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Abstract

As artificial intelligence (AI) becomes more and more important in industrial settings, the quality and consistency of the data fed into these Al
systems is becoming crucial. The success of Al models heavily relies on good data quality. That's why this thesis introduces a new system for
monitoring the data going into Al models as it happens, this system is tested with historical data to make sure it works well. In industries where
machines and production lines need to run efficiently and reliably, having high-quality data is a big challenge. Sometimes, the data quality
changes or isn't good enough, which can make the AI models give wrong results. This can make people lose trust in how well Al models work.
Our paper tackles this issue by using a mix of methods - statistical, clusters and classes - to check the data in real time. We apply this to the data
from an Al model designed to predict when cutting tools for glass manufacturing need to be replaced. We rate each checking method and come
up with an overall score. This way, we can accurately and efficiently evaluate both the data we already know about and new, unseen data. This
overall score even helps someone who's not an Al expert to quickly figure out if the AI model they're using can be trusted right now, and it also
points out when something might be off with the data. Looking ahead, we plan to fine-tune how we balance the importance of each method based
on different situations. This will help make our monitoring system work well for all kinds of data going into Al models, not just in glass
manufacturing.
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challenges, this paper proposes an initial concept for the sensor-
based monitoring of input data, aiming to improve the
reliability of AI models by ensuring higher data quality.
Production data from float glass production is used as an
example.

1. Introduction
1.1. Background and Motivation

Artificial Intelligence (Al) is increasingly recognized as a
pivotal technology and is experiencing widespread adoption,
particularly within the industrial sector [1,2]. Al models are
deployed for various purposes including customer interaction,
process automation, and data analytics [3, 4]. The effectiveness
of these models critically depends on the quality of the

1.2. Objective and Research Questions

To support the development of anomaly detection methods,

underlying data [5, 6]. When faced with inferior input data,
these models often generate inaccurate or erroneous predictions
[7, 8]. Frequently, such flawed data go undetected without
technical intervention, adversely affecting the Al's performance
[9] and reducing the trust of users [10]. Considering these

2212-8271 © 2024 The Authors. Published by Elsevier B.V.

precise monitoring of input data is essential. For this purpose,
historical data from a period of 16 months, which include
measurements of various parameters, are used. These serve as
input for an Al model aimed at predicting the remaining
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lifespan of cutting wheels in glass cutting and breaking
technology.

The analysis focuses on parameters such as glass thickness
and conveyor speed. Since glass thickness varies from 3 mm to
12 mm and conveyor speeds differ accordingly, the data
concerning glass thickness are examined in detail. The goal is
to reduce variances and detect anomalies more effectively by
considering specific subranges of glass thickness. After
dividing the data into training and test datasets, various analysis
methods are applied, based on statistical, distance-based,
cluster-based, and class-based approaches.

Each data point is individually evaluated and assigned a
score reflecting data quality. An average value from the
different methods is calculated to combine their strengths. As a
result, each data point receives a rating between 0% and 100%,
with lower values indicating poor data quality, while higher
ratings indicate good input data.

This refined presentation makes the data analysis process
and the choice of methods more transparent and understandable
without overwhelming the reader with too many technical
details.

The primary goal of this study is to develop a software-
based monitoring system for the input data of an AI model used
in glass manufacturing plants. This system will automatically
check large volumes of data quickly to support operational
processes. It provides operators with an overview of current
process parameters during operation and detects anomalies or
abnormal data in real time. Additionally, an indicator of the
current data quality is calculated and displayed directly on the
plant's interface. This feature also makes it easier for
inexperienced workers to recognize inaccurate or erroneous
predictions of the Al model caused by poor input data. Such
insights enable the quick identification of issues, such as faulty
sensors, and the prompt implementation of corrective
measures. The central research question of this work is: "How
can input data from AI models in production be effectively
monitored for anomalies?"

2. Fundamentals and State of the Art

In production applications, systems are usually sensor-based
[11]. The literature primarily recommends anomaly detection
methods that use statistical, distance-based, cluster-based,
class-based, or deep learning approaches [12]. Anomalies can
be classified into several categories: point anomalies are
individual data points that significantly deviate from the rest of
the data mass; contextual anomalies are data points that would
normally be considered normal but are deemed abnormal in a
specific context; collective anomalies refer to groups of data
that exhibit abnormal behavior compared to the entire dataset.

Statistical methods assume that normal data are in densely
populated regions, whereas abnormal data are often isolated.
Gaussian methods are advised for these scenarios, assuming a
normal distribution (parameter-based), as well as histograms
and kernel-based methods that do not require known data
relationships  (non-parametric) [13, 14]. Distance-based
methods often use the position or data density in the immediate
vicinity of a point as a criterion for assessment, utilizing

techniques such as the Nearest Neighbor method or various
density procedures.

