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Most emulsions ripen with an average droplet size increasing in time. In chemically active emulsions,

coarsening can be absent, leading to a nonequilibrium steady state with monodisperse droplet sizes.

By considering a minimal model for phase separation and chemical reactions maintained away from

equilibrium, we show that there is a supercritical transition controlled by the conserved quantity

between two classes of chemically active droplets: intensive and extensive active droplets. While

intensive droplets reach a stationary size mainly controlled by the interplay between reactions and

diffusion, the size of an extensive active droplet scales with the system size. For intensive droplets,

growth arrests at a finite size. Thus, they can be far apart from each other and evolve independently from

other droplets in an active emulsion. The growth of extensive droplets, however, arrests due to the

presence of other droplets in the emulsion. In both cases, monodisperse emulsions can emerge. We show

how the supercritical transition between intensive and extensive active droplets affects shape

instabilities, including the division of active droplets, paving the way for the observation of successive

division events in chemically active emulsions.

DOI: 10.1103/4nnd-tdky Subject Areas: Biological Physics, Soft Matter

I. INTRODUCTION

Coarsening or ripening refers to the growth of larger

domains at the expense of smaller domains that eventually

shrink. For passive systems, the kinetics of coarsening

stops when the system reaches equilibrium, corresponding

to a single domain in a finite system. Coarsening occurs

in various systems, ranging from spin systems [1], liquid

emulsions [2], and crystallized precipitates [3]. The kinetics

of coarsening is universal and determined by conservation

laws, symmetries, and the dimension of the system [4–7].

For active systems persistently maintained away from

equilibrium [8–11], the kinetics of coarsening is altered and

can even be suppressed [12–17]. The paradigm is reaction-

diffusion systems that give rise to nonequilibrium steady-

state patterns with various spatial morphologies [18–20].

Another example is active model B+, which, in contrast to

the classical model B, also accounts for contributions to the

diffusive fluxes that do not arise from a free energy [21,22].

These fluxes give rise to anticoarsening with a condensed

phase that stopped growing and a “bubbly” fluctuating

morphology of material-poor domains [14]. Finally, sup-

pressed ripening was also observed in liquid-liquid phase-

separated systems with chemical reactions maintained away

from equilibrium [12,13,23,24]. These systems are also

called chemically active emulsions [11,25,26]. Chemically

active emulsions are relevant to various engineered systems

investigated in systems chemistry, where active droplets are

models for synthetic cells or protocellular compartments

[27–32]. They also provide a framework for the study of

biomolecular condensates that form in living cells, organ-

izing and regulating biochemical processes [33–36].

The formation of steady-state patterns in reaction-

diffusion systems relies on the reaction flux that breaks

the detailed balance of the rates. Together with diffusion,

this gives rise to various reaction-diffusion length scales

that are crucial but not exclusively responsible for pattern

morphology. Chemical processes generically come with

conservation laws for mass, and if incompressible, also for

volume. It has been shown that conservation laws are key
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determinants for the emerging patterns in mass-conserving

reaction-diffusion systems [16,37–42].

Active emulsions also give rise to reaction-diffusion

length scales. These length scales are crucial for various

nonequilibrium phenomena in active emulsions, such

as dividing droplets [43–45], formation of steady liquid

shells [30,46,47], and the suppression of Ostwald ripening

[13,32]. These interesting phenomena can be seen in

minimal models [12,13,43,47]. However, these models

focus on binary systems that lack conservation laws.

Scenarios that take into account both conservation laws

and chemical reactions with broken detailed balance are

just beginning to be explored [30,32,45,48,49]. Similar to

reaction-diffusion systems [41], conservation laws are

expected to qualitatively alter the nature of transitions

and instabilities in chemically active emulsions.

In passive, phase-separated systems with chemical reac-

tions, the reaction-diffusion length scales do not determine

the equilibrium state. In this passive case, conservation

laws, i.e., so-called lever rules for quantities conserved

by the chemical reactions, determine the volume of the

condensed phase(s) at thermodynamic equilibrium. When

the chemical reactions are maintained away from equilib-

rium (active emulsion), the emerging reaction-diffusion

length scales compete with the conservation laws. It

remains unclear to what extent the reaction-diffusion scales

or the conservation law dominates the dynamics and

patterning in chemically active emulsions.

In our work, we study how a single conservation law

affects the pattern formation and coarsening in chemically

active emulsions that were so far studied in the absence of a

conserved density [12,13,43,47]. Our key finding is that

when the conserved quantity itself varies between phases,

a supercritical transition between intensive and extensive

chemically active droplets exists; see Fig. 1 for an illus-

tration. The control parameter for this transition is the

globally conserved quantity. In the case of intensive

droplets, single droplets in large systems are stationary,

with droplet sizes independent of system size. For extensive

droplets, the stationary droplet size increases with the

system size. We show that this transition controls the

collective dynamics of many droplets in active emulsions

and explain how monodispersity and complex droplet

morphologies can emerge in chemically active emulsions

through a conservation law.

II. MINIMAL MODEL FOR AN ACTIVE

EMULSION WITH A CONSERVED QUANTITY

In an incompressible binary mixture with two species

that convert into each other via a chemical reaction, the

total mass is conserved. However, in an incompressible

binary mixture, this conserved quantity is constant in

space, independent of time, and thus has no effect on the

system behavior [12,13]. An incompressible mixture

containing chemical reactions must therefore comprise

at least three different molecule species to have a

conserved quantity that can vary in space. We thus define

a minimal ternary model for a chemically active emulsion

with a conserved density.

A. Dynamics of the concentration fields

We consider an incompressible ternary mixture com-

posed of a solvent S and the molecule species A and B, that
react via the following reaction scheme:

A⇀
kBA

B; B⇀
kAB

A: ð1Þ

The dynamics of average concentrations ϕ̄iðtÞ ¼
V−1

R

V d
3xϕiðx; tÞ (i ¼ A, B, S) are constrained to a

specific conserved line in the ϕ̄A-ϕ̄B plane which can be

expressed as

ψ̄ ¼ ðϕ̄A þ ϕ̄BÞ=2; ð2Þ

where V denotes the volume of the system and ϕAðx; tÞ,
ϕBðx; tÞ, and ϕSðx; tÞ are the concentration fields that

depend on position x and time t. The conserved quantity

is denoted as ψ̄ .

The dynamical equations for the fields ϕAðx; tÞ and

ϕBðx; tÞ of the two reacting components A and B are

∂tϕA ¼ ∇ · ðΓAA∇μA þ ΓAB∇μBÞ þ r; ð3aÞ

∂tϕB ¼ ∇ · ðΓBA∇μA þ ΓBB∇μBÞ − r: ð3bÞ

FIG. 1. Intensive and extensive active droplets and their behavior

in emulsions. Chemically active emulsions undergo a transition

between intensive (blue) and extensive (red) droplets. The tran-

sition depends on the value of the quantity conserved by the

chemical reaction [Eq. (2)]. Intensive droplets (upper row) have

finite radii and can be far apart such that they evolve independently

from each other. On the contrary, extensive droplets (bottom row)

grow until the presence of other droplets stops their growth.
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Here, μi ¼ δF=δϕi are the chemical potentials of i ¼ A, B,
descending from the Helmholtz free energy F ¼
R

V d
3xðf0 þ κAð∇ϕAÞ2=2þ κBð∇ϕBÞ2=2Þ, where f0 is

the free-energy density of a homogeneous system, an

example of which will be given below [50]. Here, Γ

denotes the mobility matrix. The first terms of Eqs. (3)

are diffusive fluxes that are driven by local gradients of the

chemical potentials, while the remaining term,

r ¼ kABϕB − kBAϕA; ð4Þ

is the chemical flux. For passive systems, the reaction rate

coefficients kij must depend on ϕi via the chemical

potentials, such that detailed balance of the rates is satisfied

and the free energy F determines thermodynamic equilib-

rium [45,51]. If, however, kij are chosen independently of

μi, the system is inherently chemically active, and when

phase separated, we refer to it as chemically active

emulsion [11–13,51–53].

1. Phase equilibria, molecular interactions,

and the compositional angle α

Without chemical reactions, the dynamic system gov-

erned by Eqs. (3) relaxes to phase equilibrium, charac-

terized by equal chemical potentials μIi ¼ μIIi , and equal

osmotic pressures ΠI¼Π
II, where Π ¼ −f þPi¼A;B ϕiμi;

see Refs. [54,55] for a general introduction. The phase

diagram portrays the phase equilibria of the mixture. In

Fig. 2(a), we show sketches for three different mixtures

where A always phase separates from S, even when B is

absent. The molecular interactions of B with A and S shape

the phase diagram. In the left-hand panel of Fig. 2(a), we

show a sketch of a phase diagram where B molecules are

similar to S and phase separate from A, while in the central

panel, we show B molecules that are neutral and do not

interact differently with A or S. In the right-hand panel, B
molecules are identical to Amolecules and, therefore, phase

separate from the solvent.

Phase equilibria are also crucial for chemically active

emulsions since they locally govern the concentration

change across the interface. For simplicity, we take a

geometrical approach to the phase diagram. In general,

the possible two-phase coexistence regions in a ternary

phase diagram can be characterized by three angles

describing the slopes of tie lines and binodals (see

Appendix A). Here we restrict ourselves to the simple

case where the slope of tie lines is described by the angle α,

while tie lines remain perpendicular to the binodals

[Fig. 2(b)]. Note that, within this assumption, the two

binodals are always parallel to each other, such that a

critical point is precluded. This scenario is captured by a

Landau-Ginzburg free energy of the following form:

f0ðϕA;ϕB; αÞ ¼
b1

2
ðϕ1 þ ϕ0Þ2ðϕ1 − ϕ0Þ2 þ

b2

2
ϕ2
2; ð5aÞ

�

ϕ1

ϕ2

�

¼
�

cos α sin α

− sin α cos α

��

ϕA

ϕB

�

; ð5bÞ

where b1 and b2 are positive constants. Note that this

parametrization gives a simple free energy that is complex

enough to extract generic features when qualitatively

changing the geometry of the phase diagram.

