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ABSTRACT 

We study an optimal transport problem in a compact convex set Ω ⊂ ℝ𝑑 where bulk transport is coupled to dynamic optimal 
transport on a metric graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) which is embedded in Ω. We prove the existence of solutions for fixed graphs. Next, 
we consider varying graphs, yet only for the case of star-shaped ones. Here, the action functional is augmented by an additional 
penalty that prevents the edges of the graph from overlapping. This allow us to preserve the graph topology and thus to rely on 
standard techniques in calculus of variations in order to show the existence of minimizers. 

1 Introduction 

Metric graphs play an important role in the modeling of real- 
world phenomena such as gas or road networks [ 1, 2 ]. In 
particular, the theory of optimal transport has proven to be a 
useful tool to analyze transportation on such graphs. In recent 
years, several related formulations have been studied, see e.g., 
[ 3 ], where the authors provide a complete analysis of optimal 
transport on metric graphs with Kirchhoff–Neumann conditions 
at the vertices. Furthermore, Burger et al. [ 4 ] studied a transport 
metric that allows for mass storage on the vertices. These studies 
are strongly motivated by and related to a transport distance 
involving bulk and surface transport that was introduced in [ 5 ]. 
Related gradient flows with respect to these distances have also 
been studied, again in [ 3 ] and, for the case with vertex dynamics, 
in [ 6 ]. Independently, dynamic optimal transportation with non- 
linear mobilities was studied in [ 7 ], see also [ 8 ] for the case of a 
volume filling-mobility. 

In the present article, we combine these approaches into a model, 
which consists of transport in a compact and convex domain 
Ω ⊂ ℝ𝑑 , coupled to optimal transport on a metric graph. The 
introduction of mobilities allows to impose lower and upper 

bounds on the mass densities, leading to a more versatile model. 
The coupled problem is motivated by the planning of traffic 
routes. A particular focus lies on networks where, due to pre- 
existing infrastructure or connections to other transportation 
networks, one city is highlighted as a central point. We assume 
that traveling along the graph is cheaper than traveling in the 
bulk domain. However, there is an additional cost to entering 
the graph, that can be thought of as the cost of train tickets or 
waiting times between different connections. An example of such 
a system can be found in French railroad planning, where Paris is 
associated with the accentuated center of the graph. This article 
extends the results of [ 9 ], where a coupled dynamic optimal 
transport problem between bulk and a second domain, which is 
the graph of a function (a single road), is analyzed. The resulting 
problem is understood as a dynamic optimal transportation 
problem together with an additional penalty functional allowing 
for an optimization over the metric graph as well. 

To introduce our model, we first consider an arbitrary metric 
graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) that is embedded in some convex and compact 
domain Ω ⊂ ℝ𝑑 with initial and final data given as non-negative 
Radon measures 𝜇0 and 𝜇1 on Ω and 𝜌0 and 𝜌1 on 𝖦 such that 
𝜇0 (Ω) + 𝜌0 ( 𝖦 ) = 1 = 𝜇1 (Ω) + 𝜌1 ( 𝖦 ) . This means that each vertex 
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FIGURE 1 A star-shaped metric graph embedded into ℝ2 with 
𝖵out = { 𝑣1 , . . . , 𝑣6 } = 𝖵 ⧵ { 𝑣0 } , normal 𝑛6 Ω = (0 , 1)𝑇 and tangent 𝜏6 = 

(1 , 0)𝑇 . 

𝑣 ∈ 𝖵 can be identified with a point 𝑥𝑣 ∈ Ω, and we think of edges 
as straight lines connecting these points. For a rigorous definition, 
see Section 2 . Any measure 𝜌𝑡 on 𝖦 can be determined by its values 
on the edges, thus we identify 𝜌𝑡 = ( 𝜌𝑒 𝑡 )𝑒∈𝖤 . Now, the evolution 
of mass on the coupled system can be expressed, formally, by 
solutions of the following system of continuity equations: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝜕𝑡 𝜇𝑡 + ∇ ⋅ 𝐽𝑡 = 0 in Ω

𝐽𝑡 ⋅ 𝑛
𝑒 
Ω
= 𝑓𝑒 𝑡 for 𝑒 ∈ 𝖤 

𝜕𝑡 𝜌
𝑒 
𝑡 + ∇ ⋅ 𝑉𝑒 

𝑡 = 𝑓𝑒 𝑡 for 𝑒 ∈ 𝖤 

𝑉𝑒 
𝑡 𝑛

𝑣 
𝑒 = 𝐺( 𝑣) = 𝐽𝑡 |{ 𝑥𝑣 } ⋅ 𝜏𝑒 for 𝑣 ∈ 𝖵out ∑

𝑒∈𝖤 ( 𝑣) 

𝑉𝑒 
𝑡 𝑛

𝑣 
𝑒 = 0 for 𝑣 ∈ 𝖵 ⧵ 𝖵out 

(1) 

where 𝑛𝑒 
Ω
∈ 𝕊𝑑− 1 denotes the normal to the edges 𝑒 ∈ 𝖤 , 𝜏𝑒 ∈ 𝕊𝑑− 1 

denotes the tangent to the embedded edge in Ω, and 𝑛𝑣 𝑒 ∈ {0 , ± 1} 

is defined as in ( 2 ), prescribing an orientation to each edge. For 
an illustration, see Figure 1 . In particular, we impose a non- 
homogeneous continuity equation on each edge, coupling them 

in the interior vertices 𝖵 ⧵ 𝖵out with homogeneous Neumann 
conditions, allowing for conservation of mass. For the outer 
vertices 𝖵out ⊂ 𝖵 , we allow an additional exchange of mass with 
the bulk region Ω. We denote by 𝖢𝖤 ( 𝖦 ) the set of weak solutions 
to ( 1 ). Now, the evolution of this system is governed by quadratic 
costs and non-linear mobilities imposing bounds on the mass 
measures 𝜇𝑡 and 𝜌𝑡 . The resulting (formal) action functional reads 
as 

𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) 