Cluster-based methods group data points into clusters that
display similar patterns. Abnormal data either do not fit well
into these clusters or are found in clusters with few values [12,
15]. Class-based methods learn patterns within the dataset,
identify deviating data points, and classify them as anomalies.
Recommended techniques include Bayesian Networks, Neural
Networks, Support Vector Machines (SVM), and rule-based
methods [12, 15].

Deep learning approaches transform data into other
dimensionalities, through which anomalies are identified by
different data mappings. This can be achieved using Principal
Component Analysis (PCA), Fuzzy logic, or Neural Networks
[14,17].

The literature has described specific cases where input data

were monitored for anomalies. Konigs and Brecher [18] used a
Gaussian method from the statistical approaches to detect
anomalies occurring during the prediction of remaining tool
life in milling processes. A distance-based method that
calculates the angle between points yielded the best results in
simulated datasets augmented with anomalies [19]. For
anomaly detection in real production data during steel
machining on a lathe, a statistical Gaussian method proved
most effective [21]. Liu et al. [20] also used a Gaussian method
but incorporated a prior classification based on the signal
length of the monitored parameter. Alimohammadi and Nancy
Chen [22] found that the Nearest Neighbor method and a class-
based approach were most effective for production data from
the oil and gas industry.
It is evident that there is no universally optimal method for
detecting anomalies in sensor-supported systems. The choice
of method and specific technique depends heavily on the
application area in production and the parameters being
monitored. Often, combinations of multiple methods are
employed.

3. Methodology
3.1. Integration and Detailing of Data

As a foundation for developing anomaly detection methods,
a structured dataset is essential. In this process, parameters of
an Al model are correlated, which predicts the remaining
lifespan of a cutting tool and thus the timing for replacing the
cutting wheel. Data integration allows parameters read from the
database to be compiled into a dataset. In this study, the glass
thickness, which is measured in millimeters, and the conveyor
speed of the production facility, given in millimeters per
minute, are used. These are combined in the dataset titled "All
Glass Thicknesses." Figure 1 displays the glass thicknesses
long with their corresponding conveyor speeds over a period of
six months.
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Fig. 1. Dataset ,,All Glass Thicknesses*

Correlations in the data show that conveyor speed decreases
as glass thickness increases, with speeds ranging from 5,000
mm/min at a nominal glass thickness of 12 mm to 22,000
mm/min at 3 mm. Notably, during transitions between nominal
glass thicknesses, sensor data for both parameters may be
sparse or absent, as glass manufacturers often turn off
measuring devices during these adjustments (indicated by a
green marker in Fig. 1). This variability makes anomaly
detection in the 'All Thicknesses' dataset unfeasible.

To manage data variance, creating subgroups based on glass
thickness is effective. For instance, by focusing on a specific
nominal glass thickness, all irrelevant data entries are excluded,
forming a streamlined dataset named 'Nominal Glass
Thickness 4 mm', covering thicknesses from 3.50 mm to 4.49
mm with corresponding conveyor speeds.
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Fig. 2. Dataset ,,Nominal Glass Thickness 4 mm”
In the 'Nominal Glass Thickness 4 mm' dataset,

measurement variance is reduced. Data patterns at the series'
start and end are highlighted with green in Fig. 2, indicating
thickness adjustments that affect the variance. To pinpoint
anomalies unrelated to glass thickness changes and to minimize
measurement scatter, further detailing of the data is useful. Fig.
3 illustrates the 'Glass Thickness 3.8 mm' dataset, displaying
conveyor speed and glass thickness over six months, with
thicknesses ranging from 3.749 mm to 3.850 mm.
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Fig. 3. Dataset ,,Nominal Glass Thickness 3,8 mm”
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In the "Glass Thickness 3.8 mm" dataset, there are only a
few data points remaining that indicate the beginning or end of
a thickness adjustment. Further detailing would offer minimal
benefit, as the dataset still contains 76,258 data points,
accounting for 99.5% of the "Nominal Glass Thickness 4 mm"
dataset. By detailing the "Glass Thickness 3.8 mm" dataset to
one decimal place, the variances within the dataset are minimal,
making it a suitable basis for developing input data monitoring.
This approach can be applied across all thickness ranges.

