ′ ≡ P ′′[µy.Q/y] is fullfilled. Hence, σ.P1

σ−→2 P
′

by application of Rule (tnew).
(5) P ≡ P1 + P2 Firstly, any α-transition of (P1 +P2)[µy.Q/y] is of the form

(P1 + P2)[µy.Q/y] ≡ P1[µy.Q/y] + P2[µy.Q/y]
α−→2 P

′ by (Sum1) or by
(Sum2). We consider only the case for (Sum1), since the case for (Sum2)
is analogous. If (P1 +P2)[µy.Q/y]

α−→2 P
′, due to P1[µy.Q/y]

α−→2 P
′ we

may assume P1
α−→2 P

′′ as well as P ′ ≡ P ′′[µy.Q/y] for some P ′′. Finally,
we get P1 + P2

α−→2 P
′′ by (Sum1).

Secondly, any enabled clock transition is of the form (P1 +P2)[µy.Q/y] ≡
P1[µy.Q/y] + P2[µy.Q/y]

σ−→2 P
′
1 + P ′2, due to P1[µy.Q/y]

σ−→2 P
′
1 and

P2[µy.Q/y]
σ−→2 P

′
2 by (tSum). Hence, by the induction hypothesis we

may assume that P1
σ−→2 P

′′
1 and P ′1 ≡ P ′′1 [µy.Q/y] for some P ′′1 as well as

P2
σ−→2 P

′′
2 and P ′2 ≡ P ′′2 [µy.Q/y] for some P ′′2 . In conclusion, we define

P ′′ ≡ P ′′1 + P ′′2 , get P1 + P2
σ−→2 P ′′1 + P ′′2 by (tSum) and may write

P ′1 + P ′2 ≡ P ′′1 [µy.Q/y] + P ′′2 [µy.Q/y] ≡ (P ′′1 + P ′′2)[µy.Q/y].
(6) P ≡ P1|P2 The cases for (Com1) and (Com2) are analogous to (Sum1)

and (Sum2). The case for (Com3) is similar and therefore omitted here.
The treatment of a clock transition by (tCom) follows in analogy to
(tSum) besides that we additionally must take into consideration the

12

side condition. For this, observe that τ /∈ U(P1[µy.Q/y]|P2[µy.Q/y]) im-
plies τ /∈ U(P1|P2), since y is guarded in P1|P2 by using Part (1) of this
lemma.

(7) P ≡ P1 \ L Any α-transition of (P1 \ L)[µy.Q/y] is of the form (P1 \
L)[µy.Q/y] ≡ P1[µy.Q/y] \ L α−→2 P

′
1 \ L, due to P1[µy.Q/y]

α−→2 P
′
1 by

(Res) and α /∈ L∪L. Then, we get P1
α−→2 P

′′
1 and P ′1 ≡ P ′′1 [µy.Q/y] for

some P ′′1 by the induction hypothesis. We are ready since we can define
P ′′ ≡ P ′′1 \ L, obtain P1 \ L

α−→2 P
′′
1 \ L by (Res), as α /∈ L ∪ L, and can

infer P ′1 \L ≡ P ′′1 [µy.Q/y]\L ≡ (P ′′1 \L)[µy.Q/y] from P ′1 ≡ P ′′1 [µy.Q/y].
The case for (tRes) is analogous and even easier as we do not have to
regard a side condition.

(8) P ≡ P1[f] Any α-transition of (P1[f])[µy.Q/y] is of the form

(P1[f])[µy.Q/y] ≡ P1[µy.Q/y][f]
f(α)−→2 P

′
1[f], due to P1[µy.Q/y]

α−→2 P
′
1

by (Rel). Then, we get P1
f(α)−→2 P

′′
1 and P ′1 ≡ P ′′1 [µy.Q/y] for some P ′′1 by

the induction hypothesis. We are ready since we can define P ′′ ≡ P ′′1 [f],
obtain P1[f]

α−→2 P
′′
1 [f] by (Rel) and can infer P ′1[f] ≡ P ′′1 [µy.Q/y][f] ≡

(P ′′1 [f])[µy.Q/y] from P ′1 ≡ P ′′1 [µy.Q/y].
The case for (tRel) is analogous.

(9) µx.P1 We may assume that there is no free occurence of x in Q by Baren-
dregt’s convention and further may assume that x 6≡ y, since x is not free
in µx.P1. Any α-transition of (µx.P1)[µy.Q/y] is of the form
(µx.P1)[µy.Q/y] ≡ µx.(P1[µy.Q/y])

α−→2 P ′1[µx.P1[µy.Q/y]/x], due to
P1[µy.Q/y]

α−→2 P
′
1 by (Rec) and by using the above statements. By in-

duction hypothesis, we may assume P1
α−→2 P

′′
1 and P ′1 ≡ P ′′1 [µy.Q/y] for

some P ′′1 . We define P ′′ ≡ P ′′1 [µx.P1/x] and obtain µx.P1
α−→2 P

′′
1 [µx.P1/x],

due to P1
α−→2 P

′′
1 by (Rec). Thus, we are left with showing

P ′1[µx.P1[µy.Q/y]/x] ≡ P ′′1 [µx.P1/x][µy.Q/y]. As P ′1 ≡ P ′′1 [µy.Q/y] holds
by induction hypothesis, we may conclude P ′1[µx.P1[µy.Q/y]/x]
≡ P ′′1 [µy.Q/y][µx.P1[µy.Q/y]/x] ≡ P ′′1 [µx.P1/x][µy.Q/y] using the above
statements. The treatment of the case for Rule (tRes) is analogous. 2

Now we are able to introduce and prove the lemma stating that the transition
relation

σ−→2 is transitive. In the proof of this lemma and in other following
proofs, we will use a property of time steps, which is concerned with the
preservation of guardness under a time step: P

σ−→i P
′ for some i ∈ {1, 2}

and x guarded in P implies that x is also guarded in P ′. The correctness of this
statement is obvious, as a process does not change its functional behaviour
during the progress of time. Thus, any action prefix that guards a variable x
in P , also guards x in P ′. Therefore, we dispense with a proof by induction
on the length of inference of P

σ−→i P
′ for i ∈ {1, 2}.

Proposition 4 Let P, P ′, P ′′ ∈ P̂.
P

σ−→2 P
′ σ−→2 P

′′ implies P
σ−→2 P

′′.

13

Proof. This proposition can be proved by induction on the structure of P .

(1) 0: Let P ≡ 0. Any clock-transition of P as well as of P ′ is by (tNil),
hence P ′ ≡ P ′′ ≡ 0. We may conclude P ≡ 0

σ−→2 0 ≡ P ′′ by (tNil).
(2) x: No clock transitions can be derived by SOS-rules.
(3) α.P1: Let P ≡ α.P1.

If α ≡ τ , α.P1 cannot perform a time step. If α ≡ a where a ∈ Λ∪Λ, any
type-2-clock transition of P and P ′ is by (tAct), hence P ′ ≡ P ′′ ≡ α.P1.
We are ready, since we get P ≡ a.P1

σ−→2 a.P1 ≡ P ′′ by (tAct).
(4) σ.P1: Let P ≡ σ.P1.

If σ.P1
σ−→2 P1 ≡ P ′ by (tPre) and P ′

σ−→2 P
′′ by an arbitrary SOS-rule

for clock transitions, we can infer σ.P1 ≡ σ.P ′
σ−→2 P

′′, due to P ′
σ−→2 P

′′

by (tnew) .
Let now be σ.P1

σ−→2 P
′, due to P1

σ−→2 P
′ by (tnew) and P ′

σ−→2 P
′′

by an arbitrary SOS-rule for clock transitions. Then, by the induction
hypothesis, P1

σ−→2 P
′ σ−→2 P

′′ implies P1
σ−→2 P

′′. Using (tnew) we
may conclude σ.P1

σ−→2 P
′′.

(5) P1 + P2: Let P ≡ P1 + P2.

Any time step of P as well as of P ′ is of the form P1+P2
σ−→2 P

′
1+P ′2

σ−→2

P ′′1 +P ′′2 , due to P1
σ−→2 P

′
1

σ−→2 P
′′
1 and P2

σ−→2 P
′
2

σ−→2 P
′′
2 by (tSum).

P1
σ−→2 P

′
1

σ−→2 P
′′
1 leads to P1

σ−→2 P
′′
1 by induction. Analogously, we

get P2
σ−→2 P

′′
2 and may conclude P1 + P2

σ−→2 P
′′
1 + P ′′2 by application

of Rule (tSum).
(6) P1|P2: Analogous to (5), observing the side condition τ /∈ U(P1|P2) in

the case of (tCom).
(7) P1 \ L: Any time step of P as well as of P ′ is of the form P1 \ L

σ−→2

P ′1 \ L
σ−→2 P

′′
1 \ L, due to P1

σ−→2 P
′
1

σ−→2 P
′′
1 by (tRes). By induction

hypothesis, P1
σ−→2 P

′
1

σ−→2 P
′′
1 implies P1

σ−→2 P
′′
1 . By application of

(tRes), we get P1 \ L
σ−→2 P

′′
1 \ L.

(8) P1[f]: The treatment of this case is analogous to (7).
(9) µx.P1: Let P ≡ µx.P1.

Consider the case µx.P1
σ−→2 P

′
1[µx.P1/x], due to P1

σ−→2 P
′
1 by (tRec)

and P ′1[µx.P1/x]
σ−→2 P

′′ by an arbitrary SOS-rule.
Since we require for terms of the form µx.P1 that x is guarded in P1, x
is also guarded in P ′1, due to P1

σ−→2 P
′
1, as explained above.

Using Lemma 3(3), we obtain P ′1
σ−→2 P ′′1 and P ′′ ≡ P ′′1 [µx.P1/x] for

some P ′′1 ∈ P , since x is guarded in P ′1.
By induction, we infer P1

σ−→2 P
′′
1 from P1

σ−→2 P
′
1

σ−→2 P
′′
1 . Finally, we

may conclude µx.P1
σ−→2 P

′′
1 [µx.P1/x] ≡ P ′′ by (tRec). 2

The following proposition describes the interplay between clock transitions
and actions transitions and is adopted from [LV04] for i = 1.

Proposition 5 [LV04][Lemma 1 for i = 1] Let P, P ′, P ′′ be processes, with no

14

occurrence of parallel composition in P , and let α ∈ A, i ∈ {1, 2}.

(1) P
σ−→i P

′ α−→i P
′′ implies P

α−→i P
′′.

(2) P
σ−→i P

′ and P
α−→i P

′′ implies P ′
α−→i P

′′.

Part (1) points out that only upper time bounds are considered in TACS. A
process P which is enabled to perform a time step can either let time pass or
skip the time step and perform any action transition that P ′ can engage in.
Part (2) highlights the persistence property of processes, stating that while
its functional behaviour is not influenced during the progress of time, the
structure of a process can change.
Both parts are given in [LV04] for i = 1 (without proof) and are also valid
when we include our newly established type-2-transitions.

Proof. Part (1) and Part (2) are not proven in [LV04], we will prove them
here for i = 2 by induction on the structure of P . The proofs for i = 1 are
containd in the proofs for i = 2.
Proof of Part (1):

(1) P ≡ 0
The only possible time step of P is of the form 0

σ−→2 0 by (tNil). How-
ever the inactive process 0 is not able to perform any action transition.

(2) P ≡ x
No clock transitions can be derived from SOS rules.

(3) P ≡ α.P1

If α ≡ τ , then P is not able to perform a time step. Any time step of P
is of the form a.P1

σ−→2 a.P1 for a ∈ Λ ∪ Λ by Rule (tAct). a.P1
a−→2 P1

by (Act) is the only action transition a.P1 can perform. a.P1
a−→2 P1 is

obvious by rule (Act).
(4) P ≡ σ.P1

σ.P1 can perform a time step by Rule (tPre) or (tnew).
If σ.P1

σ−→2 P1
α−→2 P

′′ by application of Rule (tPre) for the time step,
then we conclude σ.P1

α−→2 P
′′ from P1

α−→2 P
′′ by Rule (Pre).

If σ.P1
σ−→2 P

′ α−→2 P
′′, due to P1

σ−→2 P
′ by using (tnew), then, by the

induction hypothesis, P1
σ−→2 P

′ α−→2 P
′′ implies P1

α−→2 P
′′. Thus, we

conclude that σ.P1
α−→2 P

′′ by application of Rule (Pre).
(5) P ≡ P1 + P2

Any clock transition of P1 + P2 is of the form P1 + P2
σ−→2 P

′
1 + P ′2, due

to P1
σ−→2 P

′
1 as well as P2

σ−→2 P
′
2 by (tSum). Further, P ′1 + P ′2 is able

to perform an action transition by (Sum1) or (Sum2). If P ′1 + P ′2
α−→2

P ′′1 , due to P ′1
α−→2 P

′′
1 by (Sum1), then, by the induction hypothesis,

P1
σ−→2 P ′1

α−→2 P ′′1 implies P1
α−→2 P ′′1 . Using (Sum1) we conclude

P1 + P2
α−→2 P

′′
1 .

The case for (Sum2) is analogous to the previous case.

15

(6) P ≡ P1 \ L
Any clock transition of P1 \ L is of the form P1 \ L

σ−→2 P
′
1 \ L, due to

P1
σ−→2 P

′
1 by (tRes). The only action transitions of P ′1\L are of the form

P ′1 \L
α−→2 P

′′
1 \L, due to P ′1

α−→2 P
′′
1 by (Res), provided that α /∈ L∪L.

Then, according to the induction hypothesis, P1
σ−→2 P

′
1

α−→2 P
′′
1 implies

P1
α−→2 P

′′
1 . We conclude P1 \ L

α−→2 P
′′
1 \ L by (Res) since α /∈ L ∪ L.

(7) P ≡ P1[f]
This case is similar to the previous case and therefore omitted here.

(8) P ≡ µx.P1

µx.P1 can only perform clock transitions of the form
µx.P1

σ−→2 P
′
1[µx.P1/x], due to P1

σ−→2 P
′
1 by (tRec). Further, P ′1[µx.P1/x]

may perform an action-transition by an arbitrary SOS rule for action
transitions of the form P ′1[µx.P1/x]

α−→2 P
′′
1 . Note, that we require for

terms of the form µx.P1 that x is guarded in P1. Due to to P1
σ−→2 P

′
1, x

is as well guarded in P ′1 using the usual argumentation. Hence, we obtain
P ′1

α−→2 P
′′ and P ′′1 ≡ P ′′[µx.P1/x] for some P ′′ by using Lemma 3(3).

Consequently we may assume P1
α−→2 P

′′ by induction hypothesis and
infer µx.P1

α−→2 P
′′[µx.P1/x] ≡ P ′′1 by (Rec). 2

Proof of Part (2):

(1) P ≡ 0
Any possible clock transition of P is of the form 0

σ−→2 0 by (tNil)
However, the inactive process is not able to perform an action transition.

(2) P ≡ x
Neither clock transitions nor action transitions can be derived from SOS
rules.

(3) P ≡ α.P1.

Any clock transition of P is of the form α.P1
σ−→2 α.P1 for α ≡ a by Rule

(tAct) and any action transition is of the form α.P1
α−→2 P1 by (Act).

α.P1
α−→2 P1 is obvious by rule (Act).

(4) P ≡ σ.P1

σ.P1 can perform a time step by Rule (tPre) or (tnew).
Firstly, we consider the case that σ.P1

σ−→2 P1 by application of Rule
(tPre) for the time step. Since the α-transitions of P are of the form
σ.P1

α−→2 P
′′, for P1

α−→2 P
′′ by the assumption of Rule (Pre), we are

done.
Secondly, we consider the case that σ.P1

σ−→2 P ′, due to P1
σ−→2 P ′

by using (tnew). Analogously to the previous case, the α-transitions of
P are of the form σ.P1

α−→2 P
′′ and we get P1

α−→2 P
′′ by Rule (Pre).