= ∫
Ω

|𝐽𝑡 |2 
𝑚Ω( 𝜇𝑡 ) 

𝑑 𝜆Ω +
∑
𝑒∈𝖤 

( 

∫
𝑒 

𝛼1 
|𝑉𝑒 

𝑡 |2 
𝑚𝖦 ( 𝜌

𝑒 
𝑡 ) 

+ 𝛼2 
|𝑓𝑒 𝑡 |2 
𝑚𝖦 ( 𝜌

𝑒 
𝑡 ) 
𝑑 𝜆𝑒 

) 

+ 𝛼3 
∑
𝑣∈𝖵out 

∑
𝑒∈𝖤 ( 𝑣) 

∫
{ 𝑥𝑣 } 

|𝐺𝑒 
𝑡 ( 𝑥𝑣 ) |2 

𝑚𝖦 (𝜌
𝑒 
𝑡 |𝑥𝑣 ) 𝑑𝜆𝑣 , 

where 𝑚Ω and 𝑚𝖦 are mobility functions and 𝜆Ω, 𝜆𝑒 , and 𝜆𝑣 are 
fixed reference measures, necessary as the mobilities lead to a loss 
of 1-homogenity of the functional. We then consider the dynamic 
problem 

inf 
( 𝜇𝑡 ,𝐽𝑡 ,𝜌𝑡 ,𝑉𝑡 ,𝑓𝑡 ,𝐺𝑡 )∈𝖢𝖤 ( 𝖦 ) 

𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) . 

We refer to Section 3 for a rigorous definition of weak solutions to 
the coupled system ( 1 ) and for the resulting dynamic problem. 

In order to account for varying graphs in the second part of this 
work, we restrict our analysis to the case of star-shaped metric 
graphs. For such, there exists a unique central vertex 𝑣0 ∈ 𝖵 , 
which is contained in all edges and we define 𝖵out = 𝖵 ⧵ { 𝑣0 } . 
Thus, all edges can be written as 𝑒 = ( 𝑣0 , 𝑣) for some 𝑣 ∈ 𝖵out . 
Throughout minimization, we fix the connectivity information 
and only optimize over the placement of the vertices. For this to 
result in a well-defined metric graph, we need to prevent vertices 
from colliding and edges from crossing. To this end we introduce 
the additional penalty functional 

𝑅( 𝑥𝑣0 , . . . , 𝑥𝑁V − 1 ) ∶ =
𝑁V − 1 ∑
𝑖= 1 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 |𝑥𝑣𝑖 − 𝑥𝑣0 | + 1 

2 

𝑁V − 1 ∑
𝑗= 1 
𝑗≠𝑖 

1 

𝛼𝑥𝑣𝑖 ,𝑥𝑣𝑗 

⎞ ⎟ ⎟ ⎟ ⎠ , 
where 𝑁𝑉 = |𝖵 | and 𝛼𝑥𝑣𝑖 ,𝑥𝑣𝑗 is the unsigned angle between the 
edges ( 𝑣0 , 𝑣𝑖 ) and ( 𝑣0 , 𝑣𝑗 ) at the central vertex 𝑣0 . The augmented 
problem now reads 

inf 
𝖦 

inf 
𝖢𝖤 ( 𝖦 ) ∫

1 

0 

𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) 𝑑 𝑡 + 𝑐 𝑅 ( 𝑥𝑣0 , 𝑥𝑣1 , . . . , 𝑥𝑣𝑁𝖵 − 1 
) 

and its rigorous definition is given in Section 4 . 

The article is structured as follows. In Section 2 , we introduce 
some notation as well as measures on metric graphs. In Section 3 , 
we define the notion of weak solutions to the coupled system as 
well as the dynamic formulation. Additionally, we prove existence 
of minimizers. In the last part, in Section 4 , we analyze the 
dynamic problem for varying graphs where we restrict our con- 
siderations to star-shaped metric graphs and optimize over the 
placement of vertices. Again, we prove existence of minimizers. 

2 Notation 

In order to rigorously define the coupled dynamic system, we start 
by introducing some notation. 

Let Ω ⊂ ℝ𝑑 be a compact and convex subset of ℝ𝑑 and 𝖦 = 

( 𝖵 , 𝖤 ) be a combinatorial graph, where 𝖵 denotes the set of nodes 
and 𝖤 is the set of edges 𝑒 = ( 𝑣 , 𝑤 ) for 𝑣 , 𝑤 ∈ 𝖵 . The number 
of nodes is denoted by 𝑁𝖵 ∶ = |𝖵 | and the number of edges by 
𝑁𝖤 ∶ = |𝖤 |. We define 𝖤 ( 𝑣) ∶ = { 𝑒 ∈ 𝖤 | 𝑣 ∈ 𝑒} as the set of edges 
containing 𝑣 ∈ 𝖵 . Moreover, we introduce the set of outer vertices 
𝖵out ∶ = { 𝑣 ∈ 𝖵 | |𝖤 ( 𝑣) | = 1} and the set of outer edges 𝖤out ∶ = { 𝑒 ∈

𝖤 |∃ 𝑣 ∈ 𝖵out s.t. 𝑣 ∈ 𝑒} . With an additional map 𝑙 ∶ 𝖤 → (0 , +∞) , 
associating a positive length 𝑙𝑒 to each edge 𝑒 of the graph, the 
combinatorial graph turns into a metric graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) . By 
defining the outer normal 

𝑛𝑣 𝑒 ∶ =
⎧ ⎪ ⎨ ⎪ ⎩ 

− 1 ∶ 𝑒 = ( 𝑣 , 𝑤 ) 

0 ∶ 𝑣 ∉ 𝑒 

+ 1 ∶ 𝑒 = ( 𝑤 , 𝑣 ) 

(2) 

and therefore fixing an orientation, we can identify edges with 
closed intervals [0 , 𝑙𝑒 ] . In order to rigorously define the coupling 
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between a domain and a metric graph, we need to embed the 
graph. 

