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ABSTRACT

We study an optimal transport problem in a compact convex set Q C RY where bulk transport is coupled to dynamic optimal
transport on a metric graph G = (V, E, l) which is embedded in Q. We prove the existence of solutions for fixed graphs. Next,
we consider varying graphs, yet only for the case of star-shaped ones. Here, the action functional is augmented by an additional
penalty that prevents the edges of the graph from overlapping. This allow us to preserve the graph topology and thus to rely on
standard techniques in calculus of variations in order to show the existence of minimizers.

1 | Introduction

Metric graphs play an important role in the modeling of real-
world phenomena such as gas or road networks [1, 2]. In
particular, the theory of optimal transport has proven to be a
useful tool to analyze transportation on such graphs. In recent
years, several related formulations have been studied, see e.g.,
[3], where the authors provide a complete analysis of optimal
transport on metric graphs with Kirchhoff~-Neumann conditions
at the vertices. Furthermore, Burger et al. [4] studied a transport
metric that allows for mass storage on the vertices. These studies
are strongly motivated by and related to a transport distance
involving bulk and surface transport that was introduced in [5].
Related gradient flows with respect to these distances have also
been studied, again in [3] and, for the case with vertex dynamics,
in [6]. Independently, dynamic optimal transportation with non-
linear mobilities was studied in [7], see also [8] for the case of a
volume filling-mobility.

In the present article, we combine these approaches into a model,
which consists of transport in a compact and convex domain
Q c R%, coupled to optimal transport on a metric graph. The
introduction of mobilities allows to impose lower and upper

bounds on the mass densities, leading to a more versatile model.
The coupled problem is motivated by the planning of traffic
routes. A particular focus lies on networks where, due to pre-
existing infrastructure or connections to other transportation
networks, one city is highlighted as a central point. We assume
that traveling along the graph is cheaper than traveling in the
bulk domain. However, there is an additional cost to entering
the graph, that can be thought of as the cost of train tickets or
waiting times between different connections. An example of such
a system can be found in French railroad planning, where Paris is
associated with the accentuated center of the graph. This article
extends the results of [9], where a coupled dynamic optimal
transport problem between bulk and a second domain, which is
the graph of a function (a single road), is analyzed. The resulting
problem is understood as a dynamic optimal transportation
problem together with an additional penalty functional allowing
for an optimization over the metric graph as well.

To introduce our model, we first consider an arbitrary metric
graph G = (V, E, ) that is embedded in some convex and compact
domain Q c R¢ with initial and final data given as non-negative
Radon measures y, and u, on Q and p, and p; on G such that
Ho(Q) + po(G) =1 = u;(Q) + p,(G). This means that each vertex
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FIGURE 1 | A star-shaped metric graph embedded into R? with

Vout = {U1,..., 06} =V \ {vo}, normal ng =(0,1)" and tangent 4=
(1,0)T.

v € V can be identified with a point x, € Q, and we think of edges
as straight lines connecting these points. For a rigorous definition,
see Section 2. Any measure p, on G can be determined by its values
on the edges, thus we identify o, = (¢f).cc. Now, the evolution
of mass on the coupled system can be expressed, formally, by
solutions of the following system of continuity equations:

p

o, +V-J, =0 in Q
Ji-ng = f{ fore e E
<6tpf+V~Vf=ff fore e E a

Ving =G) =17,

Z Ving =0

ecE(v)

o} Te forv € Vg

forv € V\ Vyu

where n{, € S%°! denotes the normal to the edgese € E, 7, € S**
denotes the tangent to the embedded edge in Q, and n! € {0, +1}
is defined as in (2), prescribing an orientation to each edge. For
an illustration, see Figure 1. In particular, we impose a non-
homogeneous continuity equation on each edge, coupling them
in the interior vertices V \ V,,, with homogeneous Neumann
conditions, allowing for conservation of mass. For the outer
vertices V,, C V, we allow an additional exchange of mass with
the bulk region Q. We denote by CE(G) the set of weak solutions
to (1). Now, the evolution of this system is governed by quadratic
costs and non-linear mobilities imposing bounds on the mass
measures 4, and p;. The resulting (formal) action functional reads
as

A i 005 Vi 15 Gp)

|2 ( / [veP? |feP? >
= dig + a +a da,
ama(u) Z e me(ed) T i me(pd)

|G¢ (x,)I?