Further, we conclude P ′
α−→2 P

′′ from P1
σ−→2 P

′ and P1
α−→2 P

′′, by
the induction hypothesis.

(5) P ≡ P1 + P2

Any clock transition of P1 + P2 is of the form P1 + P2
σ−→2 P

′
1 + P ′2, due

to P1
σ−→2 P

′
1 as well as P2

σ−→2 P
′
2 by (tSum). Moreover, the process

16

P1 + P2 is able to perform an action transition by (Sum1) or (Sum2). If
P1 + P2

α−→2 P
′′
1 , due to P1

α−→2 P
′′
1 by (Sum1), then, by the induction

hypothesis, P1
σ−→2 P

′
1 and P1

α−→2 P
′′
1 implies P ′1

α−→2 P
′′
1 . Using (Sum1)

we conclude P ′1 + P ′2
α−→2 P

′′
1 .

The case for (Sum2) is analogous to the previous case.
(6) P ≡ P1 \ L

P1 \ L can only perform a time step of the form P1 \ L
σ−→2 P ′1 \ L,

due to P1
σ−→2 P

′
1 by (tRes). Any action transition of P1 \ L is of the

form P1 \ L
α−→2 P

′′
1 \ L, due to P1

α−→2 P
′′
1 by (Res), provided that

α /∈ L ∪ L. Then, according to the induction hypothesis, P1
σ−→2 P

′
1 and

P1
α−→2 P

′′
1 implies P ′1

α−→2 P
′′
1 . We conclude P ′1 \L

α−→2 P
′′
1 \L by (Res)

since α /∈ L ∪ L.
(7) P ≡ P1[f]

This case is similar to the previous case and therefore omitted here.
(8) P ≡ µx.P1

Any clock transition of µx.P1 is of the form µx.P1
σ−→2 P ′1[µx.P1/x],

due to P1
σ−→2 P

′
1 by (tRec). Further, any α-transition is of the form

µx.P1
α−→2 P

′′
1 [µx.P1/x], due to P1

α−→2 P
′′
1 by (Rec). We obtain P ′1

α−→2

P ′′1 by induction hypothesis and are ready since we can infer
P ′1[µx.P1/x]

α−→2 P
′′
1 [µx.P1/x] by application of Lemma 3(2). 2

As we have not gained any knowledge about the coherence between the two
different types of transitions so far, we had to prove Proposition 5 for i = 2
independently of Proposition 5 for i = 1. Later in this work, a more elegant
proof exploiting this coherence could be given.

Note that both statements are not valid for processes involving parallel com-
position. P

σ−→i P
′ α−→i P

′′ implies P
α−→i P

′′′ but P ′′ ≡ P ′′′ is not always
valid as components of P ′′′ may have additional leading σ-prefixes.
Similarly, we can infer from P

σ−→i P
′ and P

α−→i P
′′ that P ′

α−→i P
′′′, but

we may have P ′′ 6≡ P ′′′ due to potential additional leading σ-prefix of P ′′′.
As an example consider the following transitions:

σ.σ.a.0 | σ.σ.b.0 σ−→2 a.0 | σ.b.0
b−→2 a.0 | 0 but only

σ.σ.a.0 | σ.σ.b.0 b−→2 σσ.a.0 | 0.

σ.σ.a.0 | σ.σ.b.0 σ−→2 a.0 | σ.b.0 and σ.σ.a.0 | σ.σ.b.0 b−→2 σ.σ.a.0 | 0 but

a.0 | σ.b.0 6 b−→2 σσ.a.0 | 0.

17

3 Coherence between −→1 and −→2

The objective of this section is to develop the syntactic and semantic coherence
between type-1-transitions and our newly established type-2-transitions.

Type-1-transitions −→1 and type-2-transitions −→2 do not differ in their func-
tional behaviour. Moreover, the analogous type-2-time step to every type-1
time step exists. These two characteristics are stated in a first simple lemma:

Lemma 6 Let P, P ′ ∈ P̂, α ∈ A.

(1) P
α−→1 P

′ if and only if P
α−→2 P

′

(2) P
σ−→1 P

′ implies P
σ−→2 P

′.

Proof. The statement of Part (1) follows from the fact that the set of SOS-
rules for action transitions of type-1 and type-2 are identical. In particular, this
statement is true since the type-2-transitions only rely on action transitions.

Part (2) is valid since the set of SOS-rules for type-2-time steps extends the
SOS-rules for type-1-time steps by an additional type-2-transition rule. Hence,
every type-1-time step can be derived from the analogous SOS-rules for clock
transitions of type-2. 2

3.1 The syntactic relation �

In [LV04] the syntactic relation � on terms is introduced as a useful technical
handle for proving coincidence results between the different candidates for a
faster-than preorder.

Definition 7 [LV04, Definition 6]
The relation � ⊆ P̂ × P̂ is defined as the smallest relation satisfying the
following properties, for all P, P ′, Q,Q′ ∈ P̂.

Always: (1) P � P (2) P � σ.P

If P ′ � P , Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ +Q′ � P +Q

(5) P ′ \ L � P \ L (6) P ′[f] � P [f]

If P ′ � P , x guarded in P : (7) P ′[µx. P/x] � µx. P

18

Note that the syntactic relation is defined for arbitrary open terms and is not
restricted to processes. Later in this work, we will claim and prove that the
syntactic relation, restricted to processes, satisfies the definition of a naive-
faster-than-relation, which is itself restricted to processes.

Yet, we must require that the definition of the syntactic relation is not re-
stricted to processes. Consider the following example of a derivation:

(1) a.x � σ.a.x by Def. 7(2)
(2) a.x[µx. σ.a.x/x] ≡ a.µx. σ.a.x � µx. σ.a.x by Def. 7(7)

We have open, guarded terms in the first derivation step, in order to obtain
processes in the second derivation step. The syntactic relationship
a.x[µx. σ.a.x/x] � µx. σ.a.x could not be derived, if the definition of the syn-
tactic relation was restricted to processes.

The syntactic relation � is not transitive. As this property is however desired
in the following, we need to define the transitive closure �+.

Definition 8
�+ ⊆ P̂ × P̂ is defined as the transitive closure of �, i.e. P �+ P ′

if and only if ∃n ≥ 1 ∃P0, . . . , Pn ∈ P̂ : P ≡ P0 � P1 � . . . � Pn ≡ P ′.

The objective in [LV04] was to construct the syntactic relation in such a way
that the following coherence between a type-1-time step and the speed of
TACS terms holds:

P
σ−→1 P

′ implies P ′ � P for all P, P ′ ∈ P̂
(cf. Proposition 12(1))

In addition, the coherence between type-2-time steps and speed will be estab-
lished in this work, namely

P
σ−→2 P

′ implies P ′ �+ P for all P, P ′ ∈ P̂

(cf. Proposition 12(2))

Before proceeding, we need to establish two technical lemmas that are in parts
adopted from [LV04].

Lemma 9 (Preservation results) Let P, P ′ ∈ P̂ such that P ′ � P , and let
y ∈ V.

19

(1) [LV04, Lemma 7(1)]Then y is guarded in P if and only if y is guarded
in P ′.

(2) Then y is free in P if and only if y is free in P ′

(3) Then P ∈ P if and only if P ′ ∈ P
(4) [LV04, Lemma 7(2)]Then P ′[Q/y] � P [Q/y].

Proof. The proofs of Part (1) and Part (4) can be found in Appendix A in
[LV04]. Part (2) follows by induction on the inference length of P ′ � P . The
only interesting case is Case (7) of Def. 7, the other cases are obvious:

(7) P ′[µx.P/x] � µx.P due to P ′ � P , x guarded in P .
If y = x, x is neither free in µx.P nor in P ′[µx.P/x]. Any occurrence of
x is bound in µx.P and each free occurrence of x in P ′ is substituted by
µx.P , hence, all occurrences of x are bound in P ′[µx.P/x].
Next, we consider the case y 6= x.
If there exists a free occurrence of y in P ′[µx.P/x], then there is also one
in P or P ′. If there is a free occurrence of y in P , then this occurrence
is also present after falling into the scope of the recursion operator µx. If
y occurs free in P ′, then, by the induction hypothesis, y occurs free in P
and as well free in µx.P .
If there is a free occurrence of y in µx.P , then y is as well free in P , and
by the induction hypothesis in P ′ and therefore in P ′[µx.P/x].

Proving Part (3), no variables occur free in P if P is a process. By using Part
(2) of this lemma, no variables occur free in P ′ as well. Consequently, P ′ is as
well a process.
If P ′ is a process, then there are no free occurrences of variables in P ′ and no
variables occur free in P by Part (2), whence P is a process. 2

Lemma 10 [LV04, Lemma 8(2)]
Let P,Q ∈ P̂.
If Q � P , then U(Q) ⊇ U(P).

The following lemma establishes several important properties of �+ similar to
those of the syntactic relation in Def. 7.

20

Lemma 11 Let P, P ′, Q,Q′ ∈ P̂.

If P ′ �+ P , Q′ �+ Q then: (1) P ′|Q′ �+ P |Q

(2) P ′ +Q′ �+ P +Q

If P ′ �+ P then: (3) P ′ \ L �+ P \ L

(4) P ′[f] �+ P [f]

If P ′ �+ P , x guarded in P then: (5) P ′[µx. P/x] �+ µx. P

Proof.

(1) P ′ �+ P and Q′ �+ Q implies
∃n ≥ 1 ∃P0, ...Pn ∈ P̂ : P ′ ≡ P0 � P1 · · · � Pn ≡ P and
∃m ≥ 1 ∃Q0, ...Qm ∈ P̂ : Q′ ≡ Q0 � Q1 · · · � Qm ≡ Q
by definition of the transitive closure of �.
If n ≤ m, we have Pi−1 � Pi for 1 ≤ i ≤ n and Qi−1 � Qi for 1 ≤ i ≤ n.
Then, Pi−1 |Qi−1 � Pi |Qi for 1 ≤ i ≤ n follows by Def. 7(3).
Further, Pn � Pn is valid by Part (1) of Def. 7.
Since Qj−1 � Qj for n < j ≤ m, we get Pn |Qj−1 � Pn |Qj for n < j ≤ m
by using Part (3) of Def. 7.
In summary, we obtain P ′ |Q′ ≡ P0 |Q0 �+ Pn |Qm ≡ P |Q.
The case n < m leads to an argumentation analogous to the previous
case.

(2) The proof of this case is analogous to Part (1) and uses Def. 7(4).
(3) P ′ �+ P means that
∃n ≥ 1 ∃P0, ...Pn ∈ P̂ : P ′ ≡ P0 � P1 · · · � Pn ≡ P .
Then, by repeated application of Def. 7(5), we get P \ L ≡ P0 \ L �
P1 \ L � · · · � Pn−1 \ L � Pn \ L ≡ P ′ \ L.
Finally, we conclude P \ L �+ P ′ \ L by the definition of �+.

(4) The proof follows in analogy to Part (3), using Def. 7(6).
(5) P ′ �+ P is defined as ∃n ≥ 1 ∃P0, ...Pn ∈ P̂ : P ′ ≡ P0 � P1 · · · �

Pn ≡ P . If x is guarded in P , we can infer Pn−1[µx. Pn/x] � µx. Pn from
Pn−1 � Pn by using Def. 7(7).
Further, we obtain Pi−1[µx. Pn/x] � Pi[µx. Pn/x], due to Pi−1 � Pi for
1 ≤ i ≤ n − 1 by Lemma 9(4). To sum up, we have P ′[µx. P/x] ≡
P0[µx. Pn/x] � · · · � Pn−1[µx. Pn/x] � µx. Pn ≡ µx. P and therefore
P ′[µx. P/x] �+ µx. P . 2

Now we have established the machinery needed to prove the above coherence
between time steps and speed:

21

Lemma 12 Let P, P ′ ∈ P̂.

(1) [LV04, Prop. 9(1)] P
σ−→1 P

′ implies P ′ � P , for all terms P, P ′ ∈ P̂.
(2) P

σ−→2 P
′ implies P ′ �+ P , for all terms P, P ′ ∈ P̂.

Proof. We give a more detailed proof of Part (1) here, it is an induction on
the length of inference of P

σ−→1 P
′.

(1) tNil: P ≡ 0 ≡ P ′. 0 � 0 trivially holds by Def. 7(1).
(2) tAct: P ≡ a.P ′′ ≡ P ′. a.P ′′ � a.P ′′ trivially holds by Def. 7(1).
(3) tPre: P ≡ σ.P ′. Then P ′ � σ.P ′ by Def. 7(2).
(4) tRec: P ≡ µx. P1 and P ′ ≡ P2[µx. P1/x].

Let µx. P1
σ−→1 P2[µx. P1/x], due to P1

σ−→1 P2. We obtain P2 � P1 by
the induction hypothesis. Since x is guarded in P1, we infer P2[µx. P1/x] �
µx. P1 from P2 � P1 by using Def. 7(7).

(5) tSum: P ≡ P1 + Q1 and P ′ ≡ P2 + Q2. Since P
σ−→1 P ′, we have

P1
σ−→1 P2 and Q1

σ−→1 Q2. According to the induction hypothesis, we
obtain P2 � P1 and Q2 � Q1 and hence may conclude P2 +Q2 � P1 +Q1

by application of Def. 7(4).
(6) tCom: The treatment of this case follows in analogy to case (5) by using

Def. 7(3)
(7) tRes: P ≡ P1 \ L and P ′ ≡ P2 \ L. Then, P1

σ−→1 P2 implies P2 � P1 by
induction. Using Def. 7(5), we obtain P2 \ L � P1 \ L.

(8) tRel: This case is analogous to case (7), using Def. 7(6).

Part (2) can be proved by induction on the length of inference of P
σ−→2 P

′.

(1) tNil: P ≡ 0 ≡ P ′. Since � ⊆ �+, 0 �+ 0 holds by using Def. 7(1).
(2) tAct: P ≡ a.P ′′ ≡ P ′. Since � ⊆ �+, a.P ′′ �+ a.P ′′ holds by using

Def. 7(1).
(3) tPre: P ≡ σ.P ′. Since � ⊆ �+, P ′ �+ σ.P ′ holds by using Def. 7(2).

(3a) tnew: P ≡ σ.P1. Let σ.P1
σ−→2 P

′, due to P1
σ−→2 P

′.
Then, P1

σ−→2 P
′ implies P ′ �+ P1 by the induction hypothesis. Finally,

we get P1 � σ.P1 by Def. 7(2) and may conclude P ′ �+ P1 � σ.P1 and
therefore P ′ �+ σ.P1.

(4) tRec: P ≡ µx. P1 and P ′ ≡ P2[µx. P1/x].
Let µx. P1

σ−→2 P2[µx. P1/x], due to P1
σ−→2 P2. By the induction hy-

pothesis, P1
σ−→2 P2 implies P2 �+ P1. Since x is guarded in P1, we can

infer P2[µx. P1/x] �+ µx. P1 from P2 �+ P1 by Lemma 11(5) .
(5) tSum: P ≡ P1 +Q1 and P ′ ≡ P2 +Q2.

Since P
σ−→2 P

′, we have P1
σ−→2 P2 and Q1

σ−→2 Q2. P2 �+ P1 and
Q2 �+ Q1 follows by induction hypothesis and P2+Q2 �+ P1+Q1 results
by application of Lemma 11(2).

(6) tCom: The treatment of this case is analogous to case (5) and uses

22

Lemma 11(1).
(7) tRes: P ≡ P1 \ L and P ′ ≡ P2 \ L.

We obtain P2 �+ P1 by induction and P2 \L �+ P1 \L by Lemma 11(3).
(8) tRel: This case follows in analogy to case (7), using Lemma 11(4). 2

In the follwing two subsections, we will work out the differences as well as the
syntactic and semantic coherences between our two transition types.