The different values of the angle α correspond to

different types of interactions of the B molecules with A
and solvent S. Without loss of generality, we restrict

ourselves to the domain −π=4 ≤ α ≤ π=4. Indeed, due

to the symmetry of the free energy, the transformation

α0 ¼ αþ π=2 is equivalent to relabeling A to B and B to A.
For α ¼ −π=4, B and A interact equally with the solvent,

for α ¼ 0, B does not interact with A and solvent, and for

(a)

(b)

FIG. 2. Geometrical representation of phase diagram and

reaction nullcline. (a) Sketches of phase diagrams of different

ternary mixtures: In the white domains, the system is homo-

geneous, while in the blue domains, it is phase separated. Each

diagram corresponds to different interactions among the mole-

cules A, B, and S. The key qualitative properties of such diagrams

can be captured by a geometrical representation. (b) Geometrical

representation of a phase diagram with the binodal line (dark

solid blue line), the tie lines (dashed blue line), the conserved

quantities ψ̄ (dashed green line), and the reaction nullcline (solid

green line), where chemical fluxes vanish. Moreover, α is the

compositional angle determining the composition of the coex-

isting phases, while β is the activity parameter characterizing the

strength of nonequilibrium driving. Only for β ¼ 0, there can be

chemical stationary states with phase compositions that are

connected by a tie line.
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α ¼ π=4, B and S interact equally with A. As a conse-

quence, in the case α ¼ −π=4, the two reactants A and B
localize in two distinct phases; i.e., they segregate. In

contrast, for α ¼ þπ=4, molecules of type A and B phase

separate together from the solvent S.
Following Refs. [56,57], we refer to α ¼ −π=4 as the

segregative case and α ¼ þπ=4 as associative case. In the

literature on mixtures composed of a large number of

components, these two cases are often called demixing and

condensation, respectively [58]. In the literature of bio-

molecular condensates, the shape of the phase diagrams is

often related to the underlying molecular interactions.

According to Ref. [59], heterotypic interactions corre-

spond to the segregative case and homotypic interactions

to the associative case. Since the molecular interactions

determine the composition of the coexisting phases, we

refer to α as compositional angle. Varying α in the range

−π=4 < α < π=4 interpolates between the limits of the

segregative and associative case.

In Fig. 2(b), we show the phase diagram associated with

the free-energy density f0 in Eq. (5). Note that the binodal

lines (dark blue) separating the mixing from the demixing

regimes (white and blue shaded area, respectively) are

straight lines tilted by the compositional angle α from the

vertical. The tie lines (dashed blue lines) are parallel to each

other, perpendicular to the binodal, and thus tilted by the

compositional angle α from the horizontal. Finally, we

comment on the role of ϕ0 in Eq. (5) [Fig. 2(b)]: The value

ϕ0 sets the scale of the concentration axis, since for

cosðαÞϕA þ sinðαÞϕB inside the interval ½−ϕ0;ϕ0�, the

passive system can phase separate.

2. Nullclines of active chemical reactions

and the activity parameter β

In a chemically active system, chemical equilibrium

and phase equilibrium do not have to be reached simulta-

neously. Therefore, the slope of the reaction nullcline,

which describes the steady state of the reactions defined by

the condition

kABϕB ¼ kBAϕA; ð6Þ

can be at an angle that is different from the slope α of the tie

line; see the solid green line in Fig. 2(b). We therefore call

the angle β between tie line and reaction nullcline the

activity parameter, as it controls the nonequilibrium con-

ditions for a given phase diagram. Considering constant

chemical rate coefficients kij, the activity parameter is

β ¼ arctanðkBA=kABÞ − α; ð7Þ

Indeed, only for the special case β ¼ 0, the system is

passive and can settle to thermodynamic equilibrium

because in this case the coexisting concentrations at phase

equilibrium are also in chemical equilibrium [Eq. (6)].

In other words, phase equilibrium with the free-energy

density [Eq. (5)] implies in each phase that the ratio

ϕB=ϕA ¼ tanðαÞ. For β ¼ 0, this relationship is identical

to the ratio kBA=kAB. For β ≠ 0, coexisting concentrations

connected by a tie line do not lie on the reaction nullcline.

Thus, no stationary state of reactions [Eq. (6)] simulta-

neously fulfills phase equilibrium. Instead, reaction fluxes

and diffusive flux between the phases balance each other,

leading to a nonequilibrium steady state. The activity

parameter is restricted to the domain 0 ≤ β < π=2 because,
for β ¼ π=2, the reaction nullcline becomes perpendicular

to the tie lines.

In summary, an active emulsion with chemical reaction

Eq. (1) is characterized by the compositional angle α, the

activity parameter β, and the conserved quantity ψ̄ [Eq. (2)]

and can be described by the free energy [Eq. (5)].

B. Dynamics of the conserved

and nonconserved fields

To understand the role of conserved quantities in the

ripening kinetics, we introduce the conserved field ψðx; tÞ
and the reaction extent field ξðx; tÞ, which are defined as

ψðx; tÞ ¼ ½ϕAðx; tÞ þ ϕBðx; tÞ�=2; ð8aÞ

ξðx; tÞ ¼ ½ϕAðx; tÞ − ϕBðx; tÞ�=2: ð8bÞ

We consider a constant mobility and also write for

simplicity Γij ¼ Γδij, leading to the dynamic equations,

∂tψ ¼ Γ∇2μψðψ ; ξ; αÞ; ð9aÞ

∂tξ ¼ Γ∇2μξðψ ; ξ; αÞ − Kξþ K cot

�

π

4
þ αþ β

�

ψ ; ð9bÞ

where we have introduced the chemical potentials μψ ¼
ðμA þ μBÞ=2 and μξ ¼ ðμA − μBÞ=2 for ψ and ξ, respec-

tively. These chemical potentials can be obtained from

functional derivatives, μψ ¼ δF=δψ and μξ ¼ δF=δξ, when

expressing the free energy f0ðψ ; ξÞ in terms of the con-

served and nonconserved fields. Furthermore, we define the

overall reaction rate as

K ¼ kAB þ kBA: ð10Þ

The rate coefficients kAB and kBA can be expressed in terms

of the overall rate K, the activity parameter β, and the

compositional angle α; see Appendix B.

We can identify two special cases where the chemical

potentials of the conserved field and of the reaction extent

field decouple; i.e., coupling terms proportional to ψξ

vanish in the free energy.

(i) For α ¼ −π=4, A segregates from B, and we find

f0ðψ ;ξÞ¼b2ψ
2þ2b1ðξ−ϕ0=

ffiffiffi

2
p

Þ2ðξþϕ0=
ffiffiffi

2
p

Þ2.
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Thus, the free-energy density contribution in the

reaction extent ξ is a classical double-well potential,

which leads to a Cahn-Hilliard dynamics with

reactions for the reaction extent field ξðx; tÞ
[Eq. (9b)]. The conserved field ψðx; tÞ undergoes

simple diffusion according to Eq. (9a).

(ii) For α ¼ π=4, A and B separate together from the

solvent and f0ðψ ;ξÞ¼2b1ðψ −ϕ0=
ffiffiffi

2
p

Þ2ðψ þ
ϕ0=

ffiffiffi

2
p

Þ2þb2ξ
2. In this case, the conserved field

ψðx; tÞ follows a Cahn-Hilliard dynamics [Eq. (9a)],

while the reaction extent field ξðx; tÞ undergoes

simple diffusion and reactions [Eq. (9b)].

The dynamics of the conserved field ψ evolves inde-

pendently from the reaction extent field in both cases (i)

and (ii); however, the dynamics of the reaction extent is

affected by the conserved field ψðx; tÞ via the reaction

dynamics [Eq. (9b)]. The ripening dynamics of the two

special cases (i) and (ii) corresponding to α ¼ �π=4 have

been studied in the past.

(i) For the segregative case, α ¼ −π=4, the conserved

variable ψ follows simple diffusion dynamics and

settles in a homogeneous state on long timescales.

Moreover, the dynamics of ξ are the dynamics of a

binary mixture composed of A and B with active

chemical reactions between these two components.

This leads to the suppression of Ostwald ripening,

i.e., a monodisperse emulsion with a stationary

droplet size [12,13,23]. Once the droplet size exceeds

this stationary value, droplets shrink or can undergo

shape instabilities, giving rise to droplet division [43],

or form stationary, active shells [30,47].

(ii) For the associative case, α ¼ π=4, the conserved

variable ψ follows a classical Cahn-Hilliard dynam-

ics. Thus, droplets rich in ψ undergo Ostwald

ripening in a background of low ψ, where bigger

droplets grow at the expense of smaller shrinking

ones that eventually disappear. On large timescales

and in a finite system, the system evolves toward a

single droplet with a volume that scales with the

system size V. The dynamics of the reaction extent ξ

is affected by the ψ field without disturbing it. A

similar decoupling of phase separation and reactions

occurs in models for reacting diluted “client” par-

ticles corresponding to ξ and phase separating

scaffold components corresponding to ψ [60].

In the special cases, the droplet dynamics thus exhibits

very different behaviors, raising the question of how the

system behavior transitions from suppressed Ostwald

ripening to classical ripening dynamics in the range

−π=4 < α < π=4. The key property as compared to the

special cases (i) and (ii) is that the dynamics of the

conserved field ψ are in general influenced by the non-

conserved field ξ. In binary mixtures with active reactions

[12,13], or evaporating thin films that are heated from

below [61], the governing equation is a Cahn-Hilliard

equation with a reaction term, sometimes called Cahn-

Hilliard-Oono equation [62–64]. For the considered ternary

mixtures with just one active reaction, the reaction extent ξ

[Eq. (9b)] follows such a Cahn-Hilliard-Oono equation that

is coupled to a Cahn-Hilliard equation for the conserved

field ψ [Eq. (9a)]. This coupling arises from the molecular

interactions between the components A, B, and the solvent

[see Figs. 2(a) and 2(b) and related discussions].

In the next section, we will discuss the case of general

α. We will show that the coupling between the conserved

field and nonconserved field remains relevant in the

thermodynamic limit V → ∞, where V is the system

volume, i.e., on length scales larger than the reaction-

diffusion length scales.

III. STATIONARY SINGLE DROPLETS

To study the effects of the conserved quantity ψ̄ on

the droplet size, we first consider a single spherical

droplet in a finite, spherically symmetric system of

radius Rsyst ¼ ½3V=ð4πÞ�1=3. Note that the nonconserved

field ξ gives rise to a reaction-diffusion length scale

λ ¼
ffiffiffiffiffiffiffiffiffiffi

D=K
p

, which can be obtained when linearizing

near phase equilibrium. Here, D ¼ Γ∂
2f0ðψ�; ξ�Þ2=∂ξ2,

which can be calculated in our model: D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fΓ½b2 þ 4b1ϕ
2
0 þ ðb2 − 4b1ϕ

2
0Þ sinð2αÞ�g=4

p

. The reac-

tion-diffusion length scale λ is finite and real (for Γ > 0,

K > 0) for all values −π=4 ≤ α ≤ π=4 and independent

of β and the conserved quantity ψ̄. We consider a sharp

interface limit, which is valid when the droplet size exceeds

the width of the interface [65]. Phase equilibrium is

imposed at the position of this sharp interface. This

boundary condition couples the reaction-diffusion equa-

tions in each phase. These reaction-diffusion equations can

be linearized near phase equilibrium at the interface; for

details, see Appendix D and Ref. [45].

