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Abstract

Artificial intelligence (AI) and machine learning (ML) are reshaping cancer research and
care. In pediatric oncology, early evidence—most robust in imaging—suggests value for
diagnosis, risk stratification, and assessment of treatment response. Pediatric endocrine
tumors are rare and heterogeneous, including intra- and extra-adrenal paraganglioma
(PGL), adrenocortical tumors (ACT), differentiated and medullary thyroid carcinoma
(DTC/MTC), and gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN). Here, we
provide a pediatric-first, entity-structured synthesis of AI/ML applications in endocrine
tumors, paired with a methods-for-clinicians primer and a pediatric endocrine tumor
guardrails checklist mapped to contemporary reporting/evaluation standards. We also
outline a realistic EU-anchored roadmap for translation that leverages existing infrastruc-
tures (EXPeRT, ERN PaedCan). We find promising—yet preliminary—signals for early
non-remission/recurrence modeling in pediatric DTC and interpretable survival predic-
tion in pediatric ACT. For PGL and GEP-NEN, evidence remains adult-led (biochemical
ML screening scores; CT/PET radiomics for metastatic risk or peptide receptor radionu-
clide therapy response) and serves primarily as methodological scaffolding for pediatrics.
Cross-cutting insights include the centrality of calibration and validation hierarchy and
the current limits of explainability (radiomics texture semantics; saliency # mechanism).
Translation is constrained by small datasets, domain shift across age groups and sites,
limited external validation, and evolving regulatory expectations. We close with pragmatic,
clinically anchored steps—benchmarks, multi-site pediatric validation, genotype-aware
evaluation, and equity monitoring—to accelerate safe, equitable adoption in pediatric
endocrine oncology.

Keywords: pediatric oncology; endocrine tumors; machine learning; explainability; risk
stratification; techquity; radiomics; ethical Al

1. Introduction

Pediatric endocrine tumors are rare and clinically diverse. Treatment choices must
balance oncologic control with preservation of endocrine function, normal growth and
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development, and the prevention of late effects that span a child’s lifetime. This review
concentrates on five entities that dominate pediatric endocrine oncology: differentiated
thyroid carcinoma (DTC), medullary thyroid carcinoma (MTC), adrenocortical tumors
(ACT), intra- (former termed pheochromocytoma) and extra-adrenal paraganglioma (PGL),
and gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN).

DTC is the most frequent endocrine malignancy in children and adolescents, with
higher malignancy rates in nodules and more frequent nodal/distant spread than in adults,
yet very low disease-specific mortality. Decisions aim to tailor surgery, radioactive iodine
(RAI), and surveillance to reduce morbidity while safeguarding control [1-3].

Pediatric MTC is uncommon and largely multiple endocrine neoplasia type 2 (MEN2)-
associated. Timing of thyroidectomy is genotype-driven (RET codon risk), with calcitonin
and carcinoembryonic antigen used for follow-up [4,5].

ACT are ultra-rare in pediatrics and biologically heterogeneous. Surgery is central,
but outcomes vary widely even within stage, motivating refined prognostication [6,7].

Pediatric PGL have a very high heritable fraction and genotype-specific metastatic
risk (e.g., SDHB). Care depends on safe pre-operative management, resection completeness,
and lifelong genotype-tailored surveillance [8-11].

GEP-NEN are exceptionally rare in children and adolescents. Contemporary care
borrows adult pathways centered on somatostatin receptor (SSTR) imaging and pep-
tide receptor radionuclide therapy (PRRT) for advanced disease. Standardized detection,
non-invasive grading surrogates, and consistent response assessment remain pressing
needs [12-14].

1.1. A Brief Primer on AI/ML for Clinicians

Al refers to the broader field of creating computational systems capable of performing
tasks that typically require human intelligence. ML is a subset of Al focused on developing
algorithms and statistical models that enable systems to learn from data.

In pediatric oncology, the most relevant applications are supervised models trained to
predict predefined outcomes—recurrence, survival, treatment response, or complication
risk—using structured variables (demography, staging, laboratory data), images (ultra-
sound, CT, MRI, PET), pathology, or genomics.

Tabular learners (regularized regression, gradient-boosted trees, and survival exten-
sions) work well with clinical variables, whereas convolutional networks dominate image
analysis. Because predictions inform care, two properties are critical: predicted proba-
bilities should reflect observed frequencies (calibration), and clinicians should be able to
see which inputs/which image part drove the estimate and why (explainability) [15-17].
Depending on the questions the user may have regarding the model’s outcome, a distinct
explanation must be applied. In case the user wants to investigate which input features
were completely irrelevant to the outcome, Alterfactual Explanations should be used [18].
To compare the model’s prediction with a healthy/sick version of the input of the same
patient, Counterfactual Explanations would create appropriate complementary results [19].
Another method, primarily used for image explanations, is the use of saliency maps, where
each pixel in the provided image is highlighted based on the importance leading to the
model’s outcome. This approach showed promising results in analyzing adult patients’
pain level based on their facial expressions [20]. Reporting should therefore pair discrimina-
tion metrics with calibration curves and provide case-level explanations that are clinically
coherent. In pediatrics, prospective evaluation and human oversight are prerequisites
before clinical use.

Patient-facing Al—such as chatbots, digital navigators, and symptom-tracking
assistants—aims to support children and families with education, logistics, and self-
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management across the care pathway. Many such tools are powered by large language mod-
els (LLMs) for natural-language interaction and, increasingly, by large multimodal models
(LMMs) that process both text and images to provide integrated responses. Although this
review focuses on clinician-facing decision support, we briefly note patient-facing tools
where they intersect with pediatric endocrine oncology.

Figure 1 summarizes the main method families, pediatric oncology domains, and eval-
uation and explainablility concepts that structure this review, highlighting how calibration,
discrimination, and case-level explanations underpin validation and implementation.

Clinical prediction models in pediatric oncology

Explainability &

— Methods — Clinical domains — XAl

Calibration

Convolutional
—> Networks

edical imaging

—» Neurooncology

Hematologic
Milagnancies

Tabular Learners

—»  Solid Tumors

Pediatric
Endocrine Tumors Explainability
—® Clinically coherent
case-level explanations
|
v

Validation & Implementation

Figure 1. Schematic overview of clinical prediction models in pediatric oncology, distinguishing
core method families (blue), key clinical domains (green), and evaluation and explainability pillars
(purple) that together support validation and implementation through prospective and external
evaluation, harmonization, and human oversight.

