
Quality assurance with drones: Relative navigation
for targeted inspection of large structures using
drones

Martin Schörner

Angaben zur Veröffentlichung / Publication details:

Schörner, Martin. 2026. “Quality assurance with drones: Relative navigation for
targeted inspection of large structures using drones.” Augsburg: Universität
Augsburg.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under
these conditions:
CC-BY 4.0: Creative Commons: Namensnennung
Weitere Informationen finden Sie unter: / For more information see:
https://creativecommons.org/licenses/by/4.0/deed.de

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/deed.de

Quality Assurance with
Drones

Relative Navigation for Targeted

Inspection of Large Structures

Using Drones

Martin Schörner

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Corporate Design
Richtlinien

Fakultät für Angewandte Informatik

16. Mai 2025

Quality Assurance with Drones

Erstgutachter: Prof. Dr. Wolfgang Reif
Zweitgutachter: Prof. Dr. Bernhard Bauer

Tag der mündlichen Prüfung: 25. Juli 2025

“Airplanes are beautiful dreams,
engineers turn dreams into reality.”

— Hayao Miyazaki

iv

Acknowledgements

This work would not have been possible without the support I received from various
people. First, I want to thank my supervisor, Professor Dr. Wolfgang Reif. He provided
an environment where I could concentrate on my studies, gave me the freedom to realize
my ideas, and guided me throughout this dissertation.
I also want to thank all my colleagues who gave feedback on my ideas, participated in
discussions about the project, and provided support in difficult times. I would especially
like to thank Professor Dr. Constantin Wanninger, who first got me into a career in
science, and without whose mentoring, I would not have finished the dissertation.
Special thanks also go to current and former members of the ISSE robotics department
and other close colleagues, namely Dr. Alexander Poeppel, Dr. Matthias Stüben, Dr.
Julian Hanke, Dr. Christian Eymüller, Daniel Bermuth, Michael Filipenko, our technician
Stefan Wolff, and Dr. Hella Ponsar.
I would also like to thank all students who worked with me during the past years. It was
a great privilege to work with such a loyal team and watch every one of you develop
and learn over the past five years. Special thanks go to some of my long-term student
assistants, Raphael Katschinsky, Simon Hornung, Raban Poppall, and Jan Dräger, who
made a significant effort to help me bring the QuAD project into a state where it is not
just an assortment of tossed-together prototypes but a proper modular framework.
I am also thankful for the help provided by our secretarial team, consisting of Melina
Buchschuster, Bettina Grabmann, and Rositta Bingger. They took most of the tedious
administrative work offmy hands and provided a protective shield against the frustrating
world of the university’s administrative apparatus, allowing me to focus onmy studies.
Thanks are also due to Kevin Dittel, Christian Adorian, Stefan Salzburger, Halil Sinmaz,
and Ismail Teoman from Airbus, who played a crucial part in developing the idea for
QuAD. They provided invaluable insights into Airbus’s production processes and feed-
back about the required functionalities and the various assemblies as well as structures
needed for our tests.
Last, I want to thank my friends and family for their continuous support and under-
standing throughout the years.

Martin Schörner

v

vi

Abstract

Due to advances in technology, the use of autonomous flying robots for inspecting large
structures has become increasingly popular in recent years. However, most applications
focus on performing outdoor inspections. In the manufacturing sector, automated
inspections of large structures performed by autonomous flying robots are rare due to
the additional challenges, such as the complex environment and the unavailability of
GPS signals. Nevertheless, the global economy’s demand for efficient manufacturing
requires the automation of inspection processes in this sector.
This work introduces a modular relative path planning, perception and navigation
system for flying robots performing inspections that relies only on onboard sensors and
is based on model tracking. The system supports safe autonomous flight while avoiding
collisions in complex and highly dynamic environments. The system includes path and
trajectory planning algorithms based on either the targeted inspection of specific Points
of Interest on the assembly or coverage of the entire surface of the model which can
be used interchangeably depending on the specific inspection task. The architecture is
designed to allow for easy integration of existing, ground-based inspection and error
detection tools. It’s functionality is demonstrated through a number of prototypes
based on case studies focusing on inspecting aircraft fuselage parts and a wind turbine.
The prototypes are used to perform simulated and real-world proofs of concept and
evaluations. The results demonstrate the system’s ability to plan efficient inspection
paths, precisely navigate relative to the inspected structures, and detect and avoid
obstacles in real time, thus validating its effectiveness in the complex environments
encountered inside manufacturing facilities.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Case Studies . 6

1.2.1 CS1: Inspection of Aircraft Fuselages 6
1.2.2 CS2: Inspection of Wind Farms 9

1.3 State of the Art of UAV-Based Inspections 11
1.3.1 In-Service Inspection of Aircraft 11
1.3.2 In-Service Inspection of Infrastructure and Wind Turbines . . . 14
1.3.3 Automated Inspection in Production 15

1.4 Summary of Contributions . 18

2 Techniques for Visual Inspection 21
2.1 Planning Methods . 23

2.1.1 Path Planning with the Ant Colony System 23
2.2 Positioning . 26

2.2.1 Coordinate Frames and Transformations 26
2.2.2 Kinematic Modeling of Assemblies 28
2.2.3 UAV Positioning . 29
2.2.4 Model Tracking . 35
2.2.5 Odometry . 36
2.2.6 Sensor Fusion Using a Kalman Filter 37

2.3 Navigation Strategies . 41
2.3.1 Dynamic Path Planning Using Anytime Dynamic A* 41
2.3.2 Strategies for Surface Coverage 44

2.4 Collision Avoidance . 46
2.4.1 Sensors for Collision Avoidance 46
2.4.2 OctoMaps . 48

3 Concept for Relative Inspection 49
3.1 General Overview of the Concept . 51
3.2 Viewpoint-Dependent Path Planning 52

3.2.1 Points of Interest, Viewareas, and Viewpoints 52
3.2.2 Calculation of an Efficient Inspection Sequence 56
3.2.3 Optimization Potential Through Overlapping Viewareas 58
3.2.4 Optimization of Key Viewpoints Across Inspections 60
3.2.5 Related Work and State of the Art 62

3.3 Relative Positioning . 65
3.3.1 Position Estimation ThroughModel Tracking and Onboard Sensors 67
3.3.2 Processing of Model Tracking Measurements 67
3.3.3 Related Work on Relative Position Determination 70
3.3.4 Sensor Data Fusion . 73

ix

3.3.5 Position Estimation with Moving or Changing Reference Systems 78
3.3.6 Related Work on Sensor Fusion for Position Estimation 85

3.4 Relative Navigation Along Assemblies 88
3.4.1 Potential Field Navigation . 88
3.4.2 Anytime Dynamic A* . 92
3.4.3 Collision Avoidance with Limited Sensors 95
3.4.4 Related Work and State of the Art 98

3.5 Using UAVs for Inspection . 103
3.5.1 Visual Presence Detection . 104
3.5.2 Interface for Connecting External Inspection Solutions 108
3.5.3 Related Work and State of the Art 109

3.6 Photogrammetric Documentation of Assemblies 113
3.6.1 Full Surface Coverage . 113

4 Architecture and Implementation 117
4.1 Offline Path Planning . 119

4.1.1 Specification of Components to be Inspected 119
4.1.2 Creation of Viewareas . 120
4.1.3 Optimization Through Overlapping Viewareas 120
4.1.4 Sampling of Discrete Viewpoints from Viewareas 121
4.1.5 Calculation of Inspection Paths 122

4.2 Inspection Relative to an Assembly . 123
4.2.1 Positioning Relative to an Assembly 124
4.2.2 Obstacle Detection for Collision Avoidance 130
4.2.3 Relative Navigation Along Assemblies 133
4.2.4 Cross-Inspection Learning of Better Key Viewpoints 136
4.2.5 Inspection Subsystem . 136
4.2.6 Photogrammetric Documentation of Assemblies 139

4.3 Monitoring and Controlling the Inspection 143
4.3.1 Watchdogs . 143

4.4 Visualization of Inspection Results . 145

5 Prototypes and Evaluations 147
5.1 Evaluation Hardware and Simulation 149

5.1.1 Flight Arena . 149
5.1.2 Inspection Drones . 150
5.1.3 Assemblies for Inspection Tests 155
5.1.4 Simulation Environment . 157

5.2 Inspection of Aircraft Fuselage . 162
5.2.1 Planning Algorithm Performance 162
5.2.2 Path Optimization Through Viewarea Intersection 164
5.2.3 Path Optimization Across Inspections 166
5.2.4 Positioning Performance . 169
5.2.5 Obstacle Avoiding Relative Navigation 174
5.2.6 Performance of the Coverage Algorithm 186

x

5.2.7 Presence Detection on an Assembly in a Production Scenario . 193
5.3 Inspection of a Wind Turbine . 197

5.3.1 Influence of Component Velocities on the State Estimate 198
5.3.2 Kinematic Localization with Changing Reference Frames 199

6 Conclusion and Outlook 201

Bibliography 205

List of Figures 225

List of Tables 229

Supervised Theses 231

Own Publications 233

xi

Summary. This chapter presents the potential of automated
inspection using UAVs and two case studies of applications that
can benefit from UAV-based inspections. Afterward, existing
solutions and concepts for automated inspection are presented,
and the objectives of this work are defined.

1
Introduction

1.1 Motivation . 3
1.2 Case Studies . 6

1.2.1 CS1: Inspection of Aircraft Fuselages 6
1.2.2 CS2: Inspection of Wind Farms 9

1.3 State of the Art of UAV-Based Inspections 11
1.3.1 In-Service Inspection of Aircraft 11
1.3.2 In-Service Inspection of Infrastructure and Wind Turbines 14
1.3.3 Automated Inspection in Production 15

1.4 Summary of Contributions 18

1

1 Introduction

Quality assurance is a critical part of modern manufacturing. A global economy has
resulted in more competition and thus demands a more efficient and cost-effective
production. This often requires the automation of labor-intensive processes to reduce
manpower [170]. As a result, a need for the automation of quality assurance in the form
of inspections during the manufacturing process has developed in recent years. Frequent
inspections during the manufacturing process are a means to ensure a high-quality
product and prevent the waste of resources through performing further work an already
damaged or defective part. Especially during the manufacture of large components,
performing manual inspections can be difficult, as it often requires additional infras-
tructure like scaffolding, lifting platforms, or industrial climbers. This work is often
dangerous, and current safety standards can prevent workers from inspecting certain
areas of an assembly [241]. The repetitive nature of structures like aircraft fuselages
can often confuse human workers and lead to errors during inspections. While several
solutions exist to facilitate manual inspections through tools like Augmented Reality
(AR) [100, 286], the inspection process still must be performed by a human worker in
most cases. The use of uncrewed aerial vehicles (UAVs) for performing inspections seems
advantageous, as they are able to fly to inspection points that cannot be easily reached
by humans and do not require additional support structure around the assemblies. UAVs
are already used to perform various inspections on infrastructure like bridges [125, 260]
and energy infrastructure [58, 123, 173, 180, 302] as well as to monitor the status of
construction sites [155] and crops [301]. However, the use of UAVs in manufacturing
proves more difficult, as signals from global navigation satellite systems like GPS often
do not penetrate into buildings. Additionally, the dynamic, more complex, and often
crowded environment poses more challenges for UAVs to navigate due to the increased
potential for collisions with obstacles. This results in the use of UAVs being less common
in manufacturing, which is often performed in enclosed facilities [171].
This work focuses on developing concepts for the use of UAVs for inspections performed
in such environments and aims at finding solutions for the problems mentioned above.
Throughout the following chapters, concepts are developed to plan efficient inspection
paths, estimate the UAV’s position relative to a structure and navigate alongside it
while simultaneously avoiding obstacles. Based on these concepts, the QuAD (Quality
Assurance using Drones) System was developed. QuAD is a platform for performing
inspections on large structures during assembly and in other scenarios using multirotor
UAVs.
The required basic techniques, developed concepts, architecture, and prototypes, as
well as the performed proofs of concept and evaluations, are detailed in the following
chapters. The following paragraphs of this chapter focus on providing a motivation for
UAV-based inspections in manufacturing, introducing two separate case studies and
summarizing the contributions of this work.

2

1.1 Motivation

1.1 Motivation

Historically, the inspections performed for quality assurance in manufacturing were a
human-centered process [166]. The inspector would compare the product to a blueprint,
or a reference part. Based on these references, the inspected product would either pass
or fail the inspection. Since these types of inspections are labor-intensive, they were not
performed after every manufacturing step, with some products only being inspected
after completion. This led to high scrap rates, wasted resources on manufacturing steps
on already defective parts, and thus increased production costs. More complex products
and smaller tolerances required formoremodern productsmade this process increasingly
less effective, leading to the introduction of computer vision-based systems aiding in the
inspection process [166]. Increased competition through a globalized market increased
pressure on manufacturers to produce their products in a more cost-efficient way [18].
Additionally, more complex products and production processes increased the demands
on human workers, which increased the likelihood of errors in inspection tasks and
resulted in the need for a more subjective and reliable way to perform inspections [18].
Especially in the manufacturing of large products like ships, wind turbines or airplanes,
inspections are still performed mostly manually due to the size and complexity of the
structures preventing the use of stationary inspection systems intended for smaller
products or systems utilizing ground-based robots, which may not be able to reach
all required inspection points. Manual inspections of these structures often require
the use of additional structures or scaffolding and can be dangerous to the personnel,
to the point that local regulations may prohibit certain types of inspections due to
safety reasons. Often, support structures used to manufacture the assembly are used to
perform the subsequent inspection. This, however, blocks the support structure, which
may be needed for manufacturing the next part. This problem is especially present in
the manufacturing of aircraft fuselage parts, where derivatives of decades-old aircraft
designs are still manufactured. During design time, the high levels of competition present
in today’s markets were not taken into consideration, and thus, little effort was made to
make the inspection processes efficient. This results in inspections of assemblies only
being made after several assembly steps, which can result in situations where additional
parts are fitted to assemblies that were rendered defective during an unnoticed error a
few steps prior. The repetitive nature of these assemblies also makes manual inspection
prone to human error. These factors result in high error rates, time expenditure, costs
for the inspection process, and a need for a better solution. An automated inspection
performed by UAVs no longer requires the inspection process to be carried out by human
inspectors. Therefore, inspections can be performed outside the production stations and
independently of scaffolding, freeing these facilities for the manufacturing of the next
assembly. Humans are also no longer required to work in potentially dangerous areas,
increasing worker safety and enabling inspections in areas that are impossible with
current work safety regulations. Automatic conformity checking and defect detection
allow for a more objective and consistent inspection process, eliminating variations in
acceptance criteria between different human inspectors. Automating this process also
allows for easy documentation of the production process and traceability of defects that
occur later in the product life cycle.

3

1 Introduction

Advantages of Selective Inspections
Existing UAV-based inspection solutions focus on capturing the state of the whole
assembly. During in-service inspections of objects like aircraft, bridges, and wind
turbines, this makes sense as the types of defects that the inspections try to detect,
like cracks, delaminations in composite parts, or lightning strikes, can occur anywhere
on the inspected object. However, covering the entire surface of an object is time-
consuming (which is a problem due to the limited flight time of UAVs) and inefficient
in many manufacturing scenarios, especially during assembly, where altered areas of
an assembly can easily be determined based on the performed manufacturing steps.
Selective inspection of areas that were modified during a specific manufacturing step
can therefore result in a more time and cost-efficient inspection process. This can be
combined with less frequent inspections covering the entire surface of the assembly to
check for damage introduced to different parts of the assembly while performing the
preceding manufacturing steps.

Advantages of Relative Positioning and Navigation
The inability of global navigation satellite signals to penetrate into buildings, combined
with their low accuracy, makes them unusable in most manufacturing scenarios [133].
External positioning solutions like camera tracking systems or ultra-wideband require
the installation of external sensors in each area where inspections are performed, making
them less practical. External camera tracking systems have the additional disadvantage
that they require visual line of sight to the tracked target, which complicates measuring
a UAV’s position once it enters a confined space inside an assembly. Therefore, using
only the UAV’s internal sensors is advantageous. Development in Augmented Reality
applications in recent years has made model tracking (see: Section 2.2.4) a promising
possibility of establishing the position of the UAV’s camera relative to the inspected
structure. This approach does not require the installation of markers on the inspected
assembly, which might not be desirable due to aesthetic reasons and additional cost
introduced by the precise installation and subsequent removal of these markers.

When tracking the inspected assembly, model tracking adds the benefit that position
estimation and navigation are performed relative to the assembly, in contrast to external
systems, which provide positions relative to a fixed origin, like the geographic North
Pole or an arbitrary origin set in the camera tracking system. This allows for the
specification of inspection points relative to the assembly, independent of its absolute
position, enabling an inspection to be performed with the assembly located at an
arbitrary position. This is especially beneficial when inspecting multiple identical
products, like in a buffer storage facility, where assemblies are often kept between two
manufacturing steps. Since the UAV performs all movements relative to the currently
tracked object, inspection points and paths can be reused for identical assemblies in
arbitrary positions, changing only the tracked target between inspections. This concept
is even beneficial in other scenarios, like the inspection of wind turbines or power
towers, where numerous identical objects are inspected.

4

1.1 Motivation

Inspection Techniques in Manufacturing
During the manufacturing of a product, a plethora of different inspections need to
be performed. In assembly, detecting the presence of parts, their correct location,
and orientation is one of the most frequently used checks, and products that partially
automate these checks exist in the industry [100, 286]. The automatic detection of
scratches, dents, and other defects caused during production is another common type of
inspection, for which commercial solutions exist [1]. Other common inspection types
include the photogrammetric documentation of the state of objects for later manual
analysis [51] and thermographic inspections, which are frequently used in composite
manufacturing to detect subsurface defects in the material [46]. However, the number
of different metrics and scenarios that can be checked for during an inspection is
endless, ranging from detecting the protrusion of rivets [165] or the correct installation
of cables inside a cable clamp over the proper application of sealant in a joint to the
detection of microscopic cracks using methods like dye penetrant testing [277]. Each
inspection type requires different approaches for gathering, capturing, and processing
inspection data. However, the data for most of these inspections can be obtained using a
camera capturing either visible light or thermographic images, and most trajectories that
perform these inspections are either based on capturing images of specific points of the
object or covering its entire surface. Therefore, developing a system that can perform
every possible type of inspection that might be required in a manufacturing scenario is
impossible. Instead, providing a system that is able to perform flights along trajectories
covering the entire surface of an object or gather data from specific predefined points
is sufficient to perform most types of inspections. As long as the gathered data and
additional information like the camera position are provided, the functionality of external
inspection solutions for the specific use-case can be extended to perform UAV-based
inspections.
Therefore, this work aims to develop concepts and an exemplary implementation of a
system for UAV-based, relative inspection of large assemblies in manufacturing. This
includes a relative positioning system that does not rely on external sensor data like
GPS, markers, or camera tracking and navigates relative to the inspected objects. While
navigating through complex environments often found in manufacturing facilities, the
system has to avoid previously known and unknown obstacles that might be stationary
or moving throughout the inspection flight. The UAV has to be small enough to perform
inspections inside structures like airplane fuselage parts, which limits the type of sensors
that can be used for obstacle avoidance and the inspection. Finally, the system has to
be agnostic to the used inspection technique, providing the ability to plan and execute
trajectories covering either the entire surface of the inspected object or selectively
inspect specific parts. Before introducing the proposed system, the following sections
describe two distinct case studies to provide a deeper understanding of inspections in
manufacturing and in-service inspections, as well as the current state of the art in this
field.

5

1 Introduction

1.2 Case Studies
The inspection of aircraft fuselage parts during manufacturing is used as a primary case
study to illustrate the concepts and techniques developed throughout this work. The
following paragraphs will explain why most inspections are still performed manually
in this domain and the disadvantages of this approach. Additionally, in-service wind
turbine inspections are introduced as a secondary case study used later in this work to
demonstrate the advantages of several more advanced concepts when navigating along
structures with multiple, independently moving sections.

1.2.1 CS1: Inspection of Aircraft Fuselages

Due to the high safety standards in the aviation industry, inspections are essential when
building and operating aircraft, which must undergo frequent inspections to maintain
its airworthiness certification during operation. In the US, these inspections are required
by the Federal Aviation Administration (FAA) every 12 months or every 100 hours of
operation, depending on the type of aircraft [284]. These inspections include checks
of the entire fuselage for cracks, deformations, and deterioration. While these checks
are only a few of many that have to be performed around the entire aircraft, the size
of modern commercial airliners requires lifting platforms or scaffolding to be put up
so that humans can perform these checks directly. Due to the costs induced by these
inspections manually, many companies have developed solutions for performing them
by UAV [105], [61], [173].
While various solutions are available for UAV-based in-service aircraft inspections,
quality assurance during production is still primarily performed manually, and few
automated solutions for inspecting large aircraft fuselage parts during production
exist, covering only a small set of inspection tasks [170, 177]. Due to the high safety
standards for aircraft manufacturing, an inspector must check every manufacturing step.
Additionally, the high cost of development and certification often causes decades-old
aircraft designs to remain in production, or the original models are simply updated
to accommodate more passengers or improve fuel efficiency. This results in aircraft
like the Airbus A320 Single-Aisle series, originally designed in the late 1970s and early
1980s. When the A320 was developed, the number of passengers carried by air transport
annually was around 650 million [20]. This number rose to 4.46 billion in 2019, which
required an unforeseen number of airplanes to cover this demand. While having received
several upgrades and variants over the years, variations of this approximately 40-year-old
design have been built over 12000 times with over 20000 total orders as of January 2025,
leaving a little under 8000 of these planes to be built [258]. The extent of the demand
for this model was not clear during the design phase, so manufacturing processes were
not optimized for the high output required today. This was amplified by the fact that
robotics and automation in production were in their infancy at this time and had not
yet been widely adopted by aircraft manufacturers. Also, the complex geometries of the
fuselage parts did not allow for a high degree of automation for a long time [31].

6

1.2 Case Studies

While this example only covers one type of aircraft, the Single-Aisle series makes up
81% of Airbus’s total orders, and 89% of open orders are Single-Aisle aircraft [258].
Airbus, being the largest airplane manufacturer by market capitalization in 2024 [34],
highlights the significance of this problem.
In recent years, automation was slowly introduced into the actual manufacturing steps,
like drilling [259] or painting [31], but the inspection process is still performedwith a low
degree of automation. The only notable advances in this sector have been Augmented
Reality tools and frameworks like MiRA [100], DELMIA [269] and VisionLib [286] that
aid human inspectors with verifying the correct installation of parts on an assembly as
well as the Iris GVI [63] UAV developed by Donecle [61] that is able to capture images
of the entire surface of the assembly and perform some limited processing of this data
like the extraction of serial numbers or highlighting the difference between the part in
two subsequent inspection flights.

Structure and Terminology of Aircraft Fuselage Parts

The manufacturing of an airplane consists of a variety of different production steps. This
work mainly focuses on the types of inspections required during the assembly of fuselage
parts. These structures are built by attaching large amounts of parts using a combination
of drilling, deburring, gluing, and riveting operations. These parts are mostly stamped
and bent sheet metal brackets or machined aluminum parts for more complex geometries.
Figure 1.1 shows the general structure of an airplane fuselage. It consists of a formed
sheet metal skin supported by frames supporting the circumference of the tubular
fuselage section and stringers providing support in the lengthwise direction [184].
This structure serves as a basis for installing various struts and brackets that either
reinforce the fuselage’s structure or serve as mounting points for other hardware, such
as insulation, wiring, or paneling.

State of the Art of Manual Inspection

As mentioned before, most of the fuselage’s structural parts are installed through a
combination of gluing and riveting. Airbus offers its customers a high level of customiza-
tion through features like optional winglets, a short airfield package, different cabin
layouts, and comfort features for passengers. This results in a high variability in the
resulting airframes, making the automation of bracket installation difficult. Therefore,
a significant number of brackets are still installed manually by human workers. The
repetitive nature of the structures that are worked on (see: Figure 1.1) introduces a high
potential for human error during installation. The same is true for the inspection process
itself. Additionally, this complex task is not only cost-intensive but also requires a great
deal of manual labor, which can cause problems as it may require hiring new inspec-
tion workers when the required production output varies. The quality control during
fuselage manufacturing has evolved from manual matching of the physical part to the
manufacturing drawings and manual dimensional inspections to a computer-assisted
approach using tools like MiRA [100] and DELMIA [269]. These tools allow workers to
augment the camera image of an inspection tablet with an AR overlay provided by the

7

1 Introduction

Computer Aided Design (CAD) model to spot mistakes more efficiently or even perform
checks for the presence as well as the correct position and orientation of parts automat-
ically. While augmenting the camera image reduces human errors during inspection,
these tools still require manual positioning of the inspection camera at the part being
inspected. When working with large assemblies, this necessitates additional scaffolding
to be in place to get the camera to all required positions. Often, the same structures
used to perform a particular production step are used to perform the corresponding
inspection. However, this means that a supporting structure which could already be
used to manufacture the next part is still occupied to perform an inspection. With a
demand for high production output, inspections are often performed only every few
production steps. While this procedure still guarantees the inspection of every installed
part, it enables a scenario where an unfixable error stays undetected for longer, wasting
time and resources on further work on a defective part.

FrameStringer Skin

Figure 1.1. Model of an aircraft fuselage part consisting of skin, stringers, and frames.

8

1.2 Case Studies

1.2.2 CS2: Inspection of Wind Farms

Regular in-service inspection of infrastructure is required for a variety of different
sectors like power lines [123], bridges [260], or wind farms [285]. These inspections can
document the structure’s state to conform to regulations, be performed as a damage
report after an accident, or detect age-related damage and wear. This work uses the
inspection of a wind turbine as a secondary case study that highlights the benefits of
relative positioning and navigation during an inspection process.

Rotor Blade

Nacelle Hub

Tower

Figure 1.2. Basic terminology of a wind turbine consisting of a tower acting as a base for the
nacelle. The rotor hub and blades are mounted to the nacelle.

Figure 1.2 shows the terminology of the individual parts of a wind turbine that might
need to be inspected. The tower is mounted on a foundation, providing a mounting
point for all other components at the correct altitude [276]. The nacelle is mounted
to the tower and can swivel to point the turbine toward the wind. The nacelle also
houses the generator, gearbox, brakes, and all other drive train parts required for power
production. The hub is attached to the nacelle and transfers the rotational energy of the
turbine blades into the drive train through a shaft. The rotor blades can change their
pitch through a rotational joint at the hub’s mounting point. This allows the rotor to be
reconfigured for ideal efficiency at different wind speeds.

9

1 Introduction

The inspection tasks on a wind turbine system are quite diverse. They range from
checking the systems of the power train like the gearbox, bearings, and generator [241],
to checking the condition of secondary features like the lightning protection system or
drainage holes [5]. While the gearbox, bearings, and generator may be checked from
within the turbine’s nacelle, many tasks require a visual inspection from the outside.
Some of these tasks are checks for:

• leading edge erosion
• cracks and pinholes
• clogged drainage holes
• damages on the lightning protection system
• damage through bird strike
• delamination and separation of the leading and trailing wing edge

as well as the documentation of the overall state of the structure [5], [241].
The structure of wind turbines introduces some challenges when performing the these
inspections manually. Their size often makes it difficult for humans to reach all relevant
areas of the structure. This can require the erection of scaffolding, lifts, cranes [10] or, in
some cases, the use of helicopters [200]. Some types of inspections can only be performed
with the help of industrial climbers [10]. While all these methods work and are in use
today, they are inherently expensive and potentially endanger the inspection personnel.
Hence, efforts have beenmade to find other ways to perform these inspections in the past.
This includes performing the inspection with UAVs. Automated wind turbine inspections
use enterprise-grade GPS-guided UAVs like the DJI M300 [256] to fly preplannedmissions
and capture high-resolution images of the entire exterior surface of the turbine. An
inspector manually checks these images after the flight and sends a report to the turbine’s
owner. The companies offering these inspections advertise increased efficiency and
reduced turbine downtime compared to conventional inspections. A byproduct of the
process is the capture of high-resolution images of the turbine at angles that cannot
be achieved by climbers or cranes while taking significantly less time. All this leads
to an overall reduced inspection cost of $300-$500 per turbine vs. $1200-$2500 for the
price of a manual inspection [241]. Also, an inspection by UAV is significantly safer for
the inspection workers as the entire inspection task can be performed while sitting at a
desk.
While several commercial solutions for inspecting wind turbines exist, the UAV is often
piloted manually, or the inspection points it has to visit are defined manually, increas-
ing the complexity of the setup for each inspection. Reusing inspection trajectories,
especially on a large wind farm with over 100 turbines, can significantly reduce the
inspection setup time and thus the cost. Also, conventional inspection UAVs cannot
navigate around moving turbine blades. This requires the turbines to be shut down for
inspection, indirectly increasing the inspection cost.

10

1.3 State of the Art of UAV-Based Inspections

1.3 State of the Art of UAV-Based Inspections
UAV-based inspection has become increasingly popular in various fields in recent
years [198]. The industries where these kinds of inspections are performed nowadays
include:

• Progress monitoring at archaeological sites [77]
• Precision agriculture and crop monitoring [301]
• Oil and gas pipeline monitoring [191, 267]
• Construction [155]
• Mining [151]
• Rail infrastructure [60]
• Energy infrastructure like power lines [58, 123, 180, 302], power towers [291],
wind turbines [5, 192, 241, 265, 285] and solar parks [305]

• In-service aircraft inspections [7, 8, 17, 190]
• Transport infrastructure inspection [195, 260]
• Airport inspections [141]

This work focuses on the inspection of large assemblies in a production context. Com-
pared to the previously mentioned applications, the requirements for path planning and
the inspection tasks that need to be performed differ in this application. However, many
similarities to different types of UAV inspections still exist. Therefore, the following
sections give an overview of relevant related works and the general state-of-the-art of
UAV inspections. A special focus will be on the inspection of aircraft and wind turbines
as they are the subject of the case studies presented in Section 1.2. While UAVs are
already used for in-service aircraft inspections, they are not abundantly used during
manufacturing, as discussed in CS1. Therefore, an overview of the available work related
to UAV-based inspections for in-service inspections is given as well.

1.3.1 In-Service Inspection of Aircraft

The use of UAVs to perform in-service inspections of aircraft is becomingmore popular in
recent years [7, 8]. Bardis et al. [21] give an overview of non-invasive testing techniques
used for automated UAV inspections of aircraft. The use of UAVs in this field is motivated
by an increase in efficiency and thus a reduction in operating and maintenance costs.
The data acquisition process of an in-service inspection can be reduced from a few
hours to a flight lasting only 10 to 30 minutes, with the whole inspection finished after
about 3 hours, compared to a day using conventional methods [7, 8]. Environmental and
operational stressors can cause a variety of defects on the aircraft. For metallic parts,
these can be fatigue cracks, corrosion, or mechanical deformation caused by foreign
objects striking the fuselage. Composite parts can suffer from delamination of individual
layers, cracks, and impact damage. The methods used for in-service inspections include
thermography and 3D-scanning, but most of the inspections required bymost authorities
are visual inspections [208]. Since most UAVs are already equipped with an onboard
camera, they are well-suited to perform these kinds of inspections.

11

1 Introduction

Commercial Solutions

As the biggest airplane manufacturer by market capitalization [34], Airbus has already
made multiple efforts to automate the in-service inspection of its airplanes. Early
systems [7] feature a GPS-guided UAV using an onboard camera to capture images of
the upper part of an airplane and perform a photogrammetric reconstruction to generate
a textured 3D-model of the inspected aircraft. The flight is performed automatically,
but a human supervisor is still necessary. Data acquisition for this particular type of
inspection can be performed in a 10 to 15-minute flight, compared to two hours of
manual labor when capturing the images using a worker on a lifting platform.

A later system developed by the Airbus subsidiary Testia [8] uses an octacopter in an
X-configuration (see: Rodríguez et al. [234]) equipped with a camera and laser obstacle
sensors to perform a similar type of inspection. The main difference with this system
is that the laser sensors are used for positioning and obstacle avoidance, allowing for
inspection flights in GPS-denied environments like hangars. The UAV appears to be
specifically designed for these inspections and is equipped with protective shrouds
around the propellers to limit the amount of damage in case of a crash. The system
can capture the required images for the specific type of inspection it was developed
for during a single 30-minute flight, which allows the entire inspection process to be
finished within 3 hours. Conventional inspections of the same type can last for up to
one day. The time savings cause reduced downtime of the affected airplane and thus
can result in immense cost savings.

The Toulouse-based company Donecle [50, 61] also develops UAVs for in-service aircraft
inspection. Donecle’s inspection UAV, the Iris GVI [63] is approved by the FAA and
EASA and listed in the aircraft maintenance manuals for Boeing and Airbus. They also
offer the use of multiple UAVs in parallel to speed up inspections. The UAVs can also be
equipped with a specialized dentCHECK sensor that increases the detection speed when
checking for dents in the fuselage. Donecle also offers automated component inspections
using this UAV [62], and lists the inspection of landing gear and engines as possible
applications. The system helps with identifying differences on an assembly between
two inspections and is able to automatically extract serial numbers from the captured
images. However, more advanced automated inspection techniques like detecting correct
installation of parts are not mentioned.

Other notable commercial providers of UAV-based in-service inspections of aircraft
include Mainblades [173], Autaza [16, 55, 207] and Luftronix [168, 211].

Scientific Literature

In scientific literature, Rodríguez et al. [234] give an overview of the UAV-based inspec-
tion of airports and aircraft by analyzing 76 relevant papers. They conclude that the
most common inspection method is visual inspection, which creates a record of the
entire state of the aircraft by capturing images and reconstructing a 3D model using
image or LiDAR scan data (see: Section 2.4).

12

1.3 State of the Art of UAV-Based Inspections

Hrúz et al. [120] developed a system for detecting failures in a small, two-seater aircraft.
The inspection flights used a DJI Mavic 2 Enterprise Dual [251] UAV. A combination
of a visual and a thermographic inspection was used to detect defects. Their approach
uses MATLAB’s Deep Learning and Machine Learning for Computer Vision library to
detect failures on the acquired data. They use a segmentation process to isolate Points of
Interest like rivets and screws. This allows for a simple presence detection by counting
the number of detected rivets and screws and comparing them to the number of rivets
that should be installed.
Ruiqian et al. [238] use a DJI M210 quadrotor [255] with a modular camera system to
inspect a Xian Y-7-100 short-range turboprop airplane. The inspection is performed by
navigating along a predefined series of waypoints that seem to be created manually.
The UAV takes a series of images from different orientations at different altitudes with
an overlap of approximately 60%. The Software Pix4Dmapper [214] is used to create
a photogrammetric reconstruction of the aircraft. To improve positional accuracy of
the UAV for better reconstruction results, ArUco markers on the aircraft tracked in
conjunction with GPS measurements. How the markers are referenced in relation to
the GPS data is not described. Actual error detection still has to be performed manually
in this approach.
Aleshin et al. [14] propose a combination of an autonomous ground vehicle (AGV) and
a UAV to visually inspect an aircraft’s outer surface while parked. In this approach, the
UAV is initially positioned on the ground vehicle, which drives the UAV to the aircraft.
The UAV is connected to the ground vehicle using a tether that supplies it with power
from the AGV. The AGV automatically controls the length of the tether, so the UAV
can perform its inspection flight without being hindered by its connection to the AGV.
During the actual inspection, the UAV and AGV move together on their respective
trajectories around the aircraft while the UAV captures images of the airplane using its
gimbal-mounted camera. The paper focuses on modeling the tether mechanism intended
to prevent collisions between the UAV and the aircraft in high wind conditions.
Miranda et al. [190] use a Donecle Iris UAV [61] to capture images of the exterior of an
airplane and automatically detect defective screws using computer vision techniques.
The UAV uses laser sensors to determine its position and navigate relative to the air-
craft [50, 59]. A convolutional neural network is then used to extract and classify parts
of the captured images that contain exposed exterior screws and other defects. When
detecting screws, the authors achieve a recall and precision of more than 95%. The
model is also able to detect a variety of different screw patterns, which further facilitates
the detection of defective screws.
Papa and Ponte [208] propose a system for detecting lightning strikes and hail damage
on aluminum aircraft fuselage parts. They use a UAV equipped with a Raspberry Pi 2
Model B single board computer [93] and a Pi camera [92] forming the Image acquisition
subsystem. Their work focuses on this image-capturing and error-detection system. The
camera is placed at a fixed distance from the aircraft panel using a series of ultrasonic
distance sensors. The captured images are then processed on the onboard computer,
which automatically highlights detected errors like dents and lightning strikes before
sending the captured images to the PC-based ground station. This ground station is

13

1 Introduction

used for data collection and processing. The system’s effectiveness was demonstrated
in laboratory tests using damaged aluminum panels.

While the solutions presented in this section are able to perform inspections of aircraft
to a certain degree, they all lack one or several features that allow them to perform
these inspections in a production context. Due to their focus on in-service inspection,
many solutions rely on GPS for establishing their position, do not support automatic
path planning or only perform trajectories covering the entire surface of the assembly.
While navigating independent of GPS signals, the size of the Donecle Iris might prevent
it from maneuvering in complex manufacturing facilities or inside fuselage parts. Also,
works like Papa and Ponte or Miranda et al. focus on the detection of specific errors
rather than the positioning and navigation of the UAV performing the inspection.

1.3.2 In-Service Inspection of Infrastructure and Wind Turbines

Due to the disadvantages of manual inspections mentioned in Section 1.2.2, a variety of
commercial solutions and scientific works exist that focus on automating the inspection
of wind turbines. While a few specialized robotic inspection solutions exist in this
field [6], the following sections will only cover UAV-based systems.

In industry, the company Aerones [5] offers various services concerning wind turbine
maintenance and inspection. This includes automated cleaning and repairs using robots,
applying anti-ice coating to rotor blades, and performing several types of inspections. In
addition to UAV-based visual inspections, specialized robotic systems allow for inspect-
ing the inside of turbine blades, the lightning protection system, and drainage holes. The
company Flyability [241] also offers commercial wind turbine inspections using UAVs.
Their services include visual inspections for cracks, leading edge erosion, delamination,
lightning, and bird strikes. One of their specialties is the internal inspection of turbine
blades using their Elios 3 UAV [239]. For legal reasons, industrial climbers can only
inspect the first 28m of the blades when working on their inside [241]. This causes
problems, especially with larger turbines, where a significant part of the internal blade
cannot be inspected manually. The Elios 3 UAV claims to fix this problem by being able
to perform inspection flights inside the blade. It can do this by using an onboard LiDAR
scanner and stereoscopic cameras that not allow for collision-free navigation in narrow
spaces. Additionally, the collision-resilient design of the UAV, consisting of a lightweight
protective cage structure that covers the entire UAV, aims to reduce damage to the UAV
and its environment in the event of a collision. The sensors used for navigation also
capture inspection data in the form of LiDAR measurements and RGBD images, which
can be combined to create textured 3D models of the inspected structure.

In scientific literature, Moolan-Feroze et al. [192, 193] focus on the relative localization of
a UAV performing an inspection of a wind turbine. The localization is performed visually
using images taken by the onboard camera. The camera’s location is estimated using a
convolutional neural network and a 3D model of the wind turbine. This information
is used in conjunction with data from the inertial measurement unit (IMU) and GPS
sensor of the UAV which all serve as input for a pose-graph-optimizer, which combines

14

1.3 State of the Art of UAV-Based Inspections

the three measurements. This approach was tested in simulation and reality using a
wind turbine, and showed an increase in position accuracy compared to GPS alone.

Stokkeland et al. [265] also focus on determining the position of an inspection UAV
relative to a wind turbine. Initially, the UAV navigates to a predefined, absolute target
using its GPS sensor. This serves to position the UAV at an ideal position to start with
the proposed visual positioning system, where the relevant parts of the wind turbine
are visible in the onboard camera. This system determines the position of the UAV
relative to the wind turbine. It uses machine vision and a Kalman Filter to calculate
this position. The positioning works using Canny edge detection [33] and Hough line
transform algorithms on the camera image to recognize the tower, hub, and turbine
blades. Upon successful detection, the state of the Kalman Filter is updated, and the
position is used in the position controller of the UAV. If the detection fails, the prediction
of the Kalman Filter is used as position data instead. When no position can be detected
in too many consecutive images, the UAV uses GPS to return to its starting point to
reestablish a relative visual position from this position.

Like with the in-service inspection of aircraft, UAV-based wind-turbine inspections
largely rely on the availability of GPS signals to establish the UAV’s position. Approaches
for visual positioning are highly specialized to the shape of wind turbines making their
adaptation to other domains complicated.

1.3.3 Automated Inspection in Production

The UAV-based automated inspection in the production of large components is beneficial
in a variety of different sectors. Since this work mainly focuses on the inspection
of aircraft fuselage parts, this section presents the state of the art in this area. As
mentioned in Section 1.2.1, inspections are an essential part of manufacturing for the
aviation industry. However, various factors have caused the overall state of automation
of these inspections to be comparably low. Regarding the use of UAVs for inspection
in manufacturing, Maghazei and Netland [170] state that they are hardly used. Jordan
et al. [128] do not even list production or manufacturing as a sector in a report about
the state of the art of UAV inspections. In a review of aircraft structures diagnostics by
Bardis et al. [21], in-service inspections are the primary subject compared to inspection
in manufacturing due to the amount of available information about both topics. When
UAVs are used in inspections inside factories, most UAVs are manually piloted, with
automated UAVs still being in the research stage [171]. Malandrakis et al. [177] claim that,
despite research on these topics, no studies have been reported in scientific literature yet.
Nevertheless, someworks exist using ground-based robots for inspections [153, 189, 244].
However, their mode of operation often prevents them from reaching places located
above them, making them impractical for the inspection of large components. For this
reason, UAVs dominate the field of inspection of larger structures as demonstrated
throughout the previous sections. Their rare use in manufacturing might originate from
additional problems in navigation, avoiding obstacles, and operating in proximity to
human workers [140]. Also, the absence of GPS signals in most production facilities
requires an alternative means for positioning the UAV compared to almost all previously

15

1 Introduction

mentioned projects. Companies like Donecle [59, 61] use LiDAR sensors mounted on
the UAV to determine its position relative to the aircraft. In addition, while inspection
trajectories covering the entire surface of the inspected parts are also necessary in
some cases, in production, the areas of an assembly that were modified and thus need
to be inspected can be clearly defined. This allows for a more targeted approach
when inspecting, resulting in the need for path and trajectory planning algorithms
that selectively inspect the modified areas to save time. The number of errors that
need to be detected is more diverse as well. Some types of defects that are checked in
in-service inspections of aircraft also need to be monitored during production. This
includes dents, scratches, and other paint defects, the presence and correct installation of
rivets or screws [120], correctly sealed panel gaps [120], or delaminations in composite
materials [46]. However, a large number of additional, often selective inspection types
are required to check the numerous manufacturing techniques and steps used in the
production of aircraft. The types of checks that need to be performed include the
simple visual capture of the state of the assembly, visual presence detection of parts,
and the verification of their correct installation. This verification can consist of simply
checking the correct position and orientation of the part to more complex inspections
like detecting, whether a cable or hydraulic line was routed through a certain cable
clamp or if a washer was installed underneath a screw.

Malandrakis [177], Tzitzilonis [277] et al. present a system for inspecting aircraft wing
panels using UAVs. The inspection performed is a visual inspection of the wing panel
that has been treated with liquid penetrant prior to the inspection. In combination with
a developer powder, this process reveals cracks and corrosion before anodising the panel.
The UAV featured in this work has a digitally stabilized onboard wide-angle camera and
a UV light source. The approach generates a grid of overlapping inspection-waypoints
at a fixed distance from the surface to cover the entire area of the inspected Airbus
A320 wing. The trajectory is then flown by horizontally moving through all inspection-
waypoints line by line. The machine-learning-based error detection algorithm was
trained on only 25 images containing defects, and the approach could achieve an overall
accuracy of 97 % on the validation data. While the detection algorithm seems to yield
good results, the trajectory planning seems to work only for simple, flat surfaces, and
the rigidly mounted camera and UV light require the inspected part to be oriented
in a specific way. Inspections from different camera angles seem impossible with the
system’s current state.

Deane et al. [56] focus on adapting state-of-the-art thermographic imaging inspection
solutions, which are heavily used for inspecting the increasing number of composite
materials used in modern-day aircraft. It focuses on pulsed thermography and vibroth-
ermography, two types of non-destructive testing (NDT) methods in thermography.
Both methods work by thermally exciting the tested part and measuring the resulting
heat propagation through the material. This allows for the detection of problems with
layer adhesion, either caused by manufacturing or mechanical damage, air inclusions,
and other types of defects that cause a change in heat propagation inside the material.
The main difference between the two methods is that pulsed thermography uses light
pulses to excite the tested material from a distance, while vibrothermography uses

16

1.3 State of the Art of UAV-Based Inspections

ultrasonic transducers in contact with the material. While the two types of inspections
were successfully tested in a lab environment using a stationary thermal camera, the
authors mention that the system yet has to be tested on a UAV. They mention difficulties
obtaining a GPS signal inside the testing facility, combining multiple captured images,
and creating a lightweight excitation source as potential problems. Automatic path
planning and execution do not seem to be the scope of the proposed system.
Yasuda et al. [298] provide a systematic literature review of visual inspection processes
for aircraft. The focus of the work is on differences in inspection processes in manufac-
turing and maintenance, methods for visual inspection and the autonomous navigation
in this context. While the authors found a variety of different methods for visual in-
spections that sometimes can even be automated using computer vision techniques,
using cameras for different spectrums like RGB, infrared, or X-ray, as well as 3D data
obtained from Laser or ultrasonic scanners. The authors list complete surface coverage
as the only method for trajectory planning, suggesting that selective inspection of com-
ponents using UAVs has not been extensively covered in the reviewed literature. The
literature focuses on detecting assembly errors, manufacturing defects, and damages
inflicted by the use and wear of the assemblies and airplanes. The findings of the paper
include a big potential for the automation of aircraft inspection using computer vision
techniques, while emphasizing that the lack of requirement specifications for such
inspection systems is one of the major factors hindering their adoption. The authors
also state that finding a completely automated inspection system covering the entire
inspection process was difficult. They emphasize the necessity for a modular system
that is able to integrate with other systems.

17

1 Introduction

1.4 Summary of Contributions
The contributions of this work were made while developing a platform for the au-
tonomous inspection of large structures like aircraft fuselage parts. The system includes
a path-planning solution specialized to the targeted inspection of individual parts of an
assembly, as well as a means to generate efficient trajectories for inspections where the
surface of the entire assembly must be covered. Additionally, a novel relative positioning
and vision-based navigation approach that solely relies on internal sensors available
on consumer UAV’s was developed to determine its position relative to the inspected
parts. This allows performing inspections in GPS-denied environments like inside man-
ufacturing plants. Since various solutions for inspections using camera-based handheld
inspection devices exist [100, 269, 286], this work does not focus on developing ways
to perform conformity checking based on images provided by a camera. Instead, it
is centered around the challenges that occur when trying to automatically move the
sensor to the points that need to be inspected using a UAV while offering an interface for
integrating arbitrary 3rd party inspection tools. For this purpose, a system for detecting
obstacles using only limited available onboard sensor data, as well as their storage for
later trajectory-planning, was developed. Using this information, two motion planning
algorithms were adapted to allow obstacle-avoiding relative navigation in selective
inspection scenarios, and their performance was compared. Also, user interfaces were
developed for the specification of inspection points and the visualization of inspection
results.
The efficacy of the individual components of the system were later verified with a
number of assemblies and different UAVs in several proofs of concept and evaluations.
Each proof of concept and evaluation was designed to verify the applicability of the
system to at least one of the previously discussed case studies. A summary of the
contributions resulting from the development of this system is listed in the following
paragraphs.

• The concept, implementation, and evaluation of an inspection-centered path
planning system is detailed in Sections 3.2, 4.1 and 5.2.1.

– The concept of Points of Interest, Viewareas, and Viewpoints is introduced as
a way to specify locations that must be inspected as well as areas or points
from which the UAV can perform the inspection.

– An efficient path planning algorithm for inspecting a series of inspection
points is developed

– This algorithm enables the generation of alternate inspection points which
can be used for further optimization of the path or as alternative points to
perform an inspection from in case the inspection from the first point fails.

– An optimization strategy for reducing the number of inspected Points of
Interest to reduce inspection path length and time is also detailed.

– A further optimization strategy presented uses information gathered over
the course of multiple similar inspections to optimize the inspection path
through learning which points allow for a successful inspection.

18

1.4 Summary of Contributions

– Additionally, a user interface for specifying the inspected parts and generat-
ing an inspection path for Point of Interest-based inspections is developed.

• For determining the position of the UAV relative to the assembly, a novel ap-
proach that leverages model tracking and sensor fusion algorithms is presented
in Sections 3.3, 4.2.1 and 5.2.4.

– The relative positioning system uses model tracking to calculate a position
relative to the assembly using only the onboard camera of the UAV.

– The quality of this measurement is further improved by using it in conjunc-
tion with data obtained from the UAV’s inertial measurement system in a
Kalman Filter to calculate a more robust position.

– The approach allows for the specification of Points of Interest relative to
the inspected assembly, making the inspection independent of the absolute
location of the assembly itself.

– An extension of the system for the use with assemblies featuring several
independently moving parts is also discussed in these sections.

• A system for detecting and persisting the state of obstacles using the UAV’s
onboard sensors is described in Sections 3.4.3, 4.2.2 and 5.2.5.

– The proposed system is specially developed to work with low-quality obsta-
cle sensor data provided by consumer UAVs.

– Data of detected obstacles is stored in a space-efficient octree data structure
creating a more detailed representation of the obstacles in the area.

– Moving obstacles are handled by actively clearing areas that are no longer
detected as occupied by the sensors using a ray-tracing algorithm.

– Previously known obstacles such as the inspected assembly, fixtures or parts
of the manufacturing facility can be inserted into the obstacle system in
advance to optimize trajectory planning.

• Several collision-avoiding trajectory planning algorithms that leverage the devel-
oped obstacle detection systems are presented in Sections 3.4, 3.6.1, 4.2.3, 4.2.6,
5.2.5 and 5.2.6.

– For selectively inspecting a set of Points of Interest on the surface of an
assembly, the artificial potential field and Anytime Dynamic A* motion
planning algorithms were adapted for the navigation of a UAV in a selective
inspection scenario.

– The Heat Equation Driven Area Coverage-Algorithm (HEDAC-Algorithm) is
also used in its original form to precalculate trajectories covering the entire
surface of the assembly for photogrammetric documentation of its state.

– Amodified version of the HEDAC algorithm is proposedwith the intention of
providing execution times fast enough for real-time execution in conjunction
with feedback provided from the photogrammetric reconstruction process.

19

1 Introduction

• For inspecting Points of Interest on the assembly, an interface for the integration
of ground based inspection tools is proposed in Section 3.5.2. Additionally, a rudi-
mentary system for visual presence detection of parts is proposed in Section 3.5.1
and two different approaches to the photogrammetric documentation of an entire
assembly are described in Sections 4.2.6 and 5.2.6.

– To enable the integration of the multitude of available manually operated
visual inspection tools into the system, an interface for the action of inspect-
ing a Point of Interest is proposed, and its functionality is demonstrated by
the integration of the inspection tool VisionLib [286] for presence detection
on assemblies.

– Additionally, a concept for rudimentary presence detection based on pattern
matching using renders of the inspected part is developed and tested using
images captured during the inspection flights.

– The images captured by inspection flights using the coverage-based inspec-
tion flights is computed into a textured 3D model of the assembly. For this
task, a classic photogrammetric approach for reconstructing the geome-
try and texture of the model as well as a workflow, that uses the provided
geometry of the CAD model is proposed, implemented and tested.

The remainder of this work is structured as follows: Chapter 2 details the fundamental
techniques used throughout this work to develop the proposed system. The concepts
that are based on the requirements of the inspections detailed in the two case studies are
presented in Chapter 3. The implementation of these concepts and the resulting modular
architecture of the inspection platform are then discussed in Chapter 4. Chapter 5 lists
the Hardware and Simulation environment developed for the proofs of concept and
evaluations that follow later in this section. These are used to validate the concepts
presented in Chapter 3. Lastly, Chapter 6 summarizes the discussed topics and the
research results obtained from Chapter 5. Furthermore, potential improvements to the
system and future work are discussed in this chapter.

20

Summary. This chapter covers the technical foundation of
the concepts presented in Chapter 3. The covered topics include
planning methods, positioning and navigation techniques as
well as collision avoidance.

2
Techniques for Visual Inspection

2.1 Planning Methods . 23
2.1.1 Path Planning with the Ant Colony System 23

2.2 Positioning . 26
2.2.1 Coordinate Frames and Transformations 26
2.2.2 Kinematic Modeling of Assemblies 28
2.2.3 UAV Positioning . 29
2.2.4 Model Tracking . 35
2.2.5 Odometry . 36
2.2.6 Sensor Fusion Using a Kalman Filter 37

2.3 Navigation Strategies . 41
2.3.1 Dynamic Path Planning Using Anytime Dynamic A* . . . 41
2.3.2 Strategies for Surface Coverage 44

2.4 Collision Avoidance . 46
2.4.1 Sensors for Collision Avoidance 46
2.4.2 OctoMaps . 48

21

2 Techniques for Visual Inspection

The automated inspection of assemblies using UAVs is a complex topic that requires
knowledge in a variety of different areas. The following chapter will cover the techno-
logical foundation on which the concepts and implementation developed in this work
are based. This includes an overview of path planning methods with a focus on path
planning using the Ant Colony Optimization (ACO) algorithm. Afterward, the required
techniques for a position estimation in GPS-denied environments are discussed by first
defining coordinate frames and transformations and basic UAV positioning. Furthermore,
position estimation using odometry and model tracking, as well as how these individual
measurements can be combined using a Kalman Filter, are presented. Additionally, an
overview of the required navigation strategies for performing an inspection flight is
given. This includes Viewpoint-based algorithms for inspection of specific sections of
the assembly and the coverage strategy used to perform a photogrammetric reconstruc-
tion of the assembly. To provide the necessary information for the obstacle-avoiding
navigation strategies in Chapter 3, state-of-the-art sensors for collision avoidance and
the storage of collision sensor data in the form of OctoMaps are discussed as well.

22

2.1 Planning Methods

2.1 Planning Methods
In order to calculate an efficient inspection path during a selective inspection, the points
visited by the UAV must be ordered in a way that results in a reasonably short path.
This is required to reduce inspection time, which is important for the efficiency of the
production process and also required to perform inspections with numerous parts as
the UAV’s flight time is limited.
The problem of visiting geometric points in a roundtrip while minimizing traveled
distance can be viewed as a TSP (Traveling Salesperson / Salesman Problem) [23].
According to Biggs et al. [23] the TSP is an optimization problem in which a traveling
salesman must visit a set of cities exactly once and return to the starting point while
minimizing the distance traveled. Each city can be modeled as a node in a graph, with
the edges between the nodes representing the connections between the cities and their
weights corresponding to the distance between them. The problem is NP-hard [266], [98],
which makes finding an efficient algorithm for an increasing number of cities difficult.
While numerous approaches exist for solving the TSP, this work relies on the Ant Colony
System (ACS) Algorithm because its potential for parallelization allows calculating a
reasonably good approximation of the ideal path quickly [39].

2.1.1 Path Planning with the Ant Colony System

Ant Colony System (ACS) [97], [266] is a derivative of the Ant Colony Optimization
(ACO) which are both is inspired by the behavior of ants trying to find the shortest
possible paths from their nest to a source of food. In order to achieve this, Ants leave
pheromones on their path when they have found a food source. Other ants follow this
pheromone trail while leaving their pheromones. The probability of an ant following a
specific path on a fork in the path is proportional to the intensity of the pheromone trail
on the divergent paths. Over time, more and more ants follow the strongest/optimal
pheromone trail while further increasing its intensity. Since more pheromones can be
deposited on a shorter path than on a longer one in the same time interval the intensity
of the pheromone trail increases most on the shorter path. In turn, the intensity of the
pheromone trail decreases over time on less-used paths due to the natural decay of
the pheromones. Compared to Ant Colony Optimization, ACS allows tuning the ants’
behavior to either explore new paths or stay on known good paths. In addition, only
the ant with the best path deposits its pheromone on the edges of its tour.
To apply this behavior to a mathematical model, all points that need to be visited are
modeled as individual nodes in a graph [97]. The edges of this graph are populated with
the intensity of the pheromone trail between the points. This pheromone level is defined
for every edge cij in a graph G = (V,E) using the pheromone update Equation (2.1).

23

2 Techniques for Visual Inspection

τij = (1− ρ) · τij + ρ ·∆τ bestij (2.1)

With:
• τij being the pheromone level on edge (i, j).
• ρ being the pheromone evaporation rate.
• ∆τ bestij being the pheromone deposit from the best path found.

The pheromone evaporation rate is defined using Equation (2.2).

∆τkij =

{
Q
Lk

if cij is on the path of ant k
0 otherwise

(2.2)

With:
• Q being a constant related to the total pheromone deposited.
• Lk being the length of the path traveled by ant k.

Additionally, a local pheromone update system makes it less likely for other ants to visit
previously visited edges.

τij = (1− ρ) · τij + ρ · τ0 (2.3)

With:
• τij being the pheromone level on edge (i, j).
• ρ being the pheromone evaporation rate.

In the ACO algorithm, the probability of an ant taking the transition over an edge from
node i to j would now be defined solely by an equation similar to Equation (2.5). ACS
implements an additional decision rule that lets the ant choose an edge with a high
pheromone intensity and a short length or use the probability-based selection strategy.
Equation (2.4) defines the rules for this decision process.

j =

argmax
cij∈N(jp)

{τij · ηβij} if q ≤ q0

J otherwise
(2.4)

With:
• j being the next node to visit.
• τij being the pheromone level on edge (i, j).
• ηij being the heuristic information for edge (i, j).
• β being the parameter controlling the influence of the heuristic information.
• q being a random number used to decide exploration or exploitation.

24

2.1 Planning Methods

• q0 being the threshold for choosing exploration over exploitation.
• J being a randomly chosen node if exploration occurs.

The parameter q0 decides whether to take the probabilistic approach or the best edge in
terms of path length and pheromone level. It defines the probability of selecting the
best edge. Upon selecting the probabilistic approach, pkij defines the probability that an
edge leading from node i to j is taken by ant k and is used to select node J .

pkij =


τij ·ηβij∑

cil∈N(jp) τil·η
β
il

if cij ∈ N(jp)

0 otherwise
(2.5)

With:
• τij being the pheromone level on edge (i, j).
• ηij being the heuristic information for edge (i, j).
• β being the parameter controlling the influence of the heuristic information.
• N(jp) being the set of candidate neighbors of the current node jp.

During execution, the ants traverse the graph for a predefined number of iterations
and ants according to the rules defined in the equations above. The choice of ants and
iterations also influences the quality of the resulting path, and a trade-off between both
parameters must be made as both increase the execution time. The directions the ants
take eventually converge on a single short (but not necessarily optimal) path.

25

2 Techniques for Visual Inspection

2.2 Positioning
A UAV must know its precise position to navigate the inspection trajectory when
performing an inspection. Since GPS signals do not penetrate most buildings well
enough, to enable accurate positioning and even in an outdoor scenario where GPS
positioning is available, its accuracy might not be sufficient for the performed inspection
task [133]. Hence, more advanced solutions are required, especially for inspections in a
production scenario. Therefore, the following paragraphs introduce the basics necessary
to establish the position of a UAV without external positioning systems. This includes
coordinate frames, basic UAV control system theory, model tracking, and odometry to
measure position, speed, and orientation, and the sensor fusion of these values. Lastly,
kinematic models are introduced in preparation for their use in improving position
estimation with respect to moving assemblies.

2.2.1 Coordinate Frames and Transformations

To position the UAV in 3D space, a base coordinate frame that defines the origin of the
UAV as a discrete point and orientation is required. Since coordinate frames are used
throughout this work to describe the position and orientation of various objects in 3D
space, the following paragraphs first define coordinate frames before explaining the two
most important frames on the UAV. Afterward, the cascaded control loops for position,
velocity, attitude, and rate control inside a multirotor are described to generate a basic
understanding of their onboard position control system.

