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Disordered two-dimensional (2D) lattices, including hexatic and various glassy states, are observed in a wide

range of 2D systems including colloidal nanoparticle assemblies and fluxon lattices. Their disordered nature

determines the stability and mobility of these systems, as well as their response to the external stimuli. Here we

report on the controlled creation and characterization of a disordered 2D lattice of nontopological magnetic

bubbles in the noncentrosymmetric ferrimagnetic alloy Mn1.4PtSn. By analyzing the type and frequency of

fundamental lattice defects, such as dislocations, the orientational correlation, as well as the induced motion

of the lattice in an external field, a nonergodic glassy state, stabilized by directional application of an external

field, is revealed.

DOI: 10.1103/ccxm-l6hx

I. INTRODUCTION

The collective behavior of elastic manifolds in a random or

rough background, along with the formation of glassy states,

remains a central topic within the broader study of glasses,

amorphous materials, and other disordered configurations of

condensed matter. An early motivation for this research was

the behavior of dislocations under pinning by mixed sites in

alloy crystals [1]. These systems, often trapped in nonergodic

configurations, exhibit unique responses to external stresses,

making their behavior particularly intriguing. The theories of

dislocation-mediated melting in the context of the Berezinski-

Kosterlitz-Thousless transition [2] provide a universal picture

regarding the role of defect formation and plasticity due

to quenched disorder, specifically for two-dimensional (2D)

systems. Well studied examples in this context are vortex lat-

tices in type-II superconductors [3,4], overlayers of colloidal
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particles [5,6], smectic [7] and blue phases of liquid crystals

[8], or some phases of superfluidic helium [9–11].

2D magnetic bubble lattices, and skyrmion lattices in gy-

roptropic noncentrosymmetric ferromagnets, provide another

example of such states, where the assembly of bubbles or

skyrmions can be considered to form certain mesophases,

intermediate between fully crystalline and liquid disordered

states [12]. In 2D systems, the Mermin-Wagner theorem

stipulates that fluctuations should preclude the formation of

long-range ordered lattice states. However, in these magnetic

systems, there are two effects promoting long-range order:

first, the classical dipole-dipole interactions, owing to their

long range, and, second, the magnetocrystalline anisotropy

along with pinning in the regular crystalline lattice of the

magnetic material. On the other hand, in a magnetic alloy,

the atomistic disorder of the real structure creates a rough

potential for the collective ordering of magnetic states via ran-

dom anisotropies and random exchange forces [13], which can

counteract these tendencies towards long-range order. Hence

it is expected that magnetic bubble or skyrmion lattices in such

a magnetic material behave quite differently compared to, e.g.,

a vortex lattice in a type-II superconductor, which allows one

to study different effects.

Notably, quenched disorder and pinning determine the con-

densation of magnetic bubbles and skyrmions into a rich vari-

ety of (partly) ordered or disordered 2D lattices [12,14–16].

While interskyrmion or interbubble interaction typically

prefers condensation into a periodic triangular lattice [17,18]
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(other regular lattices have been also observed [19]), quench-

ing and random pinning can potentially lead to formation of

glassy states (e.g., Bragg glass and vortex glass) [14,15,20],

as observed in lattices of other building blocks [21], such as

vortices in type-II superconductors [22] or colloidal particles

[23]. It has been revealed that quenched disorder and pinning

also determine the response (both static and dynamic) of

magnetic skyrmions and bubbles under application of external

stimuli [magnetic fields, electrical currents, and temperature

(gradients)] [24,25]. While there is a considerable number of

observations of disordered 2D lattices of magnetic skyrmions

and bubbles in thin films (e.g., Refs. [14,26,27]), research

mainly focused on interplay with magnetic frustration [28],

geometric boundaries such as domain walls [29], and charac-

terization of particular lattice defects such as grain boundaries

[30], as well as characterization of the hexatic phase [31,32],

while glassy states in skyrmion or bubble lattices remain less

well studied.

Due to its rich phenomenology of magnetic structures

and the intrinsic proliferation of crystallographic defects, the

nonstoichiometric inverse half-Heusler compound Mn1.4PtSn

offers a suitable platform to study disordered lattices.

Mn1.4PtSn crystallizes in the space group I 4̄2d and has been

the focus of extensive research efforts for its multitude of

magnetic textures, including lattices of magnetic solitons [33].

