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Most emulsions ripen with an average droplet size increasing in time. In chemically active emulsions,
coarsening can be absent, leading to a nonequilibrium steady state with monodisperse droplet sizes.
By considering a minimal model for phase separation and chemical reactions maintained away from
equilibrium, we show that there is a supercritical transition controlled by the conserved quantity
between two classes of chemically active droplets: intensive and extensive active droplets. While
intensive droplets reach a stationary size mainly controlled by the interplay between reactions and
diffusion, the size of an extensive active droplet scales with the system size. For intensive droplets,
growth arrests at a finite size. Thus, they can be far apart from each other and evolve independently from
other droplets in an active emulsion. The growth of extensive droplets, however, arrests due to the
presence of other droplets in the emulsion. In both cases, monodisperse emulsions can emerge. We show
how the supercritical transition between intensive and extensive active droplets affects shape
instabilities, including the division of active droplets, paving the way for the observation of successive

division events in chemically active emulsions.

DOI: 10.1103/4nnd-tdky

I. INTRODUCTION

Coarsening or ripening refers to the growth of larger
domains at the expense of smaller domains that eventually
shrink. For passive systems, the kinetics of coarsening
stops when the system reaches equilibrium, corresponding
to a single domain in a finite system. Coarsening occurs
in various systems, ranging from spin systems [1], liquid
emulsions [2], and crystallized precipitates [3]. The kinetics
of coarsening is universal and determined by conservation
laws, symmetries, and the dimension of the system [4-7].

For active systems persistently maintained away from
equilibrium [8—11], the kinetics of coarsening is altered and
can even be suppressed [12—17]. The paradigm is reaction-
diffusion systems that give rise to nonequilibrium steady-
state patterns with various spatial morphologies [18-20].
Another example is active model B+, which, in contrast to
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the classical model B, also accounts for contributions to the
diffusive fluxes that do not arise from a free energy [21,22].
These fluxes give rise to anticoarsening with a condensed
phase that stopped growing and a “bubbly” fluctuating
morphology of material-poor domains [14]. Finally, sup-
pressed ripening was also observed in liquid-liquid phase-
separated systems with chemical reactions maintained away
from equilibrium [12,13,23,24]. These systems are also
called chemically active emulsions [11,25,26]. Chemically
active emulsions are relevant to various engineered systems
investigated in systems chemistry, where active droplets are
models for synthetic cells or protocellular compartments
[27-32]. They also provide a framework for the study of
biomolecular condensates that form in living cells, organ-
izing and regulating biochemical processes [33-36].

The formation of steady-state patterns in reaction-
diffusion systems relies on the reaction flux that breaks
the detailed balance of the rates. Together with diffusion,
this gives rise to various reaction-diffusion length scales
that are crucial but not exclusively responsible for pattern
morphology. Chemical processes generically come with
conservation laws for mass, and if incompressible, also for
volume. It has been shown that conservation laws are key
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determinants for the emerging patterns in mass-conserving
reaction-diffusion systems [16,37-42].

Active emulsions also give rise to reaction-diffusion
length scales. These length scales are crucial for various
nonequilibrium phenomena in active emulsions, such
as dividing droplets [43—-45], formation of steady liquid
shells [30,46,47], and the suppression of Ostwald ripening
[13,32]. These interesting phenomena can be seen in
minimal models [12,13,43,47]. However, these models
focus on binary systems that lack conservation laws.
Scenarios that take into account both conservation laws
and chemical reactions with broken detailed balance are
just beginning to be explored [30,32,45,48,49]. Similar to
reaction-diffusion systems [41], conservation laws are
expected to qualitatively alter the nature of transitions
and instabilities in chemically active emulsions.

In passive, phase-separated systems with chemical reac-
tions, the reaction-diffusion length scales do not determine
the equilibrium state. In this passive case, conservation
laws, i.e., so-called lever rules for quantities conserved
by the chemical reactions, determine the volume of the
condensed phase(s) at thermodynamic equilibrium. When
the chemical reactions are maintained away from equilib-
rium (active emulsion), the emerging reaction-diffusion
length scales compete with the conservation laws. It
remains unclear to what extent the reaction-diffusion scales
or the conservation law dominates the dynamics and
patterning in chemically active emulsions.

In our work, we study how a single conservation law
affects the pattern formation and coarsening in chemically
active emulsions that were so far studied in the absence of a
conserved density [12,13,43,47]. Our key finding is that
when the conserved quantity itself varies between phases,
a supercritical transition between intensive and extensive
chemically active droplets exists; see Fig. 1 for an illus-
tration. The control parameter for this transition is the
globally conserved quantity. In the case of intensive
droplets, single droplets in large systems are stationary,
with droplet sizes independent of system size. For extensive
droplets, the stationary droplet size increases with the
system size. We show that this transition controls the
collective dynamics of many droplets in active emulsions
and explain how monodispersity and complex droplet
morphologies can emerge in chemically active emulsions
through a conservation law.

II. MINIMAL MODEL FOR AN ACTIVE
EMULSION WITH A CONSERVED QUANTITY

In an incompressible binary mixture with two species
that convert into each other via a chemical reaction, the
total mass is conserved. However, in an incompressible
binary mixture, this conserved quantity is constant in
space, independent of time, and thus has no effect on the
system behavior [12,13]. An incompressible mixture
containing chemical reactions must therefore comprise
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FIG. 1. Intensive and extensive active droplets and their behavior
in emulsions. Chemically active emulsions undergo a transition
between intensive (blue) and extensive (red) droplets. The tran-
sition depends on the value of the quantity conserved by the
chemical reaction [Eq. (2)]. Intensive droplets (upper row) have
finite radii and can be far apart such that they evolve independently
from each other. On the contrary, extensive droplets (bottom row)
grow until the presence of other droplets stops their growth.

at least three different molecule species to have a
conserved quantity that can vary in space. We thus define
a minimal ternary model for a chemically active emulsion
with a conserved density.

A. Dynamics of the concentration fields

We consider an incompressible ternary mixture com-
posed of a solvent S and the molecule species A and B, that
react via the following reaction scheme:

k, k,
A=XB BXA (1)

The dynamics of average concentrations ¢;(1) =
V[, dBxpi(x.1) (i=A, B, S) are constrained to a
specific conserved line in the ¢4-¢5 plane which can be
expressed as

W= (¢a + Pn)/2, (2)

where V denotes the volume of the system and ¢, (x, 1),
¢p(x,1), and ¢g(x,t) are the concentration fields that
depend on position x and time . The conserved quantity
is denoted as .

The dynamical equations for the fields ¢4 (x,7) and
¢p(x,1) of the two reacting components A and B are

Opa =V - (TyaVps +TygVug) +r, (3a)

Oupp =V - (TaVuy +TppViug) —r. (3b)
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Here, yi; = 6F /5¢p; are the chemical potentials of i = A, B,
descending from the Helmholtz free energy F =
Jy @x(fo 4 xka(Vhpa)?/2 + k5(Vepg)?/2), where fo is
the free-energy density of a homogeneous system, an
example of which will be given below [50]. Here, I
denotes the mobility matrix. The first terms of Eqs. (3)
are diffusive fluxes that are driven by local gradients of the
chemical potentials, while the remaining term,

r=kapdp — kpatha, (4)

is the chemical flux. For passive systems, the reaction rate
coefficients k;; must depend on ¢; via the chemical
potentials, such that detailed balance of the rates is satisfied
and the free energy F determines thermodynamic equilib-
rium [45,51]. If, however, k; ; are chosen independently of
u;, the system is inherently chemically active, and when
phase separated, we refer to it as chemically active
emulsion [11-13,51-53].

1. Phase equilibria, molecular interactions,
and the compositional angle a

Without chemical reactions, the dynamic system gov-
erned by Egs. (3) relaxes to phase equilibrium, charac-
terized by equal chemical potentials u! = u!!, and equal
osmotic pressures II'=TI", where IT = —f + >",_, s dipss
see Refs. [54,55] for a general introduction. The phase
diagram portrays the phase equilibria of the mixture. In
Fig. 2(a), we show sketches for three different mixtures
where A always phase separates from S, even when B is
absent. The molecular interactions of B with A and S shape
the phase diagram. In the left-hand panel of Fig. 2(a), we
show a sketch of a phase diagram where B molecules are
similar to S and phase separate from A, while in the central
panel, we show B molecules that are neutral and do not
interact differently with A or S. In the right-hand panel, B
molecules are identical to A molecules and, therefore, phase
separate from the solvent.