3.2 Syntactic coherence

The definition of the type-2-time steps extends those of the type-1-time steps
by one additional SOS-rule (tnew). Thus, as described in Lemma 6(2), any
type-1-time step obviously is as well a type-2-time step.
Now we investigate in what way there exists a corresponding type-1-time step
to a type-2-time step.

In many cases a type-2-time step of the form P
σ−→2 P

′ can be matched by

a corresponding sequence of type-1-time steps of the form P
σ−→1

+
P ′. As an

example, σ.P
σ−→2 P is valid by (tPre). We get σ.σ.σ.P

σ−→2 P by using (tnew)
twice. The type-1-time step sequence σ.σ.σ.P

σ−→1 σ.σ.P
σ−→1 σ.P

σ−→1 P
matches this type-2-time step.

That this is not always the case, is exemplarily illustrated by the process
P =df σ.σ.σ.a.0 |σ.a.0 |σ.a.0, which may perform the type-2-time step
σ.σ.σ.a.0 |σ.a.0 |σ.a.0 σ−→2 a.0 | a.0 | a.0 df = P ′. The only enabled type-1-
time step is of the form σ.σ.σ.a.0 |σ.a.0 |σ.a.0 σ−→1 σ.σ.a.0 | a.0 | a.0 df = P ′′.
Now P ′′ 6 σ−→ as τ ∈ U(P ′′). Thus, we observe that there exists a corresponding
type-1-time step of the form P

σ−→1 P
′′ to every type-2-time step P

σ−→2 P
′,

but we may have P ′ 6= P ′′ for the result processes. A comparison of the result
processes P ′ ≡ a.0 | a.0 | a.0 and P ′′ ≡ σ.σ.a.0 | a.0 | a.0 of the above example
supports the conjecture that P ′ results from P ′′ by removing none, one or
several leading σ-prefixes from each component.

This relationship seems to correspond to the transitive closure �+ of the
syntactic relation and, as a matter of fact, we are able to show:

Lemma 13 Let P, P ′ ∈ P̂.
P

σ−→2 P
′ implies ∃P ′′ ∈ P̂. P

σ−→1 P
′′ and P ′ �+ P ′′.

Proof. The proof is an induction on the length of inference of P
σ−→2 P

′.

23

(1) tNil: P ≡ 0 ≡ P ′.
Let 0

σ−→2 0 by (tNil2).
Then, 0

σ−→1 0 holds by (tNil1). Since � ⊆ �+, we get 0 �+ 0 by
Def. 7(1).

(2) tAct: P ≡ a.P ′′ ≡ P ′.
Let a.P ′′

σ−→2 a.P
′′ by (tAct2).

Then, a.P ′′
σ−→1 a.P

′′ holds by (tAct1). As � ⊆ �+, we obtain a.P ′′ �+

a.P ′′ by Def. 7(1).
(3) tPre: P ≡ σ.P ′.

Let σ.P ′
σ−→2 P

′ by (tPre2).
Then, we can derive σ.P ′

σ−→1 P
′ by (Pre1) and as well get P ′ �+ P ′ by

Def. 7(1) and � ⊆ �+ .
(3a) tnew: P ≡ σ.P ′′.

Let σ.P ′′
σ−→2 P

′, due P ′′
σ−→2 P

′ by (tnew).
Then, σ.P ′′

σ−→1 P
′′ holds by (Pre1). We are ready since we can conclude

P ′ �+ P ′′ from P ′′
σ−→2 P

′ by using Lemma 12(2).
(4) tRec: P ≡ µx. P1 and P ′ ≡ P ′1[µx. P1/x].

Let µx. P1
σ−→2 P

′
1[µx. P1/x], due to P1

σ−→2 P
′
1 by (tRec2).

By the induction hypothesis, there exists a P ′2 such that P1
σ−→1 P

′
2 and

P ′1 �+ P ′2.
Thus, we may infer µx. P1

σ−→1 P ′2[µx. P1/x] by (tRec1). P
′
1 �+ P ′2 is

defined as ∃n ≥ 1 ∃P0, ...Pn ∈ P̂ : P ′1 ≡ P0 � P1 · · · � Pn ≡ P ′2.
Further, P ′1[µx. P1/x] ≡ P0[µx. P1/x] � P1[µx. P1/x] · · · � Pn[µx. P1/x] ≡
P ′2[µx. P1/x] follows by application of Lemma 9(4) and we may hence con-
clude P ′1[µx. P1/x] �+ P ′2[µx. P1/x].

(5) tSum: P ≡ P1 +Q1 and P ′ ≡ P ′1 +Q′1.
Let P1 +Q1

σ−→2 P
′
1 +Q′1, due to P1

σ−→2 P
′
1 and Q1

σ−→2 Q
′
1 by (tSum2).

By the induction hypothesis, there exists some P ′2, such that P1
σ−→1 P

′
2

and P ′1 �+ P ′2, as well as some Q′2, satisfying Q1
σ−→1 Q

′
2 and Q′1 �+ Q′2.

Consequently, P1 + Q1
σ−→1 P ′2 + Q′2 can be derived by (tSum1) and

P ′1 +Q′1 �+ P ′2 +Q′2 can be inferred by Lemma 11(2).
(6) tCom: P ≡ P1|Q1 and P ′ ≡ P ′1|Q′1.

Let P1|Q1
σ−→2 P

′
1|Q′1, due to P1

σ−→2 P
′
1 and Q1

σ−→2 Q
′
1 by (tCom2).

Thereby the side condition ensures τ /∈ U(P1|Q1).
By the induction hypothesis, P1

σ−→1 P
′
2 and P ′1 �+ P ′2 for some P ′2, as

well as Q1
σ−→1 Q

′
2 and Q′1 �+ Q′2 for some Q′2.

As τ /∈ U(P1|Q1), we may derive P1|Q1
σ−→1 P

′
2|Q′2 using (tCom1).

Moreover, application of Lemma 11(1) leads to P ′1|Q′1 �+ P ′2|Q′2.
(7) tRes: P ≡ P1 \ L and P ′ ≡ P ′1 \ L.

Let P1 \ L
σ−→2 P

′
1 \ L, due to P1

σ−→2 P
′
1 by (tRes2).

By the induction hypothesis, there exists some P ′2 with P1
σ−→1 P

′
2 and

P ′1 �+ P ′2. Then, P1 \ L
σ−→1 P

′
2 \ L can be derived by (tRes1).

In addition, we can infer P ′1 \ L �+ P ′2 \ L by Part (3) of Lemma 11.
(8) tRel: This case is analogous to the previous case (7) and uses Lemma

11(4). 2

24

Every type-1-time step sequence of the form P
σ−→1

+
P ′ can be mimicked

with one single matching type-2-time step P
σ−→2 P ′. This statement can

easily be proved, involving Proposition 4: since every type-1-time step is also

a type-2-time step by using Lemma 6(2), P
σ−→1

+
P ′ implies P

σ−→2
+
P ′.

Further, we may conclude P
σ−→2 P

′ by application of Proposition 4.
Conversely, there are type-2-time steps with no matching sequence of type-1-
time steps. This phenomenon relies exclusively on the occurrence of parallel
composition or choice in processes. Crucial are ’real’ type-2-time steps as for
example the time step σ.σ.σ.a.0|σ.a.0|σ.a.0 σ−→2 a.0|a.0|a.0, where a different
number of time steps are skipped in at least two components. The process in
the example lets time pass, thereby leaving out two time steps in the first
component and no time step in the second component. Due to these observa-
tions, we claim that type-2-time steps of processes that neither involve parallel
composition nor choice can be matched by a sequence of type-1-time steps:

Proposition 14 Let P, P ′ be processes with no occurrence of parallel compo-

sition and choice in P ; then P
σ−→2 P

′ implies P
σ−→1

+
P ′.

Proof. The proof is an induction on the structure of P .

(1) 0: Let P ≡ 0.
The only time step that can be derived is that by Rule (tNil2) of the form
0

σ−→2 0. Trivially, we obtain 0
σ−→1 0 by using (tNil1).

(2) x: There is no applicable SOS-rule for time steps.
(3) α.P1: Let P ≡ α.P1.

If α ≡ τ , then α.P1 cannot perform a time step. If α ≡ a, the only
derivable time step is of the form a.P1

σ−→2 a.P1 by (tAct2). Trivially,
a.P1

σ−→1 a.P1 holds by Rule (tAct1).
(4) σ.P1: Let P ≡ σ.P1.

(tPre2) and (tnew) are the only applicable rules that allow a time step of
σ.P1.
If the time step is of the form σ.P1

σ−→2 P1 by (tPre2), we may as well
derive σ.P1

σ−→1 P1, using (tPre1).
Otherwise, any clock transition is of the form σ.P1

σ−→2 P
′ for some P ′,

due to the clock transition P1
σ−→2 P

′ and application of (tnew). Then,

P1
σ−→2 P ′ implies P1

σ−→1
+
P ′ by the induction hypothesis. Due to

Rule (tPre1), σ.P1
σ−→1 P1 obviously holds. Hence, we have σ.P1

σ−→1

P1
σ−→1

+
P ′ and now may conclude σ.P1

σ−→1
+
P ′.

(5) P1 \ L: Let P ≡ P1 \ L.

Any clock transition is of the form P1\L
σ−→2 Pn\L, due to P1

σ−→2 Pn by

(tRes2). By the induction hypothesis, P1
σ−→1

+
Pn, i.e. P1

σ−→1 . . .
σ−→1

Pn for some P2, . . . , Pn ∈ P̂ and some n ≥ 2. We get P1 \ L
σ−→1 P2 \

L
σ−→1 . . .

σ−→1 Pn \L by repeated application of (tRes1) and altogether

25

P1 \ L
σ−→1

+
Pn \ L.

(6) P1[f]: This case follows in analogy to case (5).
(7) µx.P1: Let P ≡ µx.P1.

Any time step is of the form µx.P1
σ−→2 Pn[µx.P1/x], due to P1

σ−→2 Pn
by (tRec2). Then, P1

σ−→1
+
Pn follows by the induction hypothesis and

means P1
σ−→1 . . .

σ−→1 Pn for some P2, . . . , Pn ∈ P̂ and some n ≥ 2.
We may infer µx.P1

σ−→1 P2[µx.P1/x] from P1
σ−→1 P2 by application of

Rule (tRec1).
By Lemma 3(2) we get P2[µx.P1/x]

σ−→1 P3[µx.P1/x], due to P2
σ−→1 P3.

This finishes the proof, since we obtain µx.P1
σ−→1 P2[µx.P1/x]

σ−→1

. . .
σ−→1 Pn[µx.P1/x] by repeated application of Lemma 3(2) and hence

µx.P1
σ−→1

+
Pn[µx.P1/x] . 2

If we try to involve terms of the form P1 | P ′1 in the structural induction, any
time step is of the form P1 | P ′1

σ−→2 Pn | P ′m, due to P1
σ−→2 Pn and P ′1

σ−→2

P ′m by Rule (tCom). Thereby the side condition ensures τ /∈ U(P1 | P ′1). Then,
by the induction hypothesis, we may assume that there exist the corresponding
type-1-time step sequences P1

σ−→1 . . .
σ−→1 Pn and P ′1

σ−→1 . . .
σ−→1 P

′
m. The

successive application of (tCom2) over the complete sequence of time steps is
only possible, if n = m. Otherwise the proof attempt fails. This fact again
confirms the above claim that only those type-2-time steps that skip different
numbers of time steps in at least two components cannot be simulated by a
type-1-time step sequence.

3.3 Semantic coherence

When waiting, a process does not change its functional behaviour, nevertheless
the structure of the process may change during the progress of time. As an
example consider the process P =df σ.σ.σ.τ.0 that may perform a time step
of the form σ.σ.σ.τ.0

σ−→2 τ.0 and afterwards behaves like τ.0.
Obviously, the waiting behaviour of processes has changed in our new type-2-
transition system, since we introduced further alternatives for a process to let
time pass. As an example consider again the process P .
P can delay the execution of τ at most for three time steps in both transition
systems. Taken as a whole, it can wait between 0 and 3 time steps in both
transition systems. However, −→2 involves more forms for a process to wait
these 0 to 3 time steps than −→1. If we consider a process P that can only
perform type-1-time steps, then P may at each point of time either take the
next time step or skip all remaining σ-prefixes and at once perform τ .
In the new setting, alternatively to these time steps, P can make a better
progress during the first time step by performing a transition of the form
σ.σ.σ.τ.0

σ−→2 σ.τ.0. In practice, this could be the case if it is known right

26

from the start that the process will not use the complete delay spectrum of
three time steps, but a delay time of one or two time steps is sufficient. The way
in which a process can wait could be regarded as more flexible and foresighted.

In [LV04] time-determinism is pointed out as an important property of the
operational semantics of processes. If a process P can perform a time step
P

σ−→1 P
′, the result process P ′ is uniquely defined. Thus, processes react

deterministically to clock ticks. From a purely syntactic point of view, this is
true as there exists only one possible derivation for every type-1-time step. In
contrast to this, there exist different derivable time steps for some processes
in the new transition system and therefore a set of possible result processes.
The deterministic concept of time is abolished here, which is however justified
as argued above. [LV04] requires that the progress of time should not resolve
choice, but delay it. By application of Rule (tSum1), a process of the form
P =df P1 + P2 can perform a time step if and only if both P1 and P2 can.
The functional behaviour of the subprocesses P1 and P2 is not influenced by
the progress of time. It is quite obvious that this principle is as well retained
in our new transition system

σ−→2, since the SOS-rule (tSum2) is the only
derivation rule which is in charge of waiting behaviour for processes of the
form P =df P1 + P2.

4 The naive faster-than preorders

In [LV04] the naive faster-than preorder is introduced as an elegant and concise
candidate for a faster-than preorder. It is (bi)-simulation based as the faster
and the slower process are linked by a relation that is a simulation for time
steps and a strong bisimulation for actions. The definition of the 1-naive faster-
than preorder is adopted from [LV04] and is extended to a second variant by
including our new type-2-transitions:

Definition 15 (i-naive faster-than preorder) [LV04, Def. 4 for i = 1]
For i ∈ {1, 2}, a relation R ⊆ P × P is an i-naive faster-than relation if the
following conditions hold for all 〈P,Q〉 ∈ R and α ∈ A.

(1) P
α−→i P

′ implies ∃Q′. Q α−→i Q
′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→i Q

′ implies ∃P ′. P α−→i P
′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ−→i P

′ implies ∃Q′. Q σ−→i Q
′ and 〈P ′, Q′〉 ∈ R.

We write P A∼i-nv
Q if 〈P,Q〉 ∈ R for some i-naive faster-than relation R,

which means that

A∼i-nv
=

⋃
{R : R is an i-naive faster-than relation}.

We call A∼i-nv
i-naive faster-than preorder.

27

Part (1) and (2) require that the faster and the slower process are functionally
equivalent in the sense of a strong bisimulation. The i-naive faster-than relation
refines the strong bisimulation by additionally requiring that any enabled time
step of the faster process can be simulated by a time step of the slower process.
Conversely, clock transitions of the slower process Q are not required to be
matched by the faster process. Extra time steps Q can possibly perform need
not to be considered, particularly as the functional behaviour of Q before the
time step is the same as after the time step.
Faster in the sense of a naive faster-than preorder means that the faster process
P is at least as fast as the slower process Q. If we refer to the ’faster process’
in the sequel, it does not have to be strictly faster.

In the first part of this section we will demonstrate that the 2-naive faster-
than preorder coincides with the 1-naive faster-than preorder. In the second
part we will compare the relations of the two naive faster-than preorders and
develop a third variant of a naive faster-than preorder that as well coincides
with the previous naive faster-than preorders. Its definition combines new and
old transitions and provides small relations in order to demonstrate a naive
faster-than relationship.