The noncentrosymmetric structure of Mn1.4PtSn gives rise to

anisotropic Dzyaloshinskii-Moriya interaction (DMI) as well

as a sizable uniaxial anisotropy. The competing magnetic

interactions result in a large variety of magnetic textures,

including nontopological bubbles, elliptical skyrmions, and

antiskyrmions [33–35] that may be transformed into each

other by applying (a sequence of) external magnetic fields of

particular direction and strength. The large number of atomic

vacancies and other lattice defects in Mn1.4PtSn provides

a dense background of pinning sites, with their individual

extension being small with respect to that of the magnetic tex-

tures in that material. Therefore, pinning is determined by the

variation of the defect background rather than by individual

pinning sites, which may be described by a slowly varying

pinning potential.

In the following, we reveal a mechanism that exploits the

rich landscape of metastable textures in combination with the

random background potential to deliberately create a disor-

dered lattice state of nontopological bubbles and skyrmions in

Mn1.4PtSn. Subsequently, we mainly characterize the bubble

lattice state in terms of lattice defects, spatial correlations, and

response to an external magnetic field.

II. CREATION OF DISORDERED NONTOPOLOGICAL

BUBBLE LATTICE

Nonstoichiometric Mn1.4PtSn single crystals have been

synthesized by a self-flux method as described in Ref. [36].

Subsequently, a thin, electron-transparent, lamella of ap-

proximately 100 nm thickness (lamella normal parallel to

the c axis) has been prepared by focused ion beam (FIB)

milling. The magnetic textures in the thin lamella were subse-

quently investigated with a JEOL F200 Transmission Electron

Microscope that was operated in Lorentz mode [Lorentz

Transmission Electron Microscopy (LTEM)]. In this mode,

FIG. 1. Disordered bubble lattice state is stabilized by the ap-

plication of increasing magnetic fields under an oblique angle of

θ = 20◦. The field strengths are indicated as the full field strength

μ0H and the respective components μ0Hx and μ0Hz. (a) A mixed

domain state of single-Q magnetic textures propagating along the a

and b axis, respectively, is observed with a total applied field strength

of μ0H = 214 mT. The borders of the domains are indicated by

yellow lines. (b) At μ0H = 256 mT, the domain with its propagating

vector aligned perpendicular to the in-plane field Hx partially transi-

tions into a disordered bubble lattice. (c) Full sample coverage of the

disordered bubble lattice is achieved at μ0H = 344 mT.

the objective lens is largely switched off to prevent field mag-

netization along the optical axis of the transmission electron

microscope and the specimen plane is slightly defocused to

observe magnetic phase contrast.

2D lattices of magnetic bubbles have been created in the

lamella by applying increasing magnetic fields (field direction

fixed along the optical axis), while deliberately tilting the

sample θ = 20◦ away from the c axis around the b axis. This

allows adjustment of in- and out-of-plane magnetic fields with

respect to the lamella. Upon increasing the external field, the

initial helical state partially transforms into an intermediate

homochiral state [Fig. 1(a)]. Subsequently, the initial helical

state is partially transformed into a bubble state [Fig. 1(b)].

A complete magnetic bubble lattice appears above 344 mT

as depicted in Fig. 1(c). In this transformation process, the

disorder is introduced by the formation of irregular boundaries

as well as spatially separated nucleation sites. The precise
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(a)

(b)

(c) (d) (e) (f) (g) (h)

FIG. 2. (a) LTEM image of a 2D lattice of topologically trivial

magnetic bubbles in Mn1.4PtSn observed at room temperature in an

applied field of 344 mT under an angle of θ = 0.9◦ with respect

to the c axis. The crystal orientation and in-plane projection of the

magnetic field due to the slight tilt of the sample around crystallo-

graphic a axes are indicated. (b) Nontopological bubble lattice in

Mn1.4PtSn. Solid dots denote the positions of the bubbles extracted

from (a). The lattice sites are colored according to the number of

nearest neighbors using the following scheme: four – black; five

– pink; six – blue; seven – green; eight – yellow. The dominant

deviation from the sixfold coordinated trigonal packing are fivefold

and sevenfold coordinated defects. The bottom row shows zoom-

outs of lattice defects within the generally hexagonal bubble lattice:

(c) standalone seven neighbor bubble (disclination), (d) two bound

disclinations with five (pink) and seven (green) neighbors forming a

dislocation, (e) chain of dislocations forming a grain boundary, (f)

twisted bond (two bound dislocations) bound to a dislocation, (g)

an agglomeration of a four neighbor site and several seven neighbor

sites, and (h) an agglomeration of an eight neighbor site and three

five neighbor sites.

characterization of the intermediate states, as well as the

boundaries between different magnetic textures, is the subject

of a separate study.