Phase equilibria are also crucial for chemically active
emulsions since they locally govern the concentration
change across the interface. For simplicity, we take a
geometrical approach to the phase diagram. In general,
the possible two-phase coexistence regions in a ternary
phase diagram can be characterized by three angles
describing the slopes of tie lines and binodals (see
Appendix A). Here we restrict ourselves to the simple
case where the slope of tie lines is described by the angle «,
while tie lines remain perpendicular to the binodals
[Fig. 2(b)]. Note that, within this assumption, the two
binodals are always parallel to each other, such that a
critical point is precluded. This scenario is captured by a
Landau-Ginzburg free energy of the following form:

=== Binodal
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— = Lines of  _
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|
©-
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—o 0 o

Relative concentration ¢4 ¢a

FIG. 2. Geometrical representation of phase diagram and
reaction nullcline. (a) Sketches of phase diagrams of different
ternary mixtures: In the white domains, the system is homo-
geneous, while in the blue domains, it is phase separated. Each
diagram corresponds to different interactions among the mole-
cules A, B, and S. The key qualitative properties of such diagrams
can be captured by a geometrical representation. (b) Geometrical
representation of a phase diagram with the binodal line (dark
solid blue line), the tie lines (dashed blue line), the conserved
quantities y (dashed green line), and the reaction nullcline (solid
green line), where chemical fluxes vanish. Moreover, a is the
compositional angle determining the composition of the coex-
isting phases, while £ is the activity parameter characterizing the
strength of nonequilibrium driving. Only for = 0, there can be
chemical stationary states with phase compositions that are
connected by a tie line.

b b
Folar bus@) == (i + o) (61 = o)’ + 543, (52)

<¢,> _ < co.sa sina><¢A>’ (5b)
b —sina cosa ¢p

where b; and b, are positive constants. Note that this
parametrization gives a simple free energy that is complex
enough to extract generic features when qualitatively
changing the geometry of the phase diagram.

The different values of the angle a correspond to
different types of interactions of the B molecules with A
and solvent S. Without loss of generality, we restrict
ourselves to the domain —z/4 < a < z/4. Indeed, due
to the symmetry of the free energy, the transformation
@ = a+ /2 is equivalent to relabeling A to B and B to A.
For a = —z/4, B and A interact equally with the solvent,
for & = 0, B does not interact with A and solvent, and for
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a=r/4, B and S interact equally with A. As a conse-
quence, in the case @ = —x/4, the two reactants A and B
localize in two distinct phases; i.e., they segregate. In
contrast, for a = +x/4, molecules of type A and B phase
separate together from the solvent S.

Following Refs. [56,57], we refer to « = —n/4 as the
segregative case and @ = +x/4 as associative case. In the
literature on mixtures composed of a large number of
components, these two cases are often called demixing and
condensation, respectively [58]. In the literature of bio-
molecular condensates, the shape of the phase diagrams is
often related to the underlying molecular interactions.
According to Ref. [59], heterotypic interactions corre-
spond to the segregative case and homotypic interactions
to the associative case. Since the molecular interactions
determine the composition of the coexisting phases, we
refer to a as compositional angle. Varying a in the range
—n/4 < a < z/4 interpolates between the limits of the
segregative and associative case.

In Fig. 2(b), we show the phase diagram associated with
the free-energy density f, in Eq. (5). Note that the binodal
lines (dark blue) separating the mixing from the demixing
regimes (white and blue shaded area, respectively) are
straight lines tilted by the compositional angle a from the
vertical. The tie lines (dashed blue lines) are parallel to each
other, perpendicular to the binodal, and thus tilted by the
compositional angle a from the horizontal. Finally, we
comment on the role of ¢, in Eq. (5) [Fig. 2(b)]: The value
¢o sets the scale of the concentration axis, since for
cos(a)py + sin(a)¢pp inside the interval [—g¢hg, ¢ho], the
passive system can phase separate.

2. Nullclines of active chemical reactions
and the activity parameter 3

In a chemically active system, chemical equilibrium
and phase equilibrium do not have to be reached simulta-
neously. Therefore, the slope of the reaction nullcline,
which describes the steady state of the reactions defined by
the condition

kAB¢B = kBA¢Av (6)

can be at an angle that is different from the slope a of the tie
line; see the solid green line in Fig. 2(b). We therefore call
the angle # between tie line and reaction nullcline the
activity parameter, as it controls the nonequilibrium con-
ditions for a given phase diagram. Considering constant
chemical rate coefficients k;;, the activity parameter is

p = arctan(kpy /kap) — @, (7)

Indeed, only for the special case f =0, the system is
passive and can settle to thermodynamic equilibrium
because in this case the coexisting concentrations at phase
equilibrium are also in chemical equilibrium [Eq. (6)].

In other words, phase equilibrium with the free-energy
density [Eq. (5)] implies in each phase that the ratio
¢p/¢p4 = tan(a). For f = 0, this relationship is identical
to the ratio kg /kyp. For  # 0, coexisting concentrations
connected by a tie line do not lie on the reaction nullcline.
Thus, no stationary state of reactions [Eq. (6)] simulta-
neously fulfills phase equilibrium. Instead, reaction fluxes
and diffusive flux between the phases balance each other,
leading to a nonequilibrium steady state. The activity
parameter is restricted to the domain 0 < f# < 7/2 because,
for f = /2, the reaction nullcline becomes perpendicular
to the tie lines.

In summary, an active emulsion with chemical reaction
Eq. (1) is characterized by the compositional angle «, the
activity parameter f3, and the conserved quantity  [Eq. (2)]
and can be described by the free energy [Eq. (5)].

B. Dynamics of the conserved
and nonconserved fields

To understand the role of conserved quantities in the
ripening kinetics, we introduce the conserved field y (x, 7)
and the reaction extent field &(x, #), which are defined as

w(x, 1) = [pa(x. 1) + pp(x, 1)]/2, (8a)
E(x, 1) = [galx, 1) = b (x, 1)]/2. (8b)

We consider a constant mobility and also write for
simplicity I';; = I'6;;, leading to the dynamic equations,

o = TV, (. & ). (9)
0,6 =TV2us(y. & a) — KE+ K cot (% +a+ ,ﬁ) w, (9b)

where we have introduced the chemical potentials y,, =
(4a +1p)/2 and g = (g — u)/2 for y and €, respec-
tively. These chemical potentials can be obtained from
functional derivatives, y,, = 6F /oy and p: = 6F/6&, when
expressing the free energy fo(w,&) in terms of the con-
served and nonconserved fields. Furthermore, we define the
overall reaction rate as

K == kAB + kBA' (10)

The rate coefficients k45 and kg, can be expressed in terms
of the overall rate K, the activity parameter S, and the
compositional angle a; see Appendix B.

We can identify two special cases where the chemical
potentials of the conserved field and of the reaction extent
field decouple; i.e., coupling terms proportional to &
vanish in the free energy.

(i) For a = —xn/4, A segregates from B, and we find

Fo(w.&) =byy? +2b,(E—do/V2)(E+ o/ V2)

041027-4
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Thus, the free-energy density contribution in the
reaction extent £ is a classical double-well potential,
which leads to a Cahn-Hilliard dynamics with
reactions for the reaction extent field &(x, 1)
[Eq. (9b)]. The conserved field w(x,?) undergoes
simple diffusion according to Eq. (9a).

(ii) For a = n/4, A and B separate together from the

solvent —and  fo(w.§) =2b,(y — o/ V2)* (w +
$o/V2)*+byE. In this case, the conserved field
w(x, 1) follows a Cahn-Hilliard dynamics [Eq. (9a)],
while the reaction extent field &(x,¢) undergoes
simple diffusion and reactions [Eq. (9b)].

The dynamics of the conserved field y evolves inde-
pendently from the reaction extent field in both cases (i)
and (ii); however, the dynamics of the reaction extent is
affected by the conserved field w(x,7) via the reaction
dynamics [Eq. (9b)]. The ripening dynamics of the two
special cases (i) and (ii) corresponding to a = +z/4 have
been studied in the past.

(i) For the segregative case, « = —x/4, the conserved
variable y follows simple diffusion dynamics and
settles in a homogeneous state on long timescales.
Moreover, the dynamics of & are the dynamics of a
binary mixture composed of A and B with active
chemical reactions between these two components.
This leads to the suppression of Ostwald ripening,
ie.,, a monodisperse emulsion with a stationary
droplet size [12,13,23]. Once the droplet size exceeds
this stationary value, droplets shrink or can undergo
shape instabilities, giving rise to droplet division [43],
or form stationary, active shells [30,47].