We develop the idea of a ’naive faster-than relation up to A∼i-nv
’ as another

technique for reducing the size of relations needed to demonstrate a naive
faster-than relationship in the last part of this section.
We are left with establishing that A∼i-nv

is the largest i-naive faster-than re-
lation and that it is moreover a preorder. The proof follows from the fact
that the union and composition of i-naive faster-than relations are still i-
naive faster-than relations and also the identity relation on processes is an
i-naive faster-than relation. This is established in the next proposition, based
on [Mil89]:

Proposition 16 Let R1,R2,Rj be i-naive faster-than relations. Then

(1) ∅
(2) idP
(3) R1R2.
(4)

⋃
j∈J Rj.

are as well i-naive faster-than relations.

Proof. Part (1) and Part (2) trivially hold.
To prove Part (3), consider some arbitrary pair of processes (P,Q) in R1R2,
hence ∃R ∈ P : (P,R) ∈ R1 ∧ (R,Q) ∈ R2 by the definition of composition.
If P

α−→i P
′ for some P ′, then R

α−→i R
′ for some R′ such that (P ′, R′) ∈ R1

by Definition 15(1). Due to R
α−→i R

′, there exists some Q′ such that Q
α−→i

Q′ and (R′, P ′) ∈ R2. Consequently, we have (P ′, Q′) ∈ R1R2.

28

The treatment of the cases Q
α−→i Q

′ and P
σ−→i P

′ is analogous to the
previous case and uses Definition 15(2) and 15(3), respectively.
Again Part (4) is obvious. 2

By Proposition 16(4), A∼i-nv
is an i-naive faster-than relation. Including every

i-naive faster-than relation, A∼i-nv
is the largest i-naive faster-than relation.

Further, A∼i-nv
is reflexive, as it includes idP .

Since A∼i-nv
is an i-naive faster-than relation, A∼i-nv

◦ A∼i-nv
is still an i-naive

faster-than relation, employing Proposition 16(3). As A∼i-nv
◦ A∼i-nv

is contained
in the largest i-naive faster-than relation A∼i-nv

, we obtain A∼i-nv
◦ A∼i-nv

⊆ A∼i-nv
.

Hence, A∼i-nv
is transitive and we have proved that A∼i-nv

is indeed a preorder.

The i-naive faster-than preorder is defined on processes and not on arbitrary
open terms. Otherwise, the relation {(a.x, a.y), (x, y)} would satisfy the defin-
ing clauses of an i-naive faster-than relation. This would not be sensible, as
we do not know anything about the behaviour of the process variables x and
y. As it is however sensible to involve pairs of terms such as σ.x and x or
σ.(x+y) and σ.y+σ.x in our behavioural A∼i-nv

-relations, the naive faster-than
preorders can be extended to open terms by means of closed substitution as
usual [Mil89]. A closed substitution maps variables in V to closed terms, here
processes. We include terms P and Q with free variables in ~x = (x1, . . . , xn)
in our naive faster-than relations such that (P,Q) ∈ A∼i-nv

, provided that

P [~R/~x]A∼i-nv
Q[~R/~x] for all tuples ~R = (R1, . . . , Rn).

4.1 The preorders

In the sequel, we will prove that the faster-than preorders A∼1-nv
and A∼2-nv

coincide. For this, it is convenient to first establish an auxiliary result, stating
that the syntactic relation satisfies the definition of a 1-naive faster-than re-
lation as well as the one of a 2-naive faster-than relation. Furthermore we are
able to establish that the transitive closure of the syntactic relation as well
fulfils the definition of an i-naive faster-than relation for i ∈ {1, 2}. Before
establishing these desired properties of �, we have to introduce the abstract
closure operator.

Definition 17 Let A be a set and let P(A) be the set of all subsets of A.
A closure operator h is a function h : P(A) → P(A) which satisfies the
following conditions for all A1, A2 ⊆ A:

(1) extensive: A1 ⊆ h(A1)
(2) monotone: A1 ⊆ A2 implies h(A1) ⊆ h(A2)
(3) idempotent: h(h(A1)) = h(A1)

29

The extensitive property states that the closure of a set must at least include
the set itself. The monotone property points out that, if a set includes another
set, then this inclusion is also valid for their closures. Repeated application
of the closure operator does not add any further elements according to the
idempotence property.

Proposition 18

(1) [LV04, Prop. 9(2) for i = 1] The relation � satisfies the defining clauses
of an i-naive faster-than relation for i ∈ {1, 2}, also on open terms; hence,
� restricted to processes is an i-naive faster-than relation for i ∈ {1, 2}
and �|P×P =df � ∩ (P × P) ⊆ A∼i-nv

.
(2) The relation �+ satisfies the defining clauses of an i-naive faster-than

relation for i ∈ {1, 2}, also on open terms; hence, �+ restricted to pro-
cesses is an i-naive faster-than relation for i ∈ {1, 2} and �+

|P×P =df �+

∩ (P × P) ⊆ A∼i-nv
.

Proof.

The proof of Part (1) for i = 1 is, shortened to the interesting cases, given in
[LV04]. To prove Part (1) for i = 2 we show that for P ′ � P the definition of
A∼2-nv

is satisfied, by induction on the inference length of P ′ � P .

(1) P � P P
α−→2 P ′ if and only if P

α−→2 P ′ and P ′ � P ′ holds by
Def. 7(1).
P

σ−→2 P
′ trivially implies P

σ−→2 P
′ and P ′ � P ′ holds by Def. 7(1).

(2) P � σ.P P
α−→2 P

′ if and only if σ.P
α−→2 P

′ for some P ′ by (Pre) and
P ′ � P ′ by Def. 7(1).
P

σ−→2 P
′ for some P ′ implies σ.P

σ−→2 P
′ by (tnew) and P ′ � P ′ by

Def. 7(1).
(3) P ′|Q′ � P |Q due to P ′ � P and Q′ � Q.

If P ′|Q′ α−→2 P
′
1|Q′ due to P ′

α−→2 P
′
1 by (Com1), then we may conclude

P
α−→2 P1 for some P1 such that P ′1 � P1 from P ′ � P by the induction

hypothesis. Further, we get P |Q α−→2 P
′
1|Q by application of Rule (Com1)

and P ′1|Q′ � P1|Q results from P ′1 � P1 and Q′ � Q by Definition 7(3).
The treatment of the case P ′|Q′ α−→2 P

′|Q′1 by (Com2) follows in analogy
to the case for (Com1).

If P ′|Q′ τ−→2 P
′
1|Q′1, due to P ′

a−→2 P
′
1 and Q′

a−→2 Q
′
1 by (Com3),

then P
a−→2 P1 and P ′1 � P1 for some P1 as well as Q

a−→2 Q1 and
Q′1 � Q1 for some Q1 by the induction hypothesis. Using (Com3), we
may infer P |Q τ−→2 P1|Q1. Further, we obtain P ′1|Q′1 � P1|Q1, due to
P ′1 � P1 and Q′1 � Q1 by Definition 7(3) .

The cases if P |Q α−→2 P1|Q1 by (Com1), (Com2) and (Com3) are
analogous to the above cases.

If P ′|Q′ σ−→2 P
′
1|Q′1, due to P ′

σ−→2 P
′
1 and Q′

σ−→2 Q
′
1 by (tCom),

30

then τ /∈ U(P ′|Q′). Thus, by the induction hypothesis, we may assume
P

σ−→2 P1 for some P1 such that P ′1 � P1 as well as Q
σ−→2 Q1 for

some Q1 such that Q′1 � Q1. We may conclude that τ /∈ U(P |Q) by
using Lemma 10. Therefore, we may infer P |Q σ−→2 P1|Q1 by (tCom)
and P ′1|Q′1 � P1|Q1 from P ′1 � P1 and Q′1 � Q1 by Definition 7(3).

(4) P ′ +Q′ � P +Q
This case is treated in analogy to Rule (Com1), (Com2) and (tCom) in
the previous case.

(5) P ′ \ L � P \ L Let P ′\L α−→2 P
′
1\L due to P ′

α−→2 P
′
1 by (Res), whereby

the side condition α /∈ L ∪ L holds. Due to P ′ � P and P ′
α−→2 P

′
1, we

may assume that there exists some P1 such that P
α−→2 P1 and P ′1 � P1

is satisfied, by induction. With regard to the side condition α /∈ L∪L, we
may infer P \L α−→2 P1 \L by (Res). Moreover, we obtain P ′1 \L � P1 \L
by Def. 7(5).
The cases if P \ L α−→2 P1 \ L and P ′ \ L σ−→2 P

′
1 \ L are analogous.

(6) P ′[f] � P [f] analogous to (5)
(7) P ′[µx. P/x] � µx. P due to P ′ � P , x guarded in P .

As x is guarded in P , it is also guarded in P ′ by using Lemma 9(1).If

P ′[µx. P/x]
α−→2 P ′1, then P ′

α−→2 P ′2 for some P ′2 such that P ′1 ≡
P ′2[µx. P/x] by application of Lemma 3(3).
Thus, P

α−→2 P1 and P ′2 � P1, due to P ′ � P by the induction hypoth-
esis. Further, we may infer µx. P

α−→2 P1[µx. P/x] from P
α−→2 P1 by

Rule (Rec). We are ready since we may conclude P ′1 ≡ P ′2[µx. P/x] �
P1[µx. P/x], due to P ′2 � P1 by application of Lemma 9(4).If µx. P

α−→2

P1[µx. P/x], due to P
α−→2 P1 by Rule (Rec), then we may assume

P ′
α−→2 P

′
1 for some P ′1 such that P ′1 � P1, due to P ′ � P and P

α−→2 P1

by the induction hypothesis.
Moreover, we may infer P ′[µx. P/x]

α−→2 P ′1[µx. P/x] from P ′
α−→2

P ′1 by using Lemma 3(2). By application of Lemma 9(4), we obtain
P ′1[µx. P/x] � P1[µx. P/x], since P ′1 � P1 holds.If P ′[µx. P/x]

σ−→2 P
′
1,

then we know as shown above that x is guarded in P ′. Thus, we may
conclude P ′

σ−→2 P
′
2 for some P ′2 satisfying P ′1 ≡ P ′2[µx. P/x] by Lemma

3(3).
Then, we obtain P

σ−→2 P1 and P ′2 � P1, due to P ′ � P by the induction
hypothesis. Further, we infer µx. P

σ−→2 P1[µx. P/x] from P
σ−→2 P1 by

using Rule (tRec).
We are done since P ′2 � P1 implies P ′1 ≡ P ′2[µx. P/x] � P1[µx. P/x] by
using Lemma 9(4).

We are left with ensuring that each transition of a process again leads to a
process, i.e. P ∈ P and P

γ−→i P
′ for γ ∈ A ∪ {σ} and i ∈ {1, 2} implies

P ′ ∈ P . Clearly, this is true for γ ≡ σ. Since P
σ−→1 P ′ implies P ′ � P

and P
σ−→2 P

′ implies P ′ �+ P by Lemma 12, P ′ is as well a process by
application of Lemma 9(3). As the statement obviously also holds for γ ≡ α,

31

we dispense with conducting a proof on the length of inference of P
α−→i P

′

here.

Proving Part (2), we want to show that �+
|P×P satisfies the definition of a

1-naive faster-than relation. We already know that �|P×P is a 1-naive faster-
than relation by Proposition (18)(1) for i = 1. Since �+

|P×P is defined as

�0
|P×P ∪ �1

|P×P ∪ · · · ∪ �n|P×P , we may conclude that �+
|P×P is as well a 1-

naive faster-than relation by repeated application of Proposition 16(3) and (4).

The particularly important second statement of Part (2) can as well be proved
as follows:
�|P×P = � ∩ (P × P) ⊆ A∼1-nv

holds by Proposition 18(1) for i = 1.
Further, the operator (.)+ is known to be a closure operator on relations. We
get (� ∩ (P × P))+ ⊆ A∼

+
1-nv

by using the monotonicity property of the clo-
sure operator (Definition 17(2)).
Since the 1-naive faster-than preorder is transitive, the transitive closure does
not add any further elements, i.e. A∼1-nv

= A∼
+
1-nv

holds. In the following, we
will show that �+ ∩ (P × P) ⊆ (� ∩ (P × P))+ holds.
Therefore we consider some arbitrary element (P, P ′) ∈ �+ ∩ (P × P) for
which ∃n ≥ 1 ∃P0, ...Pn ∈ P̂ : P ≡ P0 � P1 · · · � Pn ≡ P ′ and P, P ′ ∈ P
holds. Since P0 ∈ P , we know that as well P1 ∈ P and successively Pn−1 ∈ P
by using Lemma 9(3). Hence, (P, P ′) ∈ (� ∩ (P × P))+ and in summary
�+ ∩ (P × P) ⊆ (� ∩ (P × P))+ ⊆ A∼

+
1-nv

= A∼1-nv
.

The proof of Part (2) for i = 2 is treated analogously, using Proposition 18(1)
for i = 2. 2

Theorem 19 (Coincidence I) The preorders A∼1-nv
and A∼2-nv

coincide.

Proof.

To prove A∼1-nv
⊆ A∼2-nv

, we show that A∼1-nv
satisfies the definition of a 2-naive

faster-than relation. Hence, consider some arbitrary processes P and Q such
that P A∼1-nv

Q.

(1) If P
α−→2 P

′ for some process P ′ and some action α ∈ A, then as well
P

α−→1 P
′ by using Lemma 6(1). By the definition of A∼1-nv

, we obtain

Q
α−→1 Q

′ for some Q′ such that P ′ A∼1-nv
Q′. Finally, we get Q

α−→2 Q
′

by application of Lemma 6(1).
(2) The case Q

α−→2 Q′ for some process Q′ and some action α ∈ A is
analogous to the previous case.

(3) If P
σ−→2 P

′ for some process P ′, then P
σ−→1 P

′′ for some process P ′′

satisfying P ′ �+ P ′′ by Lemma 13. According to the definition of A∼1-nv
,

there exists some Q′′ with Q
σ−→1 Q

′′ and P ′′ A∼1-nv
Q′′. By Lemma 6(2),

32

we obtain Q
σ−→2 Q

′′. P ′ �+ P ′′ is defined as P ′ ≡ P0 � P1 � . . . �
Pn ≡ P ′′ for some n ≥ 1 and some P0, . . . , Pn ∈ P̂ . Further, we conclude
P ′ ≡ P0

A∼1-nv
P1

A∼1-nv
. . . A∼1-nv

Pn ≡ P ′′ by Proposition 18(1) for i = 1.
We are done since P ′ A∼1-nv

P ′′ and P ′′ A∼1-nv
Q′′ implies P ′ A∼1-nv

Q′′ by the
transitivity of A∼1-nv

.

To prove the inverse inclusion A∼2-nv
⊆ A∼1-nv

, we demonstrate that A∼2-nv
satis-

fies the defining clauses of 1-naive faster-than relation. Hence, consider P and
Q such that P A∼2-nv

Q.

(1,2) The cases P
α−→1 P

′ for some P ′ and Q
α−→1 Q

′ for some Q′ can be
treated in analogy to the corresponding cases above.

(3) If P
σ−→1 P ′ for some process P ′, then P

σ−→2 P ′ is as well a valid
time step by Lemma 6(2). Further, Q

σ−→2 Q′ for some Q′ such that
P ′ A∼2-nv

Q′ by the definition of A∼2-nv
. By Lemma 13, there exists some

process Q′′ such that Q
σ−→1 Q′′ and Q′ �+ Q′′, which means that

Q′ ≡ Q0 � Q1 � . . . � Qn ≡ Q′′ for some n ≥ 1 and some Q0, ..., Qn ∈
P̂ . We get Q′ ≡ Q0

A∼1-nv
Q1

A∼1-nv
. . . A∼1-nv

Qn ≡ Q′′ by application of
Proposition 18(1) for i = 1. As we have proved A∼1-nv

⊆ A∼2-nv
above, we

may conclude Q′ A∼2-nv
Q′′ by the transitivity of A∼2-nv

. Finally, together
with P ′ A∼2-nv

Q′, we have P ′ A∼2-nv
Q′′. 2

As an alternative, one could prove the last part applying Proposition 18(2)
for i = 1 instead of using A∼1-nv

⊆ A∼2-nv
and Proposition 18(1) for i = 1. Yet,

we favour the approach using Proposition 18(1) for i = 1 since this result can
simply be taken from [LV04].
Since A∼1-nv

and A∼2-nv
coincide, we will now write A∼nv

.