Subsequently, to improve the LTEM contrast, the tilt-

ing angle was reduced to θ = 0.9◦ while maintaining the

applied field strength. The bubble lattice created by this pro-

tocol is relatively sparse, as evident in Fig. 2(a), with an

average distance of ≈0.18 µm, significantly exceeding their

individual sizes. As a result, their mutual interaction is pri-

marily governed by long-range dipolar forces and rather weak,

which generally promotes the formation of defects. Moreover,

disorder does not impact the internal structure of the bubbles

at lattice defects as, e.g., observed in densely packed lattices

or defects [30].

III. CHARACTERIZATION OF THE DISORDERED

BUBBLE LATTICE

In order to characterize the lattice, we determined the bub-

ble positions in a first step by employing a pattern recognizing

neural network. Partially annotated data from another exper-

iment, featuring similar bubbles, was utilized for network

training. Given the limited annotated data set, transfer learning

was employed [37] utilizing the pretrained Efficient Det D2

768 × 768 model from the TensorFlow library. To detect new

custom objects, we froze the section of the model responsible

for identifying “features” in the image and fine-tuned the lay-

ers responsible for classifying those features into the desired

objects. We furthermore note that the annotated training data

set was sparse, i.e., not all existing objects in the images

were annotated. Thus, to facilitate better learning, all regions

potentially containing unannotated objects were filled with

zero values. This was implemented to prevent the model from

taking into account potentially misannotated areas. The image

for bubble detection was significantly larger than the training

images. Therefore, a sliding window approach was employed.

This involved splitting the input image into smaller segments

and the detection results from the model were aggregated into

a unified outcome.

The result of this step is displayed in Fig. 2(b), where six-

fold coordinated bubbles (standard case in triangular lattice)

are colored blue, fivefold pink, and sevenfold green. Upon in-

spection of the coordination number, we observe that isolated

five- or sevenfold coordinated bubbles, which correspond to

disclinations [see Fig. 2(c)], are rarely present. Isolated bound

five to seven defect pairs, i.e., dislocations [Fig. 2(d)], on

the other hand, are occasionally observed within the lamella.

Their proliferation (and the absence of disclinations) is char-

acteristic for the hexatic phase [32]. When arranged as chains,

dislocations form (large angle) grain boundaries [Fig. 2(e)].

The dislocation density along the one-dimensional trace of

the boundary determines the character and angular mismatch

of the adjacent well-ordered domains or grains. Straight and

bent domain boundaries are the dominant type of defects

observed throughout the lamella. Finally, we also observe

twisted bonds composed of two adjacent edge dislocations

(or more) with opposite Burgers vectors [Fig. 2(f)]. These

lattice configurations correspond to local elastic deformations

that typically occur in connection with grain boundaries. They

may be formed in response to local stresses (e.g., due to

local defects) or due to glide of dislocations on top of each

other. Similarly, more complex and very rare lattice defects

involving seven and four neighbor sites at highly distorted

lattice regions may form at junctions of grain boundaries or

highly frustrated lattice regions [Figs. 2(g) and 2(h)].

The nature of the observed defects, such as the domain

boundaries, is further elucidated by mapping the phase of the

complex local orientational order parameter of the observed

lattice state (Fig. 3). For a 2D hexagonal lattice, the local

orientational order parameter can be defined through the bond
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FIG. 3. Spatial orientation map of the bubble lattice. Lattice sites

are color coded according to the number of nearest neighbors: four

– black; five – pink; six – blue; seven – green; eight – yellow. The

observed clusters (grains) are separated by chains of five to seven

defects, identified previously.

orientations between nearest-neighboring sites [2]:

�6(ri ) =
1

Nnn

Nnn
∑

j

ei6�i j , (1)

where Nnn represents the number of nearest-neighbor bubbles

around the reference bubble located at position ri, which can

be determined by Delaunay triangulation. �i j is the angle

between the i j bond and an arbitrary but fixed axis. The map

of the phase of the order parameter arg[�6(ri )]/6 exhibits

the presence of grains separated by the previously observed

grain boundaries as well as local orientation variations in

the vicinity of localized defects. We note that sharp jumps

from 60◦ to 0◦ stem from the 60◦ = 360◦/6 periodicity of the

argument of the order parameter divided by 6.