+ as Z di,,

VEV ot e€E(v) ¥ {Xu} G(pflx

where mg, and mg are mobility functions and 44, 4,, and 4, are
fixed reference measures, necessary as the mobilities lead to a loss
of 1-homogenity of the functional. We then consider the dynamic
problem

AG(#[»]HPU Vl’fla Gt)

inf
(ueJe.p¢,Vef1,Gt)ECE(G)

We refer to Section 3 for a rigorous definition of weak solutions to
the coupled system (1) and for the resulting dynamic problem.

In order to account for varying graphs in the second part of this
work, we restrict our analysis to the case of star-shaped metric
graphs. For such, there exists a unique central vertex v, €V,
which is contained in all edges and we define V., =V \ {v,}.
Thus, all edges can be written as e = (v,, v) for some v € V.
Throughout minimization, we fix the connectivity information
and only optimize over the placement of the vertices. For this to
result in a well-defined metric graph, we need to prevent vertices
from colliding and edges from crossing. To this end we introduce
the additional penalty functional

Ny-1

R(xyys s Xyyo1) 0= Z |x—+% Z ,

i=1 v Uol Jj=1 axui,xu»

J

where Ny, = |V| and a, _, is the unsigned angle between the
i)

edges (vy, v;) and (v, v;) at the central vertex v,. The augmented
problem now reads

1
il’lf lnf / AG(IL{I’JN p[’ Vt’ft’ Gt)dt + CR(xvo,xul’ . -sxqu_l)
0

G CEG)
and its rigorous definition is given in Section 4.

The article is structured as follows. In Section 2, we introduce
some notation as well as measures on metric graphs. In Section 3,
we define the notion of weak solutions to the coupled system as
well as the dynamic formulation. Additionally, we prove existence
of minimizers. In the last part, in Section 4, we analyze the
dynamic problem for varying graphs where we restrict our con-
siderations to star-shaped metric graphs and optimize over the
placement of vertices. Again, we prove existence of minimizers.

2 | Notation

In order to rigorously define the coupled dynamic system, we start
by introducing some notation.

Let Q C R? be a compact and convex subset of RY and G =
(V, E) be a combinatorial graph, where V denotes the set of nodes
and E is the set of edges e = (v,w) for v,w € V. The number
of nodes is denoted by N, := |V| and the number of edges by

= |E|. We define E(v) :={e € E|v € e} as the set of edges
containing v € V. Moreover, we introduce the set of outer vertices
Vou :=1{0 € V| |E(v)| = 1} and the set of outer edges E, :={e €
E|3v € Vyy s.t. U € e}. With an additional map [ : E - (0, +o0),
associating a positive length [, to each edge e of the graph, the

combinatorial graph turns into a metric graph G = (V,E, ). By
defining the outer normal
-1 :e=(v,w)
nl =30 :vée 2

+1 :e=(w,v)

and therefore fixing an orientation, we can identify edges with
closed intervals [0, [.]. In order to rigorously define the coupling
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between a domain and a metric graph, we need to embed the
graph.

Definition 2.1. Let G = (V,E) be a combinatorial graph and
Q c R? be a compact and convex set. A collection of distinct
points x, € Q for v €V is called an embedding of the graph,
defining edges as straight lines, and we say that the graph G is
embedded into Q if the embedding has no intersecting edges. We
say that a metric graph G = (V,E,[) is embedded into Q if it is
embedded as a combinatorial graph and if |x,, — x,| = [, for all
eekE.

For an embedded metric graph, we denote the tangent vector of
an edgee = (v,w) € Eby
Xy — X, Xp— X

I = w v w v 3
¢ le |xw_xv| ()

and we write [x,, x,,] = {x, +tt, |t € [0,1,]} C Q for the interval
defined by an edge e = (v,w) of an embedded metric graph.
Abusing notation, we identify e = [x,, x,,] throughout the article.