In the following, we discuss the stationary solutions for a

single droplet, i.e., ∂tψðx; tÞ ¼ 0 and ∂tξðx; tÞ ¼ 0, and a

stationary interface position Rstat. For large enough system

sizes Rsyst, we always find two solutions for Rstat [solid and

dashed lines in Fig. 3(a)] at which the total reaction flux of

every component in one phase is perfectly balanced by the

diffusive flux of the same component over the interface.

The lower branch (dashed line) of these two solutions is the

critical nucleation radius corresponding to an unstable fixed

point. The upper branch (solid line) of Rstat is a stable fixed

point corresponding to a nonequilibrium steady state. See

Appendix E, Eq. (E3), for an analytical expression of the

stationary radius as a function of the activity parameter β

and the compositional angle α for large system sizes.

The conserved quantity ψ̄ [Eq. (2)] affects the non-

equilibrium steady state and leads to a changed behavior of

the stationary radius Rstat as a function of the system size

Rsyst. This changed behavior is depicted in Fig. 3(a) which

shows RstatðRsystÞ for two different values of the conserved
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quantity ψ̄ ¼ −0.61 (blue line) and ψ̄ ¼ −0.425 (red line)

in a system with α ¼ 0 and β ¼ π=8. Interestingly, in the

case of ψ̄ ¼ −0.61 (blue line), the stable stationary solution

converges to a finite value in the limit of large systems, i.e.,

Rsyst → ∞, while for ψ̄ ¼ −0.425 (red line), the solution

scales linearly with the system size, for large systems. In

other words, there are two different cases.

(i) Intensive active droplets (blue) for which the sta-

tionary droplet size Rstat quickly saturates with

system size Rsyst implying that Rstat is set by molecu-

lar and kinetic parameters for large system size.

(ii) Extensive active droplets (red) where the stationary

droplet size Rstat increases linearly with system size

Rsyst implying that Rstat is set by Rsyst.

To explore these two behaviors, we numerically solved

the dynamic equations with a continuous interface

[Eqs. (3)] in three dimensions. Figure 3(b) shows the field

ϕAðxÞ in four different stationary states, corresponding to

the two different cases (i) and (ii) and two different system

sizes (L ¼ 600 and L ¼ 150 in inset). We consider the

same values of the conserved quantity as in Fig. 3(a). In the

case of ψ̄ ¼ −0.61 (blue), the radius of the stationary active

droplet for the larger system is almost identical to that of the

smaller system in the inset. In the case of ψ̄ ¼ −0.425 (red),

however, the stationary droplet radius in the larger system is

much larger than in the smaller box. In Appendix C, we

show additional stationary concentration fields and mea-

sure the corresponding stationary radii numerically, indi-

cating a qualitatively different scaling behavior of Rstat

between the two cases corresponding to different values of

the conserved quantity ψ̄. We conclude that the solutions of

the continuous dynamic Eqs. (3) confirm the trend obtained

from our single droplet study in the sharp interface limit

discussed in Fig. 3(a).

Thequalitative change in the scalingof the stationary radius

Rstat with system size Rsyst upon changing the conserved

quantity ψ̄ suggests that there is a supercritical transition

between the regimes of intensive (blue) and extensive (red)

active droplets.We note that with “supercritical transition”we

mean a transition analogous to a supercritical bifurcation as

discussed in nonlinear dynamics and pattern formation [66].

To determine the nature of this transition, we use the sharp

interfacemodel of a single droplet and consider the limit of an

infinite system; for details see Appendix D. We calculate the

stable (solid line) and unstable (dashed line) stationary radii

Rstat as a function of the conserved quantity ψ̄ [Fig. 3(c)]. We

find that Rstat diverges at the critical values (see Appendix E

for details on the derivation),

ψ̄�
crit ¼ �ϕ0

2
ðcosðαÞ þ sinðαÞÞ; ð11Þ

where we have considered the simple case of identical

diffusivities of both components in both phases, and identical

reaction rates in both phases. For the general case, see

Eq. (E2). In the vicinity of these critical values, the stationary

droplet radius diverges with Rstat ∝ jψ̄ − ψ̄�
critj−1 within the

domain indicated in blue in Fig. 3(c); see Appendix E. This

critical behavior of Rstat is a phase transition as can be shown

(a) (b) (c)

FIG. 3. Critical transition between intensive (blue) and extensive (red) active droplets. (a) There are two classes of stationary solutions,

depending on the value of the conserved quantity ψ. The stationary droplet size Rstat either increases with system size Rsyst (red line) or

saturates for large values of Rsyst (blue line). We refer to these cases as extensive (red) and intensive (blue) active droplets. Stable

branches are depicted by solid lines and unstable branches are dashed. (b) Stationary concentration fields (component A) corresponding
to each class [color code as in (a)] are shown for large (L ¼ 600) and small systems (L ¼ 150). They are obtained from numerically

solving Eqs. (3). Note that the large red droplet would undergo a shape instability once the spherical droplet shape is perturbed.

(c) Dependence of the stable (solid line) and unstable (dashed line) stationary radius, Rstat, on the conserved quantity ψ̄ for α ¼ 0 in an

infinite system. The stable branch (solid line) diverges following a power law, Rstat ∝ jψ̄ − ψ̄�
critj−1, for ψ̄≷ψ̄�

crit, supporting that the

transition controlled by the conserved quantity is critical. Note, these stationary radii have been computed for a finite value of the surface

tension, thereby leading to a gap between the onset of stationary droplets (where the stable and unstable branch converge) and the

binodal (dash-dotted line). Furthermore, we show the ψ value for the critical transition between (dotted line). Because of our choice of

the phase diagram, the system is symmetric around ψ̄ ¼ 0. Note that ψ̄ < 0 corresponds to an A-rich droplet surrounded by an S-rich
phase, while ψ̄ > 0 corresponds to an S-rich droplet surrounded by an A-rich phase. We color coded the regions where no droplets

(white), intensive active droplet (blue), and extensive active droplet (red) exists for a system for large K, such that stationary radii get

large and Laplace pressure effects can be neglected. Details on the analytical calculation of Rstat are given in Appendix E, and parameter

choices for all three panels are discussed in Appendix H. All length scales in this figure are given in the terms of the interface width.
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by considering the ratio Rstat=Rsyst in the thermodynamic

limit. It develops a kink as a function of ψ̄ at the critical point

ψ̄�
crit for large system sizes Rsyst (Fig. 9 in Appendix F).

Furthermore, stationary active droplets can only be

found within a certain range of the conserved quantity

ψ̄ ∈ ½ψ̄−
bin; ψ̄

þ
bin� [dash-dotted black lines in Fig. 3(c)] with

ψ̄�
bin ¼ �ϕ0

2

cosðαþ βÞ þ sinðαþ βÞ
cosðβÞ : ð12Þ

Specifically, the boundary of the region corresponding to

droplets, ψ̄−
bin and ψ̄þ

bin, can be found locating the inter-

section between the reaction nullcline, the binodal curves

of the phase diagram, and the contour lines of ψ̄ [Fig. 2(b)].

Moreover, for ψ̄−
bin < ψ̄ < 0, we find A-rich droplets in a

solvent-rich phase, while for 0 < ψ̄ < ψ̄þ
bin, there are

solvent-rich droplets in an A-rich phase.

Through Eqs. (11) and (12), we can study how the

underlying molecular interactions (parametrized by the

compositional angle α) and the activity parameter β affect

the existence of droplets and the supercritical transition; see

Figs. 4(a) and 4(b). Neglecting the finite size effects, these

results are independent of the specific values of kinetic

parameters such as Γ and K, and otherwise only depend on

thermodynamic parameters in the free energy [Eq. (5)]. We

find that for β > 0, the active driving leads to a regime of

intensive droplets for all values −π=4 ≤ α < π=4; see

Fig. 4(a). Recall that in the segregative case, α ¼ −π=4
corresponds to an effective binary model of components A
and B, which phase separate from each other and are

converted into each other via chemical reactions; this case

was studied in Ref. [13]. Only in this limiting case are

droplets always intensive, and the conserved quantity does

not affect the stationary radii of chemically active droplets.

For all values −π=4 < α < π=4, there is an additional

domain with extensive droplets. The transition between

these two regimes occurs at a value of the conserved

quantity ψ̄�
crit expressed in Eq. (11). In the associative case

α ¼ π=4, ψ̄�
crit ¼ ψ̄�

bin, i.e., no intensive droplets can be

found, independently of the value of the activity parameter

β. In this case, droplets behave like droplets in passive

systems despite the presence of an active chemical reaction.

Chemical reactions still drive diffusive fluxes of A and B
between the phases. However, these fluxes do not affect the

spatial distribution of the stationary conserved field ψðxÞ.
In the passive case with β ¼ 0, we find that ψ̄bin ¼ ψ̄ crit

independent of the compositional angle α; see Fig. 4(b)

leftmost panel (green domain). Indeed, passive droplets are

always extensive since they behave as thermodynamic

phases that scale with the system size. However, for

β > 0, ψ̄�
crit ≶ ψ�

bin. Therefore, intensive droplets of finite

size exist inside a domain that increases for larger activity

parameter β [see Fig. 4(b) from left to right].

The transition line [Eq. (11)] between intensive and

extensive droplets is not related to a change in the nature

of the instability of the homogeneous state. To show this,

we performed a linear stability analysis of the homo-

geneous state in Appendix G. We find that there is a

transition between type I and type II, following the

definition in Ref. [66]. This transition, however, is

unrelated to the transition from intensive to extensive

chemically active droplets that was obtained analytically

using a sharp interface model.