Coordinate Frames

A Cartesian coordinate frame or Cartesian reference frame is mathematically defined
by an origin point and a set of mutually perpendicular basis vectors [169]. The origin
point defines a fixed point in space, o, which is a reference for the coordinate system.
The basis vectors define the coordinate axes of the frame. Mathematically, the origin o
is defined as a point in Rn. As this work exclusively works in R3, n = 3 is assumed for
the rest of the definition. This results in o being defined as a three-dimensional vector
o =

(
ox oy oz

)T . The set of basis vectors e1, e2, ..., en therefore are comprised of
e1, e2 and e3 or alternatively ex, ey and ez with n = 3. They are unit vectors (which
means their length is normalized to 1), and orthogonal (perpendicular) to each other,
which, in combination with their normalized length, makes them form an orthonormal
basis for R3.
The Cartesian coordinate frame for n = 3 can be defined according to Equation (2.6).

F = o, (ex, ey, ez) (2.6)

26

2.2 Positioning

Rotation Matrices

Combining the three basis vectors ex, ey and ez into a single matrix using Equation (2.7)
results in a rotation matrix R that facilitates transforming points between coordinate
frames [29].

R =
(
ex ey ez

)
∈ R3×3 (2.7)

Rotating a vector vA defined relative to frameB into frame A is done using the rotation
matrixRA

B .

vA = RA
B · vB (2.8)

In robotics, this principle can be applied to rotate vectors containing a position, velocity
or acceleration between two base coordinate frames.
Rotation matrices can also be combined to calculate a rotation between frames for which
no direct rotation exists. The rotation matrixRA

C can be calculated usingRA
B andRB

C

according to Equation (2.9) [29].

RC
A = RA

B ·RB
C (2.9)

Transformation Matrices

To describe the offset and rotation from a specific frame FB to FA, a transformation
matrix TA

B can be defined according to Equation (2.10) using the rotation matrix and a
translation (or offset) between the two coordinate frames [169].

TA
B =

(
RA
B tAB
0 1

)
(2.10)

With:
• RA

B ∈ R3×3 being the orientation of FB relative to FA.
• tAB ∈ R3×1 being the translation vector representing the position of FA’s origin
in the frame FB .

An arbitrary point pB representing a position relative to frame B can be transformed
into frame A using the transformation TA

B as described in Equation (2.11) [169].

pA = TA
B · pB (2.11)

The same principle applies to derivatives of positions like velocities and accelerations.
If a direct Transformation from a frame D to another frame A is not available, a
point pD can be transformed to frame A through a chain of transformations between
different coordinate frames that ends at the right reference frame like demonstrated in
Equation (2.12).

pA = TA
B ·TB

C ·TC
D · pD (2.12)

27

2 Techniques for Visual Inspection

Inverting a Transformation Matrix
Sometimes, it may be necessary to transform a point from FB to FA, but only the
transformation TB

A is known [169]. In this case, the inverse transformation TA
B can be

calculated based on TB
A using Equation (2.13).

TA
B =

[
(RB

A)
T −(RB

A)
T tBA

0 1

]
(2.13)

With:
• RB

A being the rotation matrix of TB
A .

• tBA being the translation vector of TB
A .

These techniques allow tools like the tf2-package of ROS [84] to build up a graph
using a set of available transformations and use it to offer users the ability to find
transformations between arbitrary frames as long as they are connected in the graph.

2.2.2 Kinematic Modeling of Assemblies

To navigate relative to structures with individual parts that move in relation to each other
(like a wind turbine with a stationary base and rotating blades), a means of modeling
this relative movement is required. Section 3.3.5 describes, how the Denavit-Hartenberg
(D-H) convention [57] can be used to achieve this goal. The D-H convention is intended
to model the kinematics of a robot by systematically assigning coordinate frames to the
links and joints of a kinematic system. The convention standardizes the mathematical
modeling of a kinematic chain, which makes it possible to describe the relationship
between two adjacent joints as a set of four parameters.

Convention for Assigning Frames to Kinematic Links
The D-H convention describes the kinematics of a system defined by a set of links that
are connected through joints. A series of interconnected links and joints is called a
kinematic chain. The D-H convention standardizes the placement of reference frames,
making it possible to derive the forward kinematics for the chain using a standardized
procedure [169]. Each joint of the robot is assigned a coordinate frame, which is defined
based on the frame of the previous joint. The Z-axis of each frame aligns with the axis
of the joint’s motion (rotation for revolute joints, translation for prismatic or linear
joints). The frame’s origin and the X-axis’s orientation are determined depending on
the relationship of the previous and current axis. If they intersect, the origin of the new
joint is set at the intersection point, and the X-axis is set to be orthogonal to both the
prior and current Z-axis. With non-intersecting, non-parallel axes, a common normal is
determined for both Z-axes, which forms the new X-axis. The origin is defined as the
intersection of the new Z-axis and X-axis. When the old and the new Z-axis are parallel
to each other, the normal between both Z-axis that intersects the old origin forms the
new X-axis with the new frame again being the intersection of new Z- and X-axis. Lastly,
the y-axis is added so that the resulting frame forms a right-handed base.

28

2.2 Positioning

D-H Parameters
When adhering to the rules for coordinate frames defined in the previous section, the
relationship between two links of the robot described by frames Fi−1 and Fi can be
defined using the four D-H parameters:

• θ defines the joint angle as the rotation around the Z-axis.
• d defines the link offset as the translation along the Z-axis.
• a defines the link length as the translation along the X-axis.
• α defines the link twist as the rotation around the X-axis.

While a and α are usually fixed values based on the geometry of the link, θ or d may
depend on the current joint angle in the case of a rotational or linear joint.
The transformation matrixTi

i−1 for Joint Ji from Fi−1 to Fi can be defined using the D-
H parameters as two separate transformationsTi′

i−1 andTi
i′ . These two transformations

are defined by the rotation θ and translation d for Ti′
i−1 as well as the rotation of α and

translation a for Ti
i′ according to Equations (2.14) to (2.16).

Ti′
i−1 =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 d
0 0 0 1

 (2.14)

Ti
i′ =


1 0 0 a
0 cosα − sinα 0
0 sinα cosα d
0 0 0 1

 (2.15)

Ti
i−1 = Ti

i′ ·Ti′
i−1 (2.16)

After determining the individual transformations for each joint, the combined transfor-
mation of a kinematic chain Tn

0 can be calculated using Equation (2.17).

Tn
0 =

1∏
i=n

Ti
i−1 = Tn

n−1 · · · · ·T2
1 ·T1

0 (2.17)

The techniques described in this section serve as a basis to the concept for modeling
complex assemblies as kinematic chains to calculate their velocities through numeric
differentiation of their positions described in Section 3.3.5.

2.2.3 UAV Positioning

While the term UAV commonly refers to all types of uncrewed or unmanned aerial
vehicles or systems (UAVs / UASs) [301], this work mostly refers to multirotors or
multicopters and, more specifically, quadrotors or quadcopters [234] when using the
term. Compared to other UAV types, like fixed-wing aircraft, their ability to hover
in place without movement and not require a minimum movement speed to generate
sufficient lift for flight is essential for many inspection tasks.

29

2 Techniques for Visual Inspection

The devices are usually powered by a lithium-polymer battery and have several motors
attached to arms on which downward-acting propellers are mounted [115]. They are
controlled by a radio remote control or fly autonomously [106]. A flight controller
controls the position and attitude of the copter in the air by sending control signals to
the motors’ electronic speed controllers (ESC), which, in turn, drive the motors. It also
processes the signals from the remote control and can navigate to preset waypoints
autonomously.
To perform stable flight, it uses sensors like GPS modules, barometers, and external
tracking systems [159] to determine its position and location. An IMU (Inertial Measur-
ing Unit) uses the values of a gyroscope, a magnetometer, and an acceleration sensor to
determine linear acceleration, rotational speeds, and orientation. By controlling position
and attitude, multicopters can fly to and hover at any point in three-dimensional space.

Base Frame

Camera Frame

Figure 2.1. Coordinate frames and axes of a quadrotor. The red arrows correspond to the
x-axis, green to the y-axis, and blue to the z-axis.

A UAV is either controlled manually by a remote control signal or automatically. Auto-
matic control can be performed on an onboard flight computer or via a ground control
station (GCS) that sends commands to the UAV via a radio transceiver and a protocol
like MAVLink [219]. Additional mixed forms of control exist where only parts of the
flight are performed autonomously.

30

2.2 Positioning

In the following concepts, two frames located on the UAV are important for position
control. Figure 2.1 shows the location and orientation of these frames. The base frame is
located at the UAV’s center of mass and fixed to its body. It indicates the UAV’s position
and is used for attitude and position control. The camera frame describes the camera’s
position mounted to the UAV gimbal. Its position is defined by the transformation
Tcam

uav (see: Equation (3.9) in Section 3.3.2). These orientations are used internally by the
developed system. In aviation and when working with UAVs in an outdoor environment,
when positioning happens in global coordinates, the NED-convention [202] is used
which results in the z-axis of the coordinate frame pointing down towards the ground
and the y-axis of the base frame being flipped as a result. While this convention is useful
for navigation with global positions, using the coordinate frame orientation depicted
in Figure 2.1 proved less complicated. As a result, the driver implementation for the
UAVs used in this project contains logic that converts the control commands from the
frame orientation in Figure 2.1 to the NED-convention expected by the UAVs’ flight
controller.
In aviation, the x, y- and z-axis of the base frame of the aircraft are called the roll, pitch,
and yaw axis. This work uses both conventions alternately, depending on which is
more suitable for the current explanation. Additionally, ϕ, θ, and ψ describe the rotation
angles around the x, y, and z axes, while the letters x, y, and z define a position.

Multirotor Control

The inherently unstable nature of a multirotor necessitates the use of a flight controller
in order to control it by commanding positions or velocities [159]. In contrast, on an
inherently stable fixed-wing aircraft, inputs on control surfaces more or less directly
translate to its movements, with the individual control surfaces controlling one move-
ment axis with minimal interaction. The rudder angle controls the yaw rate, elevator
controls the pitch, engine controls the forward speed, etc.
Up until the development of electronically managed control surfaces and actuators for
fly-by-wire systems, commercial aircraft were flown with their control surfaces and
engine throttle linked directly (either mechanically or hydraulically) to the pilot’s control
inputs. This limited airframes to inherently stable designs. Work performed by NASA in
form of the development of computer assisted fly-by-wire system for the Lunar-Landing
Research Vehicle [26, 126] and the F8 fighter jet [67], enabled inherently unstable aircraft
designs to perform computer-assisted stable flight. A notable example are jet fighters
like the F14 series [233], which can only achieve stable flight throughout their entire
operational speed ranging from relatively slow landing maneuvers to supersonic flight
through the use of a sophisticated flight computer. Computer controlled fly-by-wire also
enabled a stable atmospheric reentry and landing of the Space Shuttle despite its glide
performance, which is often described by its pilots as similar to a flying brick [54].
Advances in computer assisted fly-by-wire systems also allowed software-defined stabil-
ity control to be added to regular passenger airliners with the Airbus A320 being the first
mass-produced aircraft of this type to be equipped with a digital fly-by-wire system [74].
This contributed to a reduced fatal accident rate caused by loss of control of Airbus

31

2 Techniques for Visual Inspection

generation 4 aircraft (the first generation to be equipped with fly-by-wire technology)
compared to previous generations. This type of accident, on average, occurred only
0.00 to 0.02 times per million flights in generation 4 aircraft throughout the last twenty
years compared to a value between 0.06 and 0.09 of the previous generation in the same
time-frame [9].
Software defined control and fly-by-wire do not just allow for more advanced and safe
fixed-wing airplanes. It, can also be used to control arbitrary aircraft designs like the
Lunar-Landing Research Vehicle [126] or multirotors. The only actuators on a multirotor
are the individual motors that do not map directly to change in position or speed of a
particular axis. Instead, the ratio of the rotation speed and, therefore, the thrust and
torque produced by the individual motors in relation to each other cause a movement
of the UAV. For the sake of simplicity, the following explanations focus on a quadrotor,
but the foundational concept is similar for multirotors with different numbers of rotors.
On a quadrotor, four rotors attached to four motors produce thrust in the downward
direction. Changing the speed of all propellers to the same amount changes overall
thrust and, therefore, a change in velocity in the z-axis [115]. Speed in the x- and y-axis
requires the UAV to tilt in the pitch and roll axis, which requires a change in rotation
speed, which can be achieved by creating a difference in rotation speeds of the motors on
the opposite side of the relevant axis. Therefore, pitching forwards can be achieved by
increasing the speed of the rear motors while decreasing the speed of the front motors by
the same amount to keep the overall thrust the same. A change in the pitch also results
in a forward velocity of the craft due to the forward component of the resulting thrust
vector. However, the reduced upward component of the vector must be compensated for,
through an overall higher thrust output, if no change in altitude is desired. Rotating the
UAV around its yaw-axis can be achieved by creating a difference in torque in the motors.
A quadrotor usually has two motors turning in the clockwise direction and two turning
in the counter-clockwise direction. The motor pairs with the same turning direction
are mounted to diagonally opposite arms. When all motors turn at the same speed, the
individual torques they generate cancel each other out. Increasing the rotation speed
of the motors turning in one direction while simultaneously reducing the speed of the
other motors results in the sum of torques becoming positive or negative, which results
in a rotation around the UAVs’ yaw axis [115]. Combining all these constraints for motor
speeds in a way that, for example, a yaw-rate input does not affect the UAV’s pitch,
requires a flight controller that generates motor signals based on the desired control
inputs and performs higher-level tasks like position control. The following paragraphs
give a simplified explanation of the cascaded control loops for rotational rate, rotation,
velocity, and position as implemented in many flight controllers. This forms the core
control loop that allows for position control using sensor feedback on a UAV [115].

Position and Velocity Control
When operating in position-control mode, the UAV receives an external position setpoint
from either a waypoint that must be reached or through moving a target position
through a remote control. Also, the current position can be fed to the controller to
prevent the UAV from drifting over time through external influences like wind. The

32

2.2 Positioning

position controller uses the difference between this setpoint and the current position to
calculate an error value used to create an appropriate control output.
This output is a velocity setpoint for the underlying velocity controller (see: Figure 2.2).
Like the position controller, the velocity controller uses feedback from a position sensor
like a GPS receiver or an optical tracking system. In some cases, this data is combined
with measurements from the IMU to calculate the current velocity. The current and
target velocity difference is formed similarly to the position control loop to create an
error input for the velocity controller. The output of the velocity controller serves as a
setpoint for the attitude controller (see: Figure 2.3).

Attitude and Rate Control

The attitude controller uses the orientation calculated by the IMU to calculate an error
based on the current attitude setpoint of the UAV [232]. Based on this error, a setpoint
for the rate controller is processed [28]. The rate controller calculates target thrusts for
each of the UAV’s motors. Since the movement of the x, y, z and yaw position of the
UAV is only loosely coupled [185], their individual thrust target values can be calculated
in individual PID controllers for each axis and combined in a mixer node which passes
the final control signal to the electronic speed controllers of the motors [270]. It uses

Position Control

Position Setpoint

-

Measured Velocity

-

Measured Position Position
Sensor

Attitude + Rate
Controller

Drone
Motors

Position
Controller

Velocity
Controller

Figure 2.2. Position controller of a multirotor. The position error is fed into the position
controller, which calculates a velocity setpoint. This velocity is used in conjunction with the
measured velocity to calculate the velocity error which in turn is used by the velocity controller
to calculate an attitude setpoint necessary to reach the target velocity.

Attitude
Controller Rate Controller

--

Measured Attitude

Measured Angular Rate

IMU

MotorsAttitude Setpoint

Attitude + Rate Control

Figure 2.3. Attitude controller of a multirotor. The attitude setpoint is used in conjunction
with the measured attitude to calculate the attitude error which is fed into the attitude controller.
The attitude controller creates n angular rate setpoint which is used together with the measured
rate to calculate the rate error for the rate controller. The rate controller calculates individual
motor speeds needed to achieve the required angular rates.

33

2 Techniques for Visual Inspection

the rotational rates measured by the gyroscope of the IMU and a setpoint provided
by the attitude controller to calculate an error for each axis and adjust motor speeds
accordingly.

While numerous solutions exist for implementing the individual controllers, PID con-
trollers, which generate an output signal as a combination of a proportional, integral,
and differential part of the error, are used in most cases [160]. The simplicity of their
implementation and tuning make them suitable for this application. Note that while
the preceding paragraphs only give a generalized overview of the mode of operation
of a multirotor flight controller, they contain the necessary background information
required for the concepts for positioning and navigation proposed in Section 3.3 and
Section 3.4.

Camera Gimbal

Most modern camera drones use a gimbal to stabilize the camera image. The only
exception to this are specialized FPV-drones (First Person View drones), which feature
rigidly mounted cameras and steer camera motion through coordinated flight paths of
the drone. However, for an inspection scenario, this limits the possible camera angles
and trajectories unnecessarily, which is why this work focuses on UAVs featuring a
gimbal-mounted camera. A gimbal mechanically counteracts the UAV’s movement
on a particular axis by rotating the camera by the same amount but in the opposing
direction. Figure 2.4 depicts the design for a three-axis camera gimbal that is often
used in consumer UAVs. Each of the individual axes of the camera can be controlled
individually using a motor located inside the joints of the gimbal assembly. This results

Figure 2.4. Front mounted camera gimbal on a modern consumer UAV.

34

2.2 Positioning

in a stabilization of the camera image to a point that the change in orientation of the
UAV caused by its movement is unnoticeable. Using a software controller, each axis
(pitch, roll, and yaw) can be set individually to a fixed angle either relative to the UAV
or the global world frame. A typical configuration is to lock the horizon of the camera
image by setting the gimbal to stabilize the roll angle of the camera to 0°relative to
the world frame. The pitch is often set by the operator’s remote to a desired angle
relative to the world frame to be able to look up or down independently of the UAV’s
orientation. The yaw axis is often locked to the yaw orientation of the UAV, so it can be
controlled by turning the UAV around its yaw-axis. In some cases, this coupling of the
UAV and gimbal yaw is not fixed, but rather, the yaw-axis of the gimbal slowly follows
the rotation of the UAV to smooth out the movement of the UAV, which is, in many
cases, too abrupt for smooth video recordings.

2.2.4 Model Tracking

The term model tracking describes a variation of vision-based camera tracking that uses
the video stream of a camera to calculate the camera’s position relative to an object. To
achieve this, model tracking tries to match the current camera frame to an orientation
of a 3D model of the observed object. This process is mainly used in Augmented Reality
applications where the goal is to overlay a live camera image taken by a camera with
virtual objects like 3D models or additional information [144]. In contrast to marker
or image-based tracking, where specially designed images called markers are tracked
with the camera, model tracking relies solely on the geometry of the tracked object
and tries to match it to a tracking model. This is done by extracting features like lines
and points in the camera image and matching them to corresponding features in the
model [144], which allows for calculating the camera position relative to the model.
Using the basic principle of matching features to a 3D model to extract the camera’s
position relative to an object allows Augmented Reality applications to render an overlay
over the physical object (see: Figure 2.5). Using the transformation between camera
and object, the overlay can be rendered from the correct perspective to give the user
the impression that the overlay is fixed to the physical object. These overlays often
provide additional information relating to the physical object, depending on the context
of the application. The applications of these techniques are vast and include production,
remote maintenance [196], medicine [199], education [235], and marketing [22]. When
used in the domain of assembly, these overlays can show workers where to install
additional parts or how the assembly should look after installation [286].
The reason for choosing this approach over other visual tracking procedures like marker
tracking is that the assembly itself does not need to be modified to work with the
tracking system. Adding markers to the assembly that may need to be removed after
inspection is an additional step that must be performed and slows down production.
The positioning of the markers also needs to be sufficiently precise, so the manual
installation of markers introduces the potential for errors. In addition, a marker-based
approach would require the installation of multiple markers to track the model from all
perspectives. When the UAV position changes or the camera moves around the object,
an individual markers may not be visible anymore, and tracking is lost [262]. With

35

2 Techniques for Visual Inspection

model tracking, the entire object functions as a marker. As long as enough geometric
features of the object are in the camera view, it can be tracked. This makes this approach
particularly attractive for a UAV-based inspection scenario with the inspected item used
as the model target. This is because the camera views the assembly during the entire
inspection, so tracking is possible throughout the whole flight. The need for a 3D model
of the tracked part, which is sometimes seen as a disadvantage of model tracking, is not
an actual problem in this use case because it can easily be derived from the CAD model
of the part that is inspected.

2.2.5 Odometry

Another important technique for determining the position of a robot is odometry. The
term odometry originates from the Greek words hodos (travel) andmetron (measure) [76].
Therefore, it describes the estimation of a robot’s pose through measuring the traveled
distance. While there are numerous types of odometry, like wheel odometry, where
the speed, position, and orientation of a robot is calculated using the rotation of its
wheels, this work focuses on inertial odometry to help with navigation. For inertial
odometry, an inertial navigation system determines a position relative to a starting
point using an inertial measurement unit (IMU) as a sensor. The IMU is a system of
sensors consisting of an accelerometer, a rate gyroscope, and sometimes a magnetometer
(compass). The odometry data is generated by a system consisting of the IMU and
computer or microcontroller that continuously calculates the estimated position and
orientation relative to the robot’s starting point using the sensor data [15]. This is
done by integrating the accelerometer sensor values to calculate linear velocities and

Figure 2.5. Screenshot of the overlay of the Augmented Reality application developed in this
work using Vuforia Engine.

36

2.2 Positioning

positions or integrating gyro rate data for angular positions. Since the simple numeric
integration of this data is prone to accumulative errors [236], additional processing is
done to estimate position and orientation better. An approach often chosen for the same
purpose is filtering the sensor data using, for example, an Extended Kalman Filter [75].
The filtering allows the compensation of the drift introduced by integration of the
gyroscope data by using the values of the accelerometer that can be used to determine
the direction of the ground as a second input. To compensate for drift in the yaw-axis
that the accelerometer cannot compensate, a magnetometer can be added to this system
to reference this axis against the earth’s magnetic field.
Inertial odometry is essential to achieving stable flight when using an inherently unstable
quadrotor [48]. The measured orientation, angular rates, and velocities are important
inputs for the rotation and rotational rate controller of the flight controller. This allows
UAVs in FPV racing tournaments to perform agile and precise maneuvers using only
a gyroscope and accelerometer as sensor inputs. However, with this type of UAV, the
pilot manually controls velocity and position. Additional sensors like GPS are needed
to compensate for the drift in linear velocity and position introduced by the IMU to
achieve automatic position control. Still, the linear accelerations measured by the IMU
can help improve the accuracy of the overall position estimate again using a Kalman
Filter for the fusion of both measurements.

2.2.6 Sensor Fusion Using a Kalman Filter

After measuring estimated positions, orientations, and velocities from the UAV using
various sensors, combining these different types of sensor data into a single estimated
state of the system is necessary. The Kalman Filter [132] is often used as a sensor fusion
algorithm to perform this task. It uses an internal model of the UAV’s state to predict its
expected behavior. This prediction is then used to rate the quality of the incoming sensor
data. The quality of the sensor data and the internal prediction are used to determine the
extent to which each updated sensor measurement influences the updated internal state
vector. The Kalman Filter does this by calculating and constantly updating a covariance
matrix of the incoming sensor data and its internal model and determining the weight
with which sensor values and the internal prediction influence the final state estimation
based on these covariances. During operation, predictions are performed periodically
and updated using incoming sensor data. The following paragraphs describe how this
process works in general, while Section 3.3.4 will go into further detail on how a Kalman
Filter is used to estimate the UAV’s position in the QuAD system.

Prediction of the State Estimate

As previously mentioned, the periodically performed prediction step predicts the sys-
tem’s behavior. To do this, it requires a state vector x̂ that contains all relevant pa-
rameters of the system. When estimating the position of a UAV, all linear and angular
positions and velocities might be used to form a model of the system.
A state transition matrix F is necessary to predict the state vector’s future value from a
time step k to k + 1. It is multiplied by the state vector to generate a predicted state

37

2 Techniques for Visual Inspection

estimate and, therefore, defines how the existing state influences the next one. The
state transition matrix is structured in a way that the next predicted position in all axes
(linear and angular) is the sum of the old position and the numeric integration of the
velocity (see: Equation (3.12)).

Optionally, the control inputs of the system can be considered by providing a control
input vector u containing all control inputs for the system. It is multiplied by the control
transition matrix, which defines how the elements of the input vector influence the
system state. The result is added to the predicted state vector.

Through this process, it is possible to predict the state of the entire system using
Equation (2.18).

x̂-
k+1 = F · x̂k +B · u (2.18)

With:

• x̂-
k+1 being the predicted state estimate at time k + 1.

• x̂k being the state estimate at time k.

• F being the state transition matrix.

• u being the control input vector containing all input commands for the system.

• B being the control transition matrix.

This prediction is then updated with measurements of the individual sensors to calculate
an updated state estimate x̂k+1 during the update step. The weight in which both the
predicted state and the measurement influence the updated state estimate is determined
by the Kalman gain Kk+1, which is, in turn, calculated for each measurement using
their corresponding covariance matrices. To calculate the covariance of the prediction
P-
k+1, Equation (2.19) is used.

P-
k+1 = F ·Pk · FT (2.19)

With:

• P-
k+1 being the predicted state error covariance matrix at time k + 1.

• Pk being the state error covariance matrix at time k.

38

2.2 Positioning

Update of the State Estimate

Every time a sensor measurement is obtained, the state estimate of the Kalman Filter is
updated. To perform this update, first, a prediction of the expected measurement ẑk+1

is calculated based on the state prediction x̂-
k+1 calculated in Equation (2.18).

ẑk+1 = H · x̂−
k+1 (2.20)

With:

• H being the measurement model that relates the state space to the measurement
space.

• ẑk+1 being the predicted measurement at step k + 1.

It is also required to provide or calculate the measurement noise covariance matrixR for
all measurements to determine their quality. This matrix is often provided by the sensor
system itself. Since the Kalman Filter works on the assumption of a normal probability
distribution ofR (see: Equation (2.21)), it can often also be determined empirically by
performing measurements of the sensor at rest.

p(v) ∼ N (0,R) (2.21)

The last value needed for performing the update step using a new measurement is the
Kalman gain. It describes the ratio of the covariance of the internal state P-

k+1 over the
sum of P-

k+1 and the measurement noise covariance R. In other words, it indicates the
proportion of the state variance in the total variance. Its exact calculation is described
in Equation (2.22).

Kk+1 = P-
k+1 ·HT ·

(
H ·P-

k+1 ·HT +R
)−1 (2.22)

With:

• Kk+1 being the Kalman gain at time k + 1.

• H being the observation model.

• R being the measurement noise covariance matrix.

Subsequently, Equation (2.23) is used to correct the prediction of the internal state with
the measurement based on the Kalman gain.

x̂k+1 = x̂-
k+1 +Kk+1 ·

(
zk+1 −H · x̂-

k+1

)
(2.23)

With:

• x̂k+1 being the updated state estimate at time k + 1.

• zk+1 being the measurement vector at time k + 1.

39

2 Techniques for Visual Inspection

Lastly, the state covariance can be updated to represent the updated state using Equa-
tion (2.24).

Pk+1 = (I−Kk+1 ·H) ·P-
k+1 (2.24)

With:
• Pk+1 being the updated error covariance matrix at time k + 1.
• I being the identity matrix.

Both the prediction and update steps can be performed at arbitrary times when the time
interval since the last update or prediction is taken into account in the state transition
matrix F and observation model H, respectively. Also, updates of different sensors
that measure various system parameters can be implemented by defining separate
observation models and measurement noise covariance matrices R for each sensor.
This allows for the Kalman Filter to predict an updated internal state and provide an
estimation even if no updates are performed for a longer duration of time.
This behavior can be experienced when driving through a tunnel in a car while using a
GPS-based navigation system, which often uses a Kalman Filter internally for position
and velocity estimation. After entering the tunnel, position updates from the GPS sen-
sors stop, and the position on the display is derived solely from predictions performed
by the Kalman Filter based on the velocity the car was traveling before entering the
tunnel. During this long phase without updates, the covariance of the state estimate
continuously increases, representing an increasing uncertainty about the internal state.
When exiting the tunnel, an update with a new GPS position measurement is performed.
The high covariance of the internal state combined with a comparatively low covariance
of the GPS-measurement results in a high Kalman gain and, therefore, a strong influence
on the measurement on the updated state x̂k+1. This results in the jumps in position
that can often be observed when exiting a tunnel because the first GPS measurement
drastically corrects the state estimation that has considerably drifted when only pre-
diction was possible. Modern navigation systems or smartphones use data from their
inertial measurement unit (IMU) in addition to the GPS signal to provide acceleration
measurements. In this case, the acceleration is used to update the cars’ velocity to pro-
vide a better position estimate and improve position accuracy when driving in situations
without regular GPS updates. This is an example of using a Kalman Filter that uses
multiple types of sensors to provide an improved state estimate.
Since the introduction of the Kalman Filter, several improved versions like the Extended
Kalman Filter (EKF) [182], [66] and Unscented Kalman Filter (UKF) [129] have been
developed. The main benefit of these variants is the support of nonlinear systems. While
the EKF works well for systems with only a slight nonlinearity through linearization
around the operation point using first order Taylor-expansion, the UKF uses the Un-
scented transform to work with highly nonlinear systems. Since both the EKF and the
UKF are more complex to implement as well as more computationally intensive and
the system presented in this work is only linear, the regular Kalman Filter was deemed
sufficient to perform the sensor fusion.

40

2.3 Navigation Strategies

2.3 Navigation Strategies

After a reliable position estimate of the UAV is calculated, a means of navigating towards
a precalculated goal is necessary. For selective inspections of components, this work
implements relative navigation strategies based on two different algorithms: Potential
field navigation and Anytime Dynamic A*. In preparation for their adaptation to relative
navigation in Chapter 3, the following paragraph details the Anytime Dynamic A*
algorithm (the necessary fundamentals for the potential field method are introduced
in Section 3.4.1). Afterward, the HEDAC algorithm [124, 125] is discussed in detail, as
it is used in this work as a navigation strategy that allows for full surface coverage
inspections.

2.3.1 Dynamic Path Planning Using Anytime Dynamic A*

TheAnytimeDynamic A* (AD*) algorithm [158] is a heuristic, graph-based path planning
and replanning method that quickly produces initial, possibly suboptimal solutions. AD*
incrementally improves the solution through continuous optimization and efficiently
repairs it when the environment changes (e.g., new obstacles are detected). These
algorithms can be used for path planning in robotic applications. They sample discrete
points in the environment and find the shortest path through a graph. As the name
implies, the algorithm falls under the category of anytime algorithms. This means it can
generate a (suboptimal) initial solution rather quickly and send it to the robot, which
can start the execution before the final result is calculated. The algorithm continues to
improve the solution during execution, constantly updating the robot with a better path
until the ideal solution is found. The dynamic property allows the algorithm to react to
changes in the environment and, therefore, handle newly detected obstacles without
having to replan the entire path. This property makes it suitable for path planning
in the QuAD Project. AD* combines the principles of the D* Lite algorithm [143],
which allows for efficient incremental replanning, and the Anytime Repairing A* (ARA*)
algorithm [157], which quickly finds an initial path that may not be perfect, and then
improves it over time. AD* uses an inflation factor ε > 1 to find a fast, suboptimal
solution initially. Over time, the calculation is repeated while continuously decreasing
ε, thus improving the solution quality until ε = 1, which yields an optimal path.

Each node in the search graph is assigned a key, which determines when it should be
expanded (visited by the algorithm) and how it should be prioritized compared to other
nodes in the priority queue. Nodes with smaller keys are explored first, guiding the
search effectively toward the goal. This key includes a weighted heuristic function
h(s, sgoal), which is essential for the algorithm’s efficiency and anytime behavior. The
heuristic function estimates the cost from a given state s to the goal. In AD*, the heuristic
is multiplied by an inflation factor ε > 1, which biases the search toward the goal and
accelerates the planning process. A larger ε value allows AD* to find an initial path
more quickly by expanding fewer nodes. This is achieved by trusting the heuristic more
heavily. An approximation like the Euclidean or Manhattan (Taxicab) distance [147]
can be used as the heuristic function h(s1, s2). The algorithm begins with a high ε and
decreases it over time to refine the path quality. The algorithm converges to an optimal

41

2 Techniques for Visual Inspection

solution as ε→ 1. This allows for the continuous refinement of the solution. The search
for the shortest path between a node sstart and sgoal is performed as a backward search
starting from the goal.
The algorithm uses three lists to store nodes during processing (OPEN, INCONS and
CLOSED). The OPEN list contains all nodes that still need to be expanded and is ini-
tialized with sgoal. During computation of a path, neighbors of the currently expanded
node are added to the list, and it determines, which node is expanded next. Each node
in the graph is assigned a key, using the function key(s), defined in Equation (2.25),
which determines the order in which the nodes are removed from the open list.

key(s) = [k1(s), k2(s)] =

{
[rhs(s) + ε · h(sstart, s), rhs(s)] if g(s) > rhs(s)

[g(s) + h(sstart, s), g(s)] otherwise
(2.25)

With:
• s being the current node (or state) in the graph.
• sstart being the start node of the search.
• g(s) being the current cost of the shortest path found from sstart to s.
• rhs(s) being the one-step look-ahead value (minimum expected cost to reach s).
• ε ≥ 1 being the inflation factor used to regulate the quality of the solution.
• h(sstart, s) being the heuristic estimate of the cost to reach s from sstart.

The key is used to define a lexicographic order for the OPEN list according to Equa-
tion (2.26), which is in turn used to order the open list.

key(s) < key(s′) ⇔ k1(s) < k1(s
′) ∨ (k1(s) = k1(s

′) ∧ k2(s) < k2(s
′)) (2.26)

The second list is the INCONS (inconsistent) list, which stores nodes that have been
expanded but whose g-values have been improved after expansion. These nodes are
inconsistent because their recorded g-values are now better than what was used during
their expansion, meaning their current state may lead to a better solution than previously
thought. The CLOSED list tracks nodes that have already been expanded in the current
iteration of the search.

42

2.3 Navigation Strategies

Calculation of the Initial Path
Initially, both g(s) and rhs(s) are set to inf for each node s except for the value of
rhs(sgoal), which is set to 0. sgoal is then added to the INCONS list as well as the OPEN
list and therefore expanded first. For each node in the open list, the one-step look-ahead
value rhs(s) is calculated using Equation (2.27).

rhs(s) =

{
0 if s = sgoal,

mins′∈Succ(s) (c(s, s
′) + g(s′)) otherwise,

(2.27)

With:
• Succ(s) being the set of successor states of s.
• c(s, s′) being the edge cost from s to a neighboring node s′.
• g(s′) being the value function at s′.

The one-step look-ahead value rhs(s) is then compared to g(s) (current cost of the
shortest path found). If g(s) > rhs(s), g(s) is set to rhs(s) (updating the cost of the
shortest path), the node is closed and the state of all neighboring nodes is updated.
Otherwise, g(s) is set to∞ and its state is updated along with all neighboring nodes.
Updating the state of a node updates its rhs value according to Equation (2.27) and
removes it from theOPEN list (if it is in theOPEN list). If g(s) ̸= rhs(s)∧s /∈ CLOSED,
it is added to the OPEN list again. Otherwise, it is inserted into the INCONS list. This
procedure then expands nodes incrementally, always using the node of the OPEN list
with the smallest key. The algorithm continues this behavior until rhs(sgoal) = g(sgoal)
or the smallest key value in the open list is smaller than key(sstart), which indicates that
a path from sstart to sgoal was found.

Refining the Path and Replanning Around Obstacles
The robot or UAV can then start navigation using this plan. To refine the path, ε is
decreased, and the search is repeated. The smaller ε causes fewer nodes to be skipped due
to a lower trust in the heuristic metric, so the resulting path quality improves. Eventually
ε becomes 1, which results in the calculation of the optimal path. When changes in
the environment occur, only affected states are updated. The algorithm incrementally
repairs the plan by modifying inconsistent states. This avoids full replanning from
scratch, resulting in better computational performance compared to similar approaches.
In the algorithm, this is done by setting all edge costs to the node blocked by the obstacle
to∞ and invalidating all nodes whose cost depends on the affected node. Updating only
the affected parts of the graph is done by adding only these nodes back to the OPEN
list and expanding them again. If changes in the area are significant, ε is temporarily
increased to encourage faster replanning.

Application to Obstacle-Avoiding Navigation

To apply AD* to UAV path planning in dynamic environments, a graph on which the
search can be performed has to be created first. Since the number of possible positions in

43

2 Techniques for Visual Inspection

3D space is infinite, the UAV can theoretically occupy any point (x, y, z) inR3. However,
graph search algorithms like AD* (and A*, D*, etc.) operate on discrete graphs with a
finite number of nodes. Hence, a way to approximate the continuous world with a finite,
discrete representation is needed. This is usually achieved through spatial discretization
in a voxel grid, where the 3D environment is divided into a grid of voxels of fixed size
r. The center of each voxel becomes a graph node, and the UAV is assumed to be able
to move between adjacent voxels. This gives a finite number of states for the search.
Depending on the application, a set of neighboring nodes to which the UAV can move is
defined as the neighborhood. Common neighborhoods are 6, 18, or 26 neighbors in 3D
space. The neighborhood is chosen based on the vehicle’s movement constraints and the
available computing power, as an increasing number of neighbors increases computation
time. Obstacles can also prevent the UAV from reaching particular neighbors. This set
of neighbors for all nodes forms the edges of the graph. If needed, the UAV’s velocity
and orientation can also be included in the state space. Obstacles can be represented
using a 3D occupancy grid obtained from a LiDAR map or OctoMap. This allows for
voxels to be marked as free or occupied. Pruning transitions from and to occupied nodes
prevents the algorithm from planning paths through areas occupied by obstacles.

2.3.2 Strategies for Surface Coverage

Compared to a selective inspection where only modified components or other Points of
Interest are visited, some applications may require inspecting and capturing the state
of the entire assembly. This can be necessary every few production steps to ensure
existing parts of the assembly were not damaged while mounting new parts or before
an assembly leaves a factory to document its state. The process creates evidence of the
part’s state if it gets damaged during transport or further down the manufacturing chain.
This type of inspection is also required for in-service inspections of products like wind
turbines or aircraft. Compared to an inspection context where the location of the Point
of Interest can be easily determined, in-service inspections need to look for damage
like cracks, bird-strike, or delaminations on the entire product surface. This requires
a navigation strategy that provides full surface coverage of the inspected product to
capture data from all angles.

The HEDAC Algorithm

One of the algorithms suitable for generating a trajectory covering the entire surface of
a part is the Heat Equation Driven Area Coverage-Algorithm (HEDAC-Algorithm) [124,
125]. The approach allows for coordinated 3D visual inspection of complex geometries
by multiple UAVs. The algorithm is not based on waypoints but instead uses potential
fields to lead one or multiple UAVs to the areas of the assembly with the least amount of
coverage. Repelling potentials are used as an obstacle avoidance strategy to repel the
UAV from the assembly and other nearby UAVs. This allows the inspection to occur at a
predefined distance from the object’s surface. Coverage is modeled using a potential
field based on a Gaussian function around the inspected obstacle based on the desired
inspection distance and around each UAV’s trajectory to represent already covered areas.

44

2.3 Navigation Strategies

The cumulative effect over time results in a coverage density field ρ(x, t), representing
how well the space has been observed. The algorithm’s goal is to commandeer the UAVs
in a way that minimizes the discrepancy between the desired target inspection density
µ0(x), which is the strongest near the structure, and the actual coverage ρ(x, t). Based
on the difference between µ0(x) and ρ(x, t), a scalar potential field ψ representing the
areas with insufficient coverage is computed. The movement of each UAV is dictated by
the direction of the gradient of the generated potential field.

v = −∇ψ(x) (2.28)

With v being the target velocity vector for the UAV. This ensures coverage of under-
inspected areas in a smooth and coordinated fashion. To avoid collisions and boundary
violations, each UAV solves a local trust-region optimization problem that slightly adjusts
the velocity vector to avoid collisions with other UAVs or obstacles while simultaneously
staying inside the specified inspection area. For calculating camera orientations, the
distance field containing the Euclidean distance to the nearest point on the structure’s
surface is used. The gradient of this field is used as a direction vector to determine the
camera orientation. This ensures effective visual coverage of the structure’s surface.
The amount of surface coverage is also evaluated to determine the progress of the
inspection. For this, the covered surface area of each UAV’s camera is modeled as a cone
with the tip located at the camera’s position. The taper of the cone is determined by
the camera’s field of view. Based on this cone, ray tracing is used to determine which
mesh nodes of the component’s surface are visible during each time step. A coverage
counter tracks the number of views per surface node. The algorithm provides a unified
trajectory planning and coverage control solution and handles detailed, non-convex
geometry. The resulting trajectories ensure a smooth, adaptive motion with natural
collision avoidance. The authors claim that the algorithm in its current form is not
designed for real-time onboard use due to its computational complexity.

45

2 Techniques for Visual Inspection

2.4 Collision Avoidance

Due to the complex environments a UAV can encounter in an industrial inspection
context, robust obstacle avoidance is necessary to perform an inspection safely. The
dynamic nature of a production facility makes it infeasible to consider and model all
possible obstacles the UAV can encounter in advance. Therefore, to avoid obstacles,
it must be equipped with onboard sensors to detect and avoid them. The following
paragraphs give an overview of the types of obstacle sensors used on UAVs as well as
the use of OctoMaps [201], [116] to store information about detected obstacles, while
the strategies used for collision avoidance are detailed further in Chapter 3.

2.4.1 Sensors for Collision Avoidance

Several sensor types exist for detecting obstacles with a UAV. The three types that are
commonly used in UAVs today are ultrasonic distance sensors, LiDAR sensors, and
stereoscopic cameras.

LiDAR (light imaging, detection, and ranging) sensors emit laser light and measure
the time it takes for the light to return to the sensor [297]. They are used in robotic
applications for obstacle detection and mapping. They calculate the distance to an object
through the time of flight (ToF) principle, which emits a laser pulse and measures the
time it takes for the light to reflect back from an obstacle. The distance between sensor
and obstacle d can then be calculated using Equation (2.29).

d =
c · t
2

(2.29)

With:

• c being the speed of light.

• t being the time between sending the pulse and detecting the reflection.

The division by two is needed because the light must get to the obstacle and then back
again to the sensor, so it travels twice the distance between sensor and obstacle. In 2D-
or 3D LiDAR Sensors, the sensor often scans multiple angles by deflecting the signal
through a mirror that can rotate and/or tilt [229]. This allows for obstacle measurements
in one (for 2D LiDAR sensors) or multiple (for 3D LiDAR sensors) planes.

While they offer measurements with great accuracy and frequency, the mechanically
rotating mirror assembly often makes them heavy and expensive compared to other
sensors, preventing their use in lightweight or inexpensive consumer UAVs.

46

2.4 Collision Avoidance

Sonar Sensors
Sonar sensors apply the same ToF principle of LiDAR sensors but use ultrasonic sound
pulses instead of light to estimate a distance [297]. Similarly to ToF Laser Sensors, the
distance to an object d can be calculated using Equation (2.30).

d =
v · t
2

(2.30)

With:

• v being the speed of sound.

• t being the time between sending the pulse and detecting the echo.

However, they lack the ability to precisely reflect the sound impulse in different direc-
tions as LiDAR sensors do with the mirror assembly, limiting their use to one direction
in most cases. The emitted sound waves also move away from the sensor in a wide cone
compared to the focused beam of laser light. This causes a wider detection angle, which
can be beneficial in cases where this behavior is desired (e.g. in park distance control
sensors in cars). The significantly slower speed of sound can also limit the measurement
frequency because all echoes of the previous pulse need to decay before a new pulse
can be emitted without detecting an echo from the last pulse.

Stereoscopic Cameras
Reduction in size and cost for cameras and the hardware needed to process stereoscopic
images have caused stereoscopic cameras to be widely spread for detecting obstacles in
UAVs. Their main advantage is their low weight and energy consumption as well as their
compact size [297]. However, in contrast to LiDAR sensors, they are highly dependent
on ambient light, good weather conditions and require high levels of processing power.
However, recent advances in embedded microprocessor technology allow even mid-level
consumer UAVs like the DJI Mini 4 Pro [257] to feature multiple stereoscopic cameras
that provide omnidirectional obstacle detection at a takeoff weight of less than 249 g. The
technology works by placing two cameras at a fixed distance from each other to mimic
human binocular vision. Capturing two images from slightly different positions allows
for depth perception in the images. Closer objects shift more between the two images,
while farther objects shift less. This effect, called parallax, is used to calculate depth.
After capturing both images and correcting effects caused by lens distortion, various
algorithms can be used to compare both images and find the same features in both.
Examples of algorithms used for this task are Sum of Absolute Differences (SAD) [107],
Normalized Cross-Correlation (NCC) [303], and Semi-Global Matching (SGM) [113]. Af-
terward, the disparity d, being the shift of a feature from left to right, is calculated. Using

47

2 Techniques for Visual Inspection

the disparity, the depth information of this feature can be calculated using Equation (2.31).

Z =
f ·B
d

(2.31)

With:

• Z being the depth (distance to object).

• f being the focal length of the camera.

• B being the baseline distance (distance between the two cameras).

2.4.2 OctoMaps

After detecting relevant obstacles, a means of storing their position is required to create
a representation of free and occupied space around the UAV. OctoMaps [201], [116] are
a 3D occupancy mapping framework based on octrees [183] that fulfill this task.
An octree is a hierarchical geometric data structure that divides space dynamically only
where required which reduces memory usage compared to a dense grid. An octree
is structured in a tree data structure with each node having either eight or zero child
nodes. Each node occupies a cubic volume of space called a voxel. A voxel can either be
occupied (if an obstacle was detected inside), free (if known to be empty) or unknown if
it was not explored yet. Since real-world sensor data can often be unreliable, it is also
possible to assign a probability for the occupancy based on the quality of the sensor
measurement. The resolution of the map depends on how deeply the octree is divided.
Octrees work by dividing the 3D space in increasingly smaller sections. While the root
node represents the entire 3D space, if needed, it is split up into eight child nodes refining
the occupancy mapping where necessary. A node may be recursively subdivided into
eight child nodes at sections of the map where a more detailed distinction between
occupied, free and unknown spacemust be made [116]. This increases efficiency, because
large chunks of identical space can be stored at a coarse resolution, while complex areas
are represented in more detail.
The octree can be updated through new obstacle sensor data. To update the tree, the
sensor measurement is translated into a position in 3D space by using the position of
the UAV and casting a ray of the length of the distance measurement in the direction the
measurement was taken at. The voxel at the end of the ray is marked as occupied while
all other voxels the ray intersects are marked free. All other areas remain unchanged.

48

Summary. This chapter presents the conceptual basis for
UAV-based inspection in the production environment. This task
requires path-planning options to reach inspection points effi-
ciently. In addition, flying in production halls poses challenges
when determining the UAV’s position. Navigation strategies
must also be found that enable collision-free navigation relative
to the assembly. 3

Concept for Relative Inspection

3.1 General Overview of the Concept 51
3.2 Viewpoint-Dependent Path Planning 52

3.2.1 Points of Interest, Viewareas, and Viewpoints 52
3.2.2 Calculation of an Efficient Inspection Sequence 56
3.2.3 Optimization Potential Through Overlapping Viewareas . . 58
3.2.4 Optimization of Key Viewpoints Across Inspections 60
3.2.5 Related Work and State of the Art 62

3.3 Relative Positioning . 65
3.3.1 Position Estimation Through Model Tracking and Onboard

Sensors . 67
3.3.2 Processing of Model Tracking Measurements 67
3.3.3 Related Work on Relative Position Determination 70
3.3.4 Sensor Data Fusion . 73
3.3.5 Position Estimation with Moving or Changing Reference

Systems . 78
3.3.6 Related Work on Sensor Fusion for Position Estimation . . 85

3.4 Relative Navigation Along Assemblies 88
3.4.1 Potential Field Navigation 88
3.4.2 Anytime Dynamic A* . 92
3.4.3 Collision Avoidance with Limited Sensors 95
3.4.4 Related Work and State of the Art 98

3.5 Using UAVs for Inspection . 103
3.5.1 Visual Presence Detection 104
3.5.2 Interface for Connecting External Inspection Solutions . . 108
3.5.3 Related Work and State of the Art 109

3.6 Photogrammetric Documentation of Assemblies 113
3.6.1 Full Surface Coverage 113

49

3 Concept for Relative Inspection

This chapter covers the concepts underlying the relative inspection system developed
throughout this work. After a general overview of the concept, the underlying ter-
minology needed to understand the following detailed concepts is defined. The first
is calculating an efficient path, allowing the UAV to inspect all relevant parts of the
assembly. This process is done entirely offline (meaning before the inspection flight),
which allows for extensive optimizations, which are also discussed in detail. After offline
planning, the concept of all aspects that are needed to perform the actual inspection
flight are discussed. First, a way to establish the UAV’s position relative to the assembly
is needed. Once the position is established, navigation strategies for navigating relative
to the assembly while avoiding obstacles are developed. To do the latter, a method for
detecting and persisting knowledge about obstacles is presented that allows for them to
be used in the navigation strategies, even if they are not currently detected by any of
the UAV’s sensors. All these concepts are designed to work in conjunction with relative
localization of the UAV. Lastly, techniques for performing actual inspection tasks using
only the sensors available on lightweight consumer UAVs are presented.

50

3.1 General Overview of the Concept

3.1 General Overview of the Concept

Specifying
Inspection Points Route Planning

Copter Inspects
Annotated Points

on the Real
Component

Visualization and
Export of Errors

Figure 3.1. Overview of the system architecture.

Figure 3.1 shows a general overview of the concept developed in this work. The focus
of this work is set on trajectory planning and relative navigation as well as performing
relative inspection with UAVs. This includes a means of specifying the parts to be
inspected and the analysis of the inspection results. Therefore, the depicted workflow
starts with an engineer using the CAD file of the assembly to specify points that need to
be inspected after a certain production step. Having a CAD file to work from has become
standard procedure in modern manufacturing [121], so no additional data is needed
apart fromwhat’s already required for production. The specification of inspection points
happens in a tool that allows the export of the added information in a format that the
path planning algorithm can process. This algorithm uses this information to generate
areas from which the inspection points can be seen and, therefore, areas in 3D space that
the UAV must visit to perform the inspection successfully. Afterward, distinct points
inside these areas are chosen for the UAV to visit. Alternative points are also generated
if the UAV can not reach one of the primary points. All points contain a position for the
UAV to reach and an orientation for the UAV’s camera. These orientations are calculated
in a way that ensures that the camera points directly at the object that must be inspected.
In the last step of the planning phase, all points that the UAV must reach are ordered in
a way that results in the shortest possible inspection path. During the inspection, the
UAV navigates to the points specified by the path planner in the predefined order. It
does this while determining its position relative to the assembly that must be inspected
and while avoiding obstacles in its way. A live video feed is streamed to the inspector,
and high-resolution pictures and videos are taken during the inspection. The UAV
remains at a certain inspection point until all inspection tools confirm that the current
part was inspected successfully. After the inspection, the captured image and video
data is automatically retrieved from the UAV and stored together with the results of
the automated inspections performed during the flight. The inspector can then review
this data with the help of another tool that uses the geometry derived from the CAD
model to help find recorded video segments, images, or inspection results of specific
components. The following sections will cover all parts of this process in more detail.

51

3 Concept for Relative Inspection

3.2 Viewpoint-Dependent Path Planning

For a UAV to perform an autonomous selective inspection of an assembly, an efficient
path that allows it to inspect all necessary components has to be calculated first. To
do this, the following sections first define essential terminology for the concepts that
follow before covering the developed algorithms for determining an efficient inspection
path. In addition, further optimization strategies for this path are discussed, and an
overview of the current state of the art is given.

3.2.1 Points of Interest, Viewareas, and Viewpoints

The following paragraphs define several terms specific to the path planning system
presented in later sections of this chapter. The definition is consistent with previous
work [246–248, 293]. Figure 3.2 gives an overview of these terms. In this figure, one-half
of a tubular aircraft fuselage section is depicted. Various parts like brackets, stringers or
bolts are installed on the assembly during manufacture.

ViewpointPoint of Interest Viewarea

Inspection Route Fuselage Part

Figure 3.2. Overview of the terminology used throughout this work. Viewareas specifying
areas from which Points of Interest can be inspected. Viewpoints as discrete points inside the
Viewarea and a path connecting multiple Viewpoints.

52

3.2 Viewpoint-Dependent Path Planning

Points of Interest (POIs)
After each production step, the correct installation of the added parts must be verified.
Each point at which this verification must be performed is defined as a Point of Interest
(POI). Examples of a Point of Interest are brackets that were installed during manufactur-
ing, rivets (either a single rivet or a whole set), welds that must be inspected or a screw
connection. The physical object the Point of Interest describes is arbitrary. It is only
defined by its coordinates in 3D space x, y, z, its orientation as a quaternion qx, qy , qz ,
qw, its dimensions w, h and the maximum deviation angle φmax. Figure 3.3 helps with

POI Orientation

Viewpoint Orientation

φ

Figure 3.3. Schematic two-dimensional depiction of the deviation angleφ between the camera
axis and the normal of the Point of Interest.

the definition of the deviation angleφ. It describes the angle between the normal vector
of the Point of Interest and the optical axis of the camera. In other words, it indicates
the angle from which the camera views the Point of Interest. The maximum deviation
angle describes the maximum acceptable lateral angle for the inspection. Using a small
maximum deviation angle allows the inspector to restrict inspection of a part to only a
few degrees off the specified orientation, while a larger φmax allows inspection from
a more lateral orientation as well. This allows for more possible UAV positions for
the inspection. In addition to the previously mentioned parameters, an ID is specified
together with a semantic annotation to identify the Point of Interest.

53

3 Concept for Relative Inspection

POI Bounding Box

POI
φ_max

va
_m

in

va
_m

ax

Figure 3.4. Example of a Viewarea for an arbitrary Point of Interest defined by its minimum
and maximum distance from the Point of Interest and the maximum viewing angle.

Viewareas
To inspect a Point of Interest, a specification of the area it can be inspected from is
needed. Therefore, the concept of Viewareas (VAs) is introduced here. It defines a volume
in space from which inspection can be performed. Each point within this volume is
assigned an orientation for the UAV and camera, which ensures alignment with the
Point of Interest. It is described through a minimum and maximum radius vamin and
vamax as well as the size and the maximum deviation angle φmax of the corresponding
Point of Interest (see: Figure 3.4). The maximum radius is defined as a constant distance
from which the camera can realistically inspect the part while vamin is the maximum
of the minimum distance the UAV must keep from the part for safety reasons and the
minimum distance that is required for the part to be seen by the camera. The latter
is calculated from the field of view of the camera and the dimensions specified in the
Point of Interest. Its general shape is defined by subtracting the volume of two spheres,
with radii of vamin and vamax resulting in a hollow sphere. The center of these spheres
is located at a point behind the Point of Interest that is determined by the point at
which four planes that each intersect one of the four outside edges of the bounding
box of the Point of Interest rotated by the maximum deviation angle intersect (see:
Figure 3.5). These four planes also define the outer boundary of the Viewarea in the
horizontal and vertical direction. The Viewarea is created by discarding the area of
the hollow sphere that is not enclosed by these planes. The bounding box is defined
by the rectangle with the dimensions w and h, with the Point of Interest position and
orientation as the center. While one edge of the bounding box is used as a vector for
describing each plane, the other axis is a rotation + or − half of the camera’s horizontal

54

3.2 Viewpoint-Dependent Path Planning

Block Distance

Viewpoint

Point of Interest

Figure 3.5. Sampling of discrete Viewpoints inside a Viewarea. The block distance specifies
the sampling density.

or vertical field of view starting from the normal of the Point of Interest. This results in
a rectangular cutout of a hollow sphere, which can be seen in the example in Figure 3.4.
Each point inside a given Viewarea is a Viewpoint (VP). It can be used as a target for the
inspection UAV to navigate to. In addition to the position of the point, each Viewpoint
also contains an orientation for the UAV and its camera that allows it to look directly at
the corresponding Point of Interest. This is achieved through trigonometric calculation
of the roll, pitch, and yaw angle from the position of the given Viewpoint to the Point of
Interest. Since the volume inside a Viewarea defines an infinite amount of Viewpoints,
a specific Viewpoint must be selected for each Viewarea for the UAV to fly to during
inspection. If the goal is to inspect the part with a minimum deviation angle (in other
words, looking directly at it) and as close as possible, the point that is located at a
distance of vamin along the normal vector of the Point of Interest would be an ideal
choice. A different method for selecting a suitable Viewpoint using knowledge gathered

55

3 Concept for Relative Inspection

from previous flights is discussed later in this chapter. However, if the UAV cannot
reach this point or the Point of Interest cannot be seen from this point because it is
obstructed by an obstacle, the availability of alternative Viewpoints can allow the UAV
to try inspection from these points. To select a set of Viewpoints the infinite number
of points inside the Viewarea, a sampling algorithm was developed and described in
previous work [246]. This approach generates Viewpoints that are equidistantly spaced
at a predefined distance. It works by filling the area in and around the Viewarea with
a grid of cubes of the size of the desired spacing of the Viewpoints. After discarding
all cubes not located entirely inside the Viewarea, the centers of the remaining cubes
are used as positions for the set of selected Viewpoints. Figure 3.5 shows a simplified
2D version of this sampling process. Afterward, the required camera orientation is
calculated for each position, and IDs are generated for each Point of Interest. As a last
step, the Viewpoint with the smallest combination of deviation angle and distance to
the Point of Interest is chosen as a Key Viewpoint. The Key Viewpoint is used for this
Viewarea in the path planning phase. While the UAV can still select other Viewpoints
from the same Viewarea if inspection from the Key Viewpoint is not possible, it always
tries to inspect from the Key Viewpoint first. This concept results in the domain diagram

PointOfInterest

- position
- orientation
- max_deviation_angle
- dimensions
- id
- annotation

ViewArea

- min_dist
- max_dist
- id

ViewPoint

- position
- orientation
- id- poi

1 1

- vp- va
1..*1

- key_vp
11

Figure 3.6. Domain model showing the relationships and properties of the concepts Point of
Interest, Viewarea and Viewpoint.

shown in Figure 3.6. Each Point of Interest is described by its parameters position,
orientation, max deviation angle, dimensions, ID, and annotation. Each Point of Interest
corresponds to precisely one Viewarea described by a minimum and maximum distance
as well as an ID. The required parameters of the camera for calculating the minimum
distance are defined globally. Each Viewarea corresponds to precisely one Point of
Interest and contains a set of Viewpoints, of which one is a Key Viewpoint. A Viewpoint
is defined by its position, the orientation needed to inspect its Point of Interest, and an
ID.

3.2.2 Calculation of an Efficient Inspection Sequence

After selecting a Key Viewpoint for each Viewarea and, therefore, for each Point of
Interest, an order in which the Viewpoints should be visited has to be determined.
Due to the inspection having to be performed by a UAV, generating a sequence of Key
Viewpoints that results in a short Trajectory and, therefore, in a fast inspection flight

56

3.2 Viewpoint-Dependent Path Planning

is crucial due to the limited flight time of UAVs. Also, a quicker inspection decreases
the overall production time, which is also desirable. As previously mentioned, the
approach chosen to determine an order in which the Viewpoints need to be visited is the
Ant Colony System Algorithm (ACS). As the details of the basic algorithm itself were
explained in detail in Section 2.1.1, the following paragraphs describe its adaptation for
the calculation of a short inspection path that visits all Key Viewpoints.

A solution for finding a short permutation for a set of Key Viewpoints using the Ant
Colony System algorithm was demonstrated in previous work [293], but is detailed here
again for the sake of completeness. In this approach, Key Viewpoints represent the
cities or nodes, and the distance between cities is modeled as the Euclidean distance
between the positions of the two Viewpoints.

To apply the Ant Colony System algorithm to the domain of ordering Key Viewpoints,
several changes had to be made to the algorithm.

Initial Pheromone Level
Equation (3.1) defines the initial pheromone level for each node In turn, the initial
pheromone value τ0 is calculated using Equation (3.1).

τ0 =
1

n · Lnn
(3.1)

With:

• τ0 being the initial pheromone value.

• n being the number of nodes in the problem.

• Lnn being the length of the nearest-neighbor tour.

The nearest neighbor heuristic [218] is used to approximate the round trip length. While
this heuristic is not ideal for finding the shortest path for a round trip, it is good at
providing a rough estimation in a very short time. Combined with the number of Key
Viewpoints n, it helps distribute an initial level of pheromones to each node that works
well in conjunction with the pheromone update function.