(ii) For the associative case, a = x/4, the conserved
variable y follows a classical Cahn-Hilliard dynam-
ics. Thus, droplets rich in yw undergo Ostwald
ripening in a background of low y, where bigger
droplets grow at the expense of smaller shrinking
ones that eventually disappear. On large timescales
and in a finite system, the system evolves toward a
single droplet with a volume that scales with the
system size V. The dynamics of the reaction extent &
is affected by the y field without disturbing it. A
similar decoupling of phase separation and reactions
occurs in models for reacting diluted “client” par-
ticles corresponding to ¢ and phase separating
scaffold components corresponding to y [60].

In the special cases, the droplet dynamics thus exhibits
very different behaviors, raising the question of how the
system behavior transitions from suppressed Ostwald
ripening to classical ripening dynamics in the range
—n/4 < a < /4. The key property as compared to the
special cases (i) and (ii) is that the dynamics of the
conserved field y are in general influenced by the non-
conserved field £. In binary mixtures with active reactions
[12,13], or evaporating thin films that are heated from
below [61], the governing equation is a Cahn-Hilliard

equation with a reaction term, sometimes called Cahn-
Hilliard-Oono equation [62—64]. For the considered ternary
mixtures with just one active reaction, the reaction extent &
[Eq. (9b)] follows such a Cahn-Hilliard-Oono equation that
is coupled to a Cahn-Hilliard equation for the conserved
field y [Eq. (9a)]. This coupling arises from the molecular
interactions between the components A, B, and the solvent
[see Figs. 2(a) and 2(b) and related discussions].

In the next section, we will discuss the case of general
a. We will show that the coupling between the conserved
field and nonconserved field remains relevant in the
thermodynamic limit V — oo, where V is the system
volume, i.e., on length scales larger than the reaction-
diffusion length scales.

III. STATIONARY SINGLE DROPLETS

To study the effects of the conserved quantity @ on
the droplet size, we first consider a single spherical
droplet in a finite, spherically symmetric system of
radius Ry = [3V/(4x)]'/%. Note that the nonconserved
field & gives rise to a reaction-diffusion length scale
A=+/D/K, which can be obtained when linearizing
near phase equilibrium. Here, D = I'd*f,(w™, £5)? /02,
which can be calculated in our model: D =
VAT[by + 4b, 2 + (b, — 4b,¢3) sin(2a)]} /4. The reac-
tion-diffusion length scale 4 is finite and real (for I' > O,
K > 0) for all values —z/4 < a < x/4 and independent
of f and the conserved quantity . We consider a sharp
interface limit, which is valid when the droplet size exceeds
the width of the interface [65]. Phase equilibrium is
imposed at the position of this sharp interface. This
boundary condition couples the reaction-diffusion equa-
tions in each phase. These reaction-diffusion equations can
be linearized near phase equilibrium at the interface; for
details, see Appendix D and Ref. [45].

In the following, we discuss the stationary solutions for a
single droplet, i.e., o,y (x,t) =0 and 9,&(x,7) =0, and a
stationary interface position R, For large enough system
sizes Ry, we always find two solutions for Ry, [solid and
dashed lines in Fig. 3(a)] at which the total reaction flux of
every component in one phase is perfectly balanced by the
diffusive flux of the same component over the interface.
The lower branch (dashed line) of these two solutions is the
critical nucleation radius corresponding to an unstable fixed
point. The upper branch (solid line) of R, is a stable fixed
point corresponding to a nonequilibrium steady state. See
Appendix E, Eq. (E3), for an analytical expression of the
stationary radius as a function of the activity parameter f
and the compositional angle a for large system sizes.

The conserved quantity @ [Eq. (2)] affects the non-
equilibrium steady state and leads to a changed behavior of
the stationary radius Ry, as a function of the system size
Ry This changed behavior is depicted in Fig. 3(a) which
shows Ry (Rsys) for two different values of the conserved
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FIG. 3. Critical transition between intensive (blue) and extensive (red) active droplets. (a) There are two classes of stationary solutions,

depending on the value of the conserved quantity y. The stationary droplet size Ry €ither increases with system size Ry (red line) or
saturates for large values of Ry (blue line). We refer to these cases as extensive (red) and intensive (blue) active droplets. Stable
branches are depicted by solid lines and unstable branches are dashed. (b) Stationary concentration fields (component A) corresponding
to each class [color code as in (a)] are shown for large (L = 600) and small systems (L = 150). They are obtained from numerically
solving Egs. (3). Note that the large red droplet would undergo a shape instability once the spherical droplet shape is perturbed.
(c) Dependence of the stable (solid line) and unstable (dashed line) stationary radius, R, on the conserved quantity { for @ = 0 in an
infinite system. The stable branch (solid line) diverges following a power law, Ry, « | — y?cim\‘l, for l/_lzl/_lcim, supporting that the
transition controlled by the conserved quantity is critical. Note, these stationary radii have been computed for a finite value of the surface
tension, thereby leading to a gap between the onset of stationary droplets (where the stable and unstable branch converge) and the
binodal (dash-dotted line). Furthermore, we show the y value for the critical transition between (dotted line). Because of our choice of
the phase diagram, the system is symmetric around = 0. Note that < 0 corresponds to an A-rich droplet surrounded by an S-rich
phase, while > 0 corresponds to an S-rich droplet surrounded by an A-rich phase. We color coded the regions where no droplets
(white), intensive active droplet (blue), and extensive active droplet (red) exists for a system for large K, such that stationary radii get
large and Laplace pressure effects can be neglected. Details on the analytical calculation of R, are given in Appendix E, and parameter
choices for all three panels are discussed in Appendix H. All length scales in this figure are given in the terms of the interface width.

quantity = —0.61 (blue line) and w = —0.425 (red line)
in a system with @ = 0 and § = /8. Interestingly, in the
case of iy = —0.61 (blue line), the stable stationary solution
converges to a finite value in the limit of large systems, i.e.,
Ry — oo, while for y = —0.425 (red line), the solution
scales linearly with the system size, for large systems. In
other words, there are two different cases.

(1) Intensive active droplets (blue) for which the sta-
tionary droplet size R, quickly saturates with
system size Ry implying that R, is set by molecu-
lar and kinetic parameters for large system size.

(ii) Extensive active droplets (red) where the stationary
droplet size R, increases linearly with system size
Ry implying that R, is set by Ryq.

To explore these two behaviors, we numerically solved
the dynamic equations with a continuous interface
[Egs. (3)] in three dimensions. Figure 3(b) shows the field
¢4 (x) in four different stationary states, corresponding to
the two different cases (i) and (ii) and two different system
sizes (L =600 and L = 150 in inset). We consider the
same values of the conserved quantity as in Fig. 3(a). In the
case of ¥ = —0.61 (blue), the radius of the stationary active
droplet for the larger system is almost identical to that of the
smaller system in the inset. In the case of = —0.425 (red),
however, the stationary droplet radius in the larger system is
much larger than in the smaller box. In Appendix C, we
show additional stationary concentration fields and mea-
sure the corresponding stationary radii numerically, indi-
cating a qualitatively different scaling behavior of Ry,

between the two cases corresponding to different values of
the conserved quantity . We conclude that the solutions of
the continuous dynamic Egs. (3) confirm the trend obtained
from our single droplet study in the sharp interface limit
discussed in Fig. 3(a).

The qualitative change in the scaling of the stationary radius
Ry, with system size Ry upon changing the conserved
quantity y suggests that there is a supercritical transition
between the regimes of intensive (blue) and extensive (red)
active droplets. We note that with “supercritical transition” we
mean a transition analogous to a supercritical bifurcation as
discussed in nonlinear dynamics and pattern formation [66].
To determine the nature of this transition, we use the sharp
interface model of a single droplet and consider the limit of an
infinite system; for details see Appendix D. We calculate the
stable (solid line) and unstable (dashed line) stationary radii
Rg.: as a function of the conserved quantity i [Fig. 3(c)]. We
find that Ry, diverges at the critical values (see Appendix E
for details on the derivation),

i = j:¢— (cos(a) + sin(a)),

0

‘ (11)
where we have considered the simple case of identical
diffusivities of both components in both phases, and identical
reaction rates in both phases. For the general case, see
Eq. (E2). In the vicinity of these critical values, the stationary
droplet radius diverges with Ry, o [ — @, |~ within the
domain indicated in blue in Fig. 3(c); see Appendix E. This
critical behavior of Ry, is a phase transition as can be shown

041027-6



CRITICAL TRANSITION BETWEEN INTENSIVE AND ...