In summary, our analysis of single active droplets shows

that there are two different classes of stationary states in the

limit of an infinitely large system: intensive active droplets

and extensive active droplets. While an intensive active

droplet adopts a finite size in a large system, an extensive

active droplet scales with the system size. There is a critical

(a) (b)

FIG. 4. State diagrams for intensive (blue) and extensive (red) active droplets. Here we show for which values of the activity parameter

β [Eq. (7)], the compositional angle α [Eq. (5)], and the conserved quantity ψ̄ [Eq. (2)] we find intensive active droplets (blue) or

extensive active droplets (red). (a) For an intermediate value of the activity parameter β ¼ 3π=8, we find two regimes: intensive active

droplets (blue) and extensive active droplets (red). For larger compositional angles α, extensive droplets get favored. For the associative

case α ¼ π=4, droplets behave like in the passive case (green line) (see Sec. VI). (b) For an active parameter of β ¼ 0, passive droplets

exist in the green domain. In the same domain, in the case β > 0, extensive droplets are found (now red domain). For β > 0, droplets

behave like passive ones only in the associative case of α ¼ π=4 (green line). Furthermore, an additional regime of intensive active

droplets opens up (blue domain). This regime gets wider for higher values of the activity parameter β. The boundary of extensive

droplets is given by Eq. (11), and the outer boundary of intensive droplets is given by Eq. (12). For β ¼ 0, i.e., in the passive case, both

bounds collapse. Details on the analytical calculation of ψ̄�
crit are given in Appendix E, and parameter choices are listed in Appendix H.
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transition between both types of nonequilibrium steady

states. This transition is controlled by the interactions

among the components, characterized in our model by

the compositional angle α, the conserved quantity ψ̄,

and the activity parameter β. In the next section, we study

emulsions composed of many active droplets and explore

their behavior in the parameter regimes corresponding to

intensive and extensive active droplets.

IV. INTERACTIONS OF MANY DROPLETS

In this section, we study the dynamics in active emul-

sions by numerically solving the dynamic equations

[Eqs. (3)] for the continuous fields ϕAðx; tÞ and ϕBðx; tÞ
with a continuous interface in three dimensions. We

initialize the system in a homogeneous state at local

chemical equilibrium, with the average concentration

values ϕ̄A and ϕ̄B inside the binodal domain but outside

of the spinodal domain. Moreover, Ninit small spherical

droplets above the critical nucleation radius are randomly

positioned in the system with ϕA ¼ ϕ0 inside [Eq. (5)]. To

avoid the fusion of such initially placed droplets right after

initialization, we accept only random configurations with

interdroplet distances above a threshold value.

We now discuss representative results corresponding to

the intermediate values of the compositional angle α ¼ 0

and the activity parameter β ¼ π=8. With this choice,

Eqs. (12) and (11) imply that the bounds on the conserved

quantity ψ̄ for the existence of droplets are given by ψ̄�
bin ¼

�ϕ0=
ffiffiffi

2
p

and the supercritical transition between intensive

and extensive droplets is ψ̄�
crit ¼ �0.5ϕ0. The initial con-

centrations outside are chosen such that the total conserved

quantity in the system is either ψ̄ ¼ −0.6ϕ0 or

ψ̄ ¼ −0.4ϕ0. These two values lie, respectively, in the

regime where chemically active droplets are intensive

(ψ̄ < ψ̄−
crit) or extensive (ψ̄−

crit < ψ̄ < ψ̄þ
crit).

The leftmost column of Fig. 5(a) (gray) depicts the initial

state of the active emulsion corresponding to an initial

droplet number of Ninit ¼ 8 and Ninit ¼ 96, respectively. In

the remaining columns of Fig. 5(a) (blue and red), we show

the stationary states of the active emulsion for these two

initial conditions and the aforementioned conserved quan-

tities ψ̄ ¼ −0.6ϕ0 (blue) and ψ̄ ¼ −0.4ϕ0 (red). We find

that for ψ̄ ¼ −0.6ϕ0 (intensive regime), all droplets grow

to the same size; i.e., a monodisperse active emulsion

emerges. During this kinetics to the stationary state, a few

droplets vanish compared to the initial condition.

(a) (b)

(c)

(d)

FIG. 5. Stationary states in emulsions composed of many intensive (blue) and extensive (red) active droplets. (a) Density plots of ϕA

with NðtÞ droplets for the initial conditions (gray) of Nð0Þ ¼ 8 and Nð0Þ ¼ 96 at time t ¼ 0 and the corresponding final states after long

simulation times tf ¼ 5000 [units 1=K, Eq. (10)] for ψ̄ ¼ ϕ0 (blue) and ψ̄ ¼ −0.4 (red). (b) Numerically measured total volume of the

dense phase Vden ¼ hViN as a function of the final droplet number NðtfÞ marked by red (ψ̄ ¼ −0.6ϕ0) and blue (ψ̄ ¼ −0.4ϕ0) cross

symbols. Continuous lines show the results obtained by dividing the system volume intoN equal subvolumes and carrying out the single

droplets analysis. The red dashed line shows the resulting fraction of the phase volume in the limit of infinitely fast diffusion [51].

(c) Average droplet volume hVi ¼ N−1
P

N
i Vi, where Vi are individual droplet volumes. As for the upper panel, crosses correspond to

numerical results, and lines correspond to the single droplet analysis. (d) Stationary concentration profiles ϕA for ψ̄ ¼ −0.4ϕ0

corresponding to a final droplet number of NðtfÞ ¼ 187 [Nð0Þ ¼ 192], NðtfÞ ¼ 218 [Nð0Þ ¼ 256], and NðtfÞ ¼ 249 [Nð0Þ ¼ 352]

from top to bottom. In all cases, α ¼ 0, β ¼ π=8, K ¼ 0.0028. After the final time tf ¼ 5000, no significant changes were detectable for

all cases. Parameters used for solving the continuous model Eqs. (3) are given in Appendix H.

JONATHAN BAUERMANN et al. PHYS. REV. X 15, 041027 (2025)

041027-8



Interestingly, for ψ̄ ¼ −0.6ϕ0, the stationary droplet radius

changes only slightly for the two initial conditions. In the

right-hand column of Fig. 5(a) (red), we show the sta-

tionary states for ψ ¼ −0.4ϕ0 (above the supercritical

transition, extensive regime) for the same initial conditions

as above. For the initial state composed of eight droplets

only (first row), droplets elongate and sometimes branch,

thereby forming tubelike structures. However, some of

these branched structures can separate during the dynamics

such that, in the end, N ¼ 17 different tubes of different

lengths exist. When initializing 96 droplets (second row),

some of them elongate, while others stay almost spherical,

dependent on the initial distance to other droplets.

However, none of them dissolve, such that we find

N ¼ 96 objects in the stationary state. When even more

droplets are initialized, some of the initial droplets dissolve,

while the rest stay spherical and try to maximize their

distance toward each other; see Fig. 5(d).

Despite these complex changes in droplet morphologies,

there is a common principle in the regime where single

active droplets are extensive (red): Despite varying the

initial conditions and different numbers of dropletlike

domains in the stationary state, the total phase volume is

almost constant [Fig. 5(b)]. In other words, when there are

more dropletlike domains, they are smaller such that the

total phase volume is approximately conserved. In contrast,

in the regime where active droplets are intensive (blue),

the total volume increases with the amount of initialized

droplets. Most importantly, in this regime, the average

droplet volume is roughly constant [Fig. 5(c)] and approx-

imately equal to the volume of one single droplet up to

finite size effects.

Monodisperisty in chemically active emulsions can be

explained as follows. Intensive droplets (blue) adopt a fixed

size independent of the system size. When just a few

droplets are initialized in a large system, they can be far

apart, and whenever they are separated by a distance much

longer than the reaction-diffusion length scale in the

outside phase, they hardly interact with each other. As a

consequence, their dynamics becomes stationary and their

average radius takes a value similar to the stationary radius

Rstat obtained from the single droplet analysis (see Sec. III).

When more droplets are initialized, such that they are closer

than this reaction-diffusion length scale, they weakly

interact and get stationary at smaller sizes. This leads to

the slight decrease of average droplet volume for large N,

seen in Fig. 5(c). In all cases, droplets reach identical radii.

For extensive droplets (red), monodispersity is found only

when many droplets are initialized. Indeed, when only a

few droplets are initialized, they tend to grow until they feel

the presence of their neighbors. The more droplets are

initialized, the sooner this arrest occurs, decreasing the radii

of droplets. If the number of initialized droplets is too

small, droplets grow to sizes where shape instabilities can

occur. Tubes form via an elongation instability, discussed in

the next section, or spherical shells form via a spinodal

instability at the center of large droplets [47]. Crucially,

when enough droplets are present, the arrest of growth

happens earlier than shape instabilities can occur. As a

consequence, droplets are spherical and reach identical

radii [Fig. 5(d)]. In summary, for extensive droplets in an

emulsion (red), the history of the emulsion matters for the

final stationary monodispersed state or the emerging

shape instabilities.

To confirm the validity of these arguments relying on a

single droplet analysis, we compare the phase volume and

the average droplet size with the analytic results obtained

from the single droplet case in the sharp interface limit. To

this end, we considered N identical subsystems arranged in

a hexagonal close-packed lattice that fills the total system

volume Vsyst, and calculated phase volumes and average

sizes. These analytically derived results [solid lines in

Figs. 5(b) and 5(c)] are in good agreement with the

measured values in the numerical simulations of the active

emulsions. In the case of extensive droplets [dashed lines in

Figs. 5(b) and 5(c)], the total volumes of the phases are well

captured by considering the limit of fast diffusion [51].

We conclude by comparing the dynamics of intensive

and extensive droplets that are initially far apart in

emulsions. For intensive droplets, the droplet radius is

fixed by a balance between reaction and diffusion and all

droplets stop growing independently of each other. Here,

the conserved quantity reaches a constant value between

droplets and no material is exchanged between them. In

contrast, extensive droplets that are far apart from each

other continue to grow. For this growth to occur, conserved

material must be transported toward the droplets. This

transport can result only from gradients of the conserved

field far apart from the droplets. Thus, even when droplets

are much farther apart than any reaction-diffusion length

scale, they are still coupled via the conserved field.

Eventually, when sufficient conserved material is stored

within the droplets, the concentration far from the droplets

is low enough such that growth stops. Recently, this self-

organized arrest of ripening was studied by coupling the

dynamics of single droplets via a global conservation law

[67], in a manner analogous to the classic Lifshitz-Slyozov-

Wagner theory, which describes the evolution of droplet

size distributions during ripening in emulsions [4,5].