1.2. Current Evidence on AI/ML in Pediatric Oncology

AI/ML has matured unevenly across pediatric oncology [21-24]. Evidence is most
advanced in neuro-oncology, where deep learning for detection, segmentation, grading
surrogates, and treatment-response assessment appear regularly. The last two tasks are
also often addressed by radiomic analysis. Nonetheless, truly independent external valida-
tion and clinical-impact studies remain uncommon, and performance can degrade across
scanners and sites due to domain shift [25-28]. Hematologic malignancies have seen steady
progress in risk stratification and minimal-residual-disease support tools [29-36]. In solid
tumors, retrospective, single-center radiomics and deep learning pipelines are proliferating
for diagnosis and survival prediction, yet many lack harmonized acquisition protocols,
rigorous calibration, pre-specified action thresholds, and interpretability—all barriers to
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translation [37-40]. Multi-institutional efforts to standardize imaging, define pediatric-
specific outcomes, and harmonize data are emerging but are not yet routine [41,42].

1.3. AI/ML in Pediatric Endocrine Tumors

Against this backdrop, pediatric endocrine tumors present both an opportunity and a
stress test: DTC offers large enough cohorts for interpretable recurrence-risk modeling, ACT
and PGL demand models that remain reliable at rare-disease scale and across genotypes,
and GEP-NEN require method transfer from adult datasets with careful pediatric validation.
Progress has been slow because cohorts are small and genetically heterogeneous (e.g., RET,
SDHx, TP53), outcomes accrue over long horizons, imaging and assay protocols vary across
centers, and cross-border data sharing (general data protection regulation; GDPR) and
assent/consent requirements add friction to aggregation.

This review responds with a pediatric-first, entity-structured synthesis of AI/ML
applications in DTC, MTC, ACT, PGL, and GEP-NEN, mapped to specific clinical ques-
tions (e.g., diagnosis, prognosis, treatment response). We clearly separate pediatric from
adult-only evidence (the latter used as methodological context), consolidate studies in
a Table 1, and distill methodological and clinical guardrails aligned with contemporary
reporting /evaluation standards in Table 2. We also outline an EU-anchored route to har-
monized, multi-site validation via the European Cooperative Study Group for Pediatric
Rare Tumors (EXPeRT), and the European Reference Network for Paediatric Oncology
(ERN PaedCan), with priority on clinically meaningful outcomes rather than algorithmic
metrics alone.

2. Methods

We reviewed peer-reviewed studies that developed, validated, or evaluated AI/ML
tools for diagnosis, prognosis, treatment response, or clinical decision support in children
and adolescents with the five endocrine tumor entities of interest: DTC, MTC, ACT, PGL,
and GEP-NEN. “Pediatric” was defined as birth through 18 years of age. Mixed-age studies
were eligible when pediatric results were reported separately, or a pediatric subgroup
could be extracted with reasonable fidelity. Purely adult cohorts were excluded except
where (i) the methodology was exemplary and clearly informative for pediatric translation
in the same tumor family, or (ii) guidance documents (reporting standards, evaluation
frameworks, or regulatory materials) were necessary to contextualize pediatric adoption.
We excluded case reports, editorials, letters, conference abstracts without peer-reviewed
full texts, and preprints unless later published.

Searches were performed in PubMed /MEDLINE from inception to 30 October 2025
using Boolean combinations of pediatric terms, tumor entity terms, and AI/ML terms
(verbatim queries in Appendix A Table Al). We also hand-searched reference lists of
included papers and recent reviews and used citation tracking to identify additional
records. Contemporary healthcare-Al guidance (e.g., TRIPOD-AI, PROBAST-AI, STARD-
Al, SPIRIT-AI/CONSORT-AI, DECIDE-AI, CLAIM, METRICS) and relevant European
regulatory materials were consulted to frame evaluation standards [43-50]. Titles/abstracts
were screened, followed by full-text review. We extracted study characteristics including
population (age range, tumor entity, sample size, setting), data sources (imaging modality,
laboratory/clinical variables, and—when available—omics), model class and training
scheme, outcomes and time horizons, validation strategy (internal resampling, temporal
split, geographic external testing), performance metrics (discrimination and calibration),
explainability, and any decision-curve or utility analyses.

Given the expected small number of pediatric endocrine tumor studies and the hetero-
geneity of designs, inputs, and endpoints, we conducted a narrative synthesis organized by
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tumor entity and clinical question. For most entity—task pairs, pediatric evidence comprised
one or no studies (often k < 1), with non-comparable outcomes, variable imaging/assay
protocols, and absence of calibration and action-threshold reporting. Accordingly, no meta-
analysis or semi-quantitative pooling was attempted. When comparable pediatric and
adult evidence existed, adult-only studies were treated as methodological scaffolding and
labeled explicitly to avoid overgeneralization. Emphasis is placed on validation approach,
calibration reporting, transparency/interpretability, and reporting completeness.

This review was not prospectively registered. Its scope mirrors the five entities defined
in the Introduction. Any updates to the search after 30 October 2025 will be described at
submission if applicable.

3. AI/ML Applications in Pediatric Endocrine Tumors

Throughout this section, for each entity, studies are discussed in relation to the decision
they could inform if validated: (i) triage/detection; (ii) risk estimation for treatment
planning and follow-up; (iii) peri-operative safety; and (iv) treatment response. Reported
discrimination is noted alongside validation and calibration when available. Clinical use
would depend on external pediatric testing and pre-specified action thresholds aligned
with existing care pathways (Section 4; Table 2).

3.1. Differentiated Thyroid Carcinoma

Ultrasound malignancy triage: A transfer-learned ultrasound system (AI-Thyroid)
evaluated in children and adolescents separated malignant from benign nodules with high
discrimination and outperformed ACR-TIRADS/K-TIRADS in head-to-head comparisons.
The retrospective design and non-standardized image acquisition temper enthusiasm, as
do the absent calibration and decision-impact analyses (e.g., avoided biopsies). Explanatory
attributions did not consistently map onto familiar sonographic characteristics, limiting
bedside interpretability [51].

A second single-center series spanning children and young adults underscored the
pediatric trade-off: sensitivity remained high, but specificity was modest compared to
radiologists and TI-RADS, highlighting the need for predefined thresholds that account for
pediatric tolerance of missed cancers and unnecessary fine-needle aspirations (FNA) [52].

In practice, any ultrasound model would need to present calibrated probabilities tied
to FNA vs. observation policies and to perform robustly across vendors and protocols.

Early non-remission/recurrence: In a multi-center pediatric registry (GPOH-MET,
n = 250), an interpretable gradient-boosted model predicted a 24-month composite of
failure to achieve remission or structural recurrence with strong discrimination on an
independent test split. Postoperative thyroglobulin, metastatic status at presentation, and
very young age consistently shaped estimates in case-level explanations suitable for tumor-
board review. Limitations include the retrospective design, Europe-centric cohort, and
the absence—so far—of prospective maintenance calibration and decision-curve analyses
aligned to pediatric management thresholds [53].