4.2 The naive faster-than relations

In the previous subsection we proved as a main result that the 1-naive faster-
than preorder coincides with our newly established 2-naive faster-than pre-
order. Leaving aside the preorders, we take a closer look at the two different
types of naive faster-than relations now. First, we demonstrate that it is nei-
ther true that each 2-naive faster-than-relation is also a 1-naive faster-than
relation, nor that each 1-naive faster-than relation satisfies the defining clauses
of a 2-naive faster-than relation. Consider the relation R1 which serves as an
example of a relation which is a 2-naive faster-than relation, but not a 1-naive
faster-than relation:

R1 =df {(σ.σ.a.0, σ.σ.σ.a.0), (σ.a.0, σ.a.0), (a.0, a.0), (0,0)}.

R1 does not satisfy the definition of a 1-naive faster-than relation since

33

σ.σ.a.0
σ−→1 σ.a.0 and σ.σ.σ.a.0

σ−→1 σ.σ.a.0, but (σ.a.0, σ.σ.a.0) /∈ R1. We
observe that R1 is not a 1-naive faster-than relation since a type-1-time step
occurs in the first component and is only matched by a ’real’ type-2-time step
in the second component.

Altering the relation R1 in such a way that it meets the requirements of a
1-naive faster-than relation, the following relation R′1 results as the smallest
1-naive faster-than relation with (σ.σ.a.0, σ.σ.σ.a.0) ∈ R′1:

R′1 =df {(σ.σ.a.0, σ.σ.σ.a.0), (σ.a.0, σ.σ.a.0), (a.0, σ.a.0), (a.0, a.0), (0,0)}.

Since |R′1| > |R1|, providing the smaller relation R1 as proof for
(σ.σ.a.0, σ.σ.σ.a.0) ∈ A∼nv

, is profitable in this case.

As an example of a 1-naive faster-than relation which is not a 2-naive faster-
than relation, consider the following relation R2 where L =df {a, a}.

R2 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.a.0 |σ.a.0 | a.0) \ L),
((σ.σ.a.0 |0 |0) \ L, (σ.σ.a.0 |0|0) \ L),
((0 |0 | a.0) \ L, (0 |0 | a.0) \ L),
((σ.a.0 |0 |0) \ L, (σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (a.0 |0 |0) \ L)}

The point of this example is that R2 does not satisfy the properties of a 2-
naive faster-than relation since σ.σ.a.0 |σ.a.0 | a.0 \ L σ−→2 a.0 | a.0 | a.0 \ L,
but no Q′ exists such that (a.0 | a.0 | a.0 \ L,Q′) ∈ R2 holds. At this point,
observe that the process σ.a.0 |a.0 | a.0 \ L is not allowed to perform a time
step as it must engage in communication, due to the fact that a is urgent in
a.0 and a is urgent in a.0.

Crucial for this example is that the faster process is able to perform a type-
2-time step P

σ−→2 P
′ but cannot mimic it with a corresponding sequence of

type-1-time steps of the form P
σ−→1

+
P ′ . Observe that this phenomenon re-

lies exclusively on the occurrence of parallel composition or choice in processes
(cf. Proposition 14).

Constructing a 2-naive faster-than relation for
(σ.σ.a.0 |σ.a.0 | a.0 \ L, σ.σ.a.0 |σ.σ.a.0 | a.0 \ L), we observe that any pro-
cess on the left hand side of the pairs in relation R2 as well can be reached
in the type-2 setting as the analogous type-2-time step for any type-1-time
step exists. Due to the fact that the left-hand-sides of all components differ
from each other and that we must additionally cater for the above time step
σ.σ.a.0 |σ.a.0 | a.0 \ L σ−→2 a.0 | a.0 | a.0 \ L, any 2-naive faster-than relation
is definitely larger than R2.

34

R′2 is a candidate for a corresponding smallest 2-naive faster-than relation with
(σ.σ.a.0 |σ.a.0 | a.0 \ L, σ.σ.a.0 |σ.σ.a.0 | a.0 \ L) ∈ R′2:

R′2 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.a.0 |σ.a.0 | a.0) \ L),
((a.0 | a.0 | a.0) \ L, (a.0 | a.0 | a.0) \ L)
((σ.σ.a.0 |0 |0) \ L, (σ.σ.a.0 |0|0) \ L),
((0 |0 | a.0) \ L, (0 |0 | a.0) \ L),
((σ.a.0 |0 |0) \ L, (σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (a.0 |0 |0) \ L)}

Now we define a new preorder, which we refer to as combined-naive faster-than
preorder or c-naive faster-than preorder for short, as its definition combines
type-1-time steps with type-2-time steps. We take A∼c-nv

to denote the newly
established preorder. In the following we will state and prove that the new
preorder coincides with the two variants of naive faster-than preorders from
above. Thus we provide another instrument to prove that P A∼nv

Q by means
of the new c-naive faster-than relations. Our goal is to increase the number
of relations available for demonstrating a naive faster-than relationship and
to reduce the size of these relations. The new c-naive faster-than preorder is
defined as follows:

Definition 20 (c-naive faster-than preorder)
A relation R ⊆ P ×P is a c-naive faster-than relation if the following condi-
tions hold for all 〈P,Q〉 ∈ R, α ∈ A.

(1) P
α−→1 P

′ implies ∃Q′. Q α−→1 Q
′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→1 Q

′ implies ∃P ′. P α−→1 P
′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ−→1 P

′ implies ∃Q′. Q σ−→2 Q
′ and 〈P ′, Q′〉 ∈ R

We write P A∼c-nv
Q if 〈P,Q〉 ∈ R for some c-naive faster-than relation R and

call A∼c-nv
c-naive faster-than preorder.

As usual, we can show that A∼c-nv
is the largest c-naive faster-than relation.

However, note that it is not clear that A∼c-nv
is transitive. This will follow when

we establish our next theorem stating that the c-naive faster-than preorder
A∼c-nv

coincides with our 1-naive-faster-preorder A∼1-nv
. The proof of this co-

incidence result is based on a technical lemma, highlighting two important
properties of the transitive closure of the syntactic relation, which will be-
come even more important in the next section. The first part is intuitively
convincing because, if the faster process skips time steps by performing a
’real’ type-2-time step, it can only become even faster than the slower process
Q.

Lemma 21 Let P, P ′ ∈ P̂ such that P �+ P ′.

35

(1) Then P
σ−→2 P1 implies ∃P ′1.P ′

σ−→1 P
′
1 and P1 �+ P ′1.

(2) Then P
α−→2 P1 implies ∃P ′1.P ′

α−→1 P
′
1 and P1 �+ P ′1.

Proof.

Proof of Part (1):
If P �+ P ′ for some process P ′, then P ≡ P0 � P1 · · · � Pn ≡ P ′ for
some n ≥ 1 and some processes P0, ...Pn ∈ P̂ by the definition of �+. If
P0

σ−→2 P
′′
0 , then P0

σ−→1 P
′
0 for some process P ′0 such that P ′′0 �+ P ′0 by

using Lemma 13. Further, � satisfies the defining clauses of a 1-naive faster-
than relation by Proposition 18(1) for i = 1. Hence, using Definition 15(3) for
i = 1, we conclude from P0

σ−→1 P
′
0 that P1

σ−→1 P
′
1 for some P ′1 with P ′0 � P ′1.

Successively for 2 ≤ i ≤ n, we infer Pi
σ−→1 P

′
i and P ′i−1 � P ′i for some P ′i

by repeated application of Definition 15(3). In summary, P ′0 � · · · � P ′n and
P ′′0 �+ P ′0 implies P ′′0 �+ P ′n, cf. figure below

The proof of Part (2) is analogous to the one of Part (1). Considering ac-
tion transitions in this part, P ′0 coincides with P ′′0 by Lemma 6 (1), cf. figure
below. 2

36

As an alternative, one could prove both parts applying Proposition 18(1) for
i = 2 or Proposition 18(2) instead of Proposition 18(1) for i = 1. Yet, we
favour the approach using Proposition 18(1) for i = 1, since this result can
simply be taken from [LV04].

We are now able to state and prove the main result of this section:

Theorem 22 (Coincidence II) The preorders A∼1-nv
and A∼c-nv

coincide.

Proof. In order to prove the inclusion A∼1-nv
⊆ A∼c-nv

, consider some arbitrary
processes P and Q such that P A∼1-nv

Q and check that this pair satisfies clauses
(1) to (3) in Def. 20.

(1,2) The case P
α−→1 P

′ for some process P ′ and some action α, as well as
the case Q

α−→1 Q
′ for some process Q′ and some action α, is obvious.

(3) If P
σ−→1 P

′, we obtain Q
σ−→1 Q

′ for some Q′ satisfying P ′ A∼1-nv
Q′ by

definition of A∼1-nv
. Using Lemma 6(2), Q

σ−→1 Q
′ implies Q

σ−→2 Q
′.

For the reverse inclusion A∼c-nv
⊆ A∼1-nv

, define the relation R by (P,Q) ∈ R
if and only if ∃R ∈ P . P A∼c-nv

R �+ Q for P,Q ∈ P . In the following we check
that this relation R satisfies the definition of a 1-naive faster-than relation;
consider P A∼c-nv

R �+ Q.

(1) If P
α−→1 P

′ for some P ′, the definition of A∼c-nv
shows R

α−→1 R
′ for some

process R′ with P ′A∼c-nv
R′. Due to R,Q being processes, the syntactic

relation is restricted to processes here. Since �+
|P×P is a 1-naive faster-

than relation by Proposition 18(2) for i = 1, we conclude Q
α−→1 Q

′ for

37

some Q′ such that R′ �+ Q′.
(2) The case Q

α−→1 Q
′ for some Q′ is analogous to Part (1).

(3) If P
σ−→1 P ′ for some P ′, then R

σ−→2 R′ for some process R′ with
P ′A∼c-nv

R′ by definition of A∼c-nv
. Due to R

σ−→2 R
′, Lemma 21(1) implies

Q
σ−→1 Q

′ for some Q′ satisfying R′ �+ Q′.

This finishes the proof, since �+ is reflexive and hence A∼c-nv
⊆ A∼c-nv

◦ �+=
R ⊆ A∼1-nv

is valid. In summary, we obtain A∼c-nv
⊆ A∼1-nv

. 2

One can state that both any 1-naive faster-than relation and any 2-naive-
faster-relation is a c-naive faster-than relation. Consequently, the set of c-
naive faster-than relations includes the union of 1-naive faster-than relations
and 2-naive faster-than relations.

Proposition 23

(1) Every 1-naive faster-than relation R is a c-naive faster-than relation.
(2) Every 2-naive faster-than-relation R is a c-naive faster-than relation.

Proof. To prove Part (1) we consider some arbitrary processes P and Q such
that (P,Q) ∈ R. R satisfies the definition of a 1-naive faster-than relation.

(1) If P
α−→1 P

′ for some process P ′ and some α ∈ A, then Q
α−→1 Q

′ for
some process Q′ by Definition of R. We are done since we may conclude
Q

α−→2 Q
′ by using Lemma 6(1).

(2) If Q
α−→2 Q

′ for some process P ′ and some α ∈ A, then Q
α−→1 Q

′ by
using Lemma 6(1). Hence, we obtain P

α−→1 P
′ for some P ′ such that

P ′ R Q′ is satisfied by the definition of R.
(3) If P

σ−→1 P
′, then Q

σ−→1 Q
′ for some process Q′ with (P ′, Q′) ∈ R by

definition of R. Further, Lemma 6(2) implies Q
σ−→2 Q

′.

To prove Part (2), consider P and Q such that (P,Q) ∈ R. R satisfies the
definition of a 2-naive faster-than relation.

(1) If P
α−→1 P ′ for some process P ′ and some α ∈ A, then P

α−→2 by
application of Lemma 6(1). Thus, we may conclude Q

α−→2 Q
′ such that

P ′ R Q′ by the definition of R.
(2) If Q

α−→2 Q
′ for some process Q′, then we obtain P

α−→2 P
′ for some

P ′ such that P ′ R Q′ is satisfied by the definition of R. Finally, we may
conclude P

α−→1 P
′ by using Lemma 6(1).

(3) If P
σ−→1 P

′ for some process P ′, then P
σ−→2 P

′ by using Lemma 6(2).
Hence, we obtain Q

σ−→2 Q
′ for some Q′ such that (P ′, Q′) ∈ R by the

definition of R. 2

38

Conversely, c-naive faster-than relations exist that are neither 1-naive faster-
than relations, nor 2-naive faster-than relations. This fact shows that the set of
relations, available for proving a naive faster-than relationship, was effectively
increased. To give an example, consider the relation R3 which neither satisfies
the conditions of a 1-naive faster-than relation, nor the conditions of a 2-naive
faster-than relation:

R3 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.σ.a.0 | a.0 | a.0) \ L),
((σ.σ.a.0 |0 |0) \ L, (σ.σ.σ.a.0 |0|0) \ L),
((0 |0 | a.0) \ L, (0 |0 | a.0) \ L),
((σ.a.0 |0 |0) \ L, (σ.σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (a.0 |0 |0) \ L)}

R3 is not a 1-naive faster-than preorder as
(σ.σ.a.0 |σ.a.0 | a.0) \ L σ−→1 (σ.a.0 | a.0 | a.0) \ L and
(σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L σ−→1 (σ.σ.a.0 |σ.a.0 | a.0) \ L
but ((σ.a.0 |a.0 | a.0) \ L, (σ.σ.a.0 |σ.a.0 | a.0) \ L) /∈ R3.

Further, R3 does not satisfy the definition of a 2-naive faster-than relation,
since (σ.σ.a.0 |σ.a.0 | a.0) \ L σ−→2 (a.0 | a.0 | a.0) \ L
but ((a.0 | a.0 | a.0) \ L,Q′) ∈ R′′3 is not valid for any process Q′.

Finally, we investigate to what extent the newly-established relations are small
ones. Once again, we consider the c-naive faster-than relation R3 introduced
above for which it will turn out that it is smaller than both the smallest
corresponding 1-naive faster-than relation and every smallest 2-naive faster-
than preorder.

R′3 is the smallest 1-naive faster-than relation for
((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
while R′′3 is a smallest 2-naive faster-than relation for it:

R′3 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.σ.a.0 |σ.a.0 | a.0) \ L),
((σ.σ.a.0 |0 |0) \ L, (σ.σ.σ.a.0 |0|0) \ L),
((0 |0 | a.0) \ L, (0 |0 | a.0) \ L),
((σ.a.0 |0 |0) \ L, (σ.σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (a.0 |0 |0) \ L)}

R′′3 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.a.0 |σ.a.0 | a.0) \ L),
((a.0 | a.0 | a.0) \ L, (a.0 | a.0 | a.0) \ L)
((σ.σ.a.0 |0 |0) \ L, (σ.σ.σ.a.0 |0|0) \ L),

39

((0 |0 | a.0) \ L, (0 |0 | a.0) \ L),
((σ.a.0 |0 |0) \ L, (σ.a.0 |0 |0) \ L),
((a.0 |0 |0) \ L, (a.0 |0 |0) \ L)}

Thus, there are c-naive faster-than relations that are smaller than the corre-
sponding smallest naive faster-than relations of type-1 and type-2. The arising
question if there exist 1-naive faster-than relations that are smaller than each
corresponding c-naive-faster-relation can easily be answered in the negative.
Such a 1-naive faster-than relation would be as well a c-naive faster-than rela-
tion by Lemma 23(1). The analogous argumentation involving Lemma 23(2)
leads to the result that each smallest 2-naive faster-than relation is at least as
large as each smallest corresponding c-naive faster-than relation.