V. SHAPE INSTABILITIES AND DROPLET

DIVISION

In the previous section, we have seen that for extensive

active droplets in an emulsion an elongation instability

can occur. This instability is reminiscent of the Mullins-

Sekerka instability that occurs in the diffusive growth of a

single droplet without reactions in a large system. It

requires a (weak) deformation of a droplet’s spherical

shape and relies on the material depositing at interfacial

domains of larger mean curvature. As a result, these
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domains grow faster, further deforming the droplet shape.

Deformations are counteracted by surface tension, which

tends to flatten the mean curvatures of the interface.

However, this effect weakens as the droplet becomes larger.

Thus, there is a critical radius above which droplets

constantly grow and deform (Mullins-Sekerka instability).

A similar instability can occur for both extensive and

intensive active droplets. Indeed, in a binary mixture where

droplets are always intensive, such instability was shown to

lead to droplet division [43]. Here, we show that droplet

dynamics after elongation vastly differ between intensive

and extensive active droplets. In the upper row of Fig. 6

(blue), we show snapshots of the dynamics of two intensive

droplets (ψ̄ ¼ −0.6ϕ0) and compare it to the dynamics of

two extensive droplets (ψ̄ ¼ −0.4ϕ0) in the lower row

(red). For both cases, we choose identical kinetic param-

eters. However, we have chosen the overall reaction rate K
[Eq. (10)] such that the stationary droplet radius in the

intensive regime exceeds the critical radius for onset of the

elongation instability. In both cases, the two droplets are

initially separated by a distance smaller than the reaction-

diffusion length in the outside phase. Thus, the presence of

the neighboring droplets leads to asymmetries that induce

initial deformations, which get amplified by the elongation

instability. However, the division predominantly happens

for intensive droplets; see Fig. 6 (upper row). Extensive

droplets elongate (Fig. 6, lower row) and form tubes, as

seen before. This difference can be explained by focusing

on the neck region. For intensive droplets, there is almost

no growth in this region, such that a Plateau-Rayleigh

instability can lead to a pinch-off. However, extensive

droplets constantly grow, including in the neck region,

thereby inhibiting the Plateau-Rayleigh instability.

Interestingly, with such cycles of growth and division of

intensive droplets, the total phase volume can trivially grow

just by increasing the number of droplets. As a result, these

shape instabilities allow intensive droplets to fill the space.

Thus, macroscopic phase volumes are reached, even in

infinite systems, similar to the regime of extensive droplets.

VI. MOLECULAR INTERACTIONS AFFECT

THE ARREST OF RIPENING

In Sec. IV, we have shown that extensive droplets grow

until the interaction with neighboring droplets arrests their

growth. However, in Sec. II B, we discussed that in the

associative case (α ¼ π=4), where A and B have identical

interactions with the solvent, the conserved field decouples

from the active driving, leading to passive phase-separating

dynamics. In this section, we study how the emulsion

dynamics is affected as molecular interactions approach the

limit of the associative case (α → π=4). We find that

extensive droplets can initially ripen like in the passive

case until the effects of the active driving manifest and

ripening arrests.

In Fig. 7(a), we show snapshots of the dynamics of

concentration field ϕA for four different values of the

compositional angle α; see Supplemental Material for

videos on the ripening dynamics [68]. All numerical

calculations are conducted with the same kinetic parame-

ters, an activity parameter β ¼ π=4, and a conserved

quantity of ψ̄ ¼ −0.35ϕ0. For these settings, all systems

are populated by extensive droplets. We Initialize at t ¼ 0

(not shown in the figure) homogeneous concentration

profiles at the chemical steady state with small fluctuations

(around 0.1% of ψ̄). For the values of the compositional

angle α considered, the system is within the spinodal

regime of a nonreacting phase-separating mixture. For

triggering the nucleation of many droplets, shown in the

first row in Fig. 7, we did not allow for chemical reactions

in the early times of the spinodal instability (t ≈ 2). Insights

on the change of the nucleation dynamics in chemically

active systems can be found here [69,70]. While the

nucleation process is similar for all the compositional

angles α considered here, the longtime ripening dynamics

depend strongly on α. For α ¼ 0.19π [first row in Fig. 7(a),

in red], some of the initial droplets dissolve, but the

interaction between droplets causes the ripening to arrest.

As the interaction of A and B with the solvent gets more

similar, i.e., α → π=4 (associative case), this arrest of

ripening occurs at a later stage of the dynamics. Prior to

the arrest of ripening, smaller droplets dissolve while larger

ones grow. Thus, as the arrest occurs and the emulsion

becomes monodisperse, stationary droplet radii are larger

as α → π=4 (associative case); see second (α ¼ 0.23π) and

third (α ¼ 0.24π) row of Fig. 7(a), in red. Only in the

associative case α ¼ π=4, the arrest is absent and chemi-

cally active droplets ripen as passive emulsions [last row in

Fig. 7(a), in green]. This means that the classical power

laws of Ostwald ripening hold in the associative case

(α ¼ π=4) with hRi ∝ t1=3 and N ∝ t−2=3 [7], while for

decreasing values of α < π=4, the transition to such

FIG. 6. Time evolution of shape unstable intensive (blue) and

extensive (red) active droplets. Snapshots of concentration profile

ϕA for a conserved quantity ψ̄ ¼ −0.6ϕ0 (blue, upper row) and

ψ̄ ¼ −0.4ϕ0 (red, lower row). While intensive droplets divide,

extensive droplets undergo a Mullins-Sekerka instability and

form complex tubelike morphologies. For parameter choices, see

Appendix H.
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classical ripening laws happens at later stages of the

dynamics [see Figs. 7(b) and 7(c)].

VII. DISCUSSION

We have introduced and studied a model of a minimal

ternary mixture of the components A, B, and solvent that

can phase separate while A and B convert into each other.

This conversion is maintained away from chemical equi-

librium by choosing reaction fluxes independent of the

chemical potentials. This choice prevents the system from

simultaneously reaching chemical and phase equilibrium

and allows it to adopt a nonequilibrium steady state. The

model is minimal because it exhibits a nontrivial conserved

quantity of the reaction with an associated conserved field

that is generally position dependent, also in the nonequili-

brium steady state. Within this minimal model for active

chemical reactions in phase-separating mixtures, we found

a supercritical transition describing the transition between a

single droplet that scales with system size (extensive active

droplet), like in passive systems, and droplets with a

characteristic size (intensive active droplet).

The transition found in the single droplet analysis has

crucial consequences for the behavior of emulsions com-

posed of many droplets. For a value of the conserved

quantity in the regime of an intensive droplet, a mono-

disperse emulsion forms where the average size is approx-

imately given by the stationary size of a single droplet. The

reason for this approximate agreement is that droplets can

be far apart from each other, such that the dynamics of

single droplets decouples from other droplets in the

emulsion. In contrast, extensive droplets in an emulsion

constantly grow until they come close enough to interact

strongly with each other. Once they interact, there can be

initial ripening, but growth arrests. The morphology of the

resulting structures depends crucially on initial condi-

tions, i.e., the history of the emulsion. In other words,

few droplets deform via shape instabilities, while many

droplets remain spherical and monodisperse. However,

the total phase volume is independent of the number and

sizes of droplets and scales with the system volume

similar to passive thermodynamic phases.

Our findings highlight the importance of several com-

ponents in chemically active systems. For example,

accounting for a solvent component fundamentally alters

the dynamics of chemically active droplets, reflected in

the appearance of the critical transition when varying the

conserved quantity. We propose that understanding the

effects of the conserved quantities(s) in reacting system

away from equilibrium is crucial to correctly interpret

emulsion dynamics in biological and chemical systems

[32–36]. Specifically, our theory can unravel the conserved

quantity’s effects in synthetic chemical systems, such as

droplet size control in multicomponent mixtures leading

to chemically active coacervates [32]. According to our

theory, droplet division is more likely to occur in the regime

(a) (b)

FIG. 7. Arrested ripening of extensive active droplets (red). (a) Snapshots of concentration field ϕA evolving in time, for an activity

parameter β ¼ π=4 and four different values of the compositional angle (α ¼ 0.19π; 0.23π; 0.24π; 0.25π, from top to bottom), each

corresponding to different molecular interactions. All simulations are initialized using the concentration fields shortly after the spinodal

instability of the homogeneous chemical steady state with ψ̄ ¼ −0.35ϕ0 has occurred. (b),(c) Droplet number N and average droplet

radius hRi as a function of time, for the same values of α. Passive scaling laws are indicated with dashed black lines. Parameters are given

in Appendix H.

CRITICAL TRANSITION BETWEEN INTENSIVE AND … PHYS. REV. X 15, 041027 (2025)

041027-11



α ≃ −π=4, corresponding to intensive active droplets and

the case where A segregates from B (segregative case). We

propose studying a single active droplet in a reaction

container for different container sizes [71] and test whether

or not the active droplet scales with the container size

[intensive active droplets see Fig. 3(a)]. In the regime of

intensive active droplets, division is more likely to be

obtained. This procedure could be used to test synthesized

actively reacting components for their division propensity

and may thus pave the way to observe successive division

events in larger, mass-supplied containers containing many

active droplets.

Future avenues are related to integrating our findings

into the large canon of pattern-forming systems and

establishing a link to physically very different systems,

such as hydrodynamic instabilities governed by mathemati-

cally similar dynamic equations [61]. In particular, in our

work, the dynamics of the conserved field is coupled via

molecular interactions, which lead to phase separation, to

the nonconserved field. Only the latter is actively main-

tained away from equilibrium. However, even in the

thermodynamic limit of large length scales and timescales,

this local driving of the nonconserved field changes the

ripening dynamics of the conserved field. Understanding

the large-scale consequences in systems that are locally

maintained away from equilibrium is a key challenge in

mass-conserving reaction-diffusion systems [16,37–42],

and other active matter systems, like active model B+

[17,21,72] or nonreciprocal Cahn-Hilliard models [73–77].

Future studies will address the differences and similarities

of such systems to chemically active emulsions.