Functions on metric graphs are defined by their restriction to each
edge. We introduce the sets

Qe 1= [xv’xw] , L:= |_| [0’ 1]
e=(v,w)EE e=(v,w)EE
and Q := |_| {x,} (@)
VEVout

given as disjoint unions. In order to guarantee a metric structure
on the metric graph and therefore identifying it with a metric
space, we define the new sets
Qo :=Q/~ and Lg:i=L/~,
where ~¢ denotes the equivalence relation that identifies the
same vertex on different edges and ~_ is the corresponding
identification in L. Note that in Qg each vertex v € V can be
identified uniquely, whereas there are multiple copies in Q¢, one
for each edge e € E(v). Any map on a metric graph is givenas ¢ =
(®Dece : Qe = R or @ =(¢),ee : L = R. Both can be related
1‘lsin‘g the transformation maps y,(s) := x, + sl,7, and 7,(x) =
X=Xy

— fore = (v,w) as

P°(s) = ¢°(re(s)) and  ¢°(x) = §*(7.(x)). ©)

Similar definitions can be given for Qg and Lg. Finally, we
define C([0,1] x L) := C([0,1];C(Lg)) n C([0,1];C}(L)), that
is, functions that are continuous in each vertex having derivatives
on each edge.

We call a (metric or combinatorial) graph star-shaped if there
exists an accentuated node v, € V such that E = {(v,,v) |v € V' \
{vo}}. The node v, is called center of the graph. In particular it holds
that E = E(vy) = Egy and Vo = V \ {vp}-

In order to rigorously formulate the coupling between different
domains, we need to extend measures defined on the graph
to measures on Q. Let M(U,R"Y) be the set of Radon mea-
sures on U C R? with values in RY and M, (U,R"N) the set

of measures in M(U,RY) that are non-negative. Moreover, we
denote by M, (U, R") a Borel measurable family of measures
in U indexed by t € [0, 1] with values in RY. We also consider
measures with values in the tangent space of some edge e €
E. In particular, given x € e the measures V¢ € M(e, T,e) and
G*(x,) € M({x,}, T, e) will occur in our formulation, where T e
is the tangent space to e in x. Note that we can represent such
measures as

Ve=1,v° or Gx,)=1.0°(x,) (6)

with V¢ € M(e,R), ¢°(x,) € M({x,}, R). For any measure p¢ €
M(e,R), we define its zero extension into Q by duality as the
measure §° € M(Q, R) such that

/Q pdp = / bdpt @)

for all ¢ € C(Q). For measures p € M(Qg, R) we define their
extension as g = (5°),ce and for g € M(L,R) as g = (°07,)ect-
Measures p € M(Qg,R) can be identified with measures g €
M(L, R) through the push-forward by the maps y, for e € E. In
particular, when it will be necessary to underline the dependence
on y, we will write § = poy,. Similar notions of extension and
push-forward operations can be defined for measures defined on
Qg and Lg with values in RN for N € N.

With these notions, we are able to introduce the space of admis-
sible tuples (u;,J;, pi» Vi, f1» G,) as the space D,y,,(G) defined by

Dy (G) 1 = Mg (Q,R) X Mg, (Q,RY) X M1 (6, R)
X M1 (Qp, Tre) X M) (Qg, R)
X M[O,l] ( QV, Txue).

Admissible initial or final measures are given as elements of the
set

Poam(G) 1= {4, p) € M, (Q) X M, (Qo) | 1(Q) + p(Qg) = 1}
®

3 | Fixed Graph

In this section, we consider a fixed metric graph G = (V,E,1),
embedded in Q C R? compact and convex. We rigorously define
the dynamic problem and show existence of solutions to the
formal transport problem (1) with minimal dynamic costs.

3.1 | Continuity Equation

We rigorously define the coupled continuity equations and show
mass conservation of the entire system.