If validated prospectively, such tolls could help individualize the extent of lymph-
node dissection, the indication and activities of RAI, and surveillance intensity after
initial therapy.

In adult DTC, AI/ML for ultrasound triage and nodal assessment is comparatively
mature, and large recurrence/non-remission models increasingly report transparent vari-
able effects and calibration checks. Generalizability across devices/vendors and consistent
calibration remain persistent obstacles, so these studies serve mainly as methodological
templates rather than evidence for pediatric deployment [54]. AI/ML studies in adult
cohorts relevant to pediatric endocrine tumors are detailed in Appendix A Table A2.
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Translation hinges on pediatric multi-site testing, assay- and scanner-level calibration
(thyroglobulin and ultrasound), and predefined action thresholds linked to FNA, surgery,
RALI and follow-up. Entity-agnostic points on interpretability are summarized in Section 4
and Table 2.

3.2. Medullary Thyroid Carcinoma

No pediatric-only ML models for prognosis or surveillance were identified.

Adult cohorts suggest that ultrasound radiomics and combined ultrasound-plus-
serology nomograms can stratify nodal risk pre-operatively [55,56], while RET-variant
triage tools are being used as adjuncts in clinical genetics workflows [57]. Most adult series
are retrospective and single- or dual-center with variable calibration reporting.

Direct pediatric use would require genotype-aware models that account for age and cal-
citonin kinetics, pediatric-tuned ultrasound features, and thresholds linked to MEN2-driven
surgical timing and compartment planning—none of which have been shown to date.

3.3. Adrenocortical Tumors

Survival prediction (clinical features): A national pediatric registry (GPOH-MET)
derived an interpretable survival model from four readily available variables (distant
metastasis, tumor volume, pathologic T stage, and resection status). Discrimination was
excellent on an internal test set, and individualized survival curves aided communication
at the bedside. Explanations revealed non-linear effects, including a data-guided tumor-
volume inflection slightly lower than conventional cut-points. The study is limited by
single-registry derivation, retrospective data curation, incomplete germline information
(e.g., TP53), and the abscence of pediatric external validation with update rules [58].

Properly validated, such a parsimonious model fits rare-disease realities and supports
equity by avoiding dependence on advanced assays.

Urinary steroid metabolomics (diagnosis/differentiation): A complementary analysis
used supervised learning on targeted gas chromatography-mass spectrometry urinary
steroid profiles to distinguish ACT from controls and to separate adrenocortical carcinoma
(ACC) from adrenocortical adenoma (ACA).

The signal is intriguing but rests on internal validation only, without calibration or
decision-impact evaluation, and with the usual concerns about batch and protocol effects
in single-laboratory pipelines [59]. As an adjunct, this line of work will need multi-center
assay harmonization and external testing before it can be fused with clinical and imaging
data in pediatric pathways.

Adult ACC studies provide methodological templates—from clinical-only survival
tools to multi-omics prognostics—but their resource demands and cohort structures limit
portability to pediatrics without careful adaptation [60-67].

3.4. Pheochromocytoma and Paraganglioma

We found no pediatric-only AI/ML models.

Adult studies indicate that biochemical ML scores built from age, pre-test risk, and
plasma metanephrines/methoxytyramine can outperform clinicians’ initial estimates. How-
ever, simply displaying probabilities to specialists did not meaningfully change final inter-
pretations, underscoring that workflow integration and action thresholds are essential [68].
Clinical-parameter models have predicted intra-operative hemodynamic instability with
encouraging accuracy and included calibration and decision-curve analyses; feature at-
tributions emphasized inflammatory and coagulation markers [69]. Imaging signatures
derived from venous-phase CT have demonstrated externally validated discrimination
for metastatic potential and prognostic value for metastasis-free survival, but they were

https://doi.org/10.3390 /biomedicines14010146


https://doi.org/10.3390/biomedicines14010146

Biomedicines 2026, 14, 146

7 of 22

trained in high p >> n settings with limited reporting on feature stability and calibration,
warranting caution [70].

For pediatric translation, genotype-aware evaluation (SDHB/SDHD /VHL), harmo-
nized protocols, and external pediatric testing are prerequisites. Screening or peri-operative
models would need thresholds embedded in tumor-board workflows rather than stand-
alone probability displays.

3.5. Gastroenteropancreatic Neuroendocrine Neoplasms

No pediatric-only AI/ML studies were identified.

In adults, multi-center radiomics across CT and MRI has repeatedly separated lower-
from higher-grade disease and estimated nodal status with good discrimination, while
lesion-level SSTR-PET radiomics for PRRT response show moderate performance that has
not yet translated into patient-level benefit [71-74].

Any pediatric adoption would require harmonized reconstruction, external pediatric
testing, and prospective evaluations that ask whether imaging-based stratification actually
changes operative planning or PRRT selection. Equity monitoring is salient where access to
SSTR-PET and PRRT is uneven.

3.6. Patient-Facing AI—Cross-Entities

We did not identify endocrine-specific, pediatric patient-facing tools. In broader
pediatric oncology, small studies of general-purpose chatbots and digital navigators suggest
that they can improve accessibility and task completion for basic education and logistics
(appointments, fasting instructions, symptom diaries), but clinical accuracy varies and tolls
are unsuited to treatment advice or center selection without expert curation and escalation
pathways [75].

Adjacent pediatric fields report similar patterns: symptom-triage assistants that esca-
late fever, pain, or nausea to nurses; pre-operative preparation and survivorship education
delivered via reading-level-adaptive chat; and adherence reminders and care-coordination
prompts for families who travel long distances. These prototypes typically demonstrate
usability gains and knowledge recall rather than patient-level outcome changes, rein-
forcing the need for limited scopes, plain-language outputs, and explicit handoffs to
clinicians [76-82].

Ongoing reliability efforts: To reduce error and drift, current pilots increasingly
(i) ground chatbot answers in curated, locally approved pediatric content (guidelines,
patient leaflets) via retrieval-augmented generation; (ii) use safety classifiers/abstention
rules to block dosing or treatment recommendations and trigger escalation; (iii) implement
structured intent detection (education, logistics, symptom check) with role-appropriate
responses; (iv) log interactions for quality review and subgroup monitoring (language, age
band); and (v) provide offline/low-bandwidth modes to support equitable access.

For pediatric endocrine translation, a scoped navigator for MEN2/PGL/DTC could
handle scheduling, test preparation (e.g., biochemical sampling requirements), and travel
letters, while abstaining from advice on dose changes or surgical timing and routing such
questions to the MDT.

In adult thyroid and endocrine cancers, evaluations of LLM-based chatbots provide
readable answers to common questions but show variable accuracy on management topics,
frequent omissions, and no evidence of calibration or patient-level benefit. Most studies
are cross-sectional and platform-specific [83-85].