APPENDIX A: GEOMETRIC

PARAMETRIZATION OF A TERNARY

PHASE DIAGRAM

The local properties of two-phase coexistence in a

ternary phase diagram can be characterized by specifying

the orientation angles of tie lines and binodals at a reference

point. Given the four equilibrium concentrations ϕ̂�
A=B,

obtained via the common tangent construction [11],

the slope of the tie line is defined by the angle

α ¼ arctan½ðϕ̂þ
B − ϕ̂−

BÞ=ðϕ̂þ
A − ϕ̂−

AÞ�. Furthermore, we

define the angles characterizing the binodals at one

reference point as σ� ¼ arctan ðδϕ�
B=δϕ

�
A Þ, where δϕ�

i

are the perturbations of the equilibrium concentration along

the binodals. Perturbing the equations corresponding to

phase equilibrium [11] to linear order in δϕ�
i leads to the

conditions

tanðσ�Þ ¼ −
ðϕ̂−

A − ϕ̂þ
A Þ

∂μAðϕ̂�
A ;ϕ̂

�
B Þ

∂ϕB
þ ðϕ̂−

B − ϕ̂þ
B Þ

∂μBðϕ̂�
A ;ϕ̂

�
B Þ

∂ϕB

ðϕ̂−
A − ϕ̂þ

A Þ
∂μAðϕ̂�

1
;ϕ̂�

B Þ
∂ϕA

þ ðϕ̂−
B − ϕ̂þ

B Þ
∂μBðϕ̂�

A ;ϕ̂
�
B Þ

∂ϕA

:

ðA1Þ

The simple choice of the free energy f0 discussed in the

main text corresponds to σþ ¼ σ− ¼ π=2þ α, where the

binodals are parallel to each other and perpendicular to the

tie lines.

APPENDIX B: CHEMICAL REACTION RATES

In the main text, we will use the overall rate

K ¼ kAB þ kBA and the activity parameter β as parameters

for the chemical reactions. These parameters are related

to the forward rate kBA and backward rate kAB, appearing
in Eq. (3) via the following relationships: kBA ¼
K sinðαþ βÞ=½cosðαþ βÞ þ sinðαþ βÞ� and kAB ¼
K cosðαþ βÞ=½cosðαþ βÞ þ sinðαþ βÞ�, where α is the

compositional angle. Using this parametrization, the con-

tour lines of ψ̄ , where the conserved quantity is constant,

have a fixed slope of −1 that is independent of the

compositional angle α. However, note that the slope of

the chemical steady state changes when varying α.

Moreover, changes in α do not affect the activity in the

system, in the sense that they do not alter the angle between

the reaction nullcline and the tie lines. Thus, with this

parametrization, we can vary the compositional angle α for

studying how different interactions affect active droplets

while keeping the activity parameter β fixed. The rate K
sets only a timescale.

APPENDIX C: NUMERICAL STUDY OF

EXTENSIVE AND INTENSIVE SCALING

In Fig. 3(a), we illustrate how the stationary droplet sizes

scale differently for extensive and intensive droplets in

spherically symmetric, three-dimensional systems, as the

Sy

FIG. 8. Stationary radii of extensive and intensive droplets in

two-dimensional systems of different size (top) and the corre-

sponding concentration fields (component A) (bottom). Same

parameter as in Fig. 3(b).
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system size Rsyst is varied. These stationary droplet radii

were determined by analytically solving for the stationary

state in the sharp-interface limit.
Figure 3(b) presents the stationary concentration fields

for two different system sizes in two dimensions, for both
extensive and intensive droplets. These results were
obtained numerically. In Fig. 8, we show these concen-
tration fields, corresponding to a small and large system
sizes, together with examples of intermediate system sizes
(bottom row). We then fit circles to these profiles in order to
extract the stationary droplet radii, and plot these radii as a
function of the system size Lsyst of the two-dimensional

square system (top row).

Despite the difference in dimensionality, two dimen-

sional vs three dimensional, and the different geometry,

spherical symmetric vs square geometry, does not allow a

direct comparison between the analytical results in

Fig. 3(a) and the numerical results in Fig. 8, both methods

show the same qualitative scaling between extensive and

intensive droplets.

Note that in the numerical studies, we initialized spheri-

cal droplets close to the stationary radius. This choice is

essential to prevent shape instabilities and the formation of

spherical shells [30,47].

APPENDIX D: SHARP-INTERFACE LIMIT

Similar to the droplet dynamics of passive phases (see

Ref. [65] for example), we can study the dynamics of a

single active droplet in the limit of a sharp interface. This

approach for general multicomponent mixtures is discussed

in detail in Ref. [45]. In this appendix, we derive the

stationary state conditions of a chemically active droplet in

the sharp-interface limit for a ternary mixture described by

the free energy given in Eqs. (5). With this choice of free

energy, analytical results for the stationary radius and the

critical value for the transition between intensive and

extensive active droplets can be determined.

For a single droplet with radial symmetry sitting at the

origin (r being the radial coordinate), we split the field into
two domains (inside and outside, abbreviated in/out in the

following) and couple these domains via boundary con-

ditions at an interface at position r ¼ R. Furthermore, we

linearize the dynamics of the fields ϕA and ϕB in Eqs. (3)

around the corresponding ϕ values at the interface. In this

approximation, the stationary state of a chemically active

droplet in our ternary mixture is determined by the ϕ values

of A=B on both sides of the interface, namedΦin
A ,Φ

out
A ,Φin

B ,

and Φout
B , and the interface position R. In the following, we

explain how these five values are determined.

Locally, at the interface, we assume an equilibrium of

phase separation, i.e., identical chemical potentials and

osmotic pressure across the interface. Furthermore, global

conservation laws and vanishing flux differences across

the interface fix a unique phase equilibrium locally at the

interface and, therefore, a unique nonequilibrium steady

state of the droplet; see Ref. [45].

For our simple free-energy model Eq. (5), we can obtain

the four values ofΦ
in=out
i generally as a function of R and α.

The determination of the stationary position of the interface

Rstat additionally needs flux relations (see below). Assuming

local phase equilibrium at the interface constrains its

concentrations to the two straight binodal lines shown in

Fig. 2(b) for an infinitely large system. Laplace pressure

effects of an interface with surface tension γ of finite-sized

droplets are corrected up to linear order via the so-called

Gibbs-Thomsom coefficients c [13]. We parametrize this

phase equilibrium by the intersection of its tie line with the

ϕ2 axis in itsϕ1 andϕ2 representation [as defined in Eq. (5)].

This intersection we call ϕinter
2 , and write

 

Φ
in=out
A

Φ
in=out
B

!

¼
�

cos α − sin α

sin α cos α

���ϕ0 þ γcH

ϕinter
2

�

; ðD1Þ

where we assumed that the conserved quantity is enriched

inside and diluted outside. For such a spherical symmetric

droplet, the mean curvature H is given by H ¼ 2=R. If the
dilute phase builds up the spherical droplet, the two labels in/

out in Eq. (D1) have to be swapped andH ¼ −2=R. Finally,

we have to determine the intersection ϕinter
2 via a global

conservation law of the conserved quantity. Therefore, we

note that while ϕA and ϕB have gradients in space, the

conserved quantity is constant in space but jumps at the

interface. Thus, for a finite radial-symmetric system (system

sizeRsyst) with an average amount of the conserved quantity

ψ̄ , we know

1

2
ðΦin

A þΦ
in
B ÞR3 þ 1

2
ðΦout

A þΦ
out
B ÞðR3

syst − R3Þ ¼ ψ̄R3
syst:

ðD2Þ

Using Eq. (D1), we find

ϕinter
2

¼
2RR3

systψ̄þ½2ϕ0R
4−ð2cγþϕ0RÞR3

syst�½cosðαÞþsinðαÞ�
RR3

syst½cosðαÞ−sinðαÞ� :

ðD3Þ

In an infinite system, however, the finite-sized droplet does

not contribute to the average. Thus, the outside concen-

trations must fulfill

ψ̄ ¼ 1

2
ðΦout

A þΦ
out
B Þ; ðD4Þ

and therefore, again by using Eq. (D1), we find

ϕinter
2 ¼ 2Rψ̄ − ð2cγ þ ϕ0RÞ½cosðαÞ þ sinðαÞ�

R½cosðαÞ − sinðαÞ� : ðD5Þ
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We note by passing that it is only possible to derive the

interface concentrations independently of the diffusivities

and kinetic reaction rates due to our very symmetric form of

the free-energy density. Thus, these kinetic coefficients have

to be taken into account only for the derivation of the

stationary radius. In general, all five values have to be

determined in parallel, a step that typically requires numeri-

cal solving schemes; see Ref. [45].

An interface can only be stationary when the diffusive

fluxes j
in=out
i are balanced across the interface, i.e.,

jinA ðRÞ ¼ joutA ðRÞ, and jinB ðRÞ ¼ joutB ðRÞ. These diffusive

fluxes in the stationary state arise from the stationary

concentration profiles ϕ
in=out
i ðrÞ via j

in=out
i ¼

−D
in=out
i ∂rϕ

in=out
i ðrÞ, where D

in=out
i is the diffusion coeffi-

cient of component i in the corresponding domain obtained

by linearizing. By construction, it is guaranteed that

joutA ¼ −joutB and jinA ¼ −jinB , such that once one of the flux

balances is fulfilled, the second follows trivially. Therefore,

we derive only j
in=out
A in the following.

After linearizing, we can determine these fluxes through

the analytical stationary ϕA profiles in the two domains

(solving the corresponding inhomogeneous Laplace equa-

tion in radial symmetry). From here, we can derive the total

flux profiles, including the fluxes at the interface. We find

jinA ðRÞ ¼ ðΦin
B ðRÞkinAB −Φ

in
A ðRÞkinBAÞ

×

�

cothðλinRÞ
λin

−
1

ðλinÞ2R

�

; ðD6Þ

where the rates kinij are the linrearized reaction rates from

Eqs. (3) and λin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDin
Ak

in
AB þDin

Bk
in
BAÞ=ðDin

AD
in
B Þ

p

. Note

that we use the dependency of the interface concentration

Φ
in
i ðRÞ on the position of the interface R derived above, see

Eq. (D5). However, in the outside domain (r > R), the
solutions read

jAðRÞoutðRÞ ¼ ðΦout
B ðRÞkoutAB −Φ

out
A ðRÞkoutBAÞ

λoutðR − RsystÞ cosh½λoutðR − RsystÞ� þ ½ðλoutÞ2RRsyst − 1� sinh½λoutðR − RsystÞ�
ðλoutÞ2RfλoutRsyst cosh½λoutðR − RsystÞ� þ sinh½λoutðR − RsystÞ�g

;

ðD7Þ

for a finite radial symmetric system with a no-flux

boundary condition at the system size Rsyst, or

jAðRÞoutðRÞ¼−ðΦout
B ðRÞkoutAB−Φ

out
A ðRÞkoutBAÞ

×
koutBAþ

Dout
A

Dout
B

koutABþðkoutABþkoutBAÞλoutR
ðkoutABþkoutBAÞðλoutÞ2R

; ðD8Þ

for infinite large systems, where again koutij are the

linearized reaction rates from Eqs. (3) and λout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDout
A koutAB þDout

B koutBAÞ=ðDout
A Dout

B Þ
p

. The stationary droplet

radii can now be found by using the interface concen-

trations stated in Eq. (D1) and Eqs. (D3) or (D5),

and numerically searching for the positions R at which

Eq. (D6) equals Eq. (D7) or (D8), depending on the

system size.