If we constructed a preorder inversely to Definition 20 in such a way that
a type-2-transition in the first component is simulated by a type-1-transition
in the second component, this preorder would as well coincidence with our
previous naive faster-than preorders. Each of these new relations would be a
1-naive faster-than relation as well as a 2-naive faster-than relation, hence the
set of these new relations is contained in the intersection of the type-1-relations
and type-2-relations. As a consequence, there are fewer of these relations and
they are rather large ones, due to the type-2-transition which is regarded in
the first component.

We come back to the c-naive faster-than preorder when we investigate the
coarsest precongruence for type-2-transitions.

4.3 Naive faster-than relation up to

In the sequel, we define a new relation, called ’i-naive faster-than relation up
to A∼i-nv

’, which is inspired by Milner’s notion of ’bisimulation up to’. ’Naive
faster-than relation up to A∼i-nv

’ is a technique for reducing the size of the
relation needed to demonstrate a naive-faster-than-relationship.

Definition 24 A relation R ⊆ P ×P is an i-naive faster-than relation up to
A∼i-nv

if the following conditions hold for all 〈P,Q〉 ∈ R, α ∈ A and i ∈ {1, 2}.

(1) P
α−→i P

′ implies ∃Q′. Q α−→i Q
′ and P ′A∼i-nv

RA∼i-nv
Q′.

(2) Q
α−→i Q

′ implies ∃P ′. P α−→i P
′ and P ′A∼i-nv

RA∼i-nv
Q′.

(3) P
σ−→i P

′ implies ∃Q′. Q σ−→i Q
′ and P ′A∼i-nv

RA∼i-nv
Q′.

Definition 25 A relation R ⊆ P × P is a c-naive faster-than relation up to
A∼c-nv

if the following conditions hold for all 〈P,Q〉 ∈ R and α ∈ A.

40

(1) P
α−→1 P

′ implies ∃Q′. Q α−→1 Q
′ and P ′A∼c-nv

RA∼c-nv
Q′.

(2) Q
α−→1 Q

′ implies ∃P ′. P α−→1 P
′ and P ′A∼c-nv

RA∼c-nv
Q′.

(3) P
σ−→1 P

′ implies ∃Q′. Q σ−→2 Q
′ and P ′A∼c-nv

RA∼c-nv
Q′.

Lemma 26 Let R be an i-naive faster-than relation up to A∼i-nv
for i ∈

{1, 2, c}. Then A∼i-nv
RA∼i-nv

is an i-naive faster-than relation.

Proof. We combine the proofs for i = 1 and i = 2:
Consider P A∼i-nv

P1 R Q1
A∼i-nv

Q.

(1) If P
α−→i P

′ for some process P ′, then P1
α−→i P

′
1 for some process

P ′1 such that P ′A∼i-nv
P ′1 by the definition of A∼i-nv

. Since P1
α−→i P

′
1, we

obtain Q1
α−→i Q

′
1 for some process Q′1 such that P ′1 A∼i-nv

RA∼i-nv
Q′1 by

Definition 24. Further, Q1
α−→i Q

′
1 implies that there exists some Q′ such

that Q
α−→i Q

′ and Q′1 A∼i-nv
Q′ by the definition of A∼i-nv

. We conclude
P ′A∼i-nv

R A∼i-nv
Q′ from P ′A∼i-nv

P ′1 A∼i-nv
RA∼i-nv

Q′1 A∼i-nv
Q′ and the transitiv-

ity of A∼i-nv
, cf. figure below.

(2) The case Q
α−→i Q

′ for some Q′ is analogous to case (1).
(3) The case P

σ−→i P
′ for some P ′ is as well analogous to the previous cases.

Proof for i = c:
Consider P A∼c-nv

P1 R Q1
A∼c-nv

Q.

(1,2) The cases P
α−→1 P

′ for some P ′ and Q
α−→1 Q

′ for some Q′ are treated
in analogy to the corresponding cases in the proof above.

(3) If P
σ−→1 P

′ for some process P ′, then P1
σ−→2 P

′
1 for some process P ′1

such that P ′A∼c-nv
P ′1 by the definition of A∼c-nv

. Further, P1
σ−→2 P

′
1 implies

P1
σ−→1 P

′′
1 such that P ′1 �+ P ′′1 by using Lemma 13. Since P1

σ−→1 P
′′
1 ,

we obtain Q1
σ−→2 Q

′′
1 for some process Q′′1 such that P ′′1 A∼c-nv

RA∼c-nv
Q′′1

by Definition 25. Again, Q1
σ−→2 Q

′′
1 leads to Q1

σ−→1 Q
′
1 for some Q′1

satisfying Q′′1 �+ Q′1. Finally, since Q1
σ−→1 Q′1, we infer Q

σ−→2 Q′

for some Q′ with Q′1 A∼c-nv
Q′. Since �+⊆ A∼1-nv

by Proposition 18(2) for
i = 1 and A∼1-nv

= A∼c-nv
, we know that �+⊆ A∼c-nv

. Hence, we conclude
P ′A∼c-nv

R A∼c-nv
Q′ from P ′ A∼c-nv

P ′1 �+ P ′′1 A∼c-nv
R A∼c-nv

Q′′1 �+ Q′1 A∼c-nv
Q′

by the transitivity of A∼c-nv
, cf. figure below.

41

2

Proposition 27 Let R be an i-naive faster-than relation up to A∼i-nv
for i ∈

{1, 2, c}. Then R ⊆ A∼i-nv
.

Proof. Let R be an i-naive faster-than relation up to A∼i-nv
. According to

the definition of the i-naive faster-than preorder we have idP ⊆ A∼i-nv
. We

conclude R = idP ◦ R ◦ idP ⊆ A∼i-nv
◦ R ◦ A∼i-nv

. Using Lemma 26 we know
that A∼i-nv

R A∼i-nv
is an i-naive faster-than relation and hence is contained in

the largest i-naive faster-than relation A∼i-nv
, i.e. A∼i-nv

R A∼i-nv
⊆ A∼i-nv

. 2

Consequently it is sufficient to give an i-naive faster-than relation up to A∼i-nv

in order to prove a naive faster-than relationship.
Consider the following relation R1 as an example for a c-naive faster-than re-
lation up to A∼c-nv

in order to get sure that such a relation is really profitable.

R1 =df {((σ.σ.a.0 |σ.a.0 | a.0) \ L, (σ.σ.σ.a.0 |σ.σ.a.0 | a.0) \ L),
((σ.a.0 | a.0 | a.0) \ L, (σ.σ.a.0 | a.0 | a.0) \ L),
((σ.σ.a.0 |0 |0) \ L, (a.0 |0|0) \ L),
((0 |0 | a.0) \ L, (0 |0 | a.0) \ L)}

Compare the relation R1 to the relation R3 in Subsection 4.2 and observe
that we could save two further elements. Yet, this example is not valid for the
precongruence that will be established later.

5 The delayed-faster-than-preorders

The next alternative candidate for a faster-than relation on processes in the
course of design choices in [LV04] is the delayed faster-than preorder. Its nature
is less strict, since it allows the slower process to perform any number of extra

42

time steps when simulating an action transition or a time step of the faster
process. We define the i-delayed faster-than preorder as follows, whereby the
definition for i = 1 is adopted from [LV04]. We will study the delayed faster-
than preorder in our new setting.

Definition 28 (i-delayed faster-than preorder) [LV04, Def. 5 for i = 1]
A relation R ⊆ P × P is an i-delayed faster-than relation if the following
conditions hold for all 〈P,Q〉 ∈ R, α ∈ A and i ∈ {1, 2}.

(1) P
α−→i P

′ implies ∃Q′. Q σ−→i
∗ α−→i

σ−→i
∗
Q′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→i Q

′ implies ∃P ′. P α−→i P
′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ−→i P

′ implies ∃Q′. Q σ−→i
+
Q′ and 〈P ′, Q′〉 ∈ R.

We write P A∼i-dly
Q if 〈P,Q〉 ∈ R for some i-delayed faster-than relation R

and call A∼i-dly
i-delayed faster-than preorder.

As usual, we can show that A∼i-dly
is the largest delayed faster-than relation.

Moreover, we can show that A∼i-dly
is a preorder, where the proof for the tran-

sitivity is based on the following proposition.

Proposition 29 Let R1,R2 be i-delayed faster-than relations for i ∈ {1, 2}.
Then R1 ◦ R2 is as well an i-delayed faster-than relation.

Proof. We only consider the interesting Part (1) of Definition 28.
Consider some arbitrary pair of processes (P,Q) in R1R2, hence ∃R ∈ P :
(P,R) ∈ R1 ∧ (R,Q) ∈ R2 by the definition of composition.
If P

α−→i P
′ for some P ′, then R

σ−→i
∗
R′′

α−→i R
′′′ σ−→i

∗
R′ for some processes

R′, R′′ and R′′′ such that (P ′, R′) ∈ R1 by Definition 28(1). R
σ−→i
∗
R′′ is

defined as R ≡ R0
σ−→i . . .

σ−→i Rn ≡ R′′ for some processes R0, . . . , Rn and

some n ≥ 0. Since (R,Q) ∈ R2, we obtain Q ≡ Q0
σ−→i

+
. . .

σ−→i
+
Qn ≡ Q′′

for some processes Q0, . . . , Qn such that {(R0, Q0) . . . (Rn, Qn)} ∈ R2. Thus,
Q

σ−→i
∗
Q′′ and (R′′, Q′′) ∈ R2. Further, we may assume Q′′

σ−→i
∗ α−→i

σ−→i
∗

Q′′′ such that (R′′′, Q′′′) ∈ R2 due to (R′′, Q′′) ∈ R2 and R′′
α−→i R

′′′. As
(R′′′, Q′′′) ∈ R2 and R′′′

σ−→i
∗
R′ we know that Q′′′

σ−→i
∗
Q′ and (R′, Q′) ∈ R2

as above. This finishes the proof since Q
σ−→i
∗ σ−→i

∗ α−→i
σ−→i
∗ σ−→i

∗
Q′ implies

Q
σ−→i
∗ α−→i

σ−→i
∗
Q′ and (P ′, Q′) in R1R2. 2

In the following we want to show that the 2-delayed faster-than preorder A∼2-dly

coincides with the 2-naive faster-than preorder A∼2-nv
and the 1-delayed faster-

than preorder A∼1-dly
. Before proceeding, we need to introduce one of the main

results of [LV04], stating that the 1-naive faster-than preorder coincides with
the 1-delayed faster-than preorder:

43

Theorem 30 (Coincidence III) [LV04][Theorem 10]
The preorders A∼1-nv

and A∼1-dly
coincide.

No we are able to state and prove that the two variants of delayed faster-than
preorders coincide:

Theorem 31 (Coincidence IV) The preorders A∼1-dly
and A∼2-dly

coincide.

Proof. First, we prove that the 1-delayed faster-than preorder is as well a 2-
delayed faster-than relation. Hence, consider some arbitrary processes P and
Q such that P A∼1-dly

Q.

(1) If P
α−→2 P

′ for some process P ′ and some action α, then P
α−→1 P

′ is
as well a valid transition by application of Lemma 6(1). Further, Q

σ−→1
∗

α−→1
σ−→1
∗
Q′ for some Q′ such that P ′A∼1-dly

Q′ by definition of A∼1-dly
.

By repeated application of Lemma 6(2) and Lemma 6(1), we conclude
Q

σ−→2
∗ α−→2

σ−→2
∗
Q′.

(2) If Q
α−→2 Q

′ for some process Q′ and some action α, we know Q
α−→1 Q

′

by Lemma 6(1). Then, P
α−→1 P

′ for some P ′ such that P ′A∼1-dly
Q′ by

definition of A∼1-dly
. We are done since we obtain P

α−→2 P ′ again by

Lemma 6(1).
(3) If P

σ−→2 P
′ for some P ′, we have P

σ−→1 P
′′ for some P ′′ such that P ′ �+

P ′′ by Lemma 13. Thus, Q
σ−→1

+
Q′′ for some Q′′ with P ′′A∼1-dly

Q′′ by

the definition of A∼1-dly
. We can infer Q

σ−→2
+
Q′′ by repeated application

of Lemma 6(2).
Further, P ′ �+ P ′′ is defined as P ′ ≡ P0 � P1 � . . . � Pn ≡ P ′′ for some
n ≥ 1 and some P0, . . . , Pn ∈ P̂ .
We may conclude P ′ ≡ P0

A∼1-dly
P1

A∼1-dly
. . . A∼1-dly

Pn ≡ P ′′, since � ⊆
A∼1-nv

holds by Proposition 18(1) for i = 1 and A∼1-nv
⊆ A∼1-dly

by Theorem
30.
We are done since P ′A∼1-dly

Q′′ follows by the transitivity of A∼1-dly
and

P ′A∼1-dly
P ′′.

For the reverse inclusion, we show that the 2-delayed faster-than preorder is
as well a 1-delayed faster-than relation and therefore consider (P,Q) ∈ A∼2-dly

.
For a smooth presentation, we start with the simulation of a time step.

(3) If P
σ−→1 P

′, then P
σ−→2 P

′ is as well a valid time step by using Lemma

6(2). Then, we have Q
σ−→2

+
Q′, i.e. Q ≡ Q0

σ−→2 . . .
σ−→2 Qn ≡ Q′

for some Q′ and some n ≥ 1 such that P ′A∼2-dly
Q′ by definition of A∼2-dly

.

Moreover, we obtain Q0 �+ Q′0 =df Q0 by Definition 7(1). If now Qi �+

Q′i holds true, we may successively infer Q′i
σ−→1 Q

′
i+1 for some Q′i+1 such

that Qi+1 �+ Q′i+1 from Qi
σ−→2 Qi+1 for 0 ≤ i < n by application of

44

Lemma 21(1). Thus, we can conclude Q ≡ Q′0
σ−→1

+
Q′n and Qn �+ Q′n,

which is defined as Qn ≡ Q′′0 � Q′′1 � . . . � Q′′n ≡ Q′n for some n ≥ 1 and
some Q′′0, . . . , Q

′′
n ∈ P̂ . Further, �⊆ A∼1-dly

follows by Proposition 18(1)
for i = 1 and by Theorem 30. As we showed A∼1-dly

⊆ A∼2-dly
, we get

�⊆ A∼2-dly
. Hence, we obtain Qn

A∼2-dly
Q′n by the transitivity of A∼2-dly

and may conclude P ′ A∼2-dly
Q′n from P ′ A∼2-dly

Q′ and Q′ ≡ Qn
A∼2-dly

Q′n,
cf. figure below.

(1) If P
α−→1 P

′, then as well P
α−→2 P

′ by Lemma 6(1).
Then, Q ≡ Q0

σ−→2 . . .
σ−→2 Qn

α−→2 Qn+1
σ−→2 . . .

σ−→2 Qm ≡ Q′

for some Q′ and some n and m with 0 ≤ n < m such that P ′A∼2-dly
Q′

by definition of A∼2-dly
. Analogously to the argumentation in the previous

case, we get Q
σ−→1
∗
Q′n and Qn �+ Q′n for some Q′n by application of

Lemma 21(1). Further, we conclude Q′n
α−→1 Q

′
n+1 for some Q′n+1 such

that Qn+1 �+ Q′n+1 by using Lemma 21(2). Then, Q′n+1
σ−→1
∗
Q′m for

someQ′m such thatQm �+ Q′m by using Lemma 21(1). Analogously to the
previous case, Qm

A∼2-dly
Q′m results from �⊆ A∼2-dly

. Altogether, we have

Q
σ−→1
∗ α−→1

σ−→1
∗
Q′m. Moreover, P ′A∼2-dly

Q′m follows from P ′A∼2-dly
Q′ ≡

Qm and Qm
A∼2-dly

Q′m.

45

(2) The case Q
α−→1 Q′ for some process Q′ and some action α ∈ A is

analogous to the previous case. 2

Indirectly, we showed that the 2-naive faster-than preorder and the 2-delayed
faster-than preorder coincide:

Corollary 32 (Coincidence V) The preorders A∼2-nv
and A∼2-dly

coincide.