3.7. Multi-Omics, Gene Expression, and Network-Based AI—Cross-Entities

No pediatric endocrine tumor studies developing or externally validating gene expres-
sion, network-based, or multi-omics ML models were found.
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Adult work illustrates how expression signatures, co-expression networks, radio-
genomic links, and multi-omics fusion can support subtyping, risk stratification, and nodal
prediction in related endocrine tumors [86-91].

These pipelines are best viewed as methodological scaffolding that would require
pediatric biospecimen harmonization, explicit batch-effect control, conservative feature
spaces relative to sample size, and pediatric external validation with calibration.

A summary of the identified studies on AI/ML applications in pediatric endocrine

tumors is provided in Table 1.

Table 1. AI/ML studies in pediatric endocrine tumors.

Ref./Entity Data Modality = Task/Endpoint Algorithms Validation Performance Limitations
DL model AUROC Pilot;
Ha et al. Benign vs. . Two pediatric 0.913-0.929; retrospective;
. . (AI-Thyroid, L
2025 [51]/Thyroid malignant cohorts; sensitivity external
Ultrasound transfer- . L
nodules, two nodule plane-specific 79-89%; pediatric-only
. DN learned from h e s ..
sites, n = 128 classification adult data) testing specificity training not
80-92% used
Yang et al.
2023 [52]/Thyroid Cqmpa.re SenSIttVIt'y Mixed age
nodules radiologists, CNN-based 87.5%; band: needs
(children and Ultrasound ACR TI-RADS, e Internal test set specificity ’
classifier external
young adults), and DL 36.1% (DL 1
. . validation
single-center, algorithm model)
n =139
Redlich et al. Routine clinical Pred‘lct' Gradient- Stratified AUROC ~ 0.86 Retrospective;
2025 [53]/DTC, . . non-remission/ hold-out test needs
. + biochemical, boosted trees . (test); mean .
national - recurrence - set with prospective and
. metastasis - (XGB) with ~0.82 across
registry status within SHAP 50 bootstrap resamples external
n =250 24 months resamples p validation
Redlich et al. Individualized Stratified C-index 0.925
2025 [58]/ACT, Routine clinical survival XGB-Cox with train/test; (test); bootstrap Retrospective;
national variables rediction SHAP 500-bootstrap mean 0.891; single-registry
registry, n = 97 P estimation IBS ~ 0.09
Tumor Logistic
Wudy et al. Urinary steroid detection (ACT regrgssion' Multi-center
2025 [5.9]/ACT’ GC-MS vs. controls) decision tree; Internal only Not provided ex.t ern.al
national . and ACC vs. . validation
. metabolomics PCA/clustering
registry, n = 46 ACA . needed
. I (exploration)
differentiation

Abbreviations: ACA, adrenocortical adenoma; ACC, adrenocortical carcinoma; AU(RO)C, area under the (re-
ceiver operating characteristic) curve; C-index, concordance index; CNN, convolutional neural network; CV,
cross-validation; DL, deep learning; DTC, differentiated thyroid carcinoma; GEP-NEN, gastroenteropancreatic
neuroendocrine neoplasm; LNM, lymph node metastases; MLP, multilayer perceptron; PGL, paraganglioma;
PanNET, pancreatic neuroendocrine tumors; PRRT, peptide receptor radionuclide therapy; RF, random forest;
SHAP, SHapley additive explanations; SVM, support vector machine; US, ultrasound; XGB, XGBoost.

4. Methodological Guardrails for Pediatrics

Checklists help readers know what to report; they do not tell pediatric teams how
to build reliable tools in rare, genotype-diverse diseases. This section distills practical
guardrails for pediatric ETs and indicates where common Al reporting frameworks fit—and
where they do not.

Problem formulation and endpoints: Pediatric ET decisions cluster around four do-
mains: triage/detection (e.g., thyroid FNA vs. observation), risk estimation for treatment
planning and follow-up (e.g., early non-remission in DTC; survival in pACT), peri-operative
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safety (e.g., PPGL hemodynamic instability), and treatment response (e.g., imaging sur-
rogates for grade/PRRT response). Credible studies define actionable endpoints and
time-at-risk windows up front, specify inclusion/exclusion with temporality (to avoid
leakage), and state thresholds aligned to existing pathways. Ambiguous composites (e.g.,
lesion-level signals used to infer patient-level benefit) should be avoided or clearly justified.
TRIPOD-AI supports clarity for prediction models [43] and STARD-AI helps diagnostic
accuracy [45], but neither dictates pediatric thresholds—these must be pre-specified with
clinician input.

Data provenance, labeling, and harmonization: Label quality and site effects drive
most downstream failures. For imaging, acquisition and reconstruction must be docu-
mented (ultrasound presets; CT kernel/slice thickness; MRI sequence; PET reconstruction).
When radiomics is used, Image Biomarker Standardization Initiative (IBSI; [92])-conformant
feature definitions and reporting of resampling/quantization are essential, and feature
stability (test-retest, inter-scanner, or phantom) should be shown. For clinical /biochemical
variables, pediatric reference ranges and assay variability (e.g., thyroglobulin, calcitonin)
should be explicit; for omics, batch correction and cross-platform normalization are re-
quired. Harmonization methods (e.g., ComBat; [93]) must be specified. CLAIM 2024 and
METRICS (radiomics) cover much of this [49,50], but ultrasound specifics and pediatric
ranges often need additional local detail.

Clinician’s note: For radiomics, use IBSI-conformant features and show they are stable
across scanners. For labs like thyroglobulin/calcitonin, name the assay and range so risks
can be compared across sites.

Small-N analysis and uncertainty: Pediatric ET cohorts are small and genetically het-
erogeneous (RET, SDHx, TP53). Analyses should acknowledge the p > n regime: constrain
feature spaces, prefer parsimonious or regularized models when performance permits,
use learning-curve plots, and avoid optimistic single splits. Internal validation should
use bootstrap or nested cross-validation with leakage safeguards. Where feasible, add
temporal and geographically external tests. TRIPOD-AI and PROBAST-AI help structure
these choices but do not replace transparent code/configuration sharing [43,46].

Clinician’s note: In small cohorts, prefer models that keep features few and stable. A
slightly lower AUROC with good calibration and transparent variables usually outperforms
a complex model when you move between centers.

Calibration, thresholds, and clinical utility: Discrimination alone does not determine
use. Pediatric studies should report calibration (plot/metrics; calibration-in-the-large and
slope), define action thresholds linked to concrete actions (FNA, extent of surgery/RAI,
alpha-blockade plan, surveillance cadence), and include decision-curve analysis using
those thresholds [15,94,95]. External pediatric validation should confirm both calibration
and net benefit. DECIDE-AI encourages early clinical evaluation but does not prescribe
thresholds; pediatric teams must do so [48].