Another perspective on the 2D lattice state is obtained

by analyzing the structure factor of the whole field of view

[Fig. 4(a)]. In the following the structure factor is computed

from the bubble positions R j by evaluating

S(k) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

e−ikR j

∣

∣

∣

∣

∣

∣

2

, (2)

FIG. 4. (a) Structure factor of disordered bubble lattice computed

from Eq. (2). (b) Transmission REXS diffraction pattern of a dif-

ferent lamella of similar geometry and in a slightly larger external

magnetic field. Note that the sharp black lines along x and y, the

sharp white lines along the diagonals, and the white square in the

middle are due to the beam stop support.

where N denotes the total number of bubbles and k is the

reciprocal lattice vector. In this definition the structure factor

corresponds to the recorded intensity in a diffraction experi-

ment on point-like scatterers [38].

The structure factor reveals a diffuse ring of first order

without or very faint systematic reflections from larger sixfold

symmetric grains, and a faintly visible ring of second order,

indicating the absence of long range orientational order. To

corroborate this finding, we also show a diffracted intensity

from resonant elastic x-ray scattering experiments (REXS)

on a similar lamellae exposed to a similar magnetic field

protocol that exhibits a similar diffusive ring (as well as faint

reflections from larger sixfold symmetric grains). This REXS

experiment, which has been carried out on the I10 beamline at

DIAMOND Light Source (UK), using the portable octupole

magnet system (POMS) [39], acquired diffracted intensities

over an 8 µm × 8 µm specimen area, hence improving on

the lattice site statistics compared to LTEM. The photon en-

ergy was tuned to the Mn L3 edge (642.2 eV). Due to the

wavelength needed for resonant scattering as compared to

the magnetic lattice spacing (momentum transfer in the first

Brillouin zone), the experiment was carried out in transmis-

sion (for further details on the REXS experiment we refer

to Ref. [40]). The magnetic transformation path as well as

the external field of 480 mT applied under an oblique angle

θ = 30◦ in the REXS experiment deviated somewhat from

those in the LTEM experiments. While the larger field may

slightly increase the bubble spacing (and hence the tendency

to disorder), the oblique angle difference as well as the

slightly different magnetic field protocol and lamella geom-

etry may lead to a slightly different disorder state, e.g., with

respect to defect density and grain sizes. We therefore abstain

from a more detailed interpretation of azimuthal intensity

modulations in the REXS data (also noting that they partially,

e.g., around the diagonal direction, are due to scattering arti-

facts of the beam stop).

From these observations we may already conclude that

the lattice under consideration is not a completely disordered

liquid. On the other hand, the lattice is not well-ordered either

(i.e., no Bragg glass). We may, however, also exclude the

hexatic phase, which would exhibit a smaller orientational

disorder (e.g., visible through distinguishable systematic re-

flections). Furthermore, the distribution of defects does not

correspond to a multigrain state composed of well-defined

(i.e., separated by grain boundaries) grains of different orien-

tation. These findings point towards the presence of a glassy

state.

In order to further elucidate the nature of the observed lat-

tice state, we evaluated the orientational correlation function

(see Fig. 5) over the whole field of view depicted in Fig. 2(a)

in the following. The orientational correlation function G6(r)

is defined as

G6(r) =
1

Nr

Nr
∑

(i, j)

�6(ri )�
∗
6 (r j ), (3)

where Nr is the number of bubbles at distance r = |ri − r j |.

The rather large oscillations of G6 visible in Fig. 5 are due to

the restricted field of view limiting the statistics toward large

distances in particular.
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FIG. 5. Orientational correlation function G6(r) of the magnetic

bubble lattice as a function of the normalized distance r/a0 with

a0 being the mean bubble distance (blue curve). The orange curve

represents an exponential fit to the data neglecting the local minima

results in G6(r) = e
−0.56( r

a0
)
.

The correlation function exhibits an exponential instead of

an algebraic decay. This short range orientational correlation

corroborates that the observed phase is not hexatic (exhibiting

algebraic long-range orientational correlation). Moreover, the

absence of long-range orientational correlation implies the

absence of long-range translational correlation. Indeed, vortex

glass phases, previously observed in superconducting vortex

lattices [22], show a similar short range orientational order.

The origin of the latter is the prevalence of dislocations, typ-

ically forming grain boundaries and twisted bonds. To gain

further insight, we finally study how a change in the external

magnetic field is deforming the observed lattice state.