Heuristic
The heuristic information ηij provides an estimate of the distance the UAV must travel
from Key Viewpoint i to j. Since the UAV can travel in a direct line in 3D space, the
Euclidean distance is used to approximate the distance between two Key Viewpoints
dij . The heuristic itself is calculated using Equation (3.2) as the inverse of the distance
between the current node and the node connected to the edge dij .

ηil =
1

dij
(3.2)

57

3 Concept for Relative Inspection

Parameterization
Minor adjustments were performed to the parameterization of the algorithm since its
publication [246]. The parameter q0, used to set the balance between exploitation and
exploration, was increased from 0.5 to 0.6 to slightly decrease the encouragement of new
paths. The evaporation rate ρ was adjusted from 0.5 to 0.3 to facilitate the establishment
of new paths with only a few ants. The factor β controlling the influence of the heuristic
information was left at 5 as it produced good results in empirical tests.

Number of Ants and Iterations
Determining the correct number of ants and iterations is one of the main challenges
that need to be solved when using the ACS algorithm. Increasing the number of ants
and iterations increases the quality of the solution, but returns diminish at a certain
point [293]. More iterations and ants also increase the execution time of the algorithm.
While the calculations needed for each ant can be parallelized through a multithreaded
implementation, this works only until the number of ants reaches the number of CPU
cores available. Since performing the calculation for an arbitrary iteration requires
the result of the preceding iteration, calculating multiple iterations in parallel is not
possible.
Therefore, a trade-off between the number of ants, iterations, and execution time has to
be made. Empirical tests (see: Section 5.2.1) have shown that the definition of the number
of antsm proportional to the number of Key Viewpoints N according to Equation (3.3)
yields good results.

m = 0.3 ·N (3.3)

The evaluation performed in Section 5.2.1 showed that increasing the number of itera-
tions above 2000/(m/2) does not yield better results.

3.2.3 Optimization Potential Through Overlapping Viewareas

During the testing of the path planning algorithm and the subsequent generation of
Viewareas, the observation was made that a significant overlap was present between
two or more distinct Viewareas in many cases. This effect was amplified when testing
a hypothetical inspection scenario of verifying correct mounting of brackets installed
inside a longer concave aircraft fuselage section that was cut in half lengthwise (see:
Figure 3.2). This is caused by the curvature of the part, causing the majority of the
Viewareas to accumulate around the central axis of the tube. Through this, reducing
the number of Viewareas that need to be visited by the UAV is possible by intersecting
two or more Viewareas resulting in a new, smaller Viewarea and discarding the original
Viewareas. A simplified, 2D visualization of the described intersction of two Viewareas
can be seen in Figure 3.7. The optimization is possible, because if a Point of Interest
can be seen from any point inside its original Viewarea, it also can be seen from any
point inside the intersected Viewarea. However, the intersection process also ensures

58

3.2 Viewpoint-Dependent Path Planning

that all other Points of Interest belonging to the other Viewareas can be seen from
within the intersected Viewarea. So, when the UAV is located inside the intersected
Viewarea, a simple change of its orientation allows it to inspect all Points of Interest
whose Viewareas have been used to create the intersected Viewarea. This train of
thought assumes that no obstructions are present between the location of the UAV and
any of the Points of Interest, but since the intersected Viewarea still describes a volume
with an infinite number of Viewpoints, alternative Viewpoints inside the Viewarea can
be used to circumvent problems resulting from visual obstructions, should they occur.
Also, in order not to reduce the amount of available alternative Viewpoints too much,
the replacement of the original Viewareas is only performed if the intersected Viewarea
is not significantly smaller than the original ones.

POI A
POI B

POI A
POI B

Intersected Viewarea

Viewarea B

Viewarea A

Figure 3.7. Reducing the number of Viewareas to shorten overall inspection length by com-
bining intersecting Viewareas.

This strategy creates two main benefits: Firstly, the resulting length of the path and the
number of accelerations and decelerations needed to perform the inspection are reduced.
In previous work, it was demonstrated that a 36.7 % reduction in path length in a fuselage
inspection scenario was possible while reducing the number of Key Viewpoints from 49
to 21 [246]. This results in shorter inspection times and the ability to inspect more parts
per inspection flight due to decreased energy losses through accelerating and braking.
Secondly, reducing the amount of Key Viewpoints resulting from the optimization
process results in fewer points that need to be considered for calculating the inspection
path. Since the TSP is NP-hard, the calculation time of the shortest inspection path
increases significantly with the number of Viewpoints that need to be considered. Even
when only calculating a reasonably short path using the proposed solution using the
ACO algorithm, it is paramount to keep the number of Viewpoints as low as possible
to reduce the time needed to calculate the path. The proposed optimization approach
is, therefore, an essential step towards being able to carry out longer inspections with
many Points of Interest.

59

3 Concept for Relative Inspection

3.2.4 Optimization of Key Viewpoints Across Inspections

All concepts presented so far only consider a single inspection performed once on
an arbitrary part. Excluding the manufacture of highly individual parts or one-off
prototypes, a factory usually manufactures multiple similar or identical parts. As
this requires similar or identical inspections and, therefore, inspection trajectories,
using information gained from previous inspections can be used to optimize future
flights. In particular, problems with reaching a Viewpoint or being unable to inspect a
part from a particular position due to a static obstacle may be avoided by choosing a
Key Viewpoint for subsequent flights which is known to work, which reduces overall
inspection times. Problemswith reaching the Key Viewpoint or performing an inspection
at the Key Viewpoint result in a significantly longer inspection time as the UAV tries
to reach the Viewpoint or inspect the Point of Interest until a timeout occurs as it
has no certain way of detecting that it cannot reach the Viewpoint or that it can not
do the inspection from its current position. As previously hinted, it picks a different
Viewpoint from the same Viewarea if one of these timeouts occur and tries to perform
the inspection from there. When repeating the same or a similar inspection, the same
process repeats, and the same delays caused by timeouts occur again. The proposed

Determine Next VP

Calculate Distance Timeout

Fly to VP

Start Inspection Timer

Calculate VP Score

Timeout?

Timeout? Inspect POI

[YES]

[NO]

POI
Inspection
done?

VP

Reached?

[NO]
[YES]

[YES]

[NO]

Figure 3.8. Activity Diagram of Viewpoint processing and scoring logic.

solution for this problem is acquiring knowledge about the quality of Key Viewpoints
throughout multiple flights [247]. This is done by assigning a score value to each of the
sampled Viewpoints of a given Viewarea. When initially calculating an inspection path,

60

3.2 Viewpoint-Dependent Path Planning

it is set to 0 upon initialization, the previously described strategy for selecting a Key
Viewpoint is used, and its score is set to a higher numberK . The procedure followed
when trying to inspect an arbitrary Point of Interest during an inspection is depicted in
Figure 3.8. Initially, the UAV tries to fly to the Viewpoint with the highest score, which
is the Viewpoint with a score of K . Before trying to reach the Viewpoint, a distance
timeout is calculated based on the Euclidean distance from the UAV’s current position
and the goal. If the UAV can not reach its goal within this timeout, the score of this
Viewpoint is decreased by a fixed amount A > K . Afterward, the process is repeated,
and a new Key Viewpoint is selected from the Viewpoints with the highest score. If a
Viewpoint is reached, but a successful inspection cannot be performed after a certain
duration, the Viewpoint’s score is also decreased by an amount of B > K , and again,
a new Key Viewpoint is selected from the Points of Interest with the highest score. If
multiple contenders for a new Key Viewpoint are available, the one with the largest
Euclidean distance to the current Viewpoint is selected. This is done to maximize the
chance of avoiding potential obstacles blocking the UAV from reaching the Viewpoint
or viewing the Point of Interest. Upon successful inspection of a Point of Interest from
a given Viewpoint, its score is increased by the constant D to reward a successful
inspection. In addition, every Viewpoint that was reached successfully gets its score
updated using the following formulas:

trajectory_efficiency =
de · 1.1
dr

(3.4)

score = score+ C · trajectory_efficiency− 1 (3.5)

First, the efficiency of the flown trajectory is calculated using the Euclidean distance
de between start and goal and the actually traveled distance dr . This efficiency is then
used in conjunction with a constant C to update the Viewpoint’s score. This operation
aims to penalize Viewpoints that result in complicated and long trajectories due to the
UAV having to fly around obstacles.
The scores calculated during a flight are then persisted and used for the next flight.
Also, the ACO-algorithm can be used again to calculate a new shortest path for the
updated Key Viewpoints. The overall idea of the score system is to reward known good
Viewpoints and penalize Viewpoints that do not work for an inspection. Throughout
multiple inspections, the system converges on a selection of known good Viewpoints,
and avoids repeatedly flying to Viewpoints that do not work.
Since the scores are specific to a Point of Interest and only loosely to an inspection
path, it is possible to reuse the scores on similar inspections that may occur when
some variance in the produced assemblies is present. While the algorithm presented
here is intended to improve inspection time throughout multiple real inspections, it
is also possible to run it for multiple iterations in simulation to provide an already
optimized set of Key Viewpoints for the actual inspection. To do this, the actual flight
must be performed in simulation with the assembly and the environment simulated
as precisely as possible. When all possible obstacles are placed in the simulation, a

61

3 Concept for Relative Inspection

good approximation of the accessibility of Viewpoints and the trajectory length can be
determined. To verify that a particular Point of Interest is visible from a Viewpoint, ray
tracing can be used to check for obstructions between the UAV’s camera and the Point of
Interest. Simulating a few flights and updating the Viewpoint scores before performing
the real-world inspection can reduce inspection time right at the first inspection. This
also provides the benefits of this optimization strategy for one-off inspection flights that
would otherwise not be able to benefit from this approach.

3.2.5 Related Work and State of the Art

Many types of UAV-based inspections require covering the entire surface of the inspected
part, like the inspection of wind turbines or aircraft while in service. Various solutions
exist for planning a path that covers the entire surface of an object using coverage
path planning (CPP) [95]. While in these cases the entire structure must be checked for
defects, in a manufacturing context, the modified sections of the assembly that need to
be checked are known in advance. Therefore, this section will focus on path planning
for viewpoint-based inspections. However, some concepts from CPP algorithms, like the
use of Viewpoints, overlap with the concepts used for selective path planning presented
in this work. Therefore, relevant solutions for CPP will be discussed as well.

Coverage Planning

According to Bircher et al. [24] an approach to computing a coverage path often consists
of two consecutive steps. First, the Viewpoints that are required for the inspection are
computed. In a second step, a path or trajectory connecting all inspection points is
calculated. For computation of the required Viewpoints, coverage path planning can
be seen as an Art Gallery problem [103, 206]. The Art Gallery problem is a problem in
computational geometry that covers the visibility of a polygon. It is analogous to an
art gallery that has to place security guards in a way that each part of the gallery is
visible to at least one guard. Applied to CPP, the problem is finding camera positions in
a way that each part of the assembly is visible in at least one Viewpoint. Danner and
Kavraki [52] also use an art gallery approach to generate inspection points and connect
them to an inspection path. Since the problem of placing the guards in the gallery is
NP-hard [266], [98], they place them randomly in unguarded sections. Bircher et al., in
contrast, model the component surface as a triangle mesh and define a Viewpoint for
each triangle. Each Viewpoint is defined in a way that the corresponding triangle is
completely visible. While this first step is not of much use for calculating a Viewpoint-
based inspection path, the second step, planning a path through all Viewpoints, has
many similarities to the solutions found in CPP. One common approach is to model
the path planning as a traveling salesman problem, for which various well-studied and
performant solutions exist [53, 162].
Englot and Hover [71] also use this two-step approach to perform CPP for the inspection
of ship hulls using an autonomous underwater vehicle. The path planning takes place
relative to the ship hull. The Viewpoints are sampled randomly using the Redundant
Roadmap Algorithm until sufficient surface coverage is achieved. An iterative combina-

62

3.2 Viewpoint-Dependent Path Planning

tion of computing the shortest path between all nodes and using the Rapidly Exploring
Random Tree (RRT) [150] algorithm is then used to calculate a short inspection path.

Viewpoint-Dependent Path Planning

Papaioannou et al. [209] introduce a receding horizon control approach for autonomous
UAVs to inspect a finite number of feature points on 3D structures. The inspection
task is formulated as a constrained optimal control problem, which is solved using
mixed-integer programming. This results in efficient and targeted inspections.
Wang et al. [291] propose a specialized system for the inspection of electricity pylons.
They also use the concepts of Viewpoints to define inspection positions and use opti-
mizations based on predicted overlapping captured images. The Viewpoints take the
camera orientation into consideration, and an option to specify Viewpoints in a way
that ensures a correct lighting based on the position of the sun is proposed. However,
the approach does not use the concept of Viewareas and alternative Viewpoints and
is therefore dependent on the only Viewpoint working. In the domain of power line
inspection, automated detection of specific points of interest during flight is possible,
allowing for less manual planning and specification requirements before a flight.
Ramon-Soria et al. [230] describe a planning system for the autonomous inspection of
infrastructure by UAVs. In the publication, a complete system to automate the UAV
inspection of arbitrary civil infrastructure is presented. This system includes a planning
algorithm for computing ideal inspection points and trajectories from one point to the
next. The planning algorithm seems to be based on the concepts of Points of Interest
and Viewpoints (called approaching points in the publication) described in the previous
sections. Approaching points are determined using a set of constraints. The UAV has
to be located in front of the target surface and remain within a fixed safety distance
from the surface. Additionally, the points are created in a way that the UAV stays visible
to the ground station and the operator. The points that match these constraints form
an equivalent of the concept of a Viewarea. An ideal approaching point is selected by
minimizing a cost function that includes the distance to the Point of Interest, ground
station and angle to the normal vector of the inspected surface. The path between
Viewpoints is planned using an RRT*-based algorithm [135]. How or if an ideal order for
visiting the Viewpoints is determined is not mentioned in the paper, but the provided
source code [72] suggests that the problem is modeled as a TSP, which is solved by
calculating the path length of all possible permutations and returning the path with
the minimum length. While this approach works, it seems to have a computational
complexity ofO(n ·n!), which results in long planning times with an increasing number
of Viewpoints.
Maini et al. [175] present a set of algorithms that allow to find the minimum length
path for an UAV visually inspecting a set of Points of Interest. They take the field
of view of the UAV into consideration by developing a constant-factor approximation
algorithm to solve the problem of visually monitoring points of interest on a 2.5D terrain.
Therefore, the approach is limited to 2.5D environments with the drone camera fixed in
an orientation looking straight down at the terrain. The authors also use an approach

63

3 Concept for Relative Inspection

using a set of Points of Interest that need to be inspected. Camera parameters and
the surrounding terrain are used to calculate visibility regions from where each Point
of Interest is visible, similar to the concept of Viewareas. However, these regions are
two-dimensional regions at a fixed altitude. The authors then propose two different
approaches for planning a path through all visibility regions. The first approach uses a
constant-factor approximation algorithm that executes in polynomial time and works
without discretization of the visibility regions. The second approach models the problem
as a generalized TSP where discrete points are sampled within each visibility region,
and a short path has to be calculated through exactly one of the points of each visibility
region. This is approach is implemented using a GLNS-solver [264]. Both algorithms
are benchmarked and compared, and the authors conclude that the GLNS-based ap-
proach outperforms the approximation algorithm. The feasibility of the approach is
demonstrated in a proof of concept consisting of a number of real-world flights.

Camera Orientation

According to Alarcon-Herrera et al. [12], an ideal Viewpoint has its normal axis aligned
with the camera’s optical axis. The optimal Viewpoint can be found by using the point
located on the optical axis of the Point of Interest at a so-called standoff distance. It is
calculated using the desired size and resolution of the Point of Interest in the captured
camera image. This can, in turn, be calculated using the dimensions of the camera
sensor and the camera’s focal length. Using this approach, the Point of Interest is always
centered in the image and directly viewed at. This prevents distortions that may happen
on the corners of wide-angle lenses or by looking at the Point of Interest from the side.
While this approach can calculate the ideal Viewpoint for each scenario, it also fails to
provide an alternative Viewpoint if the inspection fails from the initial Viewpoint.

64

3.3 Relative Positioning

3.3 Relative Positioning

For any autonomous flight with a UAV, its position must be established to provide
feedback for the position controller. One of the significant differences that separates
the system presented in this work from existing solutions is the complete reliance on
relative positioning instead of using absolute coordinates. This allows inspections of an
assembly independent of where it is currently placed since all positions (including the
UAV position) are defined relative to the assembly. This not only brings flexibility on
where to perform the inspection for a particular assembly, when inspecting multiple
similar targets like wind turbines in a wind farm (see: Section 1.2.2), the same inspection
can be performed on all turbines without making alterations.

To meet the requirements of an inspection within a production hall, the position must
be determined using only the sensors available in the UAV. Global Navigation Satellite
Systems (GNSS) such as GPS do not work inside enclosed buildings [102], and the cost
and setup complexity of other external positioning systems such as optical trackers or
Ultra-Wideband (UWB)-based systems [43] also make them unsuitable. Optical tracking
systems such as the Vicon system [187], which determine the UAV’s position using
markers attached to it, also have the problem that the tracking markers attached to the
UAV are obstructed once it enters the interior of a structure. In addition, these systems
limit the flexibility otherwise gained through the relative positioning approach by
constraining the inspection area to the space covered by the tracking system. Avoiding
external positioning systems limits the choice of sensors for position estimation to
onboard sensors. The following sections provide a general overview of the proposed
system for position estimation using only onboard sensors. Afterward, the concept
for estimating the UAV position using model tracking, along with the required pre-
processing of the sensor data and its fusion with other sensor data, is explained in
detail. Figure 3.9 depicts the general structure of the basic positioning system. The
UAV measures its position using two different sensors. Firstly, it calculates a geometric
position relative to the starting point using the onboard inertial measurement unit (IMU),
consisting of an accelerometer, gyroscope, and compass, together with data obtained
from a downward-facing optical flow sensor. Secondly, the camera image captured by
the UAV is fed into a software that tries to match features of a 3D model of the part to
the camera image and uses this to calculate the orientation of the camera. This type of
optical tracking has recently found use in Augmented Reality frameworks like Vuforia
Engine [226], where 3D models need to be overlaid on a live camera image.

While both types of measurements estimate the UAV’s position, they are not sufficient
to perform navigation tasks on their own. The position calculated by the UAV odometry
is, in large parts, obtained by integrating the acceleration and rotation speed values
obtained from the IMU twice. The numeric integration of these values introduces a
small error that sums up over time [236]. While this effect can be mitigated if the UAV
is equipped with an optical flow sensor and a downward-facing distance sensor like a
LIDAR, the position measurements still drift over time.

The model tracking, on the other hand, not only relies on being able to see the object
to be inspected at all times, the matching of the camera image to the CAD model may

65

3 Concept for Relative Inspection

Drone Odometry

Inspection Point
Calculation

Transformation of
Drone Relative to

Starting Point

Transformation of
Drone Relative to

Construct

Drone Camera
Tracking

PrefilterKalman Filter

Position Estimation

Drone IMU
Measurements

Tempory Goal

Potential Field
Navigation

Sequence of
Inspection Points

Drone

Vector Flight ControlSensor Fusion Object / Method Transferred Data

Figure 3.9. Structure of the proposed visual navigation stack.

also fail on some occasions during flight, which can result in missing position data.
Another way this system can fail is if the algorithm matches the camera image and
model in a wrong orientation or at the wrong position. This often happens for only a
few frames until the model is tracked in the correct position again. These erroneous
position measurements often result in a big difference between the UAV’s target and its
perceived position, resulting in significant position errors in the position controller and,
therefore, extreme correction maneuvers that move the UAV into a seemingly random
position at high speeds. This can result in crashes or collisions with its environment.

The proposed approach, therefore, uses a pre-filter for the model tracking measurements
to filter values that would require the UAV to move faster than it is physically capable
of. Additionally, sensor fusion with a Kalman Filter in conjunction with the pre-filter
is used to create a more robust position estimation using both position measurements
and a prediction of the UAV’s state based on an internal model. This position is then
used alongside the previously calculated Viewpoints as input for the navigation algo-
rithm, which in turn provides control commands to the UAV to make it perform the
inspection.

66

3.3 Relative Positioning

3.3.1 Position Estimation Through Model Tracking and Onboard
Sensors

While the basic working principle of model tracking was covered in detail in Section 2.2.4,
the following paragraphs focus on its use as a position sensor for relative navigation.
Model tracking has been used in literature to perform tasks like determining the pose
from camera to an object in order to perform tasks like grasping [44]. However, its
use for navigation is relatively rare. This might be due to most robot applications
requiring an absolute position either inside a map or in the form of GPS coordinates for
navigation tasks. Knowledge of the robot’s position relative to an object is only useful
if the robot wants to interact with the object or if the object’s position inside the map is
known. Therefore, an absolute position on the map can be derived from a model tracking
measurement of the object. In comparison, the relative navigation proposed in this work
is mainly performed in the reference system of the object that is inspected, making a
model tracking measurement equivalent to an absolute measurement inside the UAV’s
map. This allows for all Points of Interest, Viewpoints, and other important poses to be
defined relative to the inspected object, independent of their absolute positions.
Since the proposed system does not place any special requirements on themodel tracking
that would require it to be modified, a preexisting commercial solution can be used
during implementation. This is why the model tracking itself in this work is treated as
a black box with a video stream and tracking model as an input and a pose estimate
as output. The focus is filtering and integrating the model tracking data as part of
the position estimation system and combining its data with other sensors to obtain an
improved position estimate.

3.3.2 Processing of Model Tracking Measurements

As previously described, using only the UAVs’ onboard IMU is not feasible due to the
drift introduced into the position measurement over time. When limiting the options
to only the onboard sensors of the UAV, using a model tracking algorithm to obtain a
second type of position measurement seems logical. The system needs the CAD model
of the part to be inspected anyway for path planning, and its camera naturally faces
the assembly most of the time for inspection purposes. As long as the tracking is stable,
the model tracking gives a stable position relative to the assembly. Should tracking
problems occur, however, measurements may drop out, or incorrect measurements may
occur.
In order to mitigate these problems, a two-step filtering approach is used to first sanitize
the tracking data and then fuse them with the odometry measurements and combine
them with a predicted UAV position using the internal system model of a Kalman Filter.
In the first step, the model tracking data is pre-filtered based on the physical capabilities
of the UAV. Once a new tracking result enters the system, it is compared to the last good
measurement that was kept in memory. This is done by first calculating the Euclidean
distance d between the last and current position like shown in Equation (3.6).

d =
√
(xcurrent − xold)2 + (ycurrent − yold)2 + (zcurrent − zold)2 (3.6)

67

3 Concept for Relative Inspection

With xcurrent, ycurrent and zcurrent being the relative coordinates of the current model
tracking measurement and xold, yold and zold being the coordinates of the last good
measurement. The system then proceeds with calculating the maximum distance the
UAV could have realistically traveled since the last valid position measurement using
Equation (3.7).

dmax = (vuav-max + vcomp-max) ·∆t · Cn (3.7)

With dmax being the maximum distance that the UAV could theoretically have travelled
when flying at maximum speed with the component moving in the opposite direction
at its maximum speed, vuav-max is the maximum speed of the UAV, vcomp-max is the
maximum speed of the component and ∆t the time that has passed since the last valid
tracking measurement. The maximum component velocity must be considered when
calculating this upper limit for the distance the UAV could have travelled because
components can also be inspected while moving. This could be done while moving from
one manufacturing station to another with a ceiling crane. Performing inspection during
this time when no other work can be done on it is one of the factors contributing to the
improved production output expected from the system. This, however, means that the
maximum theoretical distance the part could have traveled must be considered when
calculating the upper bound dmax. Lastly, the constantCn > 1 adds a margin of error for
the calculations. Its exact value has to be determined empirically, but a value between 1
and 2 seems to be appropriate, with smaller values increasing the chance of discarding
valid measurements and bigger values resulting in more invalid measurements being
accepted as valid.

Finally, Equation (3.8) is used to determine if a measurement is valid by comparing if
the traveled distance d is smaller than the maximum distance that is physically possible
dmax (see Figure 3.9).

valid = d < dmax (3.8)

If this check is successful, the measurements are passed on to the Kalman Filter. As
demonstrated in previous work [248], this results in cleaner input for the Kalman Filter
and, therefore, better position estimates. Due to the nature of the Kalman Filter, it can
continue to operate and provide position estimates even when operating without or
with only some of its sensor values for a while.

Transformation from Camera to UAV
Since the model tracking works using the camera image of the UAV, the model tracking
approach provides the estimated pose between the assembly and the camera. However,
for sensor fusion and position control, the pose of the UAV’s base frame located in the
center of the UAV is needed. On most UAVs, the Camera is mounted at a fixed position
in the lower front of the main body. It is often stabilized in two or three axes of rotation
using a camera gimbal that compensates for the rotational movement of the UAV when
navigating and provides a stable camera image.

68

3.3 Relative Positioning

Therefore, the measurement of the model tracking must be transformed into the base
frame of the UAV. This is done using the transformation matrix from the UAV’s base
frame to the camera Tc

u defined in Equation (3.9).

Tc
u =

Rc
u(ϕ̂

c
u, θ̂

c
u, ψ̂

c
u)

xcuycu
zcu


0 0 0 1

 (3.9)

With:
• Rc

u(ϕ̂
c
u, θ̂

c
u, ψ̂

c
u) being the rotation matrix of the camera frame relative to the UAV

base frame.
• xcu, ycu, zcu being the position of the camera frame relative to the UAV base frame.

While the position of the UAV base frame relative to the camera gimbal frame remains
constant, the rotation matrix must be regularly updated using the current camera gimbal
positions. These angles need to be obtained as sensor readings from the UAV. The
implementation developed in this work locks the yaw axis of the gimbal to a fixed
orientation relative to the UAV, so the camera always faces straight forward. This also
means that the yaw orientation at a particular viewpoint is achieved by rotating the
entire UAV into the desired orientation. The roll axis is set to counteract the UAV roll so
that the horizon of the camera image stays locked. The pitch can be influenced by the
inspection mission. This makes it possible for the UAV to look down or up at Points of
Interest at predefined angles. Since the pitch is defined relative to the global horizon and
the UAV’s pitch varies in relation to that, a measurement of the actual gimbal position
in the yaw axis is needed to calculate the rotation matrix correctly.
After calculating Tc

u, the pose of the UAV in the frame of the assembly is defined by
the transformation from the assembly origin to the UAV’s base frame Tu

a according to
Equation (3.10).

Tu
a = Tu

c ·Tc
a = (Tc

u)
T ·

Rt
a(ϕ̂

t
a, θ̂

t
a, ψ̂

t
a)

x̂taŷta
ẑta


0 0 0 1

 (3.10)

With:
• Rt

a(ϕ̂
t
a, θ̂

t
a, ψ̂

t
a) being the rotation matrix of the estimated Euler angles ϕ̂ta, θ̂ta, ψ̂ta

from the model tracking.
• x̂ta, ŷta, ẑta being the estimated position from the model tracking.

69

3 Concept for Relative Inspection

3.3.3 Related Work on Relative Position Determination

With the concepts for position estimation presented in the previous sections, the follow-
ing paragraphs compare them to the current state of the art in industry and scientific
literature. The focus is on using model tracking and other sensors for determining a
flying robot’s position.

Model Tracking for Determining Robot Positions

In the domain of visual inspection, especially in the aviation industry, two notable
examples for the use of model tracking are the tools DELMIA (formerly known as
DIOTA) [269] and MiRA [100]. While MiRA is a tool developed by an airbus subsidiary
for visual inspection of their aircraft parts, DELMIA is offered as a product by Dassault
Systèmes. Both offer handheld inspection solutions using a camera mounted to a tablet.
The camera image is displayed on the tablet with an augmented model of the inspected
part. The software allows to perform both automated and manual inspection tasks,
storing the inspection results using a connection to the PLM system.

Augmented Reality Frameworks

Regarding Augmented Reality frameworks, notable examples are Vuforia Engine by
PLC [222] and VisionLib [245, 286] by Visometry GmbH. Both offer a framework for
the development of Augmented Reality applications and, as a result, offer their own
implementation of a model tracking system. While VisionLib focuses on model track-
ing, Vuforia Engine also offers marker-based tracking through flat or cylindrical im-
ages [221]. Also, it provides support for objects equipped with multiple markers [227].
In a patent [245], VisionLib also describes a system for detecting the presence and orien-
tation of a part on an assembly which will be discussed in more detail in Section 3.5.3.

Scientific Literature
In scientific literature, model tracking was first introduced in the 1990s with approaches
that calculate the camera’s pose and tracked object using feature extraction matching
between camera and 3D model [144, 278]. Ababsa and Mallem [3] also present a similar
approach for camera pose estimation using point and line tracking on the 3D model.
They also extend their system by using the calculated camera positions as input for
an Extended Kalman Filter [2] to filter the output of the tracking to achieve better
tracking precision. Gall et al. use a different approach to increase accuracy by adding
texture data to the 3D model and extracting and tracking features not only from the
3D geometry but also from the texture of the object [96]. While this is done with a
relatively simple model explicitly manufactured to match the texture of the 3D model,
the widespread availability of photogrammetry applications could make this approach
feasible for arbitrary objects that can be scanned using these. Another approach by
Jurado-Rodríguez et al. [130] combines model tracking with fiducial markers to derive a
system that outperforms conventional approaches based on model tracking. Choi et al.
apply 3D model tracking for grasping tasks using a robot arm [44]. Their approach also

70

3.3 Relative Positioning

supports meshed 3D models. Most other approaches use CAD models since it is easier
to extract relevant data, such as points and edges, from these kinds of models.

Computer Vision for Determining Robot Positions

Due to the availability of cameras on most modern UAVs, many systems that leverage
this type of sensor exist [212]. Weiss et al. [295] propose a computer-vision algorithm for
a stream of images obtained from a downward facing camera on a UAV and process the
output in an Extended Kalman Filter to implement an optical-flow sensor for measuring
movements of the UAV.
Leishman [152] uses a stereoscopic RGB-D camera, a sonar altimeter and an IMU
as input for a visual graph-SLAM algorithm to determine the position of an UAV. A
Multiplicative Extended Kalman Filter (MEKF) is used to filter the calculated position.
Similar approaches exist in literature with Liu et al. [164], Pestana et al. [212], Cazzato
et al. [35] and Hardy et al. [109] using computer-vision based object tracking algorithms
and a nonlinear Kalman Filter.
While these generic approaches work with a wide variety of tracking targets or do not
need the explicit specification of a tracking target, in an inspection scenario, using the
available geometric structure of the inspected object can improve positioning accuracy
and facilitate the position determination of inspection points relative to the UAV. Moolan-
Feroze et al. [192, 193] use vision-based algorithms to determine the relative position
of a UAV inspecting a wind turbine. Their approach uses a pose graph optimizer to
combine the GPS data and position estimates calculated by a novel algorithm processing
the camera images. The vision-based algorithm works by comparing the images of the
UAV’s camera with a 3D-model of the wind turbine. A specially trained Convolutional
Neural Network (CNN) is used to extract the position of the wind turbine’s tower and
turbine blades from the images and match them to the positions on the model. While the
approach works well and was tested in real-world inspection flights, it is questionable,
if the approach can easily be adapted to more complex geometries.
Some approaches track visual markers to determine the position of the UAV relative
to the marker [25, 27, 185]. Lange et al. [149] use a camera mounted on the UAV to
track a visual marker placed on the ground for precise landing. Kalinov et al. [131] use
a combination of 2D-LiDAR sensors, vision-based algorithms and ultrasonic sensors
to determine the position of a UAV relative to a mobile ground robot. The system is
designed for a collaborative robot pair operating in a warehouse environment. Contrary
to most other approaches, the camera is mounted not to the drone but to the ground
robot which is supposed to eliminate errors introduced by pitch and roll of the UAV
while navigating. The UAV is instead equipped with a set of infrared markers indicating
its position. The relative position measurement is used to land the UAV on the ground-
based robot and is able to do so while achieving a positional accuracy of 1.25 cm. Potena
et al. [217] focuses on navigating along optimal trajectories while flying towards an
optical marker. The authors propose an optimization-based visual navigation method
for multirotor UAVs to reach a goal while maintaining line of sight with a target object.
During flight, the onboard camera tracks an AprilTag [204] and continuously adjusts the

71

3 Concept for Relative Inspection

orientation of the vehicle to ensure optimal tracking of the marker. Walter et al. [290]
use a specialized marker emitting a pattern of UV-light on a leading UAV to provide
position estimation for following UAVs in a formation flight. Each follower UAV is
equipped with a camera which detects the marker pattern and uses it to determine
its relative position to the leader. This enables the multi-robot-system to follow the
leader in formation flights. While markers offer an easy way to make visual tracking
approaches more robust, their use in the inspection of large assemblies also require
them to be attached to the inspected part prior to installation adding a step that must be
performed before the inspection can take place. Because their presence is undesirable in
many scenarios, they also might need to be removed after the inspection. Additionally,
to achieve maximum tracking accuracy, they need to be placed precisely on the inspected
object. These factors often make them undesirable for inspection tasks.

Laser Sensors for Determining Robot Positions

Another common type of system for position estimation is the use of laser-based distance
sensors (see: Section 2.4). LiDAR sensors with their ability for simultaneous localization
and mapping (SLAM) are most popular in this field. However, localization relative to
an inspected object usually requires an additional means of determining the objects
position inside the generated map.

In industry, many companies make use of LiDAR sensors as they provide accurate local-
ization combined with obstacle avoidance capabilities with examples being Donecle [59,
63] and Mainblades [174] both offering inspection of large aircraft. However, the drones
used in these scenarios are designed to work either outside or in large hangars where
they have plenty of space to operate. The heavy LiDAR sensor requires the UAVs to be
comparatively large to lift the added weight limiting their ability to navigate through
tight spaces. An exception to this phenomenon is the Elios 3 by Flyability [239] with
dimensions of only 38 cm(height) by 48 cm (width). The UAV is specially built for flight
in areas with a great deal of enclosed spaces with the propellers guarded in fan ducts
and an anti-collision cage surrounding the entire drone. Still, the LiDAR Sensor makes
up 450 g of the total weight of 2350 g causing a reduction of a reduction in flight time
from 12,5min to only 9min.

Tenorio et al. [275] present a system that uses an approach similar to model tracking to
determine the position of a robot inside a room that a 3D camera has previously scanned.
In the preparation phase, the textured 3D model of this room is used to generate 2D
renders from different perspectives that are then matched to the camera’s image at
runtime to determine the position. The drawback of this approach is that a textured
model of the object or environment is needed, and the additional preprocessing needed
to create the renders adds additional complexity to the setup. In scientific literature,
Khalil et al. [139] use a similar system for inspecting the inside of heating, ventilation,
and air conditioning (HVAC) ducts. Like the Elios 3, the custom-built UAV uses a cage-
structure to prevent collisions between the UAV and the surrounding ducts. However,
instead of a quadrotor with ducted propellers, the authors use two motors per arm
pointing in opposite directions to build an octacopter using identically sized propellers.

72

3.3 Relative Positioning

The weight of the drone including an onboard companion computer and thermal camera
is 3 kg and the maximum flight time is stated as 4 minutes. The authors compensate
for this low flight time by implementing an additional means of movement by rolling
the drone along the ground using the spherical cage. Miranda et al. [190] perform their
inspection of exterior screws on an airplane fuselage using a Donecle UAV [59, 63], but
focus on the processing of the acquired inspection data.

3.3.4 Sensor Data Fusion

As previously described, both means of measuring the UAV’s position using onboard
sensors have inherent flaws that make them unsuitable as a stand-alone means for
establishing its position on their own. Therefore, as demonstrated in previous work [248],
a discrete Kalman Filter [132] is used to combine the two measurements to achieve a
better position estimation. The following paragraphs describe how the Kalman Filter, as
described in Section 2.2.6, must be designed to work in the context of relative positioning.
The parameterization of the Kalman Filter for both its prediction and update step is
discussed in the following paragraphs. The concept of sensor fusion in this section only
considers positioning relative to a stationary object. An advanced approach that works
even if the assembly is in motion or different parts of the assembly move relative to
each other is discussed in later sections.

Prediction of the State Estimate

In order to describe the state of the UAV for navigation tasks, its position and velocity in
x, y, and z-direction relative to the assembly are needed, together with the orientation
in the roll, pitch, and yaw axes, and the corresponding rotational velocities. This results
in the state vector x̂ described in Equation (3.11).

x̂ =
(
xua ẋua yua ẏua zua żua ϕua ϕ̇ua θua θ̇ua ψua ψ̇ua

)T (3.11)

With:

• xua , yua and zua being the current x-, y- and z-position.

• ẋua , ẏua and żua being the current x-, y- and z-velocity.

• ϕua , θua and ψua being the orientation on the roll-, pitch- and yaw-axes.

• ϕ̇ua , θ̇ua and ψ̇ua being the rotation speeds around the roll-, pitch- and yaw-axes.

Note that unless stated differently, all positions, velocities, and rotations are described
relative to the base link frame or origin of the assembly Fa.

73

3 Concept for Relative Inspection

The state transition matrix of the filter is structured in a way that the next predicted
position in all axes (linear and angular) is the sum of the old position and the numeric
integration of the velocity estimate, as described in Equation (3.12).

u-k+1 = uk + u̇k ·∆t (3.12)

With:

• u-k+1 being the prediction of the position of an arbitrary axis of the UAV.

• uk being the current state estimate of this axis.

• u̇k being the velocity estimate corresponding to the same axis.

• ∆t being the time difference from step k to k + 1.

Note that the superscript − indicates that this value is a prediction that has not been
corrected with an update by a sensor value. Velocities are not updated in the prediction.
To achieve this behavior, the state transition matrixF shown in Equation (3.13) is needed.

F =



1 ∆t 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 ∆t 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 ∆t 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 ∆t 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ∆t 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 0 0 0 0



(3.13)

Upon start, due to the absence of information about the position and velocity of the
UAV, x̂0 is initialized as 012 ∈ R12. Because this state is most likely not accurate, a high
initial value for the error covariance is used (see: Equation (3.14)).

P0 = 100 · I12 (3.14)

Since P is recalculated after each update with new sensor data, the exact value for the
initial matrix is not necessary as long as it is significantly higher than the covariance
of the sensor data. This is required to ensure that the initial measurement has a high
influence on the first update step to achieve a fast correction of the erroneous data in
x̂0.

74

3.3 Relative Positioning

The control input for the UAV is a linear and angular velocity, resulting in the following
control input vector u and control input matrix B.

u =
(
ẋua ẏua żua ϕ̇ua θ̇ua ψ̇ua

)T (3.15)

B =



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1



(3.16)

This provides a prediction for all velocities of the state vector, which would otherwise
not be updated.

Update of the State Estimate

Every time a sensor measurement of either the IMU or the model tracking is performed,
it is used to update the state estimate of the Kalman Filter. This is done for both the IMU
ẑi|k+1 and model tracking measurement ẑt|k+1 respectively. While the general equation
for calculating the predicted measurement (see: Equation (2.20)) is the same for both
IMU- and model tracking measurements, the values for H differ due to the different
structure of the measurement z for both types of measurements. Therefore, they are
separately discussed in the following paragraph.

75

3 Concept for Relative Inspection

Tracking Measurements
The transformation matrix Tu

a calculated by the model tracking prefilter according to
Equation (3.10) provides the filtered position and orientation of the UAV’s base frame
relative to the assembly based on the model tracking measurement. The individual
positions and orientations can be obtained from the translation vector and rotation
matrix of this transformation and are used to form the measurement vector zt for the
model tracking update.

zt =
(
xta yta zta ϕta θta ψta

)T (3.17)

With:
• xta, yta and zta being the x, y, and z position of the UAV’s base frame in relation to
the assembly extracted from the translation vector of Tu

a .
• ϕta, θta and ψta being the roll, pitch, and yaw orientation of the UAV’s base frame
in relation to the assembly extracted from the rotation matrix of Tu

a .

With the corresponding observation modelHt needed for the state vector defined in
Equation (3.11).

Ht =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 (3.18)

IMU Measurements
The IMU measures linear velocities and the rotation of the UAV in the roll, pitch, and
yaw axes.
With the UAV used in the implementation, the position and orientation are provided
relative to a global reference system, with the UAV’s world origin as a base (in contrast
to most other IMUs that use the UAV base frame). Therefore, they must be transformed
into the reference system of the assembly. For the velocity vua , this is achieved using
Equation (3.19).

Ra
w = (Ru

a)
T ·Ru

w (3.19)

vua =

ẋuaẏua
żua

 = Ra
w · vuw (3.20)

Ru
a = Ra

w ·Ru
w (3.21)

With:
• vua being the linear IMU velocity in the frame of the assembly.
• vuw being the linear IMU velocity in the world frame.

76

3.3 Relative Positioning

• Ra
w being the rotation matrix from world to assembly.

• Ru
a being the rotation matrix from the assembly frame to the UAV. This value is

derived from the filtered model tracking measurement.
• Ru

w being the rotation matrix of the world frame to the UAV. This value is derived
directly from the IMU.

To rotate the orientation measured by the IMU from the world frame to frame of the
assembly, it is represented as a rotation matrixRu

w and rotated to the reference frame
of the assembly using Equations (3.19) and (3.21). The rotational roll, pitch, and yaw
angles required for the Kalman Filter update can then be extracted fromRu

a .ϕiaθia
ψia

 =

atan2(r23, r33)
−asin(r13)

atan2(r12, r11)

 (3.22)

With:
• rij being the scalar value of the rotation matrixRu

a at position i, j.

This leads to the following vector zi for the measurement.

zi =
(
ẋia ẏia żia ϕia θia ψia

)T (3.23)

With:
• ẋia, ẏia and żia being the x, y, and z velocities of the UAVs’s base frame as measured
by the IMU rotated into the reference frame of the assembly.

• ϕia, θia and ψia being the roll, pitch, and yaw orientation of the UAV’s base frame
as measured by the IMU in relation to the assembly.

This also results in a different observation model for the IMU data to associate the
velocity measurements with the corresponding elements of the state vector.

Hi =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 (3.24)

When used in conjunction with Equation (2.20), these observation models can be used
to calculate the predicted measurements for both ẑi|k+1 and ẑt|k+1.
Both kinds of measurements also require the calculation of their respective measurement
noise covariance matrix R in order to determine their quality. Both Ri and Rt are
initialized based on the measured covariance of each sensor at rest. While there are ways
to update the measurement noise covariance throughout the execution of an inspection,

77

3 Concept for Relative Inspection

these values have been found sufficient for achieving a stable position estimate with
the system under consideration. Upon arrival of a new measurement, according to the
procedure described in Section 2.2.6, Equation (2.22) is used to calculate the Kalman Gain.
Afterward, Equation (2.23) is used to correct the prediction of the internal state with the
measurement performed by either the IMU or model tracking. Finally, Equation (2.24)
is used to update the state covariance to represent the corrected state. Note that both
calculating the Kalman gain and updating the prediction is done with the respective
measurement noise covariance matrix R, observation model H and measurement zk+1

of either the IMU- or the model tracking measurement.

While the process was described as strict predict, then update cycle, measurements
arrive at different time intervals, or individual measurements may drop out due to pre-
filtering (see: Section 3.3.2). In reality, prediction is performed in fixed 30Hz cycles, while
sensor value updates are performed whenever new sensor data arrives. As mentioned
in Section 2.2.6, the demonstrated concept for sensor fusion is resistant to missing
measurements and variable update intervals. As a result, the resulting state prediction is
expected to be more precise than the individual sensor measurements on their own.

3.3.5 Position Estimation with Moving or Changing Reference
Systems

While the sensor fusion concept proposed in Section 3.3.4 works for stationary or
very slow-moving subjects, the accuracy of the estimated position decreases with
the movement speed of the assembly. This is caused by the fact that the position
measurement of the model tracking is performed relative to the assembly, while the
onboard IMU measures absolute velocities (relative to the ground). This causes problems
if the assembly that must be inspected moves, i.e., while being transported via a ceiling
crane or on a conveyor belt. The IMU of a stationary UAV reports a velocity of 0 ms ,
while the model tracking interprets an assembly moving away or towards the UAV as a
relative velocity. This leads to discrepancies when combining both measurements with
a Kalman Filter.

To solve this problem, the movement of the assembly relative to the world is used as an
input for the Kalman Filter. To calculate the velocity of an assembly moving on a crane
or conveyor belt, the assembly and its means of transportation are modeled using a
kinematic chain. This allows the calculation of the speed and orientation of the assembly
relative to the world frame, which can be used as an offset for the IMU measurements,
so they are used internally as if they were performed relative to the assembly.

Kinematic Modeling of Assemblies

In automated transportation systems like automatic cranes or assembly lines, the crane’s
position or the conveyor belt’s speed is known. Even conventional machines like cranes
can easily be retrofitted with sensors relatively easily to give feedback on their current
position. A kinematic model of the machine can then be used with its joint positions to
calculate the position and speed of all components of the assembly. This is comparable

78

3.3 Relative Positioning

to the direct kinematics of a robot arm, with the assembly being in the place of the end
effector.
Therefore, the Denavit-Hartenberg convention (see: Section 2.2.2) is used to describe
these kinematic models as a multitude of individual links connected through rotary or
translational joints. These links and joints are connected in alternating order, forming a
kinematic chain.

Kinematic Model of an Assembly Moving on a Crane
To provide feedback about the position and velocity of an assembly hanging from an
overhead crane (see: Figure 3.10), it is modeled as a kinematic chain with the base frame
F0 located on the runway rail and the assembly itself forming the end of the chain
similar to an end effector on a robot system. A linear joint J1 connects the base frame
of the runway rail to the bridge segment with its origin at F1. The bridge is connected
to the trolley’s origin F2 with another linear joint J2. The connection from the trolley
to the hook is defined as a linear joint J3 from F2 to F3. Lastly, the rotary axis of the
hook is modeled through joint J4 from F3 to F4, which is located on the assembly but
not depicted in Figure 3.10.

J2

J1 J3

J4

F0F1 F2

F3

Figure 3.10. Coordinate frames resulting from kinematic modeling of an aircraft fuselage
suspended from a crane. The red arrows correspond to the x-axis, green to the y-axis, and blue
to the z-axis.

79

3 Concept for Relative Inspection

Kinematic Model of a Wind Turbine
A wind turbine can be modeled similarly to the previous example, with the main
difference being that the inspection takes place on multiple links. While the assembly
hanging from the crane may move relative to the world frame, the transformations
between its individual parts stay constant during the inspection. When inspecting a
wind turbine, its rotor may be oriented in an arbitrary position relative to the nacelle,
making the specification of Points of Interest and navigation using a single reference
system difficult. Therefore, Points of Interest are defined relative to the link they are
mounted on, and the UAV switches its reference frame for navigation when moving
to a different link of the assembly. Figure 3.13 shows the resulting frames of a wind
turbine derived from the kinematic modeling technique. The base frame of the tower
F0 is located at the turbine’s foundation. The rotatory joint J1 connects it to F1 inside
the nacelle, allowing the latter to swivel. Joint J2 is (like all other joints in this example)
also rotational. It describes the rotation of the rotor hub on the nacelle and connects
to the frame of the hub F2. The Rotor hub is again connected to each rotor blade (F3,
F4, and F5) through joints J3, J4, and J5. For clarity, only J3 is shown in Figure 3.12.
The necessary DH-parameters αi, ai, di, and θi are either derived from the physical
structure of the wind turbine or provided through actual joint positions measured by a
sensor. The frames do not form a single kinematic chain because the three rotor blades
are connected to the same hub. Therefore, F3, F4, and F5 are defined in relation to F2

with the respective transformations T3
2, T4

2, and T5
2.

F0

J2

J1

F1

Figure 3.11

J3

F1
F2

Figure 3.12

Figure 3.13. Coordinate frames resulting from kinematic modeling of a wind turbine. The red
arrow corresponds to the x-axis, green to the y-axis, and blue to the z-axis.

State Vector and State Transition Matrix

The state vector x̂, state transition matrix F, initial error covariance matrix P0 and
process noiseQ0 as well as the performed calculations of the prediction step are identical
to the original concept.

80

3.3 Relative Positioning

Odometry Measurement Processing

Compared to a fixed assembly, the rotation of the IMU velocity into the frame of the
assembly is more complicated. The IMU’s velocity is defined relative to the world origin
of the UAV, while the position of the assembly must be constantly recalculated based on
the orientation of the base of its kinematic.
Since the kinematic chain’s base frame is not necessarily aligned with the UAV’s world
frame, an additional fixed rotationRb

w is introduced between the world frame w and the
kinematic base frame b. This value accounts for any constant orientation offset. Since
only the IMU velocities and no absolute position measurements need to be transformed,
the linear offset between the world frame and the base frame of the kinematic is not
relevant.

Rb
w = Rb

a · (Ru
a)
T ·Ru

w (3.25)

With:
• Rb

w being the rotation matrix from world to the kinematic base frame.
• Rb

a = (Ra
b)
T being the rotation from the assembly frame to the kinematic base

frame and the inverse of the rotation of the kinematic chain.
• Ru

a being the rotation matrix from the assembly frame to the UAV. This value is
derived from the filtered model tracking measurement.

• Ru
w being the rotation matrix from the world frame to the UAV. This value is

derived directly from the IMU.

It is assumed that the base of the kinematic frame is fixed in relation to the IMU’s world
frame. Therefore,Rb

w is constant and only calculated once as soon as model tracking,
IMU, and kinematic data are available.
To express the IMU rotation and velocity in the assembly frame, the data must be first
rotated into the fixed base frame of the kinematic (using Rb

w) and then to the frame
of the assembly itself. However, Ra

b is based on the joint states of the kinematic and
must be determined on each sensor measurement update by calculating the kinematic
transformation using Equation (2.17) and extracting the rotation matrix. The rotation
between the IMU velocity and orientation of the IMU can be rotated into the assembly
frame using Equations (3.26) and (3.27).

vua = Ra
b ·Rb

w · vuw (3.26)
Ru
a = Ra

b ·Rb
w ·Ru

w (3.27)

With:
• vua being the linear IMU velocity in the frame of the assembly.
• vuw being the linear IMU velocity in the world frame.

81

3 Concept for Relative Inspection

To compensate for the velocity of the assembly, it has to be subtracted from vua .

v̂ua =

ẋcuaẏcua
żcua

 = vua − vaa (3.28)

With:
• ẋcua , ẏcua , żcua being the velocity vector of the IMU corrected by the component
speed vector.

• v̂ua being the corrected velocity vector.
• vaa being the velocity of the assembly relative to the assembly frame.

Therefore, the velocity of the assembly itself is needed. It can be calculated through
numeric differentiation of the assembly position relative to its base frame according to
Equation (3.29) and is subsequently rotated into the assembly frame using Equation (3.30)
to be compatible with Equation (3.28).

vab =

 x(k)ab
y(k)ab
z(k)ab

−

 x(k − 1)ab
y(k − 1)ab
z(k − 1)ab

 1

∆t
(3.29)

With:
• vab being the assembly velocity in the frame of the kinematic chain’s base link.
• x(k)ab , y(k)ab , z(k)ab being the joint position at time step k.
• x(k− 1)ab , y(k− 1)ab , z(k− 1)ab being the joint position at the previous time step
k − 1.

• k being an update step of the IMU data in the Kalman Filter.
• ∆t being the time interval between k and (k-1).

vaa = Ra
b · vab (3.30)

The measurement vector zi for IMU measurements contains the individual elements of
the velocities and the roll, pitch and yaw angles (extracted from Ru

a) of the UAV and is
defined in Equation (3.31).

zi =
[
ẋcua ẏcua żcua ϕia θia ψia

]T (3.31)

The observation model Hi remains unchanged and Equations (2.20) to (2.24) can be
used to update the state and state covariance of the Kalman Filter.
Note that with this implementation, the velocity of the assembly is calculated directly
from the kinematic model. Depending on the available sensors for measuring the joint
state of the assembly, the structure of the kinematic and the dynamics of the movement,
it might be necessary to add the state of the assembly (vab , the position pab and the roll,

82

3.3 Relative Positioning

pitch and yaw angles derived from Ra
b) to the state vector of the Kalman Filter, update

the state transition matrix accordingly and add update steps for the sensors providing
these data to get a filtered state estimate for these values. However, since the assembly’s
movement during an assembly is most likely not highly dynamic, this approach was
not included in the concept.

Model Tracking Measurement Update

The updates performed with the model tracking measurements are performed similarly
to the previous sensor update steps. The reference frame of the positions is already
correct, as the model tracking must switch the tracked model to the currently inspected
link.
The observation model zt remains unchanged. Subsequently, the Kalman Gain Kt is
calculated, and the state vector x̂ as well as the state covariance matrix P are updated
using Equations (2.20) to (2.24).

Control Input Vector

Similar to the measurements of the IMU, the control inputs of the UAV have to be
compensated for the assembly velocity before being used in the prediction step. While
the navigation algorithms already rotate the control input vector into the correct refer-
ence frame, the offset velocity of the assembly still must be subtracted, similar to the
compensation of the IMU-velocity described in Equation (3.28).

Individual Filters per Kinematic Link

Usually, the position estimate provided by a sensor fusion algorithm is defined relative
to a single reference frame. However, in certain scenarios, an inspection might occur
on an assembly with multiple parts that can move relative to each other (like the
inspection of a wind turbine). When modeling the entire assembly as a kinematic chain,
relative inspection allows the specification of inspection points relative to the link it
is located on, which removes the necessity to bring the joints of the assembly into a
position that matches the state of the CAD model (e.g. bringing the wind turbine into a
parking position). This also allows inspections on multiple links of an assembly that
move in relation to each other, using the kinematic model to calculate the required
transformations and velocities for the link, the currently inspected Point of Interest is
attached to (the currently active link). This also requires tracking this link with the
model tracking algorithm, as only this link is guaranteed to be in the camera frame
during the inspection of this Point of Interest.
Therefore, to provide a position estimation while navigating across multiple moving
links of an assembly, a Kalman Filter is implemented for each link, as described in the
previous section. Figure 3.14 shows the architecture of the proposed system. Model
tracking data from the images captured by the onboard camera is pre-filtered according
to Section 3.3.2 and, together with the IMU data, provided to N + 1 instances of the
previously described Kalman Filter, with N being the number of joints in the kinematic

83

3 Concept for Relative Inspection

model. The N + 1th filter provides a position estimate in the global reference frame.
Since tracking updates (Tu

n) can only be provided for the currently active link n, a
substitute for the tracking measurement is calculated for all other links. This is done by
multiplying theTu

n to the kinematic transform from link n andmTn
m and subsequently

extracting the translation vector and roll, pitch and yaw angles. This ensures that
all filters receive tracking updates, even if they are not currently tracked. While the
extra transformations through the kinematic chain might slightly reduce the quality of
the substitution measurements, they still provide a better result than using only IMU
measurements when the link is not actively tracked. This helps to prevent big jumps in
the position estimate, when the link is tracked again (see: navigation system in tunnel
example in Section 2.2.6). Lastly, the IMU updates also need to be rotated to the frame
of the current link using Rm

w = Rw
b ·Rb

w instead ofRa
w.

The output of all filters is fed into a multiplexer (MUX) that forwards the position
estimate that selects the correct value for the reference system the UAV is currently
navigating in and provides it to the navigation algorithm, which in turn controls the
UAV.

DIOTA Tracking

UAV-Odometry

Prefilter

Inspection
Camera

Assembly
Kinematics

MUX

Potential Field
Navigation

UAVKalman Filter
(World)

Kalman Filter
(Moving Part 1)

Kalman Filter
(Moving Part 2)

Figure 3.14. Architecture of the advanced fusion model with multiple filters.

When the UAV finishes its inspection on an arbitrary link lold of the assembly and
moves to a different link lnew, upon switching to a new goal (which is defined in the
reference frame of lnew), the MUX also switches its output to the filter that provides the
position estimate relative to jnew. This allows the system to perform even more complex
inspection tasks, such as inspecting multiple sections of a wind turbine in operation.
This approach allows for specifying all Points of Interest, Viewareas, and Viewpoints in
the reference frame of the link they are rigidly connected to.

84

3.3 Relative Positioning

3.3.6 Related Work on Sensor Fusion for Position Estimation

Fusion of multiple sensor data values to obtain a state estimate of the UAV is a common
problem for UAV control for which a variety of solutions are used in both industry and
scientific literature. The company Luftronix, which specializes in automated inspections
and scanning using UAVs in industries like communication, aviation, oil and gas holds
a patent for the fusion of optical flow, inertial, vision and depth-sensor data for the
purpose of autonomous flight in complex environments [211]. Their approach combines
optical flow data as well as optical and thermal images from the UAV augmented with
depth data from distance sensors. The camera images are analyzed for points of greatest
contrast, which are tracked over time. The distance to these points of contrast is then
measured using either laser- or sound waves (most likely using a LiDAR Sensor). The
patent describes that the distance to these points is used to adjust the UAV’s path to
avoid collisions but does not go into detail on how a position is determined using these
measurements.

In scientific literature, Marković et al. [179] present a system for UAV localization in
indoor environments, where GPS signals are not available, and magnetometer mea-
surements cannot be used due to metal structures in proximity distorting the earth’s
magnetic field. Their approach uses an Error State Extended Kalman Filter (ES-EKF) to
fuse sensor signals of a LiDAR sensor, visual odometry data generated by a stereoscopic
camera and an ultra-wideband (UWB) localization system. The LiDAR sensor uses a
SLAM algorithm [111] to determine the UAV’s position. The UWB works similar to a
Global Navigation Satellite System (GNSS) like GPS but on a smaller scale by trilateration
of radio signals transmitted between the tracked object and a number of base stations.
The developed system was validated in a laboratory tests and was able to compensate for
drift in the LiDAR-based SLAM localization and combine the strengths of the individual
sensors.

Karaked et al. [134] use a similar approach to combine LiDAR SLAM and Visual SLAM
provided by a stereoscopic camera to estimate the position of an UAV with an Extended
Kalman Filter. Their general idea is to combine the strengths of both used sensor types
and eliminate their weaknesses. Stereoscopic cameras need sufficient light to function
while LiDAR sensors often fail in geometrically extremely complex or repetitive regions
(like a long hallway). The authors use an Extended Kalman Filter provided by the
ROS robot_localization-package [82] to estimate a 2D position as well as the yaw-
orientation of the UAV. They validate their approach with different test scenarios in
which one of the used sensors is not able to provide an accurate position measurement.
The state estimate of the filter is able to provide a correct position measurement even
if one of the used sensors is producing invalid measurements achieving a positional
accuracy of 0.06m to 0.56m.

Santana et al. [242] estimate the position of a UAV using a Kalman Filter which fuses
inertial and landmark-based visual position data. The state vector of the filter contains
the position and velocity of the UAV in x, y, z and ψ and the state transition matrix is
structured analogously to Equation (3.13). Sensor data is also rotated into the correct
reference frame using a technique similar to the one presented in this work. While

85

3 Concept for Relative Inspection

acknowledging that an Extended Kalman Filter is the most commonly used approach for
estimating a UAV position in this case, they state that they were able to calculate good
predictions for the system state using a normal Kalman Filter. The system was evaluated
together with the also proposed position controller by flying different trajectories.
During the flights, the landmark for visual positioning was not visible in parts of the
trajectory, which means that only the inertial sensor data and state prediction was used
in these sections. The unfortunately no direct evaluation of the positioning accuracy
was performed, but in test flights, the UAV was able to follow the specified trajectory
with a root-mean-square error of 0.04m to 0.08m per axis with the authors stating
that the error can be traced back to insufficient parameterization of the control system
suggesting that the accuracy of the position estimation might be higher than these
numbers.
Zolotukhin et al. [304] use an Extended Kalman Filter for flying trajectories using a
Parrot AR.Drone UAV equipped with a camera. The filtering algorithm combines the
sensor data of the onboard IMU and camera-based odometry. The Extended Kalman
Filter was used due to nonlinearities between the UAV orientation and acceleration
measurements by the IMU. The authors also demonstrated a proof of concept of their
approach and were able to fly trajectories with a positional error of 0.1m to 0.2m using
the developed system. A similar system using two cameras and an IMU was developed
by Liu et al. [164]. Shen et al. [261] propose a system for vision based flight with a UAV
using two cameras and an IMU. The approach works by processing both camera images
as a stereoscopic image on an on-board computer to estimate an orientation and position.
These values are then used together with the IMU data in an Unscented Kalman Filter
to estimate the final position. Unique to this approach is the use of different updates
of both cameras due to the low processing power of the onboard-computer. While the
primary camera image is processed at a rate of 20Hz, the stereoscopic depth information
is only processed at a rate of 1Hz on each update of the secondary camera. The created
system was able to fly multiple trajectories with speeds of up to 4 ms and pitch angles of
up to 20°.
When working with more complex systems, a single filter might not be enough for suf-
ficient state estimation. In literature, Multiple Model Adaptive Estimation (MMAE) [65]
or Interacting Multiple Model (IMM) [11] algorithms are often used in these cases. In
both methods, multiple filtering algorithms (like a Kalman Filter) create a state estimate
and the extent to which of the models is influencing the final estimate is based on how
well the individual filter’s prediction matches the actual measurement.
While the majority of work presented in this section uses either Extended Kalman
Filters (EKFs) for sensor fusion, it is necessary to mention why this work (as well as
the work by Santana et al. [242]) are able to use the simpler Kalman Filter for this task.
While a regular Kalman Filter is used for linear systems, an EKF is (to a certain extent)
able to work with nonlinear systems by linearizing the system around the operating
point [66, 263]. The two main nonlinearities involved in position estimation of a UAV
arise from the need to rotate or transform sensor values obtained in the wrong reference
frame and the nonlinear relationship between the angle of the UAV and its acceleration
as well as the processing of orientation information based on raw IMU sensor values.