Definition 2.1. Let 𝖦 = ( 𝖵 , 𝖤 ) be a combinatorial graph and 
Ω ⊂ ℝ𝑑 be a compact and convex set. A collection of distinct 
points 𝑥𝑣 ∈ Ω for 𝑣 ∈ 𝖵 is called an embedding of the graph, 
defining edges as straight lines, and we say that the graph 𝖦 is 
embedded into Ω if the embedding has no intersecting edges. We 
say that a metric graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) is embedded into Ω if it is 
embedded as a combinatorial graph and if |𝑥𝑤 − 𝑥𝑣 | = 𝑙𝑒 for all 
𝑒 ∈ 𝖤 . 

For an embedded metric graph, we denote the tangent vector of 
an edge 𝑒 = ( 𝑣 , 𝑤 ) ∈ 𝖤 by 

𝜏𝑒 ∶ =
𝑥𝑤 − 𝑥𝑣 

𝑙𝑒 
=

𝑥𝑤 − 𝑥𝑣 |𝑥𝑤 − 𝑥𝑣 | (3) 

and we write [ 𝑥𝑣 , 𝑥𝑤 ] = { 𝑥𝑣 + 𝑡𝜏𝑒 | 𝑡 ∈ [0 , 𝑙𝑒 ]} ⊂ Ω for the interval 
defined by an edge 𝑒 = ( 𝑣 , 𝑤 ) of an embedded metric graph. 
Abusing notation, we identify 𝑒 = [ 𝑥𝑣 , 𝑥𝑤 ] throughout the article. 

Functions on metric graphs are defined by their restriction to each 
edge. We introduce the sets 

Ω𝖤 ∶ =
⨆

𝑒= ( 𝑣 ,𝑤 )∈𝖤 
[ 𝑥𝑣 , 𝑥𝑤 ] , 𝖫 ∶ =

⨆
𝑒= ( 𝑣 ,𝑤 )∈𝖤 

[0 , 1] 

and Ω𝖵 ∶ =
⨆

𝑣∈𝖵out 

{ 𝑥𝑣 } (4) 

given as disjoint unions. In order to guarantee a metric structure 
on the metric graph and therefore identifying it with a metric 
space, we define the new sets 

Ω𝖦 ∶ = Ω𝖤 

/
∼𝖤 and 𝖫𝖦 ∶ = 𝖫

/
∼𝖫 , 

where ∼𝖤 denotes the equivalence relation that identifies the 
same vertex on different edges and ∼𝖫 is the corresponding 
identification in 𝖫 . Note that in Ω𝖦 each vertex 𝑣 ∈ 𝖵 can be 
identified uniquely, whereas there are multiple copies in Ω𝖤 , one 
for each edge 𝑒 ∈ 𝖤 ( 𝑣) . Any map on a metric graph is given as 𝜑 = 

( 𝜑𝑒 )𝑒∈𝖤 ∶ Ω𝖤 → ℝ or 𝜑̃ = (𝜑̃𝑒 )𝑒∈𝖤 ∶ 𝖫 → ℝ . Both can be related 
using the transformation maps 𝛾𝑒 ( 𝑠) ∶ = 𝑥𝑣 + 𝑠𝑙𝑒 𝜏𝑒 and 𝛾̃𝑒 ( 𝑥) = |𝑥− 𝑥𝑣 |

𝑙𝑒 
for 𝑒 = ( 𝑣 , 𝑤 ) as 

𝜑̃𝑒 ( 𝑠) = 𝜑𝑒 ( 𝛾𝑒 ( 𝑠)) and 𝜑𝑒 ( 𝑥) = 𝜑̃𝑒 (𝛾̃𝑒 ( 𝑥)) . (5) 

Similar definitions can be given for Ω𝖦 and 𝖫𝖦 . Finally, we 
define 𝐶1 ([0 , 1] × 𝐿) ∶ = 𝐶1 ([0 , 1]; 𝐶( 𝖫𝖦 )) ∩ 𝐶([0 , 1]; 𝐶

1 ( 𝖫 )) , that 
is, functions that are continuous in each vertex having derivatives 
on each edge. 

We call a (metric or combinatorial) graph star-shaped if there 
exists an accentuated node 𝑣0 ∈ 𝖵 such that 𝐸 = {( 𝑣0 , 𝑣) | 𝑣 ∈ 𝖵 ⧵

{ 𝑣0 }} . The node 𝑣0 is called center of the graph . In particular it holds 
that 𝖤 = 𝖤 ( 𝑣0 ) = 𝖤out and 𝖵out = 𝖵 ⧵ { 𝑣0 } . 

In order to rigorously formulate the coupling between different 
domains, we need to extend measures defined on the graph 
to measures on Ω. Let  ( 𝑈, ℝ𝑁 ) be the set of Radon mea- 
sures on 𝑈 ⊂ ℝ𝑑 with values in ℝ𝑁 and + ( 𝑈, ℝ

𝑁 ) the set 

of measures in  ( 𝑈, ℝ𝑁 ) that are non-negative. Moreover, we 
denote by [0 , 1] ( 𝑈, ℝ

𝑁 ) a Borel measurable family of measures 
in 𝑈 indexed by 𝑡 ∈ [0 , 1] with values in ℝ𝑁 . We also consider 
measures with values in the tangent space of some edge 𝑒 ∈
𝖤 . In particular, given 𝑥 ∈ 𝑒 the measures 𝑉𝑒 ∈  ( 𝑒 , 𝑇𝑥 𝑒 ) and 
𝐺𝑒 ( 𝑥𝑣 ) ∈  ({ 𝑥𝑣 } , 𝑇𝑥𝑣 𝑒) will occur in our formulation, where 𝑇𝑥 𝑒
is the tangent space to 𝑒 in 𝑥. Note that we can represent such 
measures as 