Proof.

A∼2-nv

Coinc.I
= A∼1-nv

Coinc.II
= A∼1-dly

Coinc.III
= A∼2-dly

2

Clearly, any 1-naive faster-than relation is as well a 1-delayed one, as well
as any 2-naive faster-than relation is a 2-delayed one. Comparing delayed
faster-than relations of type-1 and type-2, we can establish that it is neither
true that any 1-delayed faster-than relation is a 2-delayed faster-than relation,
nor the reverse statement holds, in analogy to the naive faster-than relations.
Similar to the previous section, we could define a third combined preorder
that possesses properties equal to those of the c-naive faster-than preorder.

46

The fact that we have shown that the two variants of delayed faster-than pre-
orders coincide with the two variants of naive faster-than preorders underpins
the preference of the simple, concise naive faster-than preorder over the more
complicated delayed faster-than preorder. Yet, delayed faster-than relations
of both types can be useful in practice in order to demonstrate a faster-than
relationship since there are delayed faster-than relations which are not naive
faster-than relations and which are smaller than every corresponding naive
faster-than relation.

6 Indexed faster-than preorder

The second variant of a faster-than preorder in [LV04] is the indexed faster-
than preorder, formalizing the idea of an account for time steps for the faster
process. If a time step of the slower process is not simulated immediately by
the faster process, then this time step is credited and might be withdrawn if
the process performs this time step later on. Obviously, the account balance
may never be negative.

The xed faster-than preorder is defined as follows:

Definition 33 (Family of indexed faster-than preorders) [LV04, Def. 11
for i = 1]
For i ∈ {1, 2}, a family (Rj)j∈N, of relations over P, indexed by natural num-
bers (including 0), is a family of i-indexed faster-than relations if, for all
j ∈ N, 〈P,Q〉 ∈ Ri,j, and α ∈ A:

(1) P
α−→i P

′ implies ∃Q′. Q α−→i Q
′ and 〈P ′, Q′〉 ∈ Rj.

(2) Q
α−→i Q

′ implies ∃P ′. P α−→i P
′ and 〈P ′, Q′〉 ∈ Rj.

(3) P
σ−→i P

′ implies (a) ∃Q′. Q σ−→i Q
′ and 〈P ′, Q′〉 ∈ Rj, or

(b) j > 0 and 〈P ′, Q〉 ∈ Rj−1.
(4) Q

σ−→i Q
′ implies (a) ∃P ′. P σ−→i P

′ and 〈P ′, Q′〉 ∈ Rj, or
(b) 〈P,Q′〉 ∈ Rj+1.

We write P A∼i,j Q if 〈P,Q〉 ∈ Rj for some family of i-indexed faster-than

relations (Rj)j∈N and call A∼i,j i,j-indexed faster-than preorder.

Note, that it is not clear that the relations of the family of largest indexed-
faster than relations are transitive. [LV04] proves that the 1-naive faster-than
preorder coincides with A∼1,0

and hence demonstrate that A∼1,0
is transitive.

We would have expected to be able to prove the same coincidence results in
the new setting. Unfortunately, this has turned out to be wrong, due to the
absence of time determinism. According to their definitions, A∼2,0

⊆ A∼2-nv
ob-

viously holds. However, the reverse inclusion is not valid as one can inspect

47

by studying the following counterexample:

Let P =df τ.0 |σ.σ.τ.0 and Q =df σ.τ.0 |σ.σ.τ.0.
Clearly, P is faster than Q in the sense of a naive faster-than relationship. In
the sequel, we will try to build a family of relations such that (P,Q) ∈ A∼2,0

holds.

Hence, to define the family (Rj)j∈N, we put (P,Q) into the relation R0 and
first consider a ’real’ type-2 time step of the process Q. If σ.τ.0 |σ.σ.τ.0 σ−→2

τ.0 | τ.0, then P is not able to match this behaviour, as a time step is pre-
empted by an urgent τ . Therefore we are forced to credit this time step and
hence obtain:

R0 =df {(τ.0 |σ.σ.τ.0, σ.τ.0 |σ.σ.τ.0), . . . }
R1 =df {(τ.0 |σ.σ.τ.0, τ.0 | τ.0), . . . }

Further, we must take into consideration the action transition τ.0 |σ.σ.τ.0 τ−→2

0|σ.σ.τ.0 of P , which ’Q’ can either mimic with the action transition τ.0 | τ.0 τ−→2

0| τ.0 or the transition τ.0 | τ.0 τ−→2 τ.0|0. Since the resulting processes have
the same functional and waiting behaviour, we may consider any of them.
Thus, we so far know:

R0 =df {(τ.0 |σ.σ.τ.0, σ.τ.0 |σ.σ.τ.0), . . . }
R1 =df {(τ.0 |σ.σ.τ.0, τ.0 | τ.0), (0 |σ.σ.τ.0, 0 | τ.0), . . . }

Finally, 0 |σ.σ.τ.0 is enabled to perform a time step of the form 0 |σ.σ.τ.0 σ−→2

0 |σ.τ.0. As this time step cannot be simulated by Q, we have to withdraw
the credited time step and put (0 |σ.τ.0, 0 | τ.0) in the relation R0. This leads
to a contradiction due to 0 |σ.τ.0 σ−→2 0 | τ.0 since 0 | τ.0 is strictly faster
than 0 |σ.τ.0. Altogether, it is not possible to construct a family of relations
satisfying P R0Q.

Summarizing, the problem lies in the fact that the slower process Q performs
a ’real’ type-2 time step and skips a σ-prefix, but only one time step is credited
for the faster process P so that the slower process Q is ahead in time. We leave
the repair of this defect by altering the definition of the indexed faster-than
preorder for future work.

7 Strong faster-than precongruence

According to [LV04] a shortcoming of the 1-naive faster-than preorder is that
it is not a precongruence since it is not compositional. Clearly, A∼2-nv

and A∼c-nv

48

are as well not precongruences due to the fact that A∼1-nv
, A∼2-nv

and A∼c-nv

coincidence. As an example consider the processes P =df σ.a.0 and Q =df a.0
for which P A∼i-nv

Q holds: the time step σ.a.0
σ−→i a.0 of P is matched by

the time step a.0
σ−→i a.0,i.e. Q idles. Yet, if we compose both processes in

parallel with a third process R =df a.0, then we observe that P |RA∼i-nv
Q |R

does not hold as the clock transition P |R σ−→i a.|a.0 cannot be matched with
a clock transition of Q |R as a time step is preempted due to an urgent τ .
Anyway, it is intuitively suggestive to exclude such pairs of the form 〈σ.P , P 〉
from our naive faster-than preorder. In [LV04] another preorder is defined that
takes into account the urgent sets of processes in such a way that a time-step
of the faster process P always implies that there are no urgent actions of the
strictly slower process Q that are not urgent in P . Since this preorder turns
out to be the largest precongruence contained in A∼1-nv

, it is called strong
faster-than precongruence. We adopt the definition of the strong 1-faster-than
precongruence from [LV04] and extend it for type-2-transitions and in order to
get small relations we as well establish the strong c-faster-than precongruence:

Definition 34 (Strong i-faster-than precongruence) [LV04, Def. 18 for
i = 1]
A relation R ⊆ P × P is an strong i-faster-than relation for i ∈ {1, 2} if the
following condition hold for all 〈P,Q〉 ∈ R and α ∈ A.

(1) P
α−→i P

′ implies ∃Q′. Q α−→i Q
′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→i Q

′ implies ∃P ′. P α−→i P
′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ−→i P

′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→i Q
′ and 〈P ′, Q′〉 ∈ R.

We write P A∼i
Q if 〈P,Q〉 ∈ R for some strong i-faster-than relation R and

call A∼i
strong i-faster-than precongruence.

Definition 35 (Strong c-faster-than precongruence)
A relation R ⊆ P × P is a strong c-faster-than relation if the following con-
dition hold for all 〈P,Q〉 ∈ R and α ∈ A.

(1) P
α−→1 P

′ implies ∃Q′. Q α−→1 Q
′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→1 Q

′ implies ∃P ′. P α−→1 P
′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ−→1 P

′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→2 Q
′ and 〈P ′, Q′〉 ∈ R.

We write P A∼c
Q if 〈P,Q〉 ∈ R for some strong c-faster-than relation R and

call A∼c
strong c-faster-than precongruence.

Clearly, A∼i
is contained in A∼i-nv

for i ∈ {1, 2, c}. As usual, it is easy to prove
that A∼i

is the largest strong i-faster-than relation and that it is a preorder for
i ∈ {1, 2}. However, note that it is not clear that A∼c

is transitive. This will fol-
low when we establish our next theorems stating that the strong c-faster-than
precongruence coincides with the two other strong faster-than precongruences.

49

To prove these theorems, we present the following statement:

Proposition 36
The relation � satisfies the defining clauses of a strong 1-faster-than relation,
also on open terms; hence, � restricted to processes is a strong 1-faster-than
relation and �|P×P =df � ∩ (P × P) ⊆ A∼1

.

This statement is given in [LV04] and can be shown in analogy to the proof
of Proposition 18(1) for i = 1, additionally using Lemma 10.
Now we can show the coincidence results similarly to the proof for the coinci-
dence results I and II.

Theorem 37 (Coincidence VI) The preorders A∼1
and A∼2

coincide.

Proof. First, to see the inclusion A∼1
⊆ A∼2

, we prove that A∼1
is a strong

2-faster-than relation. Consider some arbitrary processes P and Q such that
P A∼1

Q.

(1,2) The cases P
α−→2 P

′ for some process P ′ and Q
α−→2 Q

′ for some process
Q′ are treated in analogy to the corresponding cases in the coincidence
result for the naive faster-than preorders of type-1 and type-2 in Theorem
19 and are therefore omitted here.

(3) If P
σ−→2 P ′′ for some process P ′′, then P

σ−→1 P ′ for some P ′ such
that P ′′ �+ P ′ by application of Lemma 13. Further, P

σ−→1 P
′ implies

U(Q) ⊆ U(P) and Q
σ−→1 Q

′ for some Q′ satisfying P ′A∼1
Q′ by definition

of A∼1
. We may conclude Q

σ−→2 Q
′ by using Lemma 6(2). P ′′ �+ P ′

is defined as P ′′ ≡ P0 � . . . � Pn ≡ P ′ for some processes P0, . . . , Pn
and some n ≥ 1. Since � satisfies the definition of a strong 1-faster-than
relation by using Proposition 36, we conclude P ′′ ≡ P0

A∼1
. . . A∼1

Pn ≡ P ′

and hence P ′′A∼1
P ′ by the transitivity of A∼1

. In summary, P ′′A∼1
Q′ follows

from P ′′A∼1
P ′ and P ′A∼1

Q′.

To prove the inverse inclusion A∼2
⊆ A∼1

, we analogously consider some arbi-
trary processes P and Q such that P A∼2

Q.

(3) As above, we only consider the case P
σ−→1 P

′ for some process P ′.
As usual, we get P

σ−→2 P ′ by using Lemma 6(2). Then, P
σ−→2 P ′

implies U(Q) ⊆ U(P) and Q
σ−→2 Q

′ for some Q′ satisfying P ′A∼2
Q′ by

the definition of A∼2
.

Further, Q
σ−→2 Q

′ implies that Q
σ−→1 Q

′′ for some Q′′ with Q′ �+ Q′′.
Hence, Q′ A∼2

Q′′ follows from �⊆ A∼1
⊆ A∼2

and the transitivity of A∼2
.

We are done since P ′ A∼2
Q′ and Q′A∼2

Q′′ leads to P ′A∼2
Q′′. 2

50

Theorem 38 (Coincidence VII) The preorders A∼1
and A∼c

coincide.

Proof. First, we prove the inclusion A∼1
⊆ A∼c

as above and hence consider
some arbitrary processes P and Q such that P A∼1

Q.

(1,2) The cases P
α−→1 P

′ for some process P ′ and Q
α−→1 Q

′ for some process
Q′ are treated in analogy to the corresponding cases in the coincidence
result for the naive faster-than preorders of type-1 and type-c in Theorem
22 and are therefore omitted here.

(3) If P
σ−→1 P

′ for some process P ′, then U(Q) ⊆ U(P) and Q
σ−→1 Q

′

for some Q′ satisfying P ′A∼1
Q′ by definition of A∼1

. We are done since

Q
σ−→1 Q

′ implies Q
σ−→2 Q

′ by application of Lemma 6(2).

For the reverse inclusion A∼c
⊆ A∼1

, define the relation R by (P,Q) ∈ R if
and only if ∃R ∈ P . P A∼c

R �+ Q for P,Q ∈ P . In the following we check
that this relation R satisfies the definition of a strong 1-faster-than relation;
consider P A∼c

R �+ Q.

(1) If P
α−→1 P ′ for some P ′, the definition of A∼c

shows R
α−→1 R′ for

some process R′ with P ′A∼c
R′. Due to R,Q being processes, the syntactic

relation is restricted to processes here. R �+ Q is defined as R � . . . � Q.
Since � satisfies the definition of a strong 1-faster-than relation by using
Proposition 36, we successively may conclude that Q

α−→1 Q
′ for some

Q′ such that R′ �+ Q′.
(2) The case Q

α−→1 Q
′ for some Q′ is analogous to Part (1).

(3) If P
σ−→1 P

′ for some P ′, then U(R) ⊆ U(P) and R
σ−→2 R

′ for some
process R′ with P ′A∼c

R′ by definition of A∼c
.

Due to R
σ−→2 R′, we may infer Q

σ−→1 Q′ for some Q′ satisfying
R′ �+ Q′ by using Lemma 21(1).
Moreover, we know U(Q) ⊆ U(R) due to R �+ Q by successive applica-
tion of Lemma 10 and therefore U(Q) ⊆ U(P) results from U(Q) ⊆ U(R)
and U(R) ⊆ U(P).

This finishes the proof, since �+ is reflexive and hence A∼c
⊆ A∼c

◦ �+= R ⊆ A∼1

is valid. In summary, we obtain A∼c
⊆ A∼1

. 2

[LV04] shows that the strong 1-faster-than preorder is a precongruence and
that it is the largest precongruence (for all operators as well as for recursion).
contained in the 1-naive-faster-than preorder.

Theorem 39 (Full abstraction) [LV04][Theorem 19 for i = 1]
The preorder A∼i

is the largest precongruence contained in A∼i-nv
for i ∈ {1, 2, c}.

51

Proof. The proof for i = 1 is given in [LV04].
Clearly, this statement as well holds for A∼2-nv

and A∼c-nv
, since the coincidence

of A∼i-nv
, A∼2-nv

and A∼c-nv
immediately implies the coincidence of the largest

precongruences in it. 2

Note, that the example for a small c-naive faster-than relation, that is given
in Section 4.2, is also valid for the c-naive faster-than precongruence.

8 Weak variants

This section presents some variants of weak faster-than preorders, which ab-
stract from internal, unobservable actions. Their specification is necessary
since the strong faster-than precongruence is too discriminating to verify sys-
tems in practice. To demonstrate that the coincidence results carry over to
the weak preorders, we show that the various types of weak preorders coincide
for i = 1 and i = 2. It is worth pointing out that these coincidence proofs are
exclusively based on technical devices that are already employed in previous
coincidence proofs. First, it is convenient to introduce some notations that are
used in the following definitions. For any action α we define α̂ =df ε, if α = τ ,
and α̂ =df α, otherwise. Further, we let

ε
=⇒ =df

τ−→∗ and write P
α

=⇒ Q if
there exist R and S such that P

ε
=⇒ R

α−→ S
ε

=⇒ Q.

In analogy to [LV04], we start off with the definition of an i-naive weak faster-
than preorder where the faster and the slower process are linked by a relation
which is a weak bisimulation for action transitions. One also allows the slower
process to perform additional unobservable actions when simulating a time
step of the faster process.