Definition 3.1. We say that a tuple (u,J,,0,,V,,fi,G,) €
D,qm(G) satisfies the coupled continuity equations for admissible
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initial and final data (i, py), (U1, P1) € Poam(G) if

/01/515[¢t(x)d“fdt+_/ol/QV¢z(x)thdt
eEE-/o / $ () df;dt

" / 8,(x,)nt dC¢(x, )dt
Uevou[ e€E(v) X}

= /O & () dpy — /Q $o(x) dpy

for all ¢, € C1([0,1] x Q) and

Z(/Olfolazzbf(s)dﬁfdw/ol/ol V()L dVedt
+ /01/01¢f(s)dffdt> UEVOMEE(U)/ {xu}z/)t(xu)n dGe(x,)dt
2 < / Pi(s)dpg /0 14»3(s)al,5;>

forall 9, = (¥)).ee € C'([0,1] X L) such that §;(7.(x,)) =: $(v)
forall e € E(v), meaning that the map is continuous over vertices.
We denote by CE(G) the set of such solutions on the graph G.

We can show that solutions to this system satisfy a global
continuity equation and therefore are mass preserving.

Proposition 3.2. Suppose that (u.,J.,p:,V;, ft»G,) € CE(G).
Givenn, :=u + Y, piand W, :=J, + ¥ . V{ it holds that

om+V-W,=0 9)
weakly with initial data p, + Y, A and final data y, + Y,

=€
e€E ‘Ol'

Proof. Let ¢ € C}([0,1] x Q) be an arbitrary test function.
For each edge e € E, we define 3 = ¢,0y, € C'([0,1] x [0, 1]),
which, by construction, induces the admissible test function
%, = @)ece € C1([0,1] X Lo). Moreover, “3(s) = Ve, (7,(s)) -
1,7,. We obtain ‘

/ 1 / 8,6, (x) dn,dt + / 1 / V() dW,dt
/ / 5,6,(x) dpsdt + / / V() dJ,dt
[ / / 0 (5) dpide + / / VO L, dV‘fdt}
< [ oot [ et
3{f o[

where the last equality follows by substituting the weak formula-
tion from of Definition 3.1, thus proving the statement. [

3.2 | Dynamic Formulation

We will define the variational formulation that governs the
evolution of the measures (i, J;, p;, V;, f, G;) € CE(G) over time.
It is given as a generalized kinetic energy functional with an
additional mobility function defining upper and lower bounds on
the mass densities.

Definition 3.3 (Admissible mobilities). We call a function
m : [0,400) = [0,+00) U{—oco} admissible mobility if it is
an upper semi-continuous and concave function with
int(dom(m)) = (a,b)for0 < a < band m(z) > Oforall z € (a, b).

We are now able to rigorously introduce the dynamic problem.

Definition 3.4. We define the following variational problem

1
inf / AG(/“t’Jhpt’Vt’ft’Gt)dts (BB)

CE(G) 0

where

du, dJ,
AG(IMI’ zsPth’ft’G)_/ (dlgl) de) d/lg

dp; dVy
3 (fer (@3
de; dfy
+ aZ‘PG (d_ﬂe’ d_/le dle

=2 XL

VEVyyt e€E (v)
dp; . dct(x,)
|xy t v
y da
G< i, > da, v

for o, a,, 3 > 0 describing the cost of transport along the graph
(ar;) and entering or leaving the graph (a,, ), respectively.
Here, 1o € M, (Q), A, € M,(e), and 4, € M, ({x,}) are non-
negative Radon-measures such that u,,J, < 1q, pf,V/, fi <
2., and pf‘xu,gf(xu) <« A, for almost all ¢t € [0,1]. The action
functionals are defined as

Jvf?

T mo(u) #0
mq(u)
Yo(u,v) :=40 tmou)=0=0 and
+o0 : else
( |of? .
—  1mg(u) #0
mg(u)
Ws(u,v) :=49 “mew)=0=v (10)
+00 : else

for admissible mobility functions mg and m;;.

4 0f 7
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Remark 3.5. As shown in [7, Theorem 2.1], functionals of the
form (BB) are convex and lower semi-continuous with respect to
the weak convergence of measures.

Boundedness of the action Ag allows proving further regularity
results for the mass densities u, and py, e € E, following the same
arguments as in [5, Theorem 3.5].