86

3.3 Relative Positioning

The approach presented in this work handles the conversion of the rotation and trans-
formation of sensor measurements into the correct frame before they are being used in
the update step of the filter. While also practical because the middleware used in the
implementation provides functionality to do this, this approach also does not require
changes to the filter parameterization itself if sensors are changed or relocated allowing
for higher reusability.
The nonlinear relationship between UAV orientation and acceleration is not relevant
to the system proposed in this approach, as the IMU of the used drones provides a
preprocessed orientation and velocity measurement (presumably calculated using an
EKF), which provide sufficient data for a measurement update. When working with
a less sophisticated IMU a manual linearization around a fixed operating point might
be sufficient for the low pitch and roll angles involved in a relatively slow inspection
trajectory.

87

3 Concept for Relative Inspection

3.4 Relative Navigation Along Assemblies

This section discusses the navigation strategies developed to navigate relative to a
structure. In contrast to most conventional approaches, the Viewpoints used as Way-
points are defined relative to the assembly and do not use absolute coordinates. This
allows for inspecting a component independent of its absolute position or reusing an
inspection path for multiple identical objects. Therefore, an assembly does not need
to be positioned at an exact predefined point in a production facility, which allows for
flexibility on when the inspection is performed (i.e., in a manufacturing station, on a
storage site, or while hanging from a crane). Also, when performing the inspection of a
wind farm like described in Section 1.2.2, only a single inspection path is needed when
performing inspections for an arbitrary number of identical wind turbines. This allows
more time to be spent on computing an efficient inspection path because the path only
needs to be calculated once.

In the context of this work, navigation describes the process of flying the UAV from its
current position a to an arbitrary point b. These points can be Viewpoints, start- and
landing points, or support points introduced into the path to facilitate navigation. During
the cause of an inspection, the UAV navigates to each Viewpoint in the order calculated
by the algorithm described in Section 3.2.2. While performing the navigation, the UAV
must avoid collisions with obstacles of any kind. Therefore, a system was developed for
detecting obstacles and retaining their position over time (see: Section 3.4.3). Also, due
to limitations on flight time, the navigation algorithm for the UAV must minimize the
time necessary to reach a waypoint but not at the cost of spending an excessive amount
of energy for fast acceleration and breaking maneuvers. An additional requirement
unique to an inspection scenario is the consideration of the camera orientation. In order
to perform a successful inspection, the camera has to be pointed at the current Point
of Interest at all times to offer inspection tools that have the best chance of detecting
faults at the Point of Interest.

This section describes the two navigation algorithms that were developed and tested with
the system. First, the adaptation of a more traditional approach for obstacle-avoiding
navigation using the potential field algorithm is presented. Subsequently, a navigation
strategy using Anytime Dynamic A*, a more recent search algorithm, and the potential
benefits of this solution over the potential field algorithm are discussed.

3.4.1 Potential Field Navigation

The first navigation strategy that was adapted to the inspection system is the potential
field navigation [145]. When adapted to the inspection use case, it uses an attractive
potential to pull the UAV towards its goal while pushing it away from all obstacles using
a repellant potential. While the general idea has been already published in previous
work [248], this section covers the topic in more detail. The navigation process can be
imagined as the UAV following the gradient in the potential field created by the goal and
all obstacles. A more detailed explanation of its function was provided in Section 2.3.
This section focuses more on adapting the algorithm for three-dimensional flight using

88

3.4 Relative Navigation Along Assemblies

a UAV in a dynamic environment with both moving and stationary obstacles that are
mostly not known in advance.

One significant drawback of the potential field method is the possibility of the drone
getting stuck in a local minimum of the potential field. In certain situations, the UAV
can navigate to a point where the resulting force of all potentials acting on it is zero
and the UAV gets stuck. In these cases, additional strategies need to be implemented to
navigate out of the local minimum.

A property that can cause problems when the algorithm is applied to UAVs is the quick
change in resulting forces applied to the UAV when multiple obstacles are close by. This
can result in unexpected behavior in the form of quick acceleration movements that can
cause overcorrection in the lower level attitude and rate controllers, which can result
in crashes. A simple example of this phenomenon is if the UAV tries to fly through a
hole towards a goal. In this example, the hole is just about big enough for the UAV to
be pulled through by the attractive potential of the goal. First, the repelling forces of
the hole-shaped obstacle almost cancel out the attractive force of the goal, resulting
in the UAV flying very slowly into the hole. Once it reaches the center of the hole,
the direction of the forces applied by the hole quickly aligns with the attractive force,
now amplifying it instead of almost canceling it out. This results in the UAV almost
being catapulted out of the hole, which can lead to an unstable flight or a crash. The
approach presented here implements a measure that prevents these extreme speeds
when navigating close to obstacles. This is covered in more detail later in this section.
The approach discussed in this work extends the functionality of the original potential
field algorithm by adding a third dimension. Compared to the ground-based robot used
as an example in the original algorithm, UAVs navigate in 3D space, which made this
change necessary.

Analogous to the original potential field navigation, the force applied to the UAV is
calculated as the sum of the attractive force of the target and all repelling forces of
all obstacles. Therefore, attractive force Vector Ft of the target is calculated using
Equation (3.32).

Ft = Fct ·

xt−xu
dt

yt−yu
dt

zt−zu
dt

 (3.32)

With:

• dt being the distance between UAV and target.

• Fct being the attractive force constant.

• xt, yt, and zt being the x-, y- and z-coordinates of the target.

• xu, yu, and zu being the x-, y- and z-coordinates of the UAV.

Compared to the original equation, the vector was extended by the z-dimension.

89

3 Concept for Relative Inspection

Calculation of Repellant Forces

Due to the transition from 2D to 3D space, the number of obstacles that need to be
considered to calculate repelling forces is way higher. In practice, this can cause sig-
nificant increases in execution times for the algorithm, leading to control signals not
being available in time. To mitigate this problem, only obstacles within a radius of 3m
around the UAV are used. This is an acceptable compromise because the potential of
obstacles that are farther away is so small that it does not significantly influence the
resulting force vector. In contrast to the original two-dimensional, grid-based approach,
an OctoMap represents the obstacles in 3D space. To further improve calculation speed
and simplify the concept, the original certainty value that describes the probability of a
cell inside the grid being an obstacle is replaced with a binary (obstacle / free) state for
each voxel.

The overall repellant force Vector Fr is calculated using Equation (3.33).

Fr =
1

nobs
·
nobs∑
i=0

Fcr
di

·


xi−xu
di

yi−yu
di

zi−zu
di

 (3.33)

With:

• di being the distance between UAV and obstacle i.

• i being the obstacle.

• Fcr being the repulsive force constant.

• nobs being the number of obstacles.

• xi, yi, and zi being the x-, y- and z-coordinates of the obstacles.

• xu, yu, and zu being the x-, y- and z-coordinates of the UAV.

Compared to the original approach, 1
nobs

norms the resulting force vector, so the resulting
force does not increase with a large amount of obstacles nearby. Also, the certainty
value is not included as it is always 1, and the constant for the width of the robot is
hidden inside Fcr.

In the case that no obstacles are present inside the observed radius (nobs = 0), Fr is 0
to avoid division by 0. The resulting force R can be calculated using Equation (3.34).

R = Fr + Ft (3.34)

90

3.4 Relative Navigation Along Assemblies

This force is then converted into a control velocity for the UAV. This is done by first
determining the absolute (as in: without directional information) velocity using Equa-
tion (3.35).

vu = min(dmin · vadv, vmax) (3.35)

With:
• vu being the velocity of the UAV.
• dmin being the distance to the closest obstacle.
• vadv being a constant factor for obtaining the advised velocity based on the distance
to an obstacle.

• vmax being the maximum possible velocity of the UAV.

The velocity is then converted into a vector that can be passed as a control input for the
UAV using Equation (3.36).

vu =
1

∥R∥
·R · vu (3.36)

With vu being the velocity vector of the UAV.
This results in the speed of the UAV becoming slower the closer it gets to an obstacle.
Only the direction of the calculated potential is used to navigate the UAV into the right
direction. This is contrary to the behavior of the original potential field method, in
which closer distances to obstacles result in larger repelling potentials and, thus, larger
velocities. This is done as a safety precaution to prevent unexpected sudden movement
of the UAV when navigating in an environment with many close-by obstacles.

Orientation of UAV and Gimbal

In addition to calculating a linear velocity vector, the UAV also expects a rotational
velocity for its yaw-axis and a pitch angle for its gimbal. The yaw angle of the gimbal
is set to 0°relative to the UAV, so the camera always faces in the direction of the UAV
while the UAV actively controls the gimbal roll angle to keep the cameras’ horizon level.
For controlling the yaw-orientation of the UAV, a limited P-Controller that outputs a
yaw-rate is used. The calculation of the yaw rate set point ψ̇sp that is sent to the UAV is
done using Equation (3.37).

ψ̇sp = max(min(eψ ∗ Pψ̇, ψ̇max),−ψ̇max) (3.37)

With:
• eψ being the yaw position error ψsp− ψu mod 360.
• Pψ̇ being the proportional gain of the controller.

• ψ̇max being the maximum absolute yaw rate for limiting the output.

91

3 Concept for Relative Inspection

The gimbal’s pitch is set to the relative angle from the gimbal position to the Point of
Interest. Since the UAVs used for implementing the system control gimbal positions
internally, it is directly sent to the UAV as a setpoint.

Fallback Strategy when Encountering Local Minima
As mentioned before, one significant drawback of the potential field algorithm is the
possibility of the robot getting stuck inside a local minimum. To work around this
problem, a way of detecting this scenario is needed in conjunction with a strategy for
navigating out of the local minimum. The detection of the local minimum is done by
observing the linear velocity of the UAV over a longer period of time. In practice, this
is done by continuously calculating the sliding average over the change in position of
the UAV. If the average position change over the last 20 time steps has been less than
0.001m, the UAV is believed to be stuck in a local minimum. With an update rate of
10Hz, this corresponds to a time of 2 seconds with an average UAV speed of less than
1 cms . To avoid the detection of false positives, the speed is only monitored when the
UAV is navigating (i.e., has not arrived at the Viewpoint yet).

A random walk is performed as a simple strategy to navigate out of the local minimum
once it is detected. This temporarily replaces the target for the potential field navigation
with an arbitrary point within a radius of 7m around the UAV. The UAV then navigates
towards this point for a fixed duration before the target is restored to the original
waypoint. The basic idea is that by then, the UAV has altered its position enough not to
re-encounter the same local minimum. If it does anyway, the process is repeated until it
finally reaches its goal.

3.4.2 Anytime Dynamic A*

The potential field navigation’s susceptibility to getting stuck in local minima, in conjunc-
tion with the crude solution using a random walk strategy, motivated the exploration of
the Anytime Dynamic A* algorithm as a possible alternative. While the basic working
principle of the Anytime Dynamic A* algorithm has been discussed in Section 2.3.1,
the following paragraphs cover the modification of the algorithm to the problem of
planning an efficient path from one Viewpoint to another.

The general idea of the approach is to quickly provide an initial path calculation to the
UAV, which continuously gets updated through replanning when new environment
updates in the form of obstacle sensor measurements arrive.

92

3.4 Relative Navigation Along Assemblies

Sampling of points for the graph
For representing the environment, the graph nodes are distributed in a uniform grid
with equidistant spacing. This simplifies calculations, storage, and the search itself
while also increasing performance in various places. The resolution r specifying the
voxels per meter of each axis allows calculating the total number of voxels contained in
an environment using Equation (3.38).

N = l · w · h · r3 (3.38)

With:
• N being the total number of voxels.
• l, w and h being the dimensions of the area in meters.

With a value for r of only two and the dimensions of the available flight area for
laboratory testing of 8m x 16m x 6m this equates to 6144 voxels and therefore nodes in
the graph. Due to the increasing runtime with the number of nodes and edges, nodes
are only connected with their six direct neighbors instead of the 26 possible when
considering all possible diagonal connections.
Possible UAV positions are represented in the form of a voxel grid instead of using a
graph. This enables their storage in dictionaries, which ensures an access time within
O(1). Dictionaries also allow for storing their corresponding data only as needed,
drastically reducing memory consumption. The function f : R3 → Z3 mapping a
position p to a grid index v is described in Equation (3.39).

f(p) =

⌊r · px⌋
⌊r · py⌋
⌊r · pz⌋

 (3.39)

In addition, the function i : Z3 → R3 is defined to convert a grid index v to the
coordinates of the center of the corresponding voxel.

i(v) =
v

r
+

1

2r
=

vx
r
vy
r
vz
r

+
1

2r
(3.40)

Edges of each node are also represented as a dictionary to ensure an access time within
O(1).

Heuristics and Cost Function
The Euclidean distance is used as the heuristic function to estimate the remaining
distance to the goal. Since the implementation uses six neighbors for each voxel, the
edge cost between neighbors that are not marked as an obstacle is identical for all nodes.
Therefore, the only information that must be stored as the edge cost is whether the edge
can be used for a path. The edge cost representation in a dictionary allows only storing
an infinite cost value for blocked edges, with all unpopulated values assumed to have

93

3 Concept for Relative Inspection

a cost of 1. The cost function cost(s, s′) for traveling to neighboring nodes s and s′ is
universally defined by Equation (3.41).

cost(s, s′) =

{
1 if there is no obstacle between s and s’
∞ otherwise

(3.41)

Replanning After Environment Updates
After each obstacle sensor measurement, the detected obstacle measurements are trans-
formed from the local coordinate frame of the UAV to the global coordinate frame
used for the calculations used in the AD* algorithm. The corresponding position in
the voxel grid for each obstacle measurement is then calculated using f(p) defined in
Equation (3.39). The affected node is then marked as invalid and its edge costs to all
neighbors set to ∞. Additionally, all edge costs of its neighbors to the affected node
are also set to ∞, and the nodes are added to the open queue so that replanning can
occur. As described in Section 3.4.3, the obstacle representation is stored in an OctoMap
data structure, which clears occupied voxels once the UAV’s sensors detect no more
obstacles in a particular area. To account for this, a similar replanning strategy is used
here: occupancy values are deleted from affected edges, invalid markers are removed,
and affected nodes are added back into the open list.

Generating a Velocity Command for the UAV
To maintain compatibility with the potential field navigation, the algorithm must output
the velocity vector vua for the UAV to follow. This vector is first calculated in the global
frame as vuw using Equation (3.42).

vuw

{
∥pnext − pu∥ · vmax iff(pu) ̸= f(pnext)

pnext − pu otherwise
(3.42)

With:

• N being the total number of voxels.

• l, w and h being the dimensions of the area in meters.

• vmax being the maximum speed of the UAV.

94

3.4 Relative Navigation Along Assemblies

This results in the UAV flying towards the direction of the goal with maximum speed if
it is still located inside a neighboring voxel and gradually reducing speed when arriving
inside the target voxel. To be usable in navigation, the velocity vector vuw is rotated
from the global coordinate system using Equation (3.43) to the coordinate system of the
assembly.

vua = Ra
w · vuw (3.43)

With:
• vua being the velocity measurements in the reference frame of the assembly.
• Ra

w being the rotation matrix from assembly to the global frame.

This ensures compatibility with the potential field navigation, which also outputs its
velocity in the coordinate frame of the assembly. The hardware interface layer for the
specific UAV performs the transformation of this vector to either the global world frame
or the local coordinate frame of the UAV depending on which is required using the
respective rotation matrices.
The yaw orientation of the drone and camera gimbal orientation is calculated as described
in Section 3.4.1 to ensure that the camera is always facing towards the Point of Interest.

3.4.3 Collision Avoidance with Limited Sensors

When inspecting an industrial or production environment, a UAV encounters a highly
dynamic and unknown environment. The constant work done on the facility makes it
impossible to model all obstacles the UAV could encounter in advance. For example, a
worker’s tool cart can easily pose as an obstacle if it is left inside the planned path of
the UAV. The position of this tool cart may change several times over the course of a
day as the worker it belongs to works on different areas inside the facility. This makes
it impossible to consider as an obstacle during the planning phase. The same applies to
the same extent to the workers themselves, who constantly move around the facility,
and a collision with them should be avoided at all cost.
A second factor specific to relative inspection is that when using the full potential
of the relative positioning, the assembly that must be inspected can be positioned
freely inside the production facility. This makes considering any obstacles that are
not fixed to the assembly (like, for example, a stand) impossible at the planning phase.
Therefore, the inspection UAV must be equipped with an effective way to detect and
avoid obstacles in its surroundings. The focus of this work is on performing inspections
with small consumer UAVs inside of structures like airplane fuselages. Their smaller
size comes at the cost of lower quality obstacle sensors. While larger UAVs can easily be
equipped with 360° LIDAR scanners that offer high-resolution distance measurements
to the closest obstacles, smaller UAVs are fitted with lower quality sensors like sonar
rangefinders [208] that have a much larger detection radius and make localizing an
obstacle harder. These sensors often also lack the range a proper LIDAR scanner could
provide, making obstacles only visible to the UAV at a closer distance. In addition,
the API provided by these UAVs might further process and abstract the raw sensor

95

3 Concept for Relative Inspection

data to provide a more user-friendly way to use the data. The API of the DJI Mavic 2
UAV [253] for example only provides processed sensor measurements in the form of
distance measurements of each four sectors in the front and back and a distance to
the closest obstacle on both sides. Access to the raw values of the individual obstacle
sensors is not possible. This highly abstracted, low-resolution data poses a challenge
for detecting and avoiding obstacles. An additional challenge is that obstacles detected
at one point of the inspection might not be present throughout the entire duration
of the inspection flight. An example of this would be a tool cart that is moved by a
worker while the UAV is performing an inspection. While the cart might be in the way
of the UAVs’ path to the assembly, making it necessary to plan its trajectory around
the obstacle, a worker might notice this and move the cart. This means that the UAV
could take the direct path back. Solely marking an area as occupied by an obstacle once
and, from then on, moving around this area results in a suboptimal trajectory in this
case. An even more extreme example would be a worker crossing in front of the UAV.
This would cause obstacle detections in front of the UAV that would cover a vast area if
just stored and never checked again, resulting in an unnecessarily long trajectory while
avoiding an obstacle that is not there anymore. Therefore, the following sections cover
the concepts developed for storing and updating obstacles to avoid such problems and
give an overview of comparable solutions in literature.

World Representation in OctoMaps

To increase the effectiveness of the obstacle avoidance system, it is beneficial to not only
consider obstacles currently detected by the UAV but also keep a history of previously
detected obstacles in memory. Hence, An OctoMap (see: Section 2.4) was chosen to
store the position of all areas that the UAV believes to be obstructed. It achieves this by
representing the presence or absence of an obstacle assigning each voxel a corresponding
value. The following paragraphs explain how obstacles that are known before the
inspection can be preloaded into this map to improve navigation performance, as well as
how the information inside the map can be updated with live sensor measurements.

Using information about Assembly and Surroundings
One way to significantly improve the knowledge about obstacles right from the start of
the inspection is to preload information about the assembly and the environment into
the OctoMap before takeoff. By doing this, potential dead ends caused by these objects
are known in advance and can be used for trajectory planning directly from the start.
Otherwise, the UAV would have to explore each dead end first to receive measurements
that a particular path cannot continue beyond the dead end. The insertion of preoccupied
spaces can be done by converting the CAD- or meshed model used for model tracking
into a voxel representation. When doing the conversion, the main parameter is the
resulting voxel size. This parameter is set to the same value as in the OctoMap. This
voxel representation can then be inserted into the OctoMap at the beginning of the
inspection and serve as additional help for trajectory planning. Using this procedure,
the model and other obstacles, such as supporting structures or the entire production
facility, can be preloaded as obstacles.

96

3.4 Relative Navigation Along Assemblies

Updating the OctoMap with Sensor Data
During flight, the obstacle sensor measurements of the UAV constantly update the
OctoMap. Each new sensor measurement causes voxels to be added to the map. The
inaccuracies and wide area of measurement of the obstacle avoidance sensors make
direct insertion of an obstacle measurement at the point of detection not particularly
effective. Instead, a more complex strategy is needed that is also specific to the concrete
type of sensor and UAV. The strategies developed for the UAVs used in this work are
covered in detail in Section 4.2.2. The general idea of these strategies is to find a solution
for dealing with the problem that a detected obstacle could be anywhere inside the
detection area. For sensors with particularly large sectors, the solution is to insert only
one voxel at the center of the sector at the detected distance. When using potential field
navigation, a single obstacle at that point is enough to keep the UAV clear of the area.
With AD*, the voxel size for the planning graph has to be set sufficiently large to ensure
that the UAV does not try to use the space that is not marked as occupied but is still
within the detection range of the sensor as this might cause a collision.

Dynamic obstacles pose a different challenge to the system. If obstacles are only inserted
into the OctoMap and never removed, a worker crossing the UAVs’ path from its left to
right would cause many obstacle detections. This would result in a wall of obstacles
inside the map requiring the UAV to fly above it even when it is unnecessary. Therefore, a
means of removing voxels that are no longer relevant is needed. This can be implemented
by removing all existing voxels located between the UAV and the current obstacle
distance measurements of the UAV. This is because if an obstacle is detected in an
arbitrary sector of the UAVs’ obstacle sensor, it is safe to assume that no other obstacle
with a closer distance can exist in this sector because, otherwise, it would be detected
and reported as the closest obstacle. To detect voxels that can be removed, ray casts [237]
are performed from the UAV’s position through the area sector of the obstacle Sensor.
The rays that collide with a voxel at a distance closer to the UAV than the current
measurement are removed. The wide sectors of detection from cheaper UAVs are
advantageous here as the wider sectors clear out large areas with this strategy.

However, special care must be taken when the assembly has to be inspected while
moving. There are two possible ways to store the obstacle data in the OctoMap. Voxel
positions can either be defined in the reference frame of the assembly or relative to
a global reference frame positioned at a fixed point of the factory. When choosing
the assembly as a reference frame, in case of a moving assembly, all voxels caused by
the environment (either measured or preloaded) lose their validity because they move
relative to the assembly. On the other hand, when representing the voxel data in a
global reference frame, their absolute position stays constant. This requires defining
a global frame that can be set arbitrarily and mainly serves to align the world and
assembly voxels. Also, the transformation from assembly to the world frame must
always be known to calculate the transformation from UAV to assembly (via its relative
positioning approach) and from there to the world frame to insert measured obstacle
data at the correct position in the world frame. When representing the voxel data in
a global frame, assuming the transformation from UAV to world via the assembly is
correct, the obstacle data of the stationary surroundings stays valid when the assembly

97

3 Concept for Relative Inspection

is in motion. However, the assembly’s obstacle data is invalidated when the assembly
is moved. This can be counteracted relatively easily by removing the voxels that were
previously occupied by the assembly and reinserting the voxels at the new position of
the assembly in the world frame. Therefore, this architecture was chosen for the final
implementation.

Using the World Representation for Navigation

To use the detected obstacles for navigation, a two-stage obstacle avoidance system
is proposed. The general idea of this system is the combination of an obstacle avoid-
ing navigation strategy combined with an emergency collision avoidance system that
interferes if the obstacle avoiding navigation fails. Figure 3.15 shows the general Archi-

OctoMap

Obstacle
Avoiding
Navigation

Obstacle Sensor Data

Current UAV Position
Drone

Emergency
Collision
Avoidance

Known Obstacles

Target Position
Mission
Control

Obstacle Positions

UAV Control Command

UAV Control Command

Figure 3.15. Overview of the obstacle avoidance system architecture.

tecture of the system. Obstacle positions are provided to the OctoMap in the form of
previously known obstacles and sensor data provided by the UAV. The obstacle positions
accumulated by the OctoMap are passed to the obstacle avoiding navigation, which
uses the current UAV position alongside a target position provided from the mission
controller. The navigation system then generates a control command as a target velocity
vector for the UAV, which is sent to the emergency collision avoidance system. This
system also accesses the obstacle positions provided by the OctoMap and monitors the
position of the UAV. During regular operation, the emergency collision avoidance system
forwards the control command to the UAV. In case the obstacle-avoiding navigation
system fails and tries to maneuver the UAV too close to an obstacle, the emergency
collision avoidance system overrides the control command velocity vector to 0, which
causes the UAV to stop.

3.4.4 Related Work and State of the Art

According to Yasin et al. [297], four different types algorithms for collision avoidance
systems exist:

98

3.4 Relative Navigation Along Assemblies

• Geometric Algorithms use relative positions and relative velocities between
the vehicle and other vehicles / obstacles to calculate whether a collision is about
to happen. Based on this information, the flight path is altered in a way that
prevents the collision. An example would be the use of collision cones [36, 68, 69].
Watanabe et al. [294] use an onboard camera and a Kalman Filter to detect and
track obstacles close to the UAV. The collision cone, a set of relative velocities
between two moving objects that will lead to a collision is then calculated and if
the actual velocity lies within this cone, it is altered in a way to move outside the
cone.

• Optimization Based Algorithms try to calculate an optimal or near-optimal
path for the UAV without colliding with other UAVs and obstacles. Due to their
computational complexity, the paths are usually precalculated and replanning
is often not possible or requires a replanning of the entire path, which makes
them only suitable for environments without dynamic obstacles. An exception to
this is the AD* algorithm described in this work as it is able to dynamically and
efficiently replan only parts of the planned path that are affected by the obstacle.

• Sense and Avoid Algorithms are used to quickly react using a computation-
ally simple solution to avoid an obstacle. To achieve quick reaction time, these
approaches only work based on the provided local sensor data and do not use the
global planning for the calculation of the UAV’s movement. This quick reaction
time comes at the cost of the possibility of a globally suboptimal path and the
susceptibility to local minima.

• Force Field Algorithms are based on virtual forces that attract or repel the UAV.
Usually, obstacles exert a repulsive force on the vehicle while the goal attracts the
UAV. The movement direction and velocity of the UAV is derived by the direction
and length of the sum of all forces.

Since sense and avoid algorithms are more focused on reacting quickly to obstacles and
tend to neglect following an ideal trajectory for this purpose, they are mainly used in
highly dynamic environments where the trajectory calculation is simple.
UAV-based inspections of structures as proposed in this work are performed at relatively
low speeds and do not require especially quick reaction times. However, the complex
structure of the assemblies themselves and the production facilities in which they are
inspected require navigation algorithms that focus on efficient trajectories to perform
the inspection successfully and within the limited battery life of the UAV.
Therefore, the following sections will mainly focus on the state of the art of force field
algorithms as well as Graph Search and RRT-based obstacle avoiding algorithms since
they are used most widely for this application.

RRT-Based Algorithms
Algorithms based on a rapidly-exploring random tree (RRT) [150] use a probabilistic
approach that continuously extends a tree from a specific goal until the starting point
is reached by one of the leaves. The planning is often performed once before the
trajectory is executed, which prevents the UAV from reacting to dynamic obstacles. To

99

3 Concept for Relative Inspection

circumvent this, the trajectory can be replanned every time an obstacle occurs, which
can be computationally expensive, preventing the use of the algorithm in highly dynamic
environments like a manufacturing facility. Ramon-Soria et al. [230] use RRT* [135] in
their solution for inspecting infrastructures using UAVs to plan trajectories between
individual Viewpoints. The drone navigates relative to a 3D map of the environment
that must be provided to the planning algorithm. How such a map may be created
is not mentioned but based on the images included in the paper, the map might be a
three-dimensional point cloud scan obtained by a manual mapping flight of a similar
drone.

Bircher et al. [24] also uses a Viewpoint-based navigation algorithm for coverage in-
spections of structures performed by UAVs. Their approach first checks if obstacles exist
between two consecutive Viewpoints. If no obstacles are present, the UAV directly flies
to the next Viewpoint in a straight line. If the direct path is obstructed by obstacles, an
obstacle-free path is planned using the RRT*-algorithm.

Graph-Based Search Algorithms
Graph-based search algorithms can be used to find an optimal or near-optimal path
between two points in a graph. To be used in 3D-navigation, discrete geometric points
are sampled and used as nodes to create the graph (see: Section 2.3.1). A path from the
goal to the node representing the current position of the UAV can then be searched using
algorithms like A* [110], D* Lite [143] or Anytime Dynamic A* (AD*, see: Section 2.3.1).
Similar to RRT-based algorithms, graph search algorithms require recalculation of the
path when new obstacles are detected, which can be too computationally complex for
real-time obstacle avoidance.

Hrabar [119] applies the D* Lite algorithm obstacle-avoiding navigation with UAVs.
Their approach uses a stereoscopic camera to detect obstacles in front of the UAV.
They demonstrate their concept by performing several flights through an environment
containing obstacles. While the authors state that their stereoscopic obstacle detection
is too unreliable for real-world use and needs further work, the navigation using the
D* lite algorithm works as expected. However, in testing performed as part of this
dissertation, the D* Lite algorithm’s replanning performance was found inadequate for
highly dynamic manufacturing environments without detailed prior knowledge about
the environment. Likhachev et al. [158] try to mitigate this problem with Anytime
Dynamic A* by only replanning nodes of the graph affected by the obstacle. As this
approach appears promising, an Anytime Dynamic A*-based navigation algorithm was
implemented in this work. Its performance is compared to the Artificial Potential Field
method in Section 5.2.5.

Chen et al. [42] use a two-step approach to improve reaction times to dynamic obstacles
when using the A* algorithm. Initially, a global path is planned using a map of the
environment and the A* algorithm. The UAV navigates along the path until it encounters
an unknown obstacle. The trajectory is then altered by generating multiple cubic
splines allowing to navigate around the obstacle. Using a set of cost functions, the ideal
spline is chosen and then used as trajectory until the UAV can return to the original

100

3.4 Relative Navigation Along Assemblies

trajectory. The calculation and selection of these alternative trajectories takes about
1.5 s on an Intel®Core™i5-3470 CPU, limiting the UAV speed with which the algorithm
can successfully prevent collisions. Also, the algorithm was only implemented for
2D-environments further limiting its function. The simple local avoidance strategy
also might not work well in environments, where most of the obstacles are not known
in advance like the inspection of large structures, where the model of the structure is
known but no information about the surrounding manufacturing facility is available.

Force Field Algorithms
Force Field-based methods use virtual forces or potentials to steer the drone towards the
goal. In these approaches, the goal is positively charged, while the UAV and all obstacles
receive a virtual, negative charge. This results in the drone being attracted by the goal
and repelled from all obstacles. Budiyanto et al. [30] use the potential field algorithm, a
force-field-based approach. Multiple experiments performed in simulation demonstrated
the ability to navigate a UAV through various environments. The situations ranged from
simple, static environments to ones that were more complex and using moving obstacles.
The study was limited to simulations using the Parrot AR Drone 2.0 quadcopter model
and did not involve real-world testing. Also, the local minimum problem was not
addressed in the study. Chang et al. [37] use this approach to control multiple UAVs in
formation flight.

Choi et al. [45] propose a solution for the local minimum problem using an enhanced
curl-free vector field approach. It works by generating force fields that rotate around
an obstacle, thus reducing the chance of local minima occurring. However, it is not
clear, how this method would prevent a drone from getting stuck in a local minimum
caused by a U-shaped obstacle, since the potential field is only curl-free for each obstacle.
Summing up the individual potential fields for obstacles and goal may still result in a
local minimum. Chen et al. [41] try to work around the local minimum problem by
strategically generating a series of guide points and using them to navigate around local
minima. Keyu et al. [138] propose a new potential field function using fuzzy logic and a
relative velocity repulsion potential field for dynamic obstacles.

Zacharia et al. [299] present a control and navigation approach for multiple UAVs for
covering the surface of an object of interest. They use an earth-fixed coordinate frame
for navigation. The authors create a linearized model of the UAV dynamics and calculate
the acceleration setpoint of the UAV as a control input. The control input is derived by
minimizing a cost function while taking constraints like UAV dynamics, remaining in
the inspection region and avoiding collisions with other UAVs. The control mechanism
of each UAV relies on local sensor measurements and information shared by other UAVs.
Inspection points are derived by outward projection of points on the target surface. To
avoid collisions between the inspected object and the UAV, a repulsive force is calculated
based on all surface points of the object. To counteract this force and allow the UAVs to
perform inspections close to the object, an attractive force function with a Gaussian
distribution centered around the inspection point is used to pull UAVs towards the target
points. A PD-controller is used to generate a control input moving the object towards

101

3 Concept for Relative Inspection

the center of a Voronoi region [288, 289] occupied by the UAV. This results in the UAVs
flying individual trajectories along the object covering its surface.
The Heat Equation Driven Area Coverage (HEDAC) algorithm developed by Ivić et
al. [124, 125] is intended for coverage inspections of structures using multiple UAVs (see
Section 2.3.2 for an in-depth explanation). Repelling potentials by the inspected objects
and other UAVs ensure collision-free trajectories while the gradient of a pre-calculated
and continuously updated target density field (representing the areas that need to be
visited by the UAVs) determines the direction of the inspection trajectory. The sum of
these vectors is used as control input for each UAV. While the algorithm works great
for calculating effective inspection-trajectories before a flight, it is to computationally
complex to be used for dynamic obstacle avoidance.
Kitamura et al. [142] use a potential field-based approach for navigating a robot to a target
point. An octree data structure is used to represent obstacles. The approach focuses on
simplicity and is designed to be efficient with a focus on parallel computation.
Woods and La [296] perform dynamic target tracking with a drone to follow a human
target. The proposed system uses a potential field controller working with relative
positions and velocities to track dynamic targets and avoid obstacles in real-time. A
similar approach is used by Jayaweera et al. [127] to follow moving ground targets
using a UAV. They present the Dynamic Artificial Potential Field (D-APF) planning
system specially developed for relative navigation and following moving targets using
UAVs. The approach outperforms several Artificial Potential Field algorithms in their
evaluation testing for displacement for the ground moving target and when navigating
through obstacles that are spaced closely together.
In other target tracking applications, simple local rules, position controllers or po-
tential field methods are often used to follow [152, 212], navigate to [49, 217] or fly
trajectories relative to [40, 290] the target. Force-Field-based navigation strategies
and especially algorithms using the potential field method are still widely used and
researched [181], [268], [156], [146], [197], [64], [296], underlining their relevance for
obstacle avoiding navigation.

102

3.5 Using UAVs for Inspection

3.5 Using UAVs for Inspection
Companies that offer UAV-based inspection services most of the time use either off the
shelf, professional camera UAVs [4, 174] or develop specialized hardware themselves [63,
168, 239] to carry the sensors required for the inspection. Due to this fact, these UAVs
are equipped with state-of-the-art obstacle sensors, and they are able to carry custom
sensors for specific inspection types. However, this also makes the UAVs large and
expensive, preventing their use in narrow spaces like inside a tubular fuselage section.
A notable exception to this is the relatively recent Elios 3 UAV [239, 240] by Flyability.
It features a small and lightweight LiDAR sensor that can be used for navigation and
mapping using SLAM [19], as well as obstacle avoidance while still being small enough
to navigate inside enclosed spaces. This is further facilitated by ducted propellers and a
lightweight cage around the UAV that minimizes damage to the surroundings in case of
a collision. However, the manufacturer lists a flight time of 9.1 minutes when using the
LiDAR Payload, which might not be sufficient to perform longer inspections. Also, the
high price of an individual UAV may require complex workarounds like mobile ground
platforms that transport the UAV over long distances in a facility to the place where it
is required [154, 210]. Using smaller, inexpensive consumer UAVs can navigate around
these problems. Their low price allows for the purchase of multiple units eliminating the
need to move a UAV around a facility. The smaller size also enables them to navigate into
tighter spaces. However, they come with different limitations like worse obstacle sensor
quality, fewer options for customization and remote control via API is only available
for some UAVs. Also, the type of sensor available for inspections is limited to a gimbal
stabilized optical or in rare cases thermal cameras [251] limiting the types of inspection
that can be performed. While most concepts presented in this work can also be applied
to more advanced UAVs, the following paragraphs will focus on what inspection tasks
can be performed by consumer UAVs in particular.
To demonstrate, how a simple presence detection that determines, whether a particular
part was installed or not could be implemented, the following paragraph describes
a concept for a simple presence detection system using only a monoscopic camera
image and the CAD model as a reference. In a systematic literature review by Yasuda et
al. [298], regarding UAV-based inspection systems the authors conclude that the numer-
ous inspection procedures require an inspection system to be built in a modularized
form. Also, the availability of off-the-shelf inspection solutions for handheld tablets
or ground based robots equipped with cameras [70, 207, 245] makes interfacing them
with a UAV-based system relevant developing own solutions less relevant. Therefore, a
concept for interfacing existing, manual inspection solutions with the proposed UAV-
based system is also presented. Lastly, a detailed overview of the current state of the
art of these existing inspection solution is given to demonstrate the possibilities of the
proposed interface.

103

3 Concept for Relative Inspection

3.5.1 Visual Presence Detection

The field of automatic visual inspection of assemblies during production is very diverse
due to the plethora of different types of inspections that need to be performed. While
simple presence detection of a part may suffice in some cases, often, more complex
tasks such as checking for the correct orientation within high precision or detecting if a
part has been bent on installation are needed. Also, inspection scenarios can be highly
specific like detecting if a Washer has been installed under a screw or if a cable has
been routed adequately through a bracket. Some require incredible precision, with an
example being the detection of rivet protrusion on a fuselage part to within a fraction of
a mm. As demonstrated in the preceding sections, a variety of different inspection tools
already exist on the market to cover most of these applications. This is why developing a
universal inspection solution for all types of problems would be beyond the scope of this
work. Most of the existing inspection tools rely on manual camera placement or perform
the inspection using ground-based robots. Therefore, the focus was on developing
concepts for positioning the UAV and its camera at the correct position to perform an
inspection. Streaming the camera feed to a powerful inspection tool previously capable
of performing manual inspections seemed a more reasonable solution. Therefore, the
primary focus of the inspection part of this work was on providing an interface for
existing manual inspection tools to interact with the system and decide whether the
part the UAV is currently looking at is deemed correctly installed.
Nevertheless, a visual presence detection system that can perform an entire inspection
flight without relying on external inspection software is proposed in the following
paragraphs. This approach uses the availability of the assembly’s CAD data under
inspection. Upon arriving at a Viewpoint, a high-definition image of the Point of
Interest is captured (see: Figure 3.16) and transmitted to the main computer running the
inspection together with the UAV’s estimated camera pose relative to the assembly. The
pose is then used to render an image of the part that is currently inspected from the
same perspective and compare it to the image captured by the UAV (see: Figure 3.20).

Figure 3.16. Image captured by the UAV dur-
ing inspection.

Figure 3.17. Render of the reference model
from the same position.

104

3.5 Using UAVs for Inspection

Figure 3.18. Warped render overlaid on original image.

Figure 3.19. Preprocessed camera image. Figure 3.20. Cropped Render of the Point of
Interest from the same position.

105

3 Concept for Relative Inspection

The presence detection algorithm works by using the rendered part as a template for
a template matching algorithm, which tries to match the object in the render to the
camera image.
The proposed process consists of the following steps:

• Rendering an image of the assembly and the Point of Interest from the perspective
of the inspection camera.

• Warping the perspective of the reference renders, so they closely match the
captured image.

• Using a template matching algorithm to search for the image of the rendered
Point of Interest in the warped image.

Reference renders
The warping and template matching step requires a rendered image of the model of
the entire assembly and the inspected Point of Interest, respectively. These are created
from the perspective of the inspection image. The perspective is defined by the camera
location and orientation, which is captured in the reference frame of the assembly during
inspection. Examples of these renders are shown in Figures 3.17 and 3.20.
When creating the renders of the CAD file, it is necessary to match the camera and
lighting parameters for the scene as closely as possible. For example, when the actual
inspection is performed inside an industrial production facility with rows of fluorescent
tubes mounted high up in the ceiling, the scene used to render the reference image
should have a similar lighting setup. Also, conditions that produce harsh shadows should
be prevented during both the real-world inspection and the render scene. Installing a
headlight on the UAV and raising the ambient light level in the render scene can also
reduce the amount of unwanted shadows. The focal length and aperture of the render
camera must match the camera on the UAV. Closing the aperture down as far as possible
without creating excessive noise in the image is recommended to ensure that all relevant
sections of the Point of Interest are in focus.

Data Preprocessing
Some preprocessing is required for both images to maximize the performance of the
template matching algorithm. The image captured by the UAV contains distortion
induced by the camera lens. It is described by a set of distortion parameters that also
allow for calculating a distortion-free image, which is needed for better comparison.
These parameters are also constant and can be determined with a simple calibration
process. Because even minor differences in camera position or orientation between
render and captured image can produce problems with the template recognition, the
renders are compared to the image and warped, so they match the image as closely as
possible.
The software SuperGlue [172] by MagicLeap is used for this task. It uses a Graph Neural
Network in conjunction with an Optimal Matching layer to extract a set of sparse image
features from two images and match them. This process is used with the captured image

106

3.5 Using UAVs for Inspection

and the reference of the entire assembly to compute a transformation between the two
images. To ensure ideal matching of the center area of the image, where the Point of
Interest is most likely to be located, the matching process only uses features from the
center of the image. The resulting transformation can then be applied to the render of
the assembly and the Point of Interest, so they closely match the image. Figure 3.18
shows an overlay of the warped render over the original image and demonstrates how
this process aligns the center region of both images.
In preparation for the template matching step, the warped render of the inspected Point
of Interest is converted into a grayscale image and cropped, so unnecessary space is
removed, and the part is located in the center of the image (see: Figure 3.20). The camera
image is also cropped, so only the center section remains, eliminating unnecessary
search space for the template matching. In this particular example with an extremely
wide camera lens, a border with the size of 20 % of the image width and height is
removed. The image is also converted to grayscale. Figure 3.19 shows an example of the
preprocessed image.

Figure 3.21. Annotated image highlighting the detected Point of Interest.

107

3 Concept for Relative Inspection

Template Matching
The render of the part can then be used as a template for a template-matching algo-
rithm, which tries to locate the specified template in the preprocessed camera image.
The detected results often contain overlapping matches that need to be removed to
avoid duplicate detections. To perform this step, the intersection over union (IoU, see:
Szeliski [271]), the ratio of the intersected area of both matches over the area of their
union, is used as a metric. For each match, the IoU for all other matches is calculated. If
the IoU exceeds a prespecified threshold, the match with the smaller confidence value
is removed. This process eliminates clusters of matches around the Point of Interest
and only keeps the best match. The matches are also filtered for a minimum confidence
threshold and matches below this threshold are discarded. The outlines of the remaining
matches are drawn to the image along with their confidence value for later analysis
by an inspector (see: Figure 3.21). If at least one match above the certainty threshold
remains, the inspected part is marked as detected. If no matches are found, the part is
either not present, obstructed, or mounted in the wrong orientation. Depending on the
specific inspection scenario, the UAV might use alternative Viewpoints to repeat the
process from a different perspective before proceeding to the next Point of Interest.

3.5.2 Interface for Connecting External Inspection Solutions

Due to the aforementioned reasons, implementing an inspection method that covers
every possible type of visual inspection is impossible. The availability of sophisticated
existing inspection tools for manual inspection or automated inspection using ground
robots [100], [269], [112], [300] makes adapting them to work with a UAV-based system
highly attractive. In order to facilitate this task, an interface for exactly this purpose is
provided by the system proposed in this work. The structure of this interface can be
viewed in Figure 3.22. To integrate an existing tool into the system, a small wrapper

<<Interface>>
InspectionAction

+ inspect(poi: PointOfInterest)
+ getProgress(): float
+ cancelInspection()

Figure 3.22. Interface for integrating external inspection tools.

program is required to implement this interface and forward necessary information
about the Point of Interest to the inspection tool. Since the required information varies
from a single camera image, camera positions, a live video stream and other data
depending on the tool that is to be adapted, the interface only specifies the information
about the inspected Point of Interest as a parameter. Additional required information
can be obtained as needed from the system using the message based communication

108

3.5 Using UAVs for Inspection

system and provided services that are presented in Chapter 4. The inspection interface
also provides a means to start the inspection using the inspect function. The inspection
progress can be obtained via the getProgress method. It is also required to provide a
means to cancel an inspection using cancelInspection in case for example a timeout
occurs or the inspection is interrupted either manually or by a depleted drone battery.
Section 4.2.5 describes the architecture for integrating an inspection system using this
interface in more detail.

3.5.3 Related Work and State of the Art

Both industry and scientific literature present a plethora of automated inspection tech-
niques using sensors that are available on cheap consumer UAVs (i.e. visible light and
optical cameras, thermal cameras, stereoscopic cameras...). The following sections will
therefore give an overview of the current state of the art of inspection types that can
be performed using these kinds of sensors that therefore could be adapted to work
with the proposed system. First, an overview of the available inspection techniques is
given. After that, selected works that cover visual and thermographic inspection using
mostly a coverage approach to inspect the entire surface of a part are covered in more
detail. Lastly, visual approaches for checking conformity of a part during inspection are
presented.
Moreno-Jacobo et al. [194] describe Thermography, Photogrammetry and Laser Scan-
ning as the three main applications in drone-based infrastructure inspection. In Ther-
mography, the surface temperature of the inspected objects is captured and analyzed.
Photogrammetry specializes on reconstructing a textured 3D model of an object based
on a series of images. Laser Scanning directly measures the 3D geometry of an object in
form of a point cloud but lacks the texture information provided by a photogrammetric
scan. However, the authors focus their work on infrastructure inspection. Malandrakis
et al. [177] list visual inspections, borescope, liquid penetrant, eddy current, ultrasonic,
acoustic emission, magnetic particle and radiography as possible non-destructive test-
ing methods in the production of aircraft parts. Bardis et al. [21] focus on in-service
inspection of aircraft and list vision, x-ray, ultrasonic, magnetic particle, penetrant,
eddy current acoustic emission, infrared thermography and 3D scanning using LiDAR
sensors as possible inspection techniques in this field. Yasuda et al. [298] also emphasize
the necessity for a modular system that is able to integrate with other systems. Some
inspection solutions presented are highly specialized for a specific application, which
makes it impossible to develop a universal inspection solution. Still, the majority of
scientific literature focuses on vision-based and thermographic inspection techniques.
Due to their popularity in the field and their ability to be performed using a standard
UAV, the following sections will focus on these types of inspections.

109

3 Concept for Relative Inspection

Vision Based Inspections

Since the original manual inspection of aircraft is performed mostly visually by an
inspector, these types of inspections are most common for in-service inspections of
aircraft and during their production process. Over 80 % of non-destructive inspections on
large-scale aircraft is done vision-based [208]. In the aviation industry, Airbus developed
several systems for autonomous image capture and photogrammetric capture of aircraft
while in service [7, 8]. The company Donecle [50] offers a similar system for in-service
aircraft and large components in manufacturing but also provides dent-detection using a
specialized dentCHECK sensor. Zeiss developed a specialized scanning sensor [136, 300]
that allows scanning of an entire assembly and its precise reconstruction as a 3D model.
Additionally, the associated software is able to compare this 3D model to the geometry of
the assembly’s CAD file and detect discrepancies between the two. Autaza [16, 55, 207]
specialize on vision based inspections and their execution either manually or using
ground based robots or UAVs. They heavily use artificial intelligence for vision-based
inspections. One of their inspection algorithms [55] works by projecting a line pattern
on the inspected surface and detecting dents using distortions in the captured projection.
This allows to detect dents and other surface irregularities.
In scientific literature, Papa and Ponte [208] present a system to automatically detect
hail and lightning damage for in-service inspection of aircraft. The RC EYE One Xtreme
drone used in their tests is equipped with a 6-megapixel Raspberry Pi camera module
V2. The system processes the captured images on the onboard Raspberry Pi computer
and sends the inspection results to a ground control station for review by an inspector.
The authors verified their concept with a prototype that successfully detected dents and
lightning strikes on sample metal shields in a laboratory environment. Malandrakis et
al. [176, 177] and Tzitzilonis et al. [277] present a system to automate the process of
testing aluminum fuselage parts in production using dye penetrant testing. This check
is done prior to anodising the aluminum part to detect corrosion and cracks in the part.
The process works by applying a penetrant liquid on the entire part which is pulled
into cracks and defects by capillary forces [277]. After the penetrant is washed off the
part, developing powder is applied that draws liquid left in the defects to the surface.
Any liquid residue left on the part after this process can be highlighted under UV-light
and is indicative of a defect. The authors automate the capture of these residues using a
commercially available Bebop 2 Power drone with a UV-flashlight mounted on top. The
drone features a digitally stabilized wide-angle camera and captures a set of overlapping
images of the surface of an aircraft wing by generating a set of waypoints in a line
pattern on both sides of the wing. The defects in the images are automatically detected
using two different algorithms. The first algorithm scans for fluorescent areas in every
frame of the captured video. If a fluorescent section is detected, a Structural Similarity
Index Measure (SSIM) [292] is used to compare the image to a set of baseline images.
If the similarity score is high enough (>85%), the frame is classified as containing a
defect. With scores of a certainty between 64 % and 84 %, a histogram comparison on the
same set of baseline images decides whether the image contains a defect. The second
algorithm uses a Random Forest classifier algorithm that was trained and tested on the
texture and color information of the captured reference images. The authors state that

110

3.5 Using UAVs for Inspection

the first algorithm was able correctly identify all defects in their test dataset and the
second algorithm achieved an accuracy of 97 % on the validation data. Plastropoulos et
al. [215] and Avdelidis et al. [17] cooperated with the Airline TUI to detect defects on in-
service aircraft using deep learning. Avdelidis et al. [17] retrained multiple convolution
neural networks (CNN). The best performing networks were selected, further optimized
and a final optimal model was chosen. During evaluation, the networks are able to
classify damages like dents, paint damage and scratches. The Authors use a dataset of
1059 images and achieves an accuracy 81.82 % for the classifier deciding on whether
an image contains a defect and 100 % accuracy on the classification of the defect itself.
Plastropoulos et al. [215] worked with a dataset of 6816 images and were able to achieve
a precision of 71 % with an Area Under the Curve (AUC) of 0.69 for dent detection using
the EfficientDet D1 network.

Miranda et al. [190] present an approach to inspect screws on the exterior of aircraft.
The authors use computer vision and a Convolutional Neural Network to detect and
extract aircraft exterior screws from images captured by a UAV. The Convolutional
Neural Network is used to identify zones of interest (ZOI) and extract screws from the
images. Classic matching algorithms were used to compare the detected screws to a
prior model, improving screw recognition accuracy and identifying missing screws.
Hrúz et al. [120] use a DJI Mavic 2 equipped with a visible light and thermal camera
to detect defects on in-service aircraft. They use an approach of segmentation, feature
extraction and classification to detect dents and similar defects in the captured images
of both cameras.

Thermographic Inspection

Thermographic inspection techniques have become increasingly relevant in the pro-
duction and in-service inspection of modern-day aircraft [56]. Their ability to detect
subsurface defects in composite materials in combination with the increased use of
these materials in modern passenger airplanes like the Airbus A380 and the Boeing 787
Dreamliner increased the relevance of thermographic inspection [56]. In production, air
inclusions, debonding and other manufacturing errors can result in faulty carbon fiber
parts. The defects are often undetectable through visual inspections as the problematic
areas are located inside the composite structure. While in service, composite parts on
aircraft can be damaged through impacts of foreign objects which can cause various
defects like matrix cracking, fiber/matrix debonding, surface microbuckling, delamina-
tion, and fiber breakage [231]. These defects are often invisible from the surface, but
can be detected through thermographic inspection. Usually the material is thermally
excited through optical or electromagnetic radiation, ultrasonic waves, or by applying an
electric current to conductive materials. The resulting propagation of heat through the
material is then analyzed with the help of a thermal camera to detect subsurface defects
in the material, which show up as areas with uneven thermal propagation. The company
Autaza [16] holds a patent [207] for projecting line pattern in the infrared sectrum on
a material and capturing the reflection using a thermal camera. The distortions in the
pattern can be used to detect dents and other defects.

111

3 Concept for Relative Inspection

Checks for Correct Assembly

While automated checks for correct assembly of components is still rare in aircraft
manufacturing, other similar sectors like the automotive industry have adopted the
technology. The software FARO Visual Inspect [73] offers a system that allows Aug-
mented Reality overlays of CAD models over real-world products to help an inspection
with the visualization of errors. However, no automatic detection of errors is performed.
Other systems like the software by Neurocheck [99] and VMT [101] are able to perform
assembly inspections by training computer vision systems with a set of reference images
for the specific inspection task [245]. Visometry offers the software visionlib [245, 286]
that includes systems for detecting correct assembly of components. The software
offers presence detection [287] which works by tracking both the assembly and the
inspected part simultaneously and comparing their relative position to the prespecified
reference [245].
The preceding paragraphs demonstrate that a large variety of distinct inspection meth-
ods are required during the manufacture of large assemblies and structures. Most of
these can be performed using either visual light or thermal cameras available on con-
sumer UAVs. However, UAV-based inspection solutions implemented in industry and
scientific literature focus on implementing a system that performs one specific type
of inspection throughout the presented literature. The approaches to path planning
and position estimation are similar and are mostly based on either a coverage or Point
of Interest-based inspection path planning. A modular and expandable system for in-
spection path planning as described in this work allows for a focus on developing the
inspection-specific sections of the algorithms and avoids reimplementation of common
path-planning, positioning and navigation algorithms. Also, this work allows for the
integration of conventional inspection techniques and tools for their use with UAVs.

112

3.6 Photogrammetric Documentation of Assemblies

3.6 Photogrammetric Documentation of Assemblies
As discussed in Section 2.3.2, some applications require covering the entire surface
of the assembly. An example would be the photogrammetric documentation of an
aircraft fuselage part before it leaves a manufacturing plant to be assembled further at a
different facility. To be able to attribute potential damages that happen to the assembly
to either the local plant, the transport, or the plant next in line, photogrammetric
documentation of the assembly before entering or leaving a plant can be helpful. In
photogrammetry, multiple 2D images of an object are combined to form a textured 3D
model of the documented object. This model, combined with the raw images it was
created from, is ideal for documenting the state of an entire assembly at a certain time.
The following paragraphs will first discuss using the HEDAC algorithm to generate
trajectories for full surface coverage and the required modifications to perform these
with relative positioning. Furthermore, an exemplary photogrammetry pipeline that
allows for creating textured 3D models from the captured images is presented.

3.6.1 Full Surface Coverage

The following paragraphs cover two concepts developed for the photogrammetry cap-
ture of an assembly using the HEDAC algorithm. Both fundamentally use the same
trajectory planning algorithm and the software AliceVision Meshroom [104] to generate
photogrammetric models from the captured images. The first proposed concept defines
an open loop planner that executes the steps of trajectory planning, image capture, and
photogrammetric reconstruction strictly sequentially and passes the finished output of
one step as input to the next. The closed loop planner uses feedback from the model
quality to influence the trajectory planning in a way that encourages the UAV to navigate
to areas of the image with the worst coverage so far.

Open Loop Coverage

HEDAC
Planner

Inspection
Flight

Photogrammetry
Framework

Inspection
Path

Captured
Images

Meshed
CAD Model

Figure 3.23. Architecture of the proposed open loop photogrammetry system.

The open loop coverage strategy consists of three main parts, which are depicted
in Figure 3.23. The HEDAC Algorithm is responsible for planning a trajectory that
evenly covers the entire surface of the assembly. The general idea of offline trajectory
planning is to calculate linear target velocities using the concept proposed by Ivić et
al. [124, 125]. This is done by continuously combining the initial- and coverage potential
fields created by the inspection UAVs. While the algorithm can generally calculate
trajectories for multiple UAVs working in parallel, the following concept will focus on
an inspection flight with only one UAV. The CAD model of the assembly, which serves
as the foundation for the coverage algorithm, is converted to a mesh before being passed

113

3 Concept for Relative Inspection

to the system. Since the execution time of the algorithm increases with the number
of polygons in the mesh, it can be beneficial to reduce the number of polygons and,
therefore, the degree of accuracy. A less detailed mesh can significantly improve the
algorithm performance and still yield good reconstruction results [178]. The required
environment mesh representing all space the UAV can navigate is created by binary
subtraction of the assembly mesh from a volume representing the space available for the
UAV. This can be a box the size of the room or a more detailed model if information about
the structures and obstacles around the assembly is known. Creating the environment
mesh aims to represent the free space as precisely as possible.

Camera Orientation
Updating the surface coverage map is done using the vertical and horizontal field of
view of the camera, through which the parts of the mesh that are visible to the camera
in each step can be determined. This rectangular simulation of the cameras’ field of
view extends the original round approximation proposed by Ivić et al. It provides a more
accurate approximation of what parts of the model are visible in each time step. Ray
tracing is also used from the sensor origin to each potentially visible point of the mesh
to detect whether it is obstructed by obstacles. Using a UAV with a camera that can be
oriented independently of the UAV orientation allows for more flexibility in the camera
angles. Therefore, the strategy for orienting the camera was changed from originally
just looking at the point closest to the mesh. Instead, the direct neighbors of these points
within a prespecified radius around the original are also considered potential targets for
the camera orientation. Out of these points, the one with the least amount of coverage
is selected as a target point for the camera to look at to encourage capturing images of
less well covered areas of the surface.

Viewpoint and Point of Interest generation
In the open loop implementation, the output of the HEDAC algorithm is converted into
an inspection path consisting of an ordered list of Viewpoints and Points of Interest as
with the selective inspection process described in the preceding sections. To do this,
the existing algorithm is extended by storing the point used for camera orientation as
well as the UAV position and camera orientation for each time step. These two points
are stored in sequence as Point of Interest and Viewpoint. They, in turn, form a path
compatible with the navigation system for selective inspection described above. Instead
of inspecting each Viewpoint, the UAV captures an image with the camera oriented
towards the Point of Interest. Depending on the value of the parameterization, the UAV’s
distance to the nearest obstacle might fall below the specified safety_distance. In this
case, the emergency collision avoidance system proposed in Section 3.4.3 would stop the
UAV before it collides with the assembly, but manual intervention would be necessary
to continue with the inspection flight. A potential solution to this problem would be
to increase the HEDAC safety distance or decrease the threshold for the emergency
collision avoidance until the slight oversteps of the safety distance do not trigger the
collision avoidance anymore. Since the first would decrease the minimum possible
inspection distance and the latter could potentially compromise the effectiveness of

114

3.6 Photogrammetric Documentation of Assemblies

the collision avoidance system, a third option is to discard viewpoints that are located
too close to an obstacle. While this strategy potentially reduces the number of images
taken for the photogrammetric reconstruction, it can be helpful in cases where only a
few Viewpoints are located too close to the assembly and cause the emergency collision
avoidance to trigger. When removing these Viewpoints, the flight can be performed
without interruptions at the cost of losing only a few images that would otherwise have
been lost as well.

Photogrammetry System
The images captured at each Viewpoint are stored on the UAV and transferred to the
computer executing the photogrammetry software after the completion of the inspection
flight. Before the images can be used for photogrammetric reconstruction, they are
preprocessed to maximize the dataset’s quality. In addition to removing duplicates,
images that contain motion blur are automatically detected and removed. In cases where
significantly more images were captured than required for the photogrammetric process,
a threshold for resemblance between two images can be defined, and images that lie
over this threshold can be removed to reduce processing time.

Additionally, image segmentation algorithms (see: Minaee et al. [188]) can separate
the inspected assembly from the background and discard the latter. This can improve
the quality of the generated model, as objects in the background are irrelevant to
the documentation process and are underrepresented in the dataset, resulting in a
suboptimal reconstruction of these objects that can sometimes influence the quality of
the reconstructed assembly. After preprocessing, the captured images are processed
using the AliceVision Meshroom software, which outputs a textured 3D mesh model.
The structure of the pipeline used in Meshroom is discussed in Section 4.2.6.