PHYS. REV. X 15, 041027 (2025)

by considering the ratio Ry, /Ry in the thermodynamic
limit. It develops a kink as a function of y at the critical point
Wy for large system sizes Ry (Fig. 9 in Appendix F).
Furthermore, stationary active droplets can only be
found within a certain range of the conserved quantity
W E Wi Vi) [dash-dotted black lines in Fig. 3(c)] with

_ _  $ocos(a+p)+sin(a+ p)
Woin = =75 cos(f)

(12)

Specifically, the boundary of the region corresponding to
droplets, ¥y, and @, can be found locating the inter-
section between the reaction nullcline, the binodal curves
of the phase diagram, and the contour lines of y [Fig. 2(b)].
Moreover, for w;, < < 0, we find A-rich droplets in a
solvent-rich phase, while for 0 <y <y, there are
solvent-rich droplets in an A-rich phase.

Through Egs. (11) and (12), we can study how the
underlying molecular interactions (parametrized by the
compositional angle @) and the activity parameter f affect
the existence of droplets and the supercritical transition; see
Figs. 4(a) and 4(b). Neglecting the finite size effects, these
results are independent of the specific values of kinetic
parameters such as I" and K, and otherwise only depend on
thermodynamic parameters in the free energy [Eq. (5)]. We
find that for # > 0, the active driving leads to a regime of
intensive droplets for all values —z/4 <a < n/4; see
Fig. 4(a). Recall that in the segregative case, « = —n/4
corresponds to an effective binary model of components A
and B, which phase separate from each other and are
converted into each other via chemical reactions; this case
was studied in Ref. [13]. Only in this limiting case are
droplets always intensive, and the conserved quantity does
not affect the stationary radii of chemically active droplets.

For all values —7/4 < a < n/4, there is an additional
domain with extensive droplets. The transition between
these two regimes occurs at a value of the conserved
quantity L, expressed in Eq. (11). In the associative case
a=nx/4, gL =i, ie, no intensive droplets can be
found, independently of the value of the activity parameter
p. In this case, droplets behave like droplets in passive
systems despite the presence of an active chemical reaction.
Chemical reactions still drive diffusive fluxes of A and B
between the phases. However, these fluxes do not affect the
spatial distribution of the stationary conserved field y(x).
In the passive case with =0, we find that ¥, = Wy
independent of the compositional angle a; see Fig. 4(b)
leftmost panel (green domain). Indeed, passive droplets are
always extensive since they behave as thermodynamic
phases that scale with the system size. However, for
p >0, l/’/étrit S yit,. Therefore, intensive droplets of finite
size exist inside a domain that increases for larger activity
parameter f [see Fig. 4(b) from left to right].

The transition line [Eq. (11)] between intensive and
extensive droplets is not related to a change in the nature
of the instability of the homogeneous state. To show this,
we performed a linear stability analysis of the homo-
geneous state in Appendix G. We find that there is a
transition between type I and type II, following the
definition in Ref. [66]. This transition, however, is
unrelated to the transition from intensive to extensive
chemically active droplets that was obtained analytically
using a sharp interface model.

In summary, our analysis of single active droplets shows
that there are two different classes of stationary states in the
limit of an infinitely large system: intensive active droplets
and extensive active droplets. While an intensive active
droplet adopts a finite size in a large system, an extensive
active droplet scales with the system size. There is a critical

(a)‘% 2¢0 - B =3r/8 (b) Passive Activity o
s | Intensive active s, "
£ o[- droplets = bo [T T ] [ T ] [ 7 T ]
< . B dol — - - - -
2 0 Extensive active_ s L g L
2 droplets _: 0 = 1
> B - 12 r ] I
3 (D‘U — ‘,2 —do [~ T B T [ 1
B - 3 - - F B F 4 4
5 b £ 9, L P L
@) ) o] —m/4 0 w/4 —m/4 0 /4 —m/4 0 /4 —m/4 0 /4
—260 - | no droplets —| . " L } .
! I Compositional angle a Compositional angle « Compositional angle « Compositional angle
—/4 0 /4 0 /12 /6 /3 8
Compositional angle o + t t —>

FIG. 4. State diagrams for intensive (blue) and extensive (red) active droplets. Here we show for which values of the activity parameter
P [Eq. (7)], the compositional angle a [Eq. (5)], and the conserved quantity  [Eq. (2)] we find intensive active droplets (blue) or
extensive active droplets (red). (a) For an intermediate value of the activity parameter f = 37/8, we find two regimes: intensive active
droplets (blue) and extensive active droplets (red). For larger compositional angles a, extensive droplets get favored. For the associative
case a = /4, droplets behave like in the passive case (green line) (see Sec. VI). (b) For an active parameter of # = 0, passive droplets
exist in the green domain. In the same domain, in the case > 0, extensive droplets are found (now red domain). For > 0, droplets
behave like passive ones only in the associative case of @ = /4 (green line). Furthermore, an additional regime of intensive active
droplets opens up (blue domain). This regime gets wider for higher values of the activity parameter . The boundary of extensive
droplets is given by Eq. (11), and the outer boundary of intensive droplets is given by Eq. (12). For # = 0, i.e., in the passive case, both
bounds collapse. Details on the analytical calculation of 7%, are given in Appendix E, and parameter choices are listed in Appendix H.
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transition between both types of nonequilibrium steady
states. This transition is controlled by the interactions
among the components, characterized in our model by
the compositional angle «a, the conserved quantity i,
and the activity parameter . In the next section, we study
emulsions composed of many active droplets and explore
their behavior in the parameter regimes corresponding to
intensive and extensive active droplets.

IV. INTERACTIONS OF MANY DROPLETS

In this section, we study the dynamics in active emul-
sions by numerically solving the dynamic equations
[Egs. (3)] for the continuous fields ¢4 (x,?) and ¢p(x, 1)
with a continuous interface in three dimensions. We
initialize the system in a homogeneous state at local
chemical equilibrium, with the average concentration
values ¢, and ¢y inside the binodal domain but outside
of the spinodal domain. Moreover, N;,; small spherical
droplets above the critical nucleation radius are randomly
positioned in the system with ¢, = ¢, inside [Eq. (5)]. To
avoid the fusion of such initially placed droplets right after
initialization, we accept only random configurations with

We now discuss representative results corresponding to
the intermediate values of the compositional angle @ = 0
and the activity parameter f = z/8. With this choice,
Egs. (12) and (11) imply that the bounds on the conserved
quantity  for the existence of droplets are given by yi& =

+¢/+/2 and the supercritical transition between intensive
and extensive droplets is lpcim = £0.5¢)¢. The initial con-
centrations outside are chosen such that the total conserved
quantity in the system is either @ = —0.6¢p, or
W = —0.4¢,. These two values lie, respectively, in the
regime where chemically active droplets are intensive
(W < ;) or extensive (Yo, < W < Wi

The leftmost column of Fig. 5(a) (gray) depicts the initial
state of the active emulsion corresponding to an initial
droplet number of N;,;; = 8 and N;,;; = 96, respectively. In
the remaining columns of Fig. 5(a) (blue and red), we show
the stationary states of the active emulsion for these two
initial conditions and the aforementioned conserved quan-
tities @ = —0.6¢py (blue) and = —0.4¢, (red). We find
that for v = —0.6¢), (intensive regime), all droplets grow
to the same size; i.e., a monodisperse active emulsion
emerges. During this kinetics to the stationary state, a few

interdroplet distances above a threshold value. droplets vanish compared to the initial condition.
@ o . o (b)_
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FIG. 5. Stationary states in emulsions composed of many intensive (blue) and extensive (red) active droplets. (a) Density plots of ¢,
with N(¢) droplets for the initial conditions (gray) of N(0) = 8 and N(0) = 96 at time ¢ = 0 and the corresponding final states after long
simulation times ¢, = 5000 [units 1/K, Eq. (10)] for r = ¢ (blue) and = —0.4 (red). (b) Numerically measured total volume of the
dense phase V4., = (V)N as a function of the final droplet number N(#,) marked by red (r = —0.6¢hy) and blue (y = —0.4¢),) cross
symbols. Continuous lines show the results obtained by dividing the system volume into N equal subvolumes and carrying out the single
droplets analysis. The red dashed line shows the resulting fraction of the phase volume in the limit of infinitely fast diffusion [51].
(c) Average droplet volume (V) = N=!' YNV, where V; are individual droplet volumes. As for the upper panel, crosses correspond to
numerical results, and lines correspond to the single droplet analysis. (d) Stationary concentration profiles ¢, for ¥ = —0.4¢,
corresponding to a final droplet number of N(¢;) = 187 [N(0) = 192], N(t;) = 218 [N(0) = 256], and N(¢;) = 249 [N(0) = 352]
from top to bottom. In all cases, a = 0, f = 7/8, K = 0.0028. After the final time ¢, = 5000, no significant changes were detectable for
all cases. Parameters used for solving the continuous model Eqgs. (3) are given in Appendix H.
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Interestingly, for v = —0.6¢,, the stationary droplet radius
changes only slightly for the two initial conditions. In the
right-hand column of Fig. 5(a) (red), we show the sta-
tionary states for y = —0.4¢, (above the supercritical
transition, extensive regime) for the same initial conditions
as above. For the initial state composed of eight droplets
only (first row), droplets elongate and sometimes branch,
thereby forming tubelike structures. However, some of
these branched structures can separate during the dynamics
such that, in the end, N = 17 different tubes of different
lengths exist. When initializing 96 droplets (second row),
some of them elongate, while others stay almost spherical,
dependent on the initial distance to other droplets.
However, none of them dissolve, such that we find
N = 96 objects in the stationary state. When even more
droplets are initialized, some of the initial droplets dissolve,
while the rest stay spherical and try to maximize their
distance toward each other; see Fig. 5(d).