𝑉𝑒 = 𝜏𝑒  𝑒 or 𝐺𝑒 ( 𝑥𝑣 ) = 𝜏𝑒 𝑒 ( 𝑥𝑣 ) (6) 

with  𝑒 ∈  ( 𝑒, ℝ ) , 𝑒 ( 𝑥𝑣 ) ∈  ({ 𝑥𝑣 } , ℝ ) . For any measure 𝜌𝑒 ∈
 ( 𝑒, ℝ ) , we define its zero extension into Ω by duality as the 
measure 𝜌̄𝑒 ∈  (Ω, ℝ ) such that 

∫
Ω

𝜙 𝑑𝜌̄𝑒 = ∫
𝑒 

𝜙 𝑑𝜌𝑒 (7) 

for all 𝜙 ∈ 𝐶(Ω) . For measures 𝜌 ∈  (Ω𝖤 , ℝ ) we define their 
extension as 𝜌̄ = (𝜌̄𝑒 )𝑒∈𝖤 and for 𝜌̃ ∈  ( 𝖫 , ℝ ) as 𝜌̃ = (𝜌̃𝑒 ◦𝛾̃𝑒 )𝑒∈𝖤 . 
Measures 𝜌 ∈  (Ω𝖤 , ℝ ) can be identified with measures 𝜌̃ ∈
 ( 𝖫 , ℝ ) through the push-forward by the maps 𝛾𝑒 for 𝑒 ∈ 𝐸. In 
particular, when it will be necessary to underline the dependence 
on 𝛾𝑒 we will write 𝜌̃ = 𝜌◦𝛾𝑒 . Similar notions of extension and 
push-forward operations can be defined for measures defined on 
Ω𝖦 and 𝖫𝖦 with values in ℝ𝑁 for 𝑁 ∈ ℕ . 

With these notions, we are able to introduce the space of admis- 
sible tuples ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) as the space adm 

( 𝖦 ) defined by 

adm 

( G) ∶ = [ 0 , 1] ( Ω, ℝ ) ×[ 0 , 1] ( Ω, ℝ
𝑑 ) ×[ 0 , 1] ( ΩG , ℝ ) 

×[ 0 , 1] ( ΩE , 𝑇𝑥 𝑒) ×[ 0 , 1] ( ΩE , ℝ ) 

×[ 0 , 1] ( ΩV , 𝑇𝑥𝑣 𝑒) . 

Admissible initial or final measures are given as elements of the 
set 

adm 

( 𝖦 ) ∶ = { ( 𝜇, 𝜌) ∈ + (Ω) ×+ (Ω𝖦 ) |𝜇(Ω) + 𝜌(Ω𝖦 ) = 1} . 

(8) 

3 Fixed Graph 

In this section, we consider a fixed metric graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) , 
embedded in Ω ⊂ ℝ𝑑 compact and convex. We rigorously define 
the dynamic problem and show existence of solutions to the 
formal transport problem ( 1 ) with minimal dynamic costs. 

3.1 Continuity Equation 

We rigorously define the coupled continuity equations and show 

mass conservation of the entire system. 

Definition 3.1. We say that a tuple ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈adm 

( 𝖦 ) satisfies the coupled continuity equations for admissible 
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initial and final data ( 𝜇0 , 𝜌0 ) , ( 𝜇1 , 𝜌1 ) ∈ adm 

( 𝖦 ) if 

∫
1 

0 
∫
Ω

𝜕𝑡 𝜙𝑡 ( 𝑥) 𝑑𝜇𝑡 𝑑𝑡 + ∫
1 

0 
∫
Ω

∇ 𝜙𝑡 ( 𝑥) 𝑑𝐽𝑡 𝑑𝑡 

−
∑
𝑒∈𝖤 

∫
1 

0 
∫

1 

0 

𝜙𝑡 ( 𝛾𝑒 ( 𝑠 )) 𝑑𝑓
𝑒 
𝑡 𝑑 𝑡 

+
∑
𝑣∈𝖵out 

∑
𝑒∈𝖤 ( 𝑣) 

∫
1 

0 
∫
{ 𝑥𝑣 } 

𝜙𝑡 ( 𝑥𝑣 ) 𝑛
𝑣 
𝑒 𝑑̃𝑒 𝑡 ( 𝑥𝑣 ) 𝑑𝑡 

= ∫
Ω

𝜙1 ( 𝑥) 𝑑𝜇0 − ∫
Ω

𝜙0 ( 𝑥) 𝑑𝜇1 

for all 𝜙𝑡 ∈ 𝐶1 ([0 , 1] ×Ω) and 

∑
𝑒∈𝖤 

( 

∫
1 

0 
∫

1 

0 

𝜕𝑡 𝜓
𝑒 
𝑡 ( 𝑠 ) 𝑑𝜌̃

𝑒 
𝑡 𝑑 𝑡 + ∫

1 

0 
∫

1 

0 

∇ 𝜓𝑒 
𝑡 ( 𝑠 ) 𝑙𝑒 𝑑̃ 𝑒 

𝑡 𝑑 𝑡 

+ ∫
1 

0 
∫

1 

0 

𝜓𝑒 
𝑡 ( 𝑠 ) 𝑑𝑓

𝑒 
𝑡 𝑑 𝑡

) 

−
∑
𝑣∈𝖵out 

∑
𝑒∈𝖤 ( 𝑣) 

∫
1 

0 
∫
{ 𝑥𝑣 } 

𝜓𝑒 
𝑡 ( 𝑥𝑣 ) 𝑛

𝑣 
𝑒 𝑑̃𝑒 𝑡 ( 𝑥𝑣 ) 𝑑𝑡 

=
∑
𝑒∈𝖤 

( 

∫
1 

0 

𝜓𝑒 
1 ( 𝑠 ) 𝑑𝜌̃

𝑒 
0 − ∫

1 

0 

𝜓𝑒 
0 ( 𝑠 ) 𝑑𝜌̃

𝑒 
1 

) 

for all 𝜓𝑡 = ( 𝜓𝑒 
𝑡 )𝑒∈𝖤 ∈ 𝐶1 ([0 , 1] × 𝐿) such that 𝜓𝑒 

𝑡 (𝛾̃𝑒 ( 𝑥𝑣 )) = ∶ 𝜓𝑡 ( 𝑣) 

for all 𝑒 ∈ 𝖤 ( 𝑣) , meaning that the map is continuous over vertices. 
We denote by 𝖢𝖤 ( 𝖦 ) the set of such solutions on the graph 𝖦 . 