APPENDIX E: CRITICAL VALUE ψcrit

AND THE SCALING OF THE STATIONARY

RADIUS IN ITS VICINITY

In Appendix D, we explained how the stationary droplet

radii can be obtained in the sharp-interface limit. Here, we

argue first how we can obtain the value of the conserved

quantity at the transition in an infinite system and, second,

show how the stationary radius scales in the vicinity of this

transition.

To find the critical value of the conserved quantity,

we balance the fluxes across the interface for an infinitely

large droplet,

lim
R→∞

jinA ðRÞ ¼ lim
R→∞

joutA ðRÞ; ðE1Þ

from Eqs. (D6) and (D8). When Eqs. (D1) and (D5) are

applied in these expressions, a dependency on the average

conserved quantity ψ̄ follows. We find that there is only one

value of this conserved quantity for which Eq. (E1) is true.

This value reads

ψ̄crit ¼ −
ϕ0

2

ðDin
Ak

in
AB þDin

Bk
in
BAÞðkoutAB þ koutBAÞ þDin

AD
in
Bλ

inλout½ðkinAB − kinBAÞ cosð2αÞ þ ðkinAB þ kinBAÞ sinð2αÞ�
sinðαÞððDin

Ak
in
AB þDin

Bk
in
BAÞ½koutBA þ koutAB cotðαÞ� þDin

AD
in
Bλ

inλout½kinBA þ kinAB cotðαÞ�Þ
: ðE2Þ
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When we apply our parametrization of the reaction rates,

i.e., k
in=out
AB ¼ Kin=out cosðαþ βÞ=½cosðαþ βÞ þ sinðαþ βÞ�

and k
in=out
BA ¼ Kin=out sinðαþ βÞ=½cosðαþ βÞ þ sinðαþ βÞ�,

see Appendix B, we find ψ̄ crit as a function of the kinetic

rates Kin=out, diffusivities D
in=out
i , and the angles α and β.

With the assumptions Din
A ¼Dout

A , Din
B ¼Dout

B , and

Kin¼Kout, this expression simplifies and reduces to the

one in Eq. (11). Furthermore, we considered a droplet of the

dense phase in a dilute environment, which is the case for

ψ̄ < 0 (− branch). For ψ̄ > 0, the interface concentrations

swapped resulting in þ branch of the solution of Eq. (11).

Furthermore, we can check the scaling of the stationary

radius of intensive active droplets in the vicinity of the

critical transition. For this, we expand joutA ðRÞ ¼ jinA ðRÞ for
large R. We find the stationary radius Rstat as a function of

ψ̄ that scales like Rstat ∝ jψ̄ − ψ̄ critj−1. The general solution
can be obtained from the equations above straightfor-

wardly. Because of its length, however, in this appendix

we restrict ourselves to the special case of Din
A ¼ Dout

A ¼
Din

B ¼ Dout
B ¼ D and Kin ¼ Kout ¼ K. We find for the case

of a droplet of the dense phase in a dilute environment

(ψ̄ < ψ̄ crit < 0)

Rstat ¼ −Λϕ0 tanðβÞ
cosðαÞ − sinðαÞ

ψ̄ − ψ̄ crit

; ðE3Þ

where we defined the length scale Λ ¼
ffiffiffiffiffiffiffiffiffiffi

D=K
p

and used

the fact that, for large droplets, the Laplace pressure

becomes negligible.

APPENDIX F: SUPERCRITICAL TRANSITION

Figure 3(c) shows how the stationary droplet radius Rstat

diverges when the conserved quantity ψ̄ approaches the

critical value in an infinite system (Rsyst → ∞). To inves-

tigate the nature of this transition, we calculated the phase

fraction ðRstat=RsystÞ3, i.e., the fraction occupied by the

droplet phase, in a finite system for increasing system sizes

Rsyst (see Fig. 9). For intensive droplets, the stable sta-

tionary radius Rstat is independent of the system size. Thus,

the phase volume of the droplet phase ðRstat=RsystÞ3
approaches zero for large enough system sizes Rsyst. For

extensive droplets, the droplet volume R3
stat scales with

the conserved quantity ψ̄ above the critical value of

conserved quantity. Above this critical value, there is also

an unstable branch. Figure 9 shows that the transition

between intensive and extensive droplets gets more pro-

nounced with the phase fraction developing a kink for large

system sizes Rsyst. Thus, the transition is supercritical in the

limit of Rsyst → ∞.

APPENDIX G: LINEAR STABILITY ANALYSIS

We performed a linear stability analysis around the

homogeneous stationary state of the chemical reaction

using the free-energy model we introduced in the main

text. We consider the chemical reaction scheme in Eqs. (1),

which has a unique stationary state for every fixed value of

the conserved quantity ψ̄. As shown in Fig. 10, depending

FIG. 9. Critical transition between extensive and intensive

droplets. We show the phase fraction ðRstat=RsystÞ3 of the stable

(solid line) and unstable (dashed line) stationary droplet radii as a

function of ψ̄ for the same parameters as in Fig. 3(c), but in finite

systems with system size Rsyst. For large system sizes, a kink

develops and one stable branch transits to two branches (stable

and unstable), indicating a supercritical transition.

FIG. 10. Linear stability of the homogeneous state. Top: state

diagram as shown in Fig. 4 but complemented with the linear

stability analysis of the homogeneous state. In the orange domain,

a finite range of wave numbers q exists for which ωðqÞ > 0

(type I instability). In contrast, in the purple domain, there is a

type II instability, following the classification of Ref. [66].

Bottom: dispersion relations ωðqÞ occurring in the system. In

the white and blue domains of the top figure, the homogeneous

state is linearly stable, while in the orange (purple) domain, the

homogeneous state undergoes a type I (type II) instability. The

activity parameter for these figures is β ¼ π=4.
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on the compositional angle α, there is a range of conserved

quantities ψ̄ for which the stationary state lies within the

phase-separated domain (colored domains). The bounda-

ries between homogeneous (white domain) and phase-

separated (colored domains) stationary states are the

binodal lines (blue lines). In the white domain, as expected,

any wavelike perturbation ∝ expðωt − iq · xÞ with wave

vector q and growth rate ωðqÞ decays. Here, q ¼ jqj is the
wave number. In a subregion of the phase-separated

domain (shaded in blue), sometimes referred to as nucle-

ation and growth, wavelike perturbations also decay. A

representative dispersion relation ωðqÞ (largest real eigen-
value) of these linearly stable states is shown on the left in

the bottom row of Fig. 10, where ωðqÞ < 0 for all values

of q. However, unstable perturbations exist for homo-

geneous states in the orange and purple domains. In the

orange domain, a finite range of q values exists for which

ωðqÞ > 0 (type I instabilities following Ref. [66]), while

in the purple domain, even large-scale perturbations with

q → 0 become unstable (type II instabilities following

Ref. [66]); see the corresponding dispersion relations.

Both instabilities lead to the spontaneous demixing of

the homogeneous mixture. Note that the classification in

terms of type I and type II always refers to the behavior

close to instability onset, but not to a change in the

dispersion relation that occurs far above the onset, as

observed here. In addition, we plot the critical transition

line between extensive and intensive droplets (red dashed

line in Fig. 10). We conclude that the transition between the

two types of dispersion relations (boundary between orange

and purple domains) is distinct from the transition between

intensive and extensive droplets (red dashed line).

APPENDIX H: PARAMETER CHOICES AND

METHODS USED FOR FIGURES

To numerically solve the dynamics equations in this

work, we rescale time t · K with K denoting the overall rate

[Eq. (10)], and position x=l where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
0κA=b1

p

, thus,

half of the interface width in the continuous model. For

simplicity, we consider the overall rate equal inside and

outside for all studies (Kin ¼ Kout ¼ K). These rescalings

yield the following nondimensional parameters in our

numerical studies: D
in=out
i =ðl2KÞ, γc=l, and Γ=ðl2Kb1Þ.

1. Figures showing results obtained

in the sharp-interface model

In the previous sections, we used the sharp-interface

limit to calculate the results shown in Figs. 3(a) and 3(b).

Using a standard root-finding scheme, we can numerically

solve the specific values of the stationary interfaces shown

in Fig. 3 in the main text. The parameter values used to

produce these figures are D
in=out
A =ðl2KÞ ¼ 0.0014−1,

D
in=out
B =ðl2KÞ ¼ 0.0014−1, α¼0, β ¼ 0.12π, γc=l ¼ 1=6,

and ϕ0 ¼ 1.

2. Figures showing results obtained

in the continuous model

All the results obtained in the continuous model were

obtained by using an implicit-explicit Runge-Kutta solver

of the second-third order. We considered periodic boundary

conditions and approximated the higher-order derivatives

using pseudospectral methods on a regular lattice. For

simplicity, we used b1=ϕ
2
0 ¼ b2 ¼ ϕ0 ¼ 1, α ¼ 0, κA ¼ κB

and β ¼ 0.12π unless other parameters are explicitly

mentioned in the figure caption. The mobilities were set

to Γ=ðl2Kb1Þ ¼ 0.0014−1 in Fig. 3, Γ=ðl2Kb1Þ ¼
0.0028−1 in Fig. 5, Γ=ðl2Kb1Þ ¼ 0.00112−1 in Fig. 6,

and Γ=ðl2Kb1ϕ
2
0Þ ¼ 0.004−1 in Fig. 7. Furthermore, we

used N1 × N2 or N1 × N2 × N3 grid points for two-dimen-

sional or three-dimensional systems of sizes of L1 × L2 or

L1 × L2 × L3, respectively. The specific values for the

corresponding figures are listed in Table I.
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André, Irina Robu, and Evan Spruijt, Active coacervate

droplets are protocells that grow and resist Ostwald

ripening, Nat. Commun. 12, 3819 (2021).