Despite these complex changes in droplet morphologies,
there is a common principle in the regime where single
active droplets are extensive (red): Despite varying the
initial conditions and different numbers of dropletlike
domains in the stationary state, the total phase volume is
almost constant [Fig. 5(b)]. In other words, when there are
more dropletlike domains, they are smaller such that the
total phase volume is approximately conserved. In contrast,
in the regime where active droplets are intensive (blue),
the total volume increases with the amount of initialized
droplets. Most importantly, in this regime, the average
droplet volume is roughly constant [Fig. 5(c)] and approx-
imately equal to the volume of one single droplet up to
finite size effects.

Monodisperisty in chemically active emulsions can be
explained as follows. Intensive droplets (blue) adopt a fixed
size independent of the system size. When just a few
droplets are initialized in a large system, they can be far
apart, and whenever they are separated by a distance much
longer than the reaction-diffusion length scale in the
outside phase, they hardly interact with each other. As a
consequence, their dynamics becomes stationary and their
average radius takes a value similar to the stationary radius
R, obtained from the single droplet analysis (see Sec. III).
When more droplets are initialized, such that they are closer
than this reaction-diffusion length scale, they weakly
interact and get stationary at smaller sizes. This leads to
the slight decrease of average droplet volume for large N,
seen in Fig. 5(c). In all cases, droplets reach identical radii.
For extensive droplets (red), monodispersity is found only
when many droplets are initialized. Indeed, when only a
few droplets are initialized, they tend to grow until they feel
the presence of their neighbors. The more droplets are
initialized, the sooner this arrest occurs, decreasing the radii
of droplets. If the number of initialized droplets is too
small, droplets grow to sizes where shape instabilities can
occur. Tubes form via an elongation instability, discussed in

the next section, or spherical shells form via a spinodal
instability at the center of large droplets [47]. Crucially,
when enough droplets are present, the arrest of growth
happens earlier than shape instabilities can occur. As a
consequence, droplets are spherical and reach identical
radii [Fig. 5(d)]. In summary, for extensive droplets in an
emulsion (red), the history of the emulsion matters for the
final stationary monodispersed state or the emerging
shape instabilities.

To confirm the validity of these arguments relying on a
single droplet analysis, we compare the phase volume and
the average droplet size with the analytic results obtained
from the single droplet case in the sharp interface limit. To
this end, we considered N identical subsystems arranged in
a hexagonal close-packed lattice that fills the total system
volume V., and calculated phase volumes and average
sizes. These analytically derived results [solid lines in
Figs. 5(b) and 5(c)] are in good agreement with the
measured values in the numerical simulations of the active
emulsions. In the case of extensive droplets [dashed lines in
Figs. 5(b) and 5(c)], the total volumes of the phases are well
captured by considering the limit of fast diffusion [51].

We conclude by comparing the dynamics of intensive
and extensive droplets that are initially far apart in
emulsions. For intensive droplets, the droplet radius is
fixed by a balance between reaction and diffusion and all
droplets stop growing independently of each other. Here,
the conserved quantity reaches a constant value between
droplets and no material is exchanged between them. In
contrast, extensive droplets that are far apart from each
other continue to grow. For this growth to occur, conserved
material must be transported toward the droplets. This
transport can result only from gradients of the conserved
field far apart from the droplets. Thus, even when droplets
are much farther apart than any reaction-diffusion length
scale, they are still coupled via the conserved field.
Eventually, when sufficient conserved material is stored
within the droplets, the concentration far from the droplets
is low enough such that growth stops. Recently, this self-
organized arrest of ripening was studied by coupling the
dynamics of single droplets via a global conservation law
[67], in a manner analogous to the classic Lifshitz-Slyozov-
Wagner theory, which describes the evolution of droplet
size distributions during ripening in emulsions [4,5].

V. SHAPE INSTABILITIES AND DROPLET
DIVISION

In the previous section, we have seen that for extensive
active droplets in an emulsion an elongation instability
can occur. This instability is reminiscent of the Mullins-
Sekerka instability that occurs in the diffusive growth of a
single droplet without reactions in a large system. It
requires a (weak) deformation of a droplet’s spherical
shape and relies on the material depositing at interfacial
domains of larger mean curvature. As a result, these

041027-9



JONATHAN BAUERMANN et al.

PHYS. REV. X 15, 041027 (2025)

domains grow faster, further deforming the droplet shape.
Deformations are counteracted by surface tension, which
tends to flatten the mean curvatures of the interface.
However, this effect weakens as the droplet becomes larger.
Thus, there is a critical radius above which droplets
constantly grow and deform (Mullins-Sekerka instability).
A similar instability can occur for both extensive and
intensive active droplets. Indeed, in a binary mixture where
droplets are always intensive, such instability was shown to
lead to droplet division [43]. Here, we show that droplet
dynamics after elongation vastly differ between intensive
and extensive active droplets. In the upper row of Fig. 6
(blue), we show snapshots of the dynamics of two intensive
droplets (i = —0.6¢hy) and compare it to the dynamics of
two extensive droplets ( = —0.4¢),) in the lower row
(red). For both cases, we choose identical kinetic param-
eters. However, we have chosen the overall reaction rate K
[Eq. (10)] such that the stationary droplet radius in the
intensive regime exceeds the critical radius for onset of the
elongation instability. In both cases, the two droplets are
initially separated by a distance smaller than the reaction-
diffusion length in the outside phase. Thus, the presence of
the neighboring droplets leads to asymmetries that induce
initial deformations, which get amplified by the elongation
instability. However, the division predominantly happens
for intensive droplets; see Fig. 6 (upper row). Extensive
droplets elongate (Fig. 6, lower row) and form tubes, as
seen before. This difference can be explained by focusing
on the neck region. For intensive droplets, there is almost
no growth in this region, such that a Plateau-Rayleigh
instability can lead to a pinch-off. However, extensive
droplets constantly grow, including in the neck region,
thereby inhibiting the Plateau-Rayleigh instability.
Interestingly, with such cycles of growth and division of
intensive droplets, the total phase volume can trivially grow
just by increasing the number of droplets. As a result, these
shape instabilities allow intensive droplets to fill the space.
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FIG. 6. Time evolution of shape unstable intensive (blue) and
extensive (red) active droplets. Snapshots of concentration profile
¢4 for a conserved quantity yr = —0.6¢), (blue, upper row) and
W = —0.4¢, (red, lower row). While intensive droplets divide,
extensive droplets undergo a Mullins-Sekerka instability and
form complex tubelike morphologies. For parameter choices, see
Appendix H.

Thus, macroscopic phase volumes are reached, even in
infinite systems, similar to the regime of extensive droplets.

VI. MOLECULAR INTERACTIONS AFFECT
THE ARREST OF RIPENING

In Sec. IV, we have shown that extensive droplets grow
until the interaction with neighboring droplets arrests their
growth. However, in Sec. II B, we discussed that in the
associative case (@ = r/4), where A and B have identical
interactions with the solvent, the conserved field decouples
from the active driving, leading to passive phase-separating
dynamics. In this section, we study how the emulsion
dynamics is affected as molecular interactions approach the
limit of the associative case (¢ — 7/4). We find that
extensive droplets can initially ripen like in the passive
case until the effects of the active driving manifest and
ripening arrests.