We can show that solutions to this system satisfy a global 
continuity equation and therefore are mass preserving. 

Proposition 3.2. Suppose that ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) . 
Given 𝜂𝑡 ∶ = 𝜇𝑡 +

∑
𝑒∈𝖤 

𝜌̄𝑒 𝑡 and 𝑊𝑡 ∶ = 𝐽𝑡 +
∑

𝑒∈𝖤 
𝑉̄𝑒 
𝑡 it holds that 

𝜕𝑡 𝜂𝑡 + ∇ ⋅ 𝑊𝑡 = 0 (9) 

weakly with initial data 𝜇0 +
∑

𝑒∈𝖤 
𝜌̄𝑒 0 and final data 𝜇1 +

∑
𝑒∈𝖤 

𝜌̄𝑒 1 . 

Proof. Let 𝜙 ∈ 𝐶1 ([0 , 1] ×Ω) be an arbitrary test function. 
For each edge 𝑒 ∈ 𝖤 , we define 𝜓𝑒 

𝑡 = 𝜙𝑡 ◦𝛾𝑒 ∈ 𝐶1 ([0 , 1] × [0 , 1]) , 
which, by construction, induces the admissible test function 
𝜓𝑡 = ( 𝜓𝑒 

𝑡 )𝑒∈𝖤 ∈ 𝐶1 ([0 , 1] × 𝖫𝖦 ) . Moreover, 
𝑑 

𝑑𝑠 
𝜓𝑒 
𝑡 ( 𝑠) = ∇ 𝜙𝑡 ( 𝛾𝑒 ( 𝑠)) ⋅

𝑙𝑒 𝜏𝑒 . We obtain 

∫
1 

0 
∫
Ω

𝜕𝑡 𝜙𝑡 ( 𝑥) 𝑑𝜂𝑡 𝑑𝑡 + ∫
1 

0 
∫
Ω

∇ 𝜙𝑡 ( 𝑥) 𝑑𝑊𝑡 𝑑𝑡 

= ∫
1 

0 
∫
Ω

𝜕𝑡 𝜙𝑡 ( 𝑥) 𝑑𝜇𝑡 𝑑𝑡 + ∫
1 

0 
∫
Ω

∇ 𝜙𝑡 ( 𝑥) 𝑑𝐽𝑡 𝑑𝑡 

+
∑
𝑒∈𝖤 

[ 

∫
1 

0 
∫

1 

0 

𝜕𝑡 𝜓𝑡 ( 𝑠 ) 𝑑𝜌̃
𝑒 
𝑡 𝑑 𝑡 + ∫

1 

0 
∫

1 

0 

∇ 𝜓𝑡 ( 𝑠 ) ⋅ 𝑙𝑒 𝜏𝑒 𝑑𝑉̃
𝑒 
𝑡 𝑑𝑡

] 

= ∫
Ω

𝜙1 ( 𝑥) 𝑑𝜇1 − ∫
Ω

𝜙0 ( 𝑥) 𝑑𝜇0 

+
∑
𝑒∈𝖤 

( 

∫
1 

0 

𝜓𝑒 
1 ( 𝑠 ) 𝑑𝜌̃

𝑒 
1 − ∫

1 

0 

𝜓𝑒 
0 ( 𝑠 ) 𝑑𝜌̃

𝑒 
0 

) 

where the last equality follows by substituting the weak formula- 
tion from of Definition 3.1 , thus proving the statement. □

3.2 Dynamic Formulation 

We will define the variational formulation that governs the 
evolution of the measures ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) over time. 
It is given as a generalized kinetic energy functional with an 
additional mobility function defining upper and lower bounds on 
the mass densities. 

Definition 3.3 (Admissible mobilities). We call a function 
𝑚 ∶ [0 , +∞) → [0 , +∞) ∪ { −∞} admissible mobility if it is 
an upper semi-continuous and concave function with 
int (dom ( 𝑚)) = ( 𝑎 , 𝑏 ) for 0 ≤ 𝑎 < 𝑏 and 𝑚( 𝑧) > 0 for all 𝑧 ∈ ( 𝑎 , 𝑏 ) . 

We are now able to rigorously introduce the dynamic problem. 

Definition 3.4. We define the following variational problem 

inf 
𝖢𝖤 ( 𝖦 ) ∫

1 

0 

𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) 𝑑𝑡, (BB) 

where 

G ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) = ∫
Ω

ΨΩ

( 

𝑑𝜇𝑡 
𝑑𝜆Ω

,
𝑑𝐽𝑡 
𝑑𝜆Ω

) 

𝑑𝜆Ω

+
∑
𝑒∈E 

( 

∫
𝑒 

𝛼1 ΨG 

( 

𝑑𝜌𝑒 𝑡 
𝑑𝜆𝑒 

,
𝑑 𝑒 

𝑡 

𝑑𝜆𝑒 

) 

+ 𝛼2 ΨG 

( 

𝑑𝜌𝑒 𝑡 
𝑑𝜆𝑒 

,
𝑑𝑓𝑒 𝑡 
𝑑𝜆𝑒 

) 

𝑑𝜆𝑒 

) 

+ 𝛼3 
∑

𝑣∈Vout 

∑
𝑒∈E ( 𝑣) 

∫
{ 𝑥𝑣 } 

×ΨG 

( 

𝑑𝜌𝑒 𝑡 |𝑥𝑣 
𝑑𝜆𝑣 

,
𝑑𝑒 𝑡 ( 𝑥𝑣 ) 
𝑑𝜆𝑣 

) 