3.2. Development of Anomaly Detection Methods

At the beginning of the development process, the data are
divided into training and test datasets. The training dataset
"Training 3.8 mm" is used to train methods or to determine
reference values (e.g., median, standard deviation), covering
data from one year. The test dataset "Test 3.8 mm" is used to
test the methods on unknown data, simulating a production
environment, and includes data from four months. The
"Training 3.8 mm" dataset is utilized for development, where
methods are applied to identify anomalies and abnormal data.
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Fig. 4. Dataset ,,Training 3,8 mm”

In the subsequent development process of the methods,
binary labeling is used in the plots. Additionally, an Outlier
Score is calculated, which will be utilized in Chapter 4. From
the statistical methods, a Gaussian approach is employed. This
method determines the median and standard deviation from the
training data. The range between the median value plus or
minus the standard deviation (possibly multiplied by a factor)
is recognized as normal. Data points outside this range are
classified as abnormal. Therefore, a fixed range around the
median value is established within which the normal data lie.
This approach is designed to detect both point anomalies and
collective anomalies that are far from the median value. In the
"Training 3.8 mm" dataset used, the median value is 16,137
mm/min and the standard deviation is 773 mm/min. Thus, data
points outside the range of 15,363 to 16,910 mm/min are
identified as abnormal.

The Z-Score method also employs the median and standard
deviation. A measurement value X has the median X subtracted
and is then divided by the standard deviation S. The absolute
result is referred to as the Z-Score Z. For normal data, this score
ranges between zero and one. Values greater than one are
classified as abnormal. The Z-Score thus represents the
percentage deviation of the measurement from the median
value, relative to the standard deviation. This method aims to
detect both point anomalies and collective anomalies that are
far from the median value.
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For these two parameter-based methods using statistical
approaches, the comparable results are shown in Figure 5.
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Fig. 5. Gaussian Method

These methods identify approximately 19% of the dataset as
abnormal. Data points within a fixed boundary around the
median are considered normal, while those outsides are flagged
as abnormal, effectively detecting point anomalies. The period
between March and May is identified as a collective anomaly.
However, abnormal data are always detected using the median
and standard deviation, even when variance around the median
is low, such as 500 mm/min.

For the next two non-parametric statistical methods,
changes in data points relative to their predecessors are
constrained. The difference between consecutive data points is
calculated, and if this exceeds a threshold set at the 95th
percentile, it is deemed abnormal. These methods aim to
identify significant changes from the dataset norm. One method
limits absolute change, while the other restricts relative change
by normalizing the difference by the preceding value, giving
more weight to shifts at lower measurement values. Both
methods produce similar results.
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Due to the high data volume and low resolution, Fig. 6 may
mislead about the quantity of abnormal data. On average, only
3.5% of the dataset is classified as abnormal using these
methods. This is clearer when focusing on a smaller
timeframe, as shown in Fig. 7, which zooms into a 15-day
period within the green-marked area of Fig. 6, clearly
displaying the method's results.

By restricting changes between consecutive data points,
significant deviations are flagged as abnormal, aiding in the
detection of point anomalies. If a collective anomaly is distant
from other data, only the first affected data point is marked as
abnormal.

Distance-based methods, specifically the Nearest Neighbor
and Local Outlier Factor, utilize Euclidean distances for
anomaly detection. These methods calculate distances between
a data point and all others in the dataset. In the Nearest
Neighbor method, these distances are summed and compared
to a reference value (95th percentile) to classify data points as
abnormal or normal. The Local Outlier Factor averages these
distances, with the same classification criteria. Both methods,
adjustable by the variable k for the number of nearest
neighbors, aim to identify anomalies based on deviations from
neighboring data points, yielding comparable results.
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Using these methods, around 5% of the dataset is identified as
abnormal. Data points in areas with sparse measurements,
particularly those affected by point anomalies or thickness
adjustments (like those in early November), are classified as
abnormal. For the 14,000 mm/min range between March and
May, the classification is mixed, with data assessed as both
normal and abnormal.

A density-based method, which combines cluster-based and
distance-based approaches, is employed from the cluster-based
strategies. This method divides the range of data variation into
100 clusters, each representing approximately 250 mm/min of
conveyor speed. It assesses what percentage of the dataset falls
within each cluster. Data points in a cluster with density below
areference value are deemed abnormal, while those with higher
density are considered normal. This approach aims to identify
ranges with lower data density compared to other areas as
abnormal.

* Normal data « Anormal data

e
1=}
"

18k

e |L '.l’- orrr rrilg"rnr-.,ri e

14k

Belt speed [mm /min]

12k

Jan Mar May TJul Sep Nov Jan
Time

Fig. 9. density-based method



286 Tom Roger et al. / Procedia CIRP 130 (2024) 282-287

With this method, 8.2% of the dataset is identified as
abnormal. The density-based method categorizes areas with
low data density as abnormal, thus detecting point anomalies.
Additionally, data points that vary due to thickness
adjustments are classified as abnormal, as observed in early
May and early November. By segmenting into subsections,
measurements with minor deviations can be classified
differently, and possibly recognized as abnormal, such as in
early January through February.