In Fig. 7(a), we show snapshots of the dynamics of
concentration field ¢, for four different values of the
compositional angle a; see Supplemental Material for
videos on the ripening dynamics [68]. All numerical
calculations are conducted with the same kinetic parame-
ters, an activity parameter f = x/4, and a conserved
quantity of w = —0.35¢,. For these settings, all systems
are populated by extensive droplets. We Initialize at t = 0
(not shown in the figure) homogeneous concentration
profiles at the chemical steady state with small fluctuations
(around 0.1% of ). For the values of the compositional
angle a considered, the system is within the spinodal
regime of a nonreacting phase-separating mixture. For
triggering the nucleation of many droplets, shown in the
first row in Fig. 7, we did not allow for chemical reactions
in the early times of the spinodal instability (7 = 2). Insights
on the change of the nucleation dynamics in chemically
active systems can be found here [69,70]. While the
nucleation process is similar for all the compositional
angles a considered here, the longtime ripening dynamics
depend strongly on a. For a = 0.197 [first row in Fig. 7(a),
in red], some of the initial droplets dissolve, but the
interaction between droplets causes the ripening to arrest.
As the interaction of A and B with the solvent gets more
similar, i.e., @ — 7/4 (associative case), this arrest of
ripening occurs at a later stage of the dynamics. Prior to
the arrest of ripening, smaller droplets dissolve while larger
ones grow. Thus, as the arrest occurs and the emulsion
becomes monodisperse, stationary droplet radii are larger
as @ — r/4 (associative case); see second (a = 0.237) and
third (¢ = 0.24x) row of Fig. 7(a), in red. Only in the
associative case @ = x/4, the arrest is absent and chemi-
cally active droplets ripen as passive emulsions [last row in
Fig. 7(a), in green]. This means that the classical power
laws of Ostwald ripening hold in the associative case
(a = 7/4) with (R) '3 and N « =3 [7], while for
decreasing values of a < z/4, the transition to such
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FIG. 7. Arrested ripening of extensive active droplets (red). (a) Snapshots of concentration field ¢, evolving in time, for an activity
parameter # = /4 and four different values of the compositional angle (« = 0.19z,0.237,0.247x,0.257z, from top to bottom), each
corresponding to different molecular interactions. All simulations are initialized using the concentration fields shortly after the spinodal
instability of the homogeneous chemical steady state with = —0.35¢, has occurred. (b),(c) Droplet number N and average droplet
radius (R) as a function of time, for the same values of a. Passive scaling laws are indicated with dashed black lines. Parameters are given

in Appendix H.

classical ripening laws happens at later stages of the
dynamics [see Figs. 7(b) and 7(c)].

VII. DISCUSSION

We have introduced and studied a model of a minimal
ternary mixture of the components A, B, and solvent that
can phase separate while A and B convert into each other.
This conversion is maintained away from chemical equi-
librium by choosing reaction fluxes independent of the
chemical potentials. This choice prevents the system from
simultaneously reaching chemical and phase equilibrium
and allows it to adopt a nonequilibrium steady state. The
model is minimal because it exhibits a nontrivial conserved
quantity of the reaction with an associated conserved field
that is generally position dependent, also in the nonequili-
brium steady state. Within this minimal model for active
chemical reactions in phase-separating mixtures, we found
a superecritical transition describing the transition between a
single droplet that scales with system size (extensive active
droplet), like in passive systems, and droplets with a
characteristic size (intensive active droplet).

The transition found in the single droplet analysis has
crucial consequences for the behavior of emulsions com-
posed of many droplets. For a value of the conserved
quantity in the regime of an intensive droplet, a mono-
disperse emulsion forms where the average size is approx-
imately given by the stationary size of a single droplet. The

reason for this approximate agreement is that droplets can
be far apart from each other, such that the dynamics of
single droplets decouples from other droplets in the
emulsion. In contrast, extensive droplets in an emulsion
constantly grow until they come close enough to interact
strongly with each other. Once they interact, there can be
initial ripening, but growth arrests. The morphology of the
resulting structures depends crucially on initial condi-
tions, i.e., the history of the emulsion. In other words,
few droplets deform via shape instabilities, while many
droplets remain spherical and monodisperse. However,
the total phase volume is independent of the number and
sizes of droplets and scales with the system volume
similar to passive thermodynamic phases.

Our findings highlight the importance of several com-
ponents in chemically active systems. For example,
accounting for a solvent component fundamentally alters
the dynamics of chemically active droplets, reflected in
the appearance of the critical transition when varying the
conserved quantity. We propose that understanding the
effects of the conserved quantities(s) in reacting system
away from equilibrium is crucial to correctly interpret
emulsion dynamics in biological and chemical systems
[32-36]. Specifically, our theory can unravel the conserved
quantity’s effects in synthetic chemical systems, such as
droplet size control in multicomponent mixtures leading
to chemically active coacervates [32]. According to our
theory, droplet division is more likely to occur in the regime
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a~ —r/4, corresponding to intensive active droplets and
the case where A segregates from B (segregative case). We
propose studying a single active droplet in a reaction
container for different container sizes [71] and test whether
or not the active droplet scales with the container size
[intensive active droplets see Fig. 3(a)]. In the regime of
intensive active droplets, division is more likely to be
obtained. This procedure could be used to test synthesized
actively reacting components for their division propensity
and may thus pave the way to observe successive division
events in larger, mass-supplied containers containing many
active droplets.

Future avenues are related to integrating our findings
into the large canon of pattern-forming systems and
establishing a link to physically very different systems,
such as hydrodynamic instabilities governed by mathemati-
cally similar dynamic equations [61]. In particular, in our
work, the dynamics of the conserved field is coupled via
molecular interactions, which lead to phase separation, to
the nonconserved field. Only the latter is actively main-
tained away from equilibrium. However, even in the
thermodynamic limit of large length scales and timescales,
this local driving of the nonconserved field changes the
ripening dynamics of the conserved field. Understanding
the large-scale consequences in systems that are locally
maintained away from equilibrium is a key challenge in
mass-conserving reaction-diffusion systems [16,37-42],
and other active matter systems, like active model B+
[17,21,72] or nonreciprocal Cahn-Hilliard models [73-77].
Future studies will address the differences and similarities
of such systems to chemically active emulsions.

APPENDIX A: GEOMETRIC
PARAMETRIZATION OF A TERNARY
PHASE DIAGRAM

The local properties of two-phase coexistence in a
ternary phase diagram can be characterized by specifying
the orientation angles of tie lines and binodals at a reference
point. Given the four equilibrium concentrations g?)f/B,
obtained via the common tangent construction [11],
the slope of the tie line is defined by the angle
a = arctan[(¢} — ¢5)/(¢p5 — $3)].  Furthermore, we
define the angles characterizing the binodals at one
reference point as ot = arctan (6¢3 /5¢p5), where S¢p7
are the perturbations of the equilibrium concentration along
the binodals. Perturbing the equations corresponding to
phase equilibrium [11] to linear order in ¢ leads to the
conditions

o o oy (P g o o oug(py P
(7 — ) 22Tt (G — i) Yald )
A A a A A A a B L
(7 — ) 20 (G — ) Helladi)

(A1)

tan(o®) = —

The simple choice of the free energy f, discussed in the
main text corresponds to 6" = ¢~ = 7/2 + a, where the
binodals are parallel to each other and perpendicular to the
tie lines.

APPENDIX B: CHEMICAL REACTION RATES

In the main text, we will use the overall rate
K = ksp + kg and the activity parameter f as parameters
for the chemical reactions. These parameters are related
to the forward rate kp, and backward rate k,p, appearing
in Eq. (3) via the following relationships: kg4 =
Ksin(a + f)/[cos(a + ) +sin(a+ f)]  and  kup =
K cos(a+ p)/[cos(a + p) + sin(a + )], where a is the
compositional angle. Using this parametrization, the con-
tour lines of y, where the conserved quantity is constant,
have a fixed slope of —1 that is independent of the
compositional angle a. However, note that the slope of
the chemical steady state changes when varying a.
Moreover, changes in a do not affect the activity in the
system, in the sense that they do not alter the angle between
the reaction nullcline and the tie lines. Thus, with this
parametrization, we can vary the compositional angle « for
studying how different interactions affect active droplets
while keeping the activity parameter f fixed. The rate K
sets only a timescale.