𝑑𝜆𝑣 

for 𝛼1 , 𝛼2 , 𝛼3 > 0 describing the cost of transport along the graph 
( 𝛼1 ) and entering or leaving the graph ( 𝛼2 , 𝛼3 ), respectively. 
Here, 𝜆Ω ∈ + (Ω) , 𝜆𝑒 ∈ + ( 𝑒) , and 𝜆𝑣 ∈ + ({ 𝑥𝑣 }) are non- 
negative Radon-measures such that 𝜇𝑡 , 𝐽𝑡 ≪ 𝜆Ω, 𝜌𝑒 𝑡 ,  𝑒 

𝑡 , 𝑓
𝑒 
𝑡 ≪ 

𝜆𝑒 , and 𝜌𝑒 𝑡 |𝑥𝑣 , 𝑒 𝑡 ( 𝑥𝑣 ) ≪ 𝜆𝑣 for almost all 𝑡 ∈ [0 , 1] . The action 
functionals are defined as 

ΨΩ( 𝑢, 𝑣) ∶ =
⎧ ⎪ ⎨ ⎪ ⎩ 

|𝑣|2 
𝑚Ω( 𝑢) 

∶ 𝑚Ω( 𝑢) ≠ 0 

0 ∶ 𝑚Ω( 𝑢) = 0 = 𝑣 

+∞ ∶ else 

and 

Ψ𝖦 ( 𝑢, 𝑣) ∶ =
⎧ ⎪ ⎨ ⎪ ⎩ 

|𝑣|2 
𝑚𝖦 ( 𝑢) 

∶ 𝑚𝖦 ( 𝑢) ≠ 0 

0 ∶ 𝑚𝖦 ( 𝑢) = 0 = 𝑣 

+∞ ∶ else 

(10) 

for admissible mobility functions 𝑚Ω and 𝑚𝖦 . 
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Remark 3.5. As shown in [ 7 , Theorem 2.1], functionals of the 
form ( BB ) are convex and lower semi-continuous with respect to 
the weak convergence of measures. 

Boundedness of the action 𝖦 allows proving further regularity 
results for the mass densities 𝜇𝑡 and 𝜌𝑒 𝑡 , 𝑒 ∈ 𝖤 , following the same 
arguments as in [ 5 , Theorem 3.5]. 

Proposition 3.6. For ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) with 
∫ 1 

0 
𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) 𝑑𝑡 < +∞ the measures 𝜇𝑡 and 𝜌𝑡 

admit a weakly continuous representative. Suppose further that 
int (dom ( 𝑚Ω)) = ( 𝑎Ω, 𝑏Ω) and int (dom ( 𝑚𝖦 )) = ( 𝑎𝖦 , 𝑏𝖦 ) and 
denote by 𝜇𝑡 , 𝜌𝑒 𝑡 the densities of the measures with respect to 𝜆Ω and 
𝜆𝖦 . It holds that 

𝑎Ω ≤ 𝜇𝑡 ≤ 𝑏Ω, 𝜆Ω − a . e . and 𝑎𝖦 ≤ 𝜌𝑒 𝑡 ≤ 𝑏𝖦 , 𝜆𝖦 − a . e . (11) 

for every 𝑡 ∈ [0 , 1] and every 𝑒 ∈ 𝖤 . 

3.3 Existence of Minimizers for a Fixed Graph 

In this section, we will show well-posedness of ( BB ) using the 
direct method of the calculus of variations. From Remark 3.5 , 
we infer lower semi-continuity. Compactness will follow from a 
Hölder estimate. 

Proposition 3.7 (Hölder estimate). Suppose that 
∫ 1 

0 
𝖦 ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) 𝑑𝑡 ≤ 𝑀 for ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈

𝖢𝖤 ( 𝖦 ) , and a constant 𝑀 ≥ 0 . Then, it holds that 

‖𝜇𝑡 − 𝜇𝑠 ‖𝐶1 (Ω)∗ ≤ 𝐶( 𝑏Ω, 𝑏𝖦 , 𝑀) |𝑡 − 𝑠| 1 2 (12) 

∑
𝑒∈𝖤 

‖𝜌𝑒 𝑡 − 𝜌𝑒 𝑠 ‖𝐶1 ( 𝑒)∗ ≤ 𝐶( 𝑏Ω, 𝑏𝖦 , 𝑀) |𝑡 − 𝑠| 1 2 (13) 

for a constant 𝐶( 𝑏Ω, 𝑏𝖦 , 𝑀) > 0 and for all 𝑡, 𝑠 ∈ [0 , 1] . 

Proof. The statement can be proven analogously to [ 9 , Proposi- 
tion 2.10] following arguments from [ 5 , Proposition 3.5]. □

From the previously stated Hölder estimates we can infer 
compactness. 

Proposition 3.8 (Compactness). Given ( 𝜇𝑛 𝑡 , 𝐽
𝑛 
𝑡 , 𝜌

𝑛 
𝑡 , 𝑉

𝑛 
𝑡 , 

𝑓𝑛 𝑡 , 𝐺
𝑛 
𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) , 𝑛 ∈ ℕ and 𝑀 ≥ 0 such that 

sup 
𝑛∈ℕ ∫

1 

0 

𝖦 ( 𝜇
𝑛 
𝑡 , 𝐽

𝑛 
𝑡 , 𝜌

𝑛 
𝑡 , 𝑉

𝑛 
𝑡 , 𝑓

𝑛 
𝑡 , 𝐺

𝑛 
𝑡 ) 𝑑𝑡 ≤ 𝑀, (14) 

there exists ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) such that, up to a subse- 
quence, the following convergences hold: 

(i) 𝜇𝑛 𝑡 ⇀ 𝜇𝑡 weakly in  (Ω) for all 𝑡 ∈ [0 , 1] 

(ii) 𝜌𝑛 𝑡 ⇀ 𝜌𝑡 weakly in  (Ω𝖦 ) for all 𝑡 ∈ [0 , 1] 

(iii) 𝐽𝑛 𝑡 ⇀ 𝐽𝑡 weakly in  ([0 , 1] ×Ω, ℝ𝑑 ) 

(iv) 𝑛 
𝑡 ⇀ 𝑡 in  ([0 , 1] ×Ω𝖤 ) 

(v) 𝑓𝑛 𝑡 ⇀ 𝑓𝑡 in  ([0 , 1] ×Ω𝖤 ) 

(vi) 𝑛 𝑡 ⇀ 𝑡 in  ( [0 , 1] ×ΩV ) . 