IV. GLASS-LIKE MOTION

As discussed above, the nontopological bubble lattice in

Mn1.4PtSn can be prepared by increasing the external mag-

netic field in a carefully chosen orientation. The resulting

sequence of transformations of magnetic textures leads to a

nonergodic state and rather large modulations of intermediate

states. In the following, we study the impact of a small change

of the external field. The small field change is facilitated

by tilting the lamella by 0.8◦ around the y direction thereby

increasing the field in the x direction by approximately 5 mT.

The lattice positions before and after the increase of the

in-plane field are depicted as blue and red dots in Fig. 6,

respectively. Green and yellow dots mark lattice positions,

where nontopological bubbles have been transformed into

skyrmions—a transformation that has been reported previ-

ously for that sector of phase space in Mn1.4PtSn [34]. The

difference between the lattice positions corresponds to their

displacement resulting from this slight field change (Fig. 7).

The observed displacements average to 0.1 ± 10.7 nm in

the x direction and 3.2 ± 15.8 nm in the y direction, respec-

tively. The histogram depicted in Fig. 8 exhibits a roughly

isotropic behavior. Accordingly, most of the displacements are

well below one order of magnitude smaller than the average

bubble distance. Larger displacements approaching one order

FIG. 6. Positions of bubbles and skyrmions at slightly different

in-plane magnetic fields. Blue and red dots correspond to bubbles

before and after application of additional in-plane field. Green and

yellow dots indicate the positions of bubbles that transformed into

skyrmions. Exemplary zoom-ins exhibit the transformation.

of magnitude below the nearest neighbor distance occur at

strongly confined regions of the lattice only.

Such a strongly confined plastic motion is indicative of a

glassy nonergodic state, where particles typically depin plasti-

cally, leading to large local distortions and shifts, while others

remain pinned [12]. The depinning typically occurs in the

vicinity of lattice defects such as grain boundaries. Indeed,

we observe a weak correlation of plastic motion and defects

in regions of small lattice defect density that are more stable

than regions of large density. The strong pinning prohibits the

ergodic exploration of all possible lattice configurations by

thermal fluctuations.

Moreover, the absence of a significant correlation of the

motion to the direction of the external field indicates that the

local motion of the lattice is driven by a random force field

generated by the distribution of crystalline defects (in anal-

ogy to film roughness as in the case of phenomenologically

similar bubble lattices in ferrimagnetic Garnet films studied

FIG. 7. Displacement of bubbles of the lattice shown in Fig. 2

upon slight variation of external magnetic field angle (by tilting the

lamella). The size of the arrows is proportional to the displacement.

Bubbles with six neighbors are depicted with blue arrows. Bubbles

with five and seven neighbors are shown in purple and green, re-

spectively. Black and yellow arrows correspond to four and eight

neighbors, respectively.
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FIG. 8. Histogram of Cartesian displacement components of lat-

tice positions along the x and y axes upon slight variation of external

magnetic field angle. The average and width (standard deviations) of

the distribution amount to 0.1 and 10.7 nm in x direction and 3.2 and

15.8 nm in y direction, respectively.

extensively in Refs. [14,15,24]). The role of crystal defects as

pinning centers is further corroborated by the observation that

the random shifts seem not to depend on the magnetic soliton

being a bubble or skyrmion (Fig. 6). Note, however, that the

small sample size does not allow a statistically significant

corroboration of that observation.

V. SUMMARY

In summary, we have demonstrated a pathway for creating

strongly disordered 2D lattices of nontopological magnetic

bubbles in Mn1.4PtSn. Herein, the disorder is imprinted by

subsequent nucleation of different magnetic textures in an

external magnetic field that are spatially separated by irregular

boundaries. The shape and formation of these boundaries is

likely influenced by the random background pinning potential

originating from the large number of atomic lattice defects in

this nonstoichiometric compound. The bubble lattice shows

characteristics of a glass state in the locally observed lattice

defects, the structure factor, and the exponential decay of the

orientational correlation.

These results shed light on the general phenomenology

of disordered magnetic skyrmion and bubble lattices, as pin-

ning of the condensed nanoscale solitons by alloying disorder

will, to some extent, always be present in real alloyed chiral

helimagnetic systems. The induced plastic behavior of the

lattice may be detrimental to applications aiming for the fast

translation of bubble or skyrmion-based information units. On

the other hand, stable storage of information may require that

many different metastable configurations can be created and

maintained over long times. Therefore, next steps towards

such applications should concentrate on exploring dynamic

response at various timescales and developing means to ma-

nipulate the observed glassy state in Mn1.4PtSn.
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