APPENDIX C: NUMERICAL STUDY OF
EXTENSIVE AND INTENSIVE SCALING

In Fig. 3(a), we illustrate how the stationary droplet sizes
scale differently for extensive and intensive droplets in
spherically symmetric, three-dimensional systems, as the

Tt T T T T T T X
=100 X ¥ =-0425¢ -
& F X 4p=-06lg ]
g 80 X N
.'.C";}1 - .
; 60 - x =
5 L i
5 wf -
s ]
n 20 X X

EX | I >|< I | I | I 1 -

200 300 400 500 600
System size Lyt

FIG. 8. Stationary radii of extensive and intensive droplets in
two-dimensional systems of different size (top) and the corre-
sponding concentration fields (component A) (bottom). Same
parameter as in Fig. 3(b).
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system size Ry is varied. These stationary droplet radii
were determined by analytically solving for the stationary
state in the sharp-interface limit.

Figure 3(b) presents the stationary concentration fields
for two different system sizes in two dimensions, for both
extensive and intensive droplets. These results were
obtained numerically. In Fig. 8, we show these concen-
tration fields, corresponding to a small and large system
sizes, together with examples of intermediate system sizes
(bottom row). We then fit circles to these profiles in order to
extract the stationary droplet radii, and plot these radii as a
function of the system size Ly of the two-dimensional
square system (top row).

Despite the difference in dimensionality, two dimen-
sional vs three dimensional, and the different geometry,
spherical symmetric vs square geometry, does not allow a
direct comparison between the analytical results in
Fig. 3(a) and the numerical results in Fig. 8, both methods
show the same qualitative scaling between extensive and
intensive droplets.

Note that in the numerical studies, we initialized spheri-
cal droplets close to the stationary radius. This choice is
essential to prevent shape instabilities and the formation of
spherical shells [30,47].

APPENDIX D: SHARP-INTERFACE LIMIT

Similar to the droplet dynamics of passive phases (see
Ref. [65] for example), we can study the dynamics of a
single active droplet in the limit of a sharp interface. This
approach for general multicomponent mixtures is discussed
in detail in Ref. [45]. In this appendix, we derive the
stationary state conditions of a chemically active droplet in
the sharp-interface limit for a ternary mixture described by
the free energy given in Egs. (5). With this choice of free
energy, analytical results for the stationary radius and the
critical value for the transition between intensive and
extensive active droplets can be determined.

For a single droplet with radial symmetry sitting at the
origin (r being the radial coordinate), we split the field into
two domains (inside and outside, abbreviated in/out in the
following) and couple these domains via boundary con-
ditions at an interface at position r = R. Furthermore, we
linearize the dynamics of the fields ¢, and ¢p in Egs. (3)
around the corresponding ¢ values at the interface. In this
approximation, the stationary state of a chemically active
droplet in our ternary mixture is determined by the ¢ values
of A/B on both sides of the interface, named @1, @™, O,
and ®%", and the interface position R. In the following, we
explain how these five values are determined.

Locally, at the interface, we assume an equilibrium of
phase separation, i.e., identical chemical potentials and
osmotic pressure across the interface. Furthermore, global
conservation laws and vanishing flux differences across
the interface fix a unique phase equilibrium locally at the

interface and, therefore, a unique nonequilibrium steady
state of the droplet; see Ref. [45].

For our simple free-energy model Eq. (5), we can obtain
the four values of ®™°" generally as a function of R and a.
The determination of the stationary position of the interface
R, additionally needs flux relations (see below). Assuming
local phase equilibrium at the interface constrains its
concentrations to the two straight binodal lines shown in
Fig. 2(b) for an infinitely large system. Laplace pressure
effects of an interface with surface tension y of finite-sized
droplets are corrected up to linear order via the so-called
Gibbs-Thomsom coefficients ¢ [13]. We parametrize this
phase equilibrium by the intersection of its tie line with the
¢, axisinits ¢p; and ¢, representation [as defined in Eq. (5)].
This intersection we call d)iz"‘e‘, and write

(q)l:/out) (cosa —sina) <:t¢0+ycH> (D1)
q)llf;/ out sina  cosa gyiner

where we assumed that the conserved quantity is enriched
inside and diluted outside. For such a spherical symmetric
droplet, the mean curvature H is given by H = 2/R. If the
dilute phase builds up the spherical droplet, the two labels in/
outin Eq. (D1) have to be swapped and H = —2/R. Finally,
we have to determine the intersection ¢ via a global
conservation law of the conserved quantity. Therefore, we
note that while ¢, and ¢ have gradients in space, the
conserved quantity is constant in space but jumps at the
interface. Thus, for a finite radial-symmetric system (system
size Ry ) with an average amount of the conserved quantity
v, we know

) ) 1 -
(P + PFR + 2 (D" + B (Rl — RY) = FRY.

N =

(D2)
Using Eq. (D1), we find

inter
2

o 2Rngstl/_/ + [2¢0R4 - (207 + ¢OR)ngSJ [cos(a) + Sin<a)]
N RR3

syst

[cos(a) —sin(a)]
(D3)
In an infinite system, however, the finite-sized droplet does

not contribute to the average. Thus, the outside concen-
trations must fulfill

1
W = (@ + o), (D4)
and therefore, again by using Eq. (D1), we find
e _ 2R7 = (e + qoR)[eos(a) + sin(a)] o

2 R[cos(a) — sin(a)]
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We note by passing that it is only possible to derive the
interface concentrations independently of the diffusivities
and kinetic reaction rates due to our very symmetric form of
the free-energy density. Thus, these kinetic coefficients have
to be taken into account only for the derivation of the
stationary radius. In general, all five values have to be
determined in parallel, a step that typically requires numeri-
cal solving schemes; see Ref. [45].

An interface can only be stationary when the diffusive

t . .
fluxes " are balanced across the interface, i.e.,

J2(R) —]g‘“(R), and ji(R) = j%(R). These diffusive
fluxes in the stationary state arise from the stationary
concentration  profiles  ¢™*"(r)  via V=
—D™°"9, ™" (), where D" is the diffusion coeffi-
cient of component i in the corresponding domain obtained
by linean'zing By construction, it is guaranteed that

Jout = —j% and jin = — ;1 such that once one of the flux
balances 1s fulfilled, the second follows trivially. Therefore,

.in/out

we derive only j,’ " in the following.

A" (R = Ryys) cosh[A°"(R = Ryyq)] +

After linearizing, we can determine these fluxes through
the analytical stationary ¢, profiles in the two domains
(solving the corresponding inhomogeneous Laplace equa-
tion in radial symmetry). From here, we can derive the total
flux profiles, including the fluxes at the interface. We find

(@R (RIS, - O (RKR,)

coth(A"R) 1
X . —-— ,
Jin (,1‘" )ZR

where the rates ki‘; are the linrearized reaction rates from
Egs. (3) and A™ = /(D¥kih, + Dipkin,) /(D D'}). Note
that we use the dependency of the interface concentration
®i"(R) on the position of the interface R derived above, see
Eq. (D5). However, in the outside domain (r > R), the
solutions read

JR(R) =

(Do)

[(/1<>ut)2131(»syst — 1] sinh[A*"(R — Rsyst)]

Ja(R)™(R) = (3" (R)kyp — PR (R)kpy)

for a finite radial symmetric system with a no-flux
boundary condition at the system size Ry, or

TR () = ~(O (R - @ (R

k(élx + Dom koul + ( k;)‘%t + kout) Joutp
(kg‘g+k°”‘)(i°“‘)2R ’

(D8)

for infinite large systems, where again k?j‘»“ are the
linearized reaction rates from Egs. (3) and A% =
V/ (DUKSY + DYkg) / (DGDY). The stationary droplet
radii can now be found by using the interface concen-
trations stated in Eq. (D1) and Egs. (D3) or (DS5),
and numerically searching for the positions R at which
Eq. (D6) equals Eq. (D7) or (D8), depending on the
system size.

(ﬂom)zR{/lomRsyst COSh[’IOUt(R - RSySt)]

o (Digkity -+ Digkig, ) (K + Kit) + DR D1 (K, — ki) cos(2a) +

+ Sil‘lh[/iom(R - Rsyst)]} ’
(D7)

APPENDIX E: CRITICAL VALUE
AND THE SCALING OF THE STATIONARY
RADIUS IN ITS VICINITY

In Appendix D, we explained how the stationary droplet
radii can be obtained in the sharp-interface limit. Here, we
argue first how we can obtain the value of the conserved
quantity at the transition in an infinite system and, second,
show how the stationary radius scales in the vicinity of this
transition.