Closed Loop Coverage

HEDAC
Planner

Inspection
Flight

Photogrammetry
Framework

Control
Velocity

Captured
Images

Model Quality
Analysis

Local
Cooling

Mesh
Information

Meshed
CAD Model

Figure 3.24. Architecture of the proposed closed loop photogrammetry system.

For the closed loop system, information about the current state of the photogrammetric
model is fed back into the HEDAC planner to detect areas where coverage is insufficient
for a good reconstruction of the model. The general architecture of the proposed system
is depicted in Figure 3.24. The major difference to the open loop architecture is the
feedback of the quality of the generated model through the model quality analysis

115

3 Concept for Relative Inspection

subsystem. Additionally, all steps performed strictly in sequence in the open loop
architecture now run in parallel and continuously forward data to the next subsystem.

Trajectory Planning
The trajectory planning system is based on the algorithm proposed in the open loop
concept. However, instead of generating a complete path with all Points of Interest
and Viewpoints in advance, the algorithm continuously outputs the velocity control
vector along with camera orientations to the UAV’s navigation system. The Viewpoint
mission controller is completely bypassed, and the control velocities are fed directly
into the obstacle-avoiding navigation system. Because this system can avoid not only
previously known but also dynamic obstacles, it is also possible to remove the collision
avoidance system from the HEDAC algorithm. This is needed to increase the algorithms’
performance in this near real-time use case. Due to the same reason, the calculation
of the camera orientation was greatly simplified. Instead of looking at a point of the
mesh close to the camera, the camera is continuously pointed at the volumetric center
of the mesh. As an additional step to increase performance, the surface coverage is
not calculated at every step as in the original algorithm. Instead, its calculation is
outsourced to a separate thread and performed at a reduced rate. This is possible
without sacrificing the quality of the generated trajectory as the surface coverage is only
required to judge the percentage of the surface that was already covered and, therefore,
the overall progress of the inspection. Additionally, a control input is added to integrate
feedback of the current state of reconstruction of the model into the trajectory planning.
This is done by artificially reducing the amount of perceived coverage of areas that
need additional information for better reconstruction. The HEDAC algorithm offers this
possibility through a local cooling mechanism. Since the UAV always tries to achieve an
even coverage of the entire model, cooling forces it to revisit cooled areas, producing
more images for a better photogrammetric reconstruction of the affected area.

Feedback Mechanism
In order to provide the HEDAC algorithm with feedback about the areas of the assembly
that require more coverage, a method is needed to derive these areas of interest from
the output of the photogrammetry algorithm. The method proposed in this work
compares the generated mesh of the photogrammetry tool to the mesh created from the
original CAD model. The difference between the current mesh and the reference can be
determined through simple Boolean subtraction, and the resulting areas serve as input
for the local cooling operation.

Photogrammetry System
Compared to the open loop system, the photogrammetry module was modified to
continuously operate and use images captured by the UAV to incrementally create new
models based on all available images. As soon as the generation of a model is complete,
it is passed on to the feedback mechanism.

116

Summary. The implementation of the concepts proposed in
Chapter 3 are covered in this chapter. Additionally, the archi-
tecture for a system that performs a UAV-based inspection on
arbitrary assemblies is discussed. 4

Architecture and Implementation

4.1 Offline Path Planning . 119
4.1.1 Specification of Components to be Inspected 119
4.1.2 Creation of Viewareas 120
4.1.3 Optimization Through Overlapping Viewareas 120
4.1.4 Sampling of Discrete Viewpoints from Viewareas 121
4.1.5 Calculation of Inspection Paths 122

4.2 Inspection Relative to an Assembly 123
4.2.1 Positioning Relative to an Assembly 124
4.2.2 Obstacle Detection for Collision Avoidance 130
4.2.3 Relative Navigation Along Assemblies 133
4.2.4 Cross-Inspection Learning of Better Key Viewpoints 136
4.2.5 Inspection Subsystem 136
4.2.6 Photogrammetric Documentation of Assemblies 139

4.3 Monitoring and Controlling the Inspection 143
4.3.1 Watchdogs . 143

4.4 Visualization of Inspection Results 145

117

4 Architecture and Implementation

This chapter covers the system implemented to evaluate the concepts proposed in
Chapter 3. It was developed as a modular platform, allowing the exchange of different
modules and various configurations for different use cases. This was mainly achieved
through using the Robot Operating System (ROS) middleware [87], [228] and defining
interfaces that allow components to be exchanged as needed. The basic architecture
of the system developed for CS1 can be seen in Figure 4.1. The system can be roughly
separated into a planning- or offline-phase and an execution- or online-phase. The
planning phase generates an inspection path from the original CAD data. To do this,
the original CAD file is first augmented with information about the POIs. Additional
information, like the inspection type, can also be specified. This annotated CAD file
is then used to generate an unordered list of Viewareas. After Viewarea optimization
is performed as described in Section 3.2.3, Key Viewpoints are chosen for each VA,
and an inspection path is generated. The resulting path functions as input for the

Augmented CAD-
File

Unordered
ViewAreas

Optimized,
Unordered
ViewAreas

Path covering all
POIs

Learned
VP Quality

User Interaction Route Planning Position Estimation Obstacle Avoidance

Drone Odometry

Model TrackingSensor Fusion

Drone Obstacle Avoiding
Navigation

Collision Sensors

Known Obstacles

Planning Phase
Execution Phase

Figure 4.1. General architecture of the inspection system.

execution phase. It is provided to the obstacle-avoiding navigation system that also has
access to obstacle sensor data from the UAV and information about known obstacles
that were provided before takeoff. The navigation system provides a control input
for the UAV, which moves accordingly. The odometry provided by the UAV and the
position measurement by the model tracking system is fused according to Section 3.3
and provided as feedback for the navigation system. Finally, after every inspection,
information about the quality of the Viewpoints that were navigated to are provided
back to the path planning system to generate an optimized path for the next inspection.
After the inspector can view the inspection, pictures, videos, and inspection results in a
specially designed GUI, and the acquired data can be added to the PLM system.

118

4.1 Offline Path Planning

4.1 Offline Path Planning

The following sections cover the architecture and implementation of the offline path
planning subsystem. This includes all steps that are performed in preparation for the
inspection flight. As previously described its comprised of the creation of an augmented
CAD file by an engineer that specifies the location of the Points of Interest and the types
of inspection that need to be performed for the POI. This is the only part of the process
that needs manual input. The optimization of the Viewareas and the calculation of an
inspection path are fully automated.

4.1.1 Specification of Components to be Inspected

To give engineers an intuitive way to augment the CAD data with information about
what parts of the assembly need to be inspected, the QuAD Pre-Inspect Tool was
developed, which allows engineers to perform these actions inside a graphical user
interface. This user interface (see: Figure 4.2) displays a 3D view of the CAD data
and allows the user to specify any part of the assembly as a POI. It also allows for the
specification of the inspection type and the orientation and distance range from which
the POI has to be inspected.

Figure 4.2. Screenshot of the tool for augmenting CAD data with inspection information.

The tool is written in Unity and can open a variety of CAD file formats. The POIs are
output in JSON [122] format. The structure of a single POI can be seen in Listing 1.

Each POI is described by a unique identifier (ID), its position and orientation (the
normal of the POI) as well of the width and length of the part when looked at from the
specified orientation. The positions where the POIs can be inspected from are further
limited by the min_dist, max_dist, and max_deviation_angle parameters. The type
of inspections can be specified using the inspection_type parameter, and an optional

119

4 Architecture and Implementation

1 {

2 "ID": "POI_TL",

3 "position": [-0.16, 0.34, 2.29],

4 "orientation": [0.0, 0.0, 0.0],

5 "length": 0.4,

6 "width": 0.4,

7 "min_dist": 1.0,

8 "max_dist": 1.8,

9 "max_deviation_angle": 50,

10 "inspection_type": ["image_capture", "presence_detection"],

11 "sem_ann": "bracket, green",

12 "frame_id": "s19"

13 }

Listing 1. JSON structure of a single POI.

semantic annotation can be added using the sem_ann parameter. The frame_id defines
the reference frame for the position and orientation values.

4.1.2 Creation of Viewareas

All remaining steps of the path planning are implemented in Python. The creating and
optimizing the Viewareas is done geometrically, and therefore, the Python Application
Programming Interface (API) of the 3D modeling tool blender [78] was used to facilitate
calculations. The program first loads the POI data created by the QuAD Pre-Inspect
Tool and uses the information provided about each POI to generate the geometry of a
corresponding Viewarea in Blender. This is done using the API to create and intersect
two spheres around the Point of Interest and then intersecting the resulting hollow
sphere with four planes created as described in Section 3.2.1. This results in the 3D
geometry of the Viewareas being available in Blender for further optimization and
Viewpoint sampling.

4.1.3 Optimization Through Overlapping Viewareas

Like the creation of Viewareas, the optimization by overlapping Viewareas is performed
in Python using the blender API (see: Figure 4.3). The tool tries to intersect every
Viewarea with every other Viewarea. If it finds a combination where the resulting
intersected Viewarea fulfills the minimum volume requirements, the new intersected
Viewarea is added to the pool of available Viewareas. Also, the original Viewareas are
deleted and the information about their POIs is attached to the intersected Viewarea.
This process is repeated until no more intersections that fulfill the minimum volume
requirements are found. Afterward, the tool has generated a set of optimized Viewareas
that still have references to their associated POIs.

120

4.1 Offline Path Planning

4.1.4 Sampling of Discrete Viewpoints from Viewareas

Since the UAV needs discrete points to fly to, Viewpoints must be sampled inside the
Viewarea to generate possible navigation targets. Like the two previous steps, the
sampling algorithm for Viewpoints described in Section 3.2.1 is implemented in Python
using the blender API. The implementation generates a grid of equidistantly spaced
Viewpoints by filling the area around the Viewarea with cubes with an edge length
of the desired Viewpoint spacing (see: Figure 3.5). The area that must be covered is
described by the minimum and maximum coordinates of the 3D bounding box of the
Viewarea. Every cube is then intersected with its Viewarea and the intersection volume
compared to the original volume. If the two volumes do not match, the cube is deleted.
This strategy causes only the cubes that lie entirely inside the Viewarea to remain. To
derive the Viewpoints from the cubes, their center coordinates are used as positions for
the Viewpoint. Lastly, the Key Viewpoint is selected by finding the Viewpoint with the
closest distance to the geometric center of the Viewarea. This assures that a Viewpoint
is initially navigated to, allowing a direct view of the POI.

The process is repeated for all Viewareas to create a complete set of Viewpoints and
Key Viewpoints. The Viewpoints are then exported in another JSON file that acts as an
interface for the path planner. Defining an interface at this point allows the exchange
of the ACS planner for a different application at a later time should the need arise. The
JSON structure of a POI is described in Listing 2. Each POI is identified by a unique ID
and a position. Since Viewpoints inside intersected Viewareas can observer multiple
POIs, observed_pois and orientations to inspect these POIs are structured in lists
to allow for these combined Viewareas with multiple observed POIs. Every VP also
has a rating_value that stores the score that is calculated by the optimization across
inspections (see: Section 3.2.4). Lastly, the type attribute identifies it as a Viewpoint

VA 2

VA 1

VA 3

VA 4

VA 2

VA 1

VA 3_4

unoptimized optimized

Figure 4.3. Original (left) and optimized Viewareas (right).

121

4 Architecture and Implementation

or Key Viewpoint, and the frame_id defines the reference frame for the position and
orientation values.

1{

2 "ID": "TL_Waypoint_A1",

3 "position": [-1.06, 1, 3.0],

4 "orientations": [[0.0,0.0,1.0,0.0]],

5 "observed_pois": ["POI_TL"],

6 "rating_value": 0.25739189982414246,

7 "type": "viewpoint",

8 "frame_id": "s19"

9 }

Listing 2. JSON structure of a single Viewpoint.

4.1.5 Calculation of Inspection Paths

To leverage the computational benefits of the Ant Colony System algorithm, it was
implemented in a multithreaded architecture with each thread performing the calcu-
lations for one ant. Viewpoints are represented in a fully connected graph and the
euclidean norm is used as a distance measure as the movement from one Viewpoint
to the next can be performed in a nearly linear movement by a UAV. The architecture
of the path planner is focused on interchangeability of the path planning component
with interfaces allowing potential later substitution of the ACS algorithm by a different
path planning strategy. Additionally, the parameterization of the ACS implementation
can be set for every path based on whether a quick, suboptimal solution or a better
path requiring more computation time is desired. The latter can be preferential in cases
where trajectories are reused repeatedly. The output of the ACS implementation is
a path visiting all Points of Interest in the form of an ordered list of Key Viewpoints.
The output is formatted in JSON as an array of Key Viewpoints which are structured
according to Listing 2.

122

4.2 Inspection Relative to an Assembly

4.2 Inspection Relative to an Assembly

After the calculation of an inspection path, the execution of the inspection requires
the implementation of several subsystems described in Chapter 3. Figure 4.4 describes
the architecture of the essential components for performing an inspection. Most of the

<<Device>>
Mission Control PC

<<Device>>
Windows 10 PC

U
ni

ty
 R

O
S

TC
P

C
on

ne
ct

or

<<Unity Application>>
QuAD Vision Vuforia

<<Execution Environment>>
ROS Noetic

<<Device>>
DJI RC Pro Enterprise

<<Android App>>
QuAD Connect App

<<Device>>
DJI Mavic 3 Enterprise

DJI O3 Enterprise<<Application>>
RTMP Server

RTMP In

<<ROS Node>>
MavLink Copter Manager

M
AV

Li
nk

Estimated Position

<<ROS Subsystem>>
Position Estimation

Target Viewpoint

<<ROS Subsystem>>
Navigation

Obstacle Data

IMU Data C
am

er
a

Im
ag

e

Target Velocity

Inspection Status
<<ROS Subsystem>>

Inspection
<<ROS Subsystem>>

Mission Control Part Information

RTMP Out

Control Velocity

Figure 4.4. Overview of inspection system architecture.

required software can be deployed on a Linux PC running ROS [87], [228]. The plumbing
provided by ROS in the form of the publish/subscribe [91] and service-based [90]
messaging system allows the individual subsystems to interact. The inspection path
generated in Section 4.1 is loaded by the mission control subsystem (see: Figure 4.4). It
sends the viewpoints to the navigation subsystem, which uses the estimated position
from the position estimation as well as obstacle data from the UAV to send target
velocities to the UAV. Once a Viewpoint is reached, the mission control subsystem

123

4 Architecture and Implementation

provides information about the part to the inspection subsystem, which in turn performs
an inspection and gives feedback about the inspection status to the mission control node.
If the inspection succeeds, the UAV navigates to the next Key Viewpoint. Otherwise,
alternative Viewpoints for the same Point of Interest are tried.

Position estimation requires the camera stream of the UAV to be processed by the
Vuforia Engine, the framework chosen for model tracking. The Vuforia engine is only
compatible with Windows systems [224], so the software is deployed on a separate
Windows PC. The Camera Image is transmitted from the DJI Mavic 3 Enterprise Drone,
and the latest version of the system is working with the corresponding remote control
via the DJI O3 Enterprise Protocol [249]. The remote runs a custom Android application
that relays sensor data and control commands between the UAV and the ROS system,
but also streams the camera image to a remote address. The camera stream is provided
to an RTMP [161] server running on the Windows PC, allowing other clients to access
the stream. One of these clients is the model tracking application (QuAD Vision Vuforia)
that uses the stream to estimate the pose of the model tracking. The position is then
sent to the position estimation system in ROS using the Unity ROS TCP Connector
interface [274]. The position estimation system also receives data from the UAV IMU
via its driver node that (in the implementation using the DJI Mavic 3) communicates
with the corresponding Android App via MAVLink. This description and diagram only
serve as an overview of the connections between the system’s individual components.
Their implementation is discussed in detail throughout the following sections.

4.2.1 Positioning Relative to an Assembly

Establishing the UAV position is essential for all following navigation and inspection
tasks. In themost basic form, it can be achieved using sensor fusion and the data obtained
by the UAV odometry and model tracking. The following sections describe in detail
how model tracking was implemented to determine a position relative to the assembly.
Additionally, an architecture for a sensor fusion approach for relative positioning using
a stationary assembly is demonstrated. Lastly, a more complex approach allowing the
positioning relative to one or multiple moving objects based on the concepts from
Section 3.3.5 is presented.

Implementation in ROS

Figure 4.5 shows the positioning and sensor fusion architecture. The copter_manager-
node handles all communication with the UAV. While a generic copter_manager is
shown in the figure, concrete implementations for MAVLink compatible UAVs and a
simulated UAV were created. The copter_manager acts as an abstraction layer, making
the implementation compatible with different types of UAVs by writing a compatible
copter manager. For position estimation, the copter_manager provides the current ve-
locity of the UAV to both the Kalman Filter node (dkf_state_estimation_publisher)
and the camera_tracking_filter. The latter implements the filtering described in
Section 3.3.2 by obtaining the raw transformation from assembly to UAV camera pro-

124

4.2 Inspection Relative to an Assembly

vided by the Vuforia tracking. The transformation is published again after filtering as
camera_tracking_filtered.

Since the Kalman Filter calculates the position and orientation of the UAV body’s
center and not of the camera, the gimbal_to_baselink_publisher uses the filtered
camera frame to publish a transformation from this frame to the UAV’s center using
the camera gimbal attitude obtained by the copter manager. This transformation is
published as uav_base_link_framewhich the dkf_state_estimation_publisher uses
in conjunction with the velocity data from the copter_manager and the commanded
velocity to publish the final position estimate (estimated_pose) to the tf tree. This
estimate is used for later navigation.

<<ROS Package>>
quad_trajectory_execution/

camera_tracking

<<ROS Node>>
camera_tracking_filter

<<ROS Node>>
gimbal_to_base_
link_publisher

<<ROS Topic>>
/quad/current_vel

quad_msgs/
ControlSystemState.msg

<<ROS Topic>>
/quad/gimbal_attitude

quad_msgs/
GimbalDeviceAttitudeStatus.msg

<<ROS Message>>

quad_msgs/
ControlSystemState.msg

string frame_id
time stamp
float32 x_acc
float32 y_acc
float32 z_acc
float32 x_vel
float32 y_vel
float32 z_vel
float32 x_pos
float32 y_pos
float32 z_pos
float32 airspeed
float32[] vel_variance
float32[] pos_variance
geometry_msgs/Quaternion q
float32 roll_rate
float32 pitch_rate
float32 yaw_rate

<<ROS Message>>

quad_msgs/GimbalDevice
AttitudeStatus.msg

int32 target_system
int32 target_component
time stamp
int32 flags
geometry_msgs/Quaternion q
float32 angular_velocity_x
float32 angular_velocity_y
float32 angular_velocity_z
int32 failure_flags
float32 delta_yaw
float32 delta_yaw_velocity

<<ROS Package>>
quad_trajectory_execution/navigation

<<ROS Node>>
dkf_state_estimation_

publisher

<<ROS Package>>
quad_trajectory_execution/

copter_manager

<<ROS Node>>
mavlink_copter_

manager

<<ROS Topic>>
/quad/cmd_vel
geometry_msgs/

TwistStamped.msg

<<ROS Topic>>
/tf

tf2_msgs/TFMessage.msg

Figure 4.5. Architecture of the position estimation system.

Figure 4.6 shows the resulting transformation tree of this system. The previously not
mentioned comp_odom_publisher-node defines a point in the production facility as the
world origin. This point defines the starting location of the UAV and is calculated using
the first model tracking measurement. When working with a moving part, the kinematic
model described in Section 3.3.5 is used to update this transformation.

125

4 Architecture and Implementation

The camera_tracking, camera_tracking_filtered, and estimated_pose-frame are
defined relative to the assembly by the Vuforia tracking, the prefilter, and the Kalman
Filter, respectively. The uav_base_link_frame provided by the gimbal_to_base_link_
publisher is defined relative to the filtered model tracking frame. The tf2 library
provided by ROS allows for the lookup of transformations between arbitrary frames
that are connected inside the tree, making operations like obtaining the transformation
from assembly to the uav_base_link_frame trivial.

TextBroadcaster: /comp_odom_publisher
Rate: 30Hz

world

Broadcaster: /quad_vision_vuforia
Rate: 30Hz

Broadcaster: /camera_tracking_filter
Rate: 30Hz

Broadcaster: /dkf_state_estimation_publisher
Rate: 30Hz

assembly

camera_tracking

Broadcaster: /gimbal_to_base_link_publisher
Rate: 30Hz

camera_tracking_filtered

estimated_pose

uav_base_link_frame

Figure 4.6. Transformation tree created by the position estimation.

Detecting and Handling the Loss of Tracking
In case the visual tracking is lost, the UAV uses its primary means of establishing its
position. Continuing the inspection in this state is impossible, and manual intervention
is required. While the system is designed to avoid a loss of tracking, it may still occur,
and handling the situation properly is crucial to prevent a crash of the UAV.

An independent watchdog node (see: Section 4.3.1) constantly monitors the tracking
state. It does this by monitoring the state of the tracking that is sent from Vuforia
and the output of the model tracking prefilter. If either the tracking system monitors
a tracking loss or the prefilter starts discarding packages due to a detected jump, the
inspection is paused if the situation does not improve after a predefined delay. This

126

4.2 Inspection Relative to an Assembly

causes the UAV to hover at its current position until the situation is resolved either by
an operator or the tracking is automatically acquired by the system again.

Model Tracking

Since there are a plethora of model tracking frameworks available, Vuforia Engine [222]
was selected to perform the actual task of model tracking. After rigorous testing, its
functionality was deemed sufficient for the required task. The major problem with
other model tracking frameworks targeted for Augmented Reality applications is their
inability to maintain stable tracking when only parts of the model are visible in the
camera image. Since the UAV must get reasonably close to the big assemblies it inspects,
keeping the entire model in the frame is not always possible. Hence, Vuforia was chosen
for its tracking performance. Since its SDK delivers all required features, a commercial
solution was chosen instead of an in-house development.

Generating a Tracking Model
Vuforia’s model tracking engine requires a tracking model for each assembly that must
be inspected. For creating these models, the Model Target Generator [225] is provided
(see: Figure 4.7).

Figure 4.7. Vuforia Engine Model Target Generator.

It allows for arbitrary 3D models to be loaded, their orientation and tracking style
to be configured, and it allows for the creation of Guide Views [223]. Guide Views
are orientations from which the tracking can be initiated. In AR operation, the user
must roughly overlap the camera image with the 2D projection of the guide view

127

4 Architecture and Implementation

to initiate tracking. When using the model for tracked flight, it is recommended to
generate guide views for all locations from which the UAV might be launching. Also, it
is recommended to create guide views for orientations the UAV encounters at difficult
sections of its inspection trajectory. This could be areas with little detail in the model,
close distance to the model, high rotation rates, etc. Vuforia also offers a variety of
options for Advanced Views [220] that allow recognition of models from a wider range
of camera orientations and positions, but require processing of the model in the cloud.
Due to its requirement for the Unity Engine [273], the model tracking component is
implemented as a Unity application and connected to the rest of the system through the
Unity ROS TCP Connector [274]. This makes it available in the ROS environment for
further sensor processing and fusion.

Limiting MaximumMovement Speed for Tracking
Since model tracking works by tracking the movement of features in the 2D images
reported by the camera, quick camera movements where large changes occur between
two images need to be avoided. This is because these kinds of movements can result in
the software being unable to track the detected features from image to image because
they moved too far from their last position, resulting in a loss of tracking. The maximum
frame rate of 30 frames per second introduced by the transmission protocol of the UAV
also contributes to the problem. Therefore, the UAV movement must be shaped in a way
that avoids such movements. This is mainly achieved through limiting the UAVs linear
and rotational speeds. In practice, a maximum linear velocity of 0.5m/s and 30°/s have
yielded promising results. In addition, the rotation rate of the camera gimbal is limited
to 20°/s in all axes. The combined yaw rate of UAV and gimbal is also limited to 30°/s.
In practice, this allows for reasonably fast inspection flights while maintaining stable
tracking.

Sensor Data Fusion

The sensor fusion was realized in the dkf_state_estimation_publisher-node. It was
implemented as described in Section 3.3.4 as a Kalman Filter using the filterpy li-
brary. As depicted in Figure 4.6, it uses the commanded and measured velocities
and orientation as well as the filtered uav_base_link_frame as the input and pub-
lishes an estimated_pose transform relative to the assembly as an output. In addi-
tion (but not depicted), the estimated pose is published along with the covariance as
geometry_msgs/PoseWithCovariance Stamped message for debugging purposes. The
covariance for IMU- and model tracking (Ri and Rt) was measured with the UAV at
standstill and set accordingly.

To have the ability to instantiate multiple filters for the sensor fusion with changing
reference systems, the Kalman Filter was implemented in a QuadKalman class. This also
allows for better encapsulation of the functionality and facilitates its exchange against
other sensor fusion algorithms. Figure 4.8 shows the structure of the state estimation
node.

128

4.2 Inspection Relative to an Assembly

The QuadKalman class acts as a wrapper for the filterpy.kalman.KalmanFilter class,
initializing all relevant matrices and vectors according to Section 3.3.4. It offers special-
ized methods for updating the filter with IMU and model tracking data. The QuadKalman
class itself is used by the dkf_state_estimation_publisher-node, which manages com-
munication with ROS. It periodically looks up the model tracking transformation and
updates its instance of the QuadKalman filter. The node also subscribes to the IMU data
published in /quad/current_vel and updates the filter using the update_imu()method.
Periodic state predictions using the commanded velocity obtained from /quad/cmd_vel

as control input vector, as well as the publishing of position estimates to /tf, are also
performed by the node in 30Hz intervals.

Position Estimation with Moving Reference Systems

In an optional extension of the system to make it work with moving or changing
reference systems, information about the relative velocity of the assembly is needed

<<ROS Node>>
dkf_state_estimation_ publisher

filterpy.kalman

KalmanFilter

+ F: Float [][]
+ x: Float []
+ P: Float [][]
+ Q: Float [][]
+ B: Float[][]
...

+ update(z: Float [], H: Float [], R: Float[])
+ predict(u: Float[])
...

<<ROS Topic>>
/quad/current_vel:

quad_msgs/ControlSystemState.msg

<<ROS Topic>>
/tf

tf2_msgs/TFMessage.msg

QuadKalman

+ H_imu: Float [][]
+ H_tracking: Float [][]
+ R_imu: Float [][]
+ R_tracking: Float [][]

+ get_trans(): Float []
+ get_rot(): Float []
+ predict(u: Float[])
+ update_tracking(tf: Float [])
+ update_imu (imu_data: Float [])

dkf_state_estimation_publisher_node

+ tf_broadcaster: tf.TransformBroadcaster
+ tf_listener: tf.TransformListener
+ imu_subscriber: rospy.Subscriber
+ cmd_vel_subscriber: rospy.Subscriber

- position_kf

- kf

uav_base_link_frame

estimated_pose

<<ROS Topic>>
/quad/cmd_vel:

geometry_msgs/TwistStamped.msg

Figure 4.8. Structure of the sensor fusion ROS node.

129

4 Architecture and Implementation

as an additional input for the sensor fusion node. To achieve this, the kinematics
of the assembly and its supporting structure need to be defined first. In ROS, the
URDF [88] format is used to define kinematic chains with joints and links for arbitrary
robots, so it is used to describe the assembly kinematics. Afterward, the Framework
MoveIt [80] uses the URDF description to calculate the resulting trajectories of all joints
and the assembly based on the measured joint inputs. The robot_state_publisher [83]
node is used to publish the transformations of all joints in the tf tree. The node
kinematic_localization_publisher calculates and publishes the velocities of all links
of the kinematic chain to the ROS topic [91] /quad/comp/vel. The velocities are calcu-
lated using numeric differentiation at a rate of 50Hz. The QuadKinematicKalman class
(see: Figure 4.9) extends the QuadKalman class by adding an update_kinematic(kin_data:
Float[])-method that stores the velocity data of the assembly in the correspond-
ing attribute. This velocity allows the IMU velocity and commanded velocity to be
corrected for the assembly’s movement when calling the internal KalmanFilter’s
predict() and update(). Similar to the dkf_state_estimation_publisher node, the
QuadKinematicKalman class is instantiated inside a dkf_kinematic_state_estimation_
publisher node that provides the QuadKinematicKalman object with all required sensor
data, performs the prediction, and publishes the state estimation in /tf. The main
difference is that the node subscribes to the /quad/comp/vel topic to update its filter
with the component velocity data.

Position Estimation with Changing Reference Systems

For dynamic assemblies where multiple filters are needed, the dkf_multi_kinematic_
state_estimation_publisher is required (see: Figure 4.9).
It is based on the dkf_kinematic_state_estimation_publisher, but contains an in-
stance of the QuadKinematicKalman filter for each part of the kinematic chain and an
additional filter relative to the world frame. Each filter is parameterized as described
in Section 3.3.5 and provided with the IMU measurements, tracking data, and the ve-
locity for its corresponding part of the assembly. The currently tracked assembly is
determined by the model tracking system in the form of a ROS parameter. This pa-
rameter is periodically updated in the state estimation node and the currently tracked
QuadKinematicKalman instances are provided with the original tracking data, while the
tracking data for all other links is transformed into the reference frame of the link first.
Additionally, each filter instance is provided with all velocities rotated into their respec-
tive reference frame and with kinematic velocities (kin_data) relative to its reference
frame. Since these extensions require position feedback about the inspected assembly
and kinematic information about it or its mounting structure, the advanced position
estimation described in this section is only used when strictly necessary.

4.2.2 Obstacle Detection for Collision Avoidance

As mentioned in Section 3.4.3, low-quality sensor data was a big challenge when imple-
menting the sensor detection for the system. Figure 4.10 shows the main architecture of
the obstacle detection system. Sensor input is provided again by the copter_manager-

130

4.2 Inspection Relative to an Assembly

<<ROS Node>>
dkf_multi_kinematic_state_estimation_ publisher

filterpy.kalman

KalmanFilter

+ F: Float [][]
+ x: Float []
+ P: Float [][]
+ Q: Float [][]
...

+ update(z: Float [], H: Float [], R: Float[])
+ predict(u: Float[])
...

<<ROS Topic>>
/quad/current_vel

quad_msgs/ControlSystemState.msg

<<ROS Topic>>
/tf

tf2_msgs/TFMessage.msg

QuadKinematicKalman

+ H_imu: Float [][]
+ H_tracking: Float [][]
+ R_imu: Float [][]
+ R_tracking: Float [][]
+ kin_data: Float[]

+ get_trans(): Float []
+ get_rot(): Float []
+ predict(predict(u: Float[]))
+ update_tracking(tf: Float [])
+ update_imu(imu_data: Float [])
+ update_kinematic(kin_data: Float [])

dkf_multi_kinematic_state_
estimation_publisher_node

+ tf_broadcaster: tf.TransformBroadcaster
+ tf_listener: tf.TransformListener
+ imu_subscriber: rospy.Subscriber
+ cmd_vel_subscriber: rospy.Subscriber
+ kin_subscriber: rospy.Subscriber

- position_kfs 1..*

- kf

uav_base_link_frame

estimated_pose

<<ROS Topic>>
/quad/comp/vel

geometry_msgs/TwistStamped.msg

<<ROS Topic>>
/quad/cmd_vel:

geometry_msgs/TwistStamped.msg

Figure 4.9. Structure of the sensor fusion ROS node for dynamic assemblies.

node in the form of published ObstacleDistancemeasurements. The obstacle avoidance
system processes these in the obstacle_detection node, which transforms the individ-
ual distance measurements into one point cloud [163] each that represents the measured
obstacle distances and the measured free space in front of the UAV respectively. These
two point clouds are used by a modified implementation of the octomap_server to
populate the internal OctoMap with new obstacle measurements and clear out areas that
have been measured as free. As described in section Section 3.4.3, previously known
obstacles can be loaded into the OctoMap on startup. The clearing of obstacles was
modified to fit the wide detection range of the sensors of the used UAVs by clearing the

131

4 Architecture and Implementation

whole sector of the obstacle sensor using multiple raycasts. The separation of measure-
ments that need to be added to the OctoMap and a separate point cloud that is used for
cleanup allows for the definition of a wider area for removing obstacles like mentioned
in Section 3.4.3. The OctoMap server publishes the centers of all currently occupied
voxels as another point cloud, which can be used by an arbitrary trajectory planning
node (either based on the potential field method or the Anytime Dynamic A* algorithm
depicted as nav_cmd_publisher). The trajectory planning node can also access the cur-
rent obstacle sensor readings of the UAV by subscribing to the /quad/perception-topic,
which is also published by the obstacle_detection-node.

<<ROS Message>>

quad_msgs/ObstacleDistance.msg

time stamp
int32 sensor_type
float32[] distances
int32 increment
float32 min_distance
float32 max_distance
float32 increment_f
float32 angle_offset
int32 frame

<<ROS Topic>>
/quad/cmd_vel_pf

geometry_msgs/TwistStamped.msg

<<ROS Package>>
quad_trajectory_execution/navigation

<<ROS Node>>
nav_cmd_publisher <<ROS Topic>>

/quad/perception
quad_msgs/Perception.msg

<<ROS Package>>
quad_trajectory_execution/

obstacle_avoidance

<<ROS Node>>
collision_prevention

<<ROS Node>>
obstacle_detection

<<ROS Topic>>
/quad/cmd_vel

geometry_msgs/TwistStamped.msg

<<ROS Package>>
octomap_server

<<ROS Node>>
octomap_server

<<ROS Topic>>
/quad/free_space

sensor_msgs/PointCloud2.msg

<<ROS Topic>>
/quad/cloud

sensor_msgs/PointCloud2.msg

<<ROS Topic>>
/quad/obstacle

quad_msgs/ObstacleDistance.msg

<<ROS Topic>>
/octomap_point_cloud_centers
sensor_msgs/PointCloud2.msg

<<ROS Package>>
quad_trajectory_execution/

copter_manager

<<ROS Node>>
mavlink_copter_manager

<<ROS Message>>

quad_msgs/Perception.msg

int32 id
geometry_msgs/Point position

Figure 4.10. Architecture of the obstacle avoidance system.

132

4.2 Inspection Relative to an Assembly

Secondary Collision Prevention System
As an additional measure to ensure that the UAV cannot collide with its surroundings, in-
dependent of the output of the navigation strategy, a secondary collision_prevention-
node is inserted in series between the output of the nav_cmd_publisher and the quad/
cmd_vel-topic that is used to provide a commanded velocity to the copter_manager and
therefore directly to the UAV. Note that this architecture bypasses the UAV’s internal
position controller (see: Section 2.2.3) and replaces it with the nav_cmd_publisher by
sending target velocities to the drone completely moving position control from the
UAV to the proposed system. The collision_prevention-node also accesses the ob-
stacles currently detected by the UAV. During regular operation, it just publishes the
commanded velocity it receives from the navigation node back to the copter manager.
If one of the obstacle sensors measures less than a predefined threshold, it overrides
the commanded velocities to 0, which causes the UAV to stop immediately. In this case,
the operator has to manually navigate the UAV away from the obstacle before the UAV
can continue its flight. To avoid the collision prevention system from triggering, the
navigation system is set up in a way that keeps the UAV at a larger distance to obstacles
than the threshold set in the collision prevention. This system functions as a second
layer of safety if an error in trajectory planning occurs.

4.2.3 Relative Navigation Along Assemblies

In order to perform an inspection flight, the UAV must visit a sequence of Viewpoints
in the correct order and plan a collision-free trajectory from each VP to the next. With
position estimation and obstacle representation already established, the following section
focuses on low-level (VP to VP) and high-level (mission-wide) navigation. First, the
high-level mission execution architecture is described before the two implementations
for VP to VP navigation are presented.

Mission Control

The mission controllers’ primary objective is to send the trajectory planner the pre-
planned Viewpoints from the path in the correct order. It has to wait until each is reached
and, in succession, trigger the inspection of each VP’s POI(s). Figure 4.11 depicts how
this behavior was implemented in the architecture. The mission execution is done via
the mission_control-node. It uses the trajectory_control node, which loads the pre-
planned inspection path from a JSON file to obtain information about the next waypoint
to fly to. After initialization, it waits for user input before starting the inspection. This
user input is provided by starting the mission from the quad_ground_control App (see:
Section 4.3). This triggers a service call [90] in the mission control node that starts the
inspection flight. After performing a takeoff to a preset height, the mission control calls
the /fly_to_action provided by the nav_cmd_publisher implementing the low-level
navigation strategy. The nav_cmd_publisher gives feedback about the progress of the
navigation effort so that the mission control node can detect when a Viewpoint is
reached. After arrival on a Viewpoint, the inspection action on the inspection module is
called on all specified inspectors for the current Point of Interest. When the inspection

133

4 Architecture and Implementation

is unsuccessful, the mission control node may navigate to different Viewpoints from
the same Viewarea to try to perform the inspection from a different perspective. The
number of alternative Viewpoints that are tried before moving on to the next POI can
be defined via a parameter. After the maximum number of alternative Viewpoints were
tried or successful inspection was performed, the next Key Viewpoint is visited using the
/fly_to_action again. This is repeated until the inspection of the last POI is completed.

<<ROS Package>>
quad_trajectory_execution

<<ROS Action>>

quad_msgs/fly_to_pos.action

#goal definition
quad_msgs/TrajectoryPoint
sub_viewpoint

#result definition
bool success

#feedback
float32 percent_complete
float32 distance_to_target
float32 pitch_offset
float32 yaw_offset
float32 yaw_gimbal_offset
bool close_enough
string sub_viewpoint_id
string sub_viewpoint_type

<<ROS Action>>
/inspection/sample_inspection

quad_msgs/inspect.action

<<ROS Action>>

quad_msgs/inspect.action

goal definition
quad_msgs/Poi poi

result definition
bool success

feedback
float32 progress

<<ROS Service>>
/set_mission_state_service

quad_msgs/SetMissionState.srv

<<ROS Package>>
quad_ground_control

<<ROS Node>>
quad_ground_control

<<ROS Service>>

quad_msgs/SetMissionState.srv

string state

bool success

<<ROS Package>>
quad_trajectory_execution/navigation

<<ROS Node>>
nav_cmd_publisher

<<ROS Package>>
quad_inspection

<<ROS Node>>
sample_inspector

<<ROS Action>>
/fly_to_action

quad_msgs/fly_to_pos.action

<<ROS Node>>
mission_control

<<ROS Node>>
trajectory_control

<<Inspection Route>>

route.json

<<ROS Service>>
/next_viewpoint_service

quad_msgs/GetNextViewpoint.srv

<<ROS Service>>

quad_msgs/SetMissionState.srv

quad_msgs/TrajectoryPoint next_viewpoint

Figure 4.11. Architecture of the navigation subsystem.

134

4.2 Inspection Relative to an Assembly

Afterward, the Drone returns to the coordinates of its starting point and performs an
automated landing.

Implementation of the Obstacle Avoiding Navigation Strategies

The obstacle avoiding navigation strategies using the potential field algorithm and Any-
time Dynamic A* described in Sections 3.4.1 and 3.4.2 were implemented as individual
ROS nodes as described in the following paragraphs1.

The architecture of the system was designed in a way that allows for easy replacement
of the navigation system implementation using the quad_msgs/fly_to_pos action as
an interface (see Figure 4.11).

<<ROS Package>>
quad_trajectory_execution/navigation

<<ROS Topic>>
/quad/cmd_vel_pf

geometry_msgs/TwistStamped.msg

<<ROS Topic>>
/quad/perception

quad_msgs/Perception.msg

<<ROS Topic>>
/octomap_point_cloud_centers
sensor_msgs/PointCloud2.msg

<<ROS Package>>
quad_trajectory_execution

<<ROS Action>>
/fly_to_action

quad_msgs/fly_to_pos.action

<<ROS Node>>
mission_control

<<ROS Node>>
nav_cmd_publisher

Figure 4.12. Reference architecture for integrating arbitrary navigation algorithms into the
system.

Figure 4.11 shows the integration of a sample navigation algorithm into the system as
a nav_cmd_publisher node. The node implements the quad_msgs/fly_to_pos action
to be able to receive navigation commands from the mission_control node. Obstacle
positions and obstacle sensor data can be obtained through the /octomap_point_cloud_
centers and /quad/perception topics respectively. These values are provided by the
octomap_server and obstacle_detection nodes respectively. The node then uses the
/quad_cmd_vel_pf topic as an interface to send velocity commands to the collision_
prevention node which in turn commands the UAV using the mavlink_copter_manager
node as described in the Figure 4.11.

Should additional data be required from the system by the concrete implementation
of a collision avoidance algorithm, it can be obtained by implementing a subscriber to
the respective topic. Analogously, additional data can be introduced into the system
by implementing a publisher and arbitrary services or actions can be executed using
Service and Action Clients.

1Many thanks to Julian Saupe, who implemented and performed the evaluation of the Anytime Dynamic
A* algorithm as part of his bachelor’s thesis [243].

135

4 Architecture and Implementation

4.2.4 Cross-Inspection Learning of Better Key Viewpoints

To provide a way to implement the concepts described in Section 3.2.4, the trajectory_
control-node the required logic for calculating the scores for each Viewpoint. It is
controlled by the mission_control node, which orders updating of the rating of a
viewpoint. The mission_control node can also request alternative Viewpoints for the
current Point of Interest in case inspection from the current Viewpoint is not successful.
It can do this by calling the /next_viewpoint_service of trajectory_control.

Calculation of an Optimized Path
To generate a new trajectory based on the updated scores calculated during the in-
spection, the tsp_from_viewpoints_action_server node is added to the system. It
encapsulates the implementation of Section 4.1, thus generating a sorted path based on a
set of Viewpoints. This service is offered as an action server implementation of the type
quad_msgs/tsp_from_viewpoints.action. Once the inspection of the last viewpoint
is finished, the trajectory_control node chooses new Key Viewpoints based on the
current scores and calls the tsp_from_viewpoints action to calculate an optimized
path for the next inspection. This path is then stored as a JSON file with the structure
described in Listing 1.

4.2.5 Inspection Subsystem

The inspection subsystem is based on the interface defined in Figure 3.22 in Section 3.5.2.
The following sections will first describe how this interface can be used to implement or
integrate arbitrary inspection types. Afterward, the implementation of a rudimentary
visual presence detection system is demonstrated.

Integration of Inspection Tools

The implemented architecture allows for the flexible addition and specification of arbi-
trary inspection services into the system. The specification of each Point of Interest,
as described in Listing 1, contains a list of inspection types that are used to define the
inspection services that need to be used for this specific Point of Interest. Figure 4.11
shows how an inspection service is integrated into the architecture of the system based
on a sample_inspector node. The node implements the inspect.action which is
based on the interface described in Figure 3.22. It is used to trigger the inspection
for this type of inspection. The mapping is performed through the naming structure
of the action servers of the individual inspection nodes. When implementing an in-
spection service that is triggered, when the type sample_inspection is included in the
inspection_type parameter of the JSON definition of a particular Point of Interest, the
inspection service must offer its action server for the inspect.action at the location
/inspection/sample_inspection. The mission control node has information about the
Point of Interest that corresponds to the Viewpoint the drone is currently at and can
therefore determine the inspection types that are required for this Viewpoint and Point
of Interest. Through the naming convention, it is able to call the corresponding action

136

4.2 Inspection Relative to an Assembly

servers and obtain their inspection status. This architecture allows the addition of new
inspections into the system without changes to the existing codebase. As described
in Section 3.5.2, the interface for the inspection itself only includes information about
the Point of Interest because the individual requirements for data needed to perform
an inspection may vary based on the inspection type or tool. When implementing
an inspection service node, it can access all data available in the system, including all
messages and data that can be obtained through service calls. Therefore, each node can
individually access the required information as needed.

<<ROS Package>>
quad_trajectory

<<ROS Node>>
tsp_from_viewpoints_action_server

<<ROS Package>>
quad_trajectory_execution

<<ROS Action>>

quad_msgs/tsp_from_viewpoints.action

goal definition
string comp_path
string strategy
quad_msgs/TrajectoryPoint[] viewpoints

result defintion
quad_msgs/TrajectoryPoint[] viewpoints_sorted

feedback
string state
int8 progress

<<ROS Action>>
/tsp_from_viewpoints

quad_msgs/tsp_from_viewpoints.action

<<ROS Action>>
/inspection/sample_inspection

quad_msgs/inspect.action

<<ROS Service>>
/update_viewpoint_rating_service

quad_msgs/UpdateViewpointRating.srv

<<ROS Service>>

quad_msgs/UpdateViewpointRating.srv

string viewpoint_id
float32 rating_change_factor

bool success

<<Inspection Route>>

route.json

<<ROS Node>>
trajectory_control

<<ROS Node>>
mission_control

<<ROS Service>>

quad_msgs/GetNextViewpoint.srv

quad_msgs/TrajectoryPoint next_viewpoint

<<ROS Service>>
/next_viewpoint_service

quad_msgs/GetNextViewpoint.srv

<<ROS Package>>
quad_inspection

<<ROS Node>>
sample_inspector

Figure 4.13. Relevant ROS components for the trajectory optimization.

137

4 Architecture and Implementation

Visual Presence Detection

The implementation of the visual presence detection systemwas separated into twomain
components: The first is the similarity_inspector that performs the image processing
and template matching steps described in Section 3.5.1 using the camera image, provides
feedback on correct installation, and visualizes errors. In addition, the render service
is needed to generate reference renders for the similarity inspector. The similarity
inspector offers an action of the type inspect to the mission planner that is called every
time a Point of Interest is inspected that has the inspection type presence_detection
specified. It also interfaces with the render engine via the generateReferenceRender
service to receive reference renders of the images it receives in the inspect call.

<<ROS Package>>
quad_inspection

<<ROS Node>>
similarity_inspector

<<ROS Service>>
/renderer

generateReference
Render.srv

<<ROS Service>>

generateReferenceRender.srv

geometry_msgs/Pose capture_pose
std_msgs/String model

sensor_msgs/Image renderedImage

<<ROS Node>>
render_engine

<<ROS Action>>
/inspection/presence_detection

quad_msgs/inspect.action

<<ROS Action>>

quad_msgs/inspect.action

goal definition
quad_msgs/Poi poi

result definition
bool success

feedback
float32 progress

<<ROS Package>>
quad_trajectory_execution/

copter_manager

<<ROS Node>>
mavlink_copter_

manager

<<ROS Topic>>
/quad/inspection_image

sensor_msgs/Image

Figure 4.14. Component diagram of the inspection subsystem.

Render Service
The render service is used to provide reference renders to the similarity inspector. It is
implemented as a ROS node and provides the generateReferenceRender service for this
purpose. Upon receiving a service call, it loads the reference model from the path defined
in the parameter model. It does this like all other 3D-related tasks, using blender [78]
as the 3D engine. The model is loaded into a scene where the rendering camera and
some lights are added. The cameras’ focal length and sensor size are adjusted to match
the actual camera. When the generateReferenceRender service is called, the camera
is positioned and oriented based on the actual camera coordinates at the time of the
inspection, which are included as a parameter of the service call. An image is then
rendered and used as the return value of the service call.

138

4.2 Inspection Relative to an Assembly

Similarity Inspector

The similarity inspector was implemented as a ROS node. It provides the ROS action for
the inspection. The concepts described in Section 3.5.1 are implemented in this node. It
works by detecting the image of a render of the Point of Interest in the captured image
that is obtained from the copter_manager. The action call returns either true or false,
based on whether a match is found. In addition, the node stores the reference render as
well as the original image with a graphical overlay highlighting the detected part, so
they can be accessed by the post inspection tool (see: Section 4.4).
Upon receiving the action call, the node calls the generateReferenceRender service
call of the renderer to obtain the references for a correctly installed part and the entire
assembly. Subsequently, all images are checked for their dimensions and resized to match
the smallest image if necessary. Afterward, the template matching algorithm described
in Section 3.5.1 is performed using SuperGlue [172] for aligning the renders to the image
and OpenCV [205] for all other image processing tasks. Template matching is done
using the normalized cross-correlation coefficient of the OpenCV’s [205] matchTemplate
function. To visualize the error to an operator, the original image is overlaid with the
confidence value of the template matching algorithm and a box at the position where
the template was matched. This image is then stored alongside the confidence similarity
value of the match and the reference renders for later analysis in the post-inspection
tool. After finishing these operations, the action call returns, whether it was able to
successfully detect the Point of Interest in the provided image. If the Point of Interest
was successfully detected, the mission_control subsystem proceeds with inspecting
the next Point of Interest. Otherwise, the UAV might try to use alternative Viewpoints
to retry the inspection of the Point of Interest from a different perspective.

4.2.6 Photogrammetric Documentation of Assemblies

For implementing the concepts for photogrammetric reconstruction of assemblies using
the HEDAC coverage path planning algorithm as described in Section 3.6, a derivate
of the existing system for the inspection according to Figure 4.4 is used2. In the case
of the open loop system, the path is precalculated in a separate program and input to
the existing implementation with the inspection system configured to take an image of
the Point of Interest at each Viewpoint. For the close loop system, the mission control
and inspection node were replaced with a photogrammetry node that calculates target
velocities according to feedback it receives from an external instance of AliceVision
Meshroom according to Section 3.6. The images for the photogrammetric model creation
are provided by the photogrammetry ROS node, which receives them from the UAV
via the copter manager. AliceVision Meshroom [104] was chosen as a solution for the
photogrammetric reconstruction as it features an intuitive node-based workflow allows
the configuration of custom photogrammetry pipelines. This allows the system to be
tweaked to the specific use case, including the application programming interface (API)
2Many thanks to Simon Hornung, who implemented and evaluated parts of the photogrammetry system
as part of his master’s thesis [118].

139

4 Architecture and Implementation

necessary for integration into the control loop. Additionally, the program covers nearly
the entire photogrammetry workflow, including image preprocessing and creating a
textured, meshed model [283]. The following sections will cover an explanation of the
implemented photogrammetry pipeline as well as the architecture of the open- and
closed-loop system.

Photogrammetry Pipeline

Photogrammetric reconstruction was performed in the open source tool AliceVision
Meshroom [104]. It enables users to create customized Pipelines that consist of individual
processing nodes connected to each other in a pipes and filters-architecture. Each node
encapsulates a processing task and it’s inputs and outputs can be connected to other
nodes to form a directed graph. The tool also provides a Python API to integrate custom
functionality into the system.

Camera Init Feature Extraction Feature Matching

Structure from
Motion

Depth Map Meshing Texturing

Image Matching

Figure 4.15. Overview of the photogrammetry pipeline.

For creating the photogrammetric reconstruction of the models, a parameterized derivate
of the default photogrammetry pipeline provided by AliceVision Meshroom was used.
The general architecture of the pipeline is shown in Figure 4.15. In the camera initializa-
tion step, camera information like focal length, sensor size, and exposure information are
loaded from the image metadata and additional information is synthetically generated
or estimated where possible.
The succeeding feature extraction step focuses on detecting features that can be tracked
throughout multiple images and thus help with aligning multiple images and deter-
mining the cameras’ position. The extracted features need to be independent of ro-
tation, scale and lighting. Supported algorithms include natural feature extractors
like SIFT [167] or AKAZE [13] and marker-based features like CCTags [32] or April-
Tags [203] which can improve feature density on objects with little texture information.
However, since the entire positioning system was designed to work without markers,
the focus on the photogrammetric reconstruction process in this work will be on the
reconstruction of models without the help of additional markers. Examples for extracted
features would be edges or corners in the images or areas with a distinct texture. The
image matching step uses these features to find pairs of images that contain a high
number of identical features. The feature matching step then uses individual image pairs
and tries to find each features’ corresponding counterpart in the other image. This step
is done in preparation for the reconstruction of depth information from the images. The
Structure from Motion step (see: Ullman et al. [282]) reconstructs the camera positions

140

4.2 Inspection Relative to an Assembly

and orientations and 3D positions of features from the input images. This is achieved
by detecting and matching features across multiple images. The step uses triangulation
from matched points to compute their 3D locations. This generates a sparse point cloud
and the camera poses, the final, dense 3D model is calculated in a later step. The Depth
Map Estimation step computes a map for each image, which describes the distance
from the camera for each pixel. This is achieved by comparing pixels with those in
overlapping images to calculate their depth using Semi-Global Matching [114]. The
depth maps are then converted into a single 3D mesh consisting of vertices, edges, and
faces (triangles) that approximate the surface of the scene. This is done by combining
depth information from all images into a single dense point cloud. Subsequently, a
surface is generated on this cloud. Additionally, noisy data is filtered, and inconsistent
points are removed in this step. The reconstructed geometry in the form of a dense, 3D
mesh is then textured in the Texturing step. In this step, the original input images are
projected onto the 3D mesh to produce realistic textures by finding the best combination
of images to apply to each part of the mesh. The camera poses and visibility information
are used to determine which images best cover each face of the mesh. The step also
color blending between images, lighting correction, and seam minimization. The final
output of the algorithm is a textured 3D model in the form of a mesh file like .obj with
associated texture images which can later be viewed by an inspector to look for damages
or other manufacturing errors.

Open Loop Coverage

The open loop system implements the HEDAC planner and photogrammetry system as
separate components that can be deployed on an arbitrary system. This is possible, due
to the strictly sequential nature of all three components (planner, inspection flight and
photogrammetric reconstruction). They are separated using the generated Viewarea
and Point of Interest JSON files (in case of planner and inspection flight) as well as the
captured images (in case of the inspection flight and photogrammetric reconstruction)
as interfaces between the individual components. The JSON files are structured as
described in Sections 4.1.1 and 4.1.4 using the JSON structure defined in Listings 1 and 2.
This allows the existing mission and Viewpoint inspection system to be used for the
open loop system. Instead of an inspection, the system takes an image at the location of
the Viewpoint. For this purpose, a photographer node that offers an inspect action that
captures an image upon being called using a service provided by the copter_manager.
After completion, the captured images serve as only input for the photogrammetry
framework.

Closed Loop Coverage

For the closed loop system, the planner and photogrammetric reconstruction framework
were integrated into the existing system (see: Figure 4.16). The modified components are
highlighted in blue. The inspection subsystem and mission control node was replaced
with a photogrammetry subsystem that directly generates the target velocity for the
obstacle-avoiding navigation system. Captured images from the drone are automatically

141

4 Architecture and Implementation

downloaded via the copter manager and passed on to the photogrammetry implemen-
tation in AliceVision Meshroom via the photogrammetry subsystem. The resulting
3D model is returned to the photogrammetry subsystem where it is compared to the
original mesh based on the CAD model as described in Section 3.6. The API of the
3D modeling tool Blender [78] is used for this task. The resulting difference between
reference and current render is used to generate information for local cooling for the
HEDAC algorithm, which produces a new target velocity for the UAV.
AliceVision Meshroom was deployed on the Windows PC to reduce CPU load on the
mission control PC.

<<Device>>
Windows 10 PC

<<Device>>
Mission Control PC

U
ni

ty
 R

O
S

TC
P

C
on

ne
ct

or

<<Unity Application>>
QuAD Vision Vuforia

<<Execution Environment>>
ROS Noetic

<<Device>>
DJI RC Pro Enterprise

<<Android App>>
QuAD Connect App

<<Application>>
RTMP Server RTMP In

<<ROS Node>>
MavLink Copter Manager

M
AV

Li
nk

Estimated Position

<<ROS Subsystem>>
Position Estimation

<<ROS Subsystem>>
Navigation

Obstacle Data

IMU Data
C

am
er

a
Im

ag
e

RTMP Out

<<Application>>
AliceVision Meshroom Captured Images

Current Mesh

<<Device>>
DJI Mavic 3 Enterprise

DJI O3 Enterprise

<<ROS Subsystem>>
PhotogrammertryTarget Velocity

Target Velocity

Figure 4.16. Overview of the architecture of the photogrammetric system.

142

4.3 Monitoring and Controlling the Inspection

4.3 Monitoring and Controlling the Inspection
Even an automated inspection needs a means for an operator to start the inspection
process and monitor its progress. Similar to the situation of self-driving cars, not every
scenario in an inspection can be foreseen and covered by the programming of the UAV.
In addition, depending on the quality of the obstacle sensors, certain obstacle types may
not be recognized, and obstacle avoidance may fail under certain conditions.
For this reason, the Quad Ground Control-App was developed3. It serves as a ground
control station (see: Haque et al. [108]) to give the operator an overview of the state of
the mission and aircraft. It allows for the observation of critical parameters of the UAV,
verifies its behavior, and allows user intervention if the mission needs to be altered or
canceled. This is not only helpful during production use but was of great help during the
development of the system. Figure 4.17 displays the App’s main screen. The top right
area of the screen is used to display the live camera stream of the done. It is also possible
to display a virtual camera image generated by the simulation environment if a simulated
flight is performed. This is what is visible in the figure. The left sidebar features options
for viewing logs and changing settings but mainly provides more information about
the status of the aircraft. Information about battery level, connection status, and visual
tracking performance are displayed, as well as a visual representation of the obstacle
sensor measurements.
The mission status is displayed on the lower left, along with an option to start, pause,
and cancel a mission. To the right of this panel, information about the inspection is
displayed. This includes the name of the assembly that is inspected as well as the
trajectory, POIs, and obstacles that are used to perform the inspection. The next panel
to the right displays the current waypoint and the progress on the trajectory to the
waypoint. The Position Panel displays the UAV’s current estimated position along with
the commanded and current velocity. On the right side, four slider buttons allow the
operator to send high-level control commands to the UAV. Using these buttons, the
mission is paused, and the UAV either hovers, lands, returns to its home positions,
or immediately turns off all its engines for an emergency stop. To avoid accidentally
triggering these functions, they were implemented as a slider button that requires the
white icon on the left to be dragged to the right to perform the action. The application
was developed as a ROS node using python and PyQt as framework for the user interface.
It interfaces with the rest of the system using the various topics, services and actions
described in this chapter.

4.3.1 Watchdogs

To reduce pilot task loading and minimize the impact of human error, several checks are
performed automatically by individual watchdogs. These watchdogs also automatically
take preventative actions to avoid accidents. The first watchdog is the previously
mentioned collision avoidance watchdog. It monitors the UAVs’ distance to the closest
obstacle and automatically triggers an emergency hover when it falls below the preset
3Many thanks to Simon Hornung, who implemented the QuAD Ground Control Application as part of
his bachelor’s thesis [117].

143

4 Architecture and Implementation

Figure 4.17. Overview of the QuAD Ground Control App.

threshold. This allows the pilot to manually maneuver the UAV clear of the obstacle and
continue the inspection afterward. The watchdog for the UAV battery level continuously
monitors the battery voltage in the background and triggers alarms if the battery level
gets too low. On reaching 20% remaining battery charge, the mission is paused, and
a message is displayed to the operator informing him about the problem. Should the
operator continue the inspection, the UAV automatically performs a return to home and
lands once it reaches 10 % remaining charge. In addition, the model tracking status is
monitored by a separate watchdog. If the model tracking is lost for more than 3000ms,
the watchdog makes the UAV perform an emergency hover to avoid movement in an
unwanted direction. Since the UAVs used in the system can perform a stable hover
without external positioning systems, hovering without position feedback from the
model tracking is possible. All watchdogs also cause notifications in the QuAD Ground
Control App that inform the user of the problem and propose potential solutions. All
watchdogs are also realized as separate ROS nodes and can be individually included or
excluded in the launch configuration should a certain service not be needed.

144

4.4 Visualization of Inspection Results

4.4 Visualization of Inspection Results
A separate tool was developed to visualize the results of the inspection. It was created
in C# using the Unity game engine [273]. The required data is exported after the
inspection flight in a predefined folder structure containing the flown trajectory, Points
of Interest, Viewpoints, captured images and videos as well as the result of the performed
inspection actions for each Point of Interest. The tool visualizes the data generated by
the inspection in various ways. In the application, the user is presented with a 3D-model
of the inspected assembly that was generated from the CAD data and annotations.
This part of the application can be seen in Figure 4.18. The model augmented with
information about the POIs and UAV trajectory. One of the main features is the ability

Figure 4.18. Augmented 3D model of the assembly.

to view the recorded video segments of an arbitrary part by selecting it in the model.
Based on the flight trajectory of the UAV and the camera focal length, the sections
of the video that contain this part are then calculated. The video of the inspection is
then presented to the user using a specialized video player. The seek bar of the player
contains color-coded information about the visibility of the part at the respective time
(see: Figure 4.19). In addition, the player by default only plays the green segments
that represent the sections of the video where the selected part is in the shot. After
an arbitrary green segment ends, the playback skips forward to the beginning of the
following green segment. In addition to video information, the pictures taken during
the inspection can also be accessed from the 3D-model-view. The user can view the
images that were taken of a POI by clicking on it. If available, additional information
about the inspection status of the POI can also be accessed this way. The inspection
result is, however, also displayed in the 3D-view through color-coded POIs. While not
implemented, it would be possible to add plugins that export the gathered inspection
data to various PLM systems to store inspection results at a centralized place.