Proof. The proof of ( i ) and ( ii ) follows from Proposition 3.7 , 
Proposition 3.6 and an application of a generalized Arzela–Ascoli 
theorem, see [ 10 , Proposition 3.3.1]. The remaining convergence 
results follow by standard estimates on the total variation of the 
measures and Prokhorov’s theorem carried out in [ 9 , Theorem 

2.11]. Admissibility of the limit is a direct consequence of the weak 
convergence and disintegration properties. □

We are now in a position to show well-posedness of ( BB ). 

Theorem 3.9. Suppose that ( BB ) is finite. Then, there exists a 
minimizer ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) . 

Proof. This is a direct consequence of Remark 3.5 , Proposition 3.8 , 
and the direct method of calculus of variations. □

4 Varying Graphs 

In this section, we analyze the case of varying graphs restricting 
our considerations to star-shaped metric graphs. From now on, 
we suppose that 𝖦 = ( 𝖵 , 𝖤 , 𝑙) is star-shaped with central vertex 
𝑣0 ∈ 𝖵 . We keep the connectivity of the graph fixed and we 
optimize the graph by varying the placement of the vertices inside 
of Ω. For given initial and final data, we are therefore looking for 
an optimal embedding of the combinatorial graph. Note that we 
allow the edge length to vary as well. In order for the continuity 
equation to be well-defined throughout the minimization, we 
need to prevent overlapping edges. For this reason, we impose 
an additional constraint on the unsigned angle 𝛼𝑥𝑣 ,𝑥𝑤 ∈ [0 , 2 𝜋) 

between any pair of edges ( 𝑣0 , 𝑣) and ( 𝑣0 , 𝑤) at the common 
central node 𝑣0 . The angle can be calculated as 

𝛼𝑥𝑣 ,𝑥𝑤 =
|||||arccos ⟨𝑥𝑣 − 𝑥𝑣0 , 𝑥𝑤 − 𝑥𝑣0 ⟩|𝑥𝑣 − 𝑥𝑣0 ||𝑥𝑤 − 𝑥𝑣0 |

||||| (15) 

and we approach an overlap of two edges if this angle is small. 
However, this does not prevent the nodes from collapsing in 
the center 𝑥𝑣0 . Therefore, we add an additional Coulomb-type 
potential in order to obtain lower bounds on the distances |𝑥𝑣 − 

𝑥𝑣0 | for 𝑣 ∈ 𝖵 . The resulting penalty functional reads 

𝑅( 𝑥𝑣0 , 𝑥𝑣1 , . . . , 𝑥𝑣𝑁𝖵 − 1 
) ∶ =

𝑁𝖵 − 1 ∑
𝑖= 1 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 |𝑥𝑣𝑖 − 𝑥𝑣0 | + 1 

2 

𝑁𝖵 − 1 ∑
𝑗= 1 
𝑗≠𝑖 

1 

𝛼𝑥𝑣𝑖 ,𝑥𝑣𝑗 

⎞ ⎟ ⎟ ⎟ ⎠ 
(16) 

inducing the variational problem BB 𝖦 > as 𝑐 > 0 allows for differ- 
ent scalings. The following properties are direct consequences of 
the definition of the penalty functional. 

Proposition 4.1. Any representation 𝑥𝑣0 , 𝑥𝑣1 , . . . , 𝑥𝑣𝑁𝖵 − 1 ∈ Ω of 
a star-shaped metric graph with 𝑅( 𝑥𝑣0 , 𝑥𝑣1 , . . . , 𝑥𝑣𝑁𝖵 − 1 ) < +∞ is 
embedded in the sense of Definition 2.1 . In particular, there is no 
overlap between different edges and there exists a lower bound 𝑑 > 0 

such that |𝑥𝑣𝑖 − 𝑥𝑣𝑗 | ≥ 𝑑 for all 𝑖, 𝑗 ∈ {0 , . . . , 𝑁𝖵 − 1} , 𝑖 ≠ 𝑗. 
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Remark 4.2. If the penalty functional is finite, it is continuous 
with respect to the strong norm convergence of the vertices. In 
particular, it is lower semi-continuous. 

When varying the graph, we need to account for changes in the 
initial and final data. To do so, let 𝜂0 , 𝜂1 ∈ (Ω) be given. We 
define 𝜌𝑘 ∶ = 𝜂𝑘 |Ω𝖦 

and 𝜇𝑘 = 𝜂𝑘 − 𝜌̄𝑘 for 𝑘 = 0 , 1 . Since 

𝜇𝑘 (Ω) +
∑
𝑒∈𝖤 

𝜌𝑒 
𝑘 
( 𝑒) = 𝜂𝑘 (Ω ⧵ Ω𝖦 ) + 𝜂𝑘 (Ω𝖦 ) = 1 (17) 

we constructed a pair of admissible initial and final data ( 𝜇𝑘 , 𝜌𝑘 ) ∈adm 

( 𝖦 ) , 𝑘 = 0 , 1 . In this way, initial and final data can be defined 
independently of the graph. 

For the minimization we need to assume compatibility conditions 
for the mobilities and reference measures along varying graphs as 
well. 

Assumption 4.3. We make the following additional assump- 
tions: 

1. The mobilities 𝑚Ω and 𝑚𝖦 do not depend on the graph. 

2. It holds that sup 
𝖦 embedded 

∑
𝑒∈𝖤 

‖𝜆𝑒 ‖ ( 𝑒) < +∞ and 

sup 
𝖦 embedded 

∑
𝑣∈𝖵 

‖𝜆𝑣 ‖ ({ 𝑥𝑣 }) 
< +∞. 