Clinician’s note: In practice, a “10% risk” should correspond to ~10 out of 100 similar
patients actually experiencing the event over the defined time horizon. When that is not
true, recalibration (slope/intercept adjustment) is required before you set action thresholds.

Interpretability and human oversight: In pediatrics, explanations support verification
and communication, not mechanism proof. SHAP attributes which inputs most influ-
enced a prediction but does not ensure those inputs map to meaningful clinical constructs
or generalize them. Saliency/attention maps show where a model looked, not which
properties were decisive. Many radiomic textures lack stable, biologically intuitive seman-
tics and can vary with acquisition. Practical mitigations include IBSI-conformant feature
spaces, stability checks, constraining features when possible, and pre-specifying the clinical
concepts explanations should reflect. Evaluation should include usefulness/appropriate-
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reliance endpoints (decision quality, threshold adherence, time to decision, cognitive work-
load) distinct from model trustworthiness (calibration/robustness/bias). CLAIM and
DECIDE-AI support reporting, but clinician-co-designed interfaces are often the missing
ingredient [48,49].

Clinician’s note: Treat explanations as verification aids; ask whether the top features
or image regions align with recognizable clinical constructs (e.g., margins, echogenicity,
microcalcifications in DTC)—and if not, pause, because attribution # mechanism.

Subgroups, fairness, and safety: Performance and calibration should be reported by
age bands, sex, ancestry, genotype (e.g., SDHB, TP53), and site/vendor strata. Failure-mode
analyses, missing-data patterns, and safeguards against data leakage are needed. For
patient-facing tools, scope should remain education/navigation with explicit escalation
to clinicians. Subgroup comprehension and accessibility merit monitoring. Standards
mention subgroup reporting but rarely define pediatric-relevant strata—teams must choose
them a priori [43,49,96].

Regulatory posture and lifecycle: If clinical deployment is envisioned, documentation
should anticipate European Union (EU) AI Act (high-risk) expectations, Food and Drug
Administration (FDA)/International Medical Device Regulators Forum (IMDRF) Good ML
Practice, and national device rules. That includes change-control plans (pre-determined
update procedures), drift surveillance, recalibration triggers, rollback procedures, and
audit trails. In Europe, leveraging ERN PaedCan/EXPeRT governance can streamline
oversight and cross-border collaboration. SPIRIT-AI/CONSORT-AI cover trial reporting,
but pediatric ETs often require pragmatic designs (cluster/stepped-wedge) rather than
classic RCTs [44].

Where the standards apply—and where they fall short:

TRIPOD-AI/PROBAST-ALI: Strong for what to report and risk-of-bias appraisal in
prediction models. They do not specify pediatric action thresholds or genotype-aware
subgroup sets.

CLAIM 2024: Imaging reporting is comprehensive. Pediatric ultrasound variance and
center-specific presets often demand extra local detail.

STARD-ALI: Useful for diagnostic accuracy, but lesion-level tasks and segmentation
outputs require careful mapping to patient-level decisions.

METRICS (radiomics)/IBSI: Define reporting and features but not biological meaning
or stability requirements—pediatric ETs should add test-retest/inter-scanner checks.

DECIDE-AL Orients early clinical evaluation. It does not replace pre-specification of
pediatric thresholds or utility endpoints.

SPIRIT-AI/CONSORT-ALI: Trial protocols/reporting are well defined. Feasibility
in very rare pediatric ETs often points to stepped-wedge/cluster designs and registry-
based endpoints.

A pediatric ET-focused, at-a-glance checklist that operationalizes these points appears
in Table 2.

Practical examples of these methodological guardrails (e.g., calibration and decision
curves) are provided in Appendix A Boxes A1-A4.
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Table 2. Methodological and clinical guardrails for AI/ML in pediatric endocrine tumors, mapped to
reporting/evaluation standards.

Guardrail Topic What It Means Pediatric ET-Specific Application Checklist Anchors
e.g., DTC: 24-month
Problem Clearly define intended use and no.n—remlssm.n/recurrence; pA'CT: TRIPOD-AI, STARD-AI
e . . . . disease-specific/overall survival ) .
specification, actionable endpoints/time-at-risk hori . PGL: i . bili (diagnostic tasks),
outcomes windows orizons; PGL: intra-op instability SPIRIT-AI (protocols)
risk; GEP-NEN: PRRT response
endpoints
Cohort Transparent inclusion/exclusion, Exclude post-outcome variables; I?I{Rél];(ilzs);—éi’l
construction, risk temporality, leakage safeguards; align imaging /biochemistry . . .
f bias appraisal of bias windows; report flow diagrams (risk-of-bias appraisal);
© PP s Tep & CLAIM
Describe consent/assent, CLAIM (data),
Data governance, de-identification, data use pediatric assent; family privacy; data ~ SPIRIT-AI/CONSORT-AI
consent agreements, minimization of use restrictions (ethics),
unnecessary elements institutional/GDPR notes
e.g., Thyroid nodule histology; PGL
risk by
Reference Define ground truth and adjudication; Grading of Adrenal STARD-AI, CLAIM,
standards report reader agreement Pheochromocytoma and TRIPOD-AI
Paraganglioma; PRRT response
definitions; centralized pathology
. Missing-data strategy; image ) CLAIM;
Preproc.es&.ng, normalization; batch/site correction; Cross—venglor US/CT/M.RI’ .P.ET METRICS (radiomics);
harmonization L recon settings; assay variability
radiomics standards IBSI conformance
TRIPOD-AI