From the class-based methods, the Isolation Forest, also
known as a decision tree, is used. It is trained using the training
data to recognize patterns in the dataset and autonomously sets
various criteria with threshold values. These criteria are
sequentially checked for each data point, and if any are not met,
the point is classified under that criterion. The fewer criteria a
data point meets, the higher the likelihood it is considered b
normal. Normal data are labeled with 1, abnormal data with -1.
The algorithm requires a predetermined percentage of the
dataset to be recognized as abnormal [23]. In Fig. 10, 5% was
selected.
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Fig. 10. Isolation Forest

With this method, as predetermined, 5.0% of the dataset is
classified as abnormal. The Isolation Forest is particularly
effective at detecting point anomalies. It also recognizes
values that vary due to thickness adjustments. However, with
this method, it must be specified how much of the dataset
should be categorized as abnormal. This percentage will
always be identified by the method, regardless of the dataset's
quality.

4. Evaluation and Results

Since the developed methods each have different strengths
and weaknesses, they are combined using the Outlier Scores
from each method, which indicate how well a data point fits
within a given method. A score close to 0% suggests an
anomaly, while a score closer to 100% indicates a lower
probability of anomaly. For example, in the Gaussian method,
a data point that matches the median value receives an Outlier
Score of 100%. The further the value deviates from the median,
the lower its Outlier Score. This provides a meaningful
evaluation for each data point on a scale from 0% to 100%.
Subsequently, an average score, called the Score, is calculated
from the individual Outlier Scores. This averaging combines
the strengths of the various methods. There is also the option to
weight certain methods more heavily. In Fig. 11, the Score
corresponds to the color of the data points.
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Fig. 11. Dataset ,, Training 3,8 mm”

Data points around 16,100 mm/min consistently receive scores
near 100%, reflecting the highest density in that region. As data
points approach or diverge from this value, color gradients
appear, particularly noticeable in November and December.
From March to May, many data points around 14,000 mm/min
are scored around 50%, indicating deviation from the norm but
also concentration in this area. Anomalies and variations due to
thickness adjustments are scored close to 0%. These results
demonstrate that input data monitoring effectively identifies
and rates deviations, yielding promising results for the
'Training 3.8 mm' dataset.

To evaluate these methods on unfamiliar and smaller
datasets, input data monitoring is applied to the 'Test 3.8 mm'
dataset, covering January to April 2023. This simulates the
method's application in production. In Fig. 12, results for the
'Test 3.8 mm' dataset are displayed, showing conveyor speed
over four months with scores visualized by the color of the data
points.
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Fig. 12. Dataset ,,Test 3,8 mm*

In the 'Test 3.8 mm' dataset, values around 16,100 mm/min
also receive high scores, while areas like around 14,000
mm/min, with many data points, are rated slightly lower.
Outliers and variations due to thickness adjustments are
scored near 0%. Notably, around January 29th and April 9th,
scores fluctuate around 20%.

These findings affirm that input data monitoring effectively
identifies and evaluates deviations in a production
environment, delivering promising results even with unfamiliar
datasets.

5. Conclusion and Future Work

In this study, each data point of a dataset is evaluated by eight
different methods using statistical, distance-based, cluster-
based, or class-based approaches, with scores ranging from
0% to 100%. An average score, termed the Score, is then
calculated from these individual evaluations, describing the
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data quality of the data point on a scale from 0% to 100%. By
averaging these scores, the strengths of the methods are
combined. Displaying the Score on the equipment makes it
clear, even to inexperienced workers, what the input data
quality of the Al model is. Lower scores indicate poor data
quality, while higher scores suggest good input data.

The input data monitoring was tested on data from an Al
model that predicts the remaining life of a cutting tool, and the
results were visualized in color plots. These plots showed that
areas with the highest data density received very high scores,
typically around the median value. Areas with fewer data
points received lower scores. Point anomalies or outliers were
detected and assigned very low scores. Thus, the input data
monitoring identifies and evaluates deviations from the rest of
the dataset. Significant results were achieved for the conveyor
speed. The results of the input data monitoring were validated
by experts and rated as a functional solution for anomaly
detection in the input data of an AI model. This thesis
demonstrates that the developed concept can monitor input data
of Al models for anomalies or abnormal data in production
settings.

The concept developed in this Paper could be adapted to
other parameters of the glass manufacturing process with some
modifications. Additionally, the weightings of the methods for
anomaly detection could be adjusted to optimize the results,
potentially through an Al model. Furthermore, more methods
with different approaches could be developed and
implemented, or existing methods could be replaced. To use
the concept in production in the future, it must be implemented,
tested, and validated on the equipment. In the long term, the
tasks of input data monitoring are intended to be undertaken by
an Al model, which will also handle the management of
anomalies or abnormal data.

Declaration of Generative Al and Al-assisted technologies in
the writing process

During the preparation of this work the authors used
ChatGPT4 to improve readability and grammar. After using
this tool, the author reviewed and edited the content as needed
and take full responsibility for the content of the publication.
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