Definition 40 (i-naive weak faster-than preorder) [LV04, Def. 27 for i =
1]
A relation R ⊆ P ×P is an i-naive weak faster-than relation if the following
conditions hold for all 〈P,Q〉 ∈ R, α ∈ A and i ∈ {1, 2}.

(1) P
α−→i P

′ implies ∃Q′. Q α̂
=⇒i Q

′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→i Q

′ implies ∃P ′. P α̂
=⇒i P

′ and 〈P ′, Q′〉 ∈ R.
(3) P

σ−→i P
′ implies ∃Q′, Q′′, Q′′′. Q ε

=⇒i Q
′′ σ−→i Q

′′′ ε
=⇒i Q

′ and 〈P ′, Q′〉∈
R.

We write P A≈i-nv
Q if 〈P,Q〉 ∈ R for some i-naive weak faster-than relation R

and call A≈i-nv
i-naive weak faster-than preorder.

52

As usual, we can show that A≈i-nv
is the largest i-naive weak faster-than rela-

tion and that it is a preorder.
Clearly, any and also the largest i-naive faster-than relation satisfies the defi-
nition of A≈i-nv

. Hence A∼i-nv
⊆ A≈i-nv

, and the syntactic relation � satisfies the
definition of a weak 1-naive faster-than relation by using Proposition 18(1) for
i = 1.
In the sequel we want to state and prove that the naive weak faster-than
preorders of type-1 and type-2 coincide.

Theorem 41 (Coincidence VIII) The preorders A≈1-nv
and A≈2-nv

coincide.

Proof. First, we show the inclusion A≈1-nv
⊆ A≈2-nv

and hence consider some
arbitrary processes P and Q such that P A≈1-nv

Q.

(1) If P
α−→2 P

′ for some P ′, then P
α−→1 P

′ by using Lemma 6(1). Further,

Q
α̂

=⇒1 Q
′ for some Q′ such that 〈P ′, Q′〉 ∈ A≈1-nv

by definition of A≈1-nv
,

which means that Q
τ−→1
∗ α−→1

τ−→1
∗
Q′ if α ≡ a for some a ∈ Λ ∪ Λ

or Q
τ−→1
∗
Q′ if α ≡ τ . In the first case we get Q

τ−→2
∗ α−→2

τ−→2
∗
Q′

by repeated application of Lemma 6(1). In the second case we obtain
Q

τ−→2
∗
Q′ also by repeated application of Lemma 6(1).

(2) This case is treated in analogy to the previous case.
(3) If P

σ−→2 P
′′ for some P ′′, then P

σ−→1 P
′ for some P ′ such that P ′′ �+ P ′

by Lemma 13. Further, Q
ε

=⇒1 Q
′′ σ−→1 Q

′′′ ε
=⇒1 Q

′, i.e. Q
τ−→1
∗
Q′′

σ−→1

Q′′′
τ−→1
∗
Q′ for some Q′ such that 〈P ′, Q′〉 ∈ A≈1-nv

by the definition of
A≈1-nv

. Then Q
τ−→2
∗
Q′′

σ−→2 Q
′′′ τ−→2

∗
Q′ by repeated application of

Lemma 6(1) and by Lemma 6(2). We are done since P ′′ �+ P ′ implies
P ′′A≈1-nv

P ′ and P ′′A≈1-nv
Q′ follows from P ′′A≈1-nv

P ′ and P ′A≈1-nv
Q′ by the

transitivity of A≈1-nv
.

To show the inverse inclusion A≈2-nv
⊆ A≈1-nv

, we consider some arbitrary pro-
cesses P and Q such that P A≈2-nv

Q.

(1,2) The cases P
α−→1 P

′ for some process P ′ and Q
α−→1 Q

′ for some Q′ are
analogous to the corresponding cases in the proof for the inverse inclusion.

(3) If P
σ−→1 P

′ for some P ′, then P
σ−→2 P

′ by using Lemma 6(2). Then,
Q

τ−→2
∗
Q′′

σ−→2 Q
′′′ τ−→2

∗
Q′ for some Q′ such that 〈P ′, Q′〉 ∈ A≈2-nv

by

definition of A≈2-nv
. Further, Q

τ−→2
∗
Q′′ implies Q

τ−→1
∗
Q′′ by Lemma

6(1). Q′′
σ−→2 Q

′′′ implies Q′′
σ−→1 Q

′′′
1 such that Q′′′ �+ Q′′′1 by using

Lemma 13. Moreover, Q′′′
τ−→2
∗
Q′ implies Q′′′

τ−→1
∗
Q′ by using Lemma

6(1).
Since � satisfies the definition of a 1-naive faster-than relation by Propo-
sition 18(1) for i = 1, Q′′′ �+ Q′′′1 and Q′′′

τ−→1
∗
Q′ implies Q′′′1

τ−→1
∗
Q′1

such that Q′ �+ Q′1 holds.

53

Q′ �+ Q′1 implies Q′A≈2-nv
Q′1, since �+⊆ A≈1-nv

⊆ A≈2-nv
. We are done

since P ′A≈2-nv
Q′ and Q′A≈2-nv

Q′1 implies P ′A≈2-nv
Q′1 by the transitivity of

A≈2-nv
. 2

Obviously, the i-naive weak faster-than preorder is not a precongruence. Hence,
[LV04] aims for characterizing the coarsest precongruence contained in it.
Therefore, they introduce a preorder as a first candidate for a weak precongru-
ence, called weak faster-than preorder. It turns out that this preorder is only
the largest precongruence for all operators except summation operator, which
is contained in A≈i-nv

. As it is however used in the definition of the real pre-
congruence, we have to introduce it and compare the corresponding variants
of type-1 and type-2.

Definition 42 (Weak i-faster-than preorder) [LV04, Def. 28 for i = 1] A
relation R ⊆ P×P is a weak i-faster-than relation if the following conditions
hold for all 〈P,Q〉 ∈ R, α ∈ A and i ∈ {1, 2}:

(1) P
α−→i P

′ implies ∃Q′. Q α̂
=⇒i Q

′ and 〈P ′, Q′〉 ∈ R.

(2) Q
α−→i Q

′ implies ∃P ′. P α̂
=⇒i P

′ and 〈P ′, Q′〉 ∈ R.
(3) P

σ−→i P
′ implies ∃Q′, Q′′, Q′′′. Q ε

=⇒i Q
′′ σ−→i Q

′′′ ε
=⇒i Q

′,
U(Q′′) ⊆ U(P), and 〈P ′, Q′〉 ∈ R.

We write P A≈i
Q if 〈P,Q〉 ∈ R for some weak i-faster-than relation R and

call A≈i
weak i-faster-than preorder.

As usual, we can show that A≈i
is the largest weak i-faster-than relation and

that it is a preorder. According to their definitions, the strong i-faster-than
precongruence is contained in the weak i-faster-than preorder, hence we may
conclude �⊆ A≈i

from �⊆ A∼i
⊆ A≈i

. Now we are able to show that the weak
faster-than preorders of type-1 and type-2 coincide:

Theorem 43 (Coincidence IX) The preorders A≈1
and A≈2

coincide.

Proof. First, we prove that A≈1
satisfies the definition of a weak 2-faster-than

relation; hence consider some arbitrary processes P and Q satisfying P A≈1
Q.

(1,2) The treatment of the cases P
α−→2 P

′ for some P ′ and Q
α−→2 Q

′ for
some Q′ follows in analogy to the corresponding cases in the proof for the
coincidence result VIII.

(3) If P
σ−→2 P

′′ for some P ′′, then P
σ−→1 P

′ for some P ′ such that P ′′ �+

P ′ by using Lemma 13. Due to P
σ−→1 P

′ for some P ′, we may infer
Q

ε
=⇒1 Q

′′ σ−→1 Q
′′′ ε

=⇒1 Q
′ and U(Q′′) ⊆ U(P) for some Q′ such that

P ′A≈1
Q′ by the definition of A≈1

, i.e. Q
τ−→1
∗
Q′′

σ−→1 Q
′′′ τ−→1

∗
Q′. Then,

54

Q
τ−→2
∗
Q′′

σ−→2 Q
′′′ τ−→2

∗
Q′. follows by repeated application of Lemma

6(1) and by using Lemma 6(2). Since �⊆ A≈1
, we may conclude P ′′A≈1

P ′

from P ′′ �+ P ′ and finally P ′′A≈1
Q′ results from P ′′A≈1

P ′ and P ′A≈1
Q′.

Now, we show the inclusion A≈2
⊆ A≈1

and hence consider some arbitrary
processes P and Q such that P A≈2

Q.

(1,2) The cases P
α−→1 P

′ for some P ′ and Q
α−→1 Q

′ for some Q′ are again
in analogy to the proof for the coincidence result VIII.

(3) If P
σ−→1 P

′, then P
σ−→2 P

′ by Lemma 6(2). By the definition of A≈2
,

we obtain U(Q′′) ⊆ U(P) and Q
τ−→2
∗
Q′′

σ−→2 Q
′′′ τ−→2

∗
Q′ for some

Q′ with P ′A≈2
Q′. Q

τ−→2
∗
Q′′ implies Q

τ−→1
∗
Q′′ by using Lemma 6(1).

Q′′
σ−→2 Q

′′′ implies Q′′
σ−→1 Q

′′′
1 such that Q′′′ �+ Q′′′1 by using Lemma

13. Moreover, Q′′′
τ−→2
∗
Q′ implies Q′′′

τ−→1
∗
Q′ by using Lemma 6(1).

Since � satisfies the definition of a 1-naive faster-than relation by Propo-
sition 18(1) for i = 1, Q′′′ �+ Q′′′1 and Q′′′

τ−→1
∗
Q′ implies Q′′′1

τ−→1
∗
Q′1

such that Q′ �+ Q′1 holds.
Q′ �+ Q′1 implies Q′A≈2

Q′1, since �+⊆ A≈1-nv
⊆ A≈2-nv

. We are done since
P ′A≈2

Q′ and Q′A≈2
Q′1 implies P ′A≈2

Q′1 by the transitivity of A≈2
. 2

Now we define the weak i-faster-than precongruence which repairs the defect
of the non-compositionality of the summation operator. In order to simplify
its definition, we will combine A≈1

and A≈2
in A≈, which is justified since A≈1

and
A≈2

coincide.

Definition 44 (Weak i-faster-than precongruence) [LV04, Def. 30 for i =
1]
A relation R ⊆ P × P is a weak i-faster-than precongruence relation if the
following conditions hold for all 〈P,Q〉 ∈ R, α ∈ A and i ∈ {1, 2}.

(1) P
α−→i P

′ implies ∃Q′. Q α
=⇒i Q

′ and P ′ A≈Q′.
(2) Q

α−→i Q
′ implies ∃P ′. P α

=⇒i P
′ and P ′ A≈Q′.

(3) P
σ−→i P

′ implies U(Q) ⊆ U(P) and ∃Q′. Q σ−→i Q
′ and 〈P ′, Q′〉 ∈ R.

We write P A'i
Q if 〈P,Q〉 ∈ R for some weak i-faster-than precongruence

relation R and call A'i
weak i-faster-than precongruence.

As usual, we can show that A'i
is the largest weak i-faster-than relation and is

a preorder. The strong i-faster-than precongruence A∼i
is included in the weak

i-faster-than precongruence A'i
. Thus, we again know that �⊆ A'i

, due to
�⊆ A∼i

⊆ A'i
. Using this device, we are able to prove that the weak faster-than

precongruences of type-1 and type-2 coincide.

Theorem 45 (Coincidence X) The precongruences A'1
and A'2

coincide.

55

Proof. First, we show the inclusion A'1
⊆ A'2

and hence consider some arbi-
trary processes P and Q such that P A'1

Q.

(1) If P
α−→2 P

′, then P
α−→1 P

′ by using Lemma 6(1). Hence Q
α

=⇒1 Q
′ for

someQ′ such that P ′A≈Q′ by definition of A'1
. This meansQ

τ−→1
∗ α−→1

τ−→1
∗

Q′ for α ≡ a and Q
τ−→1

+
Q′ for α ≡ τ . In the first case we get

Q
τ−→2
∗ α−→2

τ−→2
∗
Q′ by repeated application of Lemma 6(1). Analo-

gously, we get Q
τ−→2

+
Q′ in the second case.

(2) The case Q
α−→2 Q

′ for some Q′ is analogous to Case (1).
(3) If P

σ−→2 P
′′ for some P ′′, then P

σ−→1 P
′ for some P ′ such that P ′′ �+

P ′. Further, we obtain Q
σ−→1 Q′ for some Q′ such that P ′A'1

Q′ and

U(Q) ⊆ U(P) by definition of A'1
. Q

σ−→1 Q′ implies Q
σ−→2 Q′ by

using Lemma 6(2). Moreover P ′′ �+ P ′ implies P ′′A'1
P ′ by successive

application of �⊆ A'1
and the transitivity of A'1

. Hence, we may conclude
P ′′A'1

Q′ from P ′′A'1
P ′ and P ′A'1

Q′.

To prove the inverse inclusion A'2
⊆ A'1

, we consider some arbitrary processes
P and Q such that P ′A'2

Q′.

(1,2) The cases P
α−→1 P

′ for some P ′ and Q
α−→2 Q

′ for some Q′ are treated
in analogy to the proof for the inverse inclusion.

(3) If P
σ−→1 P

′, then P
σ−→2 P

′ by using Lemma 6(1). Further, U(Q) ⊆
U(P) and Q

σ−→2 Q′ for some Q′ such that P ′A'2
Q′ by the definition

of A'2
. We may conclude Q

σ−→1 Q
′′ for some Q′′ such that Q′ �+ Q′′

by using Lemma 13. Since �⊆ A'1
⊆ A'2

, Q′ �+ Q′′ leads to Q′A'2
Q′′.

Finally, P ′A'2
Q′′ results from P ′A'2

Q′ and Q′A'2
Q′′. 2

Theorem 46 (Full abstraction) [LV04][Theorem 32 for i = 1] The rela-
tion A'i

is the largest precongruence contained in A≈i
for i ∈ {1, 2}.

Proof. The proof for i = 1 is given in [LV04].
Clearly, this statement as well holds for i = 2. Since A'1

and A'2
as well as A≈1

and A≈2
coincide, this immediately implies that A≈2

is the largest precongruence
contained in A'2

. 2

We leave the definition of a corresponding weak preorder and precongruence
of type-c for future work.

56

9 Conclusion and future work

In this thesis we extended the clock transitions of processes in the process
algebra TACS by new time steps and studied the candidates for faster-than
preorders that are established in [LV04] in the new setting. With the exception
of the indexed faster-than preorder, we were able to prove that all the new
preorders coincide with the old preorders. Summarizing, we one again formally
underpinned that the concise and simple naive faster-than relation of [LV04]
is a sensible candidate for a faster–than preorder. Even the precongruence
and the corresponding weak variant have turned out to be robust against the
transition extension. Throughout, all coincidence results were proved with the
same proof technique. Apart from that, in search of obtaining small relations
to demonstrate a faster-than relationship, we have proven that the combined-
naive faster-preorder as well as the ’up to’-technique indeed provide small
relations.

Future work should proceed along two different directions. First, we should
intend to repair the defect of the largest indexed-faster than relation in our new
setting by altering its definition. This approach is relevant since the indexed
faster than preorder is quite a convincing candidate for a faster-than relation
on processes. Another open issue for future work is to consider combined
definitions of the weak variants. Moreover, it remains an open question, to
what extent the newly established c-precongruence relations are small ones.
Nevertheless, it seems to be worth investigating a combined variant of the
delayed faster-than preorder with regard to infinite relations. There are reasons
to believe that we are able to carry over the proof techniques gained so far to
these investigations.

References

[LV04] G. Lüttgen and W. Vogler. Bisimulation on speed: worst-case efficiency.
Information and Computation, 191(2):105–144, 2004.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

57