Proposition 3.6. For (u.J;,0:V,, f:,G;) € CE(G) with
/01 Ac(e I 00 Vs fi, G dt < +o00  the measures u, and p,
admit a weakly continuous representative. Suppose further that
int(dom(mg,)) = (ag,by) and int(dom(mg)) = (ag,bg) and
denote by u,, p{ the densities of the measures with respect to Aq and
Ag. It holds that

ag S u, <bg,lg—ae. and ag <p; <bg Ag—ae (1)

foreveryt € [0,1] and every e € E.

3.3 | Existence of Minimizers for a Fixed Graph

In this section, we will show well-posedness of (BB) using the
direct method of the calculus of variations. From Remark 3.5,
we infer lower semi-continuity. Compactness will follow from a
Holder estimate.

Proposition 3.7 (Holder estimate). Suppose that

1
,/(‘) AG(:utth’pt’Vt’ft’Gt)dt SM for (#t’]t’pt’vt’fﬂGt)e
CE(G), and a constant M > 0. Then, it holds that

1
e = tslleriqy- < C(bg, bg, M)|t — s|2 (12)

1
D llef = eEllcrgey < Clbg, be, M|t — s 13)

ecE

for a constant C(bg, bg, M) > 0 and forallt,s € [0,1].

Proof. The statement can be proven analogously to [9, Proposi-
tion 2.10] following arguments from [5, Proposition 3.5]. O

From the previously stated Holder estimates we can infer
compactness.

Proposition 3.8 (Compactness). Given (u!,J7, pr, V",
fi,G!) € CE(G), n € Nand M > 0 such that

1
sup / AT ol VI F1 Gl d < M, (14)
0

neN

there exists ((;,J;, 01, Vi, f1, G;) € CE(G) such that, up to a subse-
quence, the following convergences hold:
(@) u — u, weakly in M(Q) forall t € [0,1]
(i) p} — p, weakly in M(Qg) forallt € [0,1]
(iii) J' — J, weakly in M([0,1] x Q, R9)
(i) V' =V, in M([0,1] X Q)

W) [T = frin M([0,1] X Q¢)
W) G = G, in M([0,1] X Qy).

Proof. The proof of (i) and (ii) follows from Proposition 3.7,
Proposition 3.6 and an application of a generalized Arzela-Ascoli
theorem, see [10, Proposition 3.3.1]. The remaining convergence
results follow by standard estimates on the total variation of the
measures and Prokhorov’s theorem carried out in [9, Theorem
2.11]. Admissibility of the limit is a direct consequence of the weak
convergence and disintegration properties. O

We are now in a position to show well-posedness of (BB).

Theorem 3.9. Suppose that (BB) is finite. Then, there exists a
minimizer (u;,J,, pi» Vs, f1, Gy) € CE(G).

Proof. This is a direct consequence of Remark 3.5, Proposition 3.8,
and the direct method of calculus of variations. O

4 | Varying Graphs

In this section, we analyze the case of varying graphs restricting
our considerations to star-shaped metric graphs. From now on,
we suppose that G = (V,E,I) is star-shaped with central vertex
v, € V. We keep the connectivity of the graph fixed and we
optimize the graph by varying the placement of the vertices inside
of Q. For given initial and final data, we are therefore looking for
an optimal embedding of the combinatorial graph. Note that we
allow the edge length to vary as well. In order for the continuity
equation to be well-defined throughout the minimization, we
need to prevent overlapping edges. For this reason, we impose
an additional constraint on the unsigned angle «, , € [0,27)
between any pair of edges (v, v) and (v,, w) at the common
central node v,. The angle can be calculated as

(X = Xy Xy — X
= |arccos ———— % "0 15)

a
ot |xu — Xy | |xw - xvul

and we approach an overlap of two edges if this angle is small.
However, this does not prevent the nodes from collapsing in
the center x, . Therefore, we add an additional Coulomb-type
potential in order to obtain lower bounds on the distances |x, —
x,, | for v € V. The resulting penalty functional reads

Ny-1 1 lefl 1
Rty Xy, ) 1= P [t 1Y
SIVP SIS SNV —
v i=1 |xvi xu0| 2 j=1 axui,xuj

J#

(16)

inducing the variational problem BB;> as ¢ > 0 allows for differ-
ent scalings. The following properties are direct consequences of
the definition of the penalty functional.