3. For 𝑥𝑛 𝑣𝑖 → 𝑥𝑣𝑖 as 𝑛 → ∞, 𝑖 ∈ {0 , . . . , 𝑁𝖵 − 1} it holds that 𝜆𝑒𝑛 ⇀
𝜆𝑒 and 𝜆𝑣𝑛 ⇀ 𝜆𝑣 . 

An admissible family can be obtained from fixed reference 
measures ( 𝜆𝑒 )𝑒∈𝖤 ∈  ( 𝖫 ) by defining 𝜆𝑒𝑛 ∈  ( 𝑒𝑛 ) for 𝑒𝑛 ∈ 𝐸𝑛 , 
𝑛 ∈ ℕ , using the push-forward under 𝛾𝑒𝑛 ∶ [0 , 1] → 𝑒𝑛 . In the 
same way, we can construct measures on 𝖵𝑛 for 𝑛 ∈ ℕ . 

Under these assumptions, we are able to show a similar compact- 
ness result to Theorem 3.8 . 

Proposition 4.4 (Compactness for varying graphs). Given 
a family of embedded, star-shaped metric graphs 𝖦𝑛 = ( 𝖵𝑛 , 𝖤𝑛 ) 

with nodes 𝑥𝑛 𝑣𝑖 → 𝑥𝑣𝑖 as 𝑛 → ∞, 𝑖 ∈ {0 , . . . , 𝑁𝖵 − 1} and measures 
( 𝜇𝑛 𝑡 , 𝐽

𝑛 
𝑡 , 𝜌

𝑛 
𝑡 , 𝑉

𝑛 
𝑡 , 𝑓

𝑛 
𝑡 , 𝐺

𝑛 
𝑡 ) ∈ 𝖢𝖤 ( 𝖦𝑛 ) such that 

sup 
𝑛∈ℕ ∫

1 

0 

𝖦 ( 𝜇
𝑛 
𝑡 , 𝐽

𝑛 
𝑡 , 𝜌

𝑛 
𝑡 , 𝑉

𝑛 
𝑡 , 𝑓

𝑛 
𝑡 , 𝐺

𝑛 
𝑡 ) 𝑑 𝑡 + 𝑐 𝑅 ( 𝑥𝑛 𝑣0 , 𝑥

𝑛 
𝑣1 
, . . . , 𝑥𝑛 𝑣𝑁𝖵 − 1 

) < +∞

(18) 

there exist measures ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) such that, up to 
subsequences 

(i) 𝜇𝑛 𝑡 ⇀ 𝜇𝑡 weakly in  (Ω) for all 𝑡 ∈ [0 , 1] 

(ii) 𝜌𝑛 𝑡 ◦𝛾𝑛 ⇀ 𝜌𝑡 ◦𝛾 weakly in  ( 𝖫𝖦 ) for all 𝑡 ∈ [0 , 1] 

(iii) 𝐽𝑛 𝑡 ⇀ 𝐽𝑡 weakly in  ([0 , 1] ×Ω, ℝ𝑑 ) 

(iv) 𝑛 
𝑡 ◦𝛾

𝑛 ⇀ ◦𝛾 in  ([0 , 1] × 𝖫 ) 

(v) 𝑓𝑛 𝑡 ◦𝛾𝑛 ⇀ 𝑓𝑡 ◦𝛾 in  ([0 , 1] × 𝖫 ) 

(vi) 𝑛 𝑡 ◦𝛾𝑛 ⇀ 𝑡 ◦𝛾 in  ([0 , 1] ×Ω𝖵 ) . 

Proof. By composition of the measures 𝜌𝑛 𝑡 , 𝑛 
𝑡 , 𝑓

𝑛 
𝑡 , and 𝑛 𝑡 with the 

change of variables maps 𝛾𝑛 through the push-forward operation, 
the whole sequence of measures is defined on a common domain 
instead of varying graphs. The remainder of the proof follows as in 
Theorem 3.8 applied to the resulting push-forward measures. The 
norm-convergence of the vertices implies 𝐶1 ([0 , 1]) -convergence 
of the maps 𝛾𝑛 𝑒 for all 𝑒 ∈ 𝖤 , thus the change of variables can be 
reversed in the limit, concluding the proof. □

With compactness and lower semi-continuity at hand, we can 
prove well-posedness. 

Theorem 4.5. Suppose that ( BB 𝖦 ) is finite. Then, there exists an 
embedded star-shaped metric graph 𝖦 = ( 𝖵 , 𝖤 , 𝑙) and a family of 
measures ( 𝜇𝑡 , 𝐽𝑡 , 𝜌𝑡 , 𝑉𝑡 , 𝑓𝑡 , 𝐺𝑡 ) ∈ 𝖢𝖤 ( 𝖦 ) minimizing ( BB 𝖦 ). 

Proof. Let 𝖦𝑛 be a minimizing sequence of graphs with corre- 
sponding measures ( 𝜇𝑛 , 𝐽𝑛 , 𝜌𝑛 , 𝑉𝑛 , 𝑓𝑛 , 𝐺𝑛 ) ∈ 𝖢𝖤 ( 𝖦𝑛 ) . Each graph 
is embedded with the embedding given by a family of ver- 
tices { 𝑥𝑛 𝑣0 , 𝑥

𝑛 
𝑣1 
, . . . , 𝑥𝑛 𝑣𝑁𝖵 − 1 

} ⊂ Ω, defining the sequences ( 𝑥𝑛 𝑣𝑖 )𝑛∈ℕ 
for 𝑖 ∈ {0 , . . . , 𝑁𝖵 − 1} . Compactness of Ω ⊂ ℝ𝑑 allows to apply 
the Bolzano–Weierstrass theorem to each of these sequences. 
Therefore, there exists a family of limiting points 𝑥𝑣𝑖 ∈ Ω for 𝑖 ∈
{0 , . . . , 𝑁𝖵 − 1} such that, up to a subsequence, 𝑥𝑛 𝑣𝑖 → 𝑥𝑣𝑖 for 𝑖 ∈
{0 , 1 , . . . , 𝑁𝖵 − 1} . Now, Proposition 4.4 and Proposition 4.2 allow 

the application of the direct method, proving the theorem. □
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