Sample size,
analysis plan

Justify size; prespecify analysis/stop
rules; plan for small-N uncertainty

Rare pACT/PGL: multi-registry
pooling; federated learning;
learning-curve plots

PROBAST-AI (appraisal);
DECIDE-AI (pilot

evaluation)
. . Document transfer-learning for TRIPOD-AI,
trg/r[\cs)di?ngc Rep0ri:isgizﬁzimzr?gfae;}gizalgleters, pediatric US; share configs/code METRICS,
P y & where possible CLAIM
Validation Use bootstrap /nested CV; temporal Train in reglstry A, test in r?gls’.cry B; TRIPOD-AL STARD-AT;
. . o temporal split around guideline DECIDE-AI
(internal, external) split; independent multi-site tests .. .
changes (early clinical studies)
Calibration Provide calibration plots/metrics; e.g., DTC: biopsy vs. observe; pACT: TRIPOD-AI CLAIM;
clinical utilit, decision-curve analysis with clinical adjuvant discussion; PGL: DECIDE-AIL
y thresholds alpha-blockade intensity CONSORT-AI (impact)
. TRIPOD-AIL
Subgroups, Prespecify subgroup an.alyse.s, report  Age bands, sex, ancestry; genotype CLAIM; SPIRIT-AL/
. performance and calibration by (SDHB, VHL, TP53); scanner/vendor
fairness, safety . CONSORT-AI
subgroup; failure modes strata .
(safety reporting)
Explainability, Prov1'de caéejlt?vel P le?natlons; SHAP for tabular models; heatmaps TRIPOD-AL; CLAIM;
. describe clinician oversight and oo . DECIDE-AI (human
human-in-the-loop . . for US; pre-specified clinical concepts
review points factors)
Deployment recorilp/er(;lcfl}iloiloeCtri?lr}gfr;:’zie(?ric; 1s’cem MDT dashboards; embargo on SPIRIT-AL/
ders)criy tion inteeration alechin user rolesyan d auto-finalization; CPMS tumor-board CONSORT-AIL;
P graton, & ' context DECIDE-AI
escalation
Monitorin Drift checks, recalibration, Annual re-validation; pediatric TRIPOD-AI
1(1) d:(:tes & change-control plans, rollback threshold review post-guideline CONSORT-AL
p procedures updates DECIDE-AI
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Table 2. Cont.
Guardrail Topic What It Means Pediatric ET-Specific Application Checklist Anchors
Data, code Share de—ld.entl.fled/synt}}etlc data Synthetic pediatric US; model cards TRIPOD-A.I’.
vailabilit where possible; reproducible code with pediatric performance notes METRICS;
a y and model cards P P CLAIM
Define fusion strategy (early, e.g.,, DTC/MTC: integrate genotype
Multi-omics intermediate, late), batch correction, with imaging /biochemistry; pACT: TRIPOD-AI
integration and and causal/graph assumptions, combine clinical data with urinary DECIDE-AI
network methods document assay quality control and steroidomics; PGL: genotype-aware METRICS

feature stability biochemical and imaging fusion

5. Ethics, Equity, and Patient-Facing Al

Why pediatrics is different: Children’s longer life expectancy, evolving physiology,
and dependence on guardians make risk-benefit trade-offs are fundamentally different
from those in adult oncology. Recent pediatric ethics statements and viewpoints from the
American Academy of Pediatrics emphasizes pediatric-specific governance, proportion-
ate oversight, and the enrichment of pediatric data resources through collaboration and
responsible sharing—for example, harmonized registries, age-appropriate consent/assent,
and privacy-preserving analytics—so that Al systems are both safe and representative [96].
In this framing, the goal is not to collect less data per se but to collect the right data
under robust safeguards, minimizing unnecessary elements while maximizing quality,
inclusiveness, and long-term stewardship.

Patient-facing Al/LLMs—promise and pitfalls: Evaluations in pediatric oncology
show that general-purpose chatbots can provide accessible information but are not adequate
for treatment guidance, center selection, or nuanced counseling without expert curation and
clear escalation pathways [75]. Reliability and safety can be operationalized with grounded
content (answers limited to locally curated pediatric materials), hard stops for out-of-scope
queries (dose changes, urgent symptoms) with automatic escalation, and appropriate-
reliance metrics (comprehension checks, escalation rates, resolution times) tracked by
subgroup to detect inequities. Institutions can require vendor model cards, update logs,
and incident reporting and embed tools within ERN PaedCan/EXPeRT governance so
consent/assent, privacy, and accessibility reviews are standardized rather than ad hoc.

Techquity—the equity lens: Digital innovations can widen disparities if poorly de-
signed, but—as argued in recent work on pediatric and adolescents and young adult
oncology—generative Al and immersive technologies can also actively reduce inequities
when built and governed for techquity. Examples include multilingual, reading-level-
adaptive counseling materials, culturally contextualized education co-created with families,
low-bandwidth and offline delivery options, and standardized, immersive procedural
preparation that narrows variation in pre-treatment information. In this framing, the
actionable levers are design and measurement (co-design with under-served groups, sub-
group performance and comprehension audits, continuous content localization), rather
than generic calls to “ensure access”, with governance focused on documenting gaps and
closing them iteratively [97].

Global and institutional governance: The World Health Organization’s 2024-2025
guidance on LMMs in health frames and end-to-end, risk-managed lifecycle includes pre-
deployment evaluation for clinical accuracy and harms, content provenance/labeling of
Al-generated outputs, mandatory human oversight, and transparent documentation of
training data sources and model limitations. It further emphasizes privacy-by-design and
data minimization, bias and accessibility audits (with attention to children and guardians),
and post-deployment surveillance with incident reporting and governed updates. Pro-
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curement clauses (e.g., model cards, update logs, data-use restrictions, cybersecurity) are
recommended to operationalize these expectations. (ISBN: 978-92-4-008475-9).

Field-applicable recommendations with illustrative cases: Translating principles into
practice in pediatric ETs often comes down to scoping, governance, and measurement.
Three brief scenarios illustrate how the ethics/equity guardrails can be operationalized
without overpromising what Al can do.

Case A—DTC ultrasound triage: narrow scope, calibrated thresholds, and human
review. In a pilot where an ultrasound model flags higher-risk thyroid nodules, outputs
are limited to calibrated probabilities mapped to a pre-agreed FINA threshold set by the
MDT for the local pediatric population. The model never auto-orders biopsies. Instead,
a short note explains which recognizable sonographic traits (e.g., margins, echogenicity,
microcalcifications) were most influential, and the radiologist/endocrinologist retains
decision authority. Equity is monitored through routine reports stratified by age band, sex,
and site/vendor, and a simple appeal path (MDT re-read) is available for families. This
design aligns patient safety (no automation), transparency (thresholds published), and
appropriate reliance (MDT sign-off).

Case B—PPGL peri-operative instability: safety-first integration. Where a clinical-
parameter model estimates the risk of intra-operative hemodynamic instability, its out-
put triggers a pre-anesthesia huddle and prompts documentation of the alpha-blockade
plan. No changes occur automatically. The team agrees in advance on actions at
low/indeterminate/high risk, and adverse events are tracked prospectively as part of a post-
deployment safety log. To minimize bias, performance is periodically reviewed by genotype
(e.g., SDHB/SDHD/VHL), and thresholds are re-evaluated after guideline changes. This
approach embeds human oversight, genotype-aware equity, and lifecycle monitoring.

Case C—Patient-facing navigator for MEN2 families: educate, don not advise.
A lightweight, multilingual navigator is scoped to education and logistics (appointments,
travel letters, pre-op fasting rules) and avoids treatment advice. Content is curated from pe-
diatric guidelines, written at adjustable reading levels, and available offline for bandwidth-
constrained settings. The tool recognizes “out-of-scope” questions (e.g., whether to delay
surgery) and escalates to the clinical team. Programs evaluate comprehension and trust with
brief checks, track errors/omissions, and compare performance across language groups to
prevent widening disparities. This keeps patient-facing Al useful while respecting limits.