Proposition 4.1. Any representation Xugs Xoysoees Xuy , € Q Of
a star-shaped metric graph with R(x,,X,,, .. "xUNV—l) < 400 is
embedded in the sense of Definition 2.1. In particular, there is no
overlap between different edges and there exists a lower bound d > 0

such that |x,, — x,,| > d foralli, j €{0,...,Ny — 1}, i # J.

PAMM, 2026
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Remark 4.2. 1f the penalty functional is finite, it is continuous
with respect to the strong norm convergence of the vertices. In
particular, it is lower semi-continuous.

When varying the graph, we need to account for changes in the
initial and final data. To do so, let 7,,7, € P(Q) be given. We
define p;, := Mk jog and y, = n, — f; for k = 0, 1. Since

Q) + Y (@) = m(Q\ Q) + Q) =1 (17)

e€E

we constructed a pair of admissible initial and final data (u, o) €
P,am(G), k = 0, 1. In this way, initial and final data can be defined
independently of the graph.

For the minimization we need to assume compatibility conditions
for the mobilities and reference measures along varying graphs as

well.

Assumption 4.3. We make the following additional assump-
tions:

1. The mobilities mg and mg do not depend on the graph.

2. It  holds that sup Y el <+o0  and
G embedded
sup Xy 1Al s,y < oo
G embedded

3. Forx; — x, asn — o0,i €{0,...,Ny — 1}itholds that 1, —
A.and A,n — 4.

An admissible family can be obtained from fixed reference
measures (4,),ce € M(L) by defining 1,. € M(e") for e" € E",
n € N, using the push-forward under y,. : [0,1] — e". In the
same way, we can construct measures on V" for n € N.

Under these assumptions, we are able to show a similar compact-
ness result to Theorem 3.8.

Proposition 4.4 (Compactness for varying graphs). Given
a family of embedded, star-shaped metric graphs G" = (V",E")
with nodes x;, — x,, asn — oo, i €{0,...,Ny — 1} and measures
(I, e, VE, £, G € CE(G") such that

1
sup/ A, I 0 VE f1GR dE + cR(Xg,, Xg, s e es Xy ) < 400
0

neN TNy
18)

there exist measures ((;,J;, P;, Vi, f1» G;) € CE(G) such that, up to
subsequences

(@) ut — u, weakly in M(Q) forall t € [0,1]

(i) pjoy™ — p,oy weakly in M(L;) forallt € [0,1]
(iii) J' — J, weakly in M([0,1] x Q, R9)
(iv) V'oy" = Yoy in M([0,1] X L)

W) froy"™ = f,oyin M([0,1] X L)
(i) Gloy™ = G,oy in M([0,1] X Q).

Proof. By composition of the measures p}', V', f, and G} with the
change of variables maps y" through the push-forward operation,
the whole sequence of measures is defined on a common domain
instead of varying graphs. The remainder of the proof follows as in
Theorem 3.8 applied to the resulting push-forward measures. The
norm-convergence of the vertices implies C'([0, 1])-convergence
of the maps y; for all e € E, thus the change of variables can be
reversed in the limit, concluding the proof. (|

With compactness and lower semi-continuity at hand, we can
prove well-posedness.

Theorem 4.5. Suppose that (BB) is finite. Then, there exists an
embedded star-shaped metric graph G = (V,E, 1) and a family of
measures (U, J,, P, Vys f1, G;) € CE(G) minimizing (BBg).

Proof. Let G" be a minimizing sequence of graphs with corre-
sponding measures (u",J", o", V", f",G") € CE(G"). Each graph
is embedded with the embedding given by a family of ver-
tices {xﬁo,xﬂl,...,x;’Nvfl} C Q, defining the sequences (xy)nen
for i €{0,..., Ny — 1}. Compactness of Q C R? allows to apply
the Bolzano-Weierstrass theorem to each of these sequences.
Therefore, there exists a family of limiting points x,, € Q fori €
{0,..., Ny — 1} such that, up to a subsequence, x;, — x,, fori €
{0,1,..., Ny — 1}. Now, Proposition 4.4 and Proposition 4.2 allow
the application of the direct method, proving the theorem. O
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