To find the critical value of the conserved quantity,
we balance the fluxes across the interface for an infinitely
large droplet,

Jlim ji{(R) = lim j3*(R),
from Egs. (D6) and (D8). When Eqgs. (D1) and (D5) are
applied in these expressions, a dependency on the average
conserved quantity i follows. We find that there is only one
value of this conserved quantity for which Eq. (E1) is true.
This value reads

(E1)

+ (ki + kif, ) sin(2a)]

Vet =70 T sin(a) (DA, +

Digki ) [34 + ki cot(a)] + D DA™ 2 kG, +

T k3, cot(a)) (E2)
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When we apply our parametrization of the reaction rates,
ie., kMO = Kin/ou cos(a + f) /[cos(a + f) + sin(a + f)]
and k7" = Kiv/outsin(q 4 )/ [cos(a + ) + sin(a + B)),
see Appendix B, we find y;, as a function of the kinetic
rates Ki/ou | diffusivities Di-n/ " and the angles a and f.
With the assumptions DI=D%", Di=D%' and
K" =K%, this expression simplifies and reduces to the
one in Eq. (11). Furthermore, we considered a droplet of the
dense phase in a dilute environment, which is the case for
@ < 0 (= branch). For > 0, the interface concentrations
swapped resulting in + branch of the solution of Eq. (11).
Furthermore, we can check the scaling of the stationary
radius of intensive active droplets in the vicinity of the
critical transition. For this, we expand j3"'(R) = ji(R) for
large R. We find the stationary radius R, as a function of
 that scales like Ry, o | — W) ~'. The general solution
can be obtained from the equations above straightfor-
wardly. Because of its length, however, in this appendix
we restrict ourselves to the special case of DI = DUt =
DIt = D@ = D and K™ = K°" = K. We find for the case
of a droplet of the dense phase in a dilute environment
W < Yo < 0)
—Ady tan(ﬂ)w,
Y = Werit
where we defined the length scale A = y/D/K and used
the fact that, for large droplets, the Laplace pressure
becomes negligible.

Rstat = (E3)

APPENDIX F: SUPERCRITICAL TRANSITION

Figure 3(c) shows how the stationary droplet radius Ry,
diverges when the conserved quantity y approaches the

0.6 ' -
Reyst = 250

[ —— Ryyst= 500
—— Ryyer= 2000

o
=
T

e
o
I

Phase fraction (Rstat/Rsyst)®

e
o
I

—¢0/2 —¢0 /4 0
Conserved quantity

FIG. 9. Critical transition between extensive and intensive
droplets. We show the phase fraction (Ryy/Rsys)® of the stable
(solid line) and unstable (dashed line) stationary droplet radii as a
function of i for the same parameters as in Fig. 3(c), but in finite
systems with system size Ry For large system sizes, a kink
develops and one stable branch transits to two branches (stable
and unstable), indicating a supercritical transition.

critical value in an infinite system (Ry — 00). To inves-
tigate the nature of this transition, we calculated the phase
fraction (Rsmt/Rsyst)3, i.e., the fraction occupied by the
droplet phase, in a finite system for increasing system sizes
Ry (see Fig. 9). For intensive droplets, the stable sta-
tionary radius Ry, is independent of the system size. Thus,
the phase volume of the droplet phase (Ry/Rys)®
approaches zero for large enough system sizes Rjy. For
extensive droplets, the droplet volume RJ, scales with
the conserved quantity  above the critical value of
conserved quantity. Above this critical value, there is also
an unstable branch. Figure 9 shows that the transition
between intensive and extensive droplets gets more pro-
nounced with the phase fraction developing a kink for large
system sizes Ry Thus, the transition is supercritical in the
limit of Ry — oo.

APPENDIX G: LINEAR STABILITY ANALYSIS

We performed a linear stability analysis around the
homogeneous stationary state of the chemical reaction
using the free-energy model we introduced in the main
text. We consider the chemical reaction scheme in Egs. (1),
which has a unique stationary state for every fixed value of
the conserved quantity . As shown in Fig. 10, depending

do [~ -

Conserved quantity
o

_¢0 [ 1 1 1
—m/4 0
Compositional angle «

Linearly stable  Spinodal - type I Spinodal - type II

FIG. 10. Linear stability of the homogeneous state. Top: state
diagram as shown in Fig. 4 but complemented with the linear
stability analysis of the homogeneous state. In the orange domain,
a finite range of wave numbers ¢ exists for which w(q) > 0
(type 1 instability). In contrast, in the purple domain, there is a
type II instability, following the classification of Ref. [66].
Bottom: dispersion relations w(g) occurring in the system. In
the white and blue domains of the top figure, the homogeneous
state is linearly stable, while in the orange (purple) domain, the
homogeneous state undergoes a type I (type II) instability. The
activity parameter for these figures is f = z/4.
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on the compositional angle «, there is a range of conserved
quantities  for which the stationary state lies within the
phase-separated domain (colored domains). The bounda-
ries between homogeneous (white domain) and phase-
separated (colored domains) stationary states are the
binodal lines (blue lines). In the white domain, as expected,
any wavelike perturbation « exp(w? — iq -x) with wave
vector ¢ and growth rate w(q) decays. Here, ¢ = |g| is the
wave number. In a subregion of the phase-separated
domain (shaded in blue), sometimes referred to as nucle-
ation and growth, wavelike perturbations also decay. A
representative dispersion relation w(g) (largest real eigen-
value) of these linearly stable states is shown on the left in
the bottom row of Fig. 10, where w(g) < 0 for all values
of ¢. However, unstable perturbations exist for homo-
geneous states in the orange and purple domains. In the
orange domain, a finite range of g values exists for which
w(q) > 0 (type I instabilities following Ref. [66]), while
in the purple domain, even large-scale perturbations with
g — 0 become unstable (type II instabilities following
Ref. [66]); see the corresponding dispersion relations.
Both instabilities lead to the spontaneous demixing of
the homogeneous mixture. Note that the classification in
terms of type I and type II always refers to the behavior
close to instability onset, but not to a change in the
dispersion relation that occurs far above the onset, as
observed here. In addition, we plot the critical transition
line between extensive and intensive droplets (red dashed
line in Fig. 10). We conclude that the transition between the
two types of dispersion relations (boundary between orange
and purple domains) is distinct from the transition between
intensive and extensive droplets (red dashed line).

APPENDIX H: PARAMETER CHOICES AND
METHODS USED FOR FIGURES

To numerically solve the dynamics equations in this
work, we rescale time ¢ - K with K denoting the overall rate
[Eq. (10)], and position x/¢ where £ = \/¢3k,/b;, thus,
half of the interface width in the continuous model. For
simplicity, we consider the overall rate equal inside and
outside for all studies (K™ = K°'* = K). These rescalings
yield the following nondimensional parameters in our

numerical studies: D™°"/(£2K), yc/£, and T/(£*Kby).

1. Figures showing results obtained
in the sharp-interface model

In the previous sections, we used the sharp-interface
limit to calculate the results shown in Figs. 3(a) and 3(b).
Using a standard root-finding scheme, we can numerically
solve the specific values of the stationary interfaces shown
in Fig. 3 in the main text. The parameter values used to

produce these figures are D'/°"/(£2K) = 0.00147",

TABLE 1. Parameter for grid and system size used for figures
showing numerical results obtained from solving the continuous
model [Eq. (3)].

Grid Size
Fig. 3(b) large 1024 x 1024 600 x 600
Fig. 3(b) small 256 x 256 150 x 150

Fig. 5 512 x 512 x 128 500 x 500 x 125
Fig. 6 56 x 256 x 128 250 x 250 x 125
Fig. 7 512 x 512 550 x 550
Fig. 8 256 x 256 150 x 150
Fig. 8 512 x 512 300 x 300
Fig. 8 768 x 768 450 x 450
Fig. 8 1024 x 1024 600 x 600

DY /(£2K) = 0.00147!, a=0, B = 0.127, yc /€ = 1/6,
and ¢pg = 1.

2. Figures showing results obtained
in the continuous model

All the results obtained in the continuous model were
obtained by using an implicit-explicit Runge-Kutta solver
of the second-third order. We considered periodic boundary
conditions and approximated the higher-order derivatives
using pseudospectral methods on a regular lattice. For
simplicity, we used by /@3 = by = o = 1, @ = 0, k4 = K3
and f = 0.127 unless other parameters are explicitly
mentioned in the figure caption. The mobilities were set
to I'/(£?Kb,) =0.0014"" in Fig. 3, T'/(¢?Kb,) =
0.00287! in Fig. 5, I'/(¢*Kb;) = 0.001127" in Fig. 6,
and T'/(£2Kb,¢3) = 0.004~" in Fig. 7. Furthermore, we
used Ny x N, or N| x N, x N5 grid points for two-dimen-
sional or three-dimensional systems of sizes of L; x L, or
L, x L, x L3, respectively. The specific values for the
corresponding figures are listed in Table 1.
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