Across these use cases, procurement can make expectations concrete: model cards
(training data domains, pediatric performance, known limits), update logs, data use and
retention terms, accessibility requirements (language, reading level, offline mode), and
incident reporting pathways. Institutions can house these within existing ERN Paed-
Can/EXPeRT governance so that pediatric-specific assent/consent, privacy, and equity
reviews are routine rather than ad hoc.

6. Roadmap for Clinical Translation in Pediatric Endocrine Tumors

Clinical translation in rare, genotype-diverse pediatric endocrine tumors will be incre-
mental and most feasible within existing European infrastructures (EXPeRT, ERN PaedCan,
Clinical Patient Management System virtual tumor boards (CPMS), PARTNER) [98-101].
Below, we outline foundations, pilot designs, and evaluation strategies using concrete,
entity-specific examples. The aim is to move beyond “Al potential” toward deployable,
auditable decision support.

Foundations: Rather than building pipelines from scratch, centers can map local data
to minimal common elements compatible with PARTNER/EXPeRT (core clinical variables;
imaging descriptors—contrast phase, slice thickness, reconstruction kernel; biochemistry
with assay identifiers; genotype/variant class where available). For radiomics, report IBSI-
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conformant feature definitions and stability checks (test-retest or inter-scanner). For tabular
data, adopt pediatric reference ranges and units. Consent/assent text should anticipate
cross-border sharing under GDPR and explicitly cover model evaluation. Within ERN
PaedCan, CPMS tumor boards provide a natural venue to surface model cards (intended
use, training domains, pediatric performance, limits) without automating orders or reports.

Pragmatic pilots: Pilots should target narrow questions with clear actions, use pre-
specified thresholds, and log decisions and rationales.

DTC early non-remission—treatment de-escalation/escalation: Integrate a 24-month
non-remission predictor into post-operative MDT review. Map probabilities to explicit
actions (e.g., observation vs. compartment dissection vs. RAI activity band) agreed ex ante.
Require a short, structured note (model estimate; top contributing factors; clinical decision)
to create an audit trail.

ACT survival—risk stratification: Deploy a parsimonious four-variable survival calcu-
lator (distant metastasis, tumor volume, pT stage, resection status) as a read-only decision
aid during CPMS boards. Before go-live, set a risk threshold (e.g., predicted 3-year disease-
specific survival below a pre-agreed cut-point) that triggers discussion of adjuvant therapy
or intensified follow-up. Monitor calibration quarterly and record whether the calculator
changed the conversation (yes/no; how).

Rationale: aligns with equity (routine variables), suits small-N settings, and provides
an immediately interpretable output.

PGL peri-operative instability—safety planning: Use a clinical-parameter model to
stratify hemodynamic instability risk at pre-anesthesia conference. Actions are templated
(alpha-blockade targets, invasive monitoring, anesthesia staffing). No automation occurs.
The model simply prompts a checklist and records adherence.

GEP-NEN imaging—federated radiomics: For adolescent SSTR-PET or contrast
CT/MRI tasks (grading surrogate or nodal risk), run federated /distributed training across
participating sites coordinated by EXPeRT, avoiding centralization of identifiable images.
Harmonize reconstruction settings up front and log site-wise performance to identify drift
or bias.

Evaluation and sustainability: When signal and feasibility are shown, scale within
networks using quasi-experimental designs (stepped-wedge or cluster roll-out across
centers). Outcomes should be clinically anchored and entity-specific: time-to-diagnosis,
reduction in avoidable FNAs (DTC) or peri-operative complications (PGL), timeliness of
genetics referral, or alignment with MEN2 surgical timing rather than AUROC alone. Each
deployment should include the following: (i) calibration maintenance (plots, calibration-in-
the-large, slope) at planned intervals; (ii) equity dashboards (performance and calibration
by age, sex, ancestry, genotype, site/vendor); (iii) drift surveillance with triggers for
recalibration or rollback; and (iv) governed change-control (versioned releases, update logs,
incident reporting) aligned to EU Al Act “high-risk” expectations and national device rules.
Within ERN PaedCan/EXPeRT, steering groups can serve as oversight bodies for approvals
and equity monitoring.

To accelerate replication, each exemplar can ship with a short pack: (1) one-page
model card; (2) minimum data dictionary (fields, units, ranges); (3) threshold rationale;
(4) calibration-check template; (5) CPMS note template; and (6) monitoring checklist (equity
slices; drift flags). These lightweight artifacts make pilots reproducible across centers with
different resources.

7. Conclusions and Future Directions

AI/ML holds credible promise across pediatric endocrine tumors, provided models
are developed on harmonized data, are calibrated and interpretable, and are evaluated
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prospectively within pediatric care pathways. Progress should prioritize multi-center col-
laboration, federated analyses, and pragmatic prospective studies with predefined actions
and clinically meaningful endpoints, coupled to equity audits and lifecycle monitoring.
With this disciplined approach, collaborative networks can translate retrospective signals
into safe, reproducible, and equitable clinical benefit for children and adolescents.
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Abbreviations

The following abbreviations are used in this manuscript:

ACA Adrenocortical adenoma

ACC Adrenocortical carcinoma

ACT Adrenocortical tumor

Al Artificial intelligence

AUROC Area under the (receiver operating characteristic) curve
DTC Differentiated thyroid carcinoma

ERN PaedCan  European Reference Network for Paediatric Oncology
EXPeRT European Cooperative Study Group for Pediatric Rare Tumors
FNA Fine-needle aspiration

GEP-NEN Gastroenteropancreatic neuroendocrine neoplasm

IBSI Image Biomarker Standardization Initiative

LLM Large language models

LMM Large multimodal models

MDT Multidisciplinary tumor board

ML Machine learning

MTC Medullary thyroid carcinoma

PGL Intra- and extra-adrenal paraganglioma

PRRT Peptide receptor radionuclide therapy

SHAP Shapely Additive exPlanations

XAI Explainable artificial intelligence
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Appendix A

Table A1l. PubMed/MEDLINE search strategy.