145

4 Architecture and Implementation

Figure 4.19. Custom Video Player for selective playback of an inspection flight.

146

Summary. This chapter presents the hardware used for testing
the developed system in form of the UAVs used and assemblies
that were obtained or constructed for test-inspections. Fur-
thermore, the developed simulation environment is presented
and the results of the proofs of concept and evaluations of the
individual concepts are discussed. 5

Prototypes and Evaluations

5.1 Evaluation Hardware and Simulation 149
5.1.1 Flight Arena . 149
5.1.2 Inspection Drones . 150
5.1.3 Assemblies for Inspection Tests 155
5.1.4 Simulation Environment 157

5.2 Inspection of Aircraft Fuselage 162
5.2.1 Planning Algorithm Performance 162
5.2.2 Path Optimization Through Viewarea Intersection 164
5.2.3 Path Optimization Across Inspections 166
5.2.4 Positioning Performance 169
5.2.5 Obstacle Avoiding Relative Navigation 174
5.2.6 Performance of the Coverage Algorithm 186
5.2.7 Presence Detection on an Assembly in a Production Scenario 193

5.3 Inspection of a Wind Turbine 197
5.3.1 Influence of Component Velocities on the State Estimate . 198
5.3.2 Kinematic Localization with Changing Reference Frames . 199

“In God we trust,
all others bring data.”

—W. Edwards Deming

147

5 Prototypes and Evaluations

To verify the concepts described in Chapter 3 and their implementation, multiple pro-
totypes were built. These were used to prove the concepts and evaluate the solutions
against the current state of the art. This chapter discusses the prototypes that were built
for the thesis as well as the mentioned proofs of concept and evaluations that were per-
formed utilizing them. It also covers the results of the evaluations that were performed.
To understand the different prototypes, the hardware and simulation environment used
for simulated tests are described first. This includes the flight arena in which all non-
simulated tests were performed, the different UAVs used, and the structures used for
inspection tests. In addition, the simulation environment that was built for the simulated
tests is presented. Afterward, the focus is set on the evaluations performed for the case
study that covers the inspection of an aircraft fuselage part in production. This includes
performance tests of the path planning algorithm and the proposed optimization through
the intersection of Viewareas. Then, different evaluations of the relative navigation
alongside an assembly are discussed. In addition to evaluating the performance of the
inspection of a stationary assembly and the obstacle avoidance system, the advantages
of the path optimization across multiple similar inspections are shown. The last proof
of concept presented in this section consists of a performance demonstration of the
coverage algorithm by performing a photogrammetric reconstruction of two fuselage
parts. Because no wind turbine was available for real-life tests and the use case also
applies to the manufacturing case study, the coverage algorithm was tested in this case
study. Nevertheless, multiple tests were performed to evaluate other concepts of the
wind turbine inspection case study. This includes the positioning accuracy relative to
a moving wind turbine blade. This was done using a fixed reference frame and while
switching reference systems between independently moving parts of the turbine. In
addition, the localization performance with and without the help of model tracking is
demonstrated.

148

5.1 Evaluation Hardware and Simulation

5.1 Evaluation Hardware and Simulation
The tests in this work were conducted partly with real hardware and partly in simulation.
A simulation environment for virtual test flights made it possible to quickly verify
implemented concepts and consider scenarios, such as the inspection of a rotating wind
turbine for which no suitable hardware was available. For this reason, this section not
only discusses the flight arena within which the hardware experiments were conducted,
as well as the UAVs used and the components tested, but also introduces the developed
simulation environment.

5.1.1 Flight Arena

The indoor flight arena in which all real-world experiments were carried out was also
conceptualized and implemented as part of this thesis. The general structure of the
arena can be seen in Figure 5.1. It consists of an aluminum truss construction spanning
a volume of 16m (length) by 8m (width) by 6.5m (height). The arena is fitted with a
camera-based Vicon motion capture system [279] that allows tracking the position and
orientation of objects inside the arena that are equipped with infrared markers. These
markers work by either passively reflecting infrared light emitted by the camera or
actively emitting this light with LEDs. Multiple cameras then capture this light, and
a central control unit triangulates the position of each marker based on its relative
position in the individual camera images. For the detection of the markers, 20 Vicon
Vantage V16 [280] cameras are mounted to the trusses with an additional 10 Vicon
Vantage V5 [281] available to be placed on tripods anywhere inside or around the arena.
The latter allows for better coverage of areas where the view of the cameras on the
trusses may be obstructed. To perform test flights safely, the side walls of the arena
are closed off using nylon nets used for sports venues like tennis courts. This prevents
UAVs and other objects from leaving the arena. To use different parts of the arena for
other experiments, it can also be split into three identically sized sub-arenas using the
same kind of nylon nets that line the perimeter of the area. This also allows humans to
enter a sectioned-off part of the arena while the rest is used to perform test flights. The
large inside volume of the arena allows for test flights with larger structures like the tail
section of an Airbus A320 aircraft, described in a later section of this chapter. While the
Vicon tracking system is not used for the final position estimation of the UAV, its ability
to track objects with sub-millimeter precision [187] allows it to be used as a ground truth
for evaluating the precision of the model tracking-based positioning approach. It was
also used as a substitute to evaluate navigation and obstacle avoidance algorithms before
the model tracking positioning was fully functional. The Vicon Tracker software runs
on a separate Windows PC and provides transformations of all tracked objects relative
to a predefined origin. These transformations are provided in the ROS transformation
graph via the vrpn_client_ros [79] package. Figure 5.1 shows the current state of the
flight arena. It offers enough space not only to contain the A320 tail section but also to
accommodate multiple other experiments as well as desks for personnel to develop and
execute the software needed for these experiments and demonstrators.

149

5 Prototypes and Evaluations

Figure 5.1. ISSE Flight arena.

5.1.2 Inspection Drones

During the development of the system presented in this work, multiple UAVs were
used to perform test flights. The UAV models chosen for the experiments were the DJI
Mavic 2 Enterprise Dual (see: Figure 5.2) [251] and the DJI Mavic 3 Enterprise (see:
Figure 5.4) [252] out of the DJI Mavic product series. Multiple factors contributed to this
choice. The DJI Mavic UAVs come with an onboard camera that is stabilized by the UAV
on three axes (roll, pitch, yaw) [250]. The camera gimbal can also be manually moved in
all axes to point the camera at a part that must be inspected. The camera image can then
be transmitted via the network to the model tracking tool to establish position tracking
and to any tool that is used to perform the actual inspection. While the live video can
be transmitted with up to 1080p, the UAV can also record videos with a resolution of up
to 3840×2160 at 30FPS and take pictures with a resolution of up to 48 megapixels. The
maximum resolution and frame rate that can be achieved varies from model to model.
The captured images and video can be transferred from the UAV automatically using the
built-in API. This API and the corresponding Mobile SDK are another reason this series
of UAVs was chosen for the experiments. Using an App that was developed for this exact
use case with the Mobile SDK V4 [253] and v5 [254], the UAV’s functionalities were
extended in a way that allows them to accept MAVLink [219] commands that are sent
from the main ROS program. More details on the QuAD Connect App follow later in this
section. Another factor that led to the selection of the DJI Mavic series UAVs is that they
are lightweight and compact enough to perform flights inside confined spaces like the

150

5.1 Evaluation Hardware and Simulation

inside of an aircraft fuselage. The UAVs are built with a plastic chassis and use composite
propellers with soft edges. Compared to other UAVs that feature a carbon fiber chassis
and props, this is less likely to cause significant damage to the environment should a
collision or crash occur. Additionally, the UAVs are equipped with obstacle sensors and
an onboard obstacle avoidance system. While the built-in obstacle avoidance system is
disabled for all test flights to get closer to the object to be inspected, the obstacle sensor
data is used via the QuAD Connect App to perform the obstacle-avoiding navigation
described in Chapter 3. In addition, an in-house solution for crash prevention was
implemented that allows the UAV to get much closer to obstacles but still prevents
collisions reliably if the obstacle-avoiding navigation fails. This system uses another
feature that is especially favorable in DJI Mavic UAVs: Stable hover without GNSS lock.
While most other UAVs require position feedback from a GNSS system like GPS to
achieve stable flight, the DJI Mavic series of UAVs allows for a stable hover of the UAV
using only its onboard sensors. While the Manufacturer does not disclose precisely
how the UAVs maintain a stable position without a GPS-fix, it is assumed that data
from the IMU, obstacle sensors, and a downward-facing optical flow sensor, as well as a
barometer, is used to prevent movement in all axes. This allows for the implementation
of a soft emergency stop that allows the UAV to hover in place if, for example, it gets
too close to an obstacle or the communication to the central control program is lost. In
addition to this general overview, the following paragraphs discuss the specifications of
the individual DJI Mavic models that were used throughout the tests and give a detailed
look into the QuAD Connect App that was used to relay commands from the ROS
program to the UAV and functions as a means to control the UAV in situations when
the operator must intervene with the automated program.

DJI Mavic 2 Enterprise Dual

The first UAV available for experiments is the DJI Mavic 2 Enterprise Dual (M2ED,
see: Figure 5.2) [251]. It is equipped with a visible light and a 640 × 360 pixel thermal
camera. The thermal camera makes it possible to perform a variety of additional
inspection types with this UAV. The thermal camera can be used to detect faults in
electrical and electronic components while in operation by detecting anomalies in the
circuit’s temperature caused by short circuits or high resistance through loose electrical
connections. Additionally, faulty mechanical components can be detected when an
increase in friction causes increased heating of mechanical components. Relevant for CS2
(see: Section 1.2.2) is the ability to automatically detect defects like cracks, delaminations,
or dents using a combination of visual-light and thermal cameras [186].

The visible light camera has an 85°field of view (equivalent to a focal length of 24mm on
a full-frame camera) and can capture images with a resolution of up to 12 megapixels
and record 4K videos. However, the resolution of the live image that is streamed to the
remote control is limited to 720p. Both cameras are mounted to a single 3-axis gimbal,
making it possible to independently stabilize or lock all three axes to a defined angle
either relative to the horizon (for pitch and roll) or the UAV (for yaw).

151

5 Prototypes and Evaluations

The UAV is also equipped with an extended port, which allows the operator to mount
accessories to the aircraft. These could be a speaker, a beacon light for flights at night,
or an RTK module for increased positional accuracy. Especially relevant for inspections
is the spotlight module that enables the UAV to illuminate dark areas when doing an
inspection inside a structure (see: Figure 5.3).
The dimensions of the UAV are 445 (length) x 525 (width) x 92 (height) millimeters. This
makes it smaller than most other UAVs used for inspections. However, the smaller size
comes at the cost of a smaller payload capacity, no modular sensors (except for the
RTK-module), and no 2D-LiDAR for obstacle avoidance. The UAV has an advertised
flight time of 31 minutes, enabling long inspection flights. The hover accuracy without
a GPS-fix is advertised as 0.1m (in z-direction) and 0.3m (in x- and y-direction). The
obstacle avoidance system is proprietary but presumably works using a combination of
stereoscopic cameras as well as ultrasonic and laser distance sensors. It converts the
data of these sensors to 12 different distance measurements (four sectors each in the
front and rear, one each on the top, bottom left and right), with each sector covering a
relatively large area. Unfortunately, the UAV is not fully supported by the DJI Mobile
SDK V4, and parts of the documented features are unavailable. The already very basic
obstacle detection is not fully supported by the SDK, with only the four front and rear
sensors working properly.

Figure 5.2. Image of DJI Mavic 2 Enterprise
Dual.

Figure 5.3. Headlight attachment illuminat-
ing inside of plane fuselage.

DJI Mavic 3 Enterprise

The DJI Mavic 3 Enterprise (M3E see: Figure 5.4) [252] is the successor to the Mavic
2 Series. It is equipped with a dual camera (one wide angle and one with a zoom
lens) mounted on a three-axis gimbal that works like on the Mavic 2 Enterprise Dual.
Compared to the M2ED, the primary, wide-angle camera uses a larger 4/3 inch sensor,
resulting in better image quality and an image resolution of 20 megapixels, while the
resolution of the live camera stream is increased to 1080p. Like its predecessor, it is
equipped with an extended port for mounting accessories and has a similar hover-
precision when not using GPS. With dimensions of 488 (length) x 560 (width) x 105

152

5.1 Evaluation Hardware and Simulation

(height) millimeters, it is also small enough to perform inspection tasks in relatively
tight spaces. The maximum flight time is advertised as 45 minutes, making even longer
inspections possible. The main advantages of the M3E over the M2ED are the improved
support for the newer Mobile SDK V5 and the improved obstacle detection system.
Better sensors on the UAV enable obstacle measurements in 360 individual sectors in
1°increments around the UAVs yaw axis as well as one measurement each for obstacles
above and below the UAV. These measurements are fully accessible through the SDK
and allow for better obstacle avoidance when navigating.

Figure 5.4. Image of DJI Mavic 3 Enterprise.

QuAD Connect App

The QuAD Connect App was developed as an interface between the ROS environment
and the DJI UAVs. It is executed on the respective remote controller of each UAV. The
controllers internally run an Android operating system, so the program is implemented
as an Android App. It translates MAVLink packages sent by ROS to the proprietary radio
protocol of the DJI UAVs using the DJI Mobile SDK and returns telemetry data sent by the
UAV to ROS. The MAVLink interface was realized using the io.dronefleet.mavlink
library, and the controller sends the MAVLink traffic over Wi-Fi over a UDP socket. The
App works as an abstraction layer, thus maintaining compatibility of the system with
other MAVLink-compatible UAVs.
Apart from working as an adapter between the two protocols, the App provides several
other features. A configuration page is available for setting up the live camera stream,

153

5 Prototypes and Evaluations

the state of the aircraft and its onboard sensors can be checked, and several advanced
control options and settings are available in the App. This includes recording pictures
and videos, controlling accessories like the spotlight, turning the internal obstacle
avoidance on or off, or performing high-level flight maneuvers like takeoff and landing.
Of course, the UAV can also be controlled manually using the gimbals of the remote
control. This feature is essential when the obstacle watchdog triggers an emergency
hover and the UAV must be manually maneuvered away from an obstacle. Also, debug
output in form of log messages can be viewed to diagnose communication problems.
Figure 5.5 shows an exemplary screenshot of the App’s camera screen. The upper status
bar (1) is visible on all screens. It shows important information about the UAVs’ battery
life, mission state, and connections to ROS, the copter_manager-node, and the Ground
Control Station. The main screen shows the live camera image taken by the UAV and
provides buttons to start a video recording (3), take an image (4), and start a video
stream to Vuforia tracking and possible inspection tools. The stream URL can either
be manually set (5), or a preset can be selected (6). The status of the recording (2) and
stream (8) is also displayed.

Figure 5.5. Live camera view of QuAD Connect App.

While the QuAD Connect App offers options that allow for configuration of the system
at a reasonably low level, during regular operation, an interaction between the remote
and the operator is not intended. Most of the interactive features in the App are used
for development purposes only.

154

5.1 Evaluation Hardware and Simulation

5.1.3 Assemblies for Inspection Tests

Multiple objects were used as inspection targets to conduct the evaluations described
in the following sections. The object that allows for the most realistic recreation of a
scenario for case study 1 is part of the tail of an Airbus A320 aircraft (see: Figure 5.6). It is
named Section 19 internally and is located towards the back of the aircraft, right behind
the bulkhead for the pressurized cabin. It houses mainly mechanical, hydraulic, and
electrical components as well as plumbing for the rudder and elevator. Finally, it contains
the structural mounts for the horizontal and vertical stabilizers. During production at
Premium Aerotec, numerous brackets are fitted and riveted to the main body of the part
and subsequently inspected. This makes it ideal for performing integration tests of the
whole system once working as well as for tests where a larger structure is needed. As a
side note: The Section 19, which was provided to us for testing, was an actual production
part that had to be scrapped due to a wrongly mounted bracket that was detected during
inspection. This was further motivation demonstrating that inspection of such parts
is essential and must be performed carefully. Premium Aerotec provided the assembly
together with an assortment of carbon fiber brackets. In addition, 3D printed custom
brackets were designed for some test scenarios. Both types of brackets can be freely
positioned on the Section 19 using industrial double-sided tape to simulate different
mounting scenarios for brackets that need to be inspected. The full CAD model of this
assembly was also provided, allowing for the generation of precise tracking models in
the Vuforia Tracking Software. Unfortunately, though, due to legal constraints, Vuforia’s
AI-enhanced "Advanced Model Targets" could not be used because this would require
sending the CAD data to the Vuforia cloud.

The second part that was used for experiments was internally named the door because
it resembles the shape of an aircraft door (see: Figure 5.7). It is, however, a cutout
section of the carbon fiber outer hull of an Airbus A350 aircraft. It features a cutout
for a window and multiple stringers that are incorporated into the carbon fiber during
construction. Furthermore, it is still quite large with a height of about 1m but in contrast
to the A320 Section 19, it gives the UAV more freedom to manouver around it, because
the space between the A320 Section 19 and the outer bounds of the flight arena is quite
limited due to its size. This makes it ideal for smaller proof of concept for tasks like
testing the coverage algorithm in hardware. Unfortunately, due to the part being a
free hand cutout out of a larger part that was to be scrapped, there is no exact CAD
model available, which makes the part less suited for tasks like the evaluation of visual
tracking or inspection-tools.

Parts of the work for this thesis was done during the Covid-19 pandemic. This resulted in
limited access to laboratories for testing. In order to be able to evaluate the performance
of various visual tracking and inspection tools without access to a huge lab, a small,
3D-printable assembly was developed titled the Homeoffice-Fuselage (see: Figure 5.8). It
resembles the larger, door-shaped carbon fiber part mentioned above, but CAD models
are available for all parts due to its in-house construction. Also, there are no constraints
caused by the intellectual property of the model, as with the A320 Section 19. This allows
for most of the tests needed to evaluate tracking and inspection tools to be performed

155

5 Prototypes and Evaluations

with this model. It is also small enough to be printed by most 3D printers and fits on
a regular desk when working in a home office. An additional feature that was added
to facilitate testing was the integration of magnetic mounts for various 3D-printed
brackets. These are also equipped with magnets and snap onto the main fuselage. The
rotation is limited to 4 fixed directions by the shape of the socket on the main body. This
allows for the repeatable placement of the brackets and is an easy way to reconfigure
the assembly quickly for tests.

Figure 5.6. Partially assembled "Section 19" of an Airbus A320 Aircraft used for testing.

156

5.1 Evaluation Hardware and Simulation

Figure 5.7. Cutout of center section of an
Airbus A350 Aircraft.

Figure 5.8. 3D-printed mockup of an aircraft
fuselage part with reconfigurable mounting
brackets.

5.1.4 Simulation Environment

Without an adequate simulation environment, developing and testing most of the system
described in Chapter 3 would require constant access to a laboratory where test flights
can be performed. A great deal of testing is required during development, especially
when developing and testing navigation and obstacle-avoidance algorithms. This can
cause delays due to limited physical resources like the number of UAVs, access to the
flight arena, etc. A simulation environment was developed to remove the requirement for
physical testing. The system simulates an entire inspection flight and allows most of the
development and testing phase to be performed in simulation. Simulation of only parts
of the system is also possible. This allows, for example, the simulation of the component
inspection while the rest of the flight is performed in hardware. Figure 5.9 shows the
developed nodes that replace the physical UAV and their interfaces. In addition to
replacing the physical copter manager with a simulation using the tool rotorS [94], the
distance sensors, model tracking, and IMU data and inspection component are also
simulated. The overall strategy when developing simulated replacement nodes for the
system was to use the messages, services, and actions the component either uses as
interfaces to develop against. The simulated components, therefore, offer and use the
same services and actions and publish or receive messages from the same topics as
the actual implementation. This allows for arbitrary components to be replaced by

157

5 Prototypes and Evaluations

their simulated counterparts. It is also possible to use the tool rosbag [89] provided
by ROS to play back recorded messages from real or simulated flights that can be
used in conjunction with node implementations of both simulation and reality. The

<<ROS Package>>
quad_trajectory_execution/

simulation

<<ROS Topic>>
/quad/cmd_vel

geometry_msgs/TwistStamped

<<ROS Node>>
rotorS_copter_manager

<<ROS Node>>
simulated_camera_tracking

<<ROS Node>>
simulated_distance_sensors

<<ROS Topic>>
/tf

tf2_msgs/TFMessage

<<ROS Topic>>
/quad/obstacle

quad_msgs/ObstacleDistance

simulated_camera_tracking

mavic2pro/base_link

mavic2pro/base_link

<<ROS Node>>
simulated_inspector

<<ROS Action>>
/inspector

quad_msgs/inspect.action

<<ROS Topic>>
/quad/cmd_vel

quad_msgs/ControlSystemState

Figure 5.9. Implemented Nodes that replace the real-world UAV for simulation.

flight dynamics of the UAV are simulated in the rotorS_copter_manager. It works in
conjunction with a simulated UAV set up in the rotorS simulator for Gazebo [86]. The
node works as a driver to adapt the interface rotorS offers to the services, actions, and
topics required by the rest of the developed system. In rotorS, the simulated UAV was
configured, so its flight characteristics match these of the used DJI Mavic UAVs as closely
as possible.

Simulated Obstacle Sensors
Developing and testing navigation algorithms and obstacle avoidance strategies require
the simulated system to detect obstacles. This part of the system especially benefits from
a development in simulation as the multitude of crashes caused by bugs in the obstacle
avoidance have significantly less impact in simulation than in a real-world test. RotorS
supports the simulation of obstacle sensors that behave similarly to a LiDAR sensor,
reporting distance measurements at a precise angle relative to the UAV. Unfortunately,
measurements of this sensor correspond to a single point, which does not match the
behavior of the obstacle sensor values reported by the M2ED and M3E. Instead, these
report the obstacle values in wider sectors and the distance to the closest obstacle in
the sector. Therefore, a separate node was implemented to emulate this behavior using
the available LiDAR or laser sensors. This is done by defining a separate laser sensor
for each obstacle sector of the respective UAV. The sensor is configured to cover the

158

5.1 Evaluation Hardware and Simulation

same horizontal and vertical angle as the corresponding sector and provide distance
measurements in 1°increments in both axes.
The simulated_distance_sensors node then processes this raw obstacle data. The
node extracts the minimum measurement of each sector and publishes it as the final
obstacle message in the format required by the rest of the system. Using this strategy,
a good approximation of the behavior of the obstacle sensors of the real UAV can be
achieved. Obstacles can be loaded into the simulation in form of meshes representing
the objects. This allows building virtual environments for the UAV to navigate through
using the simulated sensors. Figure 5.10 shows an example of such an environment. The
blue dots on the box-shaped obstacle represent sensor measurements of the simulated
obstacle sensors. Obstacle measurements outside the detection range of the UAV are
not visualized in the simulation. The obstacle sensors can detect the added box-shaped
obstacle, the model of the assembly on the left, and the ground plane.

Figure 5.10. Screenshot of the simulated flight in Gazebo.

Simulated IMU and Camera Tracking
To evaluate and test the sensor fusion algorithms in simulation, nodes were created that
emulate the behavior of both systems. The simulated IMU emulates the drift introduced
by the numeric integration performed by the IMU. To generate a message of the type
quad_msgs/ControlSystemState as with the mavlink_copter_manager (see: Figure 4.5)
the rotorS_copter_manager uses the transformation of the UAV base link provided by
rotorS to calculate the required values for the message. The position and orientation
are directly calculated using this transformation. However, they are transformed to use
the starting position of the UAV as a reference frame as with the real UAV. Velocities

159

5 Prototypes and Evaluations

and accelerations are calculated by numeric differentiation using the current and last
position or velocity and the time interval between the two measurements. Rates for roll,
pitch, and yaw are calculated the same way. To emulate the error introduced through
numeric integration, a small, random error is added to the position and linear velocity
values to simulate the drift introduced by the real system. Since the real UAVs use their
compass and the gravity vector measured by their accelerometer in their internal sensor
fusion to compensate drift in the orientation and rate measurement, these values are
left as is. Lastly, the finished values are published as a quad_msgs/ControlSystemState
message with the same frequency as the real message.
The simulation of the model tracking is done by adding jumps (positional and rotational
offsets) at random time intervals to emulate a wrongly matched model. The transfor-
mation from assembly to camera frame Tc

a that is normally provided by the tracking
can easily be looked up in the transformation tree of the tf2 package. Since both the
position of the UAV and the assembly are defined relative to a global /world frame, it
can be calculated using Equation (5.1).

Tc
a = Ta

w ·Tw
u ·Tu

c (5.1)

With:
• Ta

w begin the transformation of the assembly in the world frame, which is manu-
ally published to define its position in the world.

• Tw
u being the inverse of the simulated UAV position in the world frame (published

by rotorS).
• Tu

c being the transformation from the camera gimbal to the UAV base.

Offsets of varying amplitude are added to offset and rotation of the transformation
at random time intervals to simulate the effect of jumps before the transformation is
published into /tf to be used by the position estimation system.

Inspection
The inspection component can also be replaced by a simulated counterpart. In the
evaluation of the path optimization across inspections, the inspection process was
simulated using the simulated_inspector node. This allowed for repeatable timings
of the inspection results and, therefore, identical conditions throughout multiple flights.
The node implements an action server for the quad_msgs/inspection.action through
which it receives the ID of the current viewpoint and publishes the inspection progress
and a final result. The results and timings of the inspections can be predefined using a
JSON file and are automatically published at the appropriate time, emulating the result
of an inspection software.

Alternative Position Measurement Using Vicon Tracking
While not a simulation, the position measurement of the model tracking systems can
be replaced using the Vicon motion capturing system installed in the flight arena.

160

5.1 Evaluation Hardware and Simulation

Even if it is not intended to be used in the final system, using Vicon for position
measurement is more precise and eliminates potential problems with the model tracking
when implementing or testing different parts of the system. A pattern of five reflective
markers was created on both the M2ED and M3D to achieve good tracking results. The
measurement of the model tracking is performed relative to the gimbal_frame of the
UAV. Therefore, the markers would have to be mounted to the camera at the end of the
gimbal of the UAV. Since the camera does not offer enough space to mount the markers,
they are placed on the UAV body instead, allowing measurement of the position of
the base_frame of the UAV. This requires using the transformation from base_link to
gimbal_frame to arrive at an equivalent measurement of the model tracking. Also, the
coordinates of the UAV are measured in the reference frame of the Vicon system, which
is placed arbitrarily in the arena. Through equipping the assembly with markers and
tracking it as well to receiveTa

vo, the transformation between camera and assembly can
be determined using Equation (5.2).

Tc
a = (Ta

vo)
T ·Tu

vo ·Tc
u (5.2)

With:
• Tc

a being the transformation from assembly to camera frame.
• Tc

u being the transformation between camera and UAV.
• Tu

vo being the Vicon position of the UAV base.

161

5 Prototypes and Evaluations

5.2 Inspection of Aircraft Fuselage
In order to evaluate the effectiveness of the developed system in CS1, several smaller
evaluations and proofs of concept were performed. The evaluation of parts of the im-
plementation was already presented in previous work [293], [246], [247] but is covered
in full here for the sake of completeness. First, the performance of the planning algo-
rithm and its optimization strategies were validated. Afterward, the accuracy of the
position estimation of the UAV was evaluated along with several of the developed navi-
gation strategies and the collision avoidance system. Lastly, the rudimentary inspection
algorithm, as well as the photogrammetric reconstruction of assemblies, were tested.

5.2.1 Planning Algorithm Performance

The planning evaluation of the path planning algorithm was performed in three steps.
First, an optimal parameterization for the Ant Colony System implementation was
determined using the Att48 TSP benchmark dataset in order to compare the result
to other implementations. In a second step, the optimization using the intersection of
multiple Viewareas was evaluated using the example of inspecting an aircraft fuselage
part. Lastly, the integration of knowledge acquired during an inspection into future
paths was demonstrated using an inspection scenario where the initial Key Viewpoints
were either unreachable or obstructions prohibited an inspection from the position of
the initial Key Viewpoint. The following sections cover all three steps of the evaluation
in detail.

Evaluation of the ACS Implementation

In order to compare the algorithm performance to the current state of the art, a reference
dataset that is widely used in other work was used. The dataset used was the Att48
TSP benchmark dataset [85]. It contains a set of 48 US cities. The minimal length
for a round trip visiting all cities is 33523. The algorithm was parameterized using the
information from Pettersson and Lundell Johansson [213]. The number of antsm, for a
given number of cities or Key ViewpointsN as well as the values for β and ρ are shown
in Equation (5.3).

β = 5, ρ = 0.5, m = ⌊0.3 ·N⌋ (5.3)

The intent of the evaluation was to examine whether increasing the number of iterations
from the originally proposed ⌊2000m ⌋ by Pettersson and Lundell Johansson [213] would
yield better results. To do this, the algorithm was executed with different iterations
ranging from twice to 7 times the original amount of iterations (see: Table 5.1). The
average distances calculated over 10 passes with each parameter set can be seen in
Table 5.1, along with the required calculation time.
The best single result was a distance of 34023.35, achieved with ⌊2000/(m/7)⌋ itera-
tions. This is 577.36 km less than the best distance found by Chaudhari and Thakkar [38]
(34600.71 km) on the Att48 record. Figure 5.11 shows the relation between execution time

162

5.2 Inspection of Aircraft Fuselage

and quality of solution found in this evaluation. Although the best distance was found
with ⌊2000/(m/7)⌋ iterations, on average, using more than ⌊2000/(m/2)⌋ iterations
did not yield better results.

Application to an Inspection Scenario

After a successful evaluation of the algorithm on the Att48 dataset, a hypothetical
inspection scenario was created to evaluate the performance on an inspection. The
inspected part and its POIs can be seen in Figure 5.12. Overall, 49 POIs were specified
on the assembly. From these POIs, 49 corresponding Viewareas and Key Viewpoints
were calculated. The Key Viewpoints were used as input for the ACS-algorithm, which
was executed for 10 iterations and produced a trajectory with a length of 66.2m. The
resulting trajectory can be seen in Figure 5.14b.

Iterations ∅ length [in km] ∅ time [in s.]
2000 / (m / 2) 36483.416 84.262
2000 / (m / 3) 35937.116 124.487
2000 / (m / 4) 36261.336 173.377
2000 / (m / 5) 36031.142 217.897
2000 / (m / 6) 36061.551 247.518
2000 / (m / 7) 35929.504 293.229

Table 5.1. Comparison of the achieved lengths and execution times of the ACS algorithm with
different number of iterations (Table source: Wanninger et al. [293]).

Figure 5.11. Execution time and average distance based on number of iterations.

163

5 Prototypes and Evaluations

5.2.2 Path Optimization Through Viewarea Intersection

After verification of the ACS implementation, the inspection scenario developed for
Section 5.2.1 was used as a baseline for the optimization based on Viewarea Intersection
presented in Section 3.2.3. This evaluation aims to determine how much the inspection
path can be shortened using the VA intersection. After the calculation of VAs from the
initial list of 49 POIs, the developed system intersects the resulting VAs. Afterward,
the initial 49 Viewareas are reduced to 21 that meet the minimum size requirement.
Figure 5.13 shows the difference between unoptimized (left) and optimized (right)
Viewareas.
The Key Viewpoints of the resulting Viewareas are then used to plan an inspection path
using the ACS implementation. This results in a trajectory length of 41.3m. Compared
to the 66.2m of the unoptimized trajectory, meaning the optimization results in a 37.6 %
reduction of trajectory length. In addition, by reducing Viewareas, the UAV only needs
to navigate to 21 Viewpoints instead of 49. This results in a 57% reduction in braking
and acceleration maneuvers, not only speeding up the inspection but also conserving
battery power. Figure 5.14 illustrates the optimized vs. unoptimized trajectory paths and
clearly demonstrates how Viewpoints that lie in proximity to each other are combined
into a new VP.
The evaluation demonstrates that the optimization through the intersection of VAs
reduces trajectory length and UAV stops, decreasing total inspection time. It also
simplifies the trajectory planning by reducing the problem space. This lowers the
required computation time for path calculation.

Figure 5.12. Model of the inspected assembly.

164

5.2 Inspection of Aircraft Fuselage

Figure 5.13. Result of the unoptimized (left) and optimized (right) Viewarea calculation. The
optimization reduces the number of Viewareas from 49 to 21.

(a)

(b)

Figure 5.14. (a) optimized trajectory consisting of 21 Key Viewpoints with a length of 41.3m
and (b) unoptimized trajectory consisting of 49 Key Viewpoints with a length of 66.2m. Image
source: Schörner et al. [246].

165

5 Prototypes and Evaluations

5.2.3 Path Optimization Across Inspections

In order to evaluate the optimization across multiple similar inspections described in
Section 3.2.4, a different inspection scenario was created. A structure with three different
POIs (POI1-3) is used for the UAV to inspect (see: Figure 5.15). To test the performance
of the cross-inspection-learning, an obstacle can be placed strategically so one of the
original Key Viewpoints cannot be reached. It is also possible to prevent the simulated
inspection from returning an inspection result for an arbitrary VP. This simulates an
obstacle blocking the view of the POI from the point of the UAV. Using the described
procedure, Viewareas and Viewpoints are determined based on the specified POIs, and
an inspection path is calculated. The evaluation aims to prove the concept and evaluate
the amount of time saved through the optimization. Using the simulation environment,
a UAV performs the inspection using the calculated path in one of three scenarios.

Inspection Drone

Camera FOV

Points of Interest 3

Assembly

Points of Interest 1

Points of Interest 2

Figure 5.15. Render of the inspection scenario showing three POIs on an assembly and the
inspection UAV.

Scenario 1
In Scenario 1, the view of the POI from one of the Key Viewpoints is blocked. This results
in the inspection module not delivering an inspection result indefinitely. Figure 5.16
shows the path of the first flight performed using this obstacle configuration. The UAV
cannot inspect POI1 from the initial Key Viewpoint. After 10 seconds, a timeout occurs,
and an alternate VP is chosen to perform the inspection. Since the obstacle does not

166

5.2 Inspection of Aircraft Fuselage

block the view of POI1 from this alternate VP, the inspection of POI1 succeeds, and the
inspection continues. In a second flight (see: Figure 5.17), the scoring system causes the
previously successful alternate VP to be the new Key Viewpoint of POI1, preventing the
unnecessary waiting time of the first flight. This results in a reduction of the inspection
time from 110 s to 176 s and a reduction in traveled distance from 34.3m to 31.7m.

Figure 5.16. Trajectory of the first flight of
scenario 1 in top-down view. POI1 is not visible
from the initial Key Viewpoint, so a different VP
is chosen. Image based on: Schörner et al. [247]

Figure 5.17. Trajectory of the second flight
of scenario 1 in top-down view. The rating
system elected the previously successful VP as
new Key Viewpoint for POI1. Image based on:
Schörner et al. [247]

Scenario 2
In the second scenario, an obstacle is strategically placed around the Key Viewpoint
of POI2 to prevent the UAV from reaching the original Key Viewpoint. After a while,
the system detects that it cannot reach the VP and chooses a different one from the
alternative VPs. This one is reachable and the inspection of POI2 succeeds from this
VP. The resulting trajectory can be seen in Figure 5.18. On the second flight, the system
selects the previously successful alternative VP as new Key Viewpoint for POI2 based on
the updated scores from the first flight. While this only results in a minimal reduction
of trajectory length from 33.6m to 32.6m (which is also visible in the trajectory graphs),
the inspection time is reduced significantly from 217 s to 158 s as the UAV does not
unsuccessfully try to navigate to the original Viewpoint first.

Scenario 3
Scenario 3 is a combination of Scenarios 1 and 2 where the camera view from POI1’s Key
Viewpoint is obstructed, and an obstacle prevents the UAV from reaching the original Key
Viewpoint of POI2. As in the previous scenarios, the UAV detects these problems, reacts
by choosing alternative VPs from the same VA, and performs a successful inspection

167

5 Prototypes and Evaluations

from there (see: Figure 5.20). The scores of all involved VPs are updated accordingly,
which results in the UAV selecting the previously successful VPs as Key Viewpoints for
flight 2 (see: Figure 5.21). As before, this resulted in a reduced inspection distance and
time for the second flight. The traveled distance is reduced from 36.8m to 33.2m while
the duration of the inspection flight is shortened from 267 s to 159 s.
In summary, the evaluation demonstrates that the algorithmworks as intended, replacing
suboptimal Key Viewpoints with better candidates.

Figure 5.18. Trajectory of the first flight of
scenario 2 in top-down view. The Key View-
point of POI2 is not reachable, so a different VP
is chosen. Image based on: Schörner et al. [247]

Figure 5.19. Trajectory of the second flight
of scenario 2 in top-down view. The rating
system elected the previously successful VP as
new Key Viewpoint for POI2. Image based on:
Schörner et al. [247]

168

5.2 Inspection of Aircraft Fuselage

Figure 5.20. Trajectory of the first flight of
scenario 3 in top-down view. The Key View-
point of POI2 is not reachable, and POI1 is not
visible from the initial Key Viewpoint, so differ-
ent VPs are chosen. Image based on: Schörner
et al. [247]

Figure 5.21. Trajectory of the second flight
of scenario 3 in top-down view. The rating
system elected the previously successful VPs as
new Key Viewpoints for POI1 and POI2. Image
based on: Schörner et al. [247]

5.2.4 Positioning Performance

The performance of the positioning was evaluated in two stages. In previous work [248],
the functionality of the model tracking prefilter was demonstrated (see: Section 3.3.2),
as well as the sensor fusion algorithm using simulated sensor data. This was done in
conjunction with a proof of concept of the potential field navigation and demonstrated a
promising position estimation performance. This section, however, focuses on evaluating
the position estimation system in real-world flights. The focus is on evaluating the
performance of the Kalman Filter and the filtering of the model tracking data. To
evaluate these systems, an inspection path is generated that lets a DJI Mavic 3 Enterprise
inspect two Points of Interest on the outside of the fuselage of the Section 19 (see:
Section 5.1.3). The UAV is equipped with retroreflective markers, which are tracked
in the Vicon motion capture system to provide ground truth information. Figure 5.22
shows the inspection’s flight trajectory in a top-down view, while the altitude over time
can be seen in Figure 5.23. Each graph contains the ground truth information provided
by the Vicon system, the filtered model tracking data and the position estimate of the
discrete Kalman Filter (DKF). The flights were performed with a maximum velocity of
0.3 ms .

While it would be possible to navigate inside the Section 19, this would have made
comparing the estimated position to a ground truth impossible as the retroreflective
markers would not be visible to the Vicon cameras once the UAV enters the fuselage. The
pose provided by the Vicon system is defined in the global world coordinate system and,
therefore, must be transformed to the coordinate system of the assembly. This is done

169

5 Prototypes and Evaluations

by tracking the assembly and calculating its transformation to the world frame. This
allows all Vicon measurements to be converted into the reference frame of the assembly,
independent of its placement in the arena. It was discovered during testing that the
quality and frequency of the provided velocities by the used UAVs is insufficient. The
values, that can be obtained from the DJI Mavic 2 Enterprise Dual and Mavic 3 Enterprise
via the used SDK have an update rate of 1Hz and quantized to 0.1 ms precision. Due to
this fact, they did not contribute useful data for the sensor fusion process. Figure 5.24
illustrates the problem. The IMU measurements (red) significantly deviate from the
actual velocities (yellow), while the commanded velocities (blue, but mostly hidden
under the estimated velocity in pink) form a better representation of the ground truth as
the UAV tracks the commanded velocity well. Therefore, the control input and process

11 10 9 8 7 6 5 4
X Position (m)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Y
Po

sit
io

n
(m

)

DKF
Vicon
Vuforia

Figure 5.22. Flight path in a top-down view with the model tracking, DKF estimate, and Vicon
position as a reference.

170

5.2 Inspection of Aircraft Fuselage

noise covariance matrix as well as the measurement noise covariance for the IMU
update were manually adjusted, so the linear velocities of the state vector lean more
towards tracking the control input. This lead to a reduced error in the linear velocities
(see: Figure 5.24). Additionally, the pre-filter was effective in removing the majority of
tracking-induced errors. Measurements were only passed on to the Kalman Filter, if
they passed the pre-filtering step and the Kalman Filter operated on IMU-measurements,
Control Input and predictions alone.

To quantify the quality of the position estimate, it was used to calculate the error using
the ground truth data from the Vicon system. Figure 5.25 shows a section of the linear
error of the filtered Vuforia model tracking and the estimated position by the Kalman
Filter (see: Figure 5.26). This section of the flight was deliberately chosen as it contains a
small jump in the tracking measurement, which is largely reduced by the Kalman Filter.
Overall, the position estimate mostly followed the filtered model tracking data, but the
quality of the data was sufficient for performing various inspection flights reliably. The
accuracy of the data provided by Vuforia was mostly within 0.2m of the ground truth.
A reduction in quality was noticeable with the UAV extremely close to the assembly, but
in an evaluation of various model tracking tools, Vuforia was still among the candidates
that performed best in this scenario. The orientation data provided by the UAVs was
found more suitable for its use in the sensor fusion process. Quality and Frequency were
improved compared to the linear velocities. Therefore, resulting orientation estimate

0 100 200 300 400 500 600 700 800
Sample Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Z
Po

sit
io

n
(m

)

Datapoint
DKF
Vicon
Vuforia

Figure 5.23. Drone altitude over time with the model tracking, DKF estimate, and Vicon
position as a reference.
Drone altitude over time with the model tracking, DKF estimate, and Vicon position as
a reference. One time step corresponds to 200ms.

171

5 Prototypes and Evaluations

was highly robust against errors in tracking. Figure 5.26 shows the angular errors of the
filtered model tracking data in a situation where tracking errors could not be filtered by
the pre-filter. The erroneous measurements hardly influence the state estimate and the
system quickly returns to the original state after the tracking measurements recover.
While the proposedmodel tracking approachmight not yield sub-millimeter precision, its
precision is comparable to other positioning systems for UAVs like GPS. Most inspections
that would normally be performed manually using handheld devices, are designed to
perform their task from a wide range of positions and orientations as human workers
can not move the device with the same precision a robot would be able to. In cases
where additional accuracy is strictly necessary, placing markers that are tracked by
the UAV on the inspected object might be a possible solution, since the model tracking
provides the primary position measurements and the error seems to originate from the
tracking data and not from the Kalman Filter. Vuforia already offers a marker tracking
system so integrating a marker-based position input is feasible.
The accuracy of the developed system allowed for reliable navigation during various
inspection flights that were performed in the context of this dissertation. Also, the
precision of the position estimate was sufficient to perform flights inside the Section 19
fuselage.

Figure 5.24. Comparison of recorded velocities of the IMU (red), control vector (blue), state
estimate (pink) and ground truth (yellow) in the x and y direction. One time step corresponds to
50ms.

172

5.2 Inspection of Aircraft Fuselage

0 20 40 60 80 100
Datapoint

0.10

0.15

0.20

0.25

0.30

Lin
ea

r E
rro

r i
n

m

Errors Linear (Filtered Model Tracking)
Errors Linear (Kalman Filter)

Figure 5.25. Linear error of model tracking and DKF estimate based on Vicon position as a
reference. One time step corresponds to 200ms.

0 25 50 75 100 125 150 175
Datapoint

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r E

rro
r i

n
De

gr
ee

s

Errors Angular (Filtered Model Tracking)
Errors Angular (Kalman Filter)

Figure 5.26. Angular error of model tracking and DKF estimate based on Vicon position as a
reference. One time step corresponds to 200ms.

173

5 Prototypes and Evaluations

5.2.5 Obstacle Avoiding Relative Navigation

The following paragraphs describe the evaluation of the obstacle avoiding navigation
strategies implemented during this dissertation. This includes the implementation of
the potential field navigation algorithm, which is tested in conjunction with the obstacle
representation in form of test flights performed in several simulated and real-world
environments. Additionally, the performance of the potential field method is compared
to the Anytime Dynamic A* implementation using test flights in various simulated test
environments.

Potential Field Navigation

The obstacle-avoiding navigation was performed in two stages. First, the obstacle
avoidance system and world representation in OctoMaps were tested in simulation,
and its performance was compared with an approach that uses only local sensor data1.
This was done as an initial proof of concept and to demonstrate the system’s feasibility.
In a second step, the OctoMap-based approach was evaluated in a real-world scenario
with both known and unknown obstacles that were both static and dynamic in nature.
To be able to compare the experiments, both were performed using potential field
navigation as the underlying navigation system. The following sections describe these
two evaluations in detail.

Evaluation of OctoMap Performance in Simulation
To prove the concept of obstacle-avoiding navigation using an obstacle representation
in OctoMaps, the system was first evaluated in different simulated scenarios. This was
done due to the ease of creating multiple different, but easily repeatable scenarios and
virtual worlds for the UAV to fly through. Using the simulation environment described
in Section 5.1.4, five environments were created that contain a combination of static
(non-moving) obstacles or dynamic (moving) obstacles. Environments Static 1 to 3
contained only static obstacles, while the environments Dynamic 1 and 2 also contain
moving obstacles. All experiments were conducted on an Ubuntu 20.04 PC with an Intel
i5-3470 CPU and a GeForce GTX 1050 Ti GPU to be able to compare the execution times
of the individual approaches.

Performance in Static Environment Three different scenarios of Static 1, Static 2,
and Static 3 of varying obstacle complexity were used to evaluate the navigation
performance in static environments. Scenario Static 1 consists of an environment with
only four pillar-shaped obstacles and the outer wall of the environment that was present
in all scenarios. The location of one of the pillars is known in advance and is represented
as several point-shaped obstacles in the OctoMap. Their locations can be identified by
the red dots visible in Figure 5.27a. The inspection path and, thereby, the position of all
Viewpoints is identical over all simulated inspection scenarios. The trajectories flown

1Many thanks to Raban Popall, who implemented and performed the evaluation of the obstacle avoidance
system described in this section in simulation as part of his bachelor’s thesis [216].

174

5.2 Inspection of Aircraft Fuselage

by both the OctoMap-based approach and the navigation using only currently detected
sensor data can be seen in Figure 5.27b. The UAV performed this and all other flights
in a counter-clockwise direction. The OctoMap-based approach seems to keep more
distance to the obstacles, which can be explained through the additional repellant forces
acting through the OctoMap, even when obstacles are outside the detection radius of
the UAV. A more in-depth analysis of the flights and performances will follow later in
this section.

(a)

Current Sensor Data
OctoMap

Viewpoint
Static Obstacle

(b)

Figure 5.27. Render of simulated obstacle avoidance scenario Static 1 (a) and flown trajectories
(b). Image source: Raban Popall [216].

175

5 Prototypes and Evaluations

Scenario Static 2 adds more complexity by increasing the number of pillars present in
the environment (see: Figure 5.28). The increased obstacle density causes the paths of
both algorithms to deviate from each other for the first time. A weakness of the local
sensor data approach is also visible in Figure 5.28b after visiting the center Viewpoint
located at the top of the image. The UAV first flies towards the pillar until the sensor
detects an obstacle and is then quickly repelled by it until the obstacle is too far away to
be detected, which causes it to approach again, resulting in a significant oscillation in

(a)

Current Sensor Data
OctoMap

Viewpoint
Static Obstacle

(b)

Figure 5.28. Render of simulated obstacle avoidance scenario Static 2 (a) and flown trajectories
(b). Image source: Raban Popall [216].

176

5.2 Inspection of Aircraft Fuselage

the trajectory. While this behavior can be observed in the OctoMap-based approach as
well, the amplitude of the oscillations is reduced significantly.

(a)

Current Sensor Data
OctoMap

Viewpoint
Static Obstacle

(b)

Figure 5.29. Render of simulated obstacle avoidance scenario Static 3 (a) and flown trajectories
(b). Image source: Raban Popall [216].

Scenario Static 3 is built more like a traditional room with wall-shaped obstacles and
introduces obstacles that do not span the entire height of the environment and, therefore,
can be flown over or under (see: Figure 5.29a). The trajectories visible in Figure 5.29b
show that the sensor-only navigation algorithm struggles with these new types of
obstacles as it flies in circles in front of the obstacle before finally flying around it.

177

5 Prototypes and Evaluations

The OctoMap-based approach is able to navigate over or under the obstacles without
significant detours.
This scenario was also used to evaluate the execution time of a single iteration of the
navigation algorithm using both approaches. Since the navigation algorithm has to
process an increasing number of detected obstacles in the OctoMap-based approach,
an increase in execution time is expected. As visible in Figure 5.30, the execution time
of the algorithm rises over time with an increasing amount of detected obstacles. The
overall update rate of the system still stays below 3ms with only a few outliers, probably
caused by external interrupts slowing down execution as the algorithm was not run on
a real-time system. Since the navigation node sends updates with a rate of 10Hz, this
leaves a time budget of 100ms for calculating a new target velocity. An execution time
of 3ms is way within this limit and, therefore, acceptable.

Figure 5.30. Execution time of the potential field algorithm in scenario Static 3 for the
sensor-only and OctoMap-based approach. Image source: Raban Popall [216].

Performance in Dynamic Environments Scenarios with dynamic or moving ob-
stacles are especially challenging for obstacle avoidance algorithms that keep a record
of detected obstacles. Obstacle measurements of a single time point persist in memory
and are treated as permanent obstacles, which can lead to inconsistencies between the
OctoMap representation and the real world.
To evaluate navigation performance with moving obstacles, two dynamic scenarios were
created. In scenarioDynamic 1, several moving boxes represent dynamic obstacles in an
otherwise empty environment. The corresponding environment and flown trajectories
are displayed in Figure 5.31. Note that the obstacle on the left of Figure 5.31b is moving
up and down. Except for minor differences caused by different timing in relation to the
moving obstacles, no significant differences in the trajectories could be observed.

178

5.2 Inspection of Aircraft Fuselage

(a)

Current Sensor Data
OctoMap

Viewpoint
Static Obstacle

(b)

Figure 5.31. Render of simulated obstacle avoidance scenario Dynamic 1 (a) and flown
trajectories (b). Image source: Raban Popall [216].

179

5 Prototypes and Evaluations

The second dynamic scenario combines the obstacles from scenario Static 1 and Dy-
namic 1 to form a scenario with both static and dynamic obstacles with only one of
the static pillars being known before execution. The flown trajectories are very similar
again. Most of the differences were caused by timing differences when encountering
dynamic obstacles.

(a)

Current Sensor Data
OctoMap

Viewpoint
Static Obstacle

(b)

Figure 5.32. Render of simulated obstacle avoidance scenario Dynamic 1 (a) and flown
trajectories (b). Image source: Raban Popall [216].

180

5.2 Inspection of Aircraft Fuselage

General Findings After reviewing the data, several conclusions can be drawn about
the length and duration of the trajectory, as well as the computation time needed to exe-
cute the navigation algorithm. The individual trajectory lengths and flight are depicted
in Figure 5.33. The overall trend seems to be a slightly longer trajectory and flight time
for the OctoMap-based approach. However, the difference between both approaches
is relatively small. While the current sensor data approach is computationally more
efficient and performs better in dynamic environments, the OctoMap-based approach is
useful in static environments. This is because it allows for more optimized long-term
planning but at the cost of higher computation time. The strengths of the OctoMap-based
approach lie in complex, static environments. This can be seen in scenario Static 3,
where the OctoMap approach is able to navigate over and under obstacles that do not
span the entire height of the room on the first try. The current sensor data approach
performs multiple tries and ultimately still navigates around the side of the obstacle.
This results in the OctoMap approach being able to perform the flight faster and with
an almost identical trajectory length.
As expected, the OctoMap approach struggled with dynamically changing obstacles,
as it relied on previously stored data, which sometimes became outdated. This led
to slower reactions and occasional incorrect avoidance maneuvers. In general, the
OctoMap approach was deemed promising for complex environments with only a few
dynamic obstacles. Therefore, the system was evaluated in a real test flight.

181

5 Prototypes and Evaluations

Trajectory Length Mission Duration

Current Sensor Data
OctoMapOctoMap

Current Sensor Data

Di
st

an
ce

 [m
]

Ti
m

e
[s

]

Static 1 Static 1 Static 3Static 3 Static 2Static 2

(a)

Trajectory Length Mission Duration

Current Sensor Data
OctoMapOctoMap

Current Sensor Data

Di
st

an
ce

 [m
]

Ti
m

e
[s

]

Dynamic 1 Dynamic 1 Dynamic 2Dynamic 2

(b)

Figure 5.33. Lengths and durations of the flown trajectories of the static (a) and dynamic (b)
evaluation scenario. Image source: Raban Popall [216].

182

5.2 Inspection of Aircraft Fuselage

Evaluation of Dynamic Obstacle Performance in Real World Scenario
To evaluate if the performance of the OctoMap-based obstacle avoidance system trans-
lates from simulation to reality, another experimental setup was created. The experi-
ment’s goals were to verify that the obstacle avoidance works with real-life hardware
and that removing obstacle measurements that are no longer accurate is performed
as intended. In this scenario, the UAV performs a test inspection on four points of
interest on the outside of the Section 19 assembly. The DJI Mavic 2 Enterprise Dual (see:
Section 5.1.2) was used for the experiment as it has worse obstacle avoidance sensors
than the DJI Mavic 3 Enterprise, creating a "worst case scenario". The structure of the
assembly was loaded into the OctoMap as a known obstacle. The starting point of the

Figure 5.34. Obstacles detected on the way
from start (right) to assembly (left).

Figure 5.35. Cleared obstacles after return-
ing from the inspection.

UAV is placed several meters from the assembly. To demonstrate the detection and
removal of a dynamic obstacle, the door-shaped section of the Airbus A350 fuselage was
placed on a tool cart and initially positioned between the starting point of the UAV and
the assembly. After takeoff, the UAV successfully detected the cart placed in its way and
navigated around the obstacle. The flown trajectory can be seen in Figure 5.34. It also
visualizes the state of the OctoMap in orange with the detected obstacle clearly visible.
It then continued with the inspection, reaching all Viewpoints and inspecting all Points
of Interest while keeping clear of and updating the obstacle voxels of the Section 19
assembly. During the inspection, the tool cart was moved out of the way to determine
whether the system would detect the absence of the obstacle and take the direct path
back to its landing point. As intended, the obstacle sensors of the UAV recognized that
the previously detected obstacles were no longer present and removed them before they
could affect the trajectory planning (see: Figure 5.35). As a result, the UAV took the
direct path back to its starting point.

In summary, the potential field implementation was able to navigate the real test scenario
effectively while avoiding collisions. Preexisting obstacles were considered for trajectory
planning and observed obstacles were added to the obstacle representation in the
OctoMap. Upon removing the dynamic obstacle, the UAV detected its absence through
the onboard obstacle sensors and removed the previously detected obstacles from the
OctoMap. Overall, this approach has demonstrated its effectiveness for performing

183

5 Prototypes and Evaluations

inspections in indoor scenarios and its reliability is proven by the numerous development
and demonstration flights that were performed using this system without crashes or
other major incidents that could be attributed to the obstacle avoiding navigation.

Anytime Dynamic A*

The following paragraphs describe the evaluation of the Anytime Dynamic A* algorithm
implementation. Due to performance problems encountered with the initial implementa-
tion written in python, the computational performance is compared to the subsequently
developed, functionally identical C++ implementation. Additionally, the trajectory
lengths and inspection times are compared to the potential field implementation in a
variety of simulated scenarios. Lastly, the ability of both approaches to navigate past a
u-shaped obstacle designed to induce the local-minimum problem in the potential field
method is tested.

Computational Performance
ROS1 mainly supports C++ and python as programming languages for implementing
nodes using their client libraries [81]. C++ code is compiled to binary code prior to
execution, which allows for the implementation of high performance real-time or near
real-time applications. The rospy python client library was created with a focus on im-
plementation speed [81] rather than efficiency. The object-oriented, dynamically typed
scripting language allows rapidly developing and debugging large systems without time-
consuming compilation processes or complex memory management at the cost of slight
inefficiency. All ROS nodes of the QuAD system were implemented in python as neither
of the implemented algorithms required the additional performance gained through
a C++ implementation. The only exception to this statement is the implementation
of the Anytime Dynamic A* algorithm. Compared to most other nodes, it requires a
great deal of computations to be performed and also has a large memory footprint due
to the internally stored obstacle graph. This led to performance problems during the
implementation and caused the final code to be ported to C++. The performance of both
systems was evaluated using graphs comprised of 15000 to 32000 nodes. On average,
the C++ implementation was able to achieve a 32.4 % time reduction per iteration of the
algorithm. However, when testing the time required for replanning the path after an
additional obstacle was added to the graph, no significant reduction of calculation times
could be observed.

Comparison of Performance Against Potential Field Method
In a second set of simulated test flights, the performance of the AD* implementation
was compared to the potential field method with trajectory length, covered distance
and collision-free flight as evaluation criteria. For these test flights, the same virtual
worlds were used as in the evaluation of the OctoMap-based obstacle avoidance, albeit
with a different inspection path. Furthermore, a fourth world (Static 4), consisting
of only a single pillar as an obstacle, was included in this test series. The inspection
path was flown in all environments using the AD* and potential field implementation.

184

5.2 Inspection of Aircraft Fuselage

Environment Anytime Dynamic A* Potential Field Method
Duration Distance Result Duration Distance Result

Dynamic 1 02:34.70 31.678m success 02:27.78 36.396m success
Dynamic 2 02:36.51 31.581m success 02:30.11 39.925m success
Static 1 02:44.10 31.895m success 02:31.70 27.386m success
Static 2 - - collision 03:43.94 31.962m success
Static 3 - - collision - - collision
Static 4 02:27.62 31.322m success 03:10.80 30.680m success

Table 5.2. Results of the inspection flights comparing the APF and AD* algorithms. Table
source: Julian Saupe [243].

Table 5.2 shows the result of these flights. The UAV was able to navigate through all
scenarios except for Static 2 and Static 3 using the AD* implementation. In these
cases, the emergency collision avoidance system was triggered as the UAV was unable
to keep the required distance to the closest obstacle. On average, the resulting times
for the execution of the trajectories are comparable. While the traveled distance was
shorter for AD* in both dynamic environments, the overall differences in flight time and
trajectory vary only slightly between both implementations. The high computational
requirements of the algorithm, especially in large or complex environments are an
additional disadvantage.

Behavior in Local Minima

The biggest weakness of artificial potential field method based algorithms is their
susceptibility to getting stuck in local minima. To verify, whether the AD*-based
navigation could solve this problem, several environments and inspection paths were
created that deliberately forced the UAV into a situation, where it would encounter a
local minimum in the potential field (see: Figure 5.36).

When encountering the obstacle using solely potential field navigation, the UAV would
get stuck close to the obstacle in most cases. However, depending on the obstacle height
and the location of the goal, it was slowly pushed over the obstruction due to the fact that
a slight, self upward motion was introduced due to most obstacles being detected and
stored beneath the UAV, resulting in an upward-pointing velocity vector. When adding
the random-walk-based fallback strategy for local minima, the UAV was able to navigate
around the obstacle reliably. However, the time this took was entirely dependent on the
quality of the randomly generated fallback waypoints. Overall, this strategy worked
but did not produce reliable or efficient results. The AD* implementation was able to
perform the inspection in all scenarios containing the u-shaped obstacles. The resulting
trajectories were still inefficient with the UAV performing patterns of alternating lines
along the grid used as graph-representation internally, but the reactions were consistent
and not based on the quality of a random guess.

185

5 Prototypes and Evaluations

In summary, the AD* implementation was able to navigate in the simulated test envi-
ronments with its performance similar to the potential field algorithm in most cases. It
proved slightly less robust in keeping the required safety distance to obstacles in the
simulated tests but was able to navigate around a variety u-shaped obstacles without
problem. The evaluation of both algorithms led to an approach that relies on the poten-
tial field method for regular navigation and uses an AD*-based fallback strategy when
local minima are encountered. This also allows for a restriction of the planning space
for the algorithm to the area between UAV and the target (with an appropriate boundary
zone) and thus keep the execution time for the algorithm low. The implementation and
evaluation of this approach are the subject of future work.