[30] Alexander M. Bergmann, Jonathan Bauermann, Giacomo

Bartolucci, Carsten Donau, Michele Stasi, Anna-Lena

Holtmannspötter, Frank Jülicher, Christoph A. Weber,

and Job Boekhoven, Liquid spherical shells are a non-

equilibrium steady state of active droplets, Nat. Commun.

14, 6552 (2023).

[31] Jiahua Wang, Manzar Abbas, Junyou Wang, and Evan

Spruijt, Selective amide bond formation in redox-active

coacervate protocells, Nat. Commun. 14, 8492 (2023).

[32] Judit Sastre, Advait Thatte, Alexander M. Bergmann,

Michele Stasi, Marta Tena-Solsona, Christoph A. Weber,

and Job Boekhoven, Size control and oscillations of

active droplets in synthetic cells, Nat. Commun. 16, 2003

(2025).

[33] Clifford P. Brangwynne, Christian R. Eckmann, David

S. Courson, Agata Rybarska, Carsten Hoege, Jöbin

Gharakhani, Frank Jülicher, and Anthony A. Hyman, Germ-

line P granules are liquid droplets that localize by controlled

dissolution/condensation, Science 324, 1729 (2009).

[34] Marina Feric, Nilesh Vaidya, Tyler S. Harmon, Diana M.

Mitrea, Lian Zhu, Tiffany M. Richardson, Richard W.

Kriwacki, Rohit V. Pappu, and Clifford P. Brangwynne,

Coexisting liquid phases underlie nucleolar subcompart-

ments, Cell 165, 1686 (2016).

[35] Yongdae Shin and Clifford P. Brangwynne, Liquid phase

condensation in cell physiology and disease, Science 357,

eaaf4382 (2017).

[36] Steven Boeynaems, Simon Alberti, Nicolas L. Fawzi, Tanja

Mittag, Magdalini Polymenidou, Frederic Rousseau, Joost

Schymkowitz, James Shorter, Benjamin Wolozin, Ludo Van

Den Bosch, Peter Tompa, and Monika Fuxreiter, Protein

phase separation: A new phase in cell biology, Trends Cell

Biol. 28, 420 (2018).

[37] P. C. Matthews and S. M. Cox, Pattern formation with a

conservation law, Nonlinearity 13, 1293 (2000).

[38] Tohru Okuzono and Takao Ohta, Traveling waves in phase-

separating reactive mixtures, Phys. Rev. E 67 (2003).

[39] Mikiya Otsuji, Shuji Ishihara, Carl Co, Kozo Kaibuchi,

Atsushi Mochizuki, and Shinya Kuroda, A mass conserved

reaction–diffusion system captures properties of cell polar-

ity, PLoS Comput. Biol. 3, e108 (2007).

[40] Shuji Ishihara, Mikiya Otsuji, and Atsushi Mochizuki,

Transient and steady state of mass-conserved reaction-

diffusion systems, Phys. Rev. E 75 (2007).

[41] Jacob Halatek and Erwin Frey, Rethinking pattern formation

in reaction-diffusion systems, Nat. Phys. 14, 507 (2018).

CRITICAL TRANSITION BETWEEN INTENSIVE AND … PHYS. REV. X 15, 041027 (2025)

041027-17



[42] Tom Burkart, Manon C. Wigbers, Laeschkir Würthner, and

Erwin Frey, Control of protein-based pattern formation via

guiding cues, Nat. Rev. Phys. 4, 511 (2022).

[43] David Zwicker, Rabea Seyboldt, Christoph A. Weber,

Anthony A. Hyman, and Frank Jülicher, Growth and

division of active droplets provides a model for protocells,

Nat. Phys. 13, 408 (2017).

[44] Rabea Seyboldt and Frank Jülicher, Role of hydrodynamic

flows in chemically driven droplet division, New J. Phys. 20,

105010 (2018).

[45] Jonathan Bauermann, Christoph A. Weber, and Frank

Jülicher, Energy and matter supply for active droplets,

Ann. Phys. (Berlin) 534, 2200132 (2022).

[46] Giacomo Bartolucci, Omar Adame-Arana, Xueping Zhao,

and Christoph A. Weber, Controlling composition of coex-

isting phases via molecular transitions, Biophys. J. 120,

4682 (2021).

[47] J. Bauermann, G. Bartolucci, J. Boekhoven, C. A. Weber,

and F. Jülicher, Formation of liquid shells in active droplet

systems, Phys. Rev. Res. 5, 043246 (2023).

[48] Chaohui Tong and Yuliang Yang, Phase-separation dynam-

ics of a ternary mixture coupled with reversible chemical

reaction, J. Chem. Phys. 116, 1519 (2002).

[49] Jan Kirschbaum and David Zwicker, Controlling biomo-

lecular condensates via chemical reactions, J. R. Soc.

Interface 18, 20210255 (2021).

[50] P. C. Hohenberg and B. I. Halperin, Theory of dynamic

critical phenomena, Rev. Mod. Phys. 49, 435 (1977).

[51] Jonathan Bauermann, Sudarshana Laha, Patrick M. McCall,

Frank Jülicher, and Christoph A. Weber, Chemical kinetics

and mass action in coexisting phases, J. Am. Chem. Soc.

144, 19294 (2022).

[52] R. Lefever, D. Carati, and N. Hassani, Comment on

“Monte Carlo simulations of phase separation in chemically

reactive binary mixtures”, Phys. Rev. Lett. 75, 1674 (1995).

[53] Sharon C. Glotzer, Dietrich Stauffer, and Naeem Jan,Glotzer,

Stauffer, and Jan reply, Phys. Rev. Lett. 75, 1675 (1995).

[54] Samuel Safran, Statistical Thermodynamics of Surfaces,

Interfaces, and Membranes (CRC Press, Boca Raton, FL,

2019).

[55] Mehran Kardar, Statistical Physics of Fields (Cambridge

University Press, Cambridge, England, 2007).

[56] Dan Deviri and Samuel A. Safran, Physical theory of

biological noise buffering by multicomponent phase separa-

tion, Proc. Natl. Acad. Sci. U.S.A. 118, e2100099118 (2021).

[57] Xiangze Zeng and Rohit V. Pappu, Developments in

describing equilibrium phase transitions of multivalent

associative macromolecules, Curr. Opin. Struct. Biol. 79,

102540 (2023).

[58] F. C. Thewes, M. Krüger, and P. Sollich, Composition

dependent instabilities in mixtures with many components,

Phys. Rev. Lett. 131, 058401 (2023).

[59] Joshua A. Riback, Lian Zhu, Mylene C. Ferrolino, Michele

Tolbert, Diana M. Mitrea, David W. Sanders, Ming-Tzo

Wei, Richard W. Kriwacki, and Clifford P. Brangwynne,

Composition-dependent thermodynamics of intracellular

phase separation, Nature (London) 581, 209 (2020).

[60] Sudarshana Laha, Jonathan Bauermann, Frank Jülicher,

Thomas C. T. Michaels, and Christoph A. Weber, Chemical

reactions regulated by phase-separated condensates, Phys.

Rev. Res. 6 (2024).

[61] M. Bestehorn and D. Merkt, Regular surface patterns on

Rayleigh-Taylor unstable evaporating films heated from

below, Phys. Rev. Lett. 97, 127802 (2006).

[62] U. Oono and Y. Shiwa, Computationally efficient modeling

of block copolymer and Benard pattern formations, Mod.

Phys. Lett. B 01, 49 (1987).

[63] Y. Oono and S. Puri, Study of phase-separation dynamics by

use of cell dynamical systems. I. Modeling, Phys. Rev. A 38,

434 (1988).

[64] Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, and Jürgen

Sprekels, Well-posedness and optimal control for a Cahn-

Hilliard-Oono system with control in the mass term,

arXiv:2108.03165.

[65] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys.

43, 357 (1994).

[66] Michael Cross and Henry Greenside, Pattern Formation

and Dynamics in Nonequilibrium Systems (Cambridge

University Press, Cambridge, England, 2009).

[67] Jonathan Bauermann, Giacomo Bartolucci, Christoph A.

Weber, and Frank Jülicher, The droplet size distribution and

its dynamics in chemically active emulsions, Phys. Rev.

Lett. 135, 148201 (2025).

[68] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/4nnd-tdky for a movies of the cor-

responding ripening dynamics.

[69] M. E. Cates and C. Nardini, Classical nucleation theory for

active fluid phase separation, Phys. Rev. Lett. 130, 098203

(2023).

[70] N. Ziethen, J. Kirschbaum, and D. Zwicker, Nucleation of

chemically active droplets, Phys. Rev. Lett. 130, 248201

(2023).

[71] Carsten Donau, Fabian Späth, Marilyne Sosson, Brigitte

A. K. Kriebisch, Fabian Schnitter, Marta Tena-Solsona,

Hyun-Seo Kang, Elia Salibi, Michael Sattler, Hannes

Mutschler, and Job Boekhoven, Active coacervate droplets

as a model for membraneless organelles and protocells,

Nat. Commun. 11, 5167 (2020).

[72] Elsen Tjhung, Cesare Nardini, and Michael E. Cates,

Cluster phases and bubbly phase separation in active

fluids: Reversal of the Ostwald process, Phys. Rev. X 8,

031080 (2018).

[73] Fabian Bergmann, Lisa Rapp, and Walter Zimmermann,

Active phase separation: A universal approach, Phys. Rev.

E 98 (2018).

[74] Suropriya Saha, Jaime Agudo-Canalejo, and Ramin

Golestanian, Scalar active mixtures: The nonreciprocal

Cahn-Hilliard model, Phys. Rev. X 10, 041009 (2020).

[75] T. Frohoff-Hülsmann and U. Thiele, Nonreciprocal Cahn-

Hilliard model emerges as a universal amplitude equation,

Phys. Rev. Lett. 131, 107201 (2023).

[76] T. Suchanek, K. Kroy, and S. A. M. Loos, Entropy pro-

duction in the nonreciprocal Cahn-Hilliard model, Phys.

Rev. E 108, 064610 (2023).

[77] F. Brauns and M. C. Marchetti, Nonreciprocal pattern

formation of conserved fields, Phys. Rev. X 14, 021014

(2024).

JONATHAN BAUERMANN et al. PHYS. REV. X 15, 041027 (2025)

041027-18


	Critical transition between intensive and extensive active droplets
	Jonathan Bauermann, Giacomo Bartolucci, Job Boekhoven, Frank Jülicher, Christoph A. Weber
	Nutzungsbedingungen / Terms of use:
	CC BY 4.0  