Search Block

Verbatim Boolean Query (PubMed Syntax)

All endocrine entities
(master query)

DTC-focused

MTC-focused

ACT-focused

PGL-focused

(“pediatric” OR child * OR adolescen *) AND ((“differentiated thyroid carcinoma” OR
“papillary thyroid carcinoma” OR “follicular thyroid carcinoma” OR DTC OR PTC OR FTC
OR “medullary thyroid carcinoma” OR MTC OR adrenocortical OR “adrenal cortical” OR
“adrenocortical carcinoma” OR ACC OR “adrenocortical tumor *” OR pheochromocytoma

OR paraganglioma OR PPGL OR (neuroendocrine AND (gastroenteropancreatic OR
pancreatic OR PanNET OR “pancreatic NET” OR “pancreatic neuroendocrine” OR “small
intestinal” OR “small bowel” OR midgutOR GEP))) AND (“artificial intelligence” OR
“machine learning” OR “deep learning” OR radiomics OR radiogenomics OR “multi-omics”
OR omics OR “neural network *” OR “support vector” OR “random forest” OR “gradient
boosting” OR XGBoost OR “risk model *” OR “prediction model *” OR “survival model *”)
(“pediatric” OR child * OR adolescen *) AND (thyroid AND (“differentiated thyroid
carcinoma” OR “papillary thyroid carcinoma” OR “follicular thyroid carcinoma” OR DTC
OR PTC OR FTC)) AND (“artificial intelligence” OR “machine learning” OR “deep
learning” OR radiomics OR “risk model *” OR “prediction model *”)
(“pediatric” OR child* OR adolescen *) AND (“medullary thyroid carcinoma” OR MTC)
AND (“artificial intelligence” OR “machine learning” OR radiomics)
(“pediatric” OR child * OR adolescen *) AND (adrenocortical OR “adrenal cortical” OR
ACC OR “adrenocortical carcinoma” OR “adrenocortical tumor *”) AND (“artificial
intelligence” OR “machine learning” OR radiomics OR “risk model *” OR “survival model
*)

(“pediatric” OR child * OR adolescen *) AND (pheochromocytoma OR paraganglioma OR
PPGL) AND (“artificial intelligence” OR “machine learning” OR radiomics)
(“pediatric” OR child * OR adolescen *) AND (neuroendocrine AND
(gastroenteropancreatic OR pancreatic OR PanNET OR “pancreatic NET” OR “pancreatic

GEP-NEN-focused

neuroendocrine” OR “small intestinal” OR “small bowel” OR midgut OR GEP)) AND

(“artificial intelligence” OR “machine learning” OR radiomics OR radiogenomics OR
“multi-omics”)

Table A2. AI/ML studies in adult cohorts with pediatric relevance.

Ref./Entity Data Modality  Task/Endpoint Algorithms Validation Performance Limitations
Thresholds not
ML scores pre-specified;
. External, outperformed assay
Screening/ .. ., g
. . ; e multi-site specialists standardization
Pamporaki et al. . . diagnostic ML classifiers e .
Biochemical L. validation; pre-test required;
2025 [68]/PGL, . support: (logistic . . =
S screening + age . 2 comparison of estimates; minimal
multi sites, . disease- regression/ tree- R ..
_ + pre-test risk oy specialists’ pre- negligible demonstrated
n = 2046 probability based) . L
vs. post-score change in clinical impact;
score for PGL . . L Lo N
interpretations  specialists’ final pediatric
interpretations validation
needed
. Internal .
Zhao et al. Clinical s . . Best Etiology and
2025 [69]/PGL, variables, Predict intra-op RF’ SVM, fram/test, AUROC = 0.86; physiology
. . . hemodynamic LightGBM, calibration and s
single center, magmg instabilit MLP ensembles  decision-curve good differ in
n=197 features y calibration children
analyses
Zhou et al. VGI’IOLS;T hase Pre-op SIX+NI[{[€':SIHG(§EEIS External AUCs > 0.87 Requires
2025 [70]/PGL, ousp metastatic validation across datasets; pediatric
. radiomics, DL . . features; . . .
three sites, (ResNet) potential /high- combined across two test prognostic for imaging
n =249 o risk (GAPP > 3) cohorts MFS harmonization
clinical model
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Table A2. Cont.
Ref./Entity Data Modality  Task/Endpoint Algorithms Validation Performance Limitations
Guetal. Contrast- Predict grade DL signatures + External Typical AUCs Prosp.ect?ve
2023 [71]/ (G1-G3), S . 0.85-0.93 pediatric
enhanced CT or radiomics; validation . D
PanNET, two MRI LNM, or NOMOSTAMS (multi-center) depending on validation
sites, n = 320 aggressiveness & task lacking
Laudicellaetal. [68Ga]DOTATOC Predict Feature K-fold CV: Afgfh;sotgélr_aor.:f Heterogeneous
2022 [74]/GEP- PET/CT response to selection + logis- or-site ’ skewngss- scanners;
NEN, single radiomics + PRRT at lesion  tic/discriminant F; 1 SUVm x’ lesion-level
center, n = 38 clinical level analysis analyses a outcomes

non-predictive

Box A1. Calibration in practice (pediatric DTC example).

Calibration links predicted risk to what actually happens. Suppose a model estimates a 24-month
non-remission risk of 30% for a child after DTC surgery. In a calibrated model, among 100 similar
children, about 30 will not remit by 24 months. If, on testing, the observed rate is 18%, the model
is over-predicting and should not guide decisions until recalibrated (e.g., adjust intercept/slope).
Report a calibration plot and simple statistics (calibration-in-the-large, slope). Decisions (e.g., extent
of lymph-node dis-section, RATI activity) should then be tied to pre-agreed thresholds (e.g., intervene
if risk > X%) set by the MDT.

Box A2. Decision curves and thresholds (pediatric PGL example).

Decision-curve analysis (DCA) checks whether using a model is better than “treat/test all” or
“treat/test none” at clinically relevant thresholds. In PGL biochemical screening, a threshold of,
say, 10% might reflect the point at which you proceed to additional imaging. Plotting net benefit
across thresholds shows whether the model adds value where you actually plan to act. Report the
thresholds before you run DCA and interpret the curve where the team will use it—not across the
entire 0-100% range.

Box A3. Validation hierarchy.

e Internal validation (bootstrap /nested CV): guards against overfitting in the same data distri-
bution.
Temporal split: tests resilience to changes over time (protocols, practice).
Geographically external testing: challenges the model with different scanners, assays, and
case-mix—often where pediatric tools fail.

e  Prospective evaluation/early deployment: checks usability, calibration maintenance, and
safety signals.

e  Impact evaluation (cluster/stepped-wedge): asks whether decisions and outcomes actually
improve (e.g., fewer avoidable FNAs; fewer peri-operative complications).

Box A4. Reading explanations responsibly (SHAP, saliency, radiomics).

Use SHAP to verify that influential tabular features match clinical expectations. Be cautious when
high-order radiomic textures dominate without stability evidence. For images, a saliency map that
lights up a suspicious margin is reassuring; one that highlights unrelated regions warrants review.
Document when explanations changed a decision (or prevented an over-reliant one).
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