5.2.6 Performance of the Coverage Algorithm

After successful testing and validation of the obstacle avoidance, positioning, and tra-
jectory execution subsystems, the trajectory planning for coverage scenarios could be
tested. First, the performance improvements that were made to the HEDAC algorithm
to support real-time feedback were tested in two different inspection scenarios. First,
the planning performance was tested on the fuselage section of the Airbus A350 (see:
Figure 5.7). Due to its low geometric complexity, the online planner was deemed most
likely to perform fast enough for the closed-loop system on this part. Afterward, a per-
formance analysis was performed with the Section 19 of an Airbus A320 (see: Figure 5.6).
The second part of this section covers the proof of concept in the form of inspection
flights on both assemblies and the results of the photogrammetric reconstruction of the
acquired image data.

Figure 5.36. U-shaped obstacle located between UAV and Viewpoints.

186

5.2 Inspection of Aircraft Fuselage

Evaluation of the Real-Time Capabilities of the HEDAC Algorithm

In the paper presenting the algorithm [125], the authors state that its performance in
the current state is too slow for real-time operation. However, removing the collision
avoidance logic, simplifying the camera orientation calculation, and moving the surface
coverage calculation to a separate thread greatly improves performance. This might
make using the system in a closed-loop scenario viable. The following paragraphs
will elaborate on the evaluation of the improved algorithm’s performance planning
trajectories for the Airbus A350 fuselage section and the A320 Section 19.
The algorithm was executed, and the average execution times of the individual parts
of the calculations were determined. A MacBook Pro featuring an M3 Max processor
was used to perform the calculations. The execution time per iteration of the algorithm
that is required for successful operation within a control loop, as described in the
closed-loop system, is determined by the rate of velocity updates required by the UAV
used. The manufacturer of the DJI Mavic 3 states a required update rate of 5Hz for
velocity setpoints, which equates to a time interval of 200ms. Therefore, a computation
time significantly smaller than 200ms is needed to still leave time for the rest of the
trajectory execution system to perform additional calculations and transmit the signal
to the UAV. The choice of the two different test assemblies was based on their geometric
complexity, as a more complex model increases the execution times of the algorithm.
The relatively simple geometry of the A350 fuselage section results in a mesh consisting
of 8440 points. The more complex model of the Section 19 requires 35121 points for an
accurate representation.

Parameter A350 Fuselage Section A320 Section 19
Final Spatial Coverage 90 % 97%
∆t Reference 790ms 1664ms
∆t Optimization 122ms 632ms
- ∆t HEDAC 50ms 373ms
- ∆t Coverage 61ms 253ms
- ∆t Collision Avoidance 11ms 6ms
Mesh Points 8440 35121

Table 5.3. Comparison of the execution times of the original and optimized version of the
HDEAC algorithm during tests with the A350 fuselage section and A320 Section 19.

Table 5.3 shows the execution times per iteration of the individual parts of the algorithm.
In the original implementation, the total average time per iteration was 0.79 s for the
A350 fuselage section. Also, a high variance of the individual calculation times was
observed with many outliers taking over 2.5 s to complete. Running the surface coverage
calculation in a parallel thread reduced the average execution time to 0.122 s with 0.05 s
caused by the HEDAC control algorithm 0.061 s by the calculation of the spatial coverage
and 0.011 s by the collision avoidance algorithm. The variance could be significantly
improved as well with none of the observed execution times exceeding 0.2 s. However,

187

5 Prototypes and Evaluations

even with this comparatively simple geometry, an average execution time of 0.122 s
leaves less than 0.9 s for additional calculations that need to be performed by the system
prior to sending the computed target velocity to the UAV.
While the online execution of the algorithm is plausible using simple models, the
more complex Section 19 increases execution times per iteration way over the required
threshold. With the original algorithm, an average execution time of 1.664 s per iteration
was observed with a high variance and a number of steps taking over 3 s to complete. The
improved algorithm requires 0.626 s per iteration on average with a significant decrease
in variance comparable to the A350 fuselage section. 0.373 s of this time was caused
by the HEDAC control algorithm 0.253 s by the calculation of the spatial coverage and
0.006 s by the collision avoidance algorithm. These times exceed the maximum viable
threshold for reliable control of the DJI Mavic 3, even without considering additional
calculations.
While the results of the performed optimizations look promising, additional optimiza-
tions are required to allow for reliable execution times short enough for online execution.
Possible ways to further increase the performance of the algorithm include exploring
how far mesh geometry can be simplified before negatively impacting planning per-
formance, and parallelization of the spatial coverage calculation and HEDAC control
algorithm. However, this is more complex than the parallelization of the surface coverage
calculations, as both parts are dependent on each other’s output.

Photogrammetric Documentation of Assemblies

Since the performance of the closed-loop planning algorithm was not sufficient for
inspection flights, the following chapter evaluates the integration of the open-loop
navigation into the presented system2. As described in Sections 3.6 and 4.2.6, the
implementation of the HEDAC algorithm was used to generate a path consisting of
Points of Interest and Viewpoints by sampling discrete points along the generated
trajectory. This path formed the input of the trajectory_control node to perform an
inspection flight using the relative navigation system presented in Section 4.2.3. The
Potential Field Navigation strategy was used since the individual points are closely
spaced, and the HEDAC algorithm produces a trajectory that keeps a safe distance from
all obstacles. Therefore, the risk of encountering local minima is negligible. The HEDAC
algorithm generated an inspection path for the A350 fuselage section and the A320
Section 19. The algorithmwas set up to plan the inspection trajectory up to an inspection
duration of 600 s. Figure 5.39 shows the planned trajectory and camera orientations for
selected points in the trajectory for the Section 19 assembly. Figures 5.37 and 5.38 show
the convergence of the spatial and surface coverage of the generated trajectories, which
resulted in a surface coverage of over 90%. With a maximum velocity of 0.1 ms , both
trajectories reach the maximum surface coverage at around 300 s. The UAV navigated
without violating the safety distance with the exception being the beginning of the
Section 19 trajectory caused by an unfortunate combination of the low distance field
2Many thanks to Simon Hornung, who implemented and evaluated parts of the photogrammetry system
as part of his master’s thesis [118].

188

5.2 Inspection of Aircraft Fuselage

Figure 5.37. Spatial density and surface coverage as well as distance to the closest obstacle
for the A350 fuselage section test assembly. Image source: Simon Hornung [118].

Figure 5.38. Spatial density and surface coverage as well as distance to the closest obstacle
for the Section 19 test assembly. Image source: Simon Hornung [118].

189

5 Prototypes and Evaluations

Figure 5.39. Trajectory and camera orienta-
tions calculated by the HEDAC algorithm for
the Section 19 test assembly.

Figure 5.40. Result of the photogrammetric
reconstruction of the Section 19 test assembly.

inside the concave fuselage section and the target density field pushing the UAV inside
the assembly (see: Figure 5.39).
However, this was automatically detected in the path creation step, and no Viewpoints
were sampled in this section of the trajectory. Additionally, the potential field nav-
igation and collision avoidance watchdog would have prevented a collision during
execution. The path creation worked as expected, with the system automatically delet-
ing Viewpoints located outside the range that can safely be flown inside the flight
arena. Afterward, inspection flights were performed based on the generated paths.
Photogrammetric reconstruction was performed with the proposed photogrammetry
pipeline. Figure 5.40 shows the result of the photogrammetric reconstruction of the
Section 19. During the inspection flights, the UAV autonomously captured high-quality
images of the specified Points of Interest. The photogrammetry system was able to
reconstruct textured 3D models of the assembly based on these images. However, the
photogrammetric reconstruction process was not entirely successful due to the thin
sheet-metal or carbon fiber geometries of the fuselage sections. Figure 5.40 shows
a number of holes that appear at particularly thin sections of the model where the
algorithm had trouble reconstructing the 3D geometry of the parts. The tool cart on
which the A350 was resting was reconstructed without these holes, suggesting that the
thin material might be the cause of this problem.

Using the Captured Images to Texture the CAD Model

As described in the previous section, the main problem during the photogrammetric
process was the reconstruction of an accurate mesh of the reconstructedmodel. However,
due to the available CAD data, an accurate mesh can be derived from this data through
tessellating the CAD model. Therefore, the feasibility of texturing this model using
the data generated from the photogrammetric process was evaluated. This mesh was
loaded in the 3D modeling software MeshLab [47] along with the captured images and

190

5.2 Inspection of Aircraft Fuselage

Figure 5.41. Textured mesh generated from CAD data and camera images.

the camera poses generated by AliceVision Meshroom during the photogrammetric
reconstruction process. The origin of the mesh data generated from the CAD data was
manually modified to account for the arbitrary origin of the camera poses generated
in AliceVision Meshroom. The positions were also scaled up to compensate for the
incorrect scale of the photogrammetric model. Afterward, the camera poses can be used
to align the camera images to the 3D model and generate a texture for the CAD-based
mesh. Testing revealed that this process requires significantly fewer images of the
model to produce a high-quality mesh, and reducing the number of images yielded in
better results, as this resulted in less overlapping areas that result in redundant texture
information that must be blended together. Figure 5.41 shows the result of the texturing
process. As expected, the geometry of the mesh is far better than the photogrammetric
model, and the generated texture reveals more details of the surface of the part.
Figure 5.42 shows a close-up comparison between the surface of a photogrammetrically
reconstructed and textured CAD model. The increased resolution and detail is even
more pronounced in this comparison.

Discussion of the Evaluation Results

During performance evaluation of the optimized HEDAC algorithm, an increase in
performance could be achieved, which resulted in a decrease in execution time by 84.6%
and 41.7% in the tested scenarios. Furthermore, the variance of the execution times
per iteration was significantly reduced to a level suitable for online execution of the
algorithm. However, the achieved reduction in calculation time per iteration was not

191

5 Prototypes and Evaluations

sufficient for safe, closed-loop flight. With future work on increased parallelization,
reduction of mesh complexity, and using a higher-performance CPU, the execution
times might be reduced enough for use in a closed-loop system. The inspection flights
performed by the open-loop system captured high-quality images of the Points of Interest
calculated by the original HEDAC algorithm. However, the developed photogrammetry
pipeline had problems reconstructing the 3D geometry of the thin structures of the
aircraft fuselage parts. The photogrammetry process might be further improved by
changing the meshing step of the photogrammetry pipeline, so thinner sections of the
mesh geometry are less likely to be filtered out. A different approach using the mesh
information of the existing CAD model, images captured by the inspection flight, and
the camera poses calculated by the photogrammetry system was able to achieve better
results. The geometry of the model exactly matches the CAD data, and the texture
generated from the high-resolution images enables an accurate documentation of the
assembly’s state at the time of the inspection.

Figure 5.42. Close up comparison between the photogrammetric reconstruction (left) and
textured CAD model (right).

192

5.2 Inspection of Aircraft Fuselage

5.2.7 Presence Detection on an Assembly in a Production Scenario

The following paragraphs provide the proof of concept of the inspection subsystem of
the QuAD platform. To verify the functionality of the interface for external inspection
tools, the presence detection functionality of the software VisionLib [286] was integrated,
and its performance was evaluated through the inspection of a bracket mounted to
the Section 19 fuselage. The functionality of the presence detection system based on
the concept presented in Section 3.5.1 is demonstrated through a similar inspection
scenario.

Integration of Existence Checks Based on VisionLib

To demonstrate the integration of an existing inspection tool into the system, an
existence-check based on the software VisionLib (see: Section 3.3.3) [286] was im-
plemented. The existing example code for an existence check in the Unity Software
Development Kit was extended to display a colored overlay of the tracked assembly and
the inspected part. Figure 5.43 shows the AR overlay on the live video stream from the

Figure 5.43. AR overlay for the performed presence detection with a correctly installed (left)
and missing (right) part.

UAV and the inspection status for a correctly installed (left) and missing (right) part. The
example code was further modified to use the Unity ROS TCP Connector interface [274]
to communicate with the main system running in ROS. An additional ROS node was
added implementing an action server for the existence check using the inspect.action
as an interface. This node passes information about the currently inspected part to
VisionLib and forwards the inspection status as a result for the action call.

193

5 Prototypes and Evaluations

Presence Detection with Template Matching

The effectiveness of the template matching-based presence detection system proposed
in Section 3.5.1 was evaluated using a set of 98 images of the Section 19 assembly, of
which 23 contained a correctly installed bracket, 15 had the bracket installed correctly,
and 60 had no bracket installed. The tests revealed that this approach is effective in
detecting the correct installation of the detected brackets in ideal conditions. The image
alignment of the rendered images using the Super Glue algorithm was able to reliably
match the alignment of the center area of the renders with the images. Figure 5.44
shows an overlay of the warped render over the original image (a) and crops to the area
of the inspected bracket with the same overlay for several inspection images (b). These
crops were automatically generated by applying OpenCV’s threshold() function to the
warped image containing only the render of the bracket. This function sets all images
below a specific threshold (the background) to black, while all other pixels (the bracket)
are set to white. Using the resulting image, the minimum and maximum values of each
white pixel in both axes can be used to calculate the coordinates of a bounding box
around the bracket, which in turn can be used to extract the relevant area of the original
image and save it for later review or processing. Using this technique, an area where the
bracket should be located could be successfully extracted in 94.6 % of the tested images.

Figure 5.44. Overlay of the warped render over the captured image.

Unfortunately, the template recognition only worked under ideal conditions. The
template matching algorithms provided by OpenCV require ideally matched conditions
between the camera image and the render. Especially recreating the correct lighting
in the renders was found to have a significant impact on the detection rate. While

194

5.2 Inspection of Aircraft Fuselage

the template matching worked in some conditions, the approach was found to be too
unreliable for the application in a real-world scenario. However, the precisely extracted
regions of the bracket locations might be used in conjunction with different detection
algorithms. In particular, model-based zero-shot pose estimators like MegaPose [148].
These algorithms take an object and a 2D image that contains the object as input and
produce a pose estimate as an output. Internally, they work by rendering the object
at different orientations and determining the probability that an object similar to the
render of a particular orientation is present in the image. Since the detection step
is based on a classifier neural network, the internal models had to be retrained for
each particular object that needed to be detected. This made the application of these
algorithms unattractive for inspection scenarios where the detected objects change
frequently. Zero-shot pose estimators like MegaPose do not require retraining and are
therefore more suited for inspection applications. However, they still require the region
containing the object to be isolated in advance.

(a)

(b)

Figure 5.45. Automatically isolated image sections containing the area where the bracket
should be mounted with an overlay of the rendered model. Brackets in (a) are correctly installed,
and (b) shows the overlay over images with an incorrectly installed bracket.

Usually, this is done using object detection networks like EfficientDet [272], which
often need to be retrained to detect the object reliably. The complexity of the retraining
process might be reduced if, instead of retraining with renders of the object from all
orientations, only the generated render of the object in the correct orientation is used.

195

5 Prototypes and Evaluations

However, this might result in a decreased detection performance, especially if the object
is mounted (and therefore photographed) in the wrong orientation.

Figure 5.46. Selection of areas where the inspected should be located based on the mask
generated by thresholding the rendered bracket.

If the input can only be generated, if the object is already in the right orientation,
this makes the pose estimation redundant. The approach for cropping the captured
inspection images described above works independently of the orientation or presence
of the object, as the algorithm uses the image and the entire assembly as input. This
allows for a robust extraction of the area containing the bracket, which can serve as
an input for the pose estimator. While the pose estimation was not implemented as
part of this dissertation, the quality of the masking provided by the proposed approach
(see Figure 5.46) seems promising enough to realize a pose optimization-based presence,
position, and orientation detection system in the future.

196

5.3 Inspection of a Wind Turbine

5.3 Inspection of a Wind Turbine

As described in the second case study, the inspection of a wind turbine offers an excellent
opportunity to evaluate the relative positioning system. The complex kinematic model
of a wind turbine is ideal for demonstrating the approach for relative positioning using
changing reference systems proposed in Section 3.3.5 and implemented in Section 4.2.1.
The following sections describe the results of simulated inspection flights performed
along a rotating wind turbine. The simulated UAV navigates to a series of Viewpoints,
which are defined relative to the respective parts of the wind turbine.

Figure 5.47. Setup for the simulated test flights performed on the moving wind turbine.

Figure 5.47 illustrates the test setup.

Thewind turbine is modeled as a kinematic robot using theURDF notation and controlled
using the Framework MoveIt [80]. At the beginning of the flight, the wind turbine is
stationary. At a specific point in the inspection flight, the turbine hub starts rotating with
a constant speed, while the UAV navigates to Points of Interest defined relative to the
(now moving) rotor blades. To evaluate the performance of the velocity compensation
mechanism based on kinematic models described in Section 3.3.5, this approach is
compared to the filter that does not consider assembly velocities (see: Section 3.3.4).
Since model tracking is the most critical component for reliable position estimation,
random jumps in the tracking position and dropouts are simulated to evaluate the
performance of the state estimate under suboptimal conditions. The simulated IMU
measurements contain an artificially generated drift and noise (see: Section 5.1.4) to
emulate real-world conditions. Also, the numeric differentiation of the link velocities
inherently introduces noise into this measurement.

197

5 Prototypes and Evaluations

5.3.1 Influence of Component Velocities on the State Estimate

To evaluate the performance increase through compensating the commanded velocity
and measured IMU velocity, the previously described inspection flight is performed
with both implementations of the sensor fusion algorithm running in parallel. In
this inspection flight, all Viewpoints are defined relative to the first rotor blade of
the wind turbine. The dkf_kinematic_state_estimation_publisher (Velocity com-
pensated Kalman Filter, VKF) is used for position inputs by the navigation algorithm.
The dkf_state_estimation_publisher (KF) is merely used to provide a reference for
determining the performance improvement.

0 50 100 150 200 250
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Lin
ea

r E
rro

r (
m

)

velocity compensation
no velocity compensation

Figure 5.48. Position error of the state estimatewith andwithout compensation of the assembly
velocity. One time step corresponds to 200ms.

Figure 5.48 shows the position error recorded for both filters throughout the flight.
The graph begins shortly after takeoff, and the rotor starts moving at time step 12.
The rotor movement induced a position error in the uncompensated filter as the IMU
measurements and the simulated model tracking became inconsistent. The error of the
VKF implementation hardly changed, suggesting that the compensation of the IMU and
control velocity effectively reduces the position error. Missing model tracking updates,
either caused by the tracking filter removing improbable measurements or through a
manually induced loss of tracking, can be observed in time steps 78, 97, around 140, and
240. While the Kalman Filter’s position considerably drifted when operating solely on
IMU data and its internal model, the compensated velocities in the VKF significantly
reduced this drift. The mean average position error (MAE) for the KF during the flight
was 0.149m while the VKF was able to achieve a significantly lower MAE of 0.009m.

198

5.3 Inspection of a Wind Turbine

5.3.2 Kinematic Localization with Changing Reference Frames

The quality of the position estimation system relative to changing reference frames
(Multiple reference frame velocity compensated Kalman Filter, MVKF) was evaluated3
using a similar inspection scenario with the UAV navigating a path described by a series
of waypoints, which are defined relative to different reference coordinate frames. The
implementation was validated against the performance of the VKF in two different test
runs. At first, both filters operated entirely without model tracking input to simulate a
tracking loss. When changing the reference frame, the sudden change in position and
orientation caused a peak in position and orientation error in the VKF’s single state
vector. The position error equates to the distance between the old and new reference
frames. During testing, errors of around 2.5m were observed in all axes. After the
change, the internal state requires several seconds to reduce the position error to less
than 0.2m. When the MVKF implementation’s reference frame is changed, its position
output changes to the internal filter corresponding to the frame. This filter operated
using transformed measurements in its reference frame during the entire flight, so the
new measurements do not conflict with the values of its state vector. As a result, the
change in reference frames results in a clean transition of the pose estimate to the new
reference frame without significant error.
The experiment was repeatedwith simulatedmodel tracking data provided to the sensors,
which resulted in a similar, but less pronounced effect. The tracking measurements
caused a significantly faster adjustment of the VKF’s state to the new reference frame.
The initial position error disappeared after about 200ms while the orientation in pitch
and roll axis showed minor oscillations with a peak amplitude of around 30°and a
frequency of 2Hz, which lasted for around one second. The MVKF performed similarly
to the first flight. When the reference frame was changed, its output changed to the
internal Kalman Filter of the corresponding reference frame, which produced a clean
transition of the output signal. As with the evaluation of the VKF using a constant
reference frame, the system’s benefits aremore pronounced in suboptimal conditions (i.e.,
when position measurements of the model tracking are bad or drop out completely).

3Many thanks to Raphael Katschinsky, who evaluated the state estimation system for changing reference
frames as part of his master’s thesis [137].

199

5 Prototypes and Evaluations

200

Summary. In this chapter, the research results obtained in the
course of the dissertation are reviewed and evaluated.

6
Conclusion and Outlook

This work aimed to develop a platform for autonomous inspection of large structures
(e.g., aircraft fuselage parts). Throughout this dissertation, the concept, architecture, and
implementation of the individual parts of this platformwere described in detail, and their
functionality was demonstrated using a variety of evaluations, prototypes, and tests.
This includes a path-planning solution for targeted inspection of individual parts as
well as a trajectory generation method for full-surface inspections of entire assemblies.
In addition, a novel relative positioning and vision-based, collision-avoiding navigation
approach using only the UAV’s internal sensors was introduced. It consists of a relative
position estimation system based on a Kalman Filter, which uses input from IMU
measurements of the UAV and a model tracking system to determine the UAV’s position
relative to the inspected assembly. This position is used in a modular obstacle-avoiding
navigation system, which provides an octree-based representation of detected obstacles
from the UAV’s onboard sensors to an arbitrary navigation algorithm. Throughout this
dissertation, two interchangeable approaches based on potential field navigation and
the graph-search-based Anytime Dynamic A* algorithm were implemented and tested.
While this work focuses on relative path planning, position estimation, and navigation,
the system developed and integrated two inspection methods for presence detection and
photogrammetric documentation of assemblies. The following paragraphs summarize
the achieved results of the subsystems mentioned above.

Path Planning

The inspection-centered path planning system developed in this work is versatile and
extensible. It allows for the specification and calculation of efficient inspection paths
based on Points of Interest, Viewareas, and Viewpoints using a graphical user interface
designed for this task, as well as planning paths covering the entire surface of an
assembly. The implemented path planning system based on the Ant Colony System
algorithm can calculate efficient inspection paths, with its performance evaluated in

201

6 Conclusion and Outlook

Section 5.2.1. The concept of Viewareas allows for the optimization of inspection path
length and duration as well as planning time which was demonstrated through planning
an inspection path along a fuselage section where a 37.6 %, reduction in inspection
path length and 57% less braking and acceleration maneuvers could be achieved (see:
Section 5.2.2). The functionality of a second path optimization strategy, where the
quality of individual Viewpoints is learned throughout multiple similar inspections, was
verified in simulation (see: Section 5.2.3). While the path planning system focuses on
targeted inspections of individual Points of Interest, it is versatile enough to allow for
inspections where coverage of the entire surface of the assembly is required. This was
demonstrated through the photogrammetric reconstruction of two aircraft fuselage parts
using the HEDAC coverage algorithm to generate a trajectory and sampling Viewpoints
based on this trajectory (see: Section 5.2.6).

Position Estimation

This work proposes a novel approach for relative navigation for UAVs relying entirely
on onboard sensors. The system works independently of external positioning systems
like GPS. The key component of the system is measuring the UAV’s position relative
to an object using a model tracking algorithm. The approach combines this pose with
onboard IMU measurements from the UAV in a Kalman Filter, which provides a stable
position estimate. The functionality of the proposed position estimation system has
been evaluated in simulation in previous work [248]. This dissertation provided further
verification based on real-world test flight data (see: Section 5.2.4). Additionally, an
extension of the system that provides better position estimation based on kinematic
modeling of the tracked assembly was proposed and evaluated. Its functionality was
demonstrated in simulated test flights, which significantly improved the quality of the
position estimate when navigating relative to moving objects.

Navigation

As part of this dissertation, two obstacle-avoiding navigation strategies for selective
inspections were implemented and tested. One approach is based on the potential
field method, while the other uses the graph-search-based Anytime Dynamic A* algo-
rithm. Both were evaluated in simulated and real-world testing. While both approaches
successfully navigated towards a goal efficiently, the results of the tests suggest that a
combination of both methods may yield even better performance (see: Section 5.2.5). Op-
timizations made to the HEDAC trajectory planning system for generating trajectories
covering the surface of an assembly significantly reduced the required execution time.
However, they were not sufficient for execution at runtime (see: Section 5.2.6). However,
the tests revealed further possibilities for improvements, which can be explored in future
work.

202

Collision Avoidance

This work presented a system for processing low-quality obstacle sensor data and creat-
ing a representation of the detected obstacles for navigation to achieve collision-free
flight. The system uses an octree-based representation for efficient storage of detected
obstacles. Several test flights performed throughout this work demonstrated the ef-
fectiveness of this approach and its ability to handle previously known and unknown
obstacles, as well as static and moving obstacles. This system has been in continuous
use almost for all test and demonstration flights and in combination with the collision
avoidance watchdog, it has not only enabled flights inside complex and difficult to
navigate environments like the inside of a fuselage section, it has significantly con-
tributed to the fact, that no major crash has occurred during the almost six years of
developing the platform and the only damage inflicted to the used UAVs were a set of
broken propellers.

Inspection

The inspection subsystem of the platform was intentionally implemented to be open for
extension by external inspection tools. The extensibility of the systemwas demonstrated
with the integration of the VisionLib existence check functionality (see: Section 5.2.7).
Additionally, an approach for performing a rudimentary existence check based on
template matching using a render of the inspected part on a captured image of the
Point of Interest was implemented and tested with limited success. However, the
approach provides a precise overlay of the target state of the assembly for easier manual
verification. A promising strategy for isolating the image region containing the POI was
also developed. This strategy can augment the relevant area for the inspector and will
serve as input for a pose-estimation-based inspection algorithm in future work. Lastly,
the platform’s effectiveness in coverage-based inspection scenarios was demonstrated
by processing images gathered during flights covering the entire surface of the assembly.
The images were used to perform a photogrammetric reconstruction of the assembly
(see: Section 5.2.6) as well as a photorealistic texture for the CAD model, which can be
used for inspections and documentation of the assembly’s state.

203

Bibliography

[1] 8tree GmbH. 8tree: dentcheck: Dent inspection within seconds, 2025. URL https:

//www.8-tree.com/products-services/dentcheck-2/. (Accessed: 2025-04-27).

[2] F. Ababsa. A new 3d model-based tracking technique for robust camera pose estimation.
International Journal of Advanced Computer Science and Applications, 3(4), 2012.

[3] F. Ababsa and M. Mallem. Robust camera pose estimation combining 2d/3d points and
lines tracking. In 2008 IEEE International Symposium on Industrial Electronics, pages
774–779, 2008. doi: 10.1109/ISIE.2008.4676964.

[4] Aerones. Wind turbine inspection - robotic wind turbine care systems | aerones, 2025. URL
https://aerones.com/services/inspection/drone-inspections/. (Accessed: 2025-
02-02).

[5] Aerones. Wind turbine inspection - robotic wind turbine care systems | aerones, 2025.
URL https://aerones.com/services/inspection/. (Accessed: 2025-02-02).

[6] Aerones. Blitzschutzsystem - robotic wind turbine care systems | aerones, 2025. URL
https://aerones.com/de/dienstleistungen-2/inspektion/leitfahigkeit/. (Ac-
cessed: 2025-04-15).

[7] Airbus. Airbus demonstrates aircraft inspection by drone at farnborough,
2016. URL https://www.airbus.com/en/newsroom/press-releases/2016-07-airbus-

demonstrates-aircraft-inspection-by-drone-at-farnborough. (Accessed: 2025-04-
08).

[8] Airbus. Airbus launches advanced indoor inspection drone to reduce aircraft inspection
times and enhance report quality, 2018. URL https://www.airbus.com/en/newsroom/

press-releases/2018-04-airbus-launches-advanced-indoor-inspection-drone-

to-reduce-aircraft. (Accessed: 2025-04-08).

[9] Airbus. Accident rates by category and generation accidentstats.airbus.com,
2025. URL https://accidentstats.airbus.com/accident-rates-by-category-

generation/. (Accessed: 2025-05-06).

[10] Z. AIS. Industrial climbing - zeppelin ais, 2025. URL https://zeppelin-ais.com/en/

services/special-services/industrial-climbing. (Accessed: 2025-01-03).

[11] A. Akca and M. Ö. Efe. Multiple model kalman and particle filters and applications: A
survey. IFAC-PapersOnLine, 52(3):73–78, 2019.

[12] J. L. Alarcon-Herrera, X. Chen, and X. Zhang. Viewpoint selection for vision systems in
industrial inspection. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 4934–4939, May 2014. doi: 10.1109/ICRA.2014.6907582.

[13] P. F. Alcantarilla and T. Solutions. Fast explicit diffusion for accelerated features in
nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell, 34(7):1281–1298, 2011.

[14] B. S. Aleshin, A. I. Chernomorsky, E. D. Kuris, K. S. Lelkov, and M. V. Ivakin. Robotic
complex for inspection of the outer surface of the aircraft in its parking lot. Incas Bulletin,
12:21–31, 2020.

[15] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail. Review of visual odometry:
types, approaches, challenges, and applications. SpringerPlus, 5:1–26, 2016.

205

https://www.8-tree.com/products-services/dentcheck-2/
https://www.8-tree.com/products-services/dentcheck-2/
https://aerones.com/services/inspection/drone-inspections/
https://aerones.com/services/inspection/
https://aerones.com/de/dienstleistungen-2/inspektion/leitfahigkeit/
https://www.airbus.com/en/newsroom/press-releases/2016-07-airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough
https://www.airbus.com/en/newsroom/press-releases/2016-07-airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough
https://www.airbus.com/en/newsroom/press-releases/2018-04-airbus-launches-advanced-indoor-inspection-drone-to-reduce-aircraft
https://www.airbus.com/en/newsroom/press-releases/2018-04-airbus-launches-advanced-indoor-inspection-drone-to-reduce-aircraft
https://www.airbus.com/en/newsroom/press-releases/2018-04-airbus-launches-advanced-indoor-inspection-drone-to-reduce-aircraft
https://accidentstats.airbus.com/accident-rates-by-category-generation/
https://accidentstats.airbus.com/accident-rates-by-category-generation/
https://zeppelin-ais.com/en/services/special-services/industrial-climbing
https://zeppelin-ais.com/en/services/special-services/industrial-climbing

[16] Autaza. Ai experience | autaza, 2025. URL https://www.autaza.com/en/projects-8.
(Accessed: 2025-04-15).

[17] N. P. Avdelidis, A. Tsourdos, P. Lafiosca, R. Plaster, A. Plaster, and M. Droznika. Defects
recognition algorithm development from visual uav inspections. Sensors, 22(13):4682,
2022.

[18] M. Babic, M. A. Farahani, and T. Wuest. Image based quality inspection in smart manu-
facturing systems: A literature review. Procedia CIRP, 103:262–267, 2021. ISSN 2212-8271.
doi: https://doi.org/10.1016/j.procir.2021.10.042. URL https://www.sciencedirect.com/

science/article/pii/S2212827121008830. 9th CIRP Global Web Conference – Sustain-
able, resilient, and agile manufacturing and service operations : Lessons from COVID-19.

[19] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): part ii.
IEEE Robotics Automation Magazine, 13(3):108–117, Sep. 2006. doi: 10.1109/MRA.2006.
1678144.

[20] W. Bank. Air transport, passengers carried | data, 2025. URL https://data.worldbank.

org/indicator/IS.AIR.PSGR. (Accessed: 2025-02-04).

[21] K. Bardis, N. P. Avdelidis, C. Ibarra-Castanedo, X. P. V. Maldague, and H. Fernandes.
Advanced diagnostics of aircraft structures using automated non-invasive imaging tech-
niques: A comprehensive review. Applied Sciences, 15(7), 2025. ISSN 2076-3417. doi:
10.3390/app15073584. URL https://www.mdpi.com/2076-3417/15/7/3584.

[22] F. Bellalouna. The augmented reality technology as enabler for the digitization of industrial
business processes: case studies. Procedia CIRP, 98:400–405, 2021.

[23] N. Biggs. The traveling salesman problem a guided tour of combinatorial optimization,
1986.

[24] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and R. Siegwart.
Structural inspection path planning via iterative viewpoint resampling with application to
aerial robotics. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 6423–6430, 5 2015. doi: 10.1109/ICRA.2015.7140101.

[25] D. Bohdanov and H. Liu. Vision-based quadrotor micro-uav position and yaw estimation
and control. In AIAA Guidance, Navigation, and Control Conference, page 5048, 2012.

[26] K. S. Bohra and Y. S. Dharmadhikari. History of fly by wire, the tech that expanded
human horizons in aviation. In 2023 8th IEEE History of Electrotechnology Conference
(HISTELCON), pages 46–51, 2023. doi: 10.1109/HISTELCON56357.2023.10365861.

[27] F. Bourgeois, L. Kneip, S. Weiss, and R. Siegwart. Delay and dropout tolerant state
estimation for mavs. In Experimental Robotics: The 12th International Symposium on
Experimental Robotics, pages 571–584. Springer, 2014.

[28] G. Bressan, D. Invernizzi, S. Panza, M. Lovera, et al. Attitude control of multirotor uavs:
cascade p/pid vs pi-like architecture. In 5th CEAS Specialist Conference on Guidance,
Navigation and Control-EuroGNC, pages 1–20, 2019.

[29] S. Bruno, S. Lorenzo, V. Luigi, and O. Giuseppe. Robotics: modelling, planning and control,
2010.

[30] A. Budiyanto, A. Cahyadi, T. B. Adji, and O. Wahyunggoro. Uav obstacle avoidance using
potential field under dynamic environment. In 2015 International Conference on Control,
Electronics, Renewable Energy and Communications (ICCEREC), pages 187–192. IEEE, 2015.

206

https://www.autaza.com/en/projects-8
https://www.sciencedirect.com/science/article/pii/S2212827121008830
https://www.sciencedirect.com/science/article/pii/S2212827121008830
https://data.worldbank.org/indicator/IS.AIR.PSGR
https://data.worldbank.org/indicator/IS.AIR.PSGR
https://www.mdpi.com/2076-3417/15/7/3584

[31] N. Bäns. Automation @ airbus - from the past to manufacturing 4.0, Nov. 2018. URL
https://doi.org/10.5281/zenodo.2317453.

[32] L. Calvet, P. Gurdjos, C. Griwodz, and S. Gasparini. Detection and accurate localization
of circular fiducials under highly challenging conditions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 562–570, 2016.

[33] J. F. Canny. A variational approach to edge detection. In AAAI, volume 1983, pages 54–58,
1983.

[34] V. Capitalist. Visual capitalist - the largest aircraft makers in 2024, 2025. URL https://www.
visualcapitalist.com/cp/the-largest-aircraft-companies-in-2024/. (Accessed:
2025-03-13).

[35] D. Cazzato, M. A. Olivares-Mendez, J. L. Sanchez-Lopez, and H. Voos. Vision-based aircraft
pose estimation for uavs autonomous inspection without fiducial markers. In IECON
2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages
5642–5648, 2019. doi: 10.1109/IECON.2019.8926667.

[36] A. Chakravarthy and D. Ghose. Obstacle avoidance in a dynamic environment: A collision
cone approach. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 28(5):562–574, 1998.

[37] K. Chang, Y. Xia, and K. Huang. Uav formation control design with obstacle avoidance in
dynamic three-dimensional environment. SpringerPlus, 5:1–16, 2016.

[38] K. Chaudhari and A. Thakkar. Travelling salesman problem: An empirical comparison
between aco, pso, abc, fa and ga. In N. R. Shetty, L. M. Patnaik, H. C. Nagaraj, P. N.
Hamsavath, and N. Nalini, editors, Emerging Research in Computing, Information, Com-
munication and Applications, pages 397–405, Singapore, 2019. Springer Singapore. ISBN
978-981-13-6001-5.

[39] K. Chaudhari and A. Thakkar. Travelling salesman problem: an empirical comparison
between aco, pso, abc, fa and ga. In Emerging Research in Computing, Information,
Communication and Applications: ERCICA 2018, Volume 2, pages 397–405. Springer, 2019.

[40] J. Chen and S. Shen. Using a quadrotor to track a moving target with arbitrary relative
motion patterns. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5310–5317, 2017.

[41] X. Chen and J. Zhang. The three-dimension path planning of uav based on improved
artificial potential field in dynamic environment. In 2013 5th International Conference on
Intelligent Human-Machine Systems and Cybernetics, volume 2, pages 144–147, 2013. doi:
10.1109/IHMSC.2013.181.

[42] X. Chen, M. Zhao, and L. Yin. Dynamic path planning of the uav avoiding static and
moving obstacles. Journal of Intelligent & Robotic Systems, 99:909–931, 2020.

[43] K. C. Cheok, M. Radovnikovich, P. Vempaty, G. R. Hudas, J. L. Overholt, and P. Fleck.
Uwb tracking of mobile robots. In 21st Annual IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 2615–2620, 2010. doi: 10.1109/PIMRC.
2010.5671780.

[44] C. Choi and H. I. Christensen. Real-time 3d model-based tracking using edge and keypoint
features for robotic manipulation. 2010 IEEE International Conference on Robotics and
Automation, pages 4048–4055, 2010.

207

https://doi.org/10.5281/zenodo.2317453
https://www.visualcapitalist.com/cp/the-largest-aircraft-companies-in-2024/
https://www.visualcapitalist.com/cp/the-largest-aircraft-companies-in-2024/

[45] D. Choi, K. Lee, and D. Kim. Enhanced potential field-based collision avoidance for
unmanned aerial vehicles in a dynamic environment. In AIAA scitech 2020 forum, page
0487, 2020.

[46] F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo. Recent advances in active infrared
thermography for non-destructive testing of aerospace components. Sensors, 18(2), 2018.
ISSN 1424-8220. doi: 10.3390/s18020609. URL https://www.mdpi.com/1424-8220/18/2/

609.

[47] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. Mesh-
lab: an open-source mesh processing tool. In European Interdisciplinary Cybersecurity
Conference, 2008.

[48] G. Cioffi, L. Bauersfeld, E. Kaufmann, and D. Scaramuzza. Learned inertial odometry for
autonomous drone racing. IEEE Robotics and Automation Letters, 8(5):2684–2691, 2023.

[49] P. Ciro, N. D., and P. Alberto. Target Aware Optimal Visual Navigation for UAVs. arXiv.org,
2017.

[50] M. Claybrough. System and method for automatically inspecting surfaces, 2019. URL
https://patents.google.com/patent/US10377485B2/en.

[51] I. Colomina and P. Molina. Unmanned aerial systems for photogrammetry and remote
sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92:79–97, 2014.

[52] T. Danner and L. E. Kavraki. Randomized planning for short inspection paths. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 971–976 vol.2, 4
2000. doi: 10.1109/ROBOT.2000.844726.

[53] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2(4):393–410, 1954.

[54] S. David. Disasters and accidents in manned spaceflight. Springer Science & Business
Media, 2000.

[55] J. A. de Bonfim Gripp, E. A. de Souza, R. Padovani, and C. Y. Sakuramoto. Method and
system for automatic quality inspection of materials and virtual material surfaces, 2021.
URL https://patents.google.com/patent/US11024020B2.

[56] S. Deane, N. P. Avdelidis, C. Ibarra-Castanedo, H. Zhang, H. Yazdani Nezhad, A. A.
Williamson, T. Mackley, M. J. Davis, X. Maldague, and A. Tsourdos. Application of ndt
thermographic imaging of aerospace structures. Infrared Physics and Technology, 97:
456–466, 2019. ISSN 1350-4495. doi: https://doi.org/10.1016/j.infrared.2019.02.002. URL
https://www.sciencedirect.com/science/article/pii/S1350449518309563.

[57] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based
on matrices. Journal of Applied Mechanics, 22(2):215–221, 06 2021. ISSN 0021-8936. doi:
10.1115/1.4011045. URL https://doi.org/10.1115/1.4011045.

[58] C. Deng, S. Wang, Z. Huang, Z. Tan, and J. Liu. Unmanned aerial vehicles for power
line inspection: A cooperative way in platforms and communications. J. Commun., 9(9):
687–692, 2014.

[59] A. Deruaz-Pepin. Method and system for determining the position of a moving craft, 2017.
URL https://patents.google.com/patent/WO2017121936A1/.

208

https://www.mdpi.com/1424-8220/18/2/609
https://www.mdpi.com/1424-8220/18/2/609
https://patents.google.com/patent/US10377485B2/en
https://patents.google.com/patent/US11024020B2
https://www.sciencedirect.com/science/article/pii/S1350449518309563
https://doi.org/10.1115/1.4011045
https://patents.google.com/patent/WO2017121936A1/

[60] Deutsche Bahn AG. Kompetenzcenter Multicopter DB, 2025. URL
https://www.dbsicherheit.de/dbsicherheit-de/Unsere_Leistungen/Weitere-

Leistungen-/02_Multicopter-7749316.

[61] Donecle. Home - donecle, 2025. URL https://www.donecle.com/. (Accessed: 2025-01-03).

[62] Donecle. Component brochure - donecle, 2025. URL https://www.donecle.com/

component-brochure/. (Accessed: 2025-05-04).

[63] Donecle. Products - donecle, 2025. URL https://www.donecle.com/products/#iris_

GVI. (Accessed: 2025-04-13).

[64] Y. Du, X. Zhang, and Z. Nie. A real-time collision avoidance strategy in dynamic airspace
based on dynamic artificial potential field algorithm. IEEE Access, 7:169469–169479, 2019.

[65] P. Eide and P. Maybeck. An mmae failure detection system for the f-16. IEEE Transactions
on Aerospace and Electronic Systems, 32(3):1125–1136, 1996. doi: 10.1109/7.532271.

[66] G. Einicke and L. White. Robust extended kalman filtering. IEEE Transactions on Signal
Processing, 47(9):2596–2599, 1999. doi: 10.1109/78.782219.

[67] J. Elliott. Nasa’s advanced control law program for the f-8 digital fly-by-wire aircraft. IEEE
Transactions on Automatic Control, 22(5):753–757, 1977. doi: 10.1109/TAC.1977.1101608.

[68] T. Elmokadem. A 3d reactive collision free navigation strategy for nonholonomic mobile
robots. In 2018 37th Chinese Control Conference (CCC), pages 4661–4666. IEEE, 2018.

[69] T. Elmokadem and A. Savkin. A hybrid approach for autonomous collision-free uav
navigation in 3d partially unknown dynamic environments drones 2021, 5, 57. Feature
Papers of Drones, page 369, 2021.

[70] F. Engel. In-process fault inspection using augmented reality, 2018. URL https://patents.
google.com/patent/US9916650B2.

[71] B. Englot and F. S. Hover. Sampling-based coverage path planning for inspection of
complex structures. ICAPS 2012 - Proceedings of the 22nd International Conference on
Automated Planning and Scheduling, 06 2014.

[72] R.-S. et al. Github - bardo91/motion-planning, 2025. URL https://github.com/bardo91/

motion_planning. (Accessed: 2025-05-07).

[73] I. FARO Technologies. Faro visual inspect information brochure, 2025. URL
https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2_TECH-

SHEET/TechSheet_Visual_Inspect/TechSheet_Visual_Inspect_DE.pdf. (Accessed:
2025-04-21).

[74] C. Favre. Fly-by-wire for commercial aircraft: the airbus experience. International Journal
of Control, 59(1):139–157, 1994.

[75] H. Ferdinando, H. Khoswanto, and D. Purwanto. Embedded kalman filter for inertial mea-
surement unit (imu) on the atmega8535. In 2012 International Symposium on Innovations
in Intelligent Systems and Applications, pages 1–5. IEEE, 2012.

[76] D. Fernandez and A. Price. Visual odometry for an outdoor mobile robot. In IEEE
Conference on Robotics, Automation and Mechatronics, 2004., volume 2, pages 816–821.
IEEE, 2004.

[77] J. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-
Taboada. Image-based modelling from unmanned aerial vehicle (uav) photogrammetry:

209

https://www.dbsicherheit.de/dbsicherheit-de/Unsere_Leistungen/Weitere-Leistungen-/02_Multicopter-7749316
https://www.dbsicherheit.de/dbsicherheit-de/Unsere_Leistungen/Weitere-Leistungen-/02_Multicopter-7749316
https://www.donecle.com/
https://www.donecle.com/component-brochure/
https://www.donecle.com/component-brochure/
https://www.donecle.com/products/#iris_GVI
https://www.donecle.com/products/#iris_GVI
https://patents.google.com/patent/US9916650B2
https://patents.google.com/patent/US9916650B2
https://github.com/bardo91/motion_planning
https://github.com/bardo91/motion_planning
https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2_TECH-SHEET/TechSheet_Visual_Inspect/TechSheet_Visual_Inspect_DE.pdf
https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2_TECH-SHEET/TechSheet_Visual_Inspect/TechSheet_Visual_Inspect_DE.pdf

an effective, low-cost tool for archaeological applications. Archaeometry, 57(1):128–145,
2015.

[78] B. Foundation. blender.org - home of the blender project - free and open 3d creation
software, 2025. URL https://www.blender.org/. (Accessed: 2025-01-10).

[79] O. R. Foundation. vrpn-client-ros - ros wiki, 2025. URL http://wiki.ros.org/vrpn_

client_ros. (Accessed: 2025-03-05).

[80] O. R. Foundation. Moveit motion planning framework, 2025. URL https://moveit.ros.

org/. (Accessed: 2025-01-10).

[81] O. R. Foundation. Client libraries - ros wiki, 2025. URL https://wiki.ros.org/Client%

20Libraries. (Accessed: 2025-05-06).

[82] O. R. Foundation. robot-localization wiki robot-localization 2.6.12 documentation, 2025.
URL https://docs.ros.org/en/melodic/api/robot_localization/html/index.html.
(Accessed: 2025-04-22).

[83] O. R. Foundation. robot state publisher - ros wiki, 2025. URL http://wiki.ros.org/

robot_state_publisher. (Accessed: 2025-03-11).

[84] O. R. Foundation. tf2 - ros wiki, 2025. URL http://wiki.ros.org/tf2. (Accessed:
2025-01-12).

[85] O. S. R. Foundation. Mp-testdata - the tsplib symmetric traveling salesman problem
instances, 2025. URL http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/att48.

tsp. (Accessed: 2025-02-25).

[86] O. S. R. Foundation. Gazebo - robot simulation made easy, 2025. URL http://gazebosim.

org/. (Accessed: 2025-02-16).

[87] O. S. R. Foundation. Ros official website, 2025. URL http://ros.org. (Accessed: 2025-03-
05).

[88] O. S. R. Foundation. Universal robotic description format, 2025. URL https://wiki.ros.

org/urdf. (Accessed: 2025-03-05).

[89] O. S. R. Foundation. Rosbag documentation, 2025. URL http://wiki.ros.org/rosbag.
(Accessed: 2025-03-05).

[90] O. S. R. Foundation. Ros service documentation, 2025. URL http://wiki.ros.org/

Services. (Accessed: 2025-03-05).

[91] O. S. R. Foundation. Ros1 topics documentation, 2025. URL http://wiki.ros.org/Topics.
(Accessed: 2025-03-05).

[92] R. P. Foundation. Raspberry pi camera modules, 2025. URL https://www.raspberrypi.

com/documentation/accessories/camera.html. (Accessed: 2025-05-04).

[93] R. P. Foundation. Raspberry pi 2 model b product information, 2025. URL https://www.

raspberrypi.com/products/raspberry-pi-2-model-b/. (Accessed: 2025-05-04).

[94] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Rotors—a modular gazebo mav simulator
framework. Robot Operating System (ROS) The Complete Reference (Volume 1), pages
595–625, 2016.

[95] E. Galceran and M. Carreras. A survey on coverage path planning for robotics. Robotics
and Autonomous Systems, 61:1258–1276, 12 2013. doi: 10.1016/j.robot.2013.09.004.

210

https://www.blender.org/
http://wiki.ros.org/vrpn_client_ros
http://wiki.ros.org/vrpn_client_ros
https://moveit.ros.org/
https://moveit.ros.org/
https://wiki.ros.org/Client%20Libraries
https://wiki.ros.org/Client%20Libraries
https://docs.ros.org/en/melodic/api/robot_localization/html/index.html
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/tf2
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/att48.tsp
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/att48.tsp
http://gazebosim.org/
http://gazebosim.org/
http://ros.org
https://wiki.ros.org/urdf
https://wiki.ros.org/urdf
http://wiki.ros.org/rosbag
http://wiki.ros.org/Services
http://wiki.ros.org/Services
http://wiki.ros.org/Topics
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/products/raspberry-pi-2-model-b/
https://www.raspberrypi.com/products/raspberry-pi-2-model-b/

[96] J. Gall, B. Rosenhahn, and H.-P. Seidel. Robust pose estimation with 3d textured models.
In Pacific-Rim Symposium on Image and Video Technology, 2006.

[97] L. Gambardella and M. Dorigo. Solving symmetric and asymmetric tsps by ant colonies. In
Proceedings of IEEE International Conference on Evolutionary Computation, pages 622–627,
1996. doi: 10.1109/ICEC.1996.542672.

[98] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New
York, 2002.

[99] N. GmbH. Montagekontrolle mit neurocheck sichert qualitat im produktionsprozess,
2025. URL https://www.neurocheck.de/systemloesungen/anwendungsgebiete/

montagekontrolle/. (Accessed: 2025-04-21).

[100] T. GmbH. Mira, airbus augmented-reality-anwendung bei testia erhältlich,
2025. URL https://www.testia.com/de/news-de/mira-airbus-augmented-reality-

anwendung-bei-testia-erhaeltlich/. (Accessed: 2025-03-14).

[101] V. B. GmbH. Vmt vison technology information brochure, 2025. URL https://vmt-

vision-technology.com/files/225/vmt-unternehmen-de-lq.pdf. (Accessed: 2025-04-
21).

[102] R. Gonzalez, F. Rodriguez, J. L. Guzman, C. Pradalier, and R. Siegwart. Combined visual
odometry and visual compass for off-road mobile robots localization. Robotica, 30(6):
865–878, 2012.

[103] H. González-Banos. A randomized art-gallery algorithm for sensor placement. Proc. 17th
ACM Symp. Comp. Geom., pages 232–240, 01 2001. doi: 10.1145/378583.378674.

[104] C. Griwodz, S. Gasparini, L. Calvet, P. Gurdjos, F. Castan, B. Maujean, G. De Lillo, and
Y. Lanthony. Alicevision meshroom: An open-source 3d reconstruction pipeline. In
Proceedings of the 12th ACM multimedia systems conference, pages 241–247, 2021.

[105] L. Group. Ai drone inspect - lufthansa group innovation runway, 2025.
URL https://innovation-runway.lufthansagroup.com/en/focus-areas-projects/

operations-excellence/ai-drone-inspect.html. (Accessed: 2025-01-06).

[106] S. Gupte, P. Mohandas, and J. Conrad. A survey of quadrotor unmanned aerial vehicles.
In Southeastcon, Proceedings of IEEE, pages 1–6. IEEE, 2012.

[107] R. A. Hamzah, R. Abd Rahim, and Z. M. Noh. Sum of absolute differences algorithm
in stereo correspondence problem for stereo matching in computer vision application.
In 2010 3rd International Conference on Computer Science and Information Technology,
volume 1, pages 652–657. IEEE, 2010.

[108] S. R. Haque, R. Kormokar, and A. U. Zaman. Drone ground control station with enhanced
safety features. In 2017 2nd International Conference for Convergence in Technology (I2CT),
pages 1207–1210, 2017. doi: 10.1109/I2CT.2017.8226318.

[109] J. Hardy, J. Strader, J. N. Gross, Y. Gu, M. Keck, J. Douglas, and C. N. Taylor. Unmanned
aerial vehicle relative navigation in GPS denied environments. In 2016 IEEE/ION Position,
Location and Navigation Symposium (PLANS), pages 344–352. IEEE, 4 2016. doi: 10.1109/
plans.2016.7479719. URL http://dx.doi.org/10.1109/PLANS.2016.7479719.

[110] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968. doi: 10.1109/TSSC.1968.300136.

211

https://www.neurocheck.de/systemloesungen/anwendungsgebiete/montagekontrolle/
https://www.neurocheck.de/systemloesungen/anwendungsgebiete/montagekontrolle/
https://www.testia.com/de/news-de/mira-airbus-augmented-reality-anwendung-bei-testia-erhaeltlich/
https://www.testia.com/de/news-de/mira-airbus-augmented-reality-anwendung-bei-testia-erhaeltlich/
https://vmt-vision-technology.com/files/225/vmt-unternehmen-de-lq.pdf
https://vmt-vision-technology.com/files/225/vmt-unternehmen-de-lq.pdf
https://innovation-runway.lufthansagroup.com/en/focus-areas-projects/operations-excellence/ai-drone-inspect.html
https://innovation-runway.lufthansagroup.com/en/focus-areas-projects/operations-excellence/ai-drone-inspect.html
http://dx.doi.org/10.1109/PLANS.2016.7479719

[111] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in 2d lidar slam. In
2016 IEEE international conference on robotics and automation (ICRA), pages 1271–1278.
IEEE, 2016.

[112] Hexagon. Automated inspection | hexagon, 2025. URL https://hexagon.com/solutions/
automated-inspection. (Accessed: 2025-01-15).

[113] H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and
mutual information. In 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), volume 2, pages 807–814. IEEE, 2005.

[114] H. Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on pattern analysis and machine intelligence, 30(2):328–341, 2007.

[115] G. Hoffmann, D. Rajnarayan, S. Waslander, D. Dostal, J. Jang, and C. Tomlin. The stanford
testbed of autonomous rotorcraft for multi agent control (starmac). In Digital Avionics
Systems Conference, DASC 04. The 23rd, volume 2, pages 12–E. IEEE, 2004.

[116] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. Octomap: An
efficient probabilistic 3d mapping framework based on octrees. Autonomous robots, 34:
189–206, 2013.

[117] S. Hornung. Konzept einer bodenkontrollstation zur Überwachung der inspektion großer
bauteile mithilfe eines quadcopters mit prototypischer evaluation. bachelor’s thesis, 2021.

[118] S. Hornung. Realisierung eines systems zur automatisierten photogrammetrischen erfas-
sung großer strukturen mithilfe von uavs. master’s thesis, Augsburg University, 2024.

[119] S. Hrabar. 3d path planning and stereo-based obstacle avoidance for rotorcraft uavs. In
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 807–814,
2008. doi: 10.1109/IROS.2008.4650775.

[120] M. Hrúz, M. Bugaj, A. Novák, B. Kandera, and B. Badánik. The use of uav with infrared
camera and rfid for airframe condition monitoring. Applied Sciences, 11(9), 2021. ISSN 2076-
3417. doi: 10.3390/app11093737. URL https://www.mdpi.com/2076-3417/11/9/3737.

[121] P. P. Ikubanni, A. A. Adeleke, O. O. Agboola, C. T. Christopher, B. S. Ademola, J. Okonkwo,
O. S. Adesina, P. O. Omoniyi, and E. T. Akinlabi. Present and future impacts of computer-
aided design/computer-aided manufacturing (cad/cam). Journal Européen des Systèmes
Automatisés, 55(3):349, 2022.

[122] E. International. The json data interchange syntax, 2025. URL https://ecma-

international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.

pdf. (Accessed: 2025-02-22).

[123] N. Iversen, O. B. Schofield, L. Cousin, N. Ayoub, G. vom Bögel, and E. Ebeid. Design,
integration and implementation of an intelligent and self-recharging drone system for
autonomous power line inspection. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4168–4175, 2021. doi: 10.1109/IROS51168.2021.9635924.

[124] S. Ivić, B. Crnković, and I. Mezić. Ergodicity-based cooperative multiagent area coverage
via a potential field. IEEE transactions on cybernetics, 47(8):1983–1993, 2016.

[125] S. Ivić, B. Crnković, L. Grbčić, and L. Matleković. Multi-uav trajectory planning for 3d
visual inspection of complex structures. Automation in Construction, 147:104709, 2023.

[126] C. R. Jarvis. Operational experience with the electronic flight control systems of a lunar-
landing research vehicle. Technical report, NASA Flight Research Center, Edwards,
California, 1966.

212

https://hexagon.com/solutions/automated-inspection
https://hexagon.com/solutions/automated-inspection
https://www.mdpi.com/2076-3417/11/9/3737
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

[127] H. M. P. C. Jayaweera and S. Hanoun. A dynamic artificial potential field (d-apf) uav path
planning technique for following ground moving targets. IEEE Access, 8:192760–192776,
2020.

[128] S. Jordan, J. Moore, S. Hovet, J. Box, J. Perry, K. Kirsche, D. Lewis, and Z. T. H. Tse. State-
of-the-art technologies for uav inspections. IET Radar, Sonar Navigation, 12(2):151–164,
2018. doi: 10.1049/iet-rsn.2017.0251.

[129] S. J. Julier and J. K. Uhlmann. New extension of the kalman filter to nonlinear systems.
In Signal processing, sensor fusion, and target recognition VI, volume 3068, pages 182–193.
Spie, 1997.

[130] D. Jurado-Rodríguez, R. Muñoz-Salinas, S. Garrido-Jurado, F. J. Romero-Ramírez, and
R. Medina-Carnicer. 3d model-based tracking combining edges, keypoints and fiducial
markers. Virtual Reality, 27:3051 – 3065, 2023.

[131] I. Kalinov, E. Safronov, R. Agishev, M. Kurenkov, and D. Tsetserukou. High-precision uav
localization system for landing on a mobile collaborative robot based on an ir marker
pattern recognition. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring),
pages 1–6. IEEE, 2019.

[132] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[133] E. D. Kaplan and C. Hegarty. Understanding GPS/GNSS: principles and applications. Artech
house, 2017.

[134] P. Karaked, W. Saengphet, and S. Tantrairatn. Multi-sensor fusion with extended kalman
filter for indoor localization system of multirotor uav. In 2022 19th International Joint
Conference on Computer Science and Software Engineering (JCSSE), pages 1–5. IEEE, 2022.

[135] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846–894, 2011. doi: 10.1177/
0278364911406761. URL https://doi.org/10.1177/0278364911406761.

[136] M. Karl and G. Ghazaei. Computer-implementiertes verfahren und vorrichtung zum
prüfen einer korrektheit eines zusammenbaus, 2024. URL https://patents.google.

com/patent/DE102023102196A1.

[137] R. Katschinsky. Drohnen-inspektion großer bauteile – positionsbestimmung und naviga-
tion relativ zu bewegten bauteilen. master’s thesis, Augsburg University, 2021.

[138] L. Keyu, L. Yonggen, and Z. Yanchi. Dynamic obstacle avoidance path planning of uav
based on improved apf. In 2020 5th International Conference on Communication, Image and
Signal Processing (CCISP), pages 159–163, 2020. doi: 10.1109/CCISP51026.2020.9273463.

[139] A. Khalil, M. A. Jaradat, S. Mukhopadhyay, and M. F. Abdel-Hafez. Autonomous control
of a hybrid rolling and flying caged drone for leak detection in hvac ducts. IEEE/ASME
Transactions on Mechatronics, 29(1):366–378, 2024. doi: 10.1109/TMECH.2023.3279870.

[140] Y. Khosiawan and I. N. and. A system of uav application in indoor environment. Production
& Manufacturing Research, 4(1):2–22, 2016. doi: 10.1080/21693277.2016.1195304. URL
https://doi.org/10.1080/21693277.2016.1195304.

[141] S. Kim, D. Paes, K. Lee, J. Irizarry, and E. N. Johnson. Uas-based airport maintenance
inspections: Lessons learned from pilot study implementation. In ASCE International
Conference on Computing in Civil Engineering 2019, pages 382–389. American Society of
Civil Engineers Reston, VA, 2019.

213

https://doi.org/10.1177/0278364911406761
https://patents.google.com/patent/DE102023102196A1
https://patents.google.com/patent/DE102023102196A1
https://doi.org/10.1080/21693277.2016.1195304

[142] Y. Kitamura, T. Tanaka, F. Kishino, and M. Yachida. 3-d path planning in a dynamic
environment using an octree and an artificial potential field. In Proceedings 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot Interaction and
Cooperative Robots, volume 2, pages 474–481 vol.2, 1995. doi: 10.1109/IROS.1995.526259.

[143] S. Koenig and M. Likhachev. D*lite. In Eighteenth National Conference on Artificial
Intelligence, page 476–483, USA, 2002. American Association for Artificial Intelligence.
ISBN 0262511290.

[144] D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan. Real-time vision-
based camera tracking for augmented reality applications. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology, VRST ’97, page 87–94, New
York, NY, USA, 1997. Association for Computing Machinery. ISBN 089791953X. doi:
10.1145/261135.261152. URL https://doi.org/10.1145/261135.261152.

[145] Y. Koren and J. Borenstein. Potential fieldmethods and their inherent limitations for mobile
robot navigation. In Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on, pages 1398–1404. IEEE, 1991.

[146] C. Kownacki and L. Ambroziak. A new multidimensional repulsive potential field to avoid
obstacles by nonholonomic uavs in dynamic environments. Sensors, 21(22):7495, 2021.

[147] E. F. Krause. Taxicab geometry. Mathematics Teacher, 66(8):695–706, 1973.

[148] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,
M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render
and compare, 2022. URL https://arxiv.org/abs/2212.06870.

[149] S. Lange, N. Sunderhauf, and P. Protzel. A vision based onboard approach for landing
and position control of an autonomous multirotor uav in gps-denied environments. In
Advanced Robotics, International Conference on, pages 1–6. IEEE, 2009.

[150] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[151] S. Lee and Y. Choi. Reviews of unmanned aerial vehicle (drone) technology trends and its
applications in the mining industry. Geosystem Engineering, 19(4):197–204, 2016.

[152] R. Leishman. A Vision-Based Relative Navigation Approach for Autonomous Multirotor
Aircraft. Ph.d. thesis, Brigham Young University, Provo, Utah, 2013. URL https://www.

proquest.com/openview/a7067e1eae86d5df37df5ca849cc395b/1. (Accessed: 2025-04-
13).

[153] J. R. Leiva, T. Villemot, G. Dangoumeau, M.-A. Bauda, and S. Larnier. Automatic visual
detection and verification of exterior aircraft elements. In 2017 IEEE international workshop
of electronics, control, measurement, signals and their application to mechatronics (ECMSM),
pages 1–5. IEEE, 2017.

[154] S. Li, P. Durdevic, and Z. Yang. Hovering control for automatic landing operation of an
inspection drone to a mobile platform. IFAC-PapersOnLine, 51(8):245–250, 2018. ISSN 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2018.06.384. URL https://www.sciencedirect.

com/science/article/pii/S2405896318307146. 3rd IFACWorkshop on Automatic Con-
trol in Offshore Oil and Gas Production OOGP 2018.

[155] Y. Li and C. Liu. Applications of multirotor drone technologies in construction manage-
ment. International Journal of Construction Management, 19(5):401–412, 2019.

[156] L. Lifen, S. Ruoxin, L. Shuandao, and W. Jiang. Path planning for uavs based on improved
artificial potential field method through changing the repulsive potential function. In 2016

214

https://doi.org/10.1145/261135.261152
https://arxiv.org/abs/2212.06870
https://www.proquest.com/openview/a7067e1eae86d5df37df5ca849cc395b/1
https://www.proquest.com/openview/a7067e1eae86d5df37df5ca849cc395b/1
https://www.sciencedirect.com/science/article/pii/S2405896318307146
https://www.sciencedirect.com/science/article/pii/S2405896318307146

IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), pages 2011–2015.
IEEE, 2016.

[157] M. Likhachev, G. J. Gordon, and S. Thrun. Ara*: Anytime a* with provable bounds on
sub-optimality. Advances in neural information processing systems, 16, 2003.

[158] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun. Anytime dynamic a*:
An anytime, replanning algorithm. In ICAPS, volume 5, pages 262–271, 2005.

[159] H. Lim, J. Park, D. Lee, and H. Kim. Build your own quadrotor: Open-source projects on
unmanned aerial vehicles. IEEE Robotics & Automation Magazine, 19(3):33–45, 2012.

[160] H. Lim, J. Park, D. Lee, and H. J. Kim. Build your own quadrotor: Open-source projects
on unmanned aerial vehicles. IEEE Robotics & Automation Magazine, 19(3):33–45, 2012.

[161] A. S. S. I. Limited. No title found, 2025. URL https://rtmp.veriskope.com/pdf/rtmp_

specification_1.0.pdf. (Accessed: 2025-02-10).

[162] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

[163] L. Linsen. Point cloud representation. Univ., Fak. für Informatik, Bibliothek Technical
Report, Faculty of Computer . . . , 2001.

[164] W. Liu, D. Zou, D. Sartori, L. Pei, and W. Yu. An Image-Guided Autonomous Navigation Sys-
tem for Multi-rotor UAVs, pages 513–526. Springer Singapore, 2019. ISBN 9789811377587.
doi: 10.1007/978-981-13-7759-4_45. URL http://dx.doi.org/10.1007/978-981-13-

7759-4_45.

[165] Z. Liu, D. S. Forsyth, A. Marincak, and P. Vesley. Automated rivet detection in the eol
image for aircraft lap joints inspection. NDT & e International, 39(6):441–448, 2006.

[166] P. Locht, K. Thomsen, and P. Mikkelsen. Full color image analysis as a tool for quality
control and process development in the food industry. ASAE Annual International Meeting,
page 15 pp., 1997. ISSN 0149-9890.

[167] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004.

[168] I. Luftronix. Technology | my website, 2025. URL https://luftronix.com/technology.
(Accessed: 2025-04-15).

[169] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

[170] O. Maghazei and T. Netland. Drones in manufacturing: exploring opportunities for
research and practice. Journal of Manufacturing Technology Management, 31(6):1237–1259,
2020.

[171] O. Maghazei, T. H. Netland, D. Frauenberger, and T. Thalmann. Automatic drones for
factory inspection: The role of virtual simulation. In A. Dolgui, A. Bernard, D. Lemoine,
G. von Cieminski, and D. Romero, editors, Advances in Production Management Systems.
Artificial Intelligence for Sustainable and Resilient Production Systems, pages 457–464, Cham,
2021. Springer International Publishing. ISBN 978-3-030-85910-7.

[172] I. Magic Leap. Github - magicleap/supergluepretrainednetwork: Superglue: Learning
feature matching with graph neural networks (cvpr 2020, oral), 2025. URL https://

github.com/magicleap/SuperGluePretrainedNetwork. (Accessed: 2025-05-13).

[173] Mainblades. Mainblades aircraft inspection automation, 2025. URL https://www.

mainblades.com/. (Accessed: 2025-02-12).

215

https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
http://dx.doi.org/10.1007/978-981-13-7759-4_45
http://dx.doi.org/10.1007/978-981-13-7759-4_45
https://luftronix.com/technology
https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/magicleap/SuperGluePretrainedNetwork
https://www.mainblades.com/
https://www.mainblades.com/

[174] Mainblades. mainblades | solutions, 2025. URL https://www.mainblades.com/solutions.
(Accessed: 2025-04-15).

[175] P. Maini, P. Tokekar, and P. B. Sujit. Visual monitoring of points of interest on a 2.5d
terrain using a uav with limited field-of-view constraint. IEEE Transactions on Aerospace
and Electronic Systems, 57(6):3661–3672, 2021. doi: 10.1109/TAES.2021.3082668.

[176] K. Malandrakis, A. Savvaris, J. A. G. Domingo, N. Avdelidis, P. Tsilivis, F. Plumacker,
L. Z. Fragonara, and A. Tsourdos. Inspection of aircraft wing panels using unmanned
aerial vehicles. In 2018 5th IEEE International Workshop on Metrology for AeroSpace
(MetroAeroSpace), pages 56–61, 2018. doi: 10.1109/MetroAeroSpace.2018.8453598.

[177] K. Malandrakis, A. Savvaris, J. A. G. Domingo, N. Avdelidis, P. Tsilivis, F. Plumacker,
L. Z. Fragonara, and A. Tsourdos. Inspection of aircraft wing panels using unmanned
aerial vehicles. In 2018 5th IEEE International Workshop on Metrology for AeroSpace
(MetroAeroSpace), pages 56–61, 6 2018. doi: 10.1109/MetroAeroSpace.2018.8453598.

[178] S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, and G. Nikolakopoulos. Cooperative
coverage path planning for visual inspection. Control Engineering Practice, 74:118–131,
2018.

[179] L. Marković, M. Kovač, R. Milijas, M. Car, and S. Bogdan. Error state extended kalman filter
multi-sensor fusion for unmanned aerial vehicle localization in gps and magnetometer
denied indoor environments. In 2022 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 184–190. IEEE, 2022.

[180] L. Matikainen, M. Lehtomäki, E. Ahokas, J. Hyyppä, M. Karjalainen, A. Jaakkola, A. Kukko,
and T. Heinonen. Remote sensing methods for power line corridor surveys. ISPRS
Journal of Photogrammetry and Remote Sensing, 119:10–31, 2016. ISSN 0924-2716. doi:
https://doi.org/10.1016/j.isprsjprs.2016.04.011. URL https://www.sciencedirect.com/

science/article/pii/S0924271616300697.

[181] A. Ma’Arif, W. Rahmaniar, M. A. M. Vera, A. A. Nuryono, R. Majdoubi, and A. Çakan.
Artificial potential field algorithm for obstacle avoidance in uav quadrotor for dynamic
environment. In 2021 IEEE International Conference on Communication, Networks and
Satellite (COMNETSAT), pages 184–189, 2021. doi: 10.1109/COMNETSAT53002.2021.
9530803.

[182] B. A. McElhoe. An assessment of the navigation and course corrections for a manned
flyby of mars or venus. IEEE Transactions on Aerospace and Electronic Systems, AES-2(4):
613–623, 1966. doi: 10.1109/TAES.1966.4501892.

[183] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and
Image Processing, 19(2):129–147, 1982. ISSN 0146-664X. doi: https://doi.org/10.1016/
0146-664X(82)90104-6. URL https://www.sciencedirect.com/science/article/pii/

0146664X82901046.

[184] N. Mehreganian and A. S. Fallah. Blast loading effects on aircraft fuselage. InMultiphysics
Simulations in Automotive and Aerospace Applications, pages 239–285. Elsevier, 2021.

[185] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. Pixhawk: A system for au-
tonomous flight using onboard computer vision. In 2011 ieee international conference on
robotics and automation, pages 2992–2997. IEEE, 2011.

[186] M. Memari, M. Shekaramiz, M. A. S. Masoum, and A. C. Seibi. Data fusion and ensemble
learning for advanced anomaly detection using multi-spectral rgb and thermal imaging of

216

https://www.mainblades.com/solutions
https://www.sciencedirect.com/science/article/pii/S0924271616300697
https://www.sciencedirect.com/science/article/pii/S0924271616300697
https://www.sciencedirect.com/science/article/pii/0146664X82901046
https://www.sciencedirect.com/science/article/pii/0146664X82901046

small wind turbine blades. Energies, 17(3), 2024. ISSN 1996-1073. doi: 10.3390/en17030673.
URL https://www.mdpi.com/1996-1073/17/3/673.

[187] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier. A study of vicon system
positioning performance. Sensors, 17(7):1591, 2017.

[188] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos. Image
segmentation using deep learning: A survey. IEEE transactions on pattern analysis and
machine intelligence, 44(7):3523–3542, 2021.

[189] C. Mineo, C. MacLeod, M. Morozov, S. G. Pierce, T. Lardner, R. Summan, J. Powell,
P. McCubbin, C. McCubbin, G. Munro, et al. Fast ultrasonic phased array inspection
of complex geometries delivered through robotic manipulators and high speed data
acquisition instrumentation. In 2016 IEEE International Ultrasonics Symposium (IUS), pages
1–4. IEEE, 2016.

[190] J. Miranda, S. Larnier, A. Herbulot, and M. Devy. UAV-based Inspection of Airplane
Exterior Screws with Computer Vision. In 14h International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications., Prague, Czech Republic,
Feb. 2019. URL https://laas.hal.science/hal-02065284.

[191] F. Mohamadi. Vertical takeoff and landing (vtol) small unmanned aerial system for
monitoring oil and gas pipelines, 2014. URL https://patents.google.com/patent/

US8880241B2/en.

[192] O. Moolan-Feroze, K. Karachalios, D. N. Nikolaidis, and A. Calway. Improving drone local-
isation around wind turbines using monocular model-based tracking. In 2019 international
conference on robotics and automation (ICRA), pages 7713–7719. IEEE, 2019.

[193] O. Moolan-Feroze, K. Karachalios, D. N. Nikolaidis, and A. Calway. Simultaneous drone
localisation and wind turbine model fitting during autonomous surface inspection. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2014–2021. IEEE, 2019.

[194] D. Moreno-Jacobo, G. Toledo-Nin, A. Ochoa-Zezzatti, V. Torres, and F. Estrada-Otero.
Evaluation of Drones for Inspection and Control in Industry 4.0, pages 579–595. Springer
International Publishing, Cham, 2021. ISBN 978-3-030-68655-0. doi: 10.1007/978-3-030-
68655-0_29. URL https://doi.org/10.1007/978-3-030-68655-0_29.

[195] G. Morgenthal, N. Hallermann, J. Kersten, J. Taraben, P. Debus, M. Helmrich, and
V. Rodehorst. Framework for automated uas-based structural condition assessment
of bridges. Automation in Construction, 97:77–95, 2019. ISSN 0926-5805. doi: https:
//doi.org/10.1016/j.autcon.2018.10.006. URL https://www.sciencedirect.com/science/

article/pii/S0926580518305156.

[196] D. Mourtzis, V. Siatras, and J. Angelopoulos. Real-time remote maintenance support
based on augmented reality (ar). Applied Sciences, 10(5), 2020. ISSN 2076-3417. doi:
10.3390/app10051855. URL https://www.mdpi.com/2076-3417/10/5/1855.

[197] M. Nieuwenhuisen, M. Schadler, and S. Behnke. Predictive potential field-based collision
avoidance for multicopters. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 40:293–298, 2013.

[198] P. Nooralishahi, C. Ibarra-Castanedo, S. Deane, F. López, S. Pant, M. Genest, N. P. Avdelidis,
and X. P. Maldague. Drone-based non-destructive inspection of industrial sites: A review
and case studies. Drones, 5(4):106, 2021.

217

https://www.mdpi.com/1996-1073/17/3/673
https://laas.hal.science/hal-02065284
https://patents.google.com/patent/US8880241B2/en
https://patents.google.com/patent/US8880241B2/en
https://doi.org/10.1007/978-3-030-68655-0_29
https://www.sciencedirect.com/science/article/pii/S0926580518305156
https://www.sciencedirect.com/science/article/pii/S0926580518305156
https://www.mdpi.com/2076-3417/10/5/1855

[199] S. Numata, M. Koeda, K. Onishi, K. Watanabe, and H. Noborio. Performance and accuracy
analysis of 3d model tracking for liver surgery. In International Conference on Human-
Computer Interaction, pages 524–533. Springer, 2019.

[200] H. F. nv. Inspection flights - helicopterflights.be - helicopter company - air baptism
- pilot training, 2025. URL https://helicopterflights.be/en/inspectievluchten-

helikopter/. (Accessed: 2025-01-08).

[201] OctoMap. Octomap - 3d occupancy mapping, 2025. URL https://octomap.github.io/.
(Accessed: 2025-01-05).

[202] E. Oland, R. Kristiansen, and J. T. Gravdahl. A comparative study of different control
structures for flight control with new results. IEEE Transactions on Control Systems
Technology, 28(2):291–305, 2020. doi: 10.1109/TCST.2018.2873507.

[203] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international
conference on robotics and automation, pages 3400–3407. IEEE, 2011.

[204] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international
conference on robotics and automation, pages 3400–3407. IEEE, 2011.

[205] OpenCV. Opencv - open computer vision library, 2025. URL https://opencv.org/.
(Accessed: 2025-02-21).

[206] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, Inc., New
York, NY, USA, 1987. ISBN 0-19-503965-3.

[207] R. Padovani, E. A. de Souza, and D. L. De Campos. Methods and systems for the automatic
quality inspection of materials using infrared radiation, 2024. URL https://patents.

google.com/patent/US20240221143A1.

[208] U. Papa and S. Ponte. Preliminary design of an unmanned aircraft system for aircraft
general visual inspection. Electronics, 7(12):435, 2018.

[209] S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou.
Uav-based receding horizon control for 3d inspection planning. In 2022 International
Conference on Unmanned Aircraft Systems (ICUAS), page 1121–1130. IEEE, June 2022. doi:
10.1109/icuas54217.2022.9836051. URL http://dx.doi.org/10.1109/ICUAS54217.2022.

9836051.

[210] A. Paris, B. T. Lopez, and J. P. How. Dynamic landing of an autonomous quadrotor on a
moving platform in turbulent wind conditions. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 9577–9583. IEEE, 2020.

[211] R. Pavlyuk, V. Kozak, K. Sonnenleiter, and D. Spell. Fusion of vision and depth sensors for
navigation in complex environments, 2020. URL https://patents.google.com/patent/

US10527423B1.

[212] J. Pestana, J. L. Sanchez-Lopez, P. Campoy, and S. Saripalli. Vision based GPS-denied
Object Tracking and following for unmanned aerial vehicles. In 2013 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 1–6. IEEE, 10 2013. doi:
10.1109/ssrr.2013.6719359. URL http://dx.doi.org/10.1109/SSRR.2013.6719359.

[213] L. Pettersson and C. Lundell Johansson. Ant colony optimization - optimal number of
ants, 2018.

[214] PIX4D. Professional photogrammetry and drone mapping software - pix4d, 2025.
URL https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/. (Ac-
cessed: 2025-04-14).

218

https://helicopterflights.be/en/inspectievluchten-helikopter/
https://helicopterflights.be/en/inspectievluchten-helikopter/
https://octomap.github.io/
https://opencv.org/
https://patents.google.com/patent/US20240221143A1
https://patents.google.com/patent/US20240221143A1
http://dx.doi.org/10.1109/ICUAS54217.2022.9836051
http://dx.doi.org/10.1109/ICUAS54217.2022.9836051
https://patents.google.com/patent/US10527423B1
https://patents.google.com/patent/US10527423B1
http://dx.doi.org/10.1109/SSRR.2013.6719359
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/

[215] A. Plastropoulos, K. Bardis, G. Yazigi, N. P. Avdelidis, and M. Droznika. Aircraft skin
machine learning-based defect detection and size estimation in visual inspections. Tech-
nologies, 12(9):158, 2024.

[216] R. Popall. Lokale kollisionsvermeidung von drohnen mit eingeschränkter sensorik in
unbekannten umgebungen. bachelor’s thesis, 2021.

[217] C. Potena, D. Nardi, and A. Pretto. Effective target aware visual navigation for UAVs.
In 2017 European Conference on Mobile Robots (ECMR), pages 1–7. IEEE, 9 2017. doi:
10.1109/ecmr.2017.8098714. URL http://dx.doi.org/10.1109/ECMR.2017.8098714.

[218] R. C. Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[219] D. Project. Mavlink developer guide, 2025. URL https://mavlink.io/en/. (Accessed:
2025-03-24).

[220] PTC. Advanced views - vuforia engine library, 2025. URL https://developer.

vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-

views/advanced-views/. (Accessed: 2025-03-24).

[221] PTC. Cylinder targets - vuforia engine library, 2025. URL https://developer.vuforia.

com/library/vuforia-engine/images-and-objects/cylinder-targets/cylinder-

targets/. (Accessed: 2025-03-24).

[222] PTC. Vuforia engine | create ar apps and ar experiences | ptc, 2025. URL https://www.

ptc.com/en/products/vuforia/vuforia-engine. (Accessed: 2025-03-24).

[223] PTC. Guide view - vuforia engine library, 2025. URL https://developer.vuforia.com/

library/vuforia-engine/images-and-objects/model-targets/guide-views/model-

target-guide-view/. (Accessed: 2025-03-24).

[224] PTC. Supported versions - vuforia engine library, 2025. URL https://developer.vuforia.
com/library/vuforia-engine/platform-support/supported-versions/. (Accessed:
2025-03-24).

[225] PTC. Model target generator - vuforia engine library, 2025. URL https:

//developer.vuforia.com/library/vuforia-engine/images-and-objects/model-

targets/model-target-generator/model-target-generator-user-guide/. (Ac-
cessed: 2025-03-24).

[226] PTC. Model targets - vuforia engine library, 2025. URL https://developer.vuforia.

com/library/objects/model-targets. (Accessed: 2025-03-24).

[227] PTC. Multi targets - vuforia engine library, 2025. URL https://developer.vuforia.com/
library/vuforia-engine/images-and-objects/multi-targets/multi-targets/.
(Accessed: 2025-03-24).

[228] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.
Ros: an open-source robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, 2009.

[229] T. Raj, F. H. Hashim, A. B. Huddin, M. F. Ibrahim, and A. Hussain. A survey on lidar scan-
ning mechanisms. Electronics, 9(5), 2020. ISSN 2079-9292. doi: 10.3390/electronics9050741.
URL https://www.mdpi.com/2079-9292/9/5/741.

[230] P. Ramon-Soria, M. Perez-Jimenez, B. C. Arrue, and A. Ollero. Planning system
for integrated autonomous infrastructure inspection using uavs. In 2019 Interna-

219

http://dx.doi.org/10.1109/ECMR.2017.8098714
https://mavlink.io/en/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/advanced-views/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/advanced-views/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/advanced-views/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/cylinder-targets/cylinder-targets/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/cylinder-targets/cylinder-targets/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/cylinder-targets/cylinder-targets/
https://www.ptc.com/en/products/vuforia/vuforia-engine
https://www.ptc.com/en/products/vuforia/vuforia-engine
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/model-target-guide-view/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/model-target-guide-view/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/guide-views/model-target-guide-view/
https://developer.vuforia.com/library/vuforia-engine/platform-support/supported-versions/
https://developer.vuforia.com/library/vuforia-engine/platform-support/supported-versions/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/model-target-generator/model-target-generator-user-guide/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/model-target-generator/model-target-generator-user-guide/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/model-targets/model-target-generator/model-target-generator-user-guide/
https://developer.vuforia.com/library/objects/model-targets
https://developer.vuforia.com/library/objects/model-targets
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/multi-targets/multi-targets/
https://developer.vuforia.com/library/vuforia-engine/images-and-objects/multi-targets/multi-targets/
https://www.mdpi.com/2079-9292/9/5/741

tional Conference on Unmanned Aircraft Systems (ICUAS), pages 313–320, 2019. doi:
10.1109/ICUAS.2019.8797874.

[231] N. Razali, M. Sultan, F. Mustapha, N. Yidris, and M. Ishak. Impact damage on composite
structures–a review. Int. J. Eng. Sci, 3(7):08–20, 2014.

[232] J. Ren, D.-X. Liu, K. Li, J. Liu, Y. Feng, and X. Lin. Cascade pid controller for quadrotor. In
2016 IEEE International Conference on Information and Automation (ICIA), pages 120–124,
2016. doi: 10.1109/ICInfA.2016.7831807.

[233] Renfrow, Liebler, and Denham. F-14 flight control law design, verification, and valida-
tion using computer aided engineering tools. In 1994 Proceedings of IEEE International
Conference on Control and Applications, pages 359–364. IEEE, 1994.

[234] D. A. Rodríguez, C. Lozano Tafur, P. F. Melo Daza, J. A. Villalba Vidales, and J. C. Daza
Rincón. Inspection of aircrafts and airports using uas: A review. Results in Engineering,
22:102330, 2024. ISSN 2590-1230. doi: https://doi.org/10.1016/j.rineng.2024.102330. URL
https://www.sciencedirect.com/science/article/pii/S2590123024005851.

[235] M. K. Rohil, S. Mahajan, and T. Paul. An architecture to intertwine augmented reality and
intelligent tutoring systems: towards realizing technology-enabled enhanced learning.
Education and Information Technologies, pages 1–30, 2024.

[236] W. Rone and P. Ben-Tzvi. Mapping, localization and motion planning in mobile multi-
robotic systems. Robotica, 31(1):1–23, 2013.

[237] S. D. Roth. Ray casting for modeling solids. Computer graphics and image processing, 18
(2):109–144, 1982.

[238] L. Ruiqian, X. Juan, and Z. Hongfu. Automated surface defects acquisition system of civil
aircraft based on unmanned aerial vehicles. In 2020 IEEE 2nd International Conference
on Civil Aviation Safety and Information Technology (ICCASIT, pages 729–733, 2020. doi:
10.1109/ICCASIT50869.2020.9368540.

[239] F. SA. Elios 3 - digitizing the inaccessible, 2025. URL https://www.flyability.com/

elios-3. (Accessed: 2025-04-08).

[240] F. SA. Brochure: Elios 3 - technical specifications, 2025. URL https://www.flyability.

com/de/elios-3-documentation-collection. (Only available upon request. Accessed:
2025-04-08).

[241] F. SA. Ultimate guide to wind turbine inspection techniques, 2025. URL https://www.

flyability.com/blog/wind-turbine-inspection. (Accessed: 2025-01-09).

[242] L. V. Santana, A. S. Brandao, M. Sarcinelli-Filho, and R. Carelli. A trajectory tracking and
3d positioning controller for the ar. drone quadrotor. In 2014 international conference on
unmanned aircraft systems (ICUAS), pages 756–767. IEEE, 2014.

[243] J. Saupe. Robuste navigation mit hindernisvermeidung bei der drohnengestützten inspek-
tion großer baugruppen. bachelor’s thesis, 2024.

[244] D. Schmidt and K. Berns. Climbing robots for maintenance and inspections of vertical
structures—a survey of design aspects and technologies. Robotics and Autonomous Systems,
61(12):1288–1305, 2013.

[245] F. Schmitt, M. Schmitt, S. Grohmann, B. Audenrith, and L. Giesler. Procedure and arrange-
ment for the quality inspection of an object, 2023. URL https://patents.google.com/

patent/DE102020134680B4.

220

https://www.sciencedirect.com/science/article/pii/S2590123024005851
https://www.flyability.com/elios-3
https://www.flyability.com/elios-3
https://www.flyability.com/de/elios-3-documentation-collection
https://www.flyability.com/de/elios-3-documentation-collection
https://www.flyability.com/blog/wind-turbine-inspection
https://www.flyability.com/blog/wind-turbine-inspection
https://patents.google.com/patent/DE102020134680B4
https://patents.google.com/patent/DE102020134680B4

[246] M. Schörner, R. Katschinsky, C. Wanninger, A. Hoffmann, and W. Reif. Towards fully
automated inspection of large components with uavs: Offline path planning and view
angle dependent optimization strategies. In O. Gusikhin, K. Madani, and J. Zaytoon,
editors, Informatics in Control, Automation and Robotics, pages 105–123, Cham, 2022.
Springer International Publishing. ISBN 978-3-030-92442-3.

[247] M. Schörner, C. Wanninger, R. Katschinsky, S. Hornung, C. Eymüller, A. Poeppel, and
W. Reif. Uav inspection of large components: determination of alternative inspection
points and online route optimization. In 2023 IEEE/ACM 5th International Workshop on
Robotics Software Engineering (RoSE), 15 May 2023, Melbourne, Australia, pages 45 – 52,
2023. doi: 10.1109/RoSE59155.2023.00012.

[248] M. Schörner, M. Bettendorf, C. Wanninger, A. Hoffmann, and W. Reif. Uav inspection of
large components: Indoor navigation relative to structures. In Proceedings of the 18th Inter-
national Conference on Informatics in Control, Automation and Robotics - ICINCO, pages 179–
186. INSTICC, SciTePress, 2021. ISBN 978-989-758-522-7. doi: 10.5220/0010556301790186.

[249] D.-J. I. Science and L. Technology Co. DJI Mavic 3E / 3T User Manual,
2022. URL https://dl.djicdn.com/downloads/DJI_Mavic_3_Enterprise/20221115/

DJI_Mavic_3E_3T_User_Manual_DE.pdf. (Accessed: 2025-04-04).

[250] D.-J. I. Science and L. Technology Co. Mavic 2 - product information - dji, 2025. URL
https://www.dji.com/mavic-2/info. (Accessed: 2025-03-24).

[251] D.-J. I. Science and L. Technology Co. Support for mavic 2 enterprise - dji, 2025. URL
https://www.dji.com/de/support/product/mavic-2-enterprise. (Accessed: 2025-03-
24).

[252] D.-J. I. Science and L. Technology Co. Technical data - dji mavic 3 enterprise series - dji
enterprise, 2025. URL https://enterprise.dji.com/de/mavic-3-enterprise/specs.
(Accessed: 2025-03-24).

[253] D.-J. I. Science and L. Technology Co. Dji developer, 2025. URL https://developer.dji.

com/mobile-sdk-v4/. (Accessed: 2025-03-24).

[254] D.-J. I. Science and L. Technology Co. Github - dji-sdk/mobile-sdk-android-v5: Msdk v5
sample, 2025. URL https://github.com/dji-sdk/Mobile-SDK-Android-V5. (Accessed:
2025-03-24).

[255] D.-J. I. Science and L. Technology Co. Support for matrice 200 series - dji, 2025. URL
https://www.dji.com/support/product/matrice-200-series. (Accessed: 2025-04-14).

[256] D.-J. I. Science and L. Technology Co. Support für matrice 300 rtk - dji, 2025. URL
https://www.dji.com/support/product/matrice-300. (Accessed: 2025-02-10).

[257] D.-J. I. Science and L. Technology Co. Dji mini 4 pro product page - dji, 2025. URL
https://www.dji.com/de/mini-4-pro. (Accessed: 2025-03-24).

[258] A. SE. Orders and deliveries | airbus, 2025. URL https://www.airbus.com/en/products-

services/commercial-aircraft/orders-and-deliveries. (Accessed: 2025-01-30).

[259] A. SE. Robotics | airbus, 2025. URL https://www.airbus.com/en/innovation/digital-

transformation/industry-4-0/robotics. (Accessed: 2025-02-24).

[260] J. Seo, L. Duque, and J. Wacker. Drone-enabled bridge inspection methodology and
application. Automation in construction, 94:112–126, 2018.

221

https://dl.djicdn.com/downloads/DJI_Mavic_3_Enterprise/20221115/DJI_Mavic_3E_3T_User_Manual_DE.pdf
https://dl.djicdn.com/downloads/DJI_Mavic_3_Enterprise/20221115/DJI_Mavic_3E_3T_User_Manual_DE.pdf
https://www.dji.com/mavic-2/info
https://www.dji.com/de/support/product/mavic-2-enterprise
https://enterprise.dji.com/de/mavic-3-enterprise/specs
https://developer.dji.com/mobile-sdk-v4/
https://developer.dji.com/mobile-sdk-v4/
https://github.com/dji-sdk/Mobile-SDK-Android-V5
https://www.dji.com/support/product/matrice-200-series
https://www.dji.com/support/product/matrice-300
https://www.dji.com/de/mini-4-pro
https://www.airbus.com/en/products-services/commercial-aircraft/orders-and-deliveries
https://www.airbus.com/en/products-services/commercial-aircraft/orders-and-deliveries
https://www.airbus.com/en/innovation/digital-transformation/industry-4-0/robotics
https://www.airbus.com/en/innovation/digital-transformation/industry-4-0/robotics

[261] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-based state estimation for au-
tonomous rotorcraft mavs in complex environments. In 2013 IEEE International Conference
on Robotics and Automation, pages 1758–1764. IEEE, 2013.

[262] R. Sihombing and V. Coors. Object-Based Mobile Augmented Reality for a 3D Model, pages
646–655. Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinforma-
tion e.V., 03 2018.

[263] G. L. Smith, S. F. Schmidt, and L. A. McGee. Application of statistical filter theory to the
optimal estimation of position and velocity on board a circumlunar vehicle, volume 135.
National Aeronautics and Space Administration, 1962.

[264] S. L. Smith and F. Imeson. Glns: An effective large neighborhood search heuristic for the
generalized traveling salesman problem. Computers & Operations Research, 87:1–19, 2017.

[265] M. Stokkeland, K. Klausen, and T. A. Johansen. Autonomous visual navigation of un-
manned aerial vehicle for wind turbine inspection. In 2015 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 998–1007. IEEE, 2015.

[266] T. Stützle, M. Dorigo, et al. Aco algorithms for the traveling salesman problem. Evolution-
ary algorithms in engineering and computer science, 4:163–183, 1999.

[267] V. Sudevan, A. Shukla, and H. Karki. Current and future research focus on inspection of
vertical structures in oil and gas industry. In 2018 18th International Conference on Control,
Automation and Systems (ICCAS), pages 144–149. IEEE, 2018.

[268] J. Sun, J. Tang, and S. Lao. Collision avoidance for cooperative uavs with optimized
artificial potential field algorithm. IEEE Access, 5:18382–18390, 2017.

[269] D. Systèmes. Delmia augmented experience for accurate augmented reality quality
inspection | dassault systèmes, 2025. URL https://www.3ds.com/products/delmia/

augmented-experience/quality-inspection. (Accessed: 2025-03-14).

[270] G. Szafranski and R. Czyba. Different approaches of pid control uav type quadrotor. In
International Micro Air Vehicles conference summer edition, Proceedings of the, 2011.

[271] R. Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022.

[272] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detection. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10781–10790, 2020.

[273] U. Technologies. Unity real-time development platform - 3d, 2d, vr and ar engine, 2025.
URL https://unity.com. (Accessed: 2025-03-16).

[274] U. Technologies. Github - unity-technologies/ros-tcp-connector, 2025. URL https://

github.com/Unity-Technologies/ROS-TCP-Connector. (Accessed: 2025-03-24).

[275] D. Tenorio, V. Rivera, J. Medina, A. Leondar, M. Gaumer, and Z. Dodds. Visual autonomy
via 2dmatching in rendered 3dmodels. InAdvances in Visual Computing: 11th International
Symposium, ISVC 2015, Las Vegas, NV, USA, December 14-16, 2015, Proceedings, Part I 11,
pages 373–385. Springer, 2015.

[276] W. Tong. Wind power generation and wind turbine design. WIT press, 2010.

[277] V. Tzitzilonis, K. Malandrakis, L. Zanotti Fragonara, J. A. Gonzalez Domingo, N. P. Avde-
lidis, A. Tsourdos, and K. Forster. Inspection of aircraft wing panels using unmanned
aerial vehicles. Sensors, 19(8):1824, 2019.

222

https://www.3ds.com/products/delmia/augmented-experience/quality-inspection
https://www.3ds.com/products/delmia/augmented-experience/quality-inspection
https://unity.com
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector

[278] M. Uenohara and T. Kanade. Vision-based object registration for real-time image overlay.
Computers in Biology and Medicine, 25(2):249–260, 1995.

[279] V. M. S. L. UK. Vicon Object Tracking, 2025. URL https://www.vicon.com/motion-

capture/engineering. (Accessed: 2025-03-08).
[280] V. M. S. L. UK. Vicon v16 camera specifications - vantage documentation - vi-

con help, 2025. URL https://help.vicon.com/space/Vantage/15041618/V16+camera+

specifications. (Accessed: 2025-03-08).
[281] V. M. S. L. UK. Vicon v5 camera specifications - vantage documentation - vicon help, 2025.

URL https://help.vicon.com/space/Vantage/15042553/V5+camera+specifications.
(Accessed: 2025-03-08).

[282] S. Ullman. The interpretation of structure from motion. Proceedings of the Royal Society
of London. Series B. Biological Sciences, 203(1153):405–426, 1979.

[283] I. Ðurić, I. Vasiljević, M. Obradović, V. Stojaković, J. Kićanović, and R. Obradović. Com-
parative analysis of open-source and commercial photogrammetry software for cultural
heritage. In Proceedings of the IneCAADe 2021 International Scientific Conference, pages
8–10, 2021.

[284] F. S. S. U.S. Department Of Transportation, Federal Aviation Administra-
tion. Aircraft inspection for the general aviation aircraft owner, 1978. URL
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/

go/document.information/documentID/22051.
[285] B. Veritas. Inspektion von windkraftanlagen | bureau veritas, 2025. URL https://www.

bureauveritas.de/unsere-services/inspektion-von-windkraftanlagen. (Accessed:
2025-03-24).

[286] Visometry. Visionlib augmented reality tracking for industries, 2025. URL https://

visionlib.com/. (Accessed: 2025-03-24).
[287] Visometry. vlsdk: Visometry.visionlib.sdk.examples.existencecheck class reference,

2025. URL https://docs.visionlib.com/v3.2.2/api_reference/class_visometry_

1_1_vision_lib_1_1_s_d_k_1_1_examples_1_1_existence_check.html. (Accessed:
2025-04-21).

[288] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für
die reine und angewandte Mathematik (Crelles Journal), 1908(134):198–287, 1908.

[289] G. F. Voronoı. Deuxieme mémoire: recherches sur les paralléloedres primitifs. J. reine
angew. Math, 136:67–181, 1909.

[290] V.Walter, N. Staub, A. Franchi, andM. Saska. Uvdar System for Visual Relative Localization
With Application to Leader–Follower Formations of Multirotor UAVs. IEEE Robotics and
Automation Letters, 4(3):2637–2644, 7 2019. ISSN 2377-3766. doi: 10.1109/lra.2019.2901683.
URL http://dx.doi.org/10.1109/LRA.2019.2901683.

[291] H. Wang, H. Zhou, H. Liu, Z. Huang, and M. Feng. Research on determining the inspection
point of multirotor uav power tower. Mathematical Problems in Engineering, 2021(1):
8894055, 2021. doi: https://doi.org/10.1155/2021/8894055. URL https://onlinelibrary.

wiley.com/doi/abs/10.1155/2021/8894055.
[292] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE transactions on image processing, 13(4):
600–612, 2004.

223

https://www.vicon.com/motion-capture/engineering
https://www.vicon.com/motion-capture/engineering
https://help.vicon.com/space/Vantage/15041618/V16+camera+specifications
https://help.vicon.com/space/Vantage/15041618/V16+camera+specifications
https://help.vicon.com/space/Vantage/15042553/V5+camera+specifications
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22051
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22051
https://www.bureauveritas.de/unsere-services/inspektion-von-windkraftanlagen
https://www.bureauveritas.de/unsere-services/inspektion-von-windkraftanlagen
https://visionlib.com/
https://visionlib.com/
https://docs.visionlib.com/v3.2.2/api_reference/class_visometry_1_1_vision_lib_1_1_s_d_k_1_1_examples_1_1_existence_check.html
https://docs.visionlib.com/v3.2.2/api_reference/class_visometry_1_1_vision_lib_1_1_s_d_k_1_1_examples_1_1_existence_check.html
http://dx.doi.org/10.1109/LRA.2019.2901683
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/8894055
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/8894055

[293] C. Wanninger, R. Katschinsky, A. Hoffmann, M. Schörner, and W. Reif. Towards fully
automated inspection of large components with uavs: Offline path planning. In Proceedings
of the 17th International Conference on Informatics in Control, Automation and Robotics -
ICINCO, pages 71–80. INSTICC, SciTePress, 2020. ISBN 978-989-758-442-8. doi: 10.5220/
0009887900710080.

[294] Y. Watanabe, A. Calise, and E. Johnson. Vision-based obstacle avoidance for uavs. In
AIAA guidance, navigation and control conference and exhibit, page 6829, 2007.

[295] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart. Real-time onboard visual-
inertial state estimation and self-calibration of mavs in unknown environments. In 2012
IEEE international conference on robotics and automation, pages 957–964. IEEE, 2012.

[296] A. C. Woods and H. M. La. Dynamic target tracking and obstacle avoidance using a drone.
In Advances in Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV,
USA, December 14-16, 2015, Proceedings, Part I 11, pages 857–866. Springer, 2015.

[297] J. N. Yasin, S. A. Mohamed, M.-H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila.
Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE
access, 8:105139–105155, 2020.

[298] Y. D. Yasuda, F. A. Cappabianco, L. E. G. Martins, and J. A. Gripp. Aircraft visual inspection:
A systematic literature review. Computers in Industry, 141:103695, 2022. ISSN 0166-3615.
doi: https://doi.org/10.1016/j.compind.2022.103695. URL https://www.sciencedirect.

com/science/article/pii/S0166361522000926.
[299] A. Zacharia, S. Papaioannou, P. Kolios, and C. Panayiotou. Distributed control for 3d

inspection using multi-uav systems. In 2023 31st Mediterranean Conference on Control and
Automation (MED), pages 164–169, 2023. doi: 10.1109/MED59994.2023.10185881.

[300] Zeiss. Inspection and quality control applications | capture 3d, 2025. URL https://www.

capture3d.com/applications/inspection-quality-control. (Accessed: 2025-03-24).
[301] C. Zhang and J. M. Kovacs. The application of small unmanned aerial systems for precision

agriculture: a review. Precision Agriculture, 13(6):693–712, 12 2012. ISSN 1573-1618. doi:
10.1007/s11119-012-9274-5. URL https://doi.org/10.1007/s11119-012-9274-5.

[302] J. Zhang, L. Liu, B. Wang, X. Chen, Q. Wang, and T. Zheng. High speed automatic power
line detection and tracking for a uav-based inspection. In 2012 Intern. Conf. on Industrial
Control and Electronics Engineering, pages 266–269, 2012. doi: 10.1109/ICICEE.2012.77.

[303] F. Zhao, Q. Huang, and W. Gao. Image matching by normalized cross-correlation. In
2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings,
volume 2, pages II–II, 2006. doi: 10.1109/ICASSP.2006.1660446.

[304] Y. N. Zolotukhin, K. Y. Kotov, A. Mal’tsev, et al. Using the kalman filter in the quadrotor
vehicle trajectory tracking system. Optoelectronics, Instrumentation and Data Processing,
49(6):536–545, 2013.

[305] J.-T. Zou and R. G. V. Drone-based solar panel inspection with 5g and ai technologies. In
2022 8th International Conference on Applied System Innovation (ICASI), pages 174–178,
2022. doi: 10.1109/ICASI55125.2022.9774462.

224

https://www.sciencedirect.com/science/article/pii/S0166361522000926
https://www.sciencedirect.com/science/article/pii/S0166361522000926
https://www.capture3d.com/applications/inspection-quality-control
https://www.capture3d.com/applications/inspection-quality-control
https://doi.org/10.1007/s11119-012-9274-5

List of Figures

1.1 Model of an aircraft fuselage part consisting of skin, stringers, and frames. 8
1.2 Basic terminology of a wind turbine consisting of a tower acting as a

base for the nacelle. The rotor hub and blades are mounted to the nacelle. 9

2.1 Coordinate frames and axes of a quadrotor. 30
2.2 Position controller of a multirotor. 33
2.3 Attitude controller of a multirotor. 33
2.4 Front mounted camera gimbal on a modern consumer UAV. 34
2.5 Screenshot of the overlay of the Augmented Reality application devel-

oped in this work using Vuforia Engine. 36

3.1 Overview of the system architecture. 51
3.2 Overview of the terminology used throughout this work. Viewareas

specifying areas from which Points of Interest can be inspected. View-
points as discrete points inside the Viewarea and a path connecting
multiple Viewpoints. 52

3.3 Schematic two-dimensional depiction of the deviation angle φ between
the camera axis and the normal of the Point of Interest. 53

3.4 Example of a Viewarea for an arbitrary Point of Interest defined by its
minimum and maximum distance from the Point of Interest and the
maximum viewing angle. 54

3.5 Sampling of discrete Viewpoints inside a Viewarea. The block distance
specifies the sampling density. 55

3.6 Domain model showing the relationships and properties of the concepts
Point of Interest, Viewarea and Viewpoint. 56

3.7 Reducing the number of Viewareas to shorten overall inspection length
by combining intersecting Viewareas. 59

3.8 Activity Diagram of Viewpoint processing and scoring logic. 60
3.9 Structure of the proposed visual navigation stack. 66
3.10 Coordinate frames resulting from kinematic modeling of an aircraft

fuselage suspended from a crane. 79
3.11 . 80
3.12 . 80
3.13 Coordinate frames resulting from kinematic modeling of a wind turbine. 80
3.14 Architecture of the advanced fusion model with multiple filters. 84
3.15 Overview of the obstacle avoidance system architecture. 98
3.16 Image captured by the UAV during inspection. 104
3.17 Render of the reference model from the same position. 104
3.18 Warped render overlaid on original image. 105
3.19 Preprocessed camera image. 105
3.20 Cropped Render of the Point of Interest from the same position. 105

225

3.21 Annotated image highlighting the detected Point of Interest. 107
3.22 Interface for integrating external inspection tools. 108
3.23 Architecture of the proposed open loop photogrammetry system. . . . 113
3.24 Architecture of the proposed closed loop photogrammetry system. . . . 115

4.1 General architecture of the inspection system. 118
4.2 Screenshot of the tool for augmenting CAD data with inspection infor-

mation. 119
4.3 Original (left) and optimized Viewareas (right). 121
4.4 Overview of inspection system architecture. 123
4.5 Architecture of the position estimation system. 125
4.6 Transformation tree created by the position estimation. 126
4.7 Vuforia Engine Model Target Generator. 127
4.8 Structure of the sensor fusion ROS node. 129
4.9 Structure of the sensor fusion ROS node for dynamic assemblies. 131
4.10 Architecture of the obstacle avoidance system. 132
4.11 Architecture of the navigation subsystem. 134
4.12 Reference architecture for integrating arbitrary navigation algorithms

into the system. 135
4.13 Relevant ROS components for the trajectory optimization. 137
4.14 Component diagram of the inspection subsystem. 138
4.15 Overview of the photogrammetry pipeline. 140
4.16 Overview of the architecture of the photogrammetric system. 142
4.17 Overview of the QuAD Ground Control App. 144
4.18 Augmented 3D model of the assembly. 145
4.19 Custom Video Player for selective playback of an inspection flight. . . 146

5.1 ISSE Flight arena. 150
5.2 Image of DJI Mavic 2 Enterprise Dual. 152
5.3 Headlight attachment illuminating inside of plane fuselage. 152
5.4 Image of DJI Mavic 3 Enterprise. 153
5.5 Live camera view of QuAD Connect App. 154
5.6 Partially assembled "Section 19" of an Airbus A320 Aircraft used for

testing. 156
5.7 Cutout of center section of an Airbus A350 Aircraft. 157
5.8 3D-printed mockup of an aircraft fuselage part with reconfigurable

mounting brackets. 157
5.9 Implemented Nodes that replace the real-world UAV for simulation. . . 158
5.10 Screenshot of the simulated flight in Gazebo. 159
5.11 Execution time and average distance based on number of iterations. . . 163
5.12 Model of the inspected assembly. 164
5.13 Result of the unoptimized (left) and optimized (right) Viewarea calcu-

lation. The optimization reduces the number of Viewareas from 49 to
21. 165

226

5.14 (a) optimized trajectory consisting of 21 Key Viewpoints with a length of
41.3m and (b) unoptimized trajectory consisting of 49 Key Viewpoints
with a length of 66.2m. Image source: Schörner et al. [246]. 165

5.15 Render of the inspection scenario showing three POIs on an assembly
and the inspection UAV. 166

5.16 Trajectory of the first flight of scenario 1 in top-down view. POI1 is not
visible from the initial Key Viewpoint, so a different VP is chosen. . . . 167

5.17 Trajectory of the second flight of scenario 1 in top-down view. The rating
system elected the previously successful VP as new Key Viewpoint for
POI1. 167

5.18 Trajectory of the first flight of scenario 2 in top-down view. The Key
Viewpoint of POI2 is not reachable, so a different VP is chosen. 168

5.19 Trajectory of the second flight of scenario 2 in top-down view. The rating
system elected the previously successful VP as new Key Viewpoint for
POI2. 168

5.20 Trajectory of the first flight of scenario 3 in top-down view. The Key
Viewpoint of POI2 is not reachable, and POI1 is not visible from the
initial Key Viewpoint, so different VPs are chosen. 169

5.21 Trajectory of the second flight of scenario 3 in top-down view. The rating
system elected the previously successful VPs as new Key Viewpoints
for POI1 and POI2. 169

5.22 Flight path in a top-down view with the model tracking, DKF estimate,
and Vicon position as a reference. 170

5.23 Drone altitude over time with the model tracking, DKF estimate, and
Vicon position as a reference. 171

5.24 Comparison of recorded velocities of the IMU, control vector, state
estimate and ground truth. 172

5.25 Linear error of model tracking and DKF estimate based on Vicon position
as a reference. 173

5.26 Angular error of model tracking and DKF estimate based on Vicon
position as a reference. 173

5.27 Render of simulated obstacle avoidance scenario Static 1 (a) and flown
trajectories (b). Image source: Raban Popall [216]. 175

5.28 Render of simulated obstacle avoidance scenario Static 2 (a) and flown
trajectories (b). Image source: Raban Popall [216]. 176

5.29 Render of simulated obstacle avoidance scenario Static 3 (a) and flown
trajectories (b). Image source: Raban Popall [216]. 177

5.30 Execution time of the potential field algorithm in scenario Static 3 for
the sensor-only and OctoMap-based approach. Image source: Raban
Popall [216]. 178

5.31 Render of simulated obstacle avoidance scenario Dynamic 1 (a) and
flown trajectories (b). Image source: Raban Popall [216]. 179

5.32 Render of simulated obstacle avoidance scenario Dynamic 1 (a) and
flown trajectories (b). Image source: Raban Popall [216]. 180

227

5.33 Lengths and durations of the flown trajectories of the static (a) and
dynamic (b) evaluation scenario. Image source: Raban Popall [216]. . . 182

5.34 Obstacles detected on the way from start (right) to assembly (left). . . . 183
5.35 Cleared obstacles after returning from the inspection. 183
5.36 U-shaped obstacle located between UAV and Viewpoints. 186
5.37 Spatial density and surface coverage as well as distance to the closest

obstacle for the A350 fuselage section test assembly. Image source:
Simon Hornung [118]. 189

5.38 Spatial density and surface coverage as well as distance to the closest
obstacle for the Section 19 test assembly. Image source: Simon Hor-
nung [118]. 189

5.39 Trajectory and camera orientations calculated by the HEDAC algorithm
for the Section 19 test assembly. 190

5.40 Result of the photogrammetric reconstruction of the Section 19 test
assembly. 190

5.41 Textured mesh generated from CAD data and camera images. 191
5.42 Close up comparison between the photogrammetric reconstruction (left)

and textured CAD model (right). 192
5.43 AR overlay for the performed presence detection with a correctly in-

stalled (left) and missing (right) part. 193
5.44 Overlay of the warped render over the captured image. 194
5.45 Automatically isolated image sections containing the area where the

bracket should be mounted with an overlay of the rendered model.
Brackets in (a) are correctly installed, and (b) shows the overlay over
images with an incorrectly installed bracket. 195

5.46 Selection of areas where the inspected should be located based on the
mask generated by thresholding the rendered bracket. 196

5.47 Setup for the simulated test flights performed on the moving wind turbine. 197
5.48 Position error of the state estimate with and without compensation of

the assembly velocity. One time step corresponds to 200ms. 198

228

List of Tables

5.1 Comparison of the achieved lengths and execution times of the ACS
algorithm with different number of iterations 163

5.2 Results of the inspection flights comparing the APF and AD* algorithms.
Table source: Julian Saupe [243]. 185

5.3 Comparison of the execution times of the original and optimized version
of the HDEAC algorithm during tests with the A350 fuselage section
and A320 Section 19. 187

229

230

Supervised Theses

• Raphael Katschinsky. “Drohnen-Inspektion großer Bauteile - Trajektorienpla-
nung mit vollständiger Sichtabdeckung”. Bachelorarbeit. Universität Augsburg,
2019

• Moritz Vogelsang. “Drohnen-Inspektion großer Bauteile – Relative Orientierung
zur Laufzeit”. Bachelorarbeit. Universität Augsburg, 2019

• Michelle Bettendorf. “UAV inspection of large components - Adaptive naviga-
tion at runtime”. Bachelorarbeit. Universität Augsburg, 2020

• Simon Hornung. “Konzept einer Bodenkontrollstation zur Überwachung der
Inspektion großer Bauteile mithilfe eines Quadcopters mit prototypischer Evalua-
tion”. Bachelorarbeit. Universität Augsburg, 2021

• Raphael Katschinsky. “Drohnen-Inspektion großer Bauteile - Positionsbestim-
mung und Navigation relativ zu bewegten Bauteilen”. Masterarbeit. Universität
Augsburg, 2021

• Niklas Vogel. “Drohnenhandygimbal für QUAD mit automatischer Blickwinkel-
berechnung”. Bachelorarbeit. Universität Augsburg, 2021

• Raban Popall. “Lokale Kollisionsvermeidung von Drohnen mit eingeschränkter
Sensorik in unbekannten Umgebungen”. Bachelorarbeit. Universität Augsburg,
2021

• Marko Persic. “Bewertungsgrundlagen und Algorithmen für Graphen im Seman-
tic Web”. Bachelorarbeit. Universität Augsburg, 2022

• Jan Dräger. “Realisierung einer Simulationsumgebung für drohnengestützte
Inspektionsflüge in ROS2”. Bachelorarbeit. Universität Augsburg, 2024

• Julian Saupe. “Robuste Navigation mit Hindernisvermeidung bei der drohnen-
gestützen Inspektion großer Baugruppen”. Bachelorarbeit. Universität Augsburg,
2024

• Simon Hornung. “Realisierung eines Systems zur automatisierten photogram-
metrischen Erfassung großer Strukturen mithilfe von UAVs”. Masterarbeit. Uni-
versität Augsburg, 2024

231

232

Own Publications

1. Martin Schörner, Constantin Wanninger, Raphael Katschinsky, Simon Hor-
nung, Christian Eymüller, Alexander Poeppel and Wolfgang Reif. “UAV in-
spection of large components: determination of alternative inspection points and
online route optimization”. In 2023 IEEE/ACM 5th International Workshop on
Robotics Software Engineering (RoSE), 15 May 2023, Melbourne, Australia. IEEE,
Piscataway, NJ, 45-52 DOI: 10.1109/RoSE59155.2023.00012

2. Martin Schörner, Raphael Katschinksy, Constantin Wanninger, Alwin Hoff-
mann and Wolfgang Reif. “Towards fully automated inspection of large compo-
nents with UAVs: offline path planning and view angle dependent optimization
strategies”. In Oleg Gusikhin, Kurosh Madani and Janan Zaytoon (Ed.). Informat-
ics in Control, Automation and Robotics: 17th International Conference, ICINCO
2020, Lieusaint - Paris, France, July 7–9, 2020, Revised Selected Papers. Springer,
Cham (Lecture Notes in Electrical Engineering ; 793), 105-123. DOI: 10.1007/978-
3-030-92442-3_7

3. Martin Schörner, Constantin Wanninger, Alwin Hoffmann, Oliver Kosak
and Wolfgang Reif. “Architecture for emergency control of autonomous UAV
ensembles”. In 3rd International Workshop on Robotic Software Engineering
(RoSE’21), co-located with ICSE 2021, Virtual, Madrid, Spain, May 23 – 29, 2021.
IEEE, Piscataway, NJ, 41-46 DOI: 10.1109/RoSE52553.2021.00014

4. Constantin Wanninger, Sebastian Rossi, Martin Schörner, Alwin Hoffmann,
Alexander Poeppel, Christian Eymüller and Wolfgang Reif. “ROSSi a graphical
programming interface for ROS 2”. In 2021 21st International Conference on
Control, Automation and Systems (ICCAS), 12-15 October 2021, Jeju, Republic of
Korea. IEEE, Piscataway, NJ, 255-262 DOI: 10.23919/ICCAS52745.2021.9649736

5. Constantin Wanninger, Luca Alfano, Martin Schörner, Alwin Hoffmann,
Oliver Kosak and Wolfgang Reif “Semantic plug and play: an architecture
combining linked data and reconfigurable hardware”. In Dick Bulterman, At-
sushi Kitazawa, David Ostrowski, Phillip Sheu and Jeffrey Tsai (Ed.). 2021 IEEE
15th International Conference on Semantic Computing (ICSC), 27-29 January
2021, Laguna Hills, CA, USA, virtual event. IEEE, Piscataway, NJ, 203-206. DOI:
10.1109/icsc50631.2021.00043

6. Martin Schörner, Michelle Bettendorf, Constantin Wanninger, Alwin Hoff-
mann and Wolfgang Reif. “UAV inspection of large components: indoor naviga-
tion relative to structures”. In Oleg Gusikhin, Henk Nijmeijer and Kurosh Madani
(Ed.). Proceedings of the 18th International Conference on Informatics in Control,
Automation and Robotics - ICINCO, July 6-8, 2021. SciTePress, Setúbal, 179-186.
DOI: 10.5220/0010556301790186

7. Martin Schörner, Constantin Wanninger, Alwin Hoffmann, Oliver Kosak,
Hella Ponsar and Wolfgang Reif. “Modeling and execution of coordinated mis-
sions in reconfigurable robot ensembles”. In Davide Brugali, Jean-Claude Latombe,

233

Phillip Sheu, Rouh-Mei Hu (Eds.). IEEE Robotic Computing IRC 2020 - The Fourth
IEEE International Conference on Robotic Computing, 9-11 November 2020,
Taichung, Taiwan. IEEE, Piscataway, NJ, 290-293 DOI: 10.1109/IRC.2020.00053

8. ConstantinWanninger, Raphael Katschinksy, AlwinHoffmann, Martin Schörner
and Wolfgang Reif. “Towards fully automated inspection of large components
with UAVs: offline path planning”. In Oleg Gusikhin, Kurosh Madani and Janan
Zaytoon (Ed.). Proceedings of the 17th International Conference on Informatics in
Control, Automation and Robotics - ICINCO, July 7-9, 2020. SciTePress, Setúbal,
71-80. DOI: 10.5220/0009887900710080

234

	Quality assurance with drones: Relative navigation for targeted inspection of large structures using drones
	Martin Schörner
	Nutzungsbedingungen / Terms of use:
	CC BY 4.0

	Contents
	Introduction
	Motivation
	Case Studies
	CS1: Inspection of Aircraft Fuselages
	CS2: Inspection of Wind Farms

	State of the Art of UAV-Based Inspections
	In-Service Inspection of Aircraft
	In-Service Inspection of Infrastructure and Wind Turbines
	Automated Inspection in Production

	Summary of Contributions

	Techniques for Visual Inspection
	Planning Methods
	Path Planning with the Ant Colony System

	Positioning
	Coordinate Frames and Transformations
	Kinematic Modeling of Assemblies
	UAV Positioning
	Model Tracking
	Odometry
	Sensor Fusion Using a Kalman Filter

	Navigation Strategies
	Dynamic Path Planning Using Anytime Dynamic A*
	Strategies for Surface Coverage

	Collision Avoidance
	Sensors for Collision Avoidance
	OctoMaps

	Concept for Relative Inspection
	General Overview of the Concept
	Viewpoint-Dependent Path Planning
	Points of Interest, Viewareas, and Viewpoints
	Calculation of an Efficient Inspection Sequence
	Optimization Potential Through Overlapping Viewareas
	Optimization of Key Viewpoints Across Inspections
	Related Work and State of the Art

	Relative Positioning
	Position Estimation Through Model Tracking and Onboard Sensors
	Processing of Model Tracking Measurements
	Related Work on Relative Position Determination
	Sensor Data Fusion
	Position Estimation with Moving or Changing Reference Systems
	Related Work on Sensor Fusion for Position Estimation

	Relative Navigation Along Assemblies
	Potential Field Navigation
	Anytime Dynamic A*
	Collision Avoidance with Limited Sensors
	Related Work and State of the Art

	Using UAVs for Inspection
	Visual Presence Detection
	Interface for Connecting External Inspection Solutions
	Related Work and State of the Art

	Photogrammetric Documentation of Assemblies
	Full Surface Coverage

	Architecture and Implementation
	Offline Path Planning
	Specification of Components to be Inspected
	Creation of Viewareas
	Optimization Through Overlapping Viewareas
	Sampling of Discrete Viewpoints from Viewareas
	Calculation of Inspection Paths

	Inspection Relative to an Assembly
	Positioning Relative to an Assembly
	Obstacle Detection for Collision Avoidance
	Relative Navigation Along Assemblies
	Cross-Inspection Learning of Better Key Viewpoints
	Inspection Subsystem
	Photogrammetric Documentation of Assemblies

	Monitoring and Controlling the Inspection
	Watchdogs

	Visualization of Inspection Results

	Prototypes and Evaluations
	Evaluation Hardware and Simulation
	Flight Arena
	Inspection Drones
	Assemblies for Inspection Tests
	Simulation Environment

	Inspection of Aircraft Fuselage
	Planning Algorithm Performance
	Path Optimization Through Viewarea Intersection
	Path Optimization Across Inspections
	Positioning Performance
	Obstacle Avoiding Relative Navigation
	Performance of the Coverage Algorithm
	Presence Detection on an Assembly in a Production Scenario

	Inspection of a Wind Turbine
	Influence of Component Velocities on the State Estimate
	Kinematic Localization with Changing Reference Frames

	Conclusion and Outlook
	Bibliography
	List of Figures
	List of Tables
	Supervised Theses
	